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Abstract 

   Intracranial aneurysm (IA), a socially important disease, is a major cause of 

subarachnoid hemorrhage. It is a chronic inflammatory disease in the intracranial arterial 

walls triggered and modified by hemodynamic force loading. Because the IA lesion 

morphology is complex, the blood flow conditions loaded on endothelial cells in each 

part of the lesion in situ vary greatly. We created a 3D-casted mold of the human 

unruptured IA lesion and cultured endothelial cells on this model, which was then 

perfused with culture media to model physiological flow conditions. Then, gene 

expression profiles of endothelial cells in each part of the IA lesion were analyzed. 

Comprehensive gene expression profile analysis revealed similar gene expression 

patterns in endothelial cells from each part of the IA lesion. Gene ontology analysis 

revealed endothelial cell malfunction within the IA lesion. Histopathological examination 

by electron microscopy and immunohistochemical analysis indicated that endothelial 

cells within IA lesions are damaged and dysfunctional. Thus, our findings revealed 

endothelial cell malfunction in IA lesions and provided new insights into IA pathogenesis.  

 

Key Words: 3D-casted mold, endothelial cell, hemodynamic force, intracranial 

aneurysm 
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Introduction 

   Intracranial aneurysms (IAs) are lesions characterized morphologically by regional 

bulging of intracranial arteries, mainly at bifurcation sites. Histopathologically, they can 

be distinguished by degenerative changes in the arterial wall, typically a loss of medial 

smooth muscle cells and inflammatory infiltrates. IA affects 1 % ~ 5 % of the general 

population and is the primary cause of subarachnoid hemorrhage, the most severe form 

of stroke with a mortality rate of up to 50 % [1-5]. Given the poor prognosis after the 

onset of subarachnoid hemorrhage, preventing IA is important. However, no drug therapy 

is currently available to prevent its progression and rupture; therefore, many patients 

cannot receive effective treatment [6]. Understanding IA pathogenesis will help to 

identify novel therapeutic targets, allow the development of therapies against identified 

targets, and improve public health. 

Because of the nature of vascular diseases and the unique morphological character of 

arterial bifurcations where IAs are formed, the pathophysiology of IAs is greatly 

influenced by the hemodynamic force exerted by blood flow and the heartbeats. Many 

studies using computational fluid dynamics (CFD) support this notion. Thus, IA is 

currently considered a hemodynamic force-mediated disease [7-16]. Among 

hemodynamic factors, the relationship between wall shear stress (WSS) and disease 
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development has been extensively studied. IA lesions are induced by a high WSS loading 

on a bifurcation site. However, the region that undergoes lesion enlargement after 

initiation is associated with low WSS. Furthermore, turbulence in blood flow may be a 

potent regulator that promotes IA development. Indeed, an in vitro study using cultured 

endothelial cells showed that turbulent flow exacerbates chemoattractant signals that 

initiate inflammatory cell infiltration [8].  

Although the gross flow pattern is described in the above study, the actual flow 

conditions in each part of the IA lesion may vary significantly in situ. However, the 

precise molecular events that occur in endothelial cells at each part of the lesion in 

response to complex hemodynamic conditions remain to be elucidated. The molecular 

events in each part of the lesion that occur in response to specific flow conditions in situ 

underlie IA pathophysiology. Thus, clarifying such events is essential for understanding 

disease pathogenesis. Furthermore, understanding the response of each endothelial cell to 

hemodynamic force in each part of the lesion will provide knowledge about disease 

pathogenesis and the machinery regulating the mechano-sensing by endothelial cells. 

In the present study, we prepared a 3D-casted model using morphological data from 

a human unruptured IA lesion. We also examined the gene expression profile of 

endothelial cells cultured on each part of the cast. 
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Methods 

Study Approval  

Data were collected from human patients by 3D-rotation angiography and approved 

by the local ethical committee at Kyoto University Graduate School of Medicine 

(Approved number #R1150), where data were processed.  

All animal care, use, and experiments complied with the National Institutes of Health 

Guide for the Care and Use of Laboratory Animals and the Animal Research Reporting 

In Vivo Experiments (ARRIVE) guideline. Experimental animal procedures were 

approved by the Institutional Animal Care and Use Committee of National Cerebral and 

Cardiovascular Center (approval number #19036, #20003 and #21015). 

Human-unruptured IA samples and control arterial walls from superficial temporal 

artery were obtained during neck clipping after obtaining written informed consent. The 

use of human samples was approved by the Ethics Committee at Kyoto University 

Graduate School and Faculty of Medicine (Approval Number #E2540 and #R0601), 

National Cerebral and Cardiovascular Center (Approval Number #M29-050, #R21012 

and #R20126), and Tokyo Women’s Medical University Yachiyo Medical Center 

(Approval Number #4106) where samples were prepared.  
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Construction of a 3D-casted mold of a human IA lesion with its parent artery and 

daughter arteries 

A 3D-casted mold of a human IA lesion was made using hydrophilic silicon 

(#TSE3450, Momentive Performance Materials Japan, Tokyo, Japan) based on the 

morphological data obtained using 3D-rotation angiography from a human patient with 

an IA lesion at the bifurcation site of the middle cerebral artery. 

 

Cell culture and cell-seeding on a 3D-casted mold and perfusion experiments 

Primary culture of endothelial cells from the human umbilical artery (HUAEC) was 

purchased from Cell Applications (#C-12202, Lot#395Z010.2, San Diego, CA). Cells 

were cultured using a special medium from Cell Applications. The 3D-casted mold was 

coated with collagen type I (Cellmatrix Type I-P, Nitta Gelatin, Osaka, Japan), and 

primary cultured endothelial cells were seeded on the mold surface. After 12 h, the 3D-

casted mold was perfused with a complete culture medium in a pulsatile manner (55 

ml/min, 60 Hz, 3 h). Then, the cells were fixed with ice-cold 4 % paraformaldehyde 

solution.      
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RNA sequencing and data analyses 

RNA-seq libraries were prepared from the fixed cells using SMART-Seq® Single Cell 

PLUS Kit (#R400751, TAKARA BIO INC., Shiga, Japan). Paired-end sequencing (2 × 

75 base pair) was performed on a NextSeq500 (Illumina, Inc., San Diego, CA). The reads 

were aligned to the UCSC hg38 genome using the CLC genomics workbench (version 11, 

QIAGEN, Venlo, Netherlands). Differential expression analyses, including principal 

component analysis and gene ontology (GO), were performed using iDEP.93 

(http://bioinformatics.sdstate.edu/idep/). Genes whose expression reached a fold change 

greater than 2.0 or less than 0.5 in cells from aneurysm lesions compared to cells from 

the parent artery or the daughter artery were considered to be over-expressed or under-

expressed, respectively. A dendrogram was generated using the Morpheus online tool 

(https://software.broadinstitute.org/morpheus/). All raw RNA-seq data were deposited to 

the Gene Expression Omni- bus (https://www.ncbi.nlm.nih.gov/geo/) (ID # GSE217440). 

 

Rodent IA models and histological analysis of induced IAs using scanning electron 

microscopy (SEM) 

Seven-week-old male Sprague−Dawley rats were purchased from Japan SLC (Slc: 

SD, total n = 6, Shizuoka, Japan). The animals were maintained on a light/dark cycle of 
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12 h/12 h and had free access to food and water.  

Anesthesia was induced in rats by the inhalation of Isoflurane (induction; 5.0 %, 

maintenance; 1.5~2.0 %, #IYESC-0001, Pfizer Inc., New York, NY). Then, IAs were 

induced by ligation of the left common carotid artery and systemic hypertension, which 

was achieved by combining a high salt diet and left renal artery ligation [17]. Immediately 

after the surgical manipulations, animals were fed food containing 8 % sodium chloride 

and 0.12 % 3-aminopropionitrile (#A0408, Tokyo Chemical Industry, Tokyo, Japan), an 

inhibitor of lysyl oxidase which catalyzes collagen and elastin crosslinking.  

Fourteen days after surgery, the animals were deeply anesthetized with Isoflurane 

(5.0 %, #IYESC-0001, Pfizer Inc.) and were transcardially perfused with 4 % 

paraformaldehyde solution for fixation. The bifurcation site of the right anterior cerebral 

artery (ACA) and olfactory artery (OA), including the induced IA lesions, was stripped 

and fixed in 2 % glutaraldehyde and 2 % paraformaldehyde solution. The specimens were 

sequentially treated with 2 % OsO4 and 1.5 % potassium ferricyanide solution, 1 % 

thiocarbohydrazine solution, 2 % aqueous OsO4 solution, and lead aspartate solution. 

After dehydration, the specimens were embedded in Quetol 812 epoxy resin (Nisshin EM, 

Tokyo, Japan) containing Ketjen black powder (LION SPECIALTY CHEMICALS CO., 

LTD, Tokyo, Japan). SEM images were acquired using a Merlin scanning electron 
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microscope (Carl Zeiss, Gottingen, Germany) equipped with a 3D View in-chamber ultra-

microtome system (Gatan, Pleasanton, CA).  

 

Immunohistochemistry for human specimens or HUAECs  

   Dissected human specimens were fixed in formalin solution and embedded in paraffin. 

Thick slices (4 μm) were then prepared for immunohistochemical analyses. The slices 

were deparaffinized in xylene and hydrated in a graded alcohol series. Then, the slices 

were immersed in antigen retrieval solution (#S1699, DAKO, Agilent Technologies, 

Santa Clara, CA) and autoclaved for antigen retrieval. After blocking with 10 % donkey 

serum (#017-000-121, Jackson ImmunoResearch, West Grove, PA) for 1 h at room 

temperature, the slices were incubated with primary antibodies in phosphate-buffered 

saline (pH 7.4) at 4 °C over-night, followed by incubation with secondary antibodies 

conjugated with fluorescence dye in phosphate-buffered saline (pH 7.4) for 1 h at room 

temperature (Jackson ImmunoResearch). In experiments using HUAECs, cells were 

cultured on a chamber slide (#354631, Corning, Corning, NY) and fixed with 4 % 

paraformaldehyde. The slides were blocked with 3 % donkey serum (#017-000-121, 

Jackson ImmunoResearch) and immunostained as described for human specimens. 

Finally, fluorescent images were acquired using a confocal fluorescence microscope 
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(FV3000, Olympus, Tokyo, Japan).  

The primary antibodies used were mouse monoclonal anti-CD31 antibody (#M0823, 

Dako), rabbit polyclonal anti-phosphorylated endothelial nitric oxide synthase (phospho-

eNOS) antibody (#PA5-104858, Thermo Fisher Scientific, Waltham, MA), and rabbit 

polyclonal anti-VE-Cadherin antibody (#28644, Santa Cruz Biotechnology, Dallas, TX). 

The secondary antibodies used were Alexa Fluor 488-conjugated donkey anti-mouse IgG 

H&L antibody (#A21202, Thermo Fisher Scientific) and Alexa Fluor 647-conjugated 

donkey anti-rabbit IgG H&L antibody (#A31573, Thermo Fisher Scientific).  

 

Results 

RNA-seq of endothelial cells cultured on the 3D-casted mold after perfusion load 

   A 3D-casted mold of a human IA lesion located at the middle cerebral artery 

bifurcation and the surrounding vasculature was made using hydrophilic silicon to enable 

cell culture on the cast surface (Fig. 1A and B). HUVECs were cultured on the inner cast 

surface, coated with type I collagen (Fig. 1C-E). The cells were exposed to pulsatile flow 

that mimicked physiological conditions. The endothelial cells were then fixed, harvested, 

and analyzed by RNA-seq to identify changes in the gene expression profile in each part 

of the IA lesion compared to the parent or the daughter artery (Fig. 2A). The locations 
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where the endothelial cells were harvested are shown in Fig. 2B. Approximately 100 cells 

were present in each sample.        

The mapped read count was about 28 thousand per sample (on average). We identified 

the differentially expressed genes between groups. Principal component analysis showed 

that the endothelial cells of the IA lesion clustered differently from cells from the parent 

artery or the daughter artery in the coordinate axis (Fig. 2A). These results suggest a 

similar gene expression profile among endothelial cells from each part of the lesion and 

notably different gene expression patterns between endothelial cells in the IA lesion and 

control arterial walls. Dendrogram analysis demonstrated a similar gene expression 

profile among the five specimens from different parts of the IA lesions (Fig. 2C). In 

contrast, gene expression profiles from the parent or the daughter arteries differed from 

each other both in principal component analysis and in the dendrogram. These results 

indicate that hemodynamic force-loading differs in each part of the arterial walls. The 

gene expression profile in one specimen from the daughter artery (indicated by ‘artery 2’) 

was similar to that in cells on the IA dome (Fig. 2A and C), presumably due to the similar 

hemodynamic loading. This occurrence can also be explained by the fact that ‘artery 2’ is 

the outlet from the dome in computational fluid dynamic analysis.  

 We identified 1,819 under-expressed genes in IA lesions compared to control arterial 
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walls (Supplementary Data Table S1). Notably, no genes were identified as over-

expressed in IA lesions, suggesting that IA is a relatively silent (not active) lesion. GO 

terms implying endothelial cell malfunction were determined by analyzing the under-

expressed genes in IA lesions. These terms included ‘Cellular response to stress’ , 

‘Establishment of localization in cell’ , ‘Intracellular transport’ , and ‘Cellular protein-

containing complex assembly’ in Biological Process (Table 1).‘Inner mitochondrial 

membrane protein complex’ , ‘Respiratory chain complex’ , ‘Mitochondrial respirasome’ , 

and ‘Catalytic complex’ comprised the Cellular Component (Table 2). At the same time, 

‘RNA binding’ , ‘Cadherin binding’ , ‘Electron transfer activity’ , and ‘Cell adhesion 

molecule binding’ were identified in Molecular Function (Table 3). Significantly under-

expressed genes in cells from the IA dome (compared with those in control arterial walls) 

included claudin5 (CLDN5), Cingulin-like protein 1 (CGNL1), and Cadherin5 (CDH5, 

also known as VE-Cadherin). These genes are related to tight junction formation, junction 

assembly, or adhesion between endothelial cells. We also detected eNOS (NOS3), which 

is related to endothelial cell function (Supplementary Data Table S1), suggesting 

endothelial cell dysfunction in lesions. Intriguingly, genes under-expressed in endothelial 

cells in the lesion included those related to mitochondria, such as HSPD1 (Hsp60) and 

COX4I1 (Cytochrome C Oxidase Subunit 4I1) (Supplementary Data Table S1), further 
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supporting endothelial cell malfunction in lesions.  

 

Endothelial cells damage and malfunction in IA lesions 

    Based on the results from the comprehensive gene expression profile analysis, we 

next examined whether endothelial cells in the lesions were indeed dysfunctional. Here, 

we used SEM to examine the histopathological features of endothelial cells in lesions 

induced in rats. We observed electron-dense tight junctions between endothelial cells in 

control intracranial arterial walls. These junctions were almost completely disrupted in 

IA lesions (Fig. 3), similar to observations in previous studies [18-20]. To explore whether 

the endothelial cell damage in IA lesions influenced the cellular characteristics, the 

expression of endothelial cell markers CD31 or VE-Cadherin in IA lesions and control 

arterial walls was examined using immunohistochemistry. We found that CD31 or VE-

Cadherin was expressed in most inner cells, endothelial cells, in control arterial walls (Fig. 

4A and B). These markers were significantly reduced and were only weakly detected in 

cells in IA lesions (Fig. 4A and B), suggesting a loss of endothelial cell character. 

Furthermore, the expression of the phosphorylated form of eNOS, which reflects 

endothelial cell function, was also remarkably reduced in the endothelial cells from IA 

lesions (Fig. 4C). These results suggest that endothelial cells in the lesions are 
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malfunctioning.  

 

Discussion 

   We observed endothelial cell malfunction in IA lesions in experiments using a 3D-

casted mold. Histopathological examinations of human IA lesions by SEM and 

immunohistochemistry support these observations. Consistently, previous studies have 

described an abnormal shape or malfunction exclusively in IA lesions, such as detached 

cells or disrupted endothelial cell junctions [18-23]. A recent study using a 3D-casted 

mold combined with quantitative RT-PCR analyses demonstrated that eNOS is under-

expressed in endothelial cells in lesions [24], indicating their malfunction. Our results 

provide evidence that the pathological flow conditions in the IA lesion dome directly 

disturb endothelial cell function, such as the blood-brain barrier.   

   Our data failed to identify genes reflecting chronic inflammatory responses, such as 

those over-expressed in lesions. Because chronic inflammatory responses are considered 

the major mechanism regulating IA initiation, progression, or rupture [10, 25-33], our 

results require some explanations. Most unruptured IA lesions are stable and do not 

rupture or enlarge during follow-up. Thus, the absence of inflammatory responses in 

endothelial cells in lesions in the present study of unruptured lesions could be explained 
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by the nature of unruptured IAs (i.e. silent lesions). Another possibility is that 

inflammatory responses in endothelial cells in lesions triggered by pathological 

hemodynamic forces require cross-talk with other cell types, such as infiltrating 

macrophages or adjoining smooth muscle cells. In addition to defective cross-talk among 

cells other than endothelial cells in the arterial wall, experiments using a 3D-casted mold 

lack the important hemodynamic factor strain stress in response to heartbeats. If 

endothelial cells in lesions are activated or maintained under this hemodynamic condition 

concomitant with shear stress and/or turbulence, our results may indicate that strain stress 

is an indispensable factor for evoking or maintaining inflammatory responses, in addition 

to non-physiological WSS or disturbed flow. Furthermore, additional analyses, such as 

single-cell analysis, may be necessary, particularly if only a small number of cells respond 

to hemodynamic forces to drive IA initiation, progression, or rupture.  
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Figure Legends 

FIGURE 1. 3D-casted model of human unruptured intracranial aneurysm lesion at 

middle cerebral artery bifurcation. 

(A, B) The morphological image of 3D rotational angiography from human case with 

intracranial aneurysm at the middle cerebral artery bifurcation (A) and the image of 3D-

casted mold of this lesion made by hydrophilic silicon (B). (C) The macroscopic image 

of the primary culture of endothelial cells from human umbilical artery (HUAECs) is 

shown in the left panel. On the right, the images of immunofluorescent staining of 
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HUAECs for endothelial cell markers, CD31 (green) and VE-Cadherin (red), nuclear 

staining by DAPI (blue), or merged images are shown. The images from 

immunofluorescent staining without primary antibodies are served to show negative 

control experiments and are shown in the lower panels. Scale bar: 50 μm. (D) Culture of 

HUAECs on the surface of hydrophilic silicon-made 3D-casted mold. The images of the 

surface of 3D-casted mold are shown. The square in the left panel indicates the region 

where the images were acquired. (E) The representative view of the experimental 

apparatus to expose hemodynamic force to endothelial cells cultured on the inner surface 

of the 3D-casted model. 

 

FIGURE 2. Comprehensive gene expression profile analysis of endothelial cells 

cultured on 3D-casted mold. 

(A) The principal component analysis of comprehensive gene expression profile data 

from endothelial cells on the dome of intracranial aneurysm lesion (Aneurysm), the parent 

or the daughter artery (Artery). (B) The macroscopic image of 3D-casted mold to indicate 

the regions where endothelial cells were harvested. The squares in white or black color 

indicate the regions classified as ‘artery’ or ‘aneurysm’, respectively. (C) The heat map 

showing gene expression profile of under-expressed genes in endothelial cells on the 
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dome (Aneurysm) compared with the profile in cells on the parent or the daughter artery 

(Artery). Dendrogram is also provided. 

 

FIGURE 3. Disruption of the tight junction between endothelial cells in intracranial 

aneurysm lesions induced in rats. 

Disruption of the tight junction between endothelial cells in intracranial aneurysm (IA) 

lesions induced in rats revealed by scanning electron microscopic examination. IA lesions 

induced in a rat model were harvested before (Day 0) or on the 14th day after the surgical 

manipulations (Day 14) and subjected to histopathological examinations by scanning 

electron microscopy. Magnified images corresponding to the squares in the left panels are 

shown on the right. The asterisk indicate the lumen side. The white arrow head or black 

ones in the upper panel indicate the electron-dense tight junction or attachment between 

endothelial cells (ECs), respectively. The black arrow in the lower panel indicates the 

disruption of the barrier between ECs. Scale bar: 10 μm.  

 

FIGURE 4. Reduced expression of endothelial cell markers or phosphorylated form 

of eNOS in human intracranial aneurysm lesions. 

Expression of CD31 (A), VE-Cadherin (B) or phosphorylated form of endothelial nitric 
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oxide synthase (Phospho-eNOS) (C) in human intracranial aneurysm lesions and control 

arterial walls (superficial temporal artery). The images of immunofluorescent staining of 

the lesions or control arterial walls for CD31 (green in A), VE-Cadherin (green in B), 

phosphorylated form of eNOS (green in C), nuclear staining by DAPI (blue) or merged 

images are shown. Magnified images corresponding to the squares in the left panels are 

shown on the right. The asterisk indicates the lumen side. The images from 

immunofluorescent staining without primary antibodies serve to show negative control 

experiments and are shown on the right. Scale bar: 50 μm.  

 

Table 1. Down-represented terms in gene ontology analysis (Biological Process). 

 

Table 2. Down-represented terms in gene ontology analysis (Cellular Component). 

 

Table 3. Down-represented terms in gene ontology analysis (Molecular Function). 

 

Supplementary Data Table S1. The list of under-expressed genes in endothelial cells 

in the dome of the aneurysm. 
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Table 1. Down-represented terms in gene ontology analysis (Biological Process). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GO term P-value 

Cellular response to stress 2.60E-08 

Establishment of localization in cell 1.30E-07 

Cellular macromolecule catabolic process 1.30E-06 

Intracellular transport 1.50E-06 

Macromolecule catabolic process 2.80E-06 

Cellular protein-containing complex assembly 2.80E-06 

Protein-containing complex subunit organization 2.80E-06 

MRNA metabolic process 5.30E-06 

Ubiquitin-dependent protein catabolic process 7.60E-06 

Apoptotic process 7.60E-06 

Response to organic substance 7.60E-06 

Protein catabolic process 7.60E-06 

Modification-dependent macromolecule catabolic process 8.80E-06 

Modification-dependent protein catabolic process 1.10E-05 

Proteasomal protein catabolic process 1.20E-05 



Table 2. Down-represented terms in gene ontology analysis (Cellular Component). 
   Go term P-value 

Nucleoplasm 4.60E-10 

Nuclear lumen 4.50E-09 

Vesicle 1.10E-07 

Extracellular exosome 1.10E-07 

Extracellular organelle 1.50E-07 

Inner mitochondrial membrane protein complex 7.20E-07 

Respiratory chain complex 3.60E-06 

Mitochondrial respirasome 5.40E-06 

Catalytic complex 9.70E-06 

Mitochondrial protein-containing complex 1.10E-05 

Organelle membrane 1.70E-05 

Organelle envelope 2.00E-05 

Respirasome 2.00E-05 



Table 3. Down-represented terms in gene ontology analysis (Molecular Function). 
 

 

Go term P-value 

RNA binding 1.00E-08 

Enzyme binding 3.40E-06 

Cadherin binding 7.90E-06 

Nucleic acid binding 8.40E-05 

NAD(P)H dehydrogenase (quinone) activity 2.00E-04 

Electron transfer activity 2.00E-04 

NADH dehydrogenase activity 2.40E-04 

Oxidoreductase activity, acting on NAD(P)H, quinone or 

similar compound as acceptor 

2.40E-04 

NADH dehydrogenase (quinone) activity 2.40E-04 

NADH dehydrogenase (ubiquinone) activity 6.80E-04 

Cell adhesion molecule binding 6.80E-04 

Proton transmembrane transporter activity 7.30E-04 

Oxidoreductase activity, acting on NAD(P)H 8.10E-04 

ATPase activity, coupled to transmembrane movement of 

ions, rotational mechanism 

4.00E-03 


