Descriptions of Excavations (khāta) in the Triśatz̄bhāṣya: Surveying Method and Two Terms, lamba and kaḍ

By

Taro Tokutake*

Abstract

The Triśatūbhāṣya is an anonymous commentary on the Sanskrit arithmetic text Triśatı̄ by Śrīdhara (ca. 800 CE). "Excavations" (khāta) is one of the topics in the Triśatē, and Śrīdhara offers rules and examples for calculating the dimensions of a pit with irregular sides (i.e., arithmetical means) and the capacity of a pit with uniform sides. The present paper attempts to restore the surveying method of excavations described in the Triśatībhāṣya, and to clarify the meanings of two terms, laṃba and kad̄ $\bar{\imath}$, employed in the commentary.

§ 1. Introduction

The Triśatībhāsya (hereafter TrBh) is an anonymous commentary on the Sanskrit arithmetic text Triśatī (or Triśatikā, hereafter Tr) by Śrīdhara (ca. 800 CE). The TrBh is available only in a single complete manuscript (LD Institute, Ahmedabad, 1559: hereafter A_{1}) and is not contained in the edition published in Kāśs (hereafer K_{ED}). ${ }^{1}$ In my recent study, I investigated the date and the place of the author of the TrBh through an analysis of the linguistic features, and concluded that he flourished in Western India some time between the $12^{\text {th }}$ and $15^{\text {th }}$ centuries CE. ${ }^{2}$ The Tr presents arithmetic rules and examples briefly. On the other hand, the TrBh explains the computational procedures in detail.

[^0]The Tr consists of "definitions [of number words and weights and measures]" (paribhās \bar{a}), "fundamental operations" (parikarman) and "procedures" (vyavahāra). The procedures are further subdivided into eight topics:

1) Mixture (miśraka),
2) Series (śreḍh $\bar{\imath}$),
3) Plane figures (ksetra),
4) Excavations (khāta),
5) Piling (citi),
6) Sawing (krakaca),
7) Mounds of grain (rāśi), and
8) Shadows (chāyā). ${ }^{3}$

In the topic of excavations, Śrīdhara gives rules, $\operatorname{Tr} 52-53$, for calculating the dimensions of a pit with irregular sides (i.e., arithmetical means) and the capacity of a pit with uniform sides. The author of the TrBh explains the rules in connection with surveying method, and presents a geometric figure in his commentary on Tr E88. The aim of this paper is twofold: to restore the surveying method described in the TrBh, and to clarify the meanings of two terms, lambba and $k a d \bar{\imath}$, embedded in the figure.

For that purpose, first, I will recall the rules for excavations, $\operatorname{Tr} 52-53$. Then, I will examine the example, Tr E88. Finally, I will investigate the meanings of the two terms, lamba and $k a d \bar{\imath}$, through an analysis of actual usages of them.

§ 2. Rules for excavations

In this section, I will recall the rules for excavations in the Tr and try to restore the surveying method mentioned in the TrBh. For a better understanding of the rules, I will consult the description of them in Ganeśa's Buddhivilāsiñ (1545 CE, hereafter BV) on Bhāskara II's Līlāvatı̄ (1150 CE, hereafter L).

In the following, the text edited here of the Tr are based on both of K_{ED} and A_{1}, and that of the TrBh only on A_{1}. The word(s) cited in the TrBh from the Tr is printed in bold. I remove or add danda-s (/) in A_{1} for the ease of reading. Phonological irregularities have been left in this edition just as they are in the manuscript.

Notation:

ac ante correcturam, i.e., the reading before the correction by the scribe
em. emendation (I do not distinguish it from "correction" and "conjecture")

[^1]pc post correcturam, i.e., the reading after the correction by the scribe
$<\mathrm{A}>\quad \mathrm{A}$ is supplied by the editor.

- truncation (of letters) in long Sanskrit words

§ 2.1. Triśatı

Stídhara offers a rule for the dimensions of a pit with irregular sides (i.e., arithmetical means) as follows.
$\operatorname{Tr} 52$:
mukhatalamadhye p̣thutādairghye vā cet prajāyate visamam/ ${ }^{4}$
vedhe vā visamayutiṃ sāmyāya bhajeta visamapadaih// ${ }^{5}$

If, at the top, bottom and middle [of a pit], unequal [measures] of breadths, lengths or depths are produced, for the sake of the mean [measure], one should divide the sum of the unequal [measures] by [the number of] unequal places [where the unequal measures were taken]. ${ }^{6}$

Let a_{i}, b_{i}, h_{i} be the lengths measured at n_{1}, n_{2}, n_{3} places of the breadth, the length, and the depth, respectively. Their respective mean lengths are obtained by

$$
\bar{a}=\frac{\sum_{i=1}^{n_{1}} a_{i}}{n_{1}}, \quad \bar{b}=\frac{\sum_{i=1}^{n_{2}} b_{i}}{n_{2}}, \quad \bar{h}=\frac{\sum_{i=1}^{n_{3}} h_{i}}{n_{3}} .
$$

Then, the commentator explains the rule in connection with the surveying method.
TrBh on $\operatorname{Tr} 52$ (A_{1} fol. 22a):
khātaṃ mukhatalamadhye viṣamam/ dairghye viṣamam vā bhavati// tadā tatra viṣamasthāneṣu sūtraṃ pātayitvā ekīkrtya tair viṣamapadair bhāgaṃ apahṛtya sāmyaṃ khātasya āneyam iti//8

An excavation [has] unequal [measures] at the top, bottom and middle. Or, unequal [measures] of lengths are [there]. Then, one should stretch ($p \bar{a}$ tayitv \bar{a} : lit. having stretched) cord $[\mathrm{s}]$ at the unequal places; put [them] into one (ekīkrtya: lit. having put [them] into one); divide (bhāgaṃ apahṛtya: lit. having divided) [the single one] by [the number of] unequal places [where the unequal measures were taken]; and [thus] calculate the mean [measures] of the excavation.

[^2]The commentator intends, for instance, the following pit.

Figure 1.

The cords (sūtra-s) are "stretched" between the black dots in the above figure, and their lengths represented by a_{i}, b_{i} and h_{i} are measured. The expression "put [them] into one" means to reduce the cords stretched at the unequal places into one. What is intended by "divide" might be to fold the single cord, rather than to divide it arithmetically. The surveying method of the TrBh can be illustrated in the following way:

2) Put them into one:

3) Divide (i.e., Fold) the single cord:

Figure 2.

The compound sama-rajju in the sense of the "mean cord" is found in Brāhmasphutasiddhānta $12.44 \mathrm{~d} .{ }^{9}$ It is possible that the above method of measurement is in-

[^3]tended there also. However, as Sarasvati [2007: 200] says, Brāhmasphuṭasiddhānta 12.44 cd is elliptical and defies interpretation.

Then, a rule for obtaining the capacities of pits follows.
Tr 53:
samavistaradairghavadhe vedhena samāhate phalam bhavatif ${ }^{10}$
khāte samabhujavedhe bāhughano jāyate gaṇitam//

When the product of the mean breadth and length is multiplied by the depth, the fruit (i.e., capacity) is produced. When an excavation has the equal arms and depth, the cube of the arm occurs as the calculated (i.e., capacity).

Capacities (V) of a rectangular pit with uniform sides (a, b, h) and of a cubic pit.

$$
V=(a b) h, \quad V=a^{3} .
$$

There is no need to go into the details about the TrBh on $\operatorname{Tr} 53$, because the commentator merely paraphrases the expressions in the Tr without providing new information.

§ 2.2. Lūlāvat̄̄

Bhāskara II gives the following rules for excavations.
L 214:
gaṇayitvā vistāraṃ bahuṣu sthāneṣu tadyutir bhājyā/
sthānakamityā samamitir evaṃ dairghye ca vedhe ca//
kṣetraphalaṃ vedhaguṇaṃ khāte ghanahastasaṃkhyā syāt//

Having measured the breadth in many places, their sum is to be divided by the number of the [unequal] places [where the unequal measures were taken]. The mean measure [is produced]. For the length and the depth, [their mean measures are also obtained] in this manner. The plane fruit (i.e., area) is multiplied by the depth. The number of cubic hasta-s of an excavation should be produced. ${ }^{11}$

The rule of L 214abcd is the same as $\operatorname{Tr} 52$. With regard to the rule of L 214ef, when A and h denote the surface area and the depth, respectively, of a pit, its capacity (V) is obtained by

$$
V=A h .
$$

[^4]Gaṇeśa's commentary on the above rules is divided into two parts: explanation of the words and phrases in L 214, and a "proof" (upapatti). ${ }^{12}$ As for the first part, it is sufficient to mention here only the following passage.

BV on L 214 (Ānandāśrama edition p. 221):
... yathā yathā bahuṣu sthāneṣu vistārādikaṃ ganyate tathā tathā samamitih sūkṣmasūkșmatarā syād iti spaṣtam/ ...
... The more places the breadth, etc. are measured, the more accurate the mean measure should be-this is clear. ...

The greater the numbers n_{1}, n_{2} and n_{3} are, the more accurate the values of \bar{a}, \bar{b} and \bar{h} will be. The second part of the BV is as follows.

BV on L 214 (Ānandāśrama edition p. 221):
atropapattih sugamā/ khāte vistārādikaṃ sarvasminn api pradeśe na hi samamitiṃ krtvā bahuṣu sthāneṣu gaṇayitva tadyutih sthānasaṃkhyayā hṛtā madhyasthasya vistārāadikasya mitih syāt/ ${ }^{13}$ ekasmin padeśe tasmān nyūnam anyasminn adhikam ato madhyastha iti/ rūpatulyavedhe ksetraphalatuly \bar{a} eva ghanahastāh syuh/ ato vedhaguṇam kṣetraphalam ghanahastasaṃkhyā syād iti//

A "proof" for this (i.e., L 214) is easy to understand. In an excavation, when one observes that the breadth, etc. do not have the same measure at every spot, having measured [the breadth, etc.] in many places, their sum is divided by the number of the [unequal] places. The [mean] measure of the breadth, etc. standing at the middle should be produced. In one spot there is a shortage from it, and in another there is a surplus. Therefore, [the mean measure] stands at the middle.
When the depth is equal to unity, [the number of] the cubic hasta-s should be equal to the plane fruit (i.e., the number of unit squares). Hence, the plane fruit (i.e., area) is multiplied by the depth. The number of cubic hasta-s should be produced.

The above "proof" can be divided into two parts: the "proof" for L 214abcd and that for L 214ef. In the former part, Ganeśa explains how to obtain the "mean measure" and what it stands for. As Figure 3 illustrates, he supposes at least three different measures: short $\left(m_{1}\right)$, mean $\left(m_{m}\right)$ and surplus (m_{2}) measures. The relationship between them, $m_{1}<m_{m}<m_{2}$, is expressed as "[the mean measure] stands at the middle."

[^5]

Figure 3.
In the latter part of the "proof," the commentator states: When $h=1, V=A$. This "proof" of $V=A h$ is based on the classical interpretation of area and volume:

$$
\begin{aligned}
& \text { area }=\text { number of unit squares, } \\
& \text { volume }=\text { number of unit cubes. }
\end{aligned}
$$

As Figure 4 shows,
volume of an excavation
$=$ number of unit cubes in it
$=($ number of unit cubes in one layer $) \times$ (number of the layers)
$=($ number of unit squares contained in the base $) \times($ number of units contained in the depth)
$=A \times h$.
Geṇeśa intends these steps, although he actually only refers to the following relationship: number of unit cubes in one layer $=$ number of unit squares contained in the base.

Figure 4.

§ 3. Example for an excavation

Srī̀dhara gives the following example for an excavation.

Tr E88:

tricatuḥpañcakapṛthutā puṣkariṇ̄ gaṇaka yatra vikhyātāa ${ }^{4}$
aṣtau hastā vedhe dvādaśa dairghye ca kathaya phalam// ${ }^{15}$

O calculator, there is a famous lotus pond-where the depth is eight hastas and the length is twelve [hasta-s]-possessing three, four and five [hasta-s] as the breadth. Tell [me] the fruit (i.e., capacity).

That is,

$$
\begin{gathered}
a_{1}=3, a_{2}=4, a_{3}=5[\text { hasta-s }] ; \\
b=12[\text { hasta-s }] \\
h=8 \text { hasta }-\mathrm{s} .
\end{gathered}
$$

The commentator presents a "setting-down" $(n y \bar{a} s a)^{16}$ and a solution for the problem.

TrBh on $\operatorname{Tr} \mathrm{E} 88$ (A fol. 22b):

3/ bhāge datte labdhaṃ 4/ sarvatra samam/ pṛthu sarvatra 4/ 8guṇite labdhaṃ 32/20 punar laṃbena 12 guṇite jātam 384//21

[^6]Setting-down:

is: $3,4,5$. The sum is 12 . [The number of] unequal places [where the unequal measures were taken] is 3 . When [12 is] divided (bhāge datte: lit. when the part is given $)^{23}$ [by 3], what is obtained is 4 . [This is] the same everywhere. [That is,] the breadth is [regarded as] 4 everywhere. Multiplied by 8 , what is obtained is 32 . Further multiplied by the perpendicular, i.e., 12 , the result is 384 .

That is,

$$
\begin{gathered}
\bar{a}=\frac{3+4+5}{3}=\frac{12}{3}=4 \\
V=4 \cdot 8 \cdot 12=32 \cdot 12=384[\text { hasta }-\mathrm{s}]
\end{gathered}
$$

By the figure of the setting-down, the commentator intends the plane figure (i.e., top view $)^{24}$ of the following lotus pond:

Figure 5.

The two words, lamba and $k a d \bar{\imath}$, used here might correspond respectively to the dairghya "length" and vedha "depth" in Tr E88. However, this usage of lamba is uncommon,

[^7]and we rarely encounter the term $k a d \bar{\imath}$ (or $k a m ̣ d \bar{\imath}$ in A_{1}) in Indian mathematical texts. Therefore, I will investigate the usage of the two terms in the following two sections.

§ 4. lamba

In this section, I will discuss three different meanings of lamba found in the TrBh : "perpendicular," "length" and "depth or height." It may be worth mentioning that Āryabhaṭa I employs, in his Āryabhaṭ̄ya (499 CE , hereafter $\overline{\mathrm{A}} \mathrm{Bh}$), the term lambaka in the sense of "plumb-line," although it differs from the lamba in question.

§4.1. lamba in the sense of "perpendicular"

Figure 6 is a geometric figure illustrated in TrBh on $\operatorname{Tr} \operatorname{E77}$ (A_{1} fol. 20a), and Figure 7 is an English translation of it:

Figure 6. Text

Figure 7. Translation

In Figure 6, $h a$ in the compound lamba-ha is an abbreviation for hasta. In this case, lamba clearly means the perpendicular or the height of the above trapezium. The same usage of the term is found in TrBh on Tr E78-79, etc., and it is the most common usage in Indian mathematical texts.

§ 4.2. lamba in the sense of "length"

The following stanza provides a rule for calculating the volume of a rectangular stone.

Tr 55:
dairghyāngulāni vistarapinḍāngulatāditāni bhajet/25
dvikrticaturekaṣaḍbhir bhavanti pāṣānaphalahastāh///26

One should divide the length in angula-s that is multiplied with the breadth

[^8]and the thickness in angula-s, by [the number composed of] the square of two, four, one and six (i.e., 6144). The fruit (i.e., volume) of the stone [slab] in hasta-s (pāṣāna-phala-hasta) is produced.

When a, b and c respectively denote the length, the breadth and the thickness, all measured in arigula-s, of a rectangular stone, their product is divided by the constant 6144:

$$
V_{p}=\frac{a b c}{6144},
$$

where V_{p} denotes "the fruit (i.e., volume) of the stone [slab] in hasta-s." This constant 6144 is obtained by $24^{3} \cdot \frac{4}{9}$, where 24 angula-s $=1$ hasta. This conversion might be to take into account the weight of stone, but the details are not known. ${ }^{27}$ An example for the above rule is as follows.

Tr E92:

sārdhatrikaravyāsā karārdhapinḍā śila sakhe tasyāh ${ }^{28}$

There is a stone [slab] whose breadth is three and a half hasta-s, whose thickness is half of a hasta, and whose length is five hasta-s increased by one-third. O friend, what would be the fruit (i.e., volume) [of the stone slab]?

That is,

$$
a=5 \frac{1}{3} \text { hasta-s, } \quad b=3 \frac{1}{2} \text { hasta-s, } \quad c=\frac{1}{2} \text { hasta } .
$$

The following setting-down is given in the TrBh.

TrBh on Tr E92 (A fol. 22b):
hastair aṃgulīkrtair nyāsah $\left|\begin{array}{cc}128 & \text { laṃba } \\ p r & 84 \\ 12 & \text { vedha }\end{array}\right| /^{30}$
Setting-down with the hasta-s converted into amgula-s:

128	perpendicular
$p r$	84
12	depth

[^9]That is,

$$
\begin{aligned}
a & =5 \frac{1}{3} \text { hasta }-\mathrm{s}=128 \text { amgula-s } \\
b & =3 \frac{1}{2} \text { hasta-s }=84 \text { amgula-s } \\
c & =\frac{1}{2} \text { hasta }-\mathrm{s}=12 \text { ampula-s }
\end{aligned}
$$

The length $a(=128$ amgula-s) is denoted by lamba, although it is the emendation of $l \bar{a} m / b a$ in A_{1}. The same usage of the word is found in Bālabodhāa$k a v r t t i ~(1428 / 29$ CE) on Pañcaviṃ́atikā 20. ${ }^{31}$ Therefore, these usages attest that dairghya in Tr E 88 corresponds with lamba in TrBh on Tr E 88.

§ 4.3. lamba in the sense of "depth or height"

Śrīdhara offers the following example for the rules of $\operatorname{Tr} 52-53$.

Tr E87:

dvitricatuṣkaravedhā puṣkariṇ̄ pañcahastavistārāa ${ }^{32}$
ṣodaśahastāyāmā khātaphalaṃ kathyatām asyāh// ${ }^{33}$

There is a lotus pond whose depth is two, three and four hasta-s, whose breadth is five hasta-s, and whose length is sixteen hasta-s. Please tell [me] the fruit of excavation (i.e., capacity) of this [lotus pond].

That is,

$$
\begin{gathered}
a=5 \text { hasta-s; } \\
b=16 \text { hasta-s; } \\
h_{1}=2, \quad h_{2}=3, \quad h_{3}=4 \text { hasta-s. }
\end{gathered}
$$

Then, the commentator provides a setting-down and a solution.
TrBh on $\operatorname{Tr} \mathrm{E} 87$ (A_{1} fols. 22ab):

āyāmah 16 lambeṣu $<$| ve | ve | ve | vi $5>\beta 4$ | |
| :---: | :---: | :---: | :---: | :---: |
| | 2 | 3 | 4 | |

The length is 16. For the perpendiculars (lambesu), | ve | ve | ve |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 3 | 4 | $\mathbf{v i} 5 .{ }^{35}$

[^10]In the above setting-down, lambeṣu probably conveys the meaning "for the depths." However, this case does not provide a strong evidence for the use of lamba in the sense of "depth or height," because laṃbeṣu is an emendation of lābaṣa of A_{1}. The text in this paragraph is broken. Figure 8 shows the arrangement of the three boxes in this part of A_{1}.

Figure 8.
The dashed lines -- indicate the relevant sentences in A_{1}, the dotted lines ... dittographies, and the arrow \rightarrow the place where the third box, i.e., the box with three compartments in fol. 22b, line 1, should be located. The first box, i.e., the box at the left side in fol. 22a, lines $13-14$, is for another example, Tr E90. The second box, i.e., the box at the right side, must be a part of the setting-down for Tr E88 (see §3 and §5) and should be replaced by the third box.

§ 4.4. lambaka in the sense of "plumb-line"

$\overline{\mathrm{A}} \mathrm{Bh} 2.13 \mathrm{~d}$ is a rule for correct production of a vertical line.
$\bar{A} B h 2.13 \mathrm{~d}:$
adha ūrdhvaṃ lambakenaiva//
Verticality (lit. top and bottom) [is to be brought about] with just a plumbline. ${ }^{36}$

Bhāskara I glosses the above rule in his commentary (629 CE).
Bhāskara I's comm. on ĀBh 2.13d:
adha ūrdhvam lambakenaiva/ adha upalaksitasya ya ūrdhvapradeśah so 'va-

[^11]lambakenaiva sādhyate/ ūrdhvapradeśasya vā yo 'dhahpradeśah asāv apy avalambakenaiva/ avalambakaś ca gurudravyaikāgrāsaktaṃ sūtram iti//
<As for:> "verticality with just a plumb-line". The point above a <point> marked below is brought about with a plumb-line (avalambaka). Or, the point below a point above, also, is <brought about> with a plumb-line. And a plumb-line is a thread with a heavy object at one tip. ${ }^{37}$

From the above commentary, it is clear that "a thread with a heavy object at one tip" is denoted by the word lambaka or avalambaka which shares the same root lamb with lamba.

§5. $k a d \bar{\imath}$

We find three forms-kad̄,$k a m ̣ d \bar{\imath}$ and $k \bar{a}-i n \mathrm{~A}_{1}$.
Fol. 22a, lines 13-14 (second box of Figure 8): $\left.\begin{gathered}\text { prrthuh } / \\ \text { kad̄̄ha } 8\end{gathered} \right\rvert\,$;
Fol. 22b, line 3: kamḍ 1 8/;
Fol. 22b, line 9: $\left|\begin{array}{cc}16 & s r \\ k \bar{a} & 12\end{array}\right|$.
As I have mentioned in $\S 4.3$, the second box of Figure 8 is a part of the setting-down for $\operatorname{Tr} \mathrm{E} 88$ and has been inserted into that for Tr E 87 by mistake. It is clear that kadīha is composed of kaḍ $\bar{\imath}$ and $h a$, and means "hasta-s of kad $\bar{\imath}$."

As we have seen in $\S 3$, $k a m d \bar{\imath}$ in fol. 22 b, line 3 is embedded into the geometric figure presented in TrBh on Tr E88.

According to the context of Tr E91, the box in fol. 22b, line 9 is to be emended to $\left|\begin{array}{cc}16 & p r \\ k a & 12 \\ 4 & t a l a\end{array}\right|$, where $p r$ and $k a$ are abbreviations for $p r t h u$ and $k a d \bar{\imath}$ respectively.

Tr E91:
kūpasya mukhavyāsah ṣodaśa hastās tale tu catvārah β^{38}
vedho dvādaśa vidvan tat khātaphalaṃ samācakṣva//39

[^12]The face (i.e., top) diameter of a circular well is sixteen hasta-s, [the diameter] at the bottom is four [hasta-s], and the depth is twelve [hasta-s]. Tell [me], O learned man, the fruit (i.e., capacity) of the excavation.

This is an example for capacity of a circular well. Srīdhara gives the top diameter $d_{1}=16$ hasta-s, the bottom diameter $d_{2}=4$ [hasta-s], and the depth $h=12[$ hasta-s]. The rule of $\operatorname{Tr} 54,{ }^{40}$

$$
V=\frac{\sqrt{\left\{d_{1}^{2}+d_{2}^{2}+\left(d_{1}+d_{2}\right)^{2}\right\}^{2} \cdot 10} \cdot h}{20+4}
$$

is applied here in order to obtain the capacity V of a well shaped like an inverted truncated cone. The abbreviation $k a$ for $k a d \bar{\imath}$ in fol. 22b, line 9 clearly denotes the depth, $h=12$.

In the following sections, I will discuss the meanings of $k a d \bar{\imath}$ and $k a m d \bar{\imath}$ in detail.

\S 5.1. Meaning of kad̄

Turner [1999: 131] lists four kinds of kata-s in his dictionary, A Comparative Dictionary of the Indo-Aryan Languages (hereafter CDIAL). In the following, the symbol $>$, used as A $>$ B, signifies the historical derivation of B from A, and m. and f. are abbreviations for masculine and feminine respectively.

```
kata- }\mp@subsup{}{}{1}\textrm{m}."\mathrm{ "twist of straw, mat";
kata- }\mp@subsup{}{}{2}\mathrm{ m. "grass, Saccharum sara";
kata- }\mp@subsup{}{}{3}\textrm{m}\mathrm{ . "thin, piece of wood, plank"; and
kata-}\mp@subsup{}{}{4}/kati- "hip."
```

According to the CDIAL, the form kadt̄- can be derived from kata- ${ }^{1}$, kata- ${ }^{3}$ or kata- ${ }^{4}$:
$k a t a_{-}{ }^{1}>k a d \bar{\imath}-\mathrm{f}$. "metal ring" in Marāthī;
$k a t a^{-}{ }^{3}>k a d \bar{\imath}-\mathrm{f}$. "small squared piece of timber" in Marāthī; or
kaṭa- ${ }^{4}$ kaṭi- > kaḍ̄̄- f. "hip, waist" in Prakrit.
Since I have no information on the usage of $k a t a-{ }^{1}>k a d \bar{\imath}-$ either in mathematical texts or in engineering texts, it seems not to be related with $k a d \bar{\imath}$ in the TrBh.

[^13]In another dictionaries of New Indo-Aryan such as Oxford Hindi-English Dictionary, etc., we can find kata- ${ }^{3}>k a d \bar{\imath}$ - in the meanings of "a beam, a squared rafter." This is an architectural term and seems to be related with $k a d \bar{\imath}$ in the TrBh.

Acharya [1995: 106] lists possible meanings of kati, "the hip-part of a building, the hip of an image, a flight of steps," and cites the following verse from Varāhamihira's Bṛhatsaṃhitā (6th century CE, hereafter BS).

BS 56.11:
yo vistāro bhaved yasya dviguṇā tatsamunnatih/
ucchrāyād yas tṛtīyo 'ṃśas tena tulyā katir bhavet//

The height of any temple must be twice its own width, and the flight of steps equal to a third part of the whole height (of the edifice). ${ }^{41}$

The height of the temple shall be twice its breadth and its kati shall be a third of its height. ${ }^{42}$

The height of a building should be twice its width and its kati (lit. hip) should be (equal to) $\frac{1}{3}$ of its height. ${ }^{43}$

The height of a temple should be double its width, and the height of the foundation above the ground consisting of steps (over which the edifice is built) equal to a third of this height. ${ }^{44}$

I have cited here four different English translations by Kern [1873], Iyer [1987], Acharya [1995] and Bhat [1995], respectively, in order of publication. ${ }^{45}$ Kern [1873: 318] translates kati as "the flight of steps." Iyer [1987: 282] does not translate the word into English. Acharya [1995: 106] objects to Kern's translation of kati as follows:

Dr. Kern translates 'kaṭi' by 'the flight of steps' (J.R.A.S., N. S., Vol. VI, p. 318); but in this sense the word never occurs in dictionaries or literature; nor does this rendering suit the context here, first, because the description concerns a single-storeyed building, where the flight of steps, if there be any at the entrance, would not be usually one-third of the height of the whole building;

[^14]secondly, the measures of the flight of steps mostly in buildings of more than one storey are never considered in any architectural treatises as being dependent on the height of the building or the storey.

Bhat [1995: part 1, 539] renders the term as "the height of the foundation above the ground consisting of steps (over which the edifice is built)," and glosses it as "hip or flight of steps in the foundation" in his note. His interpretation of kati is probably based on the following commentary by Bhatṭotpala (fl. 966/969).

Bhaṭtotpala's comm. on BS 56.11:*6
sopānopari yato devagṛhasya prārambhah sā katir ucyate//

Above the steps, that from which [the main part of] a temple (deva-grha: lit. house of the god) begins is called kati.

The steps are usually attached to the front of a temple or in the middle of the four sides, just like in Japanese temples, and we enter by the steps. The word deva-grha seems to indicate the main part of a temple where the statue of the deity is housed.

Given these evidences, I am unable to decide which of these views is preferable. It is noteworthy that Meister et al. [1989: vol. 2, pt. 1, 402-403] explain, in their glossary, kati as
"waist"; wall (early synonym for jañghā)
and janigh \bar{a} as
wall, wall frieze; elevation between vedībandha and śikhara. ${ }^{47}$
It follows from what has been said above that the $k a d \bar{\imath}$ in the TrBh seems to have been derived from kata- ${ }^{3}$ or kata- ${ }^{4} / k a t i$ - in architecture. It is likely that the commentator borrowed the term $k a d \bar{\imath}$ from engineering text(s) or tradition in order to indicate "depth" in TrBh on Tr E88.

§5.2. Meaning of kamd ${ }^{\imath}$

Three kinds of kanta-s are listed in the CDIAL: ${ }^{48}$

```
kanta- }\mp@subsup{}{}{1}\textrm{m}."\mathrm{ "thorn";
kanta- }\mp@subsup{}{}{2}\textrm{m}\mathrm{ . "boundary of a village"; and
kanta- }\mp@subsup{}{}{3}\textrm{m}\mathrm{ . "backbone, podex, penis."
```

[^15]According to the CDIAL, the form kand $d \bar{\imath}-($ or $k a m ̣ d \bar{\imath}-)$ can be derived from kanta- ${ }^{3}$:
kanta_ ${ }^{3}>$ kand $\bar{\imath}-\mathrm{f}$. "back" in Awānkārı̄ dialect of Lahndā.
I have no information on the usage of $k a n d \bar{\imath}$ (or $k a m d \bar{\imath}$) either in mathematical texts or in engineering texts. It is probable that $k a d \bar{\imath}$ was originally intended by the author of the TrBh, and the scribe of A_{1} or someone else incorrectly copied it as kamp $d \bar{\imath}$.

§6. Concluding remarks

The author of the $\operatorname{Tr} B$ explains the rules for excavations, $\operatorname{Tr} 52-53$, in connection with surveying method that consists of three steps: i) stretch cords at unequal places, ii) put them into one, and iii) divide (i.e., fold) the single cord. Since the compound sama-rajju is employed in Brāhmasphuṭasiddh $\bar{a} n t a 12.44 \mathrm{~d}$ probably in the sense of the "mean cord," there is a small possibility that the above method is intended there also.

In BV on L 214, Gaṇeśa mentions the way to obtain more and more accurate values of mean lengths (i.e., \bar{a}, \bar{b} and \bar{h}) and offers a "proof." In the former part of the "proof," he supposes three different measures-short $\left(m_{1}\right)$, mean $\left(m_{m}\right)$ and surplus (m_{2}) measures-and expresses their relationship, $m_{1}<m_{m}<m_{2}$, as "[the mean measure] stands at the middle." In the latter part, the commentator provides a "proof" of $V=A h$ which is based on the classical interpretation of area and volume.

There are three different meanings of lamba in the TrBh: "perpendicular," "length" and "depth or height." The usage in the second meaning among them testifies that dairghya in Tr E 88 corresponds with lamba in TrBh on Tr E 88 . In addition, Āryabhaṭa I employs the term lambaka in the sense of "plumb-line," and Bhāskara I glosses it as "a thread with a heavy object at one tip."

We find three forms-kad $\bar{\imath}$, $k a m d ̣ \bar{\imath}$ and $k \bar{a}-\mathrm{in} \mathrm{A}_{1}$. Among them, $k a m ̣ d \bar{\imath}$ and $k \bar{a}$ should be emended to $k a d \bar{\imath}$ and $k a$ (i.e., an abbreviation for $k a d \bar{\imath}$) respectively. The form kad $\bar{\imath}$ - is derived from kata- ${ }^{3}$ and means "a beam, a squared rafter" in New IndoAryan. Otherwise, it is derived from kata- ${ }^{4}$ and denotes "hip, waist," "flight of steps in the foundation," or "wall." It is likely that the author of the TrBh borrowed the term kaḍı from engineering text(s) or tradition in order to indicate "depth" in TrBh on Tr E88.

Acknowledgments

I wish to express my sincere gratitude to Professor Takao Hayashi (Doshisha University) for his helpful comments and suggestions. I would also like to thank Professor Yuko Yokochi (Kyoto University) and Professor Somdev Vasudeva (Kyoto University) for their valuable comments on architectural issues.

	Abbreviations
A_{1}	LD Institute, Ahmedabad, Manuscript 1559.
$\bar{A} B h$	Āryabhatīya of Āryabhaṭa I.
BS	Bṛhatsaṃhitā of Varāhamihira.
BV	Gaṇeśa's Buddhivilāsinı̄ on the Lùlōvatı̀.
CDIAL	A Comparative Dictionary of the Indo-Aryan Languages.
L	Līlāvatı̄ of Bhāskara II.
$\mathrm{K}_{\text {ED }}$	Kāsì edition of the Triśatı̄.
Tr	Triśatı̄ (alias Triśatikā and Gaṇitasāra) of Śrīdhara.
TrBh	Triśatı̄bhāṣa (anonymous comm.) on the Tr.

References: Primary sources

[1] Āryabhaṭ̄̄ya of Āryabhaṭa, with the Commentary of Bhāskara I and Someśvara, edited with Introduction and Appendices by Kripa Shankar Shukla. Āryabhaṭīa Critical Edition Series, Part 2. New Delhi: Indian National Science Academy, 1976.
[2] The Bālabodhā̃nkavrtti of Śambhudāsa. See [4] in Secondary sources.
[3] The Bṛhat Sañhitá of Varáha-Mihira, edited by H. Kern. Bibliotheca Indica; collection of Oriental works; New series; Nos. 51, 54, 59, 63, 68, 72 and 73. Calcutta: Baptist Mission Press, 1865.
[4] Bṛhatsaṃhitā by Varāhamihirācārya with the Commentary of Bhattotpala, edited by Avadhavihārī Tripāthī. 2 vols. Varanasi: Varanaseya Sanskrit Vishvavidyalaya, 1968.
[5] Brāhmasphutasiddhānta of Brahmagupta, edited with the editor's own commentary in Sanskrit by Sudhākara Dvivedī. Benares: Medical Hall Press, 1902.
[6] Līlāvat̄̄ of Bhāskara, edited with Ganeśa's Buddhivilāsin̄̄ and Mahīdhara's Līlāvatīvivarana by Dattātreya Āpaṭe et al. Ānandāśrama Sanskrit Series 107, 2 vols. Poona: Ānandāśrama Press, 1937.
[7] Triśatiká by Śrídharácárya, edited by Sudhákara Dvivedí. Káśí: Pandit Jagannátha Śarmá Mehtá, 1899.
[8] Manuscript of the Tr with an anonymous commentary, the Triśatībhāsya: LD Institute, Ahmedabad, 1559.

References: Secondary sources

[1] Acharya [1995]: Acharya, Prasanna Kumar. A Dictionary of Hindu Architecture: Treating of Sanskrit Architectural Terms, with Illustrative Quotations from Silpāsastras, General Literature, and Archaeological Records. London: Oxford University Press, 1934. Reprinted, New Delhi: Munshiram Manoharlal Publishers, 1995.
[2] Bhat [1995]: Bhat, M. Ramakrishna. Varāhamihira's Bṛhat Samihitā, with English Translation, Exhaustive Notes and Literary Comments. Part 1. Delhi: Motial Banarsidass, 1981. Reprinted, 1995.
[3] Colebrooke [2005]: Colebrooke, Henry Thomas. Algebra with Arithmetic and Mensuration from the Sanskrit of Brahmagupta and Bhāskara. London: John Murray, 1817. Reprinted under the title, Classics of Indian Mathematics, with a foreword by S. R. Sarma. Delhi: Sharada Publishing House, 2005.
[4] Hayashi [2017]: Hayashi, Takao (ed.). "The Bālabodhā $\dot{n} k a v r ̣ t t i: ~ S ́ a m b h u d a ̄ s a ' s ~ O l d-~$ Gujarātī Commentary on the Anonymous Sanskrit Arithmetical Work Pañcaviṃśatikā," SCIAMVS, 18, 1-132.
[5] Hayashi [2019]: Hayashi, Takao. Indo Sanjutsu Kenkyuu Gaṇitatilaka + Siṃhatilaka-chuu Zenyaku to Chuu (A Study of Arithmetic in India: Annotated Japanese Translations of Śrīpati's Gaṇitatilaka and Siṃhatilaka's Commentary with an Introduction and Appendices), Tokyo: Kouseisha Kouseikaku, 2019.
[6] Iyer [1987]: Iyer, N. C. The Bṛhat Sam்hitā of Varāha Mihira: Translated into English with Notes. Part I. Madura: South Indian Press, 1884. Part II. Madras: Foster Press, 1885. Second revised edition in one volume, Delhi: Sri Satguru Publications, 1987.
[7] Keller [2006]: Keller, Agathe. Expounding the Mathematical Seed: A Translation of Bhāskara I on the Mathematical Chapter of the Āryabhaṭ̄̄ya. 2 vols. Basel: Birkhäuser, 2006.
[8] Keller [2009]: Keller, Agathe. "Bhāskara I's Geometrical Diagrams in the Āryabhațīyabhāṣa," Mathematics and Medicine in Sanskrit. Edited by Dominik Wujastyk. Delhi: Motilal Banarsidass Publishers, 2009.
[9] Kern [1873]: Kern, H. "Art. XII.-The Bṛhat-Sañhitâ; or, Complete System of Natural Astrology of Varâha-mihira," Journal of the Royal Asiatic Society 6, 1873, 279-338.
[10] Meister et al. [1989]: Meister, M. W., M. A. Dhaky, and K. Deva. Encyclopaedia of Indian Temple Architecture: North India, vol. 1, part 1 in 2 vols. Delhi: American Institute of Indian Studies, 1989.
[11] McGregor [1993]: McGregor, R. S. Oxford Hindi-English Dictionary. Oxford: Oxford University Press, 1993.
[12] SaKHYa [2009]: SaKHYa. Gaṇitasārakaumud̄̄: The Moonlight of the Essence of Mathematics by Ţ̦akkura Pherū, edited with Introduction, Translation, and Mathematical Commentary. New Delhi: Manohar, 2009.
[13] Sarasvati [2007]: Sarasvati Amma, T. A. Geometry in Ancient and Medieval India. First edition, Delhi: Motilal Banarsidass, 1979. Second revised edition, 1999. Reprinted, 2007.
[14] Sarma et al. [2008]: Sarma, K. V., K. Ramasubramanian, M. D. Srinivas and M. S. Sriram. Gaṇita-Yukti-Bhāṣā (Rationales in Mathematical Astronomy) of Jyeṣthadeva, Malayalam text critically edited with English translation, with explanatory notes in English. 2 vols. New Delhi: Hindustan Book Agency.
[15] Tokutake [2021]: Tokutake, Taro. "Indo Sanjutsusho Triśatı̄: Choshamisho no Chūshaku Triśatībhāṣya to tomoni" (Indian Arithmetic Book Triśatī: With the Anonymous Commentary Triśatībhāṣa), Master's thesis, Kyoto University, 2021.
[16] Tokutake [2022a]: Tokutake, Taro. "Study on an Example in the Triśat̄̄, an Indian Arithmetic Book," Historia Scientiarum 31(2), 2022, 172-185.
[17] Tokutake [2022b]: Tokutake, Taro. "Triśatībhāṣya no Chosha no Zaisho to Nendai ni kansuru Ichi Kosatsu: Sanjutsu Hyogen to Gengoteki Tokucho no Bunseki wo tsūjite" (Place and Date of the Author of the Triśatībhāṣya: An Analysis of the Arithmetic Expressions and Linguistic Features), Journal of Indian and Buddhist Studies 70(2), 2022, 5-8.
[18] Turner [1999]: Turner, R. N. A Comparative Dictionary of the Indo-Aryan Languages. Delhi: Motial Banarsidass, 1999.

[^0]: Received November 29, 2022. Revised January 23, 2023.
 2020 Mathematics Subject Classification(s): 01A32
 Key Words: Triśatībhāṣya, excavations (khāta), surveying method, laṃba, kaḍ̄̄.
 This work was supported by JSPS KAKENHI Grant Number JP21J23080, and by the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University.
 *Kyoto University, 606-8501 Japan.
 email: tokutake.taro.36w@st.kyoto-u.ac.jp
 ${ }^{1}$ Kās̄ī is a historical name of the present-day Varanasi. In this paper, the verse numbers of the Tr follow K_{ED}.
 ${ }^{2}$ See Tokutake [2022b].

[^1]: ${ }^{3}$ For further details of the contents of the Tr, see Tokutake [2022a: 180-185].

[^2]: ${ }^{4}$ prthu ${ }^{\circ}$] K_{ED}, pūthu ${ }^{\circ} \mathrm{A}_{1}$; ${ }^{\circ}$ dairghye] K_{ED}, ${ }^{\circ}$ dairghā A_{1}
 ${ }^{5}$ vedhe vā] $\mathrm{K}_{E D}$, vedho bā A_{1}; bhajeta] K_{ED}, bhājat $\mathrm{A}_{1} ;{ }^{\circ}$ padaị̣] $\mathrm{K}_{E D},{ }^{\circ}$ padai A_{1}
 ${ }^{6}$ Here and hereafter, a brief explanation of a word in translation is marked with parentheses (), and additions to the translation with square brackets [].
 ${ }^{7}$ dairghye viṣamaṃ] em., daurghye viṣa $5 m a m \mathrm{~A}_{1}$
 ${ }^{8}$ tair] em., ter $\mathrm{A}_{1} ;{ }^{\circ}$ sthāneṣu] em., ${ }^{\circ}$ sthānau A_{1}; bhāgam] em., sāgam A_{1}

[^3]: ${ }^{9}$ See Colebrooke [2005: 312-313].

[^4]: ${ }^{10}{ }^{\circ}$ dairghavadhe] $\mathrm{A}_{1},{ }^{\circ}$ hatadairghye K_{ED}
 ${ }^{11}$ Cf. Colebrooke [2005: 97].

[^5]: ${ }^{12}$ For further details of "proof" (upapatti), see Sarma et al. [2008: vol. 1, 267-310].
 ${ }^{13}$ pradeśe na] em., pradeśena

[^6]: ${ }^{140}{ }^{\text {ñcakapṛthutā }] ~ e m ., ~}{ }^{\circ}$ ñcakahastāḥ pṛthutā $\mathrm{K}_{\mathrm{ED}},{ }^{\circ} \tilde{n}$ cakarāḥ pṛthutā A_{1}; puṣkariṇ̄̄] em., viṣamāttu K_{ED}, puṣkaraṇī A_{1}; gaṇaka yatra vikhyātā] A_{1}, yasya khātasya K_{ED}
 ${ }^{15}$ vedhe] A_{1}, vedho $\mathrm{K}_{E D}$; dairghye] $\mathrm{K}_{E D}$, dīrghye A_{1}; ca] em., om. $\mathrm{K}_{E D} \mathrm{~A}_{1}$
 16 "Setting-down" is a tabular presentation of the numerical information given in the example.

 ${ }^{18}$ pṛthu ${ }^{\circ}$] em., ṣ̣thu ${ }^{\circ} \mathrm{A}_{1}$
 ${ }^{19} 4 / 5$] em., $45 \mathrm{~A}_{1}$
 ${ }^{20}$ pṛthu sarvatra $4 / 8^{\circ}$] em., vedha sarvatra $48 \mathrm{~A}_{1}$
 ${ }^{21}$ punar lambe ${ }^{\circ}$] em., puna labe ${ }^{\circ} \mathrm{A}_{1}$

[^7]: ${ }^{22} p r$ is an abbreviation for $p r t h u$ or $p r t h u t \bar{a}$.
 ${ }^{23}$ The same expression is found in Simhatilaka's commentary on the Gaṇitatilaka (see Hayashi [2019: 35,127 , etc.]).
 ${ }^{24}$ All the figures given in A_{1} are illustrated as top views. For the functions of geometric figures, see Keller [2009].

[^8]: ${ }^{25}$ dairghyān̄gu $\left.{ }^{\circ}\right] \mathrm{K}_{E D}$, dairghāṃgu ${ }^{\circ} \mathrm{A}_{1}$; vistara $\left.{ }^{\circ}\right] \mathrm{A}_{1}$, vistṛti ${ }^{\circ} \mathrm{K}_{\text {ED }}$; bhajet] A_{1}, vibhajet $\mathrm{K}_{E D}$
 ${ }^{260}{ }^{\circ}$ catu $\left.^{\circ}\right] \mathrm{K}_{\mathrm{ED}},{ }^{\circ}$ thatu $^{\circ} \mathrm{A}_{1}$; pāṣāṇa ${ }^{\circ}$] K_{ED}, ṣọa ${ }^{\circ} \mathrm{A}_{1}$

[^9]: ${ }^{27}$ See SaKHYa [2009: 148-151] and Hayashi [2019: 350].
 ${ }^{280}$ vyāsā] $\mathrm{K}_{\mathrm{ED}} \mathrm{A}_{1}{ }^{\text {pc }},{ }^{\circ}$ vyāsya sā $\mathrm{A}_{1}{ }^{\text {ac }}$; tasyāḥ] K_{ED}, tasyā A_{1}
 ${ }^{29}$ āyāmah] K_{ED}, āyāma/ A_{1}; karās tribhāgayu ${ }^{\circ}$] K_{ED}, karā yu ${ }^{\circ} \mathrm{A}_{1}$

[^10]: ${ }^{31}$ See Hayashi [2017: 40-44, 98-102].
 ${ }^{32}$ dvitri $\left.^{\circ}\right] \mathrm{K}_{\mathrm{ED}}$, dditṛ ${ }^{\circ} \mathrm{A}_{1}$; ${ }^{\circ}$ catuṣka ${ }^{\circ}$] $\mathrm{K}_{\mathrm{ED}} \mathrm{A}_{1}{ }^{\mathrm{pc}}$, ${ }^{\circ}$ caturthaṣka ${ }^{\circ} \mathrm{A}_{1}{ }^{\text {ac }}$; ${ }^{\circ}$ ṣkariṇī] K_{ED}, ${ }^{\circ}$ ṣkaraṇī A_{1}; ${ }^{\circ}$ stārā] K K_{ED}, ${ }^{\circ}$ starā A_{1}
 ${ }^{330}$ stāyāmā khāta ${ }^{\circ}$] $\mathrm{K}_{\mathrm{ED}},{ }^{\circ}$ staghame ṣāta ${ }^{\circ} \mathrm{A}_{1}$; ${ }^{\circ}$ masyāh] em., ${ }^{\circ}$ māśu K_{ED}, ${ }^{\circ}$ masyā A_{1}
 ${ }^{34}$ āyāmaḥ 16 lambeṣu] em., vyāmeh $\left|\begin{array}{c}\text { pṛthuḥ } / 8 \\ \text { kadīha } 8\end{array}\right|$ lābaṣa $16 \mathrm{~A}_{1}$
 ${ }^{35} v e$ and $v i$ are abbreviations for vedha and vista $r a$ respectively.

[^11]: ${ }^{36}$ Cf. Keller [2006: vol. 1, 67].

[^12]: ${ }^{37}$ Translation by Keller [2006: vol. 1, 70].
 ${ }^{38}$ kūpa $\left.^{\circ}\right] \mathrm{K}_{\mathrm{ED}}$, kapa ${ }^{\circ} \mathrm{A}_{1}$; hastās tale] K_{ED}, hastā mūle A_{1}; tu] A_{1}, ca $\mathrm{K}_{\text {ED }}$
 ${ }^{39}$ khāta $^{\circ}$] $\mathrm{K}_{\text {ED }}$, khāt ${ }^{\circ} \mathrm{A}_{1}$; samācakṣva] K_{ED}, semācakṣah A_{1}

[^13]: ${ }^{40} \operatorname{Tr}$ 54: mukhatalatadyogānām vargaikyakrteh padaṃ daśaguṇāyāh/ vedhaguṇam caturanvitavimśatibhaktam phalam kūpe// "The square of the sum of the squares of the face (i.e., top) and bottom [diameters], and of their sum, is multiplied by ten. The [square] root [taken] from [the product], multiplied by the depth and divided by twenty increased with four, [gives] the fruit (i.e., capacity) of a circular well."

[^14]: ${ }^{41}$ Translation by Kern [1873: 318]. He refers to "temple" because this chapter, BS 56, deals with the structure of temples.
 ${ }^{42}$ Translation by Iyer [1987: 282].
 ${ }^{43}$ Translation by Acharya [1995: 106].
 ${ }^{44}$ Translation by Bhat [1995: part 1, 539]. He cites the text published at Varanasi (see [4] in References: Primary sources) which reads cd $p \bar{a} d a-\mathrm{s}$ as: ucchrāyād yas trttīyāmśas tena tuly \bar{a} kaṭih smrtā.
 ${ }^{45}$ Iyer's translation was first published in 1884-1885, Acharya's in 1934, and Bhat's in 1981.

[^15]: ${ }^{46}$ The edition published at Varanasi adopts the different chapter number, BS 55.11. See [4] in References: Primary sources.
 ${ }^{47}$ vedībandha and śikhara are "basal wall-mouldings" and "tower, spire (in North India)" respectively. See Meister et al. [1989: vol. 2, pt. 1, 411, 414].
 ${ }^{48}$ See Turner [1999: 133-134].

