
Fast Algorithms for Stochastic
Model Predictive Control with
Chance Constraints via Policy

Optimization

Jingyu Zhang

Department of Systems Science, Graduate School of Informatics

Kyoto University

A thesis submitted for the degree of

Doctor of Philosophy in Informatics

2023

Supervisor:

Prof. Toshiyuki Ohtsuka

Examination committee:

Prof. Toshiyuki Ohtsuka

Prof. Manabu Kano

Prof. Shun’ichi Azuma

Abstract

Stochastic model predictive control (SMPC) is currently receiving increas-

ing attention in the control of stochastic systems because it provides a

systematic way to incorporate probabilistic descriptions of uncertainties

in a stochastic optimal control problem. The major challenge of SMPC

comes from finding an optimal policy at each time instant. The goal of

this thesis is to find novel policy optimization methods for SMPC with

chance constraints, which can handle different types of problem settings,

and obtain good closed-loop control effects and computational efficiency.

For linear Gaussian systems, we first present an efficient parameteriza-

tion method called simplified affine disturbance feedback parameteriza-

tion, which significantly reduces the computation cost while maintaining

good control performance. The simulation results show that the proposed

method can provide a trade-off between computation cost and control

performance. We also present a fast algorithm for the numerical solution

of stochastic dynamic programming. This algorithm is proved to globally

converge to the optimal solution with a local Q-superlinear convergence

rate. Numerical experiments show that this algorithm can achieve ideal

closed-loop control performance with a very fast calculation speed.

For output-feedback nonlinear SMPC, we present a constrained stochastic

approximate dynamic programming algorithm, which finds the numerical

solution of the stochastic constrained Bellman equation. The informa-

tion state propagation is obtained by the extended Kalman filter with a

Gaussian assumption. The algorithm is proved to have a Q-superlinear

local convergence rate. Numerical experiments show that our proposed

algorithm can attain good control performance and reasonable chance-

constraint satisfaction and is computationally efficient owing to its dy-

namic programming structure.

For systems with unknown models, we present a sample-based Bayesian

reinforcement learning method. The Gaussian process dynamic model is

used to model the system. We calculate the posterior belief update by a

particle filter and solve the chance constrained optimization by a sample-

based method. Numerical experiments show that our proposed method

can achieve good learning efficiency and control performance in both linear

Gaussian and non-linear non-Gaussian systems.

4

Acknowledgements

PhD study is an unforgettable journey in my life, in which there is sadness,

joy, loss and growth. During the PhD study, the global outbreak of the

COVID-19 also cast a shadow over the already difficult journey. I am very

lucky to devote myself to such an interesting and meaningful research topic

during the four years, and I am grateful for all the warmth and kindness

I have received.

First and foremost, I want to thank my supervisor, Professor Toshiyuki

Ohtsuka, who provided me many valuable opportunities and constant sup-

port and encouragement during my PhD and acted as a role model not

only in academics but also in life. There are many things Ohtsuka sen-

sei has taught me, not only rich experience and knowledge, but also the

meticulousness and enthusiasm in research, and the patience and kind-

ness with people, which can all benefit me for a lifetime. My examination

committee members Prof. Ohtsuka, Prof. Kano (also my co-supervisor)

and Prof. Azuma deserve my special thanks for their valuable advices and

suggestions.

I would like to thank Associate Professor Kazunori Sakurama and Assis-

tant Professor Kenta Hoshino for valuable discussions and suggestions in

all the seminars in Ohtsuka lab, Secretary Ms. Hata for the support in

affairs. Furthermore, I also would like to thank Dr. Deng, Assis. Prof.

Iori, Dr. Katayama, Mr. Lin for the pleasant discussions and conversa-

tions. I also thank all my friends who are near and far, for their constant

company and joy.

I would also like to thank the JST CREST and JSPS KAKENHI for the

financial support of my PhD study.

Last but not least, I want to thank my parents who always care about and

believe in me. They give me unconditional love and support, and make

me full of confidence to face difficulties and challenges all the time.

Contents

Notation 1

1 Introduction 3

1.1 Background and Motivation . 3

1.2 Overview of SMPC with Chance Constraints 4

1.2.1 Stochastic tube approaches . 5

1.2.2 Pre-parameterization of control policy 5

1.2.3 Stochastic dynamic programming approaches 6

1.3 Challenges in SMPC with Chance Constraints 7

1.3.1 Policy optimization . 7

1.3.2 Uncertainties propagation in stochastic system 8

1.4 Outline and Contributions . 9

2 Preliminaries 12

2.1 Numerical Optimization . 12

2.1.1 Optimality conditions for nonlinear programming 12

2.1.2 Primal-dual interior-point method 14

2.1.3 Optimality conditions for optimal control problem 16

2.2 Stochastic Model Predictive Control 17

2.2.1 Stochastic optimal control problem 17

2.2.2 Information state . 19

2.2.2.1 Kalman filter . 20

2.2.2.2 Extended Kalman filter 20

2.2.2.3 Particle filter . 21

2.2.3 Chance constraints . 23

i

Contents

3 Efficient Control Parameterization Method for Linear SMPC 26

3.1 Introduction . 26

3.2 Problem Statement . 28

3.3 Various Control Parameterization Methods 29

3.3.1 Affine state feedback parameterization 29

3.3.2 Affine disturbance feedback parameterization 30

3.4 Simplified Affine Disturbance Feedback 31

3.4.1 SADF parameterization . 31

3.4.2 Problem reformulation . 32

3.4.3 Properties of SADF . 33

3.5 Case Study . 36

3.5.1 Numerical example settings 36

3.5.2 Simulation analysis . 37

3.6 Summary . 38

4 Stochastic Dynamic Programming for Linear SMPC 40

4.1 Introduction . 40

4.2 Problem Statement . 42

4.3 Bellman Equation and Optimality Conditions 43

4.3.1 Problem reformulation . 43

4.3.2 Optimality conditions . 45

4.4 Recursive Riccati Interior-Point Method 46

4.4.1 Backward pass . 47

4.4.2 Forward pass . 48

4.4.3 Outer loop . 49

4.5 Convergence Analysis of RRIPM . 50

4.5.1 Global convergence . 51

4.5.2 Local convergence rate . 54

4.6 Practical Implement Issues for a Feasible Algorithm 55

4.7 Case Study . 57

4.7.1 Numerical example settings 57

4.7.2 Simulation analysis . 58

4.8 Summary . 60

ii

Contents

5 Approximate Dynamic Programming for Output-feedback Nonlin-

ear SMPC 62

5.1 Introduction . 62

5.2 Problem Statement . 64

5.3 Output-feedback SMPC . 65

5.3.1 Bellman equation for general SOCP 65

5.3.2 Gaussian belief dynamic model 66

5.3.3 Output-feedback SMPC algorithm 67

5.4 Stochastic Approximate Dynamic Programming Algorithm 68

5.4.1 Deterministic reformulation via the Gaussian belief dynamic

model . 69

5.4.2 Constrained SADP algorithm 71

5.4.2.1 Backward pass . 73

5.4.2.2 Forward pass . 74

5.4.2.3 Outer loop . 74

5.5 Convergence Analysis of Constrained SADP Algorithm 75

5.6 Case Study . 78

5.6.1 Numerical example settings 78

5.6.2 Simulation analysis . 79

5.7 Summary . 81

6 Bayesian Reinforcement Learning for Unknown Model 83

6.1 Introduction . 83

6.2 Problem Statement . 85

6.2.1 Partially observable Markov decision process 85

6.2.2 Control target . 86

6.3 Preliminaries of Model-based Bayesian Reinforcement Learning 87

6.4 Gaussian Process Dynamic Model Learning 88

6.4.1 Gaussian process dynamic model 88

6.4.2 Model learning . 90

6.5 Sample-based Bayesian Reinforcement Learning 91

6.5.1 Belief update via particle filter 91

6.5.2 Sample-based constrained dynamic programming 92

6.5.3 Bayesian reinforcement learning algorithm 95

6.6 Case Study . 95

6.6.1 Numerical example settings 95

iii

Contents

6.6.2 Simulation analysis . 97

6.6.3 Linear Gaussian case . 97

6.6.4 Nonlinear non-Gaussian case 99

6.7 Summary . 100

7 Conclusions 102

7.1 Summary of Contributions . 102

7.2 Discussion and Future Work . 103

A Soft Constraint RRIPM 104

A.1 Optimality conditions . 104

A.2 Soft Constraint RRIPM Algorithm 105

A.2.1 Backward pass . 105

A.2.2 Forward pass . 106

A.2.3 Outer loop . 108

Bibliography 109

List of Publications 117

iv

Notation

For a vector x ∈ Rnx , a matrix A ∈ Rn×n, and a differentiable vector-valued function

g(x) : Rn → Rm, we have the following notation:

Notation Meaning
xi i-th iteration of x
xk k-th stage of MPC
x∗ Optimal value of x
|x| Element-wise absolute value of x
xT Vector transpose of x
‖x‖2 `2 norm of x
‖x‖ Uniform norm of x
A � 0 A is positive-definite
A � 0 A is positive-semidefinite
E(·) Expectation of a random variable
P[·] probability of a random event
p(·) probability density function of a random variable
R Set of non-negative real numbers
I Identity matrix
0 Zero or zero matrix

1

Contents

Abbreviations

Abbreviation Meaning
ADF Affine disturbance feedback
ADP Approximate dynamic programming
BDP Bayesian dynamic programming
BRL Bayesian reinforcement learning
CDF Cumulative distribution function

CSTR Continuous-time stirred tank reactor
DP Dynamic programming

EKF Extended Kalman filter
gPC Generalized polynomial chaos expansion

GPDM Gaussian process dynamic model
KKT Karush–Kuhn–Tucker
LQR Linear quadratic regulator
LQG Linear quadratic Gaussian
MAP Maximum a posteriori
MDP Markov decision process
MLE Maximum likelihood estimation
MPC Model predictive control
OCP Optimal control problem
PDF Probability density function
PF Particle filter

POMDP Partially observable Markov decision process
RBF Radial basis function
RL Reinforcement learning

RRIPM Recursive Riccati interior-point method
SADF Simplified affine disturbance feedback
SDP Stochastic dynamic programming
SIS Sequential importance sampling

SKKT Stage-wise Karush–Kuhn–Tucker
SMPC Stochastic model predictive control
SOCP Stochastic optimal control problem

2

Chapter 1

Introduction

1.1 Background and Motivation

Research on the control of stochastic systems has always been an important topic in

academia and industry. In the past few decades, with the development of the times,

the research on stochastic systems has changed from the simplest linear Gaussian

system to complicated stochastic system. On the one hand, simple models can no

longer satisfy the requirement of increasingly complex systems, such as robots with

uncertain parameters and the control of complex power systems. On the other hand,

modern technologies (e.g., increased computing power, availability of low-cost sensors,

high-quality observation instruments, and advanced analysis techniques) provide more

possibilities for the analysis of complex systems, while also putting forward higher

requirements for the design of control algorithms.

Model predictive control (MPC) has received great attention among various ad-

vanced control technologies (Mayne (2014)), owing to its ability to effectively cope

with the complex dynamics of systems with multiple inputs and outputs and to in-

tuitively consider input or state constraints. In MPC literature, there are two ways

to deal with uncertainty: robust (Bemporad and Morari (1999)) and stochastic ap-

proaches (Mesbah (2016)). Robust MPC keeps systems stable and allows them to

operate under the worst-case perturbations analyzed under bounded uncertainties,

whereas stochastic MPC (SMPC) uses probabilistic descriptions of objective values

and constraints and accounts for acceptable levels of constraint violations during sys-

tem operation, called chance constraints (Charnes and Cooper (1959)). The proba-

bility of the worst-case perturbations can be very small in the real world, which leads

to conservative control performance in robust MPC (Garatti and Campi (2013));

therefore, SMPC is more attractive for better control performance.

3

Chapter 1. Introduction

The SMPC together with chance constrained optimization has been considered

a promising solution in many applications, such as building climate control (Old-

ewurtel, Jones, Parisio, and Morari (2013)), process control (Buehler, Paulson, and

Mesbah (2016); Mesbah, Streif, Findeisen, and Braatz (2014); Van Hessem and Bosgra

(2006)), portfolio optimization and finance (Dombrovskii and Obyedko (2015); Her-

zog, Dondi, and Geering (2007)), air traffic control (Visintini, Glover, Lygeros, and

Maciejowski (2006)), power production, management, and supply in systems with re-

newable energy sources (Hooshmand, Poursaeidi, Mohammadpour, Malki, and Grigo-

riads (2012); Patrinos, Trimboli, and Bemporad (2011)), robot and autonomous driv-

ing (J. Chen, Shimizu, Sun, Tomizuka, and Zhan (2021); Farrokhsiar and Najjaran

(2012)).

The classification of the SMPC algorithms can be quite difficult due to the large

variety of problem formulations and solution methods (Mesbah (2016)). For example,

from the problem formulation point of view, design methods have been developed

for linear or nonlinear, with additive, multiplicative or parameter uncertainties, state

feedback or output feedback, finite or infinite horizon cost function, linear or nonlinear

chance constraints, and totally or partially known systems. Solution methods can also

be divided into stochastic programming-based or sampling-based approaches, open-

loop or closed-loop optimization approaches, and so on.

The aim of this thesis is to provide fast algorithms for SMPC with chance con-

straints under various problem settings and can provide good closed-loop performance.

1.2 Overview of SMPC with Chance Constraints

The existing algorithms for solving SMPC can be roughly classified into two types,

based on how to solve the underlying chance-constrained optimization problem: the

first one, i.e., the analytic approximation methods (Geletu, Klöppel, Zhang, and

Li (2013)) (also known as probabilistic approximation methods in Zhou and Cogill

(2013)), is based on the reformulation of probabilistic-type constraints and cost func-

tion in terms of some deterministic quantities, e.g., sufficient statics of the random

variables. The second approach is based on the randomized (Schildbach, Calafiore,

Fagiano, and Morari (2012)), or scenario generation (Schildbach, Fagiano, Frei, and

Morari (2014)) methods, i.e., generating a sufficient number of random variable real-

izations, and combine the solution of resulting constrained optimization problems.

Next, we provide an overview of commonly used formulation methods in SMPC

with chance constraints.

4

1.2. Overview of SMPC with Chance Constraints

1.2.1 Stochastic tube approaches

Tube-based methods are widely used in linear stochastic systems with additive distur-

bance. The basic idea of the stochastic tube approach is from robust MPC (Blanchini

(1990)), which is to control the state of the system in a set called “tube” through

a certain control policy. This set of tube is a subset of the system constraint, and

then guide the entire tube to the desired position. This kind of operation on tube

allows designers to directly deal with the impact of uncertainty on system dynam-

ics and constraints. A major advantage of this method is that it can separate the

deterministic and uncertain parts of the system, making the controller can complete

a lot of work offline calculations, which is called pre-stabilizing techniques (Cannon,

Kouvaritakis, and Wu (2009)).

Many researchers have discussed the form and offline computation of stochastic

tubes. Cannon et al. (2009) uses variable polytopic cross-sections as well as several

tube layers. In Cannon, Kouvaritakis, Raković, and Cheng (2010), many-layered

tubes are used which can considerably reduce the conservativeness compared with

Cannon et al. (2009), but still a conservative performance. This shortcoming is ad-

dressed in Kouvaritakis, Cannon, Raković, and Cheng (2010) by using the probabilis-

tically constrained states to construct recursively feasible stochastic tubes.

In summary, stochastic tube approaches compute a state-feedback control law with

pre-computed constant feedback gain. This pre-stabilizing control law can guarantee

recursive feasibility as well as closed-loop stability in a mean-square sense. However,

the pre-stabilizing control law is just a conservative approximation of optimal control

law, since it loses a lot of design freedom.

1.2.2 Pre-parameterization of control policy

On the basis of tube-based approaches, the affine parameterization of the control

policy is proposed to increase the design freedom. A natural way is to search for the

solution of SOCP over an affine state feedback control law, i.e., treating feedback gains

and offsets as decision variables. However, the set of constraint-admissible policies of

this form is non-convex (Lofberg (2003)).

Inspired by disturbance feedback techniques in robust MPC (Ben-Tal, Goryashko,

Guslitzer, and Nemirovski (2004); Goulart, Kerrigan, and Maciejowski (2006)), an

affine disturbance feedback control law for SMPC is presented in Oldewurtel, Jones,

and Morari (2008), where the feedback control law is defined in terms of an affine

function of disturbance. There exists a one-to-one mapping between affine state

5

Chapter 1. Introduction

feedback control law and affine disturbance feedback control law, which is proved in

Goulart et al. (2006). In Oldewurtel et al. (2008), the disturbance in state equation

is assumed Gaussian and bounded in a polytopic set, which enables the analyzing of

input-to-state stability for the closed-loop system. Oldewurtel et al. (2010) extends

the situation to unbounded disturbances while relaxing the hard input bounds con-

sidered in Oldewurtel et al. (2008) so that the inputs are lying in a subset with a

certain probability level. The advantage of affine disturbance feedback control pa-

rameterization is that the set of its decision variables is guaranteed to be convex.

However, the number of decision variables in affine disturbance feedback policy grows

quadratically with the prediction horizon, so the real-time calculation is disastrous

when the prediction horizon grows.

1.2.3 Stochastic dynamic programming approaches

The most well-known research in stochastic optimal control via dynamic programming

(Bellman (1966)) is linear-quadratic-Gaussian (LQG) control (Lindquist (1973)). In

the linear Gaussian case, the separation principle, which involves separation of param-

eter estimation/system identification and control design (Patchell and Jacobs (1971)),

is exact and the stochastic optimal control law is equivalent to a certainty equiva-

lence controller (Bar-Shalom and Tse (1974)). However, the separation principle is

not optimal for general stochastic systems, and the LQG controller also cannot deal

with model uncertainty.

Bar-Shalom and Tse (1974) proposed the concept of dual control, which provides

a unified framework for stochastic optimal control and model uncertainty handling,

but it relies on the exact solution of stochastic dynamic programming, which is com-

putationally intractable, particularly in large-scale optimization (Mesbah (2018)). To

address the computational complexity of stochastic dynamic programming, various

approximate solutions have been proposed, which can be broadly categorized into two

approaches (Filatov and Unbehauen (2000)): One adopts a heuristic reformulation

of SMPC into a tractable optimal control problem, which can artificially include a

certain degree of closed-loop control effects such as the affine parameterization of con-

trol policy we mentioned in the previous subsection, and covariance control method

(D. Li, Qian, and Fu (2002)). Another approach involves the direct approximation of

the Bellman equation called approximate dynamic programming (ADP), which yields

a suboptimal solution to the Bellman equation (Powell (2007)).

Bayard and Eslami (1985) proposed a dual control method for stochastic non-

linear systems based on a single-stage lookahead approximation of cost-to-go, and

6

1.3. Challenges in SMPC with Chance Constraints

the approximated cost-to-go functions are evaluated via averaging the cost incurred

over several sample trajectories obtained from Monte Carlo simulations. Bayard

and Schumitzky (2010) presented a fully sample-based approach that combines the

sample-based forward dynamic programming with the particle filter, the advantage

of using a particle filter includes the applicability to general nonlinear systems as well

as its good performance in non-Gaussian systems.

The success of ADP-based algorithms such as differential dynamic programming

(Mayne (1966)) and iterative linear quadratic regulator (W. Li and Todorov (2004))

in the trajectory optimization and machine learning fields also inspired the develop-

ment of analytic approximation methods in stochastic MPC. Todorov and Li (2005)

proposed an iterative LQG algorithm for locally-optimal feedback control of nonlinear

stochastic systems subject to control constraints. J. Chen et al. (2021) generalized

the iterative LQG algorithm to the chance-constrained problem by using the penalty

methods, and tested the algorithm in autonomous driving planning tasks with static

and dynamic obstacles.

1.3 Challenges in SMPC with Chance Constraints

For the optimal control of stochastic systems (see Figure 1.1), policy optimization is

generally preferred rather than optimizing a trajectory through the state and con-

trol space, whereas the latter approach refers to the so-called “open-loop” controller

(Mayne, Rawlings, Rao, and Scokaert (2000)). However, policy optimization is still

challenging due to stochastic settings and chance constraints. This section introduces

these difficulties, which are tackled in this thesis.

1.3.1 Policy optimization

In principle, Bellman’s principle of optimality (Bellman (1966)) can be used to obtain

the control policy; however, the closed-form solution of the Bellman equation is always

intractable, particularly in large-scale or constrained optimization.

Pre-parameterization of control policy is commonly used in the reinforcement

learning field. In Sutton, McAllester, Singh, and Mansour (1999), the policy was

represented by a neural network whose input is a representation of the state, whose

output is action selection probabilities, and whose weights are the policy parameters,

and convergence of the policy gradient algorithm was also given. There have been

many works based on the policy gradient (Ghavamzadeh and Engel (2006); Kakade

(2001); Silver et al. (2014)).

7

Chapter 1. Introduction

Figure 1.1: Optimal control: a high level view

When dealing with MPC problems that require real-time computing, the gradient

method cannot meet such requirements. In linear SMPC, the optimal policy can

be parameterized as the affine function of state or disturbance as we mentioned in

Section 1.2.2, but the affine parameterization either leads to non-convex optimization

or introduce too many extra decision variables, which prevents its application to

real-time computation. In nonlinear cases, the optimal policy is no longer an affine

function of state or disturbance, but optimizing over arbitrary feedback law also can

not meet the requirements of real-time computing.

1.3.2 Uncertainties propagation in stochastic system

In linear Gaussian systems, the uncertainty propagation can be easily obtained by

a linear transformation of Gaussian random variables. However, the efficient prop-

agation method for stochastic uncertainties through the system dynamics is a key

challenge in SMPC of nonlinear systems.

In Weissel, Huber, and Hanebeck (2009), the Gaussian-mixture approximation

(Maz’ya and Schmidt (1996)) is used to describe the transition probability distribu-

tions of states. However, the online calculation of the coefficients of the Gaussian-

mixture model brings a lot of computation burdens. Generalized polynomial chaos

expansion (gPC, Xiu and Karniadakis (2002)) is also widely used in nonlinear SMPC.

In Mayne (2014), a sample-based method was adopted to adapt the coefficients of

gPC based on the history data. Streif, Karl, and Mesbah (2014) used Galerkin projec-

tion (Ghanem and Spanos (2003)) for adapting the coefficients of gPC, and efficiently

8

1.4. Outline and Contributions

constructing the probability distributions of state through Monte Carlo methods to

evaluate the chance constraints. The disadvantages of the gPC are caused by the

complexity of reconstructing the probability distribution by the statistic moments

information.

1.4 Outline and Contributions

This thesis presents efficient numerical algorithms for SMPC of various stochastic

systems with chance constraints. The aforementioned challenges and our approaches

are summarized in Figure 1.2. Chapter 2 introduces the preliminaries of this thesis:

basic knowledge of numerical optimization and the main features of SMPC. Chapter 3

presents an efficient parameterization method that combines the related simplification

techniques of affine disturbance feedback to create a concise controller form. Chapter

4 presents a recursive Riccati interior-point method for directly finding the stochas-

tic dynamic programming solution for linear SMPC. Chapter 5 presents a general

stochastic output-feedback MPC scheme for chance-constrained nonlinear systems,

and an approximate dynamic programming algorithm for solving the resulting opti-

mization problem. Chapter 6 presents a Bayesian reinforcement learning scheme for

unknown systems with chance constraints. We conclude the thesis and present an

outlook in Chapter 7. The main contributions of each chapter are briefly discussed

as follows.

Chapter 2 — Preliminaries. This chapter introduces preliminary knowledge

of solving SMPC which is used throughout this thesis. The first part of this chapter

introduces the basic knowledge of numerical optimization. We discuss the optimality

conditions of constrained optimization and introduce the primal-dual interior-point

method for a numerical solution of constrained optimization. In particular, we provide

the formulation of optimal control problem to be a constrained optimization prob-

lem and the corresponding optimality conditions. The second part of this chapter

introduces some important features of SMPC. We first give the general formulation

of the stochastic optimal control problem with chance constraints. Then we discuss

the information state update via recursive Bayesian filter, some approximation meth-

ods such as Kalman filter, extended Kalman filter, and particle filter are also given.

Finally, we introduce the concept of individual and joint chance constraints, and a

simple analytic reformulation method of chance constraints is given.

Chapter 3 — Efficient Control Parameterization Method for Linear

SMPC. This chapter presents an efficient control parameterization method for linear

9

Chapter 1. Introduction

Figure 1.2: Contributions overview of this thesis

SMPC with chance constraints. This parameterization combines the related simpli-

fication techniques of affine disturbance feedback to create a simplified affine distur-

bance feedback parameterization. The number of decision variables is decreased to

grow linearly with respect to the horizon length compared with quadratic growth of

the original affine disturbance feedback control law, resulting in a preferable trade-

off between real-time calculation and control performance. This parameterization is

shown to be equivalent to a state feedback control law, and the closed-loop stability of

the SMPC problem can also be guaranteed under mild assumptions. The simulation

results show that the proposed control parameterization method provides a desirable

control performance with low computation cost, and achieves the expected result.

Chapter 4 — Stochastic Dynamic Programming for Linear SMPC. This

chapter presents a numerical algorithm for linear SMPC with chance constraints via

solving the Bellman equation. The proposed approach reformulates the SMPC prob-

lem in a stochastic programming fashion. A recursive Riccati interior-point method

is proposed to solve the ensuing inequality-constrained dynamic programming. The

proposed method eliminates active sets in conventional explicit MPC and does not

suffer from the curse of dimensionality because it finds the value function and feedback

policy only for a given state using the interior-point method. Moreover, the proposed

method is proven to converge globally to a stationary solution Q-superlinearly. The

10

1.4. Outline and Contributions

numerical experiment reveals that the proposed method achieves a less conservative

performance with low computational complexity compared to existing methods.

Chapter 5 — Approximate Dynamic Programming for Output-feedback

Nonlinear SMPC. This chapter presents an efficient numerical algorithm for output-

feedback nonlinear SMPC with chance constraints. The stochastic optimal control

problem is also solved in a stochastic dynamic programming fashion like Chapter

4, and the output-feedback control is performed with the extended Kalman filter.

The information state is summarized as a dynamic Gaussian belief model. Thus,

the stochastic Bellman equation is transformed into a deterministic equation using

this model. A novel constrained approximate dynamic programming algorithm is

proposed to solve the resulting constrained Bellman equation. The proposed algo-

rithm was proven to exhibit a Q-superlinear local convergence rate. The numerical

experiment shows that the proposed method achieves good control performance and

a reasonable level of constraint violation and is computationally efficient owing to the

Riccati-type structure.

Chapter 6 — Bayesian Reinforcement Learning for Unknown Model.

This chapter presents a sample-based Bayesian reinforcement learning method for

dealing with systems of unknown model. The unknown model is learned by a Gaus-

sian process dynamic model in a model-based Bayesian reinforcement learning frame-

work. The POMDP is reformulated as a belief MDP by the particle filter. By using

a sample-based method, the stochastic dynamic programming is transformed into

several deterministic constrained dynamic programming problems, where each de-

terministic problem is solved by the algorithm proposed in Chapter 5. The chance

constraint is treated by a sample-removal algorithm. The numerical experiment shows

that the proposed method can get good control performance with a reasonable level

of constraint violation, and compared with the conventional Bayesian reinforcement

learning method, the learning efficiency is significantly improved.

11

Chapter 2

Preliminaries

This chapter introduces the preliminaries of numerical optimization and SMPC with

chance constraints. The first section introduces the optimality conditions of a con-

strained optimization problem and the primal-dual interior point method. The second

section introduces the basic idea of SMPC with chance constraint, in particular, var-

ious estimation methods for information state propagation and how to handle chance

constraints in SMPC

2.1 Numerical Optimization

2.1.1 Optimality conditions for nonlinear programming

Consider a general nonlinear programming problem

min
x

f(x)

s.t. h(x) = 0

g(x) ≤ 0

(2.1)

where f : Rn → R, h : Rn → Rm, and g : Rn → Rl. The Lagrangian associated with

(2.1) is

L(x, λ, s) = f(x) + λTh(x) + sTg(x) (2.2)

where λ ∈ Rm and s ∈ Rl are Lagrange multipliers for equality and inequality con-

straints, respectively.

12

2.1. Numerical Optimization

The Karush–Kuhn–Tucker (KKT) conditions for problem (2.1) are

∇xL(x, λ, s) = 0 (2.3a)

h(x) = 0 (2.3b)

g(x) ≤ 0 (2.3c)

Sg(x) = 0 (2.3d)

s ≥ 0 (2.3e)

where S = diag[s1, ..., sl] and ∇ is the gradient operator

∇xL(x, λ, s) = ∇f(x) +∇h(x)λ+∇g(x)s

Let A(x) denotes the set of indices of active inequality constraints at x, i.e.,

A(x) = {i : gi(x) = 0, i = 1, .., p, p ≤ l} (2.4)

The standard Newton’s method assumptions for problem (2.1) are as follows:

Assumption 2.1 (Existence). There exists solution to problem (2.1) (x∗, λ∗, s∗) sat-

isfies the KKT conditions (2.3).

Assumption 2.2 (Smoothness). The Hessian matrices ∇2f(x),∇2h(x),∇2g(x) exist

and locally Lipschitz continuous at x∗.

Assumption 2.3 (Regularity). The set {∇h1(x∗), ...,∇hm(x∗)} ∪ {∇gi(x∗) : i ∈
A(x∗)} is linearly independent.

Assumption 2.4 (Second-order sufficiency). For all η 6= 0 satisfying ∇hi(x∗)Tη =

0, i = 1, ...,m, and ∇gi(x∗)Tη = 0, i ∈ A(x∗), we have ηT∇2
xL(x∗)η > 0.

Assumption 2.5 (Strict complementarity). For all i, gi(x
∗) < s∗i .

The KKT conditions (2.3) can be written in a slack variable form as

F (x, λ, s, y) =


∇xL(x, λ, s)

h(x)
g(x) + y
Sy

 = 0, s ≥ 0, y ≥ 0 (2.5)

where y ∈ Rl is the slack variable to transfer the inequality constraint g(x) ≤ 0 into

an equality constraint g(x) + y = 0 by set y ≥ 0. The KKT system (2.5) gives the

first-order necessary conditions for a local minimum for optimization problem (2.1).

Note that the KKT conditions are the necessary and sufficient conditions (Boyd,

Boyd, and Vandenberghe (2004)) for the global minimum if (2.1) is convex.

13

Chapter 2. Preliminaries

2.1.2 Primal-dual interior-point method

In this subsection, we introduce the primal-dual interior-point method to solve the

inequality constraint optimization problem and show how the KKT system is solved.

The derivation of the primal-dual interior point method can be explained from

the barrier function or the perturbed KKT conditions (El-Bakry, Tapia, Tsuchiya,

and Zhang (1996)). We use the relatively simple perturbed KKT condition to derive

the algorithm. Let us consider the perturbed KKT conditions

Fµ(x, λ, s, y) =


∇xL(x, λ, s)

h(x)
g(x) + y
Sy − µ

 = 0, (s, y) ≥ 0 (2.6)

where µ ∈ Rl is the current duality measure (central parameter) used to smooth the

non-smooth equation Sy = 0. In the iterative process, the central parameter will

gradually decrease to converge to the original solution of the KKT system (2.5).

We now describe the primal-dual interior-point method for the general nonlinear

optimization problem (2.1). At the ith iteration, let

vi = (xi, λi, si, yi). (2.7)

We define the perturbed Newton correction from ith iteration to (i+ 1)-th iteration

δvi = (δxi, δλi, δsi, δyi). (2.8)

The search direction δvi is given by the solution of the perturbed Newton linear

system

F ′µ(vi)δvi = −Fµ(vi). (2.9)

More specifically, we can write it in the matrix form
∇2
xxL(xi, λi, si) ∇h(xi) ∇g(xi) 0
∇h(xi)T 0 0 0
∇g(xi)T 0 0 I

0 0 Si Y i



δxi

δλi

δsi

δyi

 = −


∇xL(xi, λi, si)

h(xi)
g(xi) + yi

Siyi − µi

 (2.10)

After the search direction δvi has been calculated by solving (2.10), the new

iteration vi+1 is calculated by

vi+1 = vi + αiδvi (2.11)

14

2.1. Numerical Optimization

Algorithm 2.1: Primal-dual interior-point method

Parameters:
σ ∈ [0, 1] reduce parameter;
αf = 0.995 fraction-to-the-boundary parameter;
ε terminal tolerance;

Initialization:
iteration counter i = 0 ;
initial guess (x0, λ0, s0, y0) ;
central parameter µ0 ;
initial optimality measurement (‖ξ0‖) ;

while ‖ξi‖ > ε do
Solve linear system (2.10) for δvi;
Compute step size αi by (2.12);
Calculate new iterate (xi+1, λi+1, si+1, yi+1) by (2.11);
Reduce the barrier parameter µi = σµi;
Update the iteration counter i = i+ 1;
Compute optimality measurements ξi.

end

where αi = diag[αx, αλ, αs, αy], which allows the flexibility of choosing different step

sizes for the optimization variables. One simple method for choosing the step size is

the fraction-to-the-boundary rule (Nocedal and Wright (1999))

αs = max{α ∈ (0, 1]) : si + αδsi ≥ 0}

αy = max{α ∈ (0, 1]) : yi + αδyi ≥ 0}

αx = αy, αλ = αs

(2.12)

with αf ∈ (0, 1) (A typical value of αf is 0.995), and the condition (2.12) can prevent

the variables s and y from approaching their lower bounds of 0 too quickly.

The above simple method for choosing the step sizes provides the basis of modern

primal-dual interior-point methods, though various line search technics are needed

to deal with non-linearity and non-convexity. The other major problem is how to

choose the sequence of central parameters {µi}. In Fiacco and McCormick (1990),

the central parameter is held fixed for a series of iterations until the perturbed KKT

conditions (2.6) are satisfied to some accuracy. A more common approach is to update

the central parameter at each iteration by a reduce parameter σ ∈ (0, 1).

The optimality measure is defined by the current KKT measurement

ξi =


∇xL(xi, λi, si)

h(xi)
g(xi) + yi

Siyi

 (2.13)

15

Chapter 2. Preliminaries

and the algorithm converges when

‖ξi‖ ≤ ε (2.14)

where ε > 0 is the terminal tolerance.

We summarize the primal-dual interior-point method in Algorithm 2.1.

2.1.3 Optimality conditions for optimal control problem

Consider a discrete-time system of the following form:

xk+1 = f(xk, uk) (2.15)

subject to inequality constraint

c(xk, uk) ≤ 0, (2.16)

where xk ∈ Rnx and uk ∈ Rnu are state and control inputs. f : Rnx ×Rnu → Rnx and

f : Rnx × Rnu → Rnc are the system equation and constraint function.

Consider a finite-horizon constrained optimal control problem at a known initial

state x0

min
x,u

N−1∑
k=0

l(xk, uk) + lN(xN)

s.t. xk+1 = f(xk, uk)

c(xk, uk) ≤ 0,

(2.17)

where l : Rnx × Rnu → R and lN : Rnx → R are the stage-wise and terminal costs,

respectively, N is the prediction horizon, x and u are the vectors of state and control

input sequences, i.e., x = [xT0 , ..., x
T
N]T and u = [xT0 , ..., x

T
N−1]

T.

The Lagrangian for this constrained optimal control is

L(x,u,λ, s) =
N−1∑
k=0

(l(xk, uk) + sTk c(xk, uk)) + lN(xN , uN) +
N∑
k=1

λTk (f(xk−1, uk−1)− xk)

(2.18)

where sk ∈ Rnc and λk ∈ Rnx are Lagrange multipliers for equality and inequality

constraints respectively.

Let c(x,u) = (c(x0, u0)
T, ..., c(xN−1, uN−1)

T)T, λ = [λT0 , ..., λ
T
N]T, s = [sT0 , ..., s

T
N−1]

T

and S = diag[s]. The Karush–Kuhn–Tucker (KKT) conditions for the optimal control

16

2.2. Stochastic Model Predictive Control

problem is
∇xL(x,u,λ, s) = 0

∇uL(x,u,λ, s) = 0

∇λL(x,u,λ, s) = 0

Sc(x,u) + λ = 0

c(x,u) ≤ 0, s ≥ 0,

(2.19)

where ∇ is the gradient operator. The KKT system (2.19) gives the first-order nec-

essary conditions for a local minimum for optimal control problem (2.17), and thus

the numerical solution of the optimal control problem can be given by Algorithm 2.1.

2.2 Stochastic Model Predictive Control

A general SMPC problem is introduced in this section. This formulation provides

a very general framework for a wide variety of problems not only from control engi-

neering but also from basically any field imaginable since uncertainty always exists

in reality.

2.2.1 Stochastic optimal control problem

As necessary ingredients, a model of the system is needed, most commonly in the

form of a discrete-time stochastic system:

xk+1 = f(xk, uk, wk)

yk = h(xk, vk),
(2.20)

where k denotes the time index; xk ∈ Rnx denotes the system states; uk ∈ Rnu denotes

the control inputs; yk ∈ Nny denotes the outputs; wk ∈ Rnw denotes stochastic process

noise; vk ∈ Nnv denotes measurement noise; and f : Rnx × Rnu × Rnw → Rnx and

h : Rnx × Rnv → Rny denote the system state and output equations, respectively.

The random disturbance wk and noise vk are generated based on known probability

distributions.

Define an N -horizon cost function:

J := E[
N−1∑
k=0

l(xk, uk) + lN(xN)], (2.21)

where E denotes the expected value, l : Rnx × Rnu → R and lN : Rnx → R are the

stage-wise and terminal costs, respectively.

17

Chapter 2. Preliminaries

In addition to minimizing cost (2.21), the system is also subject to input and state

constraints

g1(xk) ≤ 0, g2(uk) ≤ 0. (2.22)

Normally a chance constraint is imposed on the state, i.e.,

P[g1(xk) ≤ 0] ≥ 1− pvio, (2.23)

where P denotes the probability and pvio ∈ (0, 0.5] denotes the maximum allowed

probability of state constraint violation.

Remark 2.1. The chance constraints on input variable are still problematic in the

context on SMPC. More specifically, the issue is whether to reformulate input con-

straints as probabilistic ones or not. In the case of noise is bounded (Cannon et al.

(2010); Korda, Gondhalekar, Oldewurtel, and Jones (2014)) or recursive feasibility

requirements are relaxed (Prandini, Garatti, and Lygeros (2012); Schildbach et al.

(2014)), the hard constraints on control input are always considered. In the case

of control parameterization method, it is possible to consider chance constraints on

control input (Farina, Giulioni, Magni, and Scattolini (2013)).

Given system equations (2.20) and a prediction horizon of length N , we can define

the finite-horizon stochastic optimal control problem as follows:

Problem 2.1 (SOCP).

min
(uk)

N−1
k=0

E[
N−1∑
k=0

l(xk, uk) + lN(xN)]

s.t. xk+1 = f(xk, uk, wk)

P[g1(xk) ≤ 0] ≥ 1− pvio
g2(uk) ≤ 0

x0 ∼ p(x0).

The uncertain initial states x0 are described by known probability density function

(PDF) p(x0).

The main differences between deterministic OCP and SOCP are stochastic nature

of system variables and their propagation through the system equation, and how to

handle chance constraints. Next we will discuss in details of these two aspects.

18

2.2. Stochastic Model Predictive Control

2.2.2 Information state

In the case of partially observable systems, we cannot directly obtain state propa-

gation but only can be estimated by the past information. In this section, we will

introduce the concept of information state, and discuss how to update the information

state.

Let Ik denote the matrix of available system information at time k:

Ik := [yk, ..., y0, uk−1, ..., u0]

I0 := [y0].
(2.24)

The information state (Bertsekas (2012)) is the conditional probability density

function of the state xm given In, that is, ξm|n = p[xm|In], which describes the system

uncertainty with the currently available information. The information state describes

the system uncertainty under currently known information and can be computed by

recursive Bayesian estimation (Z. Chen et al. (2003))

p[xk+1|Ik] =

∫
p[xk+1|xk, uk]p[xk|Ik]dxk (2.25a)

p[xk+1|Ik+1] =
p[yk+1|xk+1]p[xk+1|Ik]

p[yk+1|Ik]
, (2.25b)

and p[x0|I−1] := p[x0]. Recursion (2.25a) indicates that the information ξk+1|k is

determined by

ξk+1|k = G(ξk|k, uk), (2.26)

where G is a mapping obtained from the Bayesian estimation. Recursion (2.25b)

implies that the update of ξk+1|k+1 is

ξk+1|k+1 = H(ξk+1|k, Ik+1) (2.27)

where the mapping H is derived from (2.25b) using knowledge from (2.25a).

From the definition of the information state, ξk|k is a PDF with infinite dimensions,

which makes the general Bayesian filter (2.25) intractable. To derive a practically ef-

ficient algorithm, it is possible to represent the information state by its sufficient

statistics, that is, mean, variance, and even high-order moments. Next, we will intro-

duce some commonly used filters to estimate the information state.

19

Chapter 2. Preliminaries

2.2.2.1 Kalman filter

Kalman filter is a famous algorithm for estimating states based on linear Gaussian

dynamic systems in state space format (Kalman (1960)).

Consider the linear system model which defines the evolution of the state from

time k to time k + 1 as:
xk+1 = Axk +Buk + wk

yk = Cxk + vk
(2.28)

where A ∈ Rnx×nx is the state transition matrix applied to the previous state vector

xk ∈ Rnx , B ∈ Rnx×nu is the control-input matrix applied to the control vector

uk ∈ Rnu , yk ∈ Rny is the measurement vector, C ∈ Rny×nx is the measurement

matrix, wk ∈ Rnx and vk ∈ Rny are the noise vector on system and measurement

equations respectively, both of them are assumed to be zero-mean Gaussian with the

covariance Σw and Σv, i.e., wk ∼ N (0,Σw) and vk ∼ N (0,Σv).

Kalman filter algorithm consists of two stages: prediction and update. Note that

the terms “prediction” and “update” are often called “propagation” and “correc-

tion,” respectively, in different literature. The prediction equations of Kalman filter

algorithm is:
x̂k+1|k = Ax̂k|k +Buk

Σk+1|k = AΣk|kA
T + Σw

(2.29)

and the measurement update equations:

Lk+1 = Σk+1|kC
T(CΣk+1|kC

T + Σv)
−1

x̂k+1|k+1 = x̂k+1|k + Lk+1(yk+1 − h(x̂k+1|k, 0))

Σk+1|k+1 = (I − Lk+1C)Σk+1|k,

(2.30)

In the above equations, (̂·) means an estimate of a variable. That is, x̂k+1|k denotes

the estimate of x at time k + 1 given observations up to and including at time k.

Σ denotes the state error covariance. It encrypts the error covariance that the filter

thinks the estimate error has. Lk+1 is the Kalman filter gain.

The information state update (2.25a) and (2.25b) in linear Gaussian system can

be represented by (2.29) and (2.30), where ξk|k ∼ N (x̂k|k,Σk|k).

2.2.2.2 Extended Kalman filter

The extended Kalman filter (EKF) can be viewed as a nonlinear version of the Kalman

filter that linearized the models about a current estimate. Suppose we have the

20

2.2. Stochastic Model Predictive Control

following models for state transition and measurement equation

xk+1 = f(xk, uk, wk)

yk = h(xk, vk)
(2.31)

where f(·) and h(·) are the state transition and measurement equation. The noise wk

and vk are still assumed to be zero-mean Gaussian with the covariance Σw and Σv,

i.e., wk ∼ N (0,Σw) and vk ∼ N (0,Σv).

The EKF adapted techniques from calculus, namely multivariate Taylor series

expansions, to linearize a model about a working point. The prediction of EKF is:

x̂k+1|k = f(x̂k|k, uk, 0)

Σk+1|k = fx,kΣk|kf
T
x,k + fw,kΣwf

T
w,k,

(2.32)

and the measurement update equations:

Lk+1 = Σk+1|kh
T
x,k(hx,kΣk+1|kh

T
x,k + hv,kΣvh

T
x,k)
−1

x̂k+1|k+1 = x̂k+1|k + Lk+1(yk+1 − h(x̂k+1|k, 0))

Σk+1|k+1 = (I − Lk+1hx,k)Σk+1|k,

(2.33)

where fx,k and fw,k denote the derivatives of f with respect to x and w at time k,

hx,k and hv,k denote the derivatives of h with respect to x and v at time k.

A notable point is, unlike its linear counterpart, the EKF in general is not an

optimal estimator (it is optimal if the measurement and the state transition model

are both linear, as in that case the EKF is identical to the regular one). In addition,

if the initial estimate of the state is wrong, or if the process is modeled incorrectly,

the filter may quickly diverge, owing to its linearization.

2.2.2.3 Particle filter

Filters based on Kalman filter principle such as EKF and unscented Kalman filter

(Wan and Van Der Merwe (2000)) can get better results in some nonlinear systems,

but they cannot get rid of Gaussian approximations.

Particle filters (PF), or sequential Monte Carlo methods (Del Moral (1997); Liu

and Chen (1998)), are a set of Monte Carlo algorithms used to solve filtering problems

arising in Bayesian statistical inference. Particle filtering uses a set of particles (also

called samples) to represent the posterior distribution of a stochastic process given

the noisy and/or partial observations. The state-space model can be nonlinear and

the initial state and noise distributions can take any form required. Its core idea is to

21

Chapter 2. Preliminaries

express its distribution through random state particles drawn from the posterior prob-

ability. As the number of samples increases, the posterior density function provides

a closer approximation to the true representation (optimal Bayesian solution).

The Monte Carlo sampling method means to find a posterior probability distri-

bution p(x|o). In the most case, we are interested in the expectation related to this

posterior, for example, Ex|o[f(x)]:

Ex|o[f(x)] =

∫
f(x)p(x|o)dx ≈ 1

N

N∑
i=1

f(xi). (2.34)

Here N samples are sampled from p(x|o).
When p(x|o) is complicated or has high dimension, it is difficult to sample directly

from distribution p(x|o), so we need to introduce importance sampling. In importance

sampling, we involve a simple and easily-sampled distribution q(x|o), called proposal

distribution. Then we have

Ex|o[f(x)] =

∫
f(x)p(x|o)dx =

∫
f(x)

p(x|o)
q(x|o)

q(x|o)dx ≈ 1

N

N∑
i=1

f(xi)
p(xi|o)
q(xi|o)

.

(2.35)

Here N samples are sampled from q(x|o), and W i = p(xi|o)
q(xi|o) is called the weight of the

ith sample.

Now we can introduce the importance sampling to a filter problem, i.e., p(xk|ok).
At time k, the weight of ith sample can be written as W i

k =
p(xik|ok)
q(xik|ok)

.

In the iterative calculation of the filtering problem, we need to find N weights

at each moment, which is computationally demanding. Therefore, we hope to find

a recursive formula so that the weight of current moment Wk can be derived by the

weight of previous moment Wk−1. From this idea, a sequential (i.e., recursive) version

of importance sampling is introduced, that is, sequence importance sampling (SIS).

We first take a look at the molecule of weight

p(xk|ok) =
p(xk, ok)

p(ok)

=
1

p(ok)
p(ok|xk, ok−1)p(xk, ok−1)

=
1

p(ok)
p(ok|xk)p(xk|xk−1)p(xk−1, ok−1)

=
p(ok−1)

p(ok)
p(ok|xk)p(xk|xk−1)p(xk−1|ok−1)

(2.36)

Here p(ok−1) and p(ok) are known constant.

22

2.2. Stochastic Model Predictive Control

Algorithm 2.2: Particle filter

Parameters:
N number of particles;

Initialization:
current time instant k ;
transition distribution p(xk+1|xk) ;
observation distribution p(ok|xk) ;
previous weights Wk−1 ;

for j = 1 : N do

Sample from proposal distribution (2.39) xjk ∼ q(xk|xk−1, ok);
Compute weight by (2.40) W i

k ∝ p(ok|xk)W i
k−1;

end

Normalize weights W j
k by W j

k =
W j

k∑N
i=1W

i
k

;

Calculate new estimation by (2.35);

By assuming the proposal distribution q be the following form:

q(xk|ok) = q(xk|xk−1, ok)q(xk−1, ok−1), (2.37)

we can obtain the update equation of W i
k:

W i
k ∝

p(xk|ok)
q(xk|ok)

∝ p(ok|xk)p(xk|xk−1)p(xk−1|ok−1)
q(xk|xk−1, ok)q(xk−1, ok−1)

∝ p(ok|xk)p(xk|xk−1)
q(xk|xk−1, ok)

W i
k−1.

(2.38)

Further, we can let

q(xk|xk−1, ok) = p(xk|xk−1) (2.39)

since the distribution q is arbitrary. Then the weight update equation will become

W i
k ∝ p(ok|xk)W i

k−1. (2.40)

The basic particle filter algorithm is summarized in Algorithm 2.2

2.2.3 Chance constraints

Consider constraints on state and input vectors described in very general terms by

the inequalities

g(xk, uk) ≤ 0 (2.41)

where the function g : Rnx×nu → Rnc . Depending on the noise characteristics, these

constraints can be formulated as hard constraints, i.e., the constraint must be satisfied

deterministically, or stochastic constraints to denote that a partial violation is allowed

23

Chapter 2. Preliminaries

to consider that their deterministic fulfillment can be too tight or even impossible due

to the presence of the stochastic noise (Farina, Giulioni, and Scattolini (2016)). One

choice of the stochastic constraints is considering the expectation of the constraint

(Primbs and Sung (2009)), i.e.,

E[g(xk, uk)] ≤ 0 (2.42)

The use of expectation constraints amounts to ensure that the constraints are satisfied

on average for the control problem. In this way, however, the number of occurred

violations is not controlled explicitly.

In most of the SMPC literature (Cannon et al. (2010, 2009); Korda et al. (2014);

Schildbach et al. (2014)), the stochastic constraint is formulated by the chance (or

probabilistic) constraint:

P[g(xk, uk) ≤ 0] ≥ 1− pvio (2.43)

where pvio is a design parameter to be tuned to obtain a trade-off between performance

and constraint violation. In this thesis, we focus on the chance constraints (2.43).

For a more detailed explanation of the stochastic constraints and a clear analysis of

their effects on the control problem, please see Cinquemani, Agarwal, Chatterjee, and

Lygeros (2011).

In general, g(xk, uk) is a vector, when the purpose of the constraint is to express

the probability that the state and control are inside a certain set, the chance constraint

is called joint chance constraint. Otherwise, if the constraint is defined element-wise,

the constraint is called individual chance constraint.

Under an individual chance constraint, each line of the original constraint can be

transformed individually. The chance constraint (2.43) would be expanded out to be

P[gi(xk, uk) ≤ 0] ≥ 1− pvio, i = 1, ..., nc (2.44)

With this transformation, each line is now a single chance constraint. They can

be transformed into linear deterministic inequalities and analytical solutions can be

obtained easily.

Under a joint chance constraint, the original constraint as a whole is reformulated

as one chance constraint.

P[gi(xk, uk) ≤ 0, i = 1, ..., nc] ≥ 1− pvio, (2.45)

24

2.2. Stochastic Model Predictive Control

Individual chance constraints are easy to solve, but they can only guarantee that each

line satisfies the constraint to a certain confidence level. Joint chance constraint en-

sures that the constraint as a whole is satisfied to a certain confidence level. However,

it is incredibly difficult to solve.

In simple cases, where decision and random variables can be decoupled, the con-

straint can be transformed into deterministic constraints using probability density

functions, and deterministic optimization techniques can be used to solve the prob-

lem. In more complicated cases where decision and random variables can interact in

a way such that it is impossible to decouple them, the problem is currently impossible

to solve. Next, we will introduce how to reformulate the chance constraint in a simple

case.

Consider the linear chance constraints where decision and random variables can

be decoupled, and the random variable ω is Gaussian, i.e., ω ∼ N (µ,Σω):

P[HTω + χ ≤ h] ≥ 1− pvio, (2.46)

where χ is the decision variable. It can be analytically reformulated as a deterministic

constraint:

P[Λ−1(HTω + χ−HTµ− χ) ≤ Λ−1(h−HTµ− χ)] ≥ 1− pvio, (2.47)

where HTΣωH
T = ΛΛT, and Λ can be obtained by matrix decomposition methods

such as the Cholesky decomposition or LDL decomposition. By defining the cumula-

tive distribution function (CDF), this equation can be rewritten as

Φ(Λ−1(h−HTµ− χ)) ≥ 1− pvio, (2.48)

where Φ denotes the standard Gaussian CDF. Considering the inverse of the standard

Gaussian CDF Φ−1, we obtain the following result:

HTµ+ χ+ ΛΦ−1(1− pvio) ≤ h, (2.49)

and the Φ−1 can be computed offline only once with arbitrary precision.

We can summarize the analytic reformulation of the chance constraint as a deter-

ministic constraint for µ:

HTµ+ χ+ t(1− pvio) ≤ h, (2.50)

where t(1− pvio) = ΛΦ−1(1− pvio) is the constraint-tightening level of a chance con-

straint, which implies that the chance constraint is a type of tightened constraint.

Furthermore, even if the distribution of the random variable is not specified, if its

mean µ and covariance matrix Σω are known, it is still possible to find an approxi-

mation using the Chebyshev inequality (Marshall and Olkin (1960)).

25

Chapter 3

Efficient Control Parameterization
Method for Linear SMPC

3.1 Introduction

One of the main characteristics of SMPC is the requirement of a closed-loop control

policy. It is common knowledge that optimizing over open-loop control sequences

directly leads to very conservative control performance and may be infeasible when

a constraint exists (Mayne et al. (2000)). Thus, the optimization should be done

using families of feedback control policies. The core difficulty with this type of feed-

back policy is that optimizing the feedback policy over arbitrary nonlinear functions

is extremely difficult. Proposals that take this approach are typically intractable

(e.g., based on dynamic programming (Diehl and Bjornberg (2004)) or based on the

generation of disturbance sequences from a certain set, as in Scokaert and Mayne

(1998)).

In the case of linear SMPC, pre-parameterize the control policy in terms of the

affine functions of the sequence of states is a natural choice. However, the set of

constraint-admissible policies of this form is non-convex (Lofberg (2003)). Many ap-

proaches to solving this problem have been proposed. A widely adopted approach is to

fix a stabilizing feedback gain over the prediction horizon, which is called tube-based

approaches (Cannon, Cheng, Kouvaritakis, and Raković (2012); Lee and Kouvari-

takis (1999); Mayne, Seron, and Raković (2005)). Though tractable, this approach

is problematic since the method of selecting the gain to minimize conservativeness is

unclear.

Another solution is to parameterization of the control policy as an affine function

of the disturbance, called the affine disturbance feedback control policy. This kind of

parameterization is very old in stochastic programming (Garstka and Wets (1974))

26

3.1. Introduction

and has been shown to be equivalent to the affine state feedback policy in Goulart et

al. (2006). The advantage of affine disturbance feedback control parameterization is

that the set of its decision variables is guaranteed to be convex. However, the main

disadvantage of this parameterization is that the number of decision variables grows

quadratically with the prediction horizon, so the real-time calculation is disastrous

when the prediction horizon grows.

In this chapter, we intend to reduce the computation time while taking advantage

of the affine disturbance feedback control policy. Many researchers have considered

related works. In Muñoz-Carpintero, Kouvaritakis, and Cannon (2016), a striped pre-

diction scheme was proposed with number of variables and constraints that only grow

linearly with the prediction horizon. In Kouvaritakis, Cannon, and Muñoz-Carpintero

(2013), the authors used a striped lower triangular control policy for disturbance com-

pensation in stochastic MPC and further reduced the computation time by performing

the computation of the disturbance compensation matrix offline. In Kouvaritakis et

al. (2013), the control parameterization combined state feedback, feedforward, and

disturbance feedback to guarantee feasibility and stability, making its structure rather

complex.

Our control parameterization method proposed in this chapter combines the re-

lated simplification techniques of affine disturbance feedback to create a concise con-

troller form; it is shown to be equivalent to state feedback control policies. This

equivalence allows us, in principle, to directly apply the stability results discussed in

research related to state feedback control policies (e.g., discussion on systems with

bounded disturbances, see C. Wang, Ong, and Sim (2009), Cannon et al. (2010) or

unbounded disturbances Farina, Giulioni, Magni, and Scattolini (2015), Cannon et

al. (2009)). As shown in a later section, our control policy admits a feasible domain

that is the same as a corresponding state feedback control policy but whose set of

feasible decision variables is convex. Compared with the original affine disturbances

control law, this approach significantly reduces the number of decision variables with

stability results similar to those of state feedback parameterization.

The rest of this chapter is organized as follows. Section 3.2 discusses the problem

settings used in this chapter. Section 3.3 discusses the existing control parameteriza-

tion methods. Section 3.4 discusses our proposed simplified affine disturbance feed-

back policy and the properties of this method. Section 3.5 presents our simulation

results. Section 3.6 summarizes this chapter.

27

Chapter 3. Efficient Control Parameterization Method for Linear SMPC

3.2 Problem Statement

In this chapter, we consider a linear discrete-time system with an additive disturbance:

xk+1 = Axk +Buk + Ewk, (3.1)

where k is the discrete time, xk ∈ Rnx denotes the state, uk ∈ Rnu denotes the control

input, and wk ∈ Rnw is a random disturbance. For convenience, the prediction of the

system’s behavior over a finite horizon N is described as

x = Ax0 + Bu + Ew, (3.2)

where x = [xT0 , x
T
1 , ..., x

T
N]T ∈ R(N+1)nx denotes a sequence of system states, u =

[uT0 , ..., u
T
N−1]

T ∈ RNnu denotes a sequence of control inputs, and wt = [wT
0 , ..., w

T
N−1]

T ∈
RNnw is a sequence of stochastic disturbances. Matrices A ∈ R(N+1)nx×nx , B ∈
R(N+1)nx×Nnu , and E ∈ R(N+1)nx×Nnw are given as follows:

A : =


I
A
...
AN

 , B :=


O O · · · O
B O · · · O
AB B · · · O

...
.

...
AN−1B · · · AB B

 ,

E : =


O O · · · O
E O · · · O
AE E · · · O

...
.

...
AN−1E · · · AE E

 .

We make the following assumptions in this chapter:

Assumption 3.1. A measurement of all states is available at each sample instant.

Assumption 3.2. Matrix E is column full rank.

Assumption 3.3. The disturbances are assumed to be independent and identically

normally distributed random variables (i.e., w ∼ N (0, I)).

Besides the dynamics, the chance constraints on state and control input are con-

sidered as follows

P[Gx ≤ g] ≥ 1− pvio,x, (i = 1, . . . , a), (3.3a)

P[Su ≤ s] ≥ 1− pvio,u, (i = 1, . . . , b), (3.3b)

28

3.3. Various Control Parameterization Methods

where G ∈ Rl×(N+1)nx , g ∈ Rl, S ∈ Rq×Nnu , and s ∈ Rq; pvio,x and pvio,u denote the

probability level of constraint violation for state and input, respectively.

The SMPC problem with chance constraints is stated as follows.

Problem 3.1 (SMPC).

min
u

E

[
N−1∑
k=0

(xTkQxk + uTkRuk) + xTNQNxN

]
s.t. x = Ax0 + Bu + Ew

P[Gx ≤ g] ≥ 1− αx
P[Su ≤ s] ≥ 1− αu
w ∼ N (0, I),

where Q > 0, QN > 0, and R > 0 are given symmetric matrices of appropriate

dimensions.

3.3 Various Control Parameterization Methods

3.3.1 Affine state feedback parameterization

Tube-based SMPC uses a pre-fixed feedback gain to construct the control policy as

uk = Kxk + vk, (3.4)

where vk ∈ Rnu are optimization variables, and K ∈ Rnu×nx is a pre-computed gain

which stabilizes A + BK. In this way, we say that there is at least some kind of

feedback in the system via closed-loop prediction A+BK, although not optimal.

Remark 3.1. It is common to choose K as the solution of a linear quadratic control

problem, with state and control weights Q, R, for the nominal model of system (3.1).

To incorporate feedback predictions in our framework, write the feedback predic-

tions in an augmented form.

u = Kx + v (3.5)

where v is a column vector, and K is a block diagonal matrix as follows

v : =
[
vT0 , · · · , vTN−1

]T
,

K : =


K · · · · · · O O
0 K · · · O O
...

.
... O

0 · · · 0 K O

 . (3.6)

29

Chapter 3. Efficient Control Parameterization Method for Linear SMPC

We can naturally extend the form of the K matrix to more general forms, for

example, different feedback matrices along the diagonal, or feedback terms also in the

lower triangular part of the matrix as follows

K : =


K1 · · · · · · O O
0 K2 · · · O O
...

.
... O

0 · · · 0 KN O

 or K : =


K1,1 · · · · · · O O
K2,1 K2,2 · · · O O

...
.

... O
KN,1 · · · KN,N−1 KN,N O

 ,
(3.7)

where all elements in K are optimization variables. The only requirement is that the

control policy is causal in the sense that uj only depends on xi, i ≤ j.

3.3.2 Affine disturbance feedback parameterization

Let us first take a look at the predictions obtained by the affine state feedback policy

(3.5):
x = Ax0 + Bu + Ew

u = Kx + v
(3.8)

Solving the above parametric equation for x and u:

x = (I −BK)−1(Ax0 + Bv + Ew) (3.9a)

u = K(I −BK)−1(Ax0 + Bv + Ew) + v (3.9b)

The problem is that the mapping from K and v to x and u is nonlinear, hence

optimization over both K and v is likely to be a non-convex problem, where the

original problem 3.1 is just a simple QP with linear constraints.

To overcome the problem caused by affine state feedback parameterization, we

intend to solve an equivalent convex optimization problem for the exact optimal

solution. Let us take a closer look at equation (3.9b)

u = (K(I −BK)−1(Ax0 + Bv) + v) + K(I −BK)−1Ew. (3.10)

We can find that u is composed of a constant part, K(I−BK)−1(Ax0 +Bv)+v, and

one linear term with respect to the disturbances, K(I − BK)−1Ew. Keep in mind

that the control action u is causal, which means uj is only affected by wi, i < j.

Now we can give an alternative parameterization by the above discussions:

u = M′w + h′ (3.11)

30

3.4. Simplified Affine Disturbance Feedback

where

h′ : =
[
hT0 , · · · , hTN−1

]T
,

M′ : =


O · · · · · · O
M1,0 O · · · O

...
.

...
MN−1,0 · · · MN−1,N−2 O

 . (3.12)

and Mi,j ∈ Rnu×nw and hi ∈ Rnu are decision variables. The control parameterization

(3.11) is called affine disturbance feedback (ADF) since the control sequence is now

parameterized directly in the disturbance (Lofberg (2003)).

3.4 Simplified Affine Disturbance Feedback

3.4.1 SADF parameterization

The affine disturbance feedback control law (3.11) can provide a convex optimization

problem. However, the number of the decision variables in M′ and v′ is

nunw(N − 1) + nunw(N − 2) + · · ·+ nunw + nu =
N(N − 1)nunw

2
+ nu, (3.13)

which means it grows quadratically with the prediction horizon, making it difficult to

use in real-time calculations. Regarding calculation time, we consider a kind of ADF

that contains fewer decision variables, called simplified affine disturbance feedback

(SADF), which takes the form of:

ui =
i−1∑
k=0

Mi−kwk + hi, (3.14)

where ui is an affine function of the i disturbances , Mi−k ∈ Rnx×nu is the matrix of

coefficients associated with the past k-step disturbances, and wk is a disturbance that

was realized at the last step. For convenience, we also define matrix M ∈ RNnu×Nnw

and vector h ∈ RNnu in such a way that

h : =
[
hT0 , · · · , hTN−1

]T
,

M : =


O · · · · · · O
M1 O · · · O
...

.
...

MN−1 · · · M1 O

 . (3.15)

This parameterization is a simplified version of the original affine disturbance

feedback control policy (3.11). Note that M has a strictly lower triangular Toeplitz

31

Chapter 3. Efficient Control Parameterization Method for Linear SMPC

structure with a constant block in each descending diagonal from left to right and

only contains just (N − 1)nunw different decision variables, that grow linearly with

the prediction horizon.

3.4.2 Problem reformulation

Next we consider how to reformulate the stochastic problem into a deterministic one

based on the SADF (3.14). Linear individual chance constraints in the form (3.3a)

have been shown to be equivalent to a second-order cone constraint in Schwarm

and Nikolaou (1999). In our setup, w ∼ N (0, I), the individual chance constraint

(3.3a) can be transformed into a deterministic constraint with the help of a standard

Gaussian cumulative distribution function (CDF). By standardizing the distribution,

we have

P

[
GEw

‖GE‖
≤ −G(Ax0 + Bu) + g

‖GE‖

]
≥ 1− pvio,x, (3.16)

where GEw
‖GE‖ is a standard Gaussian distribution vector.

Given the definition of CDF, this equation can be rewritten as

Φ

(
−G(Ax0 + Bu) + g

‖GE‖

)
≥ 1− pvio,x, (3.17)

where Φ is the standard Gaussian CDF. Thus, the chance constraint (3.3a) can be

transformed into a deterministic one by using the inverse of standard Gaussian CDF

as

G(Ax0 + Bu) + Φ−1(1− pvio,x)‖GE‖ ≤ g, (3.18)

and so can (3.3b).

By substituting the SADF parameterization (3.14) into (3.18), the chance con-

straints under the SADF control parameterization can be transformed into determin-

istic ones as

G(Ax0 + Bh) + Φ−1(1− pvio,x)‖G(BM + E)‖ ≤ g. (3.19)

Similarly, chance constraints on control input can also be transformed into determin-

istic ones as

Sh + Φ−1(1− pvio,u)‖SM‖ ≤ s. (3.20)

These constraints are second-order cone constraints that concern the decision variable

(Mt,ht), and deterministic equivalent chance constraints on the state (3.19) and

control input (3.20) can be rewritten as (x,u) ∈ Z for convenience.

Thus, a reformulation of Problem 3.1 using SADF (3.14) is stated as follows:

32

3.4. Simplified Affine Disturbance Feedback

Problem 3.2 (SMPC with SADF).

min
M,h

E

[
N−1∑
k=0

(xTkQxk + uTkRuk) + xTNQNxN

]
s.t. x = Ax0 + Bu + Ew

u = Mw + h

(x,u) ∈ Z

w ∼ N (0, I).

The expectation E in the objective function can be obtained by substituting the

expectation and variance information of disturbance wk. Thus, Problem 3.2 can

be treated as a deterministic MPC with nonlinear constraints, and it can be solved

in principle by general constrained optimization methods, e.g., interior-point method

introduced in Section 2.1.2. Existing solvers such as CasADi (Andersson, Gillis, Horn,

Rawlings, and Diehl (2019)) in MATLAB, C/GMRES (Ohtsuka (2004)) in MAPLE

can also be used to solve this problem.

3.4.3 Properties of SADF

Although Problem 3.2 inherits the characteristics of the convex optimization problem

of affine disturbance feedback parameterization, there is still a question of whether

SADF is the reasonable feedback control policy we want. In this section, we will

discuss the relationship between SADF and the state feedback control policy further.

The set of admissible pair (M,h) for SADF is defined as

Ξsadf(x) :=


(M,h)

∣∣∣∣∣∣∣∣∣∣∣

(M,h) satisfies (3.15),

x = Ax+ Bu + Ew,

u = Mw + h,

(x,u) ∈ Z,w ∼ N (0, I),


(3.21)

and the set of initial state x for which an admissible control law of the form (3.14)

exists as

Xsadf := {x ∈ Rn|Ξsadf 6= ∅}. (3.22)

Remark 3.2. Note that the original affine disturbance feedback law (3.11) subsumes

the proposed SADF (3.14). Therefore, (3.14) is a more conservative approximation

to (3.11).

33

Chapter 3. Efficient Control Parameterization Method for Linear SMPC

The original affine disturbance feedback control law (3.11) was proven to be equiv-

alent to an affine state feedback control law in Goulart et al. (2006). Thus, the impor-

tant question is whether the proposed SADF (3.11) is also an equivalent and tractable

formulation of a certain state feedback law. In other words, is this a reasonable ap-

proximation?

Consider the state feedback control law:

ui =
i∑

k=0

Ki−kxk + vi. (3.23)

where matrix K and column vector v are defined as follows:

v : =
[
vT0 , · · · , vTN−1

]T
K : =


K0 O · · · O O
K1 K0 · · · O O
...

.
... O

KN−1 · · · K1 K0 O

 . (3.24)

The number of free variables of this structure is between the left and right sides of

structure (3.7), with knowledge of prior states.

In a manner similar to (3.21), we can also define the set of admissible (K,v) as

Ξsf(x) :=


(K,v)

∣∣∣∣∣∣∣∣∣∣∣

(K,v) satisfies (3.24),

x = Ax+ Bu + Ew,

u = Kx + v,

(x,u) ∈ Z,w ∼ N (0, I)


(3.25)

and the same for the set of initial states x for which an admissible control law of the

form (3.14) is

Xsf := {x ∈ Rn|Ξsf 6= ∅}. (3.26)

Next, we show that the state feedback parameterization (3.23) and the SADF

parameterization (3.14) are equivalent.

Theorem 3.1. The sets of admissible states for control policy, (3.14) and (3.23), are

identical (i.e., Xadf = Xsf holds). Moreover, given any x ∈ Xadf , for any admissible

(M,h), there exists a pair of (K,v) yields the same state and input sequence for the

same disturbance sequence w, and vice versa.

Proof. Xsf ⊆ Xadf : Based on the definition of an admissible set for any given x ∈ Xsf ,

there exists a pair of (K,v) satisfies the constraints in (3.25). Therefore, for a given

34

3.4. Simplified Affine Disturbance Feedback

disturbance sequence w, we can eliminate x for u through simultaneous equations

(3.2) and (3.23) as

u = K(I −BK)−1(Ax0 + Bv + Ew) + v. (3.27)

Notably, (I −BK) is always nonsingular since BK is strictly lower block triangular.

The control input can be divided into terms related to disturbance w and terms not

related to w as

u = K(I −BK)−1Ew + (K(I −BK)−1(Ax0 + Bv) + v). (3.28)

Choose (M,h) as

M = K(I −BK)−1E, (3.29a)

h = K(I −BK)−1(Ax0 + Bv) + v. (3.29b)

By applying the results in Kucerovsky, Mousavand, and Sarraf (2016), the product of

two lower triangular Toeplitz matrices, B and K, is again a lower triangular Toeplitz

matrix. Moreover, if a lower triangular Toeplitz matrix is invertible, then its inverse

is also Toeplitz. One can easily verify that M has a strictly lower block triangular

Toeplitz structure, meaning the pair of (M,h) satisfies (3.21) and can yield the same

input sequence as the given pair of (K,v). Thus, x ∈ Xsf implies x ∈ Xadf .

Xadf ⊆ Xsf : For any given x ∈ Xadf , there exists a pair of (M,h) that satisfies

the constraints in (3.21). For a given disturbance sequence w, we can also eliminate

w for u through simultaneous equations (3.2) and (3.14) as

u = (I + ME−B)−1(ME−(x−Ax0) + h), (3.30)

where E− ∈ RNr×Nn denotes the left inverse of E, so that E−E = I, and it is given

explicitly as

E− :=


O E− O · · · O
O −E−A E− · · · O
...

...
.

...
O O · · · −E−A E−

 ,
where E− ∈ Rr×n denotes the left inverse of E. Note that E− exists because E is

a full column rank matrix by Assumption 2. Since ME−B is strictly lower block

triangular, I + ME−B is always nonsingular. So, we can choose (K,v) as

K = (I + ME−B)−1ME−, (3.31a)

v = (I + ME−B)−1(h−ME−Ax0). (3.31b)

35

Chapter 3. Efficient Control Parameterization Method for Linear SMPC

It is easy to confirm ME− and ME−B as being strictly lower block triangular

Toeplitz. Through the properties of Toeplitz matrix multiplication, we see that K

has a strictly lower triangular Toeplitz structure, meaning the pair of (K,v) satisfies

(3.25) and can yield the same input sequence as the given pair of (M,h). Thus,

x ∈ Xadf implies x ∈ Xsf .

Theorem 3.1 tells us that the optimal solution (M∗,h∗) obtained by SADF is actu-

ally equivalent to a state feedback control policy (K∗,v∗). In MPC implementation,

the first optimal control input is applied; i.e.,

π(x0) = K∗0(x0)x0 + v∗0(x0). (3.32)

Thus, the closed-loop system is given by

xk+1 = Axk +Bπ(xk) + Ewk. (3.33)

In addition, if we suppose the disturbances are bounded with an unknown bound, and

if the MPC control is defined as in (3.32), we can guarantee the closed-loop stability

and feasibility. Although the assumption of bounded disturbances contravenes the

original assumption that the disturbance wk has infinite support, it is meaningful

in practice. The discussion of closed-loop stability and feasibility under bounded

disturbance is beyond the scope of this thesis, some similar results can be found in

the robust MPC case (Goulart et al. (2006)).

3.5 Case Study

3.5.1 Numerical example settings

We tested our method with the control problem of room temperature Gwerder and

Tödtli (2005). The basic control target was keeping the room temperature higher

than a certain level in the presence of external disturbances. The system contained

three states: let x1 be the room temperature, let x2 be the temperature in the wall

connected to another room, and let x3 be the temperature in the wall connected to

the outside. The system was subject to three disturbances in which w1 denoted the

outside temperature, w2 denoted the solar radiation, and w3 denoted the internal

heat gains (e.g., people, electronic devices, etc.) and all the external disturbance

subjects to N (0, I). The only control input u was the heating, which was constrained

to 0 ≤ u ≤ 45 [W/m2]. The control objective was keeping the room temperature

above 21◦C with minimum energy; thus, the weighting matrix is Q = 0, and the state

36

3.5. Case Study

constraint is treated like a chance constraint P(x ≥ 21) ≥ 1− α. The parameters of

the system are taken from Oldewurtel et al. (2013) as follows:

A : =

 0.8511 0.0541 0.0707
0.1293 0.8635 0.0055
0.0989 0.0032 0.7541

 ,
E : = 10−3 ·

 22.2170 1.7912 42.2123
1.5376 0.6944 2.9214

103.1813 0.1032 196.0444

 ,
B : =

 0.0035
0.0003
0.0002

 , R := 1.

The following three control policies are compared:

1. SADF control policy (3.14),

2. Original affine disturbance feedback (ADF) control policy (3.11), and

3. Open-loop prediction (OP) control policy, i.e., M = 0 in (3.14).

We carried out the simulation on a laptop computer with a 2.60 GHz Intel Core

i7-6700HQ and CasADi toolkit Andersson et al. (2019) in MATLAB 2020a. In all

the simulations, we subjected the system to the same disturbance realizations and

constraint violation degree αx,i = 0.1, αu,i = 0.005.

3.5.2 Simulation analysis

Figures 3.1 and 3.2 show a 150-minute simulation with the initial state [22, 22, 15]T

and the prediction horizon N = 6. The results show that an OP control policy led to

conservative control behavior; the room temperature was almost always higher than

the room temperature of the other two control policies. In contrast, ADF and SADF

led to relatively less conservative control behavior.

To compare the three controllers more intuitively, we considered the objective

function value for the same optimization problem (i.e., only a single optimization

starting from the same state within a prediction horizon N = 30). Table 3.1 compares

three states. The results show that the OP controller consumes the most energy for

an identical optimization problem (i.e., most conservative), while the control SADF

performance is slightly more conservative than ADF.

Table 3.2 shows the computation times of the three controllers. The table shows

that the computation times of OP and SADF did not grow as quickly with respect to

37

Chapter 3. Efficient Control Parameterization Method for Linear SMPC

Figure 3.1: Room temperature profile [◦C].

Figure 3.2: Heating [W/m2].

the length of the prediction horizon, while the computation time of ADF grew very

quickly. Our method provides an acceptable computation time in this example.

3.6 Summary

In this chapter, we proposed a simplified affine disturbance feedback control law for

linear SMPC. The decision variable number decreased to O(N) compared with O(N2)

38

3.6. Summary

Table 3.1: Comparison of objective function values for different states under the same
settings (N = 30).

OP ADF SADF

state 1:
[28, 28, 21]T

1778 1242 1256

state 2:
[22, 18, 15]T

835 505 567

state 3:
[25, 25, 15]T

2004 1430 1448

Table 3.2: Average computation time per update (ms).

OP ADF SADF

N = 5 9 19 13

N = 15 16 697 150

N = 30 31 21320 1420

of the original affine disturbance feedback control law, resulting in a preferable trade-

off between real-time calculation and control performance. This parameterization is

shown to be equivalent to a state feedback control law, and the closed-loop stability

of the SMPC problem can also be guaranteed under mild assumptions.

39

Chapter 4

Stochastic Dynamic Programming
for Linear SMPC

4.1 Introduction

In principle, Bellman’s principle of optimality (Bellman (1966)) can be used to ob-

tain an ideal closed-loop performance; however, it is always intractable, especially in

large-scale optimization (Mesbah (2018)). In a certainty-equivalent SMPC scheme,

the expectation formulations of the cost function and chance constraints are trans-

formed into deterministic formulations (Mayne et al. (2000)), which can achieve the

so-called “open-loop” control performance. There are also some heuristic methods

for reformulating the stochastic optimization problem for better control performance.

One reformulation is the control parameterization method we discussed Chapter 3,

such as pre-fixed state feedback (Bemporad (1998)), affine state feedback (Lofberg

(2003)), affine disturbance feedback (Lofberg (2003)), and simplified affine distur-

bance feedback in Chapter 3. Another formulation directly considers the minimiza-

tion of variance in the cost function rather than adding a feedback feature to the

control inputs (D. Li et al. (2002)). Although these methods can artificially include

some degree of closed-loop control effects, they still face some difficulties, such as the

increase in decision variables and the difficulty of explicitly analyzing their degree of

conservativeness.

Solving stochastic dynamic programming directly is still an attractive approach

for stochastic optimal control. In control of a linear Gaussian system, LQG controller

separates the estimation and control and designs the optimal control policy by solving

infinite-horizon dynamic programming (Lindquist (1973)), but the separation theo-

rem can only hold in linear Gaussian system without constraints. Kumar et al. (2018)

40

4.1. Introduction

proposed a stochastic dual dynamic programming framework to deal with finite hori-

zon problem, and explained how to construct terminal costs and performance bounds

for SMPC by deriving and interpreting stochastic dual dynamic programming from

an MPC perspective.

However, constraint handling in dynamic programming is still problematic. Bem-

porad, Morari, Dua, and Pistikopoulos (2002) proposed to solve a parametric solution

for constrained dynamic programming which is called “explicit MPC”, but it suffers

from the curse of dimensionality, and can only be applied to small-scale problem.

Darup and Mönnigmann (2012) and Kvasnica, Holaza, Takács, and Ingole (2015)

tried to reduce the computational complexity by finding some approximate solution

of explicit MPC. However, the computation burden of a parametric solution is still

not acceptable in online calculation. Ferreau, Bock, and Diehl (2008) proposed an

online active set strategy to overcome the limitations of explicit MPC, which assumed

that the active set does not change much from one QP to the next in MPC problem,

so it is also an approximation.

In this chapter, we intend to directly find an SDP solution for a linear SMPC

problem with chance constraints. Our approach involves converting the stage-wise

stochastic optimization problem into an equivalent deterministic problem. A recursive

Riccati interior-point method (RRIPM) is proposed to solve the ensuing constrained

optimization problems. The proposed method eliminates active sets in conventional

explicit MPC and does not suffer from the curse of dimensionality because it finds

the value function and feedback policy only for a given state using the interior-point

method. Moreover, the proposed method is proven to converge globally to a station-

ary solution Q-superlinearly. The numerical experiment reveals that the proposed

method achieves a less conservative performance with low computational complexity

compared to existing methods.

This chapter is organized as follows. Section 4.2 discusses the problem settings

in this chapter. Section 4.3 reformulates the problem by Bellman equation and dis-

cusses optimal conditions. Section 4.4 presents the main algorithm, recursive Riccati

interior-point method. Section 4.5 considers the global convergence and local con-

vergence rate of RRIPM algorithm. Section 4.6 gives a practical way to deal with

infeasibility. Section 4.7 presents simulation results. Finally, Section 4.8 summarizes

this chapter.

41

Chapter 4. Stochastic Dynamic Programming for Linear SMPC

4.2 Problem Statement

In this chapter, we consider a linear discrete-time system with an additive disturbance:

xk+1 = Axk +Buk + Ewk, (4.1)

where k denotes the discrete time, xk ∈ Rnx denotes the state, uk ∈ Rnu denotes the

control input, and wk ∈ Rnw denotes a random disturbance. The chance constraints

on the state and polytopic constraints on the input are given as

P[Fxk ≤ f] ≥ 1− pvio, Guk ≤ g, (4.2)

where F ∈ Rlx×nx , f ∈ Rlx , G ∈ Rlu×nu , g ∈ Rlu , P denotes the probability, pvio ∈ Rlx

denotes the constraint violation level vector.

Define an N -horizon quadratic cost function as

J := E[
N−1∑
k=0

1

2
(xTkQxk + uTkRuk) +

1

2
xTNQNxN] (4.3)

where Q ≥ 0 and R > 0 are symmetric matrices with appropriate dimensions, and

QN ≥ 0 is the terminal cost.

We make the following assumptions throughout this chapter:

Assumption 4.1. Measurement of all states are available at each sample instant.

Assumption 4.2. The disturbances are subjected to an independent Gaussian distri-

bution, i.e., wk ∼ N (0,Σw), and the covariance matrix Σw is positive definite.

The SMPC solves the following finite-horizon SOCP with a known initial state x̄0

at each time instant:

Problem 4.1 (SOCP).

min
(uk)

N−1
k=0

J

s.t. xk+1 = Axk +Buk + wk

P[Fxk ≤ f] ≥ 1− pvio
Guk ≤ g

x0 = x̄0, wk ∼ N (0,Σw).

42

4.3. Bellman Equation and Optimality Conditions

4.3 Bellman Equation and Optimality Conditions

4.3.1 Problem reformulation

In theory, Bellman’s principle of optimality can be used to solve Problem 4.1. At

each stage k, the optimal cost-to-go Vk(xk) (i.e., the value function) should satisfy

the Bellman equation in the SDP scheme.

Problem 4.2 (Bellman equation).

Vk(xk) = min
uk(xk)

E[
1

2
xTkQxk +

1

2
uTkRuk + Vk+1(xk+1)].

s.t. xk+1 = Axk +Buk + wk

P[Fxk+1 ≤ f] ≥ 1− pvio
Guk ≤ g

The solution to Problem 4.1 comprises a sequence of solutions (Vk(xk), uk(xk))

for Problem 4.2 for k = 0, 1, ..., N − 1, and the terminal value function is VN(xN) =
1
2
xTNQNxN . Note that Vk(xk) is defined recursively backward from VN(xN) and is not

necessarily defined for every xk ∈ Rn because of the constraints.

The available measurement information at each stage plays an important role in

stochastic control and leads to different policy types. A discussion on various policies

can be found in Bar-Shalom and Tse (1974). The open-loop policy is defined as the

absence of immediate observation data at each stage, i.e., only the initial measurement

can be used. The feedback policy indicates that the measurement information till

current stage k is available for the computation of the contro1.

To obtain the closed-loop control performance, we use the concept of a feedback

policy, i.e., we know the measurement of xk at stage k, and the mean and covari-

ance are x̄k and 0, respectively. Because the full state is observable according to

Assumption 4.1, the future information of xk+1 can be obtained as follows:

x̄k+1 = E[xk+1] = Ax̄k +Buk (4.4)

Σk+1 = AΣkA
T + Σw = Σw (4.5)

where x̄k+1 and Σk+1 denote the estimated mean and covariance respectively.

Using these settings, we can remove the stochastic descriptions in Problem 4.2.

The chance constraint can be converted to deterministic inequalities as in Section

(2.2.3):

Fx̄k+1 + t(1− pvio) ≤ f, (4.6)

43

Chapter 4. Stochastic Dynamic Programming for Linear SMPC

where the constraint-tightening level

t(1− α) = Φ−1(1− pvio)Λ1, (4.7)

FΣwF
T = Λ1Λ

T
1 . By substituting (4.4) into this deterministic constraint, it can be

expressed by the current states and inputs as follows:

F (Ax̄k +Buk) + t(1− pvio) ≤ f. (4.8)

Together with the input constraints, the admissible region Πk can be rewritten as

Πk := {(x̄k, uk)|Cxx̄k + Cuuk + Cc ≤ 0}, (4.9)

where

Cx =

[
FA
0

]
Cu =

[
FB
G

]
, Cc =

[
t(1− pvio)− f

−g

]
The remaining question concerns the expectation of the cost function. From the

dynamic programming solution in the constrained explicit MPC case (Fáısca, Koura-

mas, Saraiva, Rustem, and Pistikopoulos (2008)), we know that the exact form of

the optimal value function in the linear case has the following quadratic form in an

appropriate region for each stage:

Vk+1(xk+1) =
1

2
xTk+1Pk+1xk+1 + qTk+1xk+1 + rk+1. (4.10)

where Pk+1, qk+1 and rk+1 are second-order, first-order and constant coefficient, re-

spectively.

Remark 4.1. Explicit MPC seeks to find an offline dynamic programming solution;

therefore, the optimal value function and feedback policy will be a piecewise function

that depends on the state xk. By contrast, in our case, we want to find an online

solution only for a given x̄0. Therefore, the value function and feedback policy are

determined only in a certain sequence of regions for a given x̄0, rather than by using

the piecewise form over the state space.

Using the mean and covariance information of xk, we can transform the expected

value function as follows:

E[
1

2
xTkQxk +

1

2
uTkRuk + Vk+1(xk+1)]

=
1

2
x̄TkQx̄k +

1

2
tr(ΣkQ) +

1

2
uTkRuk + Vk+1(x̄k+1) +

1

2
tr(Σk+1Pk+1).

(4.11)

Because the covariance of xk and xk+1 are all constants, they can be omitted for

simplicity. Now, we can provide an equivalent deterministic Bellman equation defined

by mean value of state variables, and for a concise expression, we use xk to directly

represent the mean value x̄k hereafter in this chapter.

44

4.3. Bellman Equation and Optimality Conditions

Problem 4.3 (Deterministic Bellman equation).

Vk(xk) = min
uk(xk)

[
1

2
xTkQxk +

1

2
uTkRuk + Vk+1(xk+1)].

s.t. xk+1 = Axk +Buk

Cxxk + Cuuk + Cc ≤ 0

4.3.2 Optimality conditions

The Lagrange multiplier method in equation (2.2) (Nocedal and Wright (1999)) can

be used to rewrite the value function in Problem 4.3 as follows:

Vk(xk) = min
uk

max
sk

[l(xk, uk, sk) + Vk+1(xk+1)], (4.12)

where

l(xk, uk, sk) =
1

2
xTkQxk +

1

2
uTkRuk + sTk (Cxxk + Cuuk + Cc)

and sk denotes the Lagrange multiplier.

Let the stage-wise cost be Qk := l(xk, uk, sk) + Vk+1(xk+1). Substituting (4.10)

and the mean prediction equation (4.4) into (4.12), we can write Qk as

Qk(xk, uk, sk) =
1

2

xkuk
sk

T Qxx Qxu Qxs

Qux Quu Qus

Qsx Qsu Qss

xkuk
sk

+

Qx

Qu

Qs

T xkuk
sk

+Qc (4.13)

where
Qxx = Q+ ATPk+1A, Quu = R +BTPk+1B

Qux = QT
xu = BTPk+1A, Qss = 0

Qsx = QT
xs = Cx, Qsu = QT

us = Cu

Qu = BTqk+1, Qx = ATqk+1, Qs = Cc

Qc = tr(ΣPk+1) + rt+1

The KKT conditions for the single-stage optimization problem (4.12) called stage-

wise KKT (SKKT) conditions are

Quuuk +Quxxk +Qussk +Qu = 0 (4.14a)

Sk(Qsxxk +Qsuuk +Qs) = 0 (4.14b)

Qsxxk +Qsuuk +Qs ≤ 0, sk ≥ 0, (4.14c)

where Sk = diag[sk].

This SKKT condition can be considered a parametric equation with respect to xk.

Therefore, if we can solve these equations at each stage k, we can obtain a sequence of

45

Chapter 4. Stochastic Dynamic Programming for Linear SMPC

state-feedback solutions uk(xk) and the corresponding optimal sequence (x∗k, u
∗
k, s
∗
k).

We present our main results regarding solutions to the SKKT conditions (4.14) in the

next section.

4.4 Recursive Riccati Interior-Point Method

In this section, we introduce the recursive Riccati interior-point method (RRIPM)

algorithm for solving constrained programming.

Note that the SKKT conditions (4.14) are nonlinear equations with nonsmooth

complementary conditions, which cause numerical difficulties in the direct solution.

We use the interior-point method to avoid the complicated searching of active sets

and find solutions of (4.14) by applying Newton’s method to the perturbed SKKT

conditions El-Bakry et al. (1996) and iteratively reducing the smooth parameter.

More specifically, our proposed method improves the solution of each Newton iteration

by solving the perturbed SKKT conditions in the vicinity of the current trajectory

for the search directions through a backward pass and by computing a new trajectory

through a forward pass.

By further introducing the slack variable yk to transform inequalities into equal-

ities as (2.5), we can write the SKKT conditions (4.14) in the slack variable form:

Quuuk +Quxxk +Qussk +Qu = 0 (4.15a)

Skyk = 0 (4.15b)

Qsxxk +Qsuuk +Qs + yk = 0 (4.15c)

sk ≥ 0, yk ≥ 0. (4.15d)

Let x0 := (x00, ..., x
0
N) and u0 := (u00, ..., u

0
N−1) denote the initial guesses of the

state and control, respectively, which are feasible for the nominal system equation.

s0 := (s00, ..., s
0
N−1) and y0 := (y00, ..., y

0
N−1) denote the initial guesses of the Lagrange

multipliers and slack variables, respectively, which are all non-negative. At the ith

iteration, the trajectories of the last iteration, (xi−1,ui−1, si−1,yi−1), are known. The

backward pass and forward pass complete a Newton iteration, and the entire algorithm

terminates after the obtained trajectory satisfies the optimality condition, which is

judged in the outer loop.

46

4.4. Recursive Riccati Interior-Point Method

4.4.1 Backward pass

Initialize: let

PN = QN , qN = rN = 0

At stage k, represent the optimization variables by their search direction:

xik = xi−1k + δxk

uik = ui−1k + δuk

sik = si−1k + δsk

yik = yi−1k + δyk.

(4.16)

The new trajectory satisfies the perturbed SKKT conditions:

Quuu
i
k +Quxx

i
k +Quss

i
k +Qu = 0 (4.17a)

Siky
i
k = µik (4.17b)

Qsxx
i
k +Qsuu

i
k +Qs + yik = 0 (4.17c)

sik ≥ 0, yik ≥ 0, (4.17d)

where µik = (si−1k)Tyi−1k /(lx + lu) is the current duality measure (central parameter)

and the update of µik is µik = σµi−1k , where σ ∈ [0, 1] is the reduction factor that

we wish to achieve the duality measure at this step. When σ > 0, we solve for a

perturbed KKT point at each Newton iteration. It is well known that a standard

Newton direction with σ = 0 often does not make much progress toward a solution;

therefore, it is better to choose a positive σ to reduce the central parameter iteratively

Nocedal and Wright (1999).

Representing all the variables by their search direction, the only nonlinear equa-

tion is (si−1k + δsk)(y
i−1
k + δyk) = µik. The interior-point algorithm finds solutions

by applying Newton’s method to the three equations in (4.17), we can obtain the

following linear equations:Quu Qus 0
0 Yk Sk
Qsu 0 I

δukδsk
δyk

 = −

Qux

0
Qsx

 δxk −
 ξi−1o

ξi−1d − µik
ξi−1f

 (4.18)

where ξi−1o

ξi−1d

ξi−1f

 =

Quuu
i−1
k +Quxx

i−1
k +Quss

i−1
k +Qu

Si−1k yi−1k

Qsxx
i−1
k +Qsuu

i−1
k +Qs + yi−1k

 (4.19)

are the primal and dual infeasiblities of the last iteration.

47

Chapter 4. Stochastic Dynamic Programming for Linear SMPC

The parametric system (4.18) can be solved directly to obtain the solution

δuk = η1kδxk + θ1k

δsk = η2kδxk + θ2k

δyk = η3kδxk + θ3k.

(4.20)

Writing (u, s) as a function of x,

uik = ui−1k + η1k(x
i
k − xi−1k) + θ1k = Kux

i
k + vu (4.21a)

sik = si−1k + η2k(x
i
k − xi−1k) + θ2k = Ksx

i
k + vs, (4.21b)

By substituting it into (4.12), we obtain the expressions for the coefficients of Vk−1,

which are given by the following Riccati-type recursion:

Pk−1 =Qxx +KT
uQuuKu +QxuKu +KT

uQux + 2KT
s (Qsx +QsuKu)

qk−1 =Qx +QuKu + vTu (Qux +QuuKu) + (Qsuvu +Qs)K
T
s + vTs (Qsx +QsuKu).

(4.22)

The update of the constant term rk−1 is omitted (for simplicity) because it does not

affect the solution.

The backward pass above is iteratively performed from k = N − 1 to k = 1 to

finish the backward pass.

4.4.2 Forward pass

Starting from k = 0, xi0 = x̄0 is already known by measurement, which means that

δx0 = 0.

At stage k, the search directions (δuk, δsk, δyk) are calculated using (4.20). The

interior-point method generates a new trajectory (xi,ui, si,yi) in a wide neighbor-

hood, as proposed in Kojima, Megiddo, and Mizuno (1993).

Definition 4.1. Let γ ∈ (0, 1), εo > 0 and εf > 0. A wide neighborhood N (γ, εo, εf)

is a set of variables (xik, u
i
k, s

i
k, y

i
k) satisfying the following conditions:

sik > 0, yik > 0,

(sik)j(y
i
k)j ≥ γ(sik)

Tyik/(lx + lu), j = 1, ..., (lx + lu)

(sik)
Tyik ≥ γ‖ξio‖ ∨ ‖ξio‖ ≤ εo,

(si)Tyi ≥ γ‖ξif‖ ∨ ‖ξif‖ ≤ εf ,

(4.23)

where ‖ · ‖ denotes the infinity norm.

48

4.4. Recursive Riccati Interior-Point Method

Define the new iterate (uik, s
i
k, y

i
k) asuiksik

yik

 =

ui−1k

si−1k

yi−1k

+ αik

δukδsk
δyk

 . (4.24)

where the step size αik is determined by the following line search rules:

STEP 1. Let ᾱ ∈ (0, 1] be the maximum value for all α ∈ (0, ᾱ]. The following

conditions are satisfied:

(ui−1k , si−1k , yi−1k) + α(δuk, δsk, δyk) ∈ N (γ, εo, εf)

(si−1k + αδsk)
T(yi−1k + αδyk) ≤ (1− α(1− σ))(si−1k)Tyi−1k ,

(4.25)

STEP 2. Choose the αik to determine (uik, s
i
k, y

i
k) such that

(uik, s
i
k, y

i
k) ∈ N (γ, εo, εf)

(sik)
Tyik ≤ (1− ᾱ(1− σ))(si−1k)Tyi−1k

(4.26)

Generally, it is common to let αy = αs = ᾱ. We show the existence of ᾱ by proving

the existence of a positive number α∗ such that ᾱ ≥ α∗ holds as long as the iteration

continues, which also leads to a global convergence result for our algorithm.

After calculating (uik, s
i
k, y

i
k), we can compute xik+1 using the nominal system equa-

tion

xik+1 = Axik +Buik (4.27)

The above update is repeated recursively from k = 0 to N − 1 to obtain a new

trajectory (xi,ui, si,yi)and complete the forward pass.

4.4.3 Outer loop

The backward pass and forward pass together complete the Newton steps. The algo-

rithm terminates when the optimality, duality, or constraint feasibility measurements

meet the stop criteria:

‖ξio‖ ≤ εo, ‖ξid‖ ≤ εd, and ‖ξif‖ ≤ εf (4.28)

or the duality measurement satisfies

‖ξid‖1 > ι (4.29)

for any large ι.

Remark 4.2. If (4.29) holds, we can derive information on infeasibility such that

there is no feasible solution in a certain wide region of the primal-dual space Kojima,

Mizuno, and Yoshise (1993).

We summarize the entire process in Algorithm 4.1.

49

Chapter 4. Stochastic Dynamic Programming for Linear SMPC

Algorithm 4.1: RRIPM

Parameters:
σ ∈ [0, 1] reduction parameter;
αf = 0.995 fraction-to-the-boundary parameter;
(εo, εd, εf , ι) terminal criteria;

Initialization:
iteration counter i = 0 ;
known initial state for all i, xi0 = x0 ;
initial guess (x0,u0, s0,y0) ;
central parameter µ0 ;

optimality measurements (‖ξ0o‖, ‖ξ0d‖, ‖ξ0f‖) ;

while ‖ξio‖ > εo ∨ ι > ‖ξio‖ > εd ∨ ‖ξif‖ > εf do
PN ← QN , qN rN ← 0. ;
for k ← N − 1 to 0 do

// Backward Pass
Solve linear equation (4.18);
δuk ← η1kδxk + θ1k;
δsk ← η2kδxk + θ2k;
δyk ← η3kδxk + θ3k;
(Pk, qk, rk)← (Pk+1, qk+1, rk+1);

end
for k ← 0 to N − 1 do

// Forward Pass
Find αik by line search rules (4.25)-(4.26);
Calculate new iterate (xik, s

i
k, y

i
k);

xik+1 ← Axik +Buik;

end
Reduce the barrier parameter µi = σµi;
Update the iteration counter i = i+ 1;
Compute optimality measurements (ξio, ξ

i
d, ξ

i
f).

end

4.5 Convergence Analysis of RRIPM

The global convergence property and the local convergence rate of the proposed algo-

rithm are discussed in this subsection. Let z = (x, u, s, y) and Fk(zk) = 0 denote the

SKKT conditions (4.15), and let z∗ denote the stationary point of Fk(zk) = 0. The

following assumptions are made in this subsection.

Assumption 4.3. The optimal solution z∗ exists and is unique in the neighborhood

N (γ, εo, εf) for a given initial state x0, and it holds a strict complementarity.

Assumption 4.4. Quu is positive definite.

50

4.5. Convergence Analysis of RRIPM

Before discussing the convergence result, we provide the following lemma to guar-

antee the nonsingularity of the coefficient matrix on the left-hand side of (4.18).

Lemma 4.1. Under Assumption 4.4, the SKKT matrixQuu Qus 0
0 Yk Sk
Qsu 0 I

 (4.30)

is nonsingular for all k = 0, ..., N − 1.

Proof. If z∗ is a solution point for which strict complementarity holds, then for every

iteration i at stage k, under the line search rules (4.25)–(4.26), either sik or yik remains

bounded away from zero as the iterates approach z∗k, ensuring that the second block

row
[
0 Yk Sk

]
has a full row rank. Because Quu is nonsingular, the first and third

block rows also have full row ranks. Together with the linear independence of these

three block rows, we can conclude that (4.30) is nonsingular.

4.5.1 Global convergence

The following theorem provides a global convergence result for Algorithm 4.1.

Theorem 4.2. For any (x0,u0), there always exists (s0,y0) such that (x0k, u
0
k, s

0
k, y

0
k) ∈

N (γ, εo, εf) holds for every k. Moreover, for any (x0k, u
0
k, s

0
k, y

0
k) ∈ N (γ, εo, εf), Algo-

rithm 4.1 is terminated after a finite number of iterations.

Proof. The first half is trivial; for any (x0,u0), (s0,y0) satisfies

(s0k)j(y
0
k)j ≥ max{γ(s0k)

Ty0k
lx + lu

,
γ‖ξ0o‖
lx + lu

,
γ‖ξ0f‖
lx + lu

} (4.31)

for all k = 0, ..., N − 1, j = 1, ..., (lx + lu).

The second half arises from a contradiction. Suppose Algorithm 4.1 does not

terminate. At iteration i, for all k, we have

(si−1k)Tyi−1k ≥ ε∗, and ‖ξi−1d ‖1 ≤ ι, (4.32)

where ε∗ = min{γεo, εd, γεf}; otherwise, zi−1 satisfies either the stopping criteria

(4.28) or (4.29). Therefore, the entire sequence (xi−1k , ui−1k , si−1k , yi−1k) lies within the

compact set.

N̄ = {(x, u, s, y)|sTy ≥ ε∗, and ‖ξd‖1 ≤ ι} (4.33)

51

Chapter 4. Stochastic Dynamic Programming for Linear SMPC

Together with the nonsingularity of the SKKT matrix from Lemma 4.1, the Newton

direction (δuk, δsk, δyk) generated by (4.18) is bounded for all (xi−1k , ui−1k , si−1k , yi−1k)

over the compact set N̄ .

We define the functions go, g
j
d (j = 1, ..., (lx + lu)), gf , and h from the conditions

in (4.25) as follows:

go(α) = (sik)
Tyik − γ‖ξio‖ (4.34a)

gjd(α) = (sik)
j(yik)

j − γ(sik)
Tyik/(lx + lu) (4.34b)

gf (α) = (sik)
Tyik − γ‖ξif‖ (4.34c)

h(α) = (1− α)(si−1k)Tyi−1k − (sik)
Tyik. (4.34d)

From (4.19) and (4.25), we have

ξio =Quuu
i
k +Quxx

i
k +Quss

i
k +Qu

=Quu(u
i−1
k + αδuk) +Qux(x

i−1
k + αδxk) +Qus(s

i−1
k + αδsk) +Qu.

(4.35)

By (4.18), we know that

Quu(u
i−1
k + δuk) +Qux(x

i−1
k + δxk) +Qus(s

i−1
k + δsk) +Qu = 0. (4.36)

Simultaneous with (4.35) and (4.36), we have

ξio = (1− α)ξi−1o . (4.37)

Similarly, we have

ξif = (1− α)ξi−1f . (4.38)

Hence, α are chosen to satisfy the following conditions

gjd(α) ≥ 0

go(α) ≥ 0 ∨ ‖(1− α)ξi−1o ‖ ≤ εo

gf (α) ≥ 0 ∨ ‖(1− α)ξi−1f ‖ ≤ εf

h(α) ≥ 0,

(4.39)

such that the new iteration satisfies equation (4.25). Because the above four equations

are similar, let us consider the second equation about go(α) as an example:

go(α) =(si−1k + αδsk)
T(yi−1k + αδyk)− γ‖(1− α)ξi−1o ‖

=(si−1k)Tyi−1k + (αδsTk y
i−1
k + αδyTk s

i−1
k) + α2δsTk δyk − γ‖(1− α)ξi−1o ‖

=(si−1k)Tyi−1k − (α(si−1k)Tyi−1k − ασ(si−1k)Tyi−1k) + α2δsTk δyk − γ‖(1− α)ξi−1o ‖

=(1− α)((si−1k)Tyi−1k − γ‖ξi−1o ‖) + ασ(si−1k)Tyi−1k + α2δsTk δyk
(4.40)

52

4.5. Convergence Analysis of RRIPM

Because (xi−1k , ui−1k , si−1k , yi−1k) ∈ N (γ, εo, εf), we have

(si−1k)Tyi−1k ≥ γ‖ξi−1o ‖ ∨ ‖ξi−1o ‖ ≤ εo. (4.41)

For ‖ξi−1o ‖ ≤ εo, for any α ∈ (0, 1], we have

‖ξio‖ = ‖(1− α)ξi−1o ‖ < εo. (4.42)

When (si−1k)Tyi−1k ≥ γ‖ξi−1o ‖, the first term on the right-hand side of (4.40) is always

positive for any α ∈ (0, 1]. From the boundness of (δuk, δsk, δyk), we find a positive

constant $ such that

|δsTk δyk| ≤ $, (4.43)

Therefore, we have the inequality

go(α) ≥ ασε∗ − α2$, (4.44)

because (si−1k)Tyi−1k ≥ ε∗.

Similarly, we obtain the conditions for gjd(α), gf (α), and h(α):

gjd(α) ≥ ασ(1− γ)ε∗/(lx + lu)− α2$

gf (α) ≥ ασε∗ − α2$

h(α) ≥ α(σ̄ − σ)ε∗ − α2$.

(4.45)

We can find a positive α∗ by letting

α∗ = min{1, σε
∗

$
,
σ(1− γ)ε∗

(lx + lu)$
,
(σ̄ − σ)ε∗

$
} (4.46)

such that for any α ∈ (0, α∗], (4.39) holds true.

From the definition of ᾱ, ᾱ ≥ α∗. We can find the step size αik to determine a

new trajectory that satisfies (4.26), i.e.,

(sik)
Tyik ≤ (1− ᾱ(1− σ))(si−1k)Tyi−1k

≤ (1− α∗(1− σ))(si−1k)Tyi−1k

≤ (1− α∗(1− σ))i(s0k)
Ty0k

(4.47)

Evidently, the last equation converges to zero as iteration i tends to ∞, which con-

tradicts (4.32).

Theorem 4.2 reveals the finite termination of Algorithm 4.1. Together with As-

sumption 4.3, it can be concluded that our algorithm converges to a sequence that

satisfies the SKKT conditions; in other words, the algorithm globally converges to z∗.

53

Chapter 4. Stochastic Dynamic Programming for Linear SMPC

4.5.2 Local convergence rate

Next, we consider the local convergence rate in Algorithm 4.1. Let αi := (αi0, ..., α
i
N−1).

Theorem 4.3. If αi → 1 and µi → 0, the sequence {zi} generated by Algorithm 4.1

converges to the optimal solution z∗ Q-superlinearly.

Proof. Let ζ ik = (uik, s
i
k, y

i
k). We define the coefficient matrix in Fk(zk) = 0 as

∇xFk =

Qux

0
Qsx

 ∇ζFk =

Quu Qus 0
0 Yk Sk
Qsu 0 I

 .
At each stage, consider the Taylor approximation

0 = Fk(z
∗
k) = Fk(z

i
k) +∇xFk(z

i
k)(x

∗
k − xik) +∇ζFk(z

i
k)(ζ

∗
k − ζ ik) + o(z∗k − zik)2. (4.48)

From Lemma 4.1, it is known that ∇ζFk(z
i
k) is nonsingular. By multiplying Ψ =

∇ζF
−1
k (zik) to both sides of (4.48), we have

ΨFk(z
i
k) + Ψ∇xFk(z

i
k)(x

∗
k − xik) + ζ∗k − ζ ik + o(z∗k − zik)2 = 0. (4.49)

From the forward update (4.24), we know the update of ζ.

ζ i+1
k = ζ ik + αikδζk, (4.50)

where δζk is the solution of the linear equation (4.18):

δζk = −Ψ∇xFk(z
i
k)(x

i+1
k − xik)−ΨFk(z

i
k) + Ψµikp̂, (4.51)

where p̂ denotes a fixed vector. Substituting (4.50) into (4.51)yields

ΨFk(z
i
k) = −ζ

i+1
k − ζ ik
αik

−Ψ∇xFk(z
i
k)(x

i+1
k − xik) + Ψµikp̂. (4.52)

Then, simultaneous (4.49) and (4.52) to eliminate the term ΨF (zik):

ζ i+1
k −ζ

∗
k = (1−αik)(ζ ik−ζ∗k)+αikΨ∇xFk(z

i
k)(x

i+1
k −x

∗
k)+αikΨµ

i
kp̂+o(z∗k−zik)2. (4.53)

From the system equation (4.1), because xi+1
0 = x∗0 = x0, we have

xi+1
1 − x∗1 = A(xi+1

0 − x∗0) +B(ui+1
0 − u∗0)

= B(ui+1
0 − u∗0).

(4.54)

54

4.6. Practical Implement Issues for a Feasible Algorithm

By continuing by induction until stage k and representing the right-hand side by ζ,

we obtain

xi+1
k − x∗k =

k−1∑
j=0

Mj(ζ
i+1
j − ζ∗j), (4.55)

where Mj denotes an appropriate constant matrix. Substituting (4.55) into (4.53),

when k = 0, we have

ζ i+1
0 − ζ∗0 = (1− αi0)(ζ i0 − ζ∗0) + αi0Ψµ

i
0p̂+ o(z∗0 − zi0)2. (4.56)

Similarly, at k = 1,

ζ i+1
1 − ζ∗1 =(1− αi1)(ζ i1 − ζ∗1) + αi1Ψµ

i
1p̂+ o(z∗1 − zi1)2

+ αi1Ψ∇xFk(z
i
k)M0(ζ

i+1
0 − ζ∗0)

=(1− αi1)(ζ i1 − ζ∗1) + αi1Ψµ
i
1p̂+ o(z∗1 − zi1)2

+ αi1Ψ∇xFk(z
i
k)M0((1− αi0)(ζ i0 − ζ∗0)

+ αi0Ψµ
i
0p̂+ o(z∗0 − zi0)2).

(4.57)

Let ζ = [ζ0, ζ1, ..., ζN−1]. By continuing this induction until k = N − 1, we obtain

ζi+1 − ζ∗ = Υζ(ζ
i − ζ∗) + Υµµ

i + o(z∗ − zi)2, (4.58)

where Υζ and Υµ are the appropriate coefficient matrices, and Υζ is composed of the

product of (1−αik) and other bounded matrices. By combining (4.55) and (4.58), we

have

zi+1 − z∗ = Υ′ζ(z
i − z∗) + Υ′µµ

i + o(z∗ − zi)2, (4.59)

where Υ′ζ → 0 holds true when αi → 1. Therefore, we can conclude that if αi → 1

and µi → 0, then sequence {zi} converges to z∗ Q-superlinearly.

4.6 Practical Implement Issues for a Feasible Al-

gorithm

In the context of analytic approximated chance constraints, the problem of guaran-

teeing recursive feasibility of the MPC optimization problem is very important in

practical implementation. This issue relies on the fact that the disturbance is un-

bounded, the initial state x0 may take (even with small probability) unboundedly

large (or small) values and therefore there may not exist a feasible control action that

can force the predicted trajectory into admissible region Πk (4.9). In this section,

55

Chapter 4. Stochastic Dynamic Programming for Linear SMPC

Algorithm 4.2: Feasible RRIPM

Parameters:
ρ penalty coefficient;

Input: Initial state (x0,u0, s0,y0) ;
Output: Optimal solution u∗ ;
if RRIPM (4.1) converges then

u∗ ← RRIPM(x0,u0, s0,y0) ;
else

Run soft constraint RRIPM (Algorithm A.1);
u∗ ← soft constraint RRIPM(x0,u0, s0,y0) ;

end

we reformulate the problem constraints in a soft fashion. Therefore, in the case of

infeasibility, an alternative softened optimization problem is solved.

By introducing the soft variable (Kerrigan and Maciejowski (2000)), we can rewrite

the deterministic Bellman equation (4.3) as follows

Problem 4.4 (Deterministic Bellman equation with soft variable).

Vk(xk) = min
uk(xk)

[
1

2
xTkQxk +

1

2
uTkRuk + ρTek + Vk+1(xk+1)]

s.t. xk+1 = Axk +Buk

Cxxk + Cuuk + Cc ≤ ek

ek ≥ 0,

where ek ∈ Rlx+lu is the soft variable and ρ is the penalty coefficient.

Based on the KKT conditions with soft variable in (2.5), we can also give the

“softened” SKKT conditions of based on Problem (4.4):

Quuuk +Quxxk +Qussk +Qu = 0 (4.60a)

Skyk = 0 (4.60b)

Qsxxk +Qsuuk +Qs + yk − ek = 0 (4.60c)

Ek(ρ− sk) = 0 (4.60d)

sk ≥ 0, yk ≥ 0, ek ≥ 0, (4.60e)

where Ek = diag[ek]. Next, the soft constraint RRIPM based on this “softened”

SKKT condition is also straightforward. The slightly different point is that there are

two non-smooth equations (4.60b) and (4.60d) in this equation, and it needs to be

smoothed with two central parameters, the details of soft constraint RRIPM can be

found in Appendix (A).

We summarize the feasible RRIPM algorithm in Algorithm 4.2.

56

4.7. Case Study

4.7 Case Study

4.7.1 Numerical example settings

We tested our method with a linear system: the control problem of room temperature

Gwerder and Tödtli (2005). The basic control target was to maintain the room

temperature above a certain level in the presence of external disturbances. The system

contained three states: let x1 be the room temperature, let x2 be the temperature

of the wall connected to another room, and let x3 be the temperature of the wall

connected to the outside. The system was subjected to three disturbances in which w1

denotes the outside temperature, w2 denotes the solar radiation, and w3 denotes the

internal heat gains (e.g., people and electronic devices), and the entire disturbances

w subjected to N (0, I). The only control input, u, was the heating.

The control objective was to maintain the room temperature above 21◦C with

minimum energy; thus, the weighting matrix was Q = 0 and R = 1. The state

constraint was treated as a chance constraint:

Pr(x1 ≥ 21) ≥ 1− pvio.

The control input also had limitations imposed by the actuator, 0 ≤ u ≤ 45 [W/m2].

The parameters of the system were obtained from Oldewurtel et al. (2013) as follows:

A :=

 0.8511 0.0541 0.0707
0.1293 0.8635 0.0055
0.0989 0.0032 0.7541

 , B :=

 0.0035
0.0003
0.0002

 .
Because explicit MPC is intractable in the present problem settings when the pre-

diction horizon is larger than two, we compared the following three control strategies

in terms of control performance, constraint violation rate, and computation time:

1. Open-loop policy (Mayne et al. (2000)): Only the information of the initial

measurement x0 can be used.

2. Pre-parameterization (PP) (Lofberg (2003)): Parameterizes the control policy

as uk = Kkxk+vk first and searches directly over the decision variables (Kk, vk),

which is a heuristic formulation of the feedback policy.

3. Proposed RRIPM.

We carried out the simulation on a laptop computer with a 2.60 GHz Intel Core

i7-6700HQ in MATLAB 2020a. The first and second problems were solved using the

interior-point method with direct shooting (El-Bakry et al. (1996)) and coded in the

MATLAB environment.

57

Chapter 4. Stochastic Dynamic Programming for Linear SMPC

Figure 4.1: Room temperature profile and corresponding 95% confidence region.

4.7.2 Simulation analysis

Figure 4.1 shows the time evolution of the mean of x1 and corresponding 95% con-

fidence region for all three control methods with initial state [26, 26, 21]T, prediction

horizon N = 6 and allowed constraint violation rate pvio = 10%. The results reveal

that the most conservative control performance can be achieved with an open-loop

policy; the room temperature was almost always higher than the room temperature

of the other two control policies while our proposed method resulted in the least con-

servative control performance. The means and confidence regions of PP and RRIPM

Table 4.1: Comparison of the objective function values for different states under the
same settings (N = 6).

Open-loop PP RRIPM

state 1: [28, 28, 21]T 313 187 62

state 2: [22, 18, 15]T 2855 2216 1859

state 3: [25, 25, 15]T 1205 828 611

58

4.7. Case Study

Figure 4.2: 100 Monte Carlo simulations. (αx = 10%)

almost coincided; however, PP was slightly more conservative than the proposed

RRIPM, which may be due to the fact that pre-parameterization is a heuristic for-

mulation of a feedback policy. A more intuitive comparison of control performance

can be seen in Table 4.1. We considered optimal solutions for several initial states.

The results reveal that the open-loop policy consumes the most energy for an identi-

cal optimization problem (i.e., most conservative), while the proposed RRIPM always

achieves the smallest objective function value.

The constraint violation rates were compared based on 100 Monte Carlo simula-

tions. Figure 4.2 shows the time evolution of x1 for pvio = 10%. As can be seen from

Table 4.2: Comparison of the constraint violation rate based on 100 Monte Carlo
simulations. (%)

Open-loop PP RRIPM

pvio = 1 0.61 0.93 0.94

pvio = 5 3.82 4.20 4.72

pvio = 10 5.67 9.52 10.00

59

Chapter 4. Stochastic Dynamic Programming for Linear SMPC

Table 4.3: Average computation time per update (ms).

Open-loop PP RRIPM

N = 5 0.56 9.19 1.41

N = 50 2.36 85.10 2.77

N = 100 12.37 175.35 3.49

the figure, all three control methods exhibit certain degrees of constraint violation.

Table 4.2 provides a more intuitive comparison, showing the constraint violation rate

for pvio = 1%, pvio = 5%, and pvio = 10%. The results reveal that, for different values

of αx, our proposed RRIPM always remained the closest to the set value, the PP and

RRIPM were close but slightly smaller, and the open-loop policy was significantly

lower than the set value.

The computation times are listed in Table 4.3. The data in the table reveals

that, when the prediction horizon is short, the computation times of the open-loop

policy and RRIPM are similar and smaller than those of the PP because they have

fewer decision variables. However, when the prediction horizon increases, RRIPM

has obvious advantages because the computational complexity of Riccati recursion

increases linearly with the prediction horizon.

Figure 4.3 shows the shape of the obtained first step of the optimal feedback

control law u0(x). In principle, the dynamic programming solution of a linear system

with linear constraints should be a piecewise linear function w.r.t. state variables.

We obtained u0(x) by pointwise computation of RRIPM within a certain area of

x, i.e., x1 ∈ [18, 30], x2 ∈ [18, 30] and fixed x3 = 10. The figure reveals that the

optimal solution u0 exhibits the shape of a piecewise linear function in the (x1, x2)

space. In other words, our algorithm generates same control inputs as a piecewise

affine feedback law of explicit MPC while getting rid of active sets and does not suffer

from the curse of dimensionality. Moreover, our proposed method also achieves low

computational complexity compared to existing methods.

4.8 Summary

In this chapter, a full-state observable linear SMPC with chance constraints is consid-

ered. We reformulate the SOCP with chance constraints as a deterministic Bellman

equation under the concept of a feedback policy. A RRIPM is proposed to solve the

stage-wise KKT conditions. Our proposed method avoids the complicated discussion

60

4.8. Summary

Figure 4.3: Optimal solution u0(x) obtained by pointwise computation of RRIPM.

of the active set and determines that the optimal control policy depends on the cur-

rent state. We proved the global convergence and local Q-superlinear convergence

rate of our algorithm for the optimal solution. The simulation results demonstrate

that our proposed algorithm can achieve ideal less conservative control performance,

that is, to make the constraint violation rate as close as possible to the set value.

Moreover, our proposed method achieves low computational complexity compared to

existing methods.

61

Chapter 5

Approximate Dynamic
Programming for Output-feedback
Nonlinear SMPC

5.1 Introduction

SMPC of nonlinear system has received less attention compared with the linear case.

The key challenge of nonlinear SMPC is the efficient uncertainty propagation method

through nonlinear dynamics. In Weissel et al. (2009), the Gaussian-mixture approxi-

mation (Maz’ya and Schmidt (1996)) was used to describe the transition probability

distributions of states. Generalized polynomial chaos expansion (gPC) (Xiu and Kar-

niadakis (2002)) is also widely used in nonlinear SMPC. In Mayne (2014), a sample-

based method was adopted to adapt the coefficients of gPC based on the history

data. Streif et al. (2014) used Galerkin projection (Ghanem and Spanos (2003)) for

adapting the coefficients of gPC, and efficiently constructing the probability distri-

butions of state through Monte Carlo methods to evaluate the chance constraints.

The disadvantage of the above methods is that they require a lot of calculation or

sampling time to simulate the propagation of uncertainty through nonlinear system.

On the other hand, if the output-feedback is considered in the SMPC, we need

to incorporate state estimation into the controller like LQG does (Lindquist (1973)).

However, the separation principle is not optimal for nonlinear stochastic system. In

Yan and Bitmead (2005), the output-feedback SMPC for linear system was consid-

ered, which uses a Kalman filter to estimate the state. In Sehr and Bitmead (2017),

a particle filter was used to estimate the system. Mesbah (2018) gave the general

framework of dealing with output-feedback cases, where a Bayesian filter is used to

estimate the information state. However, Bayesian filter is generally intractable.

62

5.1. Introduction

In Chapter 4, we introduced the numerical algorithm for solving constrained dy-

namic programming. Approximate dynamic programming (ADP) is a natural ex-

tension of dynamic programming in nonlinear cases. ADP-based methods, such as

differential dynamic programming (DDP) (Mayne (1966)) and iterative LQR (iLQR)

(W. Li and Todorov (2004)) have received considerable attention in the trajectory

optimization and machine learning fields (Lewis and Liu (2013)). To avoid solving

the exact solution of the original Bellman equation, ADP decouples the nested opti-

mization problem and decomposes a large problem across a control sequence into a

recursive series of small problems and then recursively solves each stage of the prob-

lem. This method has the advantage of computational efficiency because the size of

each subproblem is time-independent, and the computational complexity grows only

linearly with the prediction horizon, which is very attractive for real-time computing.

However, constraint handling in ADP methods remains problematic even in de-

terministic cases. Algorithms in Maz’ya and Schmidt (1996) and W. Li and Todorov

(2004) only consider unconstrained problems. In Rodriguez and Sideris (2010), an

active-set-based method was proposed to solve a constrained LQR problem. In Xie,

Liu, and Hauser (2017), an active-set method was applied to DDP to address gen-

eral nonlinear constraints. The disadvantages of the active-set method include in-

efficiencies in handling highly nonlinear optimization problems and computational

degradation as the problem size increases. Moreover, existing methods cannot deal

with chance constraints directly. Chapter 4 gives RRIPM algorithm for constrained

dynamic programming. However, it is only applicable to linear, full-state feedback

systems.

In this chapter, we developed a stochastic output-feedback MPC scheme for

chance-constrained nonlinear systems. A novel way of dealing with chance constraints

using an appropriate information state propagation method and a constrained ADP

algorithm is proposed for efficiently solving stochastic optimal control problems. We

extend the optimal value function concept to the output-feedback case, such that

the controller inherently has closed-loop performance. The proposed algorithm was

proven to exhibit a Q-superlinear local convergence rate. The numerical example re-

veals that the proposed method achieves good control performance and a reasonable

level of constraint violation and is computationally efficient owing to the dynamic

programming structure.

This chapter is organized as follows. Section 5.2 discusses the problem settings in

this chapter. Section 5.3 discusses the features output-feedback SMPC and its diffi-

culties. Section 5.4 presents the constrained SADP algorithm. Section 4.5 considers

63

Chapter 5. Approximate Dynamic Programming for Output-feedback Nonlinear
SMPC

the local convergence rate of the proposed constrained SADP algorithm. Section 5.6

presents simulation results. Finally, Section 5.7 summarizes this chapter.

5.2 Problem Statement

In this chapter, we consider a nonlinear discrete-time uncertain system:

xk+1 = f(xk, uk, wk)

yk = h(xk, vk),
(5.1)

where k denotes the time index; xk ∈ Rnx denotes the system states; uk ∈ Rnu denotes

the control inputs; yk ∈ Nny denotes the outputs; wk ∈ Rnw denotes stochastic process

noise; vk ∈ Nnv denotes measurement noise; and f : Rnx × Rnu × Rnw → Rnx and

h : Rnx × Rnv → Rny denote the system state and output equations, respectively.

Let Ik denote the matrix of available system information at time k

Ik := [yk, ..., y0, uk−1, ..., u0]

I0 := [y0].
(5.2)

We make the following assumptions in this chapter:

Assumption 5.1. f(·) and h(·) are differentiable almost everywhere with full-rank

Jacobians.

Assumption 5.2. The noise sequences {wk} and {vk} are subjected to independent

zero-mean Gaussian distributions, that is, wk ∼ N (0,Σw) and vk ∼ N (0,Σv).

Assumption 5.3. Random variables x0, {wk}, and {vl} are mutually independent

for all k, l ≥ 0.

Define an N -horizon cost function:

J := E[
N−1∑
k=0

l(xk, uk) + lN(xN)], (5.3)

where E denotes the expected value, l : Rnx × Rnu → R and lN : Rnx → R are the

stage-wise and terminal costs, respectively, and are twice continuously differentiable.

In addition to minimizing cost (5.3), we impose chance constraints on the state of

the form

P[g(xk) ≤ 0] ≥ 1− pvio, or P[xk ∈ X] ≥ 1− pvio (5.4)

64

5.3. Output-feedback SMPC

where P denotes the probability, g : Rnx → Rnc , and pvio ∈ (0, 0.5] denotes the

maximum allowed probability of state constraint violation. The hard constraints on

the control inputs are as follows:

uk ∈ U. (5.5)

Given system equations (5.1) and a prediction horizon of length N , we can define

the finite-horizon stochastic optimal control problem with initial state x0 ∼ N (x̄0,Σ0)

as follows:

Problem 5.1 (SOCP).

min
(uk)

N−1
k=0

E[
N−1∑
k=0

l(xk, uk) + lN(xN)]

s.t. xk+1 = f(xk, uk, wk)

P[xk ∈ X] ≥ 1− pvio
uk ∈ U

5.3 Output-feedback SMPC

5.3.1 Bellman equation for general SOCP

In the output-feedback case, the Bellman equation of SOCP (5.1) should be defined

as a function of information state ξk|k (see Section 2.2.2) as follows

Vk(ξk|k) := min
uk

Exk [l(xk, uk) + Vk+1(ξk+1|k+1)]

s.t. ξk+1|k = G(ξk|k, uk)

ξk+1|k+1 = H(ξk+1|k, Ik+1)

P[xk+1 ∈ X|Ik] ≥ 1− pvio
uk ∈ U

(5.6)

where VN(ξN |N) := ExN [lN(xN)]. Note that, at stage k, the chance constraint is

related to the conditional probability distribution ξk+1|k = p[xk+1|Ik] with a given Ik.
Because the control inputs are causal, the information patterns of these observations

can only be defined in terms of their probability distributions. By solving these

optimization problems backward from k = N − 1 to zero, we incorporate the causal

anticipation of future system observations Ik up to the end-stage N , which implies a

closed-loop policy (Bar-Shalom and Tse (1974)).

The solution to the optimization problem on the right-hand side of (5.6) is the core

difficulty in SOCP. This difficulty is due to the requirement of an explicit solution

65

Chapter 5. Approximate Dynamic Programming for Output-feedback Nonlinear
SMPC

for nonlinear optimization. The value function of general nonlinear problems does

not have an analytical form such as the LQG. This difficulty can be addressed using

ADP, which solves for a numerical solution.

The second difficulty is that even if the numerical solution is considered, the

“curse of dimensionality” cannot be avoided, that is, the exponential growth of the

computational and storage requirements as the information sequences Ik grows. To

handle this difficulty, an estimator must be introduced to summarize all information

up to time k. Note that although the noise terms wk and vk in (5.1) are Gaussian, the

distributions of xk and yk can be non-Gaussian because Gaussian noise passes through

the nonlinear functions f and h. To derive a practically efficient algorithm, we assume

that the distribution of the state conditioned on the measurement and inputs can be

approximated by a Gaussian distribution in this chapter. Therefore, the update of

the hyperstate can be represented by the update of its sufficient statistics, that is,

mean and variance.

Most nonlinear filters can be used to update the hyperstate, but filters based on

Monte Carlo methods, such as particle filters, may cause excessive computational

burden in real-time calculations. Considering the real-time calculation factors, the

extended Kalman filter (EKF) may be a better choice. Although the EKF has a

certain level of estimation error for nonlinear systems, we can reuse the Jacobian

matrix obtained when solving the optimization problem in the EKF. Therefore, the

EKF has significant computational cost advantages. Considering the estimation error

and real-time requirements, we chose to use EKF to update the hyperstate to obtain

an efficient numerical algorithm.

5.3.2 Gaussian belief dynamic model

The EKF provides the predicted state and covariance estimates (Ribeiro (2004)):

x̂k+1|k = f(x̂k|k, uk, 0)

Σk+1|k = fx,kΣk|kf
T
x,k + fw,kΣwf

T
w,k,

(5.7)

where fx,k and fw,k denote the derivatives of f with respect to x and w at time k,

respectively. x̂k+1|k denotes the estimate of x at time k + 1 given observations up to

and including at time k, which corresponds to the hyperstate update (2.26) in the

Gaussian belief.

66

5.3. Output-feedback SMPC

The measurement update can be expressed as follows:

Lk+1 = Σk+1|kh
T
x,k(hx,kΣk+1|kh

T
x,k + hv,kΣvh

T
x,k)
−1

x̂k+1|k+1 = x̂k+1|k + Lk+1(yk+1 − h(x̂k+1|k, 0))

Σk+1|k+1 = (I − Lk+1hx,k)Σk+1|k,

(5.8)

which corresponds to the hyperstate update equation (2.27).

Note that measurement yk+1 is unavailable when solving the SOCP because the

controller is causal. We must approximate it using its probabilistic knowledge, for

example, a certainty equivalent:

yk+1 = h(xk+1, vk+1) ≈ h(x̂k+1|k, 0). (5.9)

By substituting (5.9) into (5.8) and combining (5.7) and (5.8), we can obtain the

recursive equation of hyperstate update:

x̄k+1 = f(x̄k, uk, 0)

Σ′k+1 = fx,kΣkf
T
x,k + fw,kΣwf

T
w,k

Σk+1 = (I − Lk+1hx,k)Σ
′
k+1,

(5.10)

where x̄k, x̄k+1, Σk, Σ′k, and Σk+1 denote x̂k|k, x̂k+1|k+1, Σk|k, Σk+1|k, and Σk+1|k+1,

respectively.

The Bellman equation (5.6) can be rewritten as

Vk(xk) := min
uk

Exk [l(xk, uk) + Vk+1(xk+1)]

s.t. x̄k+1 = f(x̄k, uk, 0)

Σ′k+1 = fx,kΣkf
T
x,k + fw,kΣwf

T
w,k

Σk+1 = (I − Lk+1hx,k)Σ
′
k+1

P[x′k+1 ∈ X] ≥ 1− pvio, uk ∈ U

(5.11)

where xk ∼ N (x̄k,Σk), x
′
k+1 ∼ N (x̄k+1,Σ

′
k+1) and xk+1 ∼ N (x̄k+1,Σk+1).

5.3.3 Output-feedback SMPC algorithm

This subsection presents the entire algorithm for output-feedback SMPC.

Let i be the current time instant of control systems, and u∗i be the optimal control

input, obtained by solving the Bellman equation (5.11) recursively at time instant i.

The receding-horizon implementation of this optimal policy produces measurement

information at each time instant; therefore, the EKF (5.7)–(5.8) is applied to obtain

67

Chapter 5. Approximate Dynamic Programming for Output-feedback Nonlinear
SMPC

Algorithm 5.1: Output-feedback SMPC

Initialization:
system equations (2.15) ;
prediction horizon N ;
time instant counter i = 0 ;
initial state distribution x0|0 ∼ N (x̂0|0,Σ0|0) ;
probability distribution of w and v ;
w ∼ N (0,Σw), v ∼ N (0,Σv) ;

Repeat
For given xi ∼ N (x̂i|i,Σi|i) ;
x̄i ← x̂i|i ;
Σi ← Σi|i ;
Solve the Bellman equation (5.11) to get u∗i for x0 ∼ N (x̄i,Σi) ;
Apply first control input to get yi+1 ;
Run EKF (5.7)–(5.8) ;
(x̂i+1|i+1,Σi+1|i+1)← EKF(x̂i|i,Σi|i, yi+1) ;
Update the time subscript i = i+ 1 ;

Until finished

the state estimate by the current observation yi. The receding-horizon implementation

is summarized in Algorithm 5.1.

The difficulty of output-feedback SMPC in Algorithm 5.1 is finding the solution

of SOCP (5.1) by solving the chance-constrained stochastic Bellman equation (5.11)

online. In the next section, we use the Gaussian belief dynamic model to convert

stochastic optimization to deterministic optimization, and an efficient algorithm is

presented for online calculations based on ADP.

5.4 Stochastic Approximate Dynamic Programming

Algorithm

We have introduced the RRIPM in Chapter 4 which solves the linear constrained

dynamic programming via the interior-point method. Now we intend to introduce

the ADP algorithm in nonlinear case.

ADP is an iterative method that decomposes a large OCP into a recursive series

of small problems, and each solves an approximated Bellman equation at a single

time instant, which is implemented backward in time. Specifically, we let (x̃k, ũk)

be a given trajectory that satisfies the nominal state equation, the value function is

approximated by a quadratic fit around this given trajectory. By performing a back-

ward pass and a forward pass, the trajectory iteratively moves toward the minima

68

5.4. Stochastic Approximate Dynamic Programming Algorithm

of the quadratic approximations and is progressively improved toward a local opti-

mum. During the backward pass, the algorithm approximates the value function as a

quadratic function along the current trajectory. In the forward pass, forward propaga-

tion is performed to produce a new trajectory based on the value function computed

in the backward pass. This process is repeated until the desired convergence level is

achieved.

5.4.1 Deterministic reformulation via the Gaussian belief dy-
namic model

Let (δxk, δuk) be the deviation from a given trajectory. Thus, we have (xk, uk) =

(x̃k + δxk, ũk + δuk). First, we focus on the chance constraints. In general, nonlinear

chance constraints are intractable, because the propagation of stochastic variables

along nonlinear functions are difficult to compute.

Note that the stochastic variable in chance constraints is x′k+1 ∼ N (x̄k+1,Σ
′
k+1).

Linearizing nonlinear constraint function g near x̃k+1:

g(x′k+1) ≈ g(x̃k+1) + gx,k+1δx
′
k+1 (5.12)

where δx′k+1 ∼ N (δx̄k+1,Σ
′
k+1) and δx̄k+1 = x̄k+1−x̃k+1. The analytical reformulation

of linear chance constraint (5.12) can be obtained using the method introduced in

Subsection 2.2.3. By standardizing the Gaussian distribution, we obtain

P [Λ−1(gx,k+1δx
′
k+1− gx,k+1δx̄k+1) ≤ Λ−1(g(x̃k + 1)− gx,k+1δx̄k+1))] ≥ 1−pvio, (5.13)

where gx,k+1Σ
′
k+1g

T
x,k+1 = ΛΛT, and Λ can be obtained by matrix decomposition meth-

ods such as the Choleskey or LDL decomposition (Meyer (2000)). From the definition

of the cumulative distribution function (CDF), the equation can be rewritten as

Φ(Λ−1(g(x̃k + 1)− gx,k+1δx̄k+1)) ≥ 1− pvio, (5.14)

where Φ denotes the standard Gaussian CDF. The inverse function of standard Gaus-

sian CDF Φ−1 can be computed offline with arbitrary precision, whereafter the chance

constraints can be reformulated as:

g(x̃k+1) + gx,k+1δx̄k+1 + t(1− pvio) ≤ 0 (5.15)

where t(1− pvio) = ΛΦ−1(1− pvio).
By further linearizing f near (x̃k, ũk), the propagation of δx̄k can be expressed as

follows:

δx̄k+1 = fx,kδx̄k + fu,kδuk. (5.16)

69

Chapter 5. Approximate Dynamic Programming for Output-feedback Nonlinear
SMPC

Substituting (5.16) into (5.15), we obtain:

g1δx̄k + g2δuk + g3 ≤ 0 (5.17)

where

g1 = gx,k+1fx,k, g2 = gx,k+1fu,k, g3 = g(x̃k+1) + t(1− pvio).

The hard constraints on the control input (5.5) can also be handled using a similar

linearization procedure. By combining the linear constraint on state and input, we

can obtain the deterministic constraint form

g′(x̄k, uk,Σ
′
k+1) := Cx,kδx̄k + Cu,kδuk + Cc,k ≤ 0 (5.18)

where Cx,k, Cu,k, and Cc,k are the merged coefficient matrices of δx̄k, δuk, and the

constant term, respectively.

We can now define the action-value function under a dynamic programming frame-

work. By adding a term involving Lagrange multipliers to the stage cost, we can

rewrite the cost function of the minimization problem in the value function (5.11), as

follows:

min
uk

max
sk

E[l(xk, uk) + sTk g
′ + Vk+1(xk+1)] (5.19)

where sk is the Lagrange multiplier.

We let Q : Rnx × Rnu → R be the action-value function of (5.19). More conve-

niently, we define Q in terms of the deviation from the given state and action.

Qk =E[l(x̃k + δxk, ũk + δuk)]+

Vk+1(x̃k+1 + δxk+1) + (s̃k + δsk)g
′(x̃k + δxk, ũk + δuk)],

(5.20)

where s̃k is a given sequence of Lagrange multipliers, and δsk denotes the deviation

from s̃k.

To approximate the value function as a quadratic function, we consider the second-

order Taylor expansion of Q along the given trajectory:

Qk ≈E[Q̃k +QT
x,kδxk +QT

u,kδuk +QT
s,kδsk +

1

2
(δxTkQxx,kδxk + δuTkQuu,kδuk)+

δuTkQux,kδxk + δsTkQsx,kδxk + δsTkQsu,kδuk]
(5.21)

70

5.4. Stochastic Approximate Dynamic Programming Algorithm

where
Q̃k = Q(x̃k, ũk) + Vk+1(x̃k+1)

Qx,k = lx,k + fT
x,kVx,k+1

Qu,k = lu,k + fT
u,kVx,k+1

Qxx,k = lxx,k + fT
x,kVxx,k+1fx,k + Vx,k+1fxx,k

Quu,k = luu,k + fT
u,kVxx,k+1fu,k + Vx,k+1fuu,k

Qux,k = lux,k + fT
u,kVxx,k+1fx,k + Vx,k+1fux,k

Qs,k = Cc,k, Qsx,k = Cx,k, Qsu,k = Cu,k.

The expected value of Q can be evaluated as follows:

Qk =Q̃k +QT
x,kδx̄k +QT

u,kδuk +QT
s,kδsk +

1

2
(δx̄TkQxx,kδx̄k + δuTkQuu,kδuk)

+ δuTkQux,kδx̄k + δsTkQsx,kδx̄k + δsTkQsu,kδuk + Γ(Σk,Σ
′
k+1,Σk+1)

(5.22)

where Γ(·) denotes a combination of terms related to the covariance matrix. As men-

tioned in the previous section, the covariance update depends only on the linearized

points, and the term with the covariance matrix does not affect the solution of the

optimization problem. Therefore, we can omit these terms from the Q function. The

value function can be expressed as a quadratic approximation of Q:

Vk(xk) := min
δuk

max
δsk

Q(δx̄k, δuk, δsk) (5.23)

5.4.2 Constrained SADP algorithm

Thus far, we have introduced a method to reformulate the stochastic ADP as a

deterministic ADP in a Gaussian belief fashion and the corresponding stage-wise

optimization problem (5.23). Hereafter, we will present the proposed constrained

stochastic ADP (SADP) algorithm, which contains a backward pass for updating the

value function and policy, and a forward pass for calculating a new trajectory as well

as posterior estimation. Details of dealing with constrained dynamic programming via

an interior-point-based method can be found in Chapter 3; here, we briefly introduce

the entire algorithm.

The optimality conditions of (5.23) can be summarized as the following stage-wise

KKT (SKKT) conditions:

Quu,kδuk +Qux,kδx̄k +Qus,kδsk +Qu,k = 0 (5.24a)

(s̃k + δsk)(ỹk + δyk) = 0 (5.24b)

Qsx,kδx̄k +Qsu,kδuk +Qs,k + ỹk + δyk = 0 (5.24c)

s̃k + δsk ≥ 0, ỹk + δyk ≥ 0, (5.24d)

71

Chapter 5. Approximate Dynamic Programming for Output-feedback Nonlinear
SMPC

Algorithm 5.2: Constrained SADP

Parameters:
σ ∈ (0, 1) reduction parameter, ;
αf = 0.995 fraction-to-boundary parameter;
(εo, εd, εf) = 10−6 terminal tolerance;

Initialization:
known initial state, (x̄0,Σ0) ;
initial guess (x̃, ũ, s̃, ỹ,Σ) ;
central parameter µ ;
optimality measurements (‖ρo‖, ‖ρd‖, ‖ρf‖) ;

while ‖ρo‖ > εo ∨ ‖ρo‖ > εd ∨ ‖ρf‖ > εf do
Vxx,N ← lxx,N , Vx,N ← lx,N ;
for k ← N − 1 to 0 do

// Backward Pass
Solve the linear equation (5.27);
δuk ← η1kδxk + θ1k;
δsk ← η2kδxk + θ2k;
δyk ← η3kδxk + θ3k;
- Update the coefficients using (5.30) ;
(Vxx,k, Vx,k)← (Vxx,k+1, Vx,k+1);

end
for k ← 0 to N − 1 do

// Forward Pass
Find αi using line search rules (5.32);
Calculate the new trajectory using (5.31);
(uk, sk, yk)← (ũk, s̃k, ỹk). - Calculate the mean and covariance using
(5.33) ;

(x̄k+1,Σ
′
k+1,Σk+1)← (x̄k,Σk).

end
Update new trajectory ;
(x̃, ũ, s̃, ỹ,Σ)← (x̄,u, s,y,Σ);
Reduce the barrier parameter µ = σµ;
Compute the optimality measurements (ζo, ζd, ζf).

end

where yk is a slack variable that transforms inequalities into equalities to simplify the

calculation.

Let (x̃k, ũk,Σk) be the initial guess, which is feasible for the posterior estimation

update (5.10), (s̃k, ỹk) be a non-negative initial estimate of the Lagrange multiplayer

and slack variables. We summarize the algorithm in Algorithm 5.2, which contains a

backward pass, forward pass, and an outer loop below.

72

5.4. Stochastic Approximate Dynamic Programming Algorithm

5.4.2.1 Backward pass

Let the approximated optimal value function be the following quadratic form:

Vk(xk) :=
1

2
δx̄Tk Vxx,kδx̄k + V T

x,kδx̄k + Vc,k (5.25)

where Vxx,N = lxx,N , Vx,N = lx,N , and Vc,k are constant terms irrelevant to the algo-

rithm, while the remaining coefficients Vxx,k and Vx,k are updated recursively in the

backward pass.

The difficulty of solving SKKT conditions (5.24) is caused by the nonsmooth

equation (5.24b) and inequalities (5.24d), where the difficulty of inequalities will be

handled in the forward pass, and the nonsmooth equation can be handled by adding

a smooth parameter, that is,

(s̃k + δsk)(ỹk + δyk) = µk (5.26)

where µk = s̃Tk ỹk/nc is the current smoothing parameter. By applying Newton’s

method to the smoothed SKKT conditions, and treating δx̄k as a parameter, we

obtain the following equations:Quu,k Qus,k 0

0 Ỹk S̃k
Qsu,k 0 Inc

δukδsk
δyk

 = −

Qux,k

0
Qsx,k

 δx̄k −
 ρo
ρd − µk
ρf

 (5.27)

where the optimality, duality, and constraint feasibility measurements, ρo, ρd and ρf

are defined as follows: ρoρd
ρf

 =

 Qu,k

S̃kỸk
Qs,k + ỹk

 , (5.28)

S̃k := diag[s̃k], as does Ỹk.

The parametric solution of (5.27) as a function of x̄k is:

δuk = η1kδx̄k + θ1k

δsk = η2kδx̄k + θ2k

δyk = η3kδx̄k + θ3k.

(5.29)

Note that at stage N − 1, solution (5.29) can be obtained because Vxx,N and Vx,N are

given. Then, for k = N−1, ..., 0, by substituting (5.29) into (5.23) and comparing the

coefficients of the second-order and first-order terms, we obtain the following Riccati

equations:

Vxx,k =Qxx,k + ηT1kQuu,kη1k + 2ηT1kQux,k + 2ηT2k(Qsx,k +Qsu,kη1k)

Vx,k =Qx,k +Qu,kη1k + θT1k(Qux,k +Quu,kη1k)+

(Qsu,kθ1k +Qs,k)η
T
2k + θT2k(Qsx,k +Qsu,kη1k).

(5.30)

73

Chapter 5. Approximate Dynamic Programming for Output-feedback Nonlinear
SMPC

5.4.2.2 Forward pass

In the forward pass, we updated the Gaussian belief dynamics. At k = 0, the infor-

mation of the initial state is (x̄0,Σ0); thus, we have δx0 = 0. For k = 1, ..., N , we

can calculate the deviation pairs (δuk, δsk, δyk) by (5.29). The interior-point-based

method generates a new trajectory that satisfies inequalities (5.24d) in SKKT; there-

fore, we employ a line search procedure by including a step size αk as follows:uksk
yk

 =

ũks̃k
ỹk

+ αk

δukδsk
δyk

 (5.31)

where
αk = diag

[
αfαy αfαs αfαy

]
αs = max{α ∈ (0, 1]) : s̃+ αδsk ≥ 0}

αy = max{α ∈ (0, 1]) : ỹ + αδyk ≥ 0}

(5.32)

and αf is the fraction of the boundary parameter that prevents the Lagrange multi-

player and slack variables from approaching zero too quickly.

Next, we can calculate the mean and covariance using

x̄k+1 = f(x̄k, uk, 0)

Σ′k+1 = fx,kΣkf
T
x,k + fw,kΣwf

T
w,k

Σk+1 = (I − Lk+1hx,k)Σ
′
k+1.

(5.33)

The new δx̄k+1 can be obtained from δx̄k+1 by δx̄k+1 = x̄k+1 − x̃k+1.

Perform the above update recursively from k = 0 to N − 1 and let

(x̃, ũ, s̃, ỹ,Σ)← (x̄,u, s,y,Σ), (5.34)

we obtained a new trajectory.

5.4.2.3 Outer loop

The backward and forward passes together complete the Newton steps. The algorithm

terminates when the optimality, duality, or constraint feasibility measurements satisfy

the following stop criteria:

‖ρo‖ ≤ εo, ‖ρd‖ ≤ εd, and ‖ρf‖ ≤ εf (5.35)

where ρ = [ρ0, ..., ρN−1]. The selection of (εo, εd, εf) depends on the control accuracy

requirements.

Remark 5.1. The feasibility of Constrained SADP algorithm also remains problem-

atic. A practical way is to solve an alternative softened problem as we introduced in

Section 4.6 and Appendix A.

74

5.5. Convergence Analysis of Constrained SADP Algorithm

5.5 Convergence Analysis of Constrained SADP

Algorithm

The local convergence property of Algorithm 5.2 is discussed in this section. Let z =

(x, u, s, y) and Fk(zk) = 0 denote the SKKT conditions of the original optimization

problem (5.19). We make the following assumptions.

Assumption 5.4. There exists an optimal solution z∗k (k = 0, ..., N) that satisfies

Fk(z
∗
k) = 0 and strict complementarity holds.

Assumption 5.5. l(·), lN(·), f(·) and h(·) are locally twice Lipschitz continuous at

z∗

Assumption 5.6. Quu,k is a positive definite for k = 0, ..., N .

Assumptions 5.4–5.6 represent existence, smoothness, and second-order sufficiency,

respectively, which are standard for Newton’s method in most of the literature.

The following lemma is necessary before proving the local convergence rate:

Lemma 5.1. Under Assumptions 5.4–5.6, the SKKT matrixQuu,k Qus,k 0

0 Ỹk S̃k
Qsu,k 0 Inc

 (5.36)

is nonsingular and locally Lipschitz continuous at z∗.

Proof. Local Lipschitz continuity can be easily obtained from Assumption 5.5 because

l(·), lN(·), f(·) and h(·) are all locally twice Lipschitz continuous at z∗.

If z∗k is a solution for which strict complementarity holds, then for each Newton

iteration at time k, under the line search rule (5.32) in the forward pass, either sk

or yk remains bounded away from zero as the iteration approaches z∗k, ensuring that

both Ỹk and S̃k are positive definite. In addition, there are positive definite matrices

Quu,k, indefinite matrix Qus,k and its transpose Qsu,k in (5.36), so we can rewrite the

SKKT matrix (5.36) as follows:  A B 0
0 C D
BT 0 I

 (5.37)

where matrices A, C, and D are positive definite and C and D are diagonal. By

calculating the Schur complement of the block matrix:

M =

[
A B
0 C

]
−
[

0
D

] [
BT 0

]
=

[
A B

−DBT C

]
. (5.38)

75

Chapter 5. Approximate Dynamic Programming for Output-feedback Nonlinear
SMPC

The entire matrix is invertible if M is invertible. By recalculating the Schur com-

plement of the matrix M , we know that M is invertible if A + BC−1DBT is invert-

ible. From the positive definite and diagonal property of C and D, we know that

BTC−1DB is positive semidefinite. Together with the positive definite property of A,

we can conclude that A+BC−1DBT is positive definite and therefore invertible.

Let us now discuss the local convergence property of Algorithm 5.2. Let zjk be

the old trajectories z̃k at iteration j and let zj+1
k be the new trajectory generated by

(5.31).

Theorem 5.1. Let z = (x,u, s,y). For all k = 0, ..., N − 1, if αjk → 1 (j → ∞),

‖αjk − 1‖ ≤ ε, and ‖µ0
k‖ ≤ ε‖z0 − z∗‖ ≤ ε2 for a sufficiently small ε > 0, then the

iteration sequences generated by Algorithm 5.2 converge to z∗ Q-superlinearly.

Proof. Let ζ = (u, s, y). We define the coefficient matrix in (5.27) as

∇xFk =

Qux,k

0
Qsx,k

 ∇ζFk =

Quu,k Qus,k 0

0 Ỹk S̃k
Qsu,k 0 Inc

 .
According to Taylor’s theorem, there exist functions h1(z

j
k) such that

0 = Fk(z
∗
k) = Fk(z

j
k) +∇xFk(z

j
k)(x

∗
k − x

j
k) +∇ζFk(z

j
k)(ζ

∗
k − ζ

j
k) + h1(z

j
k), (5.39)

and norms of the residual functions are bounded.

‖h1(zjk)‖ ≤M1‖z∗ − zj‖2, (5.40)

where M1 denotes a constant.

From Lemma 5.1, we know that ∇ζFk(z
j
k) is nonsingular. Multiplying Ψ =

∇ζF
−1
k (zjk) by both sides of (5.39), we obtain

ΨFk(z
j
k) + Ψ∇xFk(z

j
k)(x

∗
k − x

j
k) + ζ∗k − ζ

j
k + Ψh1(z

j
k) = 0. (5.41)

From the forward update (5.31), we obtain the update of ζ.

ζj+1
k = ζjk + αjkδζk, (5.42)

where δζk is the solution of the linear equation (5.27):

δζk = −Ψ∇xFk(z
j
k)(x

j+1
k − xjk)−ΨFk(z

j
k) + Ψµ′k, (5.43)

76

5.5. Convergence Analysis of Constrained SADP Algorithm

where µ′k denotes [0 µjk 0]T and µjk = σjµ0
k, which is iteratively reduced by the reduc-

tion parameter σ ∈ (0, 1). Substituting (5.42) into (5.43) yields:

ΨFk(z
j
k) = −ζ

j+1
k − ζjk
αjk

−Ψ∇xFk(z
j
k)(x

j+1
k − xjk) + Ψµ′k. (5.44)

We can then combine (5.41) and (5.44) to eliminate the term ΨF (zjk):

ζj+1
k − ζ∗k = (1−αjk)(ζ

j
k − ζ

∗
k) +αjkΨ∇xFk(z

j
k)(x

j+1
k − x∗k) +αjkΨµ

′
k + Ψh1(z

j
k). (5.45)

At stage k = 0, since xj+1
0 = x∗0 = x̄0, we have

ζj+1
0 − ζ∗0 = (1− αj0)(ζ

j
0 − ζ∗0) + αj0Ψµ

′
0 + Ψh1(z

j
0). (5.46)

At stage k = 1, we apply the Taylor theorem to the nominal system equation (5.1)

xj+1
1 − x∗1 =f(xj+1

0 , uj+1
0 , 0)− f(x∗0, u

∗
0, 0)

≤fx,0(xj+1
0 − x∗0) + fu,0(u

j+1
0 − u∗0) + A1‖(xj+1

0 − x∗0), (u
j+1
0 − u∗0)‖2

≤A2(ζ
j+1
0 − ζ∗0)

≤A3‖z∗ − zj‖2

(5.47)

for some constant matrices A1, A2 and A3. By continuing this induction, there exists

a constant matrix M2, such that

xj+1
k − x∗k ≤M2‖z∗ − zj‖2 (5.48)

Furthermore, considering (5.45) for k = 0, ..., N − 1. At k = 0, we have (5.46), and

when k = 1:

ζj+1
1 − ζ∗1 =(1− αj1)(ζ

j
1 − ζ∗1) + αj1Ψ∇xF1(z

j
1)(x

j+1
1 − x∗1) + αj1Ψµ

′
1 + Ψh1(z

j
1)

≤(1− αj1)(ζ
j
1 − ζ∗1) + αj1Ψ∇xF1(z

j
1)A3‖z∗ − zj‖2 + αj1Ψµ

′
1 + ΨM1‖z∗ − zj‖2

(5.49)

Continuing this induction until k = N − 1, together with inequalities (5.40) and

(5.48), we have

‖zj+1 − z∗‖ ≤ Υζ‖zj − z∗‖+ Υµ‖µ0‖+M ′‖z∗ − zj‖2 (5.50)

where Υζ is composed of the product of (1− αjk) and αjk, Υµ is composed of σ to

the power of j and other bonded matrices, and M ′ is a constant matrix. When j = 0,

from the assumption ‖αjk− 1‖ ≤ ε, and ‖µ0
k‖ ≤ ε‖z0− z∗‖ ≤ ε2 hold for a sufficiently

small ε > 0, so there must exist a γ0 that satisfies 0 < γ0 < 1, such that

‖z1 − z∗‖ ≤ (Υζ + εΥµ +M ′‖z0 − z∗‖)‖z0 − z∗‖

< γ0‖z0 − z∗‖
(5.51)

77

Chapter 5. Approximate Dynamic Programming for Output-feedback Nonlinear
SMPC

By continuing this induction from j = 0 to ∞, we know zj → z∗.

Finally, if αjk → 1 holds when j → ∞, which implies Υζ → 0, together with the

fact that Υµ → 0 since 0 < σ < 1, we have

lim
j→∞

‖zj+1 − z∗‖
‖zj − z∗‖

= 0 (5.52)

5.6 Case Study

5.6.1 Numerical example settings

We tested our algorithm via a nonlinear, continuous-time stirred tank reactor (CSTR)

problem using the dilution rate as the manipulated variable. The reactor has a

constant volume, and its dynamics are described as follows:

ẋ1 = −k1x1 − k3x21 + (xf − x1)u (5.53a)

ẋ2 = −k1x1 − k2x2 + x2u, (5.53b)

that models the Van de Vusse series of reactions (Scokaert and Rawlings (1998)):

A
k1−→ B

k2−→ C, 2A
k3−→ D

where x1 and x2 represent the concentrations of A and B, and u represents the dilution

rate Van de Vusse (1964). We assume that k1 = 50, k2 = 100, k3 = 10, and xf = 10.

This state is partially observed using the following equation:

y =
[
0 1

] [x1
x2

]
(5.54)

We discretize the continuous-time system (5.53) with a sampling time of 0.002 s

and assume a stochastic disturbance wk and measurement noise vk with the following

covariance matrix:

Σw =

[
0.0052 0

0 0.0052

]
, Σv = 0.0032.

The control cost function is of the quadratic form xTQx+ uTRu with

Q =

[
1 0
0 1

]
, R = 1.

The real initial state is
[
0.5 0.18

]T
and the estimated initial distribution of x is

x0 ∼ N (
[
0.45 0.2

]T
, diag

[
0.1 0.1

]
). x2 is required to satisfy the chance constraint,

P[x2 ≥ 0.12] ≥ 1− pvio. (5.55)

78

5.6. Case Study

5.6.2 Simulation analysis

For comparison, we also present the simulation results for three control policies.

1. Open-loop policy (see Section 4.7);

2. Proposed Constrained SADP;

3. Pre-parameterized policy: Parameterizes the control policy as uk = Kkxk + vk

first and searches directly over the decision variables (Kk, vk) (see Section 4.7).

We performed the simulation on a laptop computer with a 2.60 GHz Intel Core

i7-6700HQ in MATLAB 2020a. The proposed algorithm was coded in the MATLAB

environment, and the open-loop controller and the PP controller were implemented

in the CasADi toolkit with the interior-point-method-based solver IPOPT Andersson

et al. (2019).

Figure 5.1 shows the time evolution of x2 using the proposed constrained SADP,

and it shows that the real system value can be tracked well by EKF under noisy ini-

tial states and partial observations, which means that our proposed output-feedback

SMPC scheme can perform the control task well.

Table 5.1: Comparison between three policies (N = 20, pvio = 10%)

Control Cost Constraint
policy violation(%)

Open-loop 1077 5.26
Constrained SADP 902 9.99

PP 944 7.23

Figure 5.2 shows the time histories for all three controllers with a constraint vio-

lation allowance pvio = 10% based on 100 Monte Carlo simulations. As shown in the

figure, all three control methods exhibit certain degrees of constraint violation. Table

5.1 lists the average cost and constraint violation rate in the Monte Carlo simula-

tion. The results revealed that the open-loop policy achieved the most conservative

control performance, with the highest cost and lowest degree of constraint violation.

The control performance of the proposed constrained SADP and PP policies is better

than that of the open-loop policy; however, it is slightly more conservative than the

proposed method, which may be because pre-parameterization is a heuristic formu-

lation of a feedback policy, and the resulting optimization problem is also difficult to

solve. Our proposed method achieved the most outstanding control effect: the closest

to the set constraint violation value and the lowest cost.

79

Chapter 5. Approximate Dynamic Programming for Output-feedback Nonlinear
SMPC

Figure 5.1: Time evolution profile of real system and EKF

The constraint violation rate were further compared in Table 5.2, showing the

constraint violation rate for pvio = 1%, pvio = 5% and pvio = 20% based on 100 Monte

Carlo simulations. The results show that the constrained SADP always remains the

closest to the set value, whereas the open-loop policy is always much lower than

the set value, revealing that the proposed method can achieve the least conservative

control effect while not violating the chance constraint.

The computation times for the three controllers are compared in Table 5.3. The

data in the table reveal that when the prediction horizon is short, our proposed

algorithm has a computational efficiency similar to that of the IPOPT solver, while the

computation time of PP is longer because it introduces extra optimization parameters

(Kk, vk). However, when the prediction horizon is long, our algorithm has an excellent

advantage because the computational complexity of ADP increases linearly with the

prediction horizon. In contrast, the computational complexity of a general interior-

point-method-based solver is cubic for the prediction horizon. Moreover, the average

number of iterations to reach the terminal tolerance is 10, and the average number of

80

5.7. Summary

Figure 5.2: Time evolution of real system state x2 for all three policies in 100 Monte
Carlo simulations. The constraint is represented by the dashed magenta line

iterations for obtaining the open-loop controller by IPOPT is 8, which implies that

the proposed algorithm is as efficient as solving a nonlinear programming problem by

IPOPT.

5.7 Summary

In this chapter, we designed an output-feedback stochastic MPC controller for chance-

constrained nonlinear systems. The stochastic optimal control problem was solved in

a stochastic dynamic programming fashion, and the output-feedback control was per-

formed with the extended Kalman filter. The information state in SDP is summarized

by a Gaussian belief dynamics to avoid “curse of dimensionality,” and the stochastic

optimization problem is reformulated as a deterministic one by this Gaussian belief

dynamics. We proposed a constrained SADP algorithm to solve the SDP, which has

a Q-superlinear local convergence rate. Simulation results showed that our proposed

algorithm can achieve good control performance and computational efficiency.

81

Chapter 5. Approximate Dynamic Programming for Output-feedback Nonlinear
SMPC

Table 5.2: Comparison of the constraint violation rate based on 100 Monte Carlo
simulations (%)

Control policy pvio = 1 pvio = 5 pvio = 20
Open-loop 0.41 2.04 4.46

Constrained SADP 0.98 4.88 19.90
PP 0.69 4.11 17.20

Table 5.3: Average computation time per update (ms)

Control policy N = 5 N = 20 N = 100
Open-loop 0.77 5.04 31.93

Constrained SADP 1.33 1.71 3.09
PP 3.42 19.55 110.81

82

Chapter 6

Bayesian Reinforcement Learning
for Unknown Model

6.1 Introduction

In the past few decades, reinforcement learning (RL, or adaptive optimal control,

see Sutton, Barto, and Williams (1992)) has emerged as an elegant and popular

technique to handle optimal decision-making problems when the model is unknown

(Kaelbling, Littman, and Moore (1996); Wiering and Van Otterlo (2012)). RL is

a class of learning problems in which an agent interacts with an environment, with

the goal of finding a policy, to optimize some measure of the long-term performance

(Sutton and Barto (2018)). A major challenge in RL is the balance between the need

to explore the space of all possible policies and the desire to focus data collection

towards trajectories that yield better outcomes. This is known as the exploitation-

exploration trade-off, which is also called the dual control effect in the context of

control theory (Feldbaum (1961)).

A principled solution to this problem is offered by Bayesian reinforcement learning

(BRL), which uses Bayesian inference to incorporate information into the learning

process (Duff (2002)). In BRL, a probability distribution (belief) over the dynamics

and cost of the environment can be used not just to simulate and plan trajectories,

but also to reason about changes to the belief from future observations, and their

influence on future decisions.

Model-based BRL is an extension of model-based RL, that explicitly maintains a

posterior over the model parameters and uses this posterior to select actions. Initial

work on model-based BRL appeared in the control literature, under the topic of

dual control (Feldbaum (1961); Filatov and Unbehauen (2000)). Both model-based

BRL and dual control are intended to explicitly represent uncertainty over the model

83

Chapter 6. Bayesian Reinforcement Learning for Unknown Model

parameter, then the optimal policy can be selected. Duff (2002) proposed a general

framework for model-based BRL, called Bayes-Adaptive MDP, which is an extension

of the conventional MDP model involving the idea of posterior information state.

The main difficulty in model-based BRL is the learning efficiency, which relies on

how “good” the control policy is in the learning process. In principle, a “good” policy

should satisfy the Bayes optimality under the current learned belief (Ghavamzadeh

and Engel (2006)), but the difficulty of solving stochastic dynamic programming

prevents obtaining such a policy. Poupart, Vlassis, Hoey, and Regan (2006) proposed

an offline algorithm called BEETLE to solve Bayes-Adaptive MDP. They used a

multi-variate polynomial functions to represent the value function, thus the stochastic

dynamic programming can be solved analytically. The main disadvantage of this

problem is the number of terms in the polynomials increases exponentially with the

planning horizon, which is a big challenge even in the offline case. In Strens (2000)

a Bayesian dynamic programming method was proposed to find the optimal policy.

In this method, a model is sampled from the posterior belief, and this model is used

in dynamic programming to select actions. Convergence to the optimal policy is

achievable by sampling the model from the full posterior over uncertainty. However,

the convergence could be very slow, since it needs to explore the full belief space.

Instead of directly solving stochastic dynamic programming, Dearden, Friedman, and

Andre (1999) proposed a value of information heuristic method, which involved a

value of information term in the reward, to estimate the expected improvement in

policy following an exploration action, but this heuristic approximation may provide

only a very limited view of potential information gain of certain actions.

The model-based BRL has a strong relation to SMPC, or we can say model-based

BRL is a more general form of stochastic optimal control with additional model

learning parts. When the system model is obtained, they all solve similar stochastic

dynamic programming problems. This means that the algorithm studied in SMPC

can be well applied to solve model-based BRL. In the previous chapters, we have intro-

duced the SMPC algorithms for linear systems, and nonlinear systems with Gaussian

assumption. In this chapter, we will focus on a more general problem, i.e., nonlinear

non-Gaussian systems with unknown models. A novel sample-based BRL framework

is proposed for solving the planning problem of current learned belief. We used the

particle filter to estimate the belief update, and a sample-based method is adopted to

solve the stochastic dynamic programming with chance constraints. The numerical

example reveals that the proposed method can achieve good learning efficiency and

control performance in both linear Gaussian and nonlinear non-Gaussian systems.

84

6.2. Problem Statement

The rest of this chapter is organized as follows. Section 6.2 discusses the problem

settings used in this chapter. Section 6.3 introduces the model-based BRL and some

existing methods. Section 6.4 discusses the Gaussian process dynamic model for

model learning. Section 6.5 presents the main algorithm, i.e., sample-based BRL.

Section 6.6 presents our simulation results. Section 6.7 summarizes this chapter.

6.2 Problem Statement

6.2.1 Partially observable Markov decision process

In this section, we consider a partially observable Markov decision process (POMDP)

to be defined by the tuple (X,A,O, T,Ω, R) (Kaelbling, Littman, and Cassandra

(1998)):

• X ⊂ Rnx : A set of states.

• A ⊂ Rnu : A set of control actions.

• O ⊂ Rny : A set of observations.

• T (·|x, a): Probability distribution over next state, conditioned on action a being

taken at state x.

• Ω(·|x): Probability distribution over possible observations, conditioned on ac-

tion a being taken to reach state x where the observation is perceived.

• R(·|x, a): Random variable r representing the reward obtained when action a

is taken in state x.

Since the state is not directly observed, at stage k the agent must rely on the

recent information history of actions and observations (ok, ..., o0, uk−1, ..., u0) to infer

a distribution over states, which is called belief (or information state see Section

2.2.2).

Since the state is Markovian (also known as Markov chain), which means current

belief over the states requires knowledge of the previous belief state, the action taken,

and the current observation. In Section 2.2.2, we have introduced that the belief

update of a dynamic system can be obtained by recursive Bayesian estimation (2.25).

For convenience, we denote the belief transition equation as bk+1 = τ(bk, a, o).

A Markovian belief state allows a POMDP to be formulated as a Markov decision

process where every belief is a state. The resulting belief MDP will thus be defined on

a continuous state space. Formally, the belief MDP is defined as a tuple (B,A,O, τ, r):

85

Chapter 6. Bayesian Reinforcement Learning for Unknown Model

• B: A set of belief states over the POMDP states.

• A: A same set of action as for the original POMDP.

• O: A same set of observations as for the original POMDP.

• τ(b, a, o): Belief state transition function.

• r(b, a): Reward function on belief states.

Among these, the belief MDP reward function r is the expected reward from the

POMDP reward function over the belief state distribution:

r(b, a) = E[

∫
X

b(x)R(x, a)dx] (6.1)

6.2.2 Control target

The goal of the control, when modeled as a belief MDP (or original POMDP), is to

choose a policy π which maximize the expected sum of rewards over the finite horizon

N . Beside the reward, the states are also constrained by the chance constraints

P [c(xk) ≤ 0] ≥ 1− pvio, (6.2)

where c : Rnx → [0,∞) denotes the stage constraints function, and pvio ∈ (0, 0.5]

denotes the maximum allowed probability of state constraint violation.

We can also give the Bellman equation at time k defined by belief state as (similar

to Bellman equation in Section 5.3.1):

V ∗k (bk) = min
ak

E[r(bk, ak) +

∫
O

f(ok+1|bk, ak)V ∗k+1(bk+1)]

s.t. bk+1 = τ(bk, ak, ok+1)

P [c(xk) ≤ 0] ≥ 1− pvio

(6.3)

where

f(ok+1|bk, ak) =

∫
S

∫
S

Ω(ok+1|xk+1)T (xk+1|xk, ak)bkdxkdxk+1.

For our problem of optimal control, we assume the dynamics can be expressed in

the following form:
xk+1 = T (xk, ak) + wk

ok = Ω(xk) + vk
(6.4)

where wk and vk are zero-mean Gaussian noise, i.e., wk ∼ N (0,Σw) and vk ∼
N (0,Σv). The functions T (·) and Ω are unknown deterministic function that re-

turns the next state and observations respectively. The reward function R(xk, ak) is

86

6.3. Preliminaries of Model-based Bayesian Reinforcement Learning

assumed known in this section, but the results in this section can be easily extended

to unknown case via using additional learning model to reward function.

6.3 Preliminaries of Model-based Bayesian Rein-

forcement Learning

The basic idea of model-based BRL is to explicitly learn a posterior distribution

(belief) over the model parameters θ, i.e. b(θ) and use this posterior to select actions.

Actions can be selected for both exploration and exploitation.

In the BRL framework, exploration and exploitation are naturally balanced in a

coherent mathematical framework. Policy is selected over the full belief, including the

stochastic part. More specifically, any policy that minimizes the stochastic Bellman

equation (6.3) is called a Bayes-optimal policy (Ghavamzadeh and Engel (2006)). In

general, the cost of a Bayes-optimal policy is higher than the optimal policy solved by

Bellman equation defined by exact states, because it may require additional actions

to do “exploration”. We first introduce some existing methods in model-based BRL.

Bayesian dynamic programming (Bayesian DP) method, closely related to Thomp-

son sampling (Thompson (1935)), was proposed by Strens (2000). For a given prior

belief Pprior, we first run a random policy to collect data set D̂, which includes past

actions and observations, then update prior belief to get posterior belief Ppost. At

each episode, we sample a model from the posterior belief Ppost, solve this model

using dynamic programming, and use the solved model to select actions. Models are

re-sampled and updated at the end of an episode. The Bayesian DP method is sum-

marized in Algorithm 6.1. The approach is simple to implement and does not rely

on any heuristics. Convergence to the optimal policy is achievable by sampling the

model from the full posterior over uncertainty. From Figure 6.1, we can see that for a

system with little uncertainty or near deterministic, the convergence will be fast since

we do not need large samples to cover the full posterior over uncertainty. However,

the convergence could be very slow with systems with large uncertainties.

The Bayesian DP method does not explicitly consider the posterior uncertainty for

a Bayes-optimal policy in each trial. Abbasi-Yadkori and Szepesvári (2015) proposed

a “lazy” version of Bayesian DP, they updated the belief when the solved policy with

a sample makes improvement on the Bayes optimality, but they still did not provide

some good approach to find a better policy by considering the uncertainties. In this

chapter, our main goal is to derive an algorithm that can find a better policy based

on the current belief to improve learning efficiency.

87

Chapter 6. Bayesian Reinforcement Learning for Unknown Model

Figure 6.1: Probability distributions with different levels of uncertainties

Algorithm 6.1: Bayesian dynamic programming

Initialization:
prior belief Pprior ;
episode number i = 0 ;

Run random policy to collect data set D̂ Ppost ← Pprior ;
for i = 1, 2, ... do

Sample θ̂ from Ppost;
Solve dynamic programming to obtain optimal policy of this sample π∗ ;

Collect data set D̂ and update Ppost ;

end

6.4 Gaussian Process Dynamic Model Learning

6.4.1 Gaussian process dynamic model

In this section, We will introduce a Bayesian approach to modeling dynamics. Gaus-

sian process dynamic model (GPDM) is fully defined by a set of low dimensional

representations of the training data, with both dynamics and observation mappings

learned from Gaussian process (GP) regression (J. M. Wang, Fleet, and Hertzmann

(2005)). The dynamic mapping X × A → X and observation mapping X → O are

88

6.4. Gaussian Process Dynamic Model Learning

defined as linear combinations of nonlinear basis functions

xk+1 =
∑
i

biφ(xk, ak) + nx (6.5a)

ok =
∑
i

ciψ(xk) + no. (6.5b)

Here, B = [b1,b2, ...] and C = [c1, c2, ...] are weights for basis function φi and ψj,

nx and no are zero-mean Gaussian noise. The GPDM is obtained by marginalizing

out the parameters of the two mappings, and optimizing the latent coordinates of

training data.

With an isotropic Gaussian prior on the columns of C. Marginalizing over obser-

vation function (6.5b) be done in closed form (MacKay, Mac Kay, et al. (2003); Neal

(2012)) to yield a multivariate Gaussian likelihood

p(O|X, β̄) =
|W|√

(2π)Nny |KO|ny
× exp(−1

2
tr(K−1O OW2OT)), (6.6)

where O = [o1, ..., oN] is a sequence of N observations, Ko is a kernel matrix, and

β̄ = [β1, β2, ...,W] are the kernel parameters. The matrix W is a scaling matrix

W := diag[W1, ...,Wno] to account for different variance in observed data dimensions.

The elements of kernel matrix are defined by a kernel function (KO)i,j = kO(xi, xj).

For the unknown mapping, X → O, the radial basis function (RBF) kernel is always

used

kO(x, x′) = β1 exp(−β2
2
‖x− x′‖2) + β−13 δx,x′ (6.7)

where hyperparameter α1 denotes the output variance, β2 denotes the smoothness of

the function, β−13 denotes the variance of the additional noise no, and δ is a Dirac

delta function.

The dynamic mapping (6.5a) is conceptually similar but need to consider the

Markov property. As above, we form the joint probability density over the states and

the dynamic weights B in (6.5a). We then marginalize over the weights B to get the

probability density over states:

p(X|A, ᾱ) =
p(x0)√

(2π)N(nx+nu)|KZ |nx+nu

× exp(−1

2
tr(K−1Z XXT)), (6.8)

where ᾱ = [α1, α2, ...] is a vector of kernel hyperparameters, p(x0) is the initial state

distribution, X = [x1, ..., xN]. The kernel matrix KZ is constructed by state and

action data, where Z = [z1, ..., zN] and zi = [xi, ai]. The “linear + RBF” kernel is

used here (J. M. Wang et al. (2005)):

kZ(z, z′) = α1 exp(−α2

2
‖z − z′‖2) + α4z

Tz′ + α−13 δz,z′ (6.9)

89

Chapter 6. Bayesian Reinforcement Learning for Unknown Model

where the additional hyperparameter α4 compared with (6.7) denotes the output scale

of the linear term.

We assume the hyperparameters subject to uniform distribution, i.e., p(ᾱ) ∝∏
i α
−1
i and p(β̄) ∝

∏
i β
−1
i . Together, we can get a general model for action-

observation/state sequence

p(O,X, ᾱ, β̄|A) = p(O|X, β̄)p(X|A, ᾱ)p(ᾱ)p(β̄). (6.10)

6.4.2 Model learning

Learning the GPDM from known information O and A entails using numerical op-

timization to estimate some or all of the unknowns in the model (X, ᾱ, β̄,W). The

training data is obtained from random trials drawn from models beforehand and the

online learning process.

Maximum a posteriori (MAP) algorithm, which is proposed in is proposed in

J. M. Wang, Fleet, and Hertzmann (2007), is an efficient algorithm to estimate all

unknowns. The goal of model learning can be summarized by minimizing the joint

negative log-posterior of the unknowns − ln p(X, ᾱ, β̄,W|O,A), which is given by

L = LO + LZ +
∑
i

lnαi +
∑
i

ln βi (6.11)

where

LO =
ny
2

ln |KO|+
1

2
tr(K−1O OW2OT)−N ln |W|

LZ =
nx + nu

2
ln |KZ |+

1

2
tr(K−1Z ZZT) +

1

2
zT0 z0

The detailed MAP algorithm can be found in J. M. Wang et al. (2007). The

resulting estimation of unknowns (X, ᾱ, β̄,W) is then used to construct the transition

and observation function. The probability distribution over the next state can be

represented by p(xk+1|xk, ak) ∼ N (µzk(zk),Σ
z
k(zk)), where

µz(z) = ZTKZkZ(z)

Σz(z) = kZ(z, z)− kZ(z)TK−1Z kZ(z)T.
(6.12)

Here kZ(z) is a vector denotes the covariance between working point and training set,

i.e., containing kZ(z, zi) in the ith entry, where zi is the ith training vector.

The probability distribution over observation is p(ok|xk) ∼ N (µok(xk),Σ
o
k(xk)),

where
µo(x) = OTKOkO(x)

Σo(x) = kO(x, x)− kO(x)TK−1O kO(x)T,
(6.13)

90

6.5. Sample-based Bayesian Reinforcement Learning

and kO(x) is also a vector denotes the covariance between working point and training

set. Then, the probability distribution p(xk+1|xk, ak) and p(ok|xk) with moments

(6.12) and (6.13) can be used to solve the planning problem in a model-based learning

scheme.

6.5 Sample-based Bayesian Reinforcement Learn-

ing

In the context of a model-based Reinforcement learning method. The planning prob-

lem is solved after a model is learned. In this section, we will discuss the planning

algorithm based on the previously learned GPDM.

An important insight in planning of stochastic system is the posterior belief (in-

formation state) update should be used while solving Bellman equation, as we have

done in Chapter 5. This can provide a dual control effect, or in machine learning field,

we call this a compromise between exploration and exploitation (Gupta, Smith, and

Shalley (2006)). In Chapter 5, an extended Kalman filter is used to approximate the

belief update, but with a Gaussian assumption. In this section, we use the particle

filter to estimate the belief and solve the Bellman equation via sample-based method

without any additional assumption.

6.5.1 Belief update via particle filter

Particle filter (PF) uses a set of particles to represent the posterior distribution of

a stochastic process given the noisy and/or partial observations. The advantages of

particle filter are the state-space model can be nonlinear and the initial state and

noise distributions can take any form.

In Section 2.2.2.3, we have introduced the basic idea of PF and sequential impor-

tance sampling (SIS). At stage k, we have the belief bk(xk). By denoting the posterior

estimate of state as x̂k|k, and prior estimate of state as x̂k+1|k ∼ p(xk+1|xk, ak), the

update of this estimated state is

x̂k+1|k+1 ≈ f(x̂k+1|k, ok+1) =
N∑
j=1

W j
k+1x̂

j
k+1|k, j = 1, ...,M (6.14)

where j denotes the jth particle randomly generate from a simple proposal distri-

bution p(xk+1|xk, ak), M is the number of particles, and W j
k+1 is the weight of the

91

Chapter 6. Bayesian Reinforcement Learning for Unknown Model

Algorithm 6.2: Belief update via PF

Parameters:
M number of particles;

Initialization:
horizon counter k ;
initial posterior distribution p(x̂k|k) ;
transition distribution p(xk+1|xk, ak) ;
observation distribution p(ok|xk) ;
initial weights Wk ;

Input: observations ok+1 ;
Output: deterministic belief update function f(·) ;
for j = 1 : M do

Compute prior estimate of state x̂jk+1|k ∼ p(xk+1|xk, ak);
Compute weight for each particle by (6.15);

end

Normalize weights W j
k+1 by (6.16) ;

Obtain belief update function f(·) from equation (6.14) ;

jth particle, which can be updated recursively by the following equation (see Section

2.2.2.3)

W j
k+1 ∝ p(ok+1|xk+1)W

j
k . (6.15)

After getting all the associated weights, a normalization is applied to make sure the

summation of conditional probability equals to one:

W j
k+1 =

W j
k+1∑M

i=1W
i
k+1

(6.16)

From the above discussion, we know that once a new observation is known, we

can obtain a deterministic update equation of x̂k|k, which can be interpreted as an

estimation of belief update equation bk+1 = τ(bk, ak, ok+1). The whole PF algorithm

is summarized in Algorithm 6.2.

6.5.2 Sample-based constrained dynamic programming

The belief update equation (6.14) obtained in the previous section can be used to

construct the Bellman equation (6.3). However, it is still a stochastic dynamic pro-

gramming problem that remains difficult to solve. In Chapter 5, we have introduced

an approximate dynamic programming algorithm based on the Gaussian assumption.

In this chapter, the belief obtained by PF is no longer Gaussian, so we propose a

sample-based constrained dynamic programming in this general case.

92

6.5. Sample-based Bayesian Reinforcement Learning

The basic idea of the sample-based method is to compute an optimal policy that

is feasible under K of “samples” of the uncertainty. Note that the uncertainties in

Bellman equation is arisen from the observations, i.e.,

x̂k+1|k+1 = f(x̂k|k, ak, ok+1) (6.17)

where p(ok|xk) ∼ N (µok(xk),Σ
o
k(xk)) from (6.13).

Drawing K samples from the observation distribution for the whole prediction

steps k = 0, ..., N − 1, they are combined into full-horizon samples, also called sce-

narios. Thus, for each sample j, we can have a deterministic belief update equation

x̄k+1 = fj(x̄k, ak), j = 1, ..., K (6.18)

where x̄ is a deterministic state, and the Bellman equation (6.3) can also be reformu-

lated into a deterministic one with these samples

V ∗k (x̄k) = min
a

r(x̄k, ak) + V ∗k+1(x̄k+1)

s.t. x̄k+1 = fj(x̄k, ak), j = 1, ..., K

c(x̄k+1) ≤ 0

(6.19)

Note that for each sample, stochastic nature is removed, so we just need to directly

remove the stochastic description of chance constraint. We can find the approximated

local policy for each deterministic constrained Bellman equation with given initial

state x0 by constrained SADP algorithm 5.2 introduced in Section 5.4.2 (this can be

done in parallel).

The remaining problem is that this method renders the stochastic optimization

problem into multiple deterministic systems by substituting particular scenarios. This

significantly simplifies the problem. However, these samples lead to a randomization

of the control policy. More specifically, the randomized policy can not meet the

requirement of a desired constraint satisfactory level in chance constraints.

This randomization effect can be mitigated by a posterior scenario removal (Campi

and Garatti (2008, 2011)). A posterior scenario removal means to remove the state

constraints of L scenarios after the outcomes of all samples have been observed. For a

specific constraint violation level pvio, L has to be varied in proper combination with

K.

Definition 6.1 (Admissible sample-removal pair). An admissible sample-removal

pair is considered to be a combination (K,L) that does not exceed the desired con-

straint violation level pvio.

93

Chapter 6. Bayesian Reinforcement Learning for Unknown Model

The details of how to determine the admissible sample-removal pair can be found

in Campi and Garatti (2011), but a fundamental result is the larger K you choose, the

more accurate result you can get. Here, we directly use the existing rule of choosing

admissible sample-removal pair (K,L) in Campi and Garatti (2011), i.e., the sample

number K and removal number L have a fixed mapping L = Ω(K) for a specific

problem setting, Hence, if either K or L is fixed, an admissible sample-removal pair

(K,L) can be determined. Moreover, if L is fixed there always exists a K large enough

to generate an admissible pair (K,L).

After K scenarios have been sampled the selection of the L removed scenarios is

performed by choosing a practical algorithm from below (Schildbach et al. (2012)):

• Optimal removal: The deterministic Bellman equation (6.19) is solved for all

possible combinations of choosing L out of K scenarios. Then the combination

that yields the lowest cost function value of all the solutions is selected. This

requires the solution to K choose L instances of the optimization problem, a

complexity that is usually prohibitive for larger values of L.

• Removal via multipliers: For each sample, the deterministic Bellman equation

(6.19) for all remaining sampled constraints is solved (initially, that is all sam-

pled constraints). Then the constraint in scenario associated with the highest

Lagrange multiplier is removed, and the procedure is repeated till L scenarios

are removed.

Remark 6.1. If the violated constraints are selected via optimal removal, then the

solution to the sample-based dynamic programming problem with violated constraints

is able to arbitrarily approximate that of the original stochastic problem, as the number

L increases (Calafiore (2010)).

Even though the optimal removal can approximate the problem precisely, it needs

quite large computation cost. Thus, in a practice implementation, the removal via

multipliers algorithm is always used.

After obtaining the solution from all K samples, we can calculate the policy

by combing all sampled solutions. More specifically, optimal policy is chosen by

maximum likelihood estimation (MLE) of parameters. In our algorithm, we obtain

K local linear feedback policies from all scenarios as the form of

uik = Gi
kx

i
k + vik, i = 1, ..., K, (6.20)

94

6.6. Case Study

whereGi
k and vik are parameters of policy in ith scenario. Then the MLE of parameters

in this linear policy can be easily obtained by take the average values of all scenario

solutions.

6.5.3 Bayesian reinforcement learning algorithm

Through model learning, the belief update, and the DP-based planning algorithm,

we can give the entire sample-based BRL framework.

At initialization, we first apply a random policy on the agent and collect data,

which is used to initialize the GPDM. In each trial, according to the current learned

GPDM, K samples are first generated according to the observation distribution

p(ok|xk), and K different deterministic brief update equations are generated through

Algorithm 6.2. Then, the optimal control law is obtained by solving the sampling-

based dynamic programming, which is the “optimal” control policy under the stochas-

tic model currently learned. Finally, apply this control policy to the agent and collect

a new sequence of data until a satisfactory control effect is obtained. The whole

algorithm is summarized in Algorithm 6.3

6.6 Case Study

6.6.1 Numerical example settings

We tested our algorithm in two cases. The first case is a discrete-time linear Gaussian

room temperature system used in Section 4.7 with additional observation function:

xk+1 = Axk +Bak + wk

ok = Cxk + vk
(6.21)

where the parameters of the system are taken from Oldewurtel et al. (2013) as follows:

A : =

 0.8511 0.0541 0.0707
0.1293 0.8635 0.0055
0.0989 0.0032 0.7541

 ,
B : =

 0.0035
0.0003
0.0002

 , C =

[
0 1 0
0 0 1

]
.

The noises wk and wk are all zero-mean Gaussian white noises with distribution

wk ∼ N (0, 0.12I) and vk ∼ N (0, 0.12I).

95

Chapter 6. Bayesian Reinforcement Learning for Unknown Model

Algorithm 6.3: Sample-based BRL

Parameters:
K number of samples;
L number of constraint removal;

Initialization:
trial counter i ;
a prior of GPDM p(x′|x, a) and p(o|x) ;
initial policy πθa ;

Apply random policy on agent, collect date D̃ = (O,A), update GPDM via
MAP algorithm ;

for i = 1, 2, ... do
Generate K samples from observation distribution ;
Derive K deterministic belief equation by Algorithm 6.2 ;
while L > 0 do

Solve K deterministic Bellman equations (6.19) ;
Remove the constraint of the particle associated with the highest
Lagrange multiplier ;
L← L− 1 ;
K ← K − 1 ;

end
Compute the optimal policy π∗ via MLE ;
Implement optimal policy π∗ to agent ;

Collect new date set D̃, update GPDM;

end

The objective function of this system was defined as r(xk, ak) = aTk ak with plan-

ning horizon N = 150. State constraint was treated as a chance constraint:

P [x1 ≥ 21] ≥ 1− pvio.

Control input also had limitations imposed by the actuator, 0 ≤ u ≤ 45.

The second case is a nonlinear, non-Gaussian continuous-time CSTR system used

in Section 5.6. The reactor has a constant volume, and its dynamics are described as

follows:
ẋ1 = −k1x1 − k3x21 + (xf − x1)a

ẋ2 = −k1x1 − k2x2 + x2a,
(6.23)

where the value of these parameters are k1 = 50, k2 = 100, k3 = 10, and xf = 10.

This state is partially observed using the following equation:

o =
[
0 1

] [x1
x2

]
(6.24)

96

6.6. Case Study

The continuous-time system (6.23) was discretized with a sampling time of 0.002s.

Stochastic noises wk and vk were assumed to be added on the dynamic (6.23) and

observation equation (6.24) respectively, and they are subject to zero-mean uniform

distribution wk ∼ U(0, 0.22I) and vk ∼ U(0, 0.22I).

The objective function of this system is of the quadratic form xTkQxk + aTkRak

with

Q =

[
1 0
0 1

]
, R = 1,

and the planning horizon is N = 150. x2 is required to satisfy the chance constraint,

P [x2 ≥ 0.12] ≥ 1− pvio.

6.6.2 Simulation analysis

For comparison, we also present the simulation results for three methods.

1. Proposed sample-based BRL;

2. Constrained SADP (Algorithm 5.2), which directly solve information-state-

based DP with Gaussian assumption;

3. Bayesian DP (Algorithm 6.1).

Note that the constrained SADP algorithm cannot deal with unknown model, so it

was also implemented in the Bayesian reinforcement learning framework with GPDM

model learning.

We performed the simulation on a laptop computer with a 2.60 GHz Intel Core

i7-6700HQ in MATLAB 2020a. All of these methods were coded in the MATLAB

environment, and the performance of these methods are evaluated by 100 times Monte

Carlo simulations.

6.6.3 Linear Gaussian case

We first tested how the number of samples K affect the performance. Table 6.1 com-

pares the control performance of proposed sample-based BRL with different (K,L)

pairs (N = 150, pvio = 10%). All (K,L) pairs are admissible sample-removal pairs,

and Figure 6.2 shows the time evolution of x1 with (K,L) = (5706, 100) after the

model learning process converges. The results show that when K (or L) increases,

we can obtain less conservative control performance, i.e., lower cost and closer to the

97

Chapter 6. Bayesian Reinforcement Learning for Unknown Model

Table 6.1: Control performance of proposed sample-based BRL with different (K,L)
pairs (N = 150, pvio = 10%)

(K,L) Cost(×104)
Constraint

violation(%)
(495,20) 5.44 7.46
(1123,50) 5.40 8.03
(5706,100) 5.22 9.45

Figure 6.2: Control performance of proposed sample-based BRL with sample-removal
pair (K,L) = (5706, 100)

Table 6.2: Comparison of sample-based BRL, constrained SADP and Bayesian DP
(N = 150, pvio = 10%)

Cost(×104)
Constraint

violation(%)
Trials

Sample-based
BRL

(K = 5706)
5.22 8.45 7

Constrained
SADP

5.21 9.86 6

Bayesian DP 6.49 – 16

set value of constraint violation level pvio. Meanwhile, the results also reveal that our

proposed sample-based BRL works well when we use relatively large samples.

Table 6.2 compares the average control performance of proposed sample-based

BRL, constrained SADP, and Bayesian DP methods, and the time evolution of x1

98

6.6. Case Study

Figure 6.3: Time evolution of x1 using constrained SADF (left) and Bayesian dynamic
programming (right)

using constrained SADP and Bayesian DP are given in Figure 6.3. The result shows

that the Bayesian DP method obviously needs more trials. Moreover, the total cost

of Bayesian DP method is significantly higher than the other two methods, and the

Bayesian DP cannot even handle chance constraint since just one sample (K = 1)

is used. The control performance of sample-based BRL proposed in this chapter is

slightly worse than the constrained SADP method, i.e., higher cost and more conser-

vative constraint violation level. This is because the tested system is linear Gaussian,

which can satisfy the assumptions in constrained SADP, while the sample-based BRL

is a more general method for arbitrary systems.

6.6.4 Nonlinear non-Gaussian case

In the nonlinear non-Gaussian case, we first tested the model learning effect via

GPDM. Figure 6.4 shows the time evolution of x1 under a given policy after the

learning process converge to the set accuracy. The result shows that the model learned

by GPDM can track the nonlinear non-Gaussian system very well, which provides

a powerful guarantee for the performance of model-based Bayesian reinforcement

learning.

Table 6.3 compares the control performance of the three methods in the nonlinear

non-Gaussian system. The result shows that Bayesian DP failed to converge in this

case. Constrained SADP with Gaussian assumption can not satisfy the constraint

violation requirement this time, which means its control performance is unacceptable

in this case. The sample-based BRL obtained a reasonable control performance with

samples K = 2210, and also provided the possibility to get a better control effect by

99

Chapter 6. Bayesian Reinforcement Learning for Unknown Model

Figure 6.4: Response of x2 under a given policy by learned GPDM

Table 6.3: Comparison of sample-based BRL, constrained SADP and Thompson
sampling in nonlinear non-Gaussian system (N = 150, pvio = 10%)

Cost
Constraint

violation(%)
Trials

Sample-based
BRL

(K = 2210)
902 7.95 20

Constrained
SADP

766 23.82 16

Bayesian DP – – –

increasing the number of K, which can be treated as a design parameter that can be

adjusted according to requirements.

6.7 Summary

In this chapter, we designed a sample-based Bayesian reinforcement learning method

for general systems with unknown model. The Gaussian process dynamic model was

used to model the system in a model-based learning fashion. The inner planning

problem was constructed by the stochastic Bellman equation with respect to the

posterior belief. The posterior belief update equation was calculated by a particle filter

algorithm and formulated as a conditional distribution of observations. We proposed

a sample-based algorithm for solving stochastic dynamic programming. The whole

100

6.7. Summary

sample-based Bayesian reinforcement learning algorithm can obtain a good control

performance. Simulation results showed that our proposed algorithm can achieve good

learning efficiency and control performance in both linear and non-linear systems.

101

Chapter 7

Conclusions

7.1 Summary of Contributions

In this thesis, we have proposed several algorithms of SMPC with chance constraints

for different system settings. SMPC explicitly considers the stochastic nature of

uncertainties and finds an optimal policy to obtain a closed-loop control performance.

However, policy optimization is still challenging due to stochastic settings and chance

constraints, and the efficient propagation method for stochastic uncertainties through

the system dynamics is a key challenge in SMPC of nonlinear systems. This thesis

has consistently tackled these challenges to establish efficient SMPC algorithms for

different systems.

In Chapter 3, we proposed an efficient parameterization method called simplified

affine disturbance feedback parameterization, it is proved to be equivalent to a state

feedback policy, and it obtained a trade-off between computation cost and control

performance. In Chapter 4 we proposed a recursive Riccati interior-point method for

directly solving stochastic dynamic programming in linear SMPC case, we proved the

global convergence and local Q-superlinear convergence rate of this algorithm, and

simulation results showed that this algorithm can achieve ideal control performance

and low computational complexity. In Chapter 5, we proposed an approximate dy-

namic programming algorithm for output-feedback nonlinear SMPC, it is proved to

have a Q-superlinear local convergence rate, and this method can achieve both closed-

loop control performance and computational efficiency. In Chapter 6, we proposed

a sample-based Bayesian reinforcement learning method for systems with unknown

model, this method provided a general framework for handling POMDP and pretty

good learning efficiency.

102

7.2. Discussion and Future Work

7.2 Discussion and Future Work

Finally, we discuss the limitations of our methods and future work for these problems.

The first problem is the treatment of chance constraints. In Chapters 3, 4 and 5,

we derived the algorithms based on an analytic approximation of chance constraints,

these approximations are often characterized by a quite high level of conservative-

ness. In addition, these algorithms were derived in linear (or linearization) chance

constraint cases, while their extension to the exact nonlinear chance constraints is

still largely unexplored. In Chapter 6, the sample-based method was used to deal

with chance constraints affected by general-type noise. However, the feasibility and

stability properties issues are still open in the sample-based method.

Estimation error in nonlinear case is another problem. In linear case like LQG and

problem in Chapter 4, the Kalman filter is the optimal recursive Bayesian estimator.

However, in nonlinear system, we used extended Kalman filter in Chapter 4 and

particle filter in Chapter 5, these filters will bring a certain level of estimation errors.

How to evaluate the effects of estimation errors in control performance need to be

considered in future research.

MPC is currently a widely used algorithm in industry, but its disadvantage is that

it needs a more accurate model, and BRL considering the unknown model can solve

this problem well, so the algorithm combining BRL and SMPC will receive wider

attention. In Chapter 6, we used a sample-based method to deal with very general

systems, but it brings large computation burdens if we want a higher control accuracy.

Therefore, how to reduce the computation time for real-time implementation could

be nice future work.

103

Appendix A

Soft Constraint RRIPM

A.1 Optimality conditions

In Section 4, we have introduced the deterministic Bellman equation with soft variable

ek (4.4):

Vk(xk) = min
uk(xk)

[
1

2
xTkQxk +

1

2
uTkRuk + ρTek + Vk+1(xk+1)]

s.t. xk+1 = Axk +Buk

Cxxk + Cuuk + Cc ≤ ek

ek ≥ 0,

(A.1)

Similar to (4.12), the Lagrangian of the above constrained optimization problem is

Vk(xk) = min
uk

max
sk

[l(xk, uk, ek, sk) + Vk+1(xk+1)], (A.2)

where

l(xk, uk, sk) =
1

2
xTkQxk +

1

2
uTkRuk + ρTek + sTk (Cxxk + Cuuk + Cc − ek)

and sk denotes the Lagrange multiplier.

We can also give the “softened” SKKT conditions of based on Lagrangian (A.2)

with slack variable yk:

Quuuk +Quxxk +Qussk +Qu = 0 (A.3a)

Skyk = 0 (A.3b)

Qsxxk +Qsuuk +Qs + yk − ek = 0 (A.3c)

Ek(ρ− sk) = 0 (A.3d)

sk ≥ 0, yk ≥ 0, ek ≥ 0, (A.3e)

where Ek = diag[ek], and the parameters (Quu, Qux, Qus, Qsx, Qsu, Qs) is the same as

in equation (4.14).

104

A.2. Soft Constraint RRIPM Algorithm

A.2 Soft Constraint RRIPM Algorithm

At the ith iteration, the trajectories of the last iteration, (xi−1,ui−1, si−1,yi−1, ei−1),

then the backward pass, forward pass and outer loop can be summarized as follows.

A.2.1 Backward pass

Initialize: let

PN = QN , qN = rN = 0

At stage k, represent the optimization variables by their search direction:

xik = xi−1k + δxk

uik = ui−1k + δuk

sik = si−1k + δsk

yik = yi−1k + δyk

eik = ei−1k + δek.

(A.4)

The new trajectory satisfies the perturbed SKKT conditions:

Quuu
i
k +Quxx

i
k +Quss

i
k +Qu = 0 (A.5a)

Siky
i
k = µi1k (A.5b)

Qsxx
i
k +Qsuu

i
k +Qs + yik − eik = 0 (A.5c)

Ei
k(ρ− sik) = µi2k (A.5d)

sik ≥ 0, yik ≥ 0, eik ≥ 0, (A.5e)

where µi1k and µi2k are used to smooth the complementarity conditions (A.5b) and

(A.5d).

Applying Newton’s method to (A.5), we can obtain the following linear equations:
Quu Qus 0 0

0 Yk Sk 0
Qsu 0 I −I
0 −Ek 0 ρ− Sk



δuk
δsk
δyk
δek

 = −


Qux

0
Qsx

0

 δxk −


ξi−1o

ξi−1d − µi1k
ξi−1f

ξi−1e − µi2k

 (A.6)

where 
ξi−1o

ξi−1d

ξi−1f

ξi−1e

 =


Quuu

i−1
k +Quxx

i−1
k +Quss

i−1
k +Qu

Si−1k yi−1k

Qsxx
i−1
k +Qsuu

i−1
k +Qs + yi−1k

Ei
k(ρ− sik)

 (A.7)

are the primal and dual infeasiblities of the last iteration.

105

Appendix A. Soft Constraint RRIPM

The parametric system (4.18) can be solved directly to obtain the solution

δuk = η1kδxk + θ1k

δsk = η2kδxk + θ2k

δyk = η3kδxk + θ3k

δek = η4kδxk + θ4k.

(A.8)

Writing (u, s) as a function of x,

uik = ui−1k + η1k(x
i
k − xi−1k) + θ1k = Kux

i
k + vu (A.9a)

sik = si−1k + η2k(x
i
k − xi−1k) + θ2k = Ksx

i
k + vs (A.9b)

yik = yi−1k + η3k(x
i
k − xi−1k) + θ3k = Kyx

i
k + ys (A.9c)

eik = ei−1k + η4k(x
i
k − xi−1k) + θ4k = Kex

i
k + ve. (A.9d)

By substituting it into (4.12), we obtain the expressions for the coefficients of Vk−1,

which are given by the following Riccati recursion:

Pk−1 =Qxx +KT
uQuuKu +QxuKu +KT

uQux + 2KT
s (Qsx +QsuKu)−KT

s Ke

qk−1 =Qx +QuKu + vTu (Qux +QuuKu) + (Qsuvu +Qs)K
T
s +

vTs (Qsx +QsuKu) +KT
e ρ−KT

s ve −KT
e vs.

(A.10)

The backward pass above is iteratively performed from k = N − 1 to k = 1 to finish

the backward pass.

A.2.2 Forward pass

Starting from k = 0, xi0 = x̄0 is already known by measurement, which means that

δx0 = 0.

At stage k, the search directions (δuk, δsk, δyk, δek) are calculated using (A.8).

Then the new iteration (uik, s
i
k, y

i
k, e

i
k)

uik
sik
yik
eik

 =


ui−1k

si−1k

yi−1k

ei−1k

+ αik


δuk
δsk
δyk
δek

 . (A.11)

where the step size is calculated by

αk = diag
[
αfαy αfαs αfαy αfαe

]
αs = max{α ∈ (0, 1]) : si−1k + αδsk ≥ 0}

αy = max{α ∈ (0, 1]) : yi−1k + αδyk ≥ 0}

αe = max{α ∈ (0, 1]) : ei−1k + αδek ≥ 0}

(A.12)

106

A.2. Soft Constraint RRIPM Algorithm

Algorithm A.1: Soft constraint RRIPM

Parameters:
σ ∈ [0, 1] reduction parameter;
αf = 0.995 fraction-to-the-boundary parameter;
(εo, εd, εf , εe) terminal criteria;

Initialization:
iteration counter i = 0 ;
known initial state for all i, xi0 = x0 ;
initial guess (x0,u0, s0,y0, e0) ;
central parameter µ1

0,µ2
0 ;

optimality measurements (‖ξ0o‖, ‖ξ0d‖, ‖ξ0f‖, ‖ξ0e‖) ;

while ‖ξio‖ > εo ∨ ‖ξio‖ > εd ∨ ‖ξif‖ > εf ∨ ξie‖ > εe do
PN ← QN , qN rN ← 0. ;
for k ← N − 1 to 0 do

// Backward Pass
Solve linear equation (A.6);
Calculate search direction by (A.8) ;
(Pk, qk, rk)← (Pk+1, qk+1, rk+1) by (A.10);

end
for k ← 0 to N − 1 do

// Forward Pass
Find αik by line search rules (A.12);
Calculate new iterate (xik, s

i
k, y

i
k, e

i
k);

xik+1 ← Axik +Buik;

end
Reduce the barrier parameter µi

1 = σµi
1, µ

i
2 = σµi

2;
Update the iteration counter i = i+ 1;
Compute optimality measurements (ξio, ξ

i
d, ξ

i
f , ξ

i
e).

end

and αf is the fraction of the boundary parameter.

After calculating (uik, s
i
k, y

i
k), we can compute xik+1 using the nominal system equa-

tion

xik+1 = Axik +Buik (A.13)

The above update is repeated recursively from k = 0 to N − 1 to obtain a new

trajectory (xi,ui, si,yi, ei)and complete the forward pass.

107

Appendix A. Soft Constraint RRIPM

A.2.3 Outer loop

The algorithm terminates when the optimality, duality, or constraint feasibility mea-

surements meet the stop criteria:

‖ξio‖ ≤ εo, ‖ξid‖ ≤ εd, ‖ξif‖ ≤ εf , and‖ξie‖ ≤ εe (A.14)

The whole soft constraint RRIPM is summarized in Algorithm A.1.

108

References

Abbasi-Yadkori, Y., & Szepesvári, C. (2015). Bayesian optimal control of smoothly
parameterized systems. In Uncertainty in Artificial Intelligence: Proceedings of
the 31st Conference, UAI 2015 (pp. 1–11).

Andersson, J. A., Gillis, J., Horn, G., Rawlings, J. B., & Diehl, M. (2019). CasADi:
a software framework for nonlinear optimization and optimal control. Mathe-
matical Programming Computation, 11 (1), 1–36.

Bar-Shalom, Y., & Tse, E. (1974). Dual effect, certainty equivalence, and separation
in stochastic control. IEEE Transactions on Automatic Control , 19 (5), 494–
500.

Bayard, D. S., & Eslami, M. (1985). Implicit dual control for general stochastic
systems. Optimal Control Applications and Methods , 6 (3), 265–279.

Bayard, D. S., & Schumitzky, A. (2010). Implicit dual control based on particle
filtering and forward dynamic programming. International Journal of Adaptive
Control and Signal Processing , 24 (3), 155–177.

Bellman, R. (1966). Dynamic programming. Science, 153 (3731), 34–37.
Bemporad, A. (1998). Reducing conservativeness in predictive control of constrained

systems with disturbances. In Proceedings of the 37th IEEE Conference on
Decision and Control (Cat. No. 98CH36171) (Vol. 2, pp. 1384–1389).

Bemporad, A., & Morari, M. (1999). Robust model predictive control: A survey. In
Robustness in identification and control (pp. 207–226). Springer.

Bemporad, A., Morari, M., Dua, V., & Pistikopoulos, E. N. (2002). The explicit
linear quadratic regulator for constrained systems. Automatica, 38 (1), 3–20.

Ben-Tal, A., Goryashko, A., Guslitzer, E., & Nemirovski, A. (2004). Adjustable ro-
bust solutions of uncertain linear programs. Mathematical Programming , 99 (2),
351–376.

Bertsekas, D. (2012). Dynamic programming and optimal control: Volume I. Athena
Scientific.

Blanchini, F. (1990). Control synthesis for discrete time systems with control and
state bounds in the presence of disturbances. Journal of Optimization Theory
and Applications , 65 (1), 29–40.

Boyd, S., Boyd, S. P., & Vandenberghe, L. (2004). Convex optimization. Cambridge
university press.

Buehler, E. A., Paulson, J. A., & Mesbah, A. (2016). Lyapunov-based stochastic
nonlinear model predictive control: Shaping the state probability distribution
functions. In 2016 American Control Conference (ACC) (pp. 5389–5394).

109

References

Calafiore, G. C. (2010). Random convex programs. SIAM Journal on Optimization,
20 (6), 3427–3464.

Campi, M. C., & Garatti, S. (2008). The exact feasibility of randomized solutions of
uncertain convex programs. SIAM Journal on Optimization, 19 (3), 1211–1230.

Campi, M. C., & Garatti, S. (2011). A sampling-and-discarding approach to chance-
constrained optimization: feasibility and optimality. Journal of Optimization
Theory and Applications , 148 (2), 257–280.

Cannon, M., Cheng, Q., Kouvaritakis, B., & Raković, S. V. (2012). Stochastic tube
MPC with state estimation. Automatica, 48 (3), 536–541.

Cannon, M., Kouvaritakis, B., Raković, S. V., & Cheng, Q. (2010). Stochastic tubes
in model predictive control with probabilistic constraints. IEEE Transactions
on Automatic Control , 56 (1), 194–200.

Cannon, M., Kouvaritakis, B., & Wu, X. (2009). Probabilistic constrained MPC
for multiplicative and additive stochastic uncertainty. IEEE Transactions on
Automatic Control , 54 (7), 1626–1632.

Charnes, A., & Cooper, W. W. (1959). Chance-constrained programming. Manage-
ment Science, 6 (1), 73–79.

Chen, J., Shimizu, Y., Sun, L., Tomizuka, M., & Zhan, W. (2021). Constrained
iterative LQG for real-time chance-constrained Gaussian belief space planning.
In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) (pp. 5801–5808).

Chen, Z., et al. (2003). Bayesian filtering: From Kalman filters to particle filters, and
beyond. Statistics , 182 (1), 1–69.

Cinquemani, E., Agarwal, M., Chatterjee, D., & Lygeros, J. (2011). Convexity
and convex approximations of discrete-time stochastic control problems with
constraints. Automatica, 47 (9), 2082–2087.

Darup, M. S., & Mönnigmann, M. (2012). Low complexity suboptimal explicit
NMPC. IFAC Proceedings Volumes , 45 (17), 406–411.

Dearden, R., Friedman, N., & Andre, D. (1999). Model based Bayesian exploration.
In Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence
(pp. 150–159).

Del Moral, P. (1997). Nonlinear filtering: Interacting particle resolution. Comptes
Rendus de l’Académie des Sciences-Series I-Mathematics , 325 (6), 653–658.

Diehl, M., & Bjornberg, J. (2004). Robust dynamic programming for min-max
model predictive control of constrained uncertain systems. IEEE Transactions
on Automatic Control , 49 (12), 2253–2257.

Dombrovskii, V., & Obyedko, T. (2015). Model predictive control for constrained sys-
tems with serially correlated stochastic parameters and portfolio optimization.
Automatica, 54 , 325–331.

Duff, M. O. (2002). Optimal learning: Computational procedures for bayes-adaptive
markov decision processes. University of Massachusetts Amherst.

El-Bakry, A., Tapia, R. A., Tsuchiya, T., & Zhang, Y. (1996). On the formulation
and theory of the newton interior-point method for nonlinear programming.
Journal of Optimization theory and Applications , 89 (3), 507–541.

Fáısca, N. P., Kouramas, K. I., Saraiva, P. M., Rustem, B., & Pistikopoulos, E. N.

110

References

(2008). A multi-parametric programming approach for constrained dynamic
programming problems. Optimization Letters , 2 (2), 267–280.

Farina, M., Giulioni, L., Magni, L., & Scattolini, R. (2013). A probabilistic approach
to model predictive control. In 52nd IEEE Conference on Decision and Control
(pp. 7734–7739).

Farina, M., Giulioni, L., Magni, L., & Scattolini, R. (2015). An approach to output-
feedback MPC of stochastic linear discrete-time systems. Automatica, 55 , 140–
149.

Farina, M., Giulioni, L., & Scattolini, R. (2016). Stochastic linear model predictive
control with chance constraints–a review. Journal of Process Control , 44 , 53–
67.

Farrokhsiar, M., & Najjaran, H. (2012). An unscented model predictive control
approach to the formation control of nonholonomic mobile robots. In 2012
IEEE International Conference on Robotics and Automation (pp. 1576–1582).

Feldbaum, A. (1961). Theory of dual control. Avtomat. i Telemekh, 21 .
Ferreau, H. J., Bock, H. G., & Diehl, M. (2008). An online active set strategy to

overcome the limitations of explicit mpc. International Journal of Robust and
Nonlinear Control: IFAC-Affiliated Journal , 18 (8), 816–830.

Fiacco, A. V., & McCormick, G. P. (1990). Nonlinear programming: sequential
unconstrained minimization techniques. SIAM.

Filatov, N. M., & Unbehauen, H. (2000). Survey of adaptive dual control methods.
IEE Proceedings-Control Theory and Applications , 147 (1), 118–128.

Garatti, S., & Campi, M. C. (2013). Modulating robustness in control design: Prin-
ciples and algorithms. IEEE Control Systems Magazine, 33 (2), 36–51.

Garstka, S. J., & Wets, R. J.-B. (1974). On decision rules in stochastic programming.
Mathematical Programming , 7 (1), 117–143.

Geletu, A., Klöppel, M., Zhang, H., & Li, P. (2013). Advances and applications
of chance-constrained approaches to systems optimisation under uncertainty.
International Journal of Systems Science, 44 (7), 1209–1232.

Ghanem, R. G., & Spanos, P. D. (2003). Stochastic finite elements: a spectral
approach. Courier Corporation.

Ghavamzadeh, M., & Engel, Y. (2006). Bayesian policy gradient algorithms. Advances
in Neural Information Processing Systems , 19 .

Goulart, P. J., Kerrigan, E. C., & Maciejowski, J. M. (2006). Optimization over
state feedback policies for robust control with constraints. Automatica, 42 (4),
523–533.

Gupta, A. K., Smith, K. G., & Shalley, C. E. (2006). The interplay between explo-
ration and exploitation. Academy of Management Journal , 49 (4), 693–706.

Gwerder, M., & Tödtli, J. (2005). Predictive control for integrated room automation.
In 8th REHVA World Congress Clima.

Herzog, F., Dondi, G., & Geering, H. P. (2007). Stochastic model predictive control
and portfolio optimization. International Journal of Theoretical and Applied
Finance, 10 (02), 203–233.

Hooshmand, A., Poursaeidi, M. H., Mohammadpour, J., Malki, H. A., & Grigoriads,
K. (2012). Stochastic model predictive control method for microgrid manage-

111

References

ment. In 2012 IEEE PES Innovative Smart Grid Technologies (ISGT) (pp.
1–7).

Kaelbling, L. P., Littman, M. L., & Cassandra, A. R. (1998). Planning and acting
in partially observable stochastic domains. Artificial Intelligence, 101 (1-2), 99–
134.

Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning:
A survey. Journal of Artificial Intelligence Research, 4 , 237–285.

Kakade, S. M. (2001). A natural policy gradient. Advances in Neural Information
Processing Systems , 14 .

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems.
Journal of Basic Engineering , 82 (1), 35-45.

Kerrigan, E. C., & Maciejowski, J. M. (2000). Soft constraints and exact penalty
functions in model predictive control. In Control 2000 Conference, Cambridge
(pp. 2319–2327).

Kojima, M., Megiddo, N., & Mizuno, S. (1993). A primal—dual infeasible-interior-
point algorithm for linear programming. Mathematical Programming , 61 (1),
263–280.

Kojima, M., Mizuno, S., & Yoshise, A. (1993). A little theorem of the big M in
interior point algorithms. Mathematical Programming , 59 (1), 361–375.

Korda, M., Gondhalekar, R., Oldewurtel, F., & Jones, C. N. (2014). Stochastic MPC
framework for controlling the average constraint violation. IEEE Transactions
on Automatic Control , 59 (7), 1706–1721.

Kouvaritakis, B., Cannon, M., & Muñoz-Carpintero, D. (2013). Efficient predic-
tion strategies for disturbance compensation in stochastic MPC. International
Journal of Systems Science, 44 (7), 1344–1353.

Kouvaritakis, B., Cannon, M., Raković, S. V., & Cheng, Q. (2010). Explicit use
of probabilistic distributions in linear predictive control. Automatica, 46 (10),
1719–1724.

Kucerovsky, D., Mousavand, K., & Sarraf, A. (2016). On some properties of Toeplitz
matrices. Cogent Mathematics , 3 (1), 1154705.

Kumar, R., Wenzel, M. J., Ellis, M. J., ElBsat, M. N., Drees, K. H., & Zavala, V. M.
(2018). A stochastic dual dynamic programming framework for multiscale MPC.
IFAC-PapersOnLine, 51 (20), 493–498.

Kvasnica, M., Holaza, J., Takács, B., & Ingole, D. (2015). Design and verification of
low-complexity explicit MPC controllers in MPT3. In 2015 European Control
Conference (ECC) (pp. 2595–2600).

Lee, Y., & Kouvaritakis, B. (1999). Constrained receding horizon predictive control
for systems with disturbances. International Journal of Control , 72 (11), 1027–
1032.

Lewis, F. L., & Liu, D. (2013). Reinforcement learning and approximate dynamic
programming for feedback control. John Wiley & Sons.

Li, D., Qian, F., & Fu, P. (2002). Variance minimization approach for a class of dual
control problems. In Proceedings of the 2002 American Control Conference
(IEEE Cat. No. CH37301) (Vol. 5, pp. 3759–3764).

Li, W., & Todorov, E. (2004). Iterative linear quadratic regulator design for nonlinear

112

References

biological movement systems. In ICINCO (1) (pp. 222–229).
Lindquist, A. (1973). On feedback control of linear stochastic systems. SIAM Journal

on Control , 11 (2), 323–343.
Liu, J. S., & Chen, R. (1998). Sequential Monte Carlo methods for dynamic systems.

Journal of the American Statistical Association, 93 (443), 1032–1044.
Lofberg, J. (2003). Approximations of closed-loop minimax MPC. In 42nd IEEE

International Conference on Decision and Control (IEEE Cat. No. 03CH37475)
(Vol. 2, pp. 1438–1442).

MacKay, D. J., Mac Kay, D. J., et al. (2003). Information theory, inference and
learning algorithms. Cambridge university press.

Marshall, A. W., & Olkin, I. (1960). Multivariate Chebyshev inequalities. The Annals
of Mathematical Statistics , 1001–1014.

Mayne, D. Q. (1966). A second-order gradient method for determining optimal tra-
jectories of non-linear discrete-time systems. International Journal of Control ,
3 (1), 85–95.

Mayne, D. Q. (2014). Model predictive control: Recent developments and future
promise. Automatica, 50 (12), 2967-2986.

Mayne, D. Q., Rawlings, J. B., Rao, C. V., & Scokaert, P. O. (2000). Constrained
model predictive control: Stability and optimality. Automatica, 36 (6), 789–814.

Mayne, D. Q., Seron, M. M., & Raković, S. (2005). Robust model predictive control
of constrained linear systems with bounded disturbances. Automatica, 41 (2),
219–224.

Maz’ya, V., & Schmidt, G. (1996). On approximate approximations using gaussian
kernels. IMA Journal of Numerical Analysis , 16 (1), 13–29.

Mesbah, A. (2016). Stochastic model predictive control: An overview and perspectives
for future research. IEEE Control Systems Magazine, 36 (6), 30–44.

Mesbah, A. (2018). Stochastic model predictive control with active uncertainty
learning: A survey on dual control. Annual Reviews in Control , 45 , 107–117.

Mesbah, A., Streif, S., Findeisen, R., & Braatz, R. D. (2014). Stochastic nonlin-
ear model predictive control with probabilistic constraints. In 2014 American
control conference (pp. 2413–2419).

Meyer, C. D. (2000). Matrix analysis and applied linear algebra (Vol. 71). Siam.
Muñoz-Carpintero, D., Kouvaritakis, B., & Cannon, M. (2016). Striped parameter-

ized tube model predictive control. Automatica, 67 , 303–309.
Neal, R. M. (2012). Bayesian learning for neural networks (Vol. 118). Springer

Science & Business Media.
Nocedal, J., & Wright, S. J. (1999). Numerical optimization. Springer.
Ohtsuka, T. (2004). A continuation/GMRES method for fast computation of non-

linear receding horizon control. Automatica, 40 (4), 563–574.
Oldewurtel, F., Jones, C. N., & Morari, M. (2008). A tractable approximation of

chance constrained stochastic MPC based on affine disturbance feedback. In
2008 47th IEEE Conference on Decision and Control (pp. 4731–4736).

Oldewurtel, F., Jones, C. N., Parisio, A., & Morari, M. (2013). Stochastic model
predictive control for building climate control. IEEE Transactions on Control
Systems Technology , 22 (3), 1198–1205.

113

References

Oldewurtel, F., Parisio, A., Jones, C. N., Morari, M., Gyalistras, D., Gwerder, M.,
. . . Wirth, K. (2010). Energy efficient building climate control using stochastic
model predictive control and weather predictions. In Proceedings of the 2010
American Control Conference (pp. 5100–5105).

Patchell, J., & Jacobs, O. (1971). Separability, neutrality and certainty equivalence.
International Journal of Control , 13 (2), 337–342.

Patrinos, P., Trimboli, S., & Bemporad, A. (2011). Stochastic MPC for real-time
market-based optimal power dispatch. In 2011 50th IEEE Conference on Deci-
sion and Control and European Control Conference (pp. 7111–7116).

Poupart, P., Vlassis, N., Hoey, J., & Regan, K. (2006). An analytic solution to dis-
crete Bayesian reinforcement learning. In Proceedings of the 23rd International
Conference on Machine Learning (pp. 697–704).

Powell, W. B. (2007). Approximate dynamic programming: Solving the curses of
dimensionality (Vol. 703). John Wiley & Sons.

Prandini, M., Garatti, S., & Lygeros, J. (2012). A randomized approach to stochastic
model predictive control. In 2012 IEEE 51st IEEE Conference on Decision and
Control (CDC) (pp. 7315–7320).

Primbs, J. A., & Sung, C. H. (2009). Stochastic receding horizon control of con-
strained linear systems with state and control multiplicative noise. IEEE trans-
actions on Automatic Control , 54 (2), 221–230.

Ribeiro, M. I. (2004). Kalman and extended Kalman filters: Concept, derivation and
properties. Institute for Systems and Robotics , 43 , 46.

Rodriguez, L. A., & Sideris, A. (2010). An active set method for constrained lin-
ear quadratic optimal control. In Proceedings of the 2010 American Control
Conference (pp. 5197–5202).

Schildbach, G., Calafiore, G. C., Fagiano, L., & Morari, M. (2012). Randomized
model predictive control for stochastic linear systems. In 2012 American Control
Conference (ACC) (pp. 417–422).

Schildbach, G., Fagiano, L., Frei, C., & Morari, M. (2014). The scenario approach
for stochastic model predictive control with bounds on closed-loop constraint
violations. Automatica, 50 (12), 3009–3018.

Schwarm, A. T., & Nikolaou, M. (1999). Chance-constrained model predictive control.
AIChE Journal , 45 (8), 1743–1752.

Scokaert, P. O., & Mayne, D. Q. (1998). Min-max feedback model predictive con-
trol for constrained linear systems. IEEE Transactions on Automatic Control ,
43 (8), 1136–1142.

Scokaert, P. O., & Rawlings, J. B. (1998). Constrained linear quadratic regulation.
IEEE Transactions on Automatic Control , 43 (8), 1163–1169.

Sehr, M. A., & Bitmead, R. R. (2017). Particle model predictive control: Tractable
stochastic nonlinear output-feedback MPC. IFAC-PapersOnLine, 50 (1), 15361–
15366.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., & Riedmiller, M. (2014). De-
terministic policy gradient algorithms. In International Conference on Machine
Learning (pp. 387–395).

Streif, S., Karl, M., & Mesbah, A. (2014). Stochastic nonlinear model predictive con-

114

References

trol with efficient sample approximation of chance constraints. arXiv preprint
arXiv:1410.4535 .

Strens, M. J. (2000). A Bayesian framework for reinforcement learning. In Proceedings
of the 17th International Conference on Machine Learning (pp. 943–950).

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT
press.

Sutton, R. S., Barto, A. G., & Williams, R. J. (1992). Reinforcement learning is direct
adaptive optimal control. IEEE Control Systems Magazine, 12 (2), 19–22.

Sutton, R. S., McAllester, D., Singh, S., & Mansour, Y. (1999). Policy gradient
methods for reinforcement learning with function approximation. Advances in
Neural Information Processing Systems , 12 .

Thompson, W. R. (1935). On the theory of apportionment. American Journal of
Mathematics , 57 (2), 450–456.

Todorov, E., & Li, W. (2005). A generalized iterative LQG method for locally-optimal
feedback control of constrained nonlinear stochastic systems. In Proceedings of
the 2005, American Control Conference (pp. 300–306).

Van de Vusse, J. (1964). Plug-flow type reactor versus tank reactor. Chemical
Engineering Science, 19 (12), 994–996.

Van Hessem, D., & Bosgra, O. (2006). Stochastic closed-loop model predictive control
of continuous nonlinear chemical processes. Journal of Process Control , 16 (3),
225–241.

Visintini, A. L., Glover, W., Lygeros, J., & Maciejowski, J. (2006). Monte Carlo
optimization for conflict resolution in air traffic control. IEEE Transactions on
Intelligent Transportation Systems , 7 (4), 470–482.

Wan, E. A., & Van Der Merwe, R. (2000). The unscented Kalman filter for nonlinear
estimation. In Proceedings of the IEEE 2000 Adaptive Systems for Signal Pro-
cessing, Communications, and Control Symposium (Cat. No. 00EX373) (pp.
153–158).

Wang, C., Ong, C.-J., & Sim, M. (2009). Convergence properties of constrained linear
system under MPC control law using affine disturbance feedback. Automatica,
45 (7), 1715–1720.

Wang, J. M., Fleet, D. J., & Hertzmann, A. (2005). Gaussian process dynamical
models. Advances in Neural Information Processing Systems , 18 .

Wang, J. M., Fleet, D. J., & Hertzmann, A. (2007). Gaussian process dynamical
models for human motion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 30 (2), 283–298.

Weissel, F., Huber, M. F., & Hanebeck, U. D. (2009). Stochastic nonlinear model
predictive control based on Gaussian mixture approximations. In Informatics
in Control, Automation and Robotics (pp. 239–252). Springer.

Wiering, M. A., & Van Otterlo, M. (2012). Reinforcement learning. Adaptation,
Learning, and Optimization, 12 (3), 729.

Xie, Z., Liu, C. K., & Hauser, K. (2017). Differential dynamic programming with
nonlinear constraints. In 2017 IEEE International Conference on Robotics and
Automation (ICRA) (pp. 695–702).

Xiu, D., & Karniadakis, G. E. (2002). The Wiener–Askey polynomial chaos for

115

References

stochastic differential equations. SIAM Journal on Scientific Computing , 24 (2),
619–644.

Yan, J., & Bitmead, R. R. (2005). Incorporating state estimation into model predic-
tive control and its application to network traffic control. Automatica, 41 (4),
595–604.

Zhou, Z., & Cogill, R. (2013). Reliable approximations of probability-constrained
stochastic linear-quadratic control. Automatica, 49 (8), 2435–2439.

116

List of Publications

Journal articles

1. Zhang, J., & Ohtsuka, T. (2020). Stochastic model predictive control using

simplified affine disturbance feedback for chance-constrained systems. IEEE

Control Systems Letters, 5(5), 1633-1638. Chapter 3

2. Zhang, J., & Ohtsuka, T. A recursive Riccati interior-point method for chance-

constrained stochastic model predictive control. SICE Journal of Control, Mea-

surement, and System Integration (under review). Chapter 4

3. Zhang, J., & Ohtsuka, T. Output-feedback stochastic model predictive control

of chance-constrained nonlinear system. IET Control Theory & Applications

(under review). Chapter 5

Conference proceedings

1. Zhang, J., & Ohtsuka, T. (2021, May). Stochastic model predictive control

using simplified affine disturbance feedback for chance-constrained systems. In

2021 American Control Conference (ACC) (pp. 1256–1261). IEEE. Chapter

3 (Conference version of journal article 1)

117

	Notation
	Introduction
	Background and Motivation
	Overview of SMPC with Chance Constraints
	Stochastic tube approaches
	Pre-parameterization of control policy
	Stochastic dynamic programming approaches

	Challenges in SMPC with Chance Constraints
	Policy optimization
	Uncertainties propagation in stochastic system

	Outline and Contributions

	Preliminaries
	Numerical Optimization
	Optimality conditions for nonlinear programming
	Primal-dual interior-point method
	Optimality conditions for optimal control problem

	Stochastic Model Predictive Control
	Stochastic optimal control problem
	Information state
	Kalman filter
	Extended Kalman filter
	Particle filter

	Chance constraints

	Efficient Control Parameterization Method for Linear SMPC
	Introduction
	Problem Statement
	Various Control Parameterization Methods
	Affine state feedback parameterization
	Affine disturbance feedback parameterization

	Simplified Affine Disturbance Feedback
	SADF parameterization
	Problem reformulation
	Properties of SADF

	Case Study
	Numerical example settings
	Simulation analysis

	Summary

	Stochastic Dynamic Programming for Linear SMPC
	Introduction
	Problem Statement
	Bellman Equation and Optimality Conditions
	Problem reformulation
	Optimality conditions

	Recursive Riccati Interior-Point Method
	Backward pass
	Forward pass
	Outer loop

	Convergence Analysis of RRIPM
	Global convergence
	Local convergence rate

	Practical Implement Issues for a Feasible Algorithm
	Case Study
	Numerical example settings
	Simulation analysis

	Summary

	Approximate Dynamic Programming for Output-feedback Nonlinear SMPC
	Introduction
	Problem Statement
	Output-feedback SMPC
	Bellman equation for general SOCP
	Gaussian belief dynamic model
	Output-feedback SMPC algorithm

	Stochastic Approximate Dynamic Programming Algorithm
	Deterministic reformulation via the Gaussian belief dynamic model
	Constrained SADP algorithm
	Backward pass
	Forward pass
	Outer loop

	Convergence Analysis of Constrained SADP Algorithm
	Case Study
	Numerical example settings
	Simulation analysis

	Summary

	Bayesian Reinforcement Learning for Unknown Model
	Introduction
	Problem Statement
	Partially observable Markov decision process
	Control target

	Preliminaries of Model-based Bayesian Reinforcement Learning
	Gaussian Process Dynamic Model Learning
	Gaussian process dynamic model
	Model learning

	Sample-based Bayesian Reinforcement Learning
	Belief update via particle filter
	Sample-based constrained dynamic programming
	Bayesian reinforcement learning algorithm

	Case Study
	Numerical example settings
	Simulation analysis
	Linear Gaussian case
	Nonlinear non-Gaussian case

	Summary

	Conclusions
	Summary of Contributions
	Discussion and Future Work

	Soft Constraint RRIPM
	Optimality conditions
	Soft Constraint RRIPM Algorithm
	Backward pass
	Forward pass
	Outer loop

	Bibliography
	List of Publications

