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Abstract
We show the finite time blow up of a solution to the Cauchy problem of a drift-diffusion
equation of a parabolic-elliptic type in higher space dimensions. If the initial data satisfies
a certain condition involving the entropy functional, then the corresponding solution to the
equation does not exist globally in time and blows up in a finite time for the scaling critical
space. Besides there exists a concentration point such that the solution exhibits the concen-
tration in the critical norm. This type of blow up was observed in the scaling critical two
dimensions. The proof is based on the profile decomposition and the Shannon inequality in
the weighted space.

Mathematics Subject Classification Primary 35K15 · 35K55 · 35Q60 secondary 78A35

1 Drift-diffusion system in higher dimensions

We consider the finite time blow-up for the solution to the drift-diffusion system in spatially
higher dimensions. Let u be a solution to the Cauchy problem of the drift-diffusion system:

⎧
⎪⎨

⎪⎩

∂t u − �u + ∇ · (u∇ψ) = 0, t > 0, x ∈ R
n,

− �ψ = u, t > 0, x ∈ R
n,

u(0, x) = u0(x), x ∈ R
n,

(1.1)

where u = u(t, x) denotes particle density andψ denotes a potential of the particle field. The
equation (1.1) is relevant to a model of self-interacting particles (see Biler–Nadzieja [7], see
also Biler [2]), the semi-conductor device simulations (see [15, 21, 32]) and a model of the
aggregation of mold known as the Keller–Segel system (see [22]). In some models, the equa-
tion can be derived from a singular limit problem from a fluid mechanical approximation of
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gravitation gaseous stars (cf. [14, 24]). If the solution has enough regularity and integrability,
then the problem exhibits an instability of the solution, namely, under certain conditions on
the initial data, the solution blows up in finite time. The blow up results can be found in [2,
6, 13, 18, 27, 28, 33, 34, 37, 43, 44]. On the other hand, the global existence and stability are
known for two dimensional case ([20, 25, 26, 35–38]). This property is naturally inherited
to the system (1.1).

Since u denotes the density of particles, it is natural to consider a non-negative solution,
and in this case, the L1 norm of the solution u(t) is preserved in time and this corresponds
to the mass conservation law. Under this setting the question of whether the solution exists
globally in time or blows up in a finite time is a basic problem. If the initial data is large
and decays fast at spatially infinity, the solution blows up in a finite time. In this paper, we
discuss such instability of solution under weaker assumptions on the initial data that decays
slower at space infinity.

The system (1.1) involves the Poisson equation and the solution u is influenced by a non-
local effect from the Green’s function of the Poisson equation. Hence, the large time behavior
of the solution is largely depending on the behavior of the solution at spatial infinity. Hence,
the weight condition on the data may give a subtle effect on the large time behavior of the
solution. Therefore, to eliminate the weight condition or reduce the condition is an interesting
problem to (1.1).

The local existence of the solution in both the semi-group approach and the energymethod
is now well established (cf. [27]). To state results, we define some function spaces: For s > 0
and 1 ≤ p ≤ ∞,

L p
s (Rn) ≡ {

f ∈ L p
loc(R

n); 〈x〉s f (x) ∈ L p(Rn)
}
,

where 〈·〉 = (1+| · |2)1/2. Noting that L p
s (Rn) ⊂ L1(Rn) if s > n/p, we recall the existence

and uniqueness of the solution for the n dimensional drift-diffusion equation in a critical
space L

n
2 (Rn).

Definition. Let n ≥ 3 and 1 ≤ p < ∞. For u0 ∈ L p(Rn), we call u a mild solution to the
system (1.1) if u(t) solves the integral equation

u(t) = et�u0 −
∫ t

0
e(t−s)�∇ · (u(s)∇ψ(s)) ds

in C([0, T ); L p(Rn)), where

ψ = (−�)−1u ≡ 1

(n − 2)ωn−1
|x |−(n−2) ∗ u,

with ωn−1 ≡ 2π
n
2 /�

( n
2

)
as the surface volume of a unit sphere and �(·) denotes the gamma

function.

Proposition 1.1 (Local well-posedness and conservation laws) Let n ≥ 3 and n
2 ≤ p < n.

For any u0 ∈ L p(Rn), there exists T > 0 and a unique mild solution (u, ψ) to (1.1) with
the initial data u0 such that u ∈ C([0, T ); L p(Rn)) ∩ Lθ (0, T ; Lq(Rn)) with 2/θ + n/q =
2 and q > n

2 . Moreover, the solution has higher regularity u ∈ C([0, T );W 2,p(Rn)) ∩
C1((0, T ); L p(Rn)) and it is a strong solution for (1.1). Besides there exists a maximal
existence time T = T∗ ≤ ∞ such that if T∗ < ∞, then for any n

2 < p ≤ ∞,

lim
t→T∗

‖u(t)‖p = ∞.

Furthermore, the solution satisfies the following properties:
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Finite time blow up and concentration ... Page 3 of 34 47

(1) If the initial data u0 ∈ L1
b(R

n) for b > 0, then the solution satisfies

u ∈ C([0, T ); L p(Rn) ∩ L1
b(R

n)).

(2) If u0(x) ≥ 0, then u(t, x) ≥ 0 for any (t, x) ∈ (0, T ) × R
n.

(3) If u0 ∈ L1(Rn), then

‖u(t)‖1 = ‖u0‖1. (1.2)

(4) If in addition u0 ∈ L1
b(R

n), where b > 0 and p ≥ n
2 , then the solution (u, ψ) satisfies

H [u(t)] +
∫ t

0

∫

Rn
u(t)

∣
∣∇(log u(τ ) − ψ(τ))

∣
∣2 dx dτ = H [u0], (1.3)

where

H [u(t)] ≡
∫

Rn
u(t) log u(t) dx − 1

2

∫

Rn
u(t)ψ(t) dx . (1.4)

(5) If u0 ∈ L1
2(R

n), then the second moment of the solution satisfies the following identity:
∫

Rn
|x − x ′|2u(t) dx =

∫

Rn
|x − x ′|2u0(x) dx + 2(n − 2)

∫ t

0
H [u(s)] ds + 2nt‖u0‖1

− 2(n − 2)
∫ t

0

∫

Rn
u(s) log u(s) dx ds,

(1.5)

where x ′ ∈ R
n is an arbitrary point.

The local well-posedness in L p space is essentially due to the earlier works by Weissler
[50] and Giga [15], where they consider the nonlinear heat equations and incompressible
Navier–Stokes equations. Since the scaling structure to (1.1) is similar to the Navier–Stokes
equation, we may apply those theories and obtain the existence and uniqueness of the mild
solution byKurokiba–Ogawa [28] (see also for the critical case [25] and in theweighted space
[27]). If the initial data is non-negative and integrable, then the weak maximum principle and
the conservation law of the average assure that the weak solution preserves the total mass
(1.2). This is natural consequence from the equation originally appears from the conservation
laws (cf. [14, 24]).

On the other hand, if we consider the invariant scaling property, namely, the equation has
a scaling invariant property that for λ > 0,

{
uλ(t, x) ≡ λ2u(λ2t, λx),

ψλ(t, x) ≡ ψ(λ2t, λx)

is invariant scaling for the system. The critical space coincide with the invariant scale is

L∞(
R+; L n

2 (Rn)
)× L∞(R+; L∞(Rn))

and for two dimensional case it is L∞(R+; L1(R2)) × L∞(R+; L∞(R2)). The global exis-
tence in the scaling critical spaces is a direct consequence of Fujita–Kato’s principle.

Proposition 1.2 (Global existence) Let n ≥ 3, p ≥ n
2 , and b > 0. Assume that the initial

data u0 is non-negative in L p(Rn)∩ L1
b(R

n), and for some constant Bn > 0 depending only
on n such that ‖u0‖ n

2
< Bn.

(1) Then the corresponding solution u obtained by Proposition 1.1 exists globally in time.
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(2) The solution decays in time:

‖u(t)‖p ≤ C(1 + t)
− n

2

(
1− 1

p

)

.

One can find the constant Bn can be chosen as

Bn = 8

nS2n
= 8π(n − 2)

(
�( n2 )

�(n)

) 2
n

(see for instance [13], see also [11] for an improved constant), where Sn denotes the best
possible constant of Sobolev’s inequality (cf. Talenti [47]). Under this assumption we see
that for some T > 0, it holds

‖u(t)‖ n
2

≤ ‖u0‖ n
2

for t ∈ [0, T ). Then ‖u(t)‖ n
2
is uniformly bounded by Bn . This implies a uniform bound for

the solution.
The main subject of this paper is to show an instability result of the mild solution to

(1.1). When n = 2, the solution to (1.1) exists globally in time or non-negative initial data
u0 ∈ L1(R2) ∩ L2

s (R
2) satisfying

∫

R2
u0(x) dx ≤ 8π.

On the other hand, if
∫

R2
u0(x) dx > 8π,

then the solution blows up in a finite time. Namely, there exists Tm < ∞ such that

lim
t→Tm

‖u(t)‖p = ∞
for all 1 < p ≤ ∞ (see one dimensional modification [9]).

In Biler [2] and Nagai [33, 34], the finite time blow up of the positive solutions are shown
(cf. Kurokiba–Ogawa [27]), under certain conditions for two dimensional case.

While if we consider the higher dimensional case, the invariant space is shifted in L
n
2

and the L1 conservation law does not work very well. In this sense, the problem is a “super
critical” case. On the other hand, the usage of the entropy functional yields new difficulty
to show the finite time blow-up. Biler [3] obtained a finite time blow-up result for the case
of bounded domain with a boundary condition. Corrias–Perthame–Zaag [13] obtained the
finite time blowing up result for the higher dimensional cases who did not use the entropy
functional. Namely, there exists a large constant M = M(n) > 0 such that if the initial data
satisfies

M ≤ ‖u0‖
n

n−2
1∫

Rn
|x − x̄ |2u0(x) dx

,

where x̄ is the second mass center u0, that is,
∫

Rn
|x − x̄ |bu0(x) dx ≡ inf

x∈Rn

∫

Rn
|y − x |bu0(y) dy.

Then the solution blows up in a finite time. In both results, the initial data and solutions are
both assumed to be in L1

2(R
n), namely, the second moment of the solution remains finite for
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all time up to the maximal existence time. This is indeed a natural condition of the system if
we regard that the u(t, x) dx as a probability measure assuming ‖u0‖1 = 1 with positivity.

The following statement is essentially due to Biler [3] in a bounded domain and refined
by Calvez–Corrias–Ebde [11] for the whole space case and Ogawa–Wakui [41].

Proposition 1.3 (Blow-up criterion) Let n ≥ 3 and b > 0. For u0 ∈ L
n
2 (Rn) ∩ L1

b(R
n),

u0 ≥ 0, assume further that for some constant Cn,b > 0,

H [u0] < −n

b
‖u0‖1 log

⎛

⎝
Cn,b

‖u0‖1+
b
n

1

∫

Rn
|x − x̄ |bu0(x) dx

⎞

⎠ , (1.6)

where x̄ is the b-th mass center of u0.

(1) When b ≥ 2, then

Cn,b ≥ 2πe
n

n−2

n
(1.7)

and the solution u to (1.1) blows up in a finite time. Namely, for any n
2 < p ≤ ∞, there

exists some T∗ < ∞ such that

lim
t→T∗

‖u(t)‖p = ∞. (1.8)

(2) If u0 ≥ 0 is radially symmetric and b > 0, then

Cn,b ≥ bcn,be
1+ b(1+δ/n)

n−2

n
(1.9)

and the solution u to (1.1) blows up in a finite time in the sense of (1.8), where cn,b is
the constant defined in Proposition 2.1.

(3) When 0 < b < 2, then the solution does not remain uniformly bounded in L
n
2 (Rn).

Our main result is the concentration phenomena for the blowing up solution:

Theorem 1.4 Let n ≥ 3 and b ≥ 2. For u0 ∈ L
n
2 (Rn) ∩ L1

b(R
n), u0 ≥ 0, assume that (1.6)

holds with Cn,b = 2πe
n

n−2 /n.

(1) Then the blowing up solution u to (1.1) concentrates the following sense: Let T∗ > 0 be
the blow up time and {tk}k∈N satisfy tk → T∗ and ‖u(tk)‖ n

2
→ ∞ as k → ∞. Then for

any ε > 0, there exist a subsequence of {tk}k∈N and x∗ ∈ R
n such that

(
2n

(n − 2)CHLS

) n
2 ≤ lim

k→∞

∫

Bε(x∗)
u(tk, x)

n
2 dx, (1.10)

where CHLS is the best possible constant of the Hardy–Littlewood–Sobolev inequality,
that is,

∫

Rn
f (−�)−1 f dx ≤ CHLS‖ f ‖1‖ f ‖ n

2
. (1.11)

(2) Furthermore, if T∗ < ∞, then for any ε > 0, there exist a subsequence of {tk}k∈N and
{xk}k∈N ⊂ R

n such that
(

2n

(n − 2)CHLS

) n
2 ≤ lim

k→∞

∫

B
ε
√

T∗−tk
(xk )

u(tk, x)
n
2 dx, (1.12)

where CHLS is defined by the above.
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By the assumption (1.6) with Cn,b = 2πe
n

n−2 /n, we see that

−1

2

∫

Rn
u0(x)(−�)−1u0(x) dx < −n

2
‖u0‖1 log

⎛

⎝
2πe

n
n−2

n‖u0‖1+
2
n

1

∫

Rn
|x − x̄ |2u0(x) dx

⎞

⎠

−
∫

Rn
u0(x) log u0(x) dx .

It follows from the Hardy–Littlewood–Sobolev inequality (1.11) and Shannon inequality
(2.1) (see Proposition 2.1 below) that

−CHLS

2
‖u0‖1‖u0‖ n

2
< −n

2
‖u0‖1 log

(
e

2
n−2

)
,

which implies that the initial data u0 ≥ 0 satisfies

∫

Rn
u0(x)

n
2 dx >

(
2n

(n − 2)CHLS

) n
2

. (1.13)

The constant of the right hand side coincides with one appearing in (1.10). We also see that

Bn = 8

nS2n
<

2n

(n − 2)CHLS
.

for n ≥ 3 (see Proposition 2.4 below).
For a radially symmetric solution to (1.1), one can extend the condition of the weighted

Lebesgue space. Since the assumption on the initial data is different from the case of b ≥ 2,
the constant appearing in the concentration phenomena changes as follows:

Theorem 1.5 Let n ≥ 3andb > 0. For a radially symmetric function u0 ∈ L
n
2 (Rn)∩L1

b(R
n),

u0 ≥ 0.

(1) If b ≥ 2 and u0 satisfies (1.6) with Cn,b = 2πe
n

n−2 /n, then the blowing up solution u to
(1.1) concentrates the following sense: Let 0 < T∗ < ∞ be the blow up time and {tk}k∈N
satisfy tk → T∗ and ‖u(tk)‖ n

2
→ ∞ as k → ∞. Then for any ε > 0, there exists a

subsequence of {tk}k∈N such that

(
2n

(n − 2)CHLS

) n
2 ≤ lim

k→∞

∫

B
ε
√

T∗−tk
(0)

u(tk, x)
n
2 dx . (1.14)

(2) If b > 0 and u0 satisfies (1.6) with (1.9) for any δ > 0, then the blowing up solution
u to (1.1) concentrates the following sense: Let 0 < T∗ < ∞ be the blow up time and
{tk}k∈N satisfy tk → T∗ and ‖u(tk)‖ n

2
→ ∞ as k → ∞. Then for any ε > 0, there exist

a subsequence of {tk}k∈N such that

(
2(n + δ)

(n − 2)CHLS

) n
2 ≤ lim

k→∞

∫

B
ε
√

T∗−tk
(0)

u(tk, x)
n
2 dx . (1.15)

Theorem 1.5 gives the L
n
2 -concentration rate of the radially symmetric blow-up solution and

is the analogous result of a nonlinear Schrödinger equation (see Merle–Tsutsumi [31] and
Tsutsumi [48]).
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Remark In the derivation of (1.13), if we assume that u0 satisfies (1.6) with (1.9) instead of
Cn,b = 2πe

n
n−2 /n, then we see that

∫

Rn
u0(x)

n
2 dx >

(
2(n + δ)

(n − 2)CHLS

) n
2

.

While we relax the weight condition from b ≥ 2 to b > 0 in Theorem 1.5, the assumption
of the initial data needs to be tightened when b > 0. The result of Theorem 1.5 (2) follows
from the analogous argument of Theorem 1.4 naturally.

It isworth comparing the above result and the case of the degenerate drift-diffusion system:
⎧
⎪⎨

⎪⎩

∂t u − �uα + ∇ · (u∇ψ) = 0, t > 0, x ∈ R
n,

− �ψ = u, t > 0, x ∈ R
n,

u(0, x) = u0(x), x ∈ R
n,

(1.16)

where α > 1 denotes the adiabatic constant originated from the pressure term P(ρ) = cρα

in the barotropic damped compressible Navier–Stokes–Poisson system (cf. [14, 24]). It is
known that there are two critical exponents α∗ = 2 − 4/(n + 2) and α∗ = 2 − 2/n (see [8,
12, 40, 42, 45, 46, 49]). In the case α∗ ≤ α ≤ α∗ (see [23]), the threshold for the global
existence of the weak solution to (1.16) is identified as

‖u0‖β
1 ‖u0‖γ

α < ‖V ‖β
1 ‖V ‖γ

α ,

where

β ≡ 2

2 − α
− n

α
, γ ≡ n − 2

2 − α

and V is the optimizer for the Hardy–Littlewood–Sobolev inequality
∫

Rn
f (x)(−�)−1 f (x) dx ≤ CHLS,α‖ f ‖1−σ

1 ‖ f ‖1+σ
α

with

σ ≡ α

α − 1

n − 2

n
− 1.

In particular case of β = 0 when α = α∗, the threshold is
∫

Rn
u0(x)

α∗ dx <

∫

Rn
V (x)α∗ dx =

(
2n

(n − 2)CHLS,α∗

) n
2

.

From this estimate, the above lower bound for the concentration coincides the threshold for
the global existence of the weak solution to the degenerate drift-diffusion equation in higher
dimensions.

The proof of Theorem 1.4 is based on the profile decomposition in L1(Rn). We take
{tk}k∈N such that tk → T as k → ∞ and introduce the rescaled solution sequence

uk(x) ≡ λ−n
k u(tk, λ

−1
k x) with λk ≡ ‖u(tk)‖

1
n−2
n
2

for a blowing up solution u to (1.1). Then ‖uk‖1 = ‖u0‖1 and ‖uk‖ n
2

= 1. In Bedrossian–

Kim [1], they showed the profile decomposition in L1(Rn), but their technique allows that
the profile depends on k. In this paper, we improve the extraction of the profile independent
of k from {uk}k∈N. In order to deny the possibility that {uk} is vanishing, we use the bump
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function method for the rescaled equation (see Biler [2], Biler–Cieślak–Karch–Zienkiewicz
[4], Biler–Karch–Zienkiewicz [5]).

2 Preliminaries

The following inequality originally due to Shannon is useful to estimate the logarithmic
functional (see [29, 41]).

Proposition 2.1 (Generalized Shannon’s inequality) Let n ≥ 2 and b > 0. There exists a
constant Cn,b > 0 such that for any non-negative function f ∈ L1

b(R
n),

−
∫

Rn
f (x) log f (x) dx ≤ n

b
‖ f ‖1 log

⎛

⎝
Cn,b

‖ f ‖1+
b
n

1

∫

Rn
|x − x̄ |b f (x) dx

⎞

⎠ , (2.1)

where x̄ is the b-th mass center of f and

Cn,b = becn,b

n
, cn,b =

(
2π

n
2

b

�( nb )

�( n2 )

) b
n

is the best possible. In particular, if b = 2, then

Cn,2 = 2πe

n
.

Lemma 2.2 Let n ≥ 2 and b > 0. There exists a constant C > 0 such that for all f ∈
L

n
2 (Rn) ∩ L1

b(R
n),

‖ f ‖1 ≤ C‖ f ‖
b

n−2+b
n
2

(∫

Rn
|x |b f (x) dx

) n−2
n−2+b

.

From this lemma, we see that

‖u0‖
n−2+b
n−2

1

(∫

Rn
|x |bu(t) dx

)−1

≤ C
n−2+b
n−2 ‖u(t)‖

b
n−2
n
2

and there is a limitation of the blow-up speed of the L
n
2 -norm of the solution u to (1.1) and

the speed of the b-th moment.
The following inequality is well-known and will be used in later often:

Proposition 2.3 (Hardy-Littlewood-Sobolev inequality) Let n ≥ 3. Then there exists a
constant CHLS > 0 which is depending only on n such that for any function f ∈
L1(Rn) ∩ L

n
2 (Rn),

∥
∥|∇|−1 f

∥
∥2
2 ≤ CHLS‖ f ‖1‖ f ‖ n

2
. (2.2)

Moreover, there exists the extremal function V ∈ L1(Rn) ∩ L
n
2 (Rn) such that V is radially

symmetric and decreasing function satisfying the Euler–Lagrange equation
⎧
⎪⎪⎨

⎪⎪⎩

(−�)−1V = n

4
CHLSV

n
2 −1 + 1

2
CHLSχsupp V in BR,

V > 0 in BR,

V = 0 in R
n \ BR

(2.3)

123
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for some 0 < R < ∞.

Proof of Proposition 2.3 The Hardy–Littlewood–Sobolev inequality implies that it follows
that

∫∫

Rn×Rn

| f (x)|| f (y)|
|x − y|n−2 dx dy ≤ Cn,α‖ f ‖α‖ f ‖r ,

where 1 < α, r < ∞ satisfy

1

α
+ n − 2

n
+ 1

r
= 2, i.e.,

1

α
− 2

n
+ 1

r
= 1.

By Hölder’s inequality, we have
∫∫

Rn×Rn

| f (x)|| f (y)|
|x − y|n−2 dx dy ≤ Cn,α‖ f ‖1−θ

1 ‖ f ‖1+θ
α ,

where 0 ≤ θ ≤ 1 satisfies

1 + θ = α

α − 1

n − 2

n
.

In particular, let α = n
2 , then θ = 0, so that the inequality
∫∫

Rn×Rn

| f (x)|| f (y)|
|x − y|n−2 dx dy ≤ Cn‖ f ‖1‖ f ‖ n

2

holds for any function f ∈ L1(Rn) ∩ L
n
2 (Rn). By the definition of the Poisson kernel, we

can rewrite as
∣
∣
∣
∣

∫

Rn
f (x)(−�)−1 f (x) dx

∣
∣
∣
∣ ≤ CHLS‖ f ‖1‖ f ‖ n

2
,

where CHLS denotes the best possible constant of the Hardy-Littlewood-Sobolev inequality
and CHLS = Cncn . This implies the inequality (2.2). The attainability and Euler–Lagrange
equation (2.3) of the inequality (2.2) is proved by Kimijima–Nakagawa–Ogawa [23] (see
also [10]). ��
Proposition 2.4 (Comparison of constants) The best constant CHLS is estimated from the
above by

CHLS < S2n , (2.4)

where Sn is the best constant of Sobolev’s inequality

‖ f ‖ 2n
n−2

≤ Sn‖∇ f ‖2,
given by

S2n = 1

πn(n − 2)

(
�
( n
2

)

�(n)

) 2
n

for all f ∈ Ḣ1(Rn). In particular, for n ≥ 3,

8

nS2n
<

2n

(n − 2)CHLS
. (2.5)

123
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Remark The precise constant for Sn is known by Talenti [47]. In the view of (1.10), it is
interesting to observe that

2n

(n − 2)CHLS

∣
∣
∣
∣
n=2

= 2n

Cn

2π
n
2

�( n2 )

∣
∣
∣
∣
n=2

= 8π.

Indeed, the best constantCHLS can be decomposed into the explicit constant and implicit one
as

CHLS = 1

(n − 2)ωn−1
Cn,

where Cn is the best constant defined by

Cn ≡ sup
f ∈L1(Rn)∩L

n
2 (Rn),

f ≥0

∫∫

Rn×Rn

f (x) f (y)

|x − y|n−2 dx dy

‖ f ‖1‖ f ‖ n
2

.

In particular, the best constantCn becomes 1 when n = 2. In this case, the role of the constant
coincides with the threshold in the case of n = 2.

Proof of Proposition 2.4 It is easy to see that the best constant S2n also gives the best constant
for the inequality

∥
∥|∇|−1 f

∥
∥2
2 ≤ S2n‖ f ‖ 2n

n+2

for any f ∈ L2n/(n+2)(Rn)by the duality argument (see for instance [40]).Hence, byHölder’s
inequality, one can observe that

∫

Rn
f (x)(−�)−1 f (x) dx ≤ S2n‖ f ‖1‖ f ‖ n

2

holds for any f ∈ L1(Rn) ∩ L
n
2 (Rn). This shows CHLS ≤ S2n . To see that CHLS < S2n , we

assume on the contrary that CHLS = S2n for n ≥ 3. Then we may show that there exists an
extremal function V ∈ L1(Rn) ∩ L

n
2 (Rn) such that it attains the best constant, that is,

∥
∥|∇|−1V

∥
∥2
2 = S2n‖V ‖1‖V ‖ n

2
.

Then by the Hölder and Sobolev inequalities,

∥
∥|∇|−1V

∥
∥2
2 = S2n‖V ‖1‖V ‖ n

2
≥ S2n‖V ‖22n

n+2
≥ ∥
∥|∇|−1V

∥
∥2
2 .

This shows that V is also the extremal function that attains the best possible constant of
Sobolev’s inequality, that is,

∥
∥|∇|−1V

∥
∥2
2 = S2n‖V ‖22n

n+2
.

Since the extremal function of this inequality is uniquely identified up to translation and
dilation, namely,

V (x) = an

(

1 + 1

n(n − 2)
|x |2

)− n+2
2

, where an ≡
(

2n

n − 2

) n+2
2

. (2.6)
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On the other hand, the extremal function of the Hardy–Littlewood–Sobolev inequality (2.2)
must satisfy the Euler–Lagrange equation (2.3). Clearly, the Talenti function (2.6) does not
satisfy (2.3). This is a contradiction, and hence, we obtain (2.4). Moreover, it follows from
(2.4) that

8

nS2n
<

8

nCHLS
<

2n

(n − 2)CHLS

for any n ≥ 3. Thus, we conclude that (2.5) holds.
As an alternative proof of (2.4), since the extremal function of this inequality is uniquely

identified up to translation and dilation, one can compute ‖V ‖1‖V ‖ n
2
and ‖V ‖2n/(n+2) explic-

itly. Since it holds that

‖V ‖qq = 1

2
aqn (n(n − 2))

n
2 ωn−1B

(
n

2
,
q(n + 2)

2
− n

2

)

,

where B(·, ·) is the beta function, the problem can be reduced as the comparison between

B
(n

2
, 1
)
B

(
n

2
,
n2

4

) 2
n

= 2

n

(
�( n2 )�( n

2

4 )

�( n2 + n2
4 )

) 2
n

≥ �
(n

2

) 2
n

(
(2/n)

n
2 �( n

2

4 )

�(
(n+1)2

4 )

) 2
n

and B
(n

2
,
n

2

) n+2
n =

(
�( n2 )2

�(n)

)1+ 2
n

= �
(n

2

)1+ 2
n
(

�( n2 )

�(n)

)1+ 2
n

.

One can check those values are different from each other by numerical computation1. For
the higher dimensions, one can show it by applying the Stirling formula

�(z) � (2π)
1
2 e−z zz−

1
2 for z � 1.

The ratio of norms of V is estimated by

‖V ‖1‖V ‖ n
2

‖V ‖22n
n+2

= 2

n

�(n)

�
( n
2

)2

⎛

⎝
�(n)�

(
n2
4

)

�
( n
2

)
�
(
n
2 + n2

4

)

⎞

⎠

2
n

� (2π)−
1
2 2

n
2 +2n− 3

2

(
1

2
+ 1

n

)− n
2 −1+ 1

n

> 1 for n � 1.

For example, in the case of n = 200, we compute

(2π)−
1
2 2

n
2 +2n− 3

2

(
1

2
+ 1

n

)− n
2 −1+ 1

n = (2π)−
1
2 2126−

1
2 5− 9

2

(
125

63

)126− 1
250

> 1.

��

3 Profile decomposition in L1

The following decomposition is originally due toGerard [16] (cf. Nawa [39]) and extended by
many authors. Here we show a slightly modified version of the result due to Bedrossian–Kim
[1] (see also Hmidi–Keraani [19]).

1 The authors checked this for n = 4 rigorously and up to n = 300 numerically.
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Lemma 3.1 (Profile decomposition in L1) Let { fk}k∈N ⊂ L1(Rn) ∩ L log L(Rn) satisfy

fk ≥ 0, ‖ fk‖1 = M,

∫

Rn
fk(x) log fk(x) dx ≤ L (3.1)

for some constant M, L > 0. Then for all ε > 0, there exists a subsequence of { fk} (not
relabeled), J ∈ N ∪ {0}, {x ( j)

k }k∈N, j=1,...,J ⊂ R
n, {R( j)}Jj=1 ⊂ R+, and function sequences

{F ( j)}Jj=1, {wk}k∈N, {ek}k∈N ⊂ L1(Rn) which satisfy

fk(x) =
J∑

j=1

F ( j)(x − x ( j)
k ) + wk(x) + ek(x) a.a. x ∈ R

n

with the following properties:

(1) The profile {F ( j)} is a nonnegative function sequence satisfying that for each k ∈ N,

supp F ( j) ⊂ BRj (0) and for j �= j ′, |x ( j)
k − x ( j ′)

k | → ∞ as k → ∞. Moreover, for each

k ∈ N, BR( j) (x
( j)
k ) and suppwk are all disjoint for any j = 1, . . . , J .

(2) {wk} is the vanishing part, that is, for all R > 0,

lim
k→∞ sup

x∈Rn

∫

BR(x)
wk(x) dx = 0,

and 0 ≤ wk ≤ fk almost everywhere x ∈ R
n.

(3) {ek} is the error term, that is,
lim
k→∞ ‖ek‖1 < ε

and ek ≤ fk almost everywhere x ∈ R
n.

In particular, passing k → ∞, we have the almost orthogonality

‖ fk‖1 =
J∑

j=1

‖F ( j)‖1 + ‖wk‖1 + ε.

Proof of Lemma 3.1 By the argument of the concentration compactness lemma in [30], there
exists a subsequence { fk}k∈N (not relabeled) such that one of the following situation occurs
for { fk}: (1) the compactness, (2) the vanishing, or (3) the dichotomy.We fix ε > 0 arbitrarily.
Case 1. Compactness: If the compactness occurs, then there exists a sequence {x (1)

k }k∈N ⊂ R
n

such that
∫

BR(1) (x
(1)
k )

fk(y) dy ≥ M − ε

2
.

for some radius R(1) > 0 independent of k. We set

f̃k(x) ≡ fk
(
x + x (1)

k

)
χBR(1) (0)(x)

for x ∈ R
n . By the assumption (3.1), we see that

∫

Rn
f̃k(x) log f̃k(x) dx ≤ L.
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On the other hand, we have
∫

Rn
f̃k(x) log f̃k(x) dx =

∫

B
R(1)(x(1)k )

fk(x) log fk(x) dx ≥ −e−1|BR(1) |.

Thus, it holds that
∣
∣
∣
∣

∫

Rn
f̃k(x) log f̃k(x) dx

∣
∣
∣
∣ ≤ max{L, e−1|BR(1) |},

which implies that { f̃k} is uniformly integrable. Then theDunford–Pettis theorem implies that
there exist a subsequence { f̃kl }l∈N ⊂ { f̃k} and a nonnegative function F̃ (1) ∈ L1(BR(1) (0))
such that f̃kl converges weakly to F̃ (1) in L1(BR(1) (0)). Thus, we set a profile F (1) as the
zero expansion of F̃ (1), that is,

F (1)(x) ≡
{
F̃ (1)(x − x (1)

k ), x ∈ BR(1) (x (1)
k ),

0, otherwise.

Moreover, by the weak lower continuity of norm, we have

M − ε

2
≤ ‖F (1)‖1 ≤ M .

On the other hand, we set

ekl (x) ≡ fkl (x) − F (1)(x),

then ekl converges weakly to 0 in L1. In this case, we define wk ≡ 0. Then the claim in
Lemma 3.1 holds in J = 1.
Case 2. Vanishing: If the vanishing occurs, it follows that

lim
k→∞ sup

x∈Rn

∫

BR(x)
fk(y) dy = 0

for arbitrary R > 0. Define wk ≡ fk and ek ≡ 0, then we have the claim of Lemma 3.1 with
J = 0.
Case 3. Dichotomy: If the dichotomy occurs, there exists μ ∈ (0, M) such that there exist
the non-negative function sequences { fk,1}k∈N, { fk,2}k∈N ⊂ L1(Rn) which satisfy

fk = fk,1 + fk,2 + hk,

where we define hk ≡ fk − ( fk,1 + fk,2). More precisely, there exist {x (1)
k }k∈N ⊂ R

n ,

R(1) > 0, and {R(1)
k }k∈N ⊂ R+ such that

fk,1 = fk |BR(1) (x
(1)
k )

, fk,2 = fk |
Rn\B

R(1)
k

(x (1)
k )

with lim
k→∞ R(1)

k = ∞

with the following estimates:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

lim
k→∞ |‖ fk,1‖1 − μ| <

ε

2
,

lim
k→∞ |‖ fk,2‖1 − (M − μ)| <

ε

2
,

lim
k→∞ ‖hk‖1 <

ε

2
,
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and

lim
k→∞ dist(supp fk,1, supp fk,2) = ∞. (3.2)

These properties imply that fk,1, fk,2, and hk are the compact, escape, and error term,
respectively. Firstly, similarly to Case 1, we set

f̃k,1(x) ≡ fk,1
(
x + x (1)

k

)
= fk

(
x + x (1)

k

)
χBR(1) (0)(x),

and use the Dunford–Pettis theorem, we can get a weak convergence subsequence of f̃k,1 so
that we can set a profile F (1), which has a compact support and satisfies

μ − ε ≤ ‖F (1)‖1 ≤ μ.

On the other hand, the escape term fk,2 satisfies

lim
l→∞ ‖ fk,2‖1 = M − μ.

Secondary, we divide some cases whether the mass of the escape term is small or not. If we
can take μ ∈ (0, M) such that

lim
k→∞ ‖ fk,2‖1 <

ε

2
,

then we define ek ≡ fk − F (1)(x − x (1)
k ), and hence, the claim in Lemma 3.1 holds with

J = 1. In the case of

lim
k→∞ ‖ fk,2‖1 ≥ ε

2
,

we reset

f̄k,2 ≡ 1

‖ fk,2‖1 fk,2.

Then ‖ f̄k,2‖1 = 1. We apply the concentration compactness lemma to { f̄k,2}k∈N. Then there
exists a subsequence { f̄k,2} (not relabeled) such that one of the following situation occur for
{ f̄k,2}: (1) the compactness, (2) the vanishing, or (3) the dichotomy.
Case 3.1. Compactness: If the compactness occurs, then there exists {x (2)

k }k∈N ⊂ R
n such

that
∫

BR(2) (x
(2)
k )

f̄k,2(y) dy ≥ 1 − ε

2(M − μ)

for some radius R(2) > 0. We note that passing k → ∞, then |x (1)
k − x (2)

k | → ∞ by (3.2).
Then we set

f̃k,2(x) ≡ fk,2(x + x (2)
k )χBR(2) (0)(x)

Similarly to Case 1, we get a profile F (2) as a weak convergence limit of f̃k,2 and define

ek(x) ≡ fk(x) − (F (1)(x) + F (2)(x)).

Then the claim in Lemma 3.1 holds in J = 2.
Case 3.2. Vanishing: If the vanishing occurs, similarly to Case 2, we define

wk ≡ fk,2, ek ≡ fk − F (1) − fk,2.
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Then we have the claim of Lemma 3.1 with J = 1.
Case 3.3. Dichotomy: If the dichotomy occurs, there exists ν ∈ (0, 1) such that there exists
the non-negative function sequences { f̄k,21}, { f̄k,22} ⊂ L1(Rn) which satisfy

f̄k,2 = f̄k,2,1 + f̄k,2,2 + h̄k,

wherewe define h̄k ≡ f̄k,2−( f̄k,2,1+ f̄k,2,2). For each sequences, there exist {x (2)
k }k∈N ⊂ R

n ,

R(2) > 0, and {R(2)
k }k∈N ⊂ R+ such that

f̄k,2,1 = f̄k,2|BR(2) (x
(2)
k )

, f̄k,2,2 = f̄k,2|
Rn\B

R(2)
k

(x (2)
k )

with lim
k→∞ R(2)

k = ∞

with the following estimates:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

lim
l→∞ |‖ f̄k,2,1‖1 − ν| <

ε

4(M − μ)
,

lim
l→∞ |‖ f̄k,2,2‖1 − (1 − ν)| <

ε

4(M − μ)
,

lim
l→∞ ‖h̄k‖1 <

ε

4(M − μ)
.

By the definition of f̄k,2, we can define hk,2 ≡ ‖ fk,2‖1h̄k so that we have

lim
k→∞ ‖hk,2‖1 <

ε

23
.

If we can take ν ∈ (0, 1) such that

lim
l→∞ ‖ fk,2,2‖1 <

ε

2
, fk,2,2 ≡ ‖ fk,2‖1 f̄k,2,2

then we take a subsequence {kl} which satisfies the above estimates and define

ek(x) ≡ fk(x) − F (1)(x) − F (2)(x).

Then the claim in Lemma 3.1 holds with J = 2. In the case of

lim
k→∞ ‖ fk,2,2‖1 ≥ ε

2
,

we apply the same argument above many times.
The proof of Lemma 3.1 relies upon the induction argument. We omit to prove in detail.

Note that the argument must be terminated in a finite step. Indeed, we assume on the contrary,
these steps continue infinitely. Then it holds that

lim
k→∞ ‖ fk,l,2‖1 ≥ ε

2

for any l ∈ N. Take the sum with respect to l, then the total mass ‖ fk‖1 diverges, that is,

∞ > M = ‖ fk‖1 ≥
∞∑

l=1

‖ fk,l,2‖1 ≥
∞∑

l=l0

ε

2
= ∞.

This contradicts the assumption of Lemma 3.1. ��
Remark In [1], they also showed the profile decomposition on L1(Rn). We emphasize that
Lemma 3.1 assures the profile independent of k while the profile in [1] depends on k. The
independence of the profile on k is valid in the proof of Theorem 1.4.
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4 Concentration

Lemma 4.1 Let the initial data u0 satisfy the assumption (1.6) with (1.7), then there exists
the corresponding solution u(t) to (1.1) blows up in a finite time T∗. Then it holds that for
any 0 < t < T∗,

2n

n − 2
‖u0‖1 ≤ ∥

∥|∇|−1u(t)
∥
∥2
2 . (4.1)

Proof of Lemma 4.1 For simplicity, we consider the case of b = 2. For the solution u(t) to
the equation (1.1), by the entropy dissipation (1.3) and definition of the entropy (1.4), we
have

∫

Rn
u(t) log u(t) dx − H [u0] ≤ 1

2

∥
∥|∇|−1u(t)

∥
∥2
2 .

By Shannon’s inequality (2.1), it follows that

−n

2
‖u(t)‖1 log

⎛

⎝
2πe

n‖u(t)‖1+
2
n

1

∫

Rn
|x − x̄ |2u(t) dx

⎞

⎠− H [u0] ≤ 1

2

∥
∥|∇|−1u(t)

∥
∥2
2 .

Since the mass conservation (1.2) holds, then we can rewrite as

− n

2
‖u0‖1 log

⎛

⎝
2πe

n‖u0‖1+
2
n

1

∫

Rn
|x − x̄ |2u(t) dx

⎞

⎠− H [u0] ≤ 1

2

∥
∥|∇|−1u(t)

∥
∥2
2 . (4.2)

While by the virial law (1.5) for (1.1), we have

d

dt

∫

Rn
|x − x̄ |2u(t) dx

= 2n‖u0‖1 + 2(n − 2)H [u(t)] − 2(n − 2)
∫

Rn
u(t) log u(t) dx

≤ 2(n − 2)

⎡

⎣H [u0] + n

n − 2
‖u0‖1 + n

2
‖u0‖1 log

⎛

⎝
2πe

∫

Rn |x − x̄ |2u(t) dx

n‖u0‖1+
2
n

1

⎞

⎠

⎤

⎦ ,

(4.3)

and hence, under the assumption

H [u0] <
n

2
‖u0‖1 log

⎛

⎝
n‖u0‖1+

2
n

1

2πe
n

n−2
∫ |x − x̄ |2u0 dx

⎞

⎠

=n

2
‖u0‖1 log

⎛

⎝
n‖u0‖1+

2
n

1

2πe
∫ |x − x̄ |2u0 dx

⎞

⎠− n

n − 2
‖u0‖1, (4.4)

we have from (4.3) and (4.4)

d

dt

∫

Rn
|x − x̄ |2u(t)dx

∣
∣
∣
∣
t=0

≤ 0.

This implies that
∫

Rn
|x − x̄ |2u(t) dx ≤

∫

Rn
|x − x̄ |2u0 dx . (4.5)
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Thus, it follows from (4.2) and (4.5) that

−n

2
‖u0‖1 log

⎛

⎝
2πe

n‖u0‖1+
2
n

1

∫

Rn
|x − x̄ |2u0 dx

⎞

⎠− H [u0] ≤ 1

2

∥
∥|∇|−1u(t)

∥
∥2
2 .

From the assumption (4.4), we obtain

n

n − 2
‖u0‖1 ≤ 1

2

∥
∥|∇|−1u(t)

∥
∥2
2

for any 0 < t < T∗. ��
In what follows, we show Theorem 1.4 (1).We assume that the initial data u0 ∈ L

n
2 (Rn)∩

L1
b(R

n) satisfies the blow-up condition (1.6) with (1.7) and the solution u(t) to (1.1) blows
up at T∗ > 0. Namely,

lim sup
t→T∗

‖u(t)‖ n
2

= ∞.

Let {tk}k∈N be a sequence that gives the supremum of ‖u(t)‖ n
2
. We introduce the scaling

transform by λ > 0 that

Sλu(t, x) ≡ λ−nu(t, λ−1x).

This is the L1-invariant scaling ‖Sλu(t)‖1 = ‖u(t)‖1 = ‖u0‖1 and it also holds that

‖Sλu(t)‖ n
2

= λ2−n‖u(t)‖ n
2
.

For a blow-up solution u(t) and blow-up time sequence {tk}, we set

λk ≡ ‖u(tk)‖
1

n−2
n
2

and λ0 ≡ ‖u0‖
1

n−2
n
2

. (4.6)

Then we find that the rescale solution

v(t, x) ≡ λ−n
k u(t, λ−1

k x) for tk−1 < t ≤ tk, x ∈ R
n

is bounded in L1(Rn) ∩ L
n
2 (Rn). Note that the scaling is L1-invariant and hence the L1-

norm of v is invariant. The rescaled solution v(t, x) now solves the Cauchy problem of a
semistationary equation

⎧
⎪⎨

⎪⎩

∂tv − λ2k�v + λnk∇ · (v∇φ) = 0, tk−1 < t ≤ tk, x ∈ R
n,

− �φ = v, t > 0, x ∈ R
n,

v(0, x) = v0(x) ≡ λ−n
0 u0(λ

−1x), x ∈ R
n,

(4.7)

where t0 = 0. The solution preserves its total mass ‖v(t)‖1 = ‖u(t)‖1 = ‖u0‖1 for any time
t ≥ 0 and ‖v(tk)‖ n

2
= 1 at t = tk .

We set the rescaled solution sequence

uk(x) ≡ v(tk) = Sλk u(tk, x) = λ−n
k u(tk, λ

−1
k x) (4.8)

satisfies

‖uk‖1 = ‖u0‖1, ‖uk‖ n
2

= 1. (4.9)

In this case, one can apply Proposition 3.1 with {uk}k∈N:
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Proposition 4.2 (Profile decomposition in L p) Let {uk}k∈N be a non-negative sequence in
L1(Rn) ∩ L

n
2 (Rn) with

‖uk‖1 = ‖u0‖1 and ‖uk‖ n
2

= 1

defined by the above. Then for all ε > 0, there exists a subsequence of {uk} (not rela-
beled), J ∈ N, {x ( j)

k }k∈N, j=1,...,J ⊂ R
n, {R( j)}Jj=1 ⊂ R+, and function sequences

{U ( j)}Jj=1, {wk}k∈N, {ek}k∈N ⊂ L1(Rn) ∩ L
n
2 (Rn) which satisfy the following properties:

(1) uk is decomposed as

uk(x) =
J∑

j=1

U ( j)
(
x − x ( j)

k

)
+ wk(x) + ek(x) a.a. x ∈ R

n, (4.10)

where {U ( j)}Jj=1 is a nonnegative function sequence with suppU ( j) ⊂ BR( j) (0). More-

over, for each k ∈ N, BR( j) (x
( j)
k ) and suppwk are all disjoint for any j = 1, 2, . . . , J .

For any R > 0, it holds that

lim
k→∞ sup

x∈Rn

∫

BR(x)
wk(x) dx = 0 (4.11)

and the error term satisfies

lim
k→∞ ‖ek‖1 < ε (4.12)

(2) Almost orthogonality:

‖uk‖1 =
J∑

j=1

‖U ( j)‖1 + ‖wk‖1 + ε, (4.13)

and for any j ∈ {1, 2, . . . , J }, it follows that
‖U ( j)‖ n

2
≤ (1 + ε)‖uk‖L n

2 (BR( j) (x
( j)
k ))

. (4.14)

(3) Drift term estimate:

lim
k→∞

∥
∥|∇|−1wk

∥
∥2
2 = lim

k→∞
∥
∥|∇|−1ek

∥
∥2
2 = 0. (4.15)

Wenote that the vanishing in the sense ofLions’ concentration compactness lemma implies
J = 0. We emphasize that the sequence {uk}k∈N is not vanishing and one can extract at least
the profile of {uk}.
Proof of Proposition 4.2 We apply Lemma 3.1 with {uk}k∈N ⊂ L1(Rn). We note that L

n
2 -

boundedness implies that {uk}k∈N is uniformly integrable. The decomposition (4.10), (4.11),
(4.12), and (4.13) are shown directly in Lemma 3.1. By the construction of the profile, we
see that

ũk ≡ uk(· + x (1)
k )χBR(1) (0)(·)⇀U (1) in L1(BR(1)(0)).

Since {ũk} is uniformly bounded in L
n
2 (BR(1) (0)), {ũk}k∈N also converges to U (1) weakly

in L
n
2 (BR(1) (0)). This argument can be applied for any j = 1, 2, . . . , J . Thus, we obtain

123



Finite time blow up and concentration ... Page 19 of 34 47

(4.14). Moreover, we have

‖ek‖ n
2

≤ ‖uk‖ n
2

+
J∑

j=1

‖U ( j)‖ n
2

+ ‖wk‖ n
2

≤ J + 2,

which implies that {ek}k∈N is uniformly bounded in L
n
2 .

In what follows, we show (4.15). By the construction of the error term ek , we have

lim
k→∞ ‖ek‖1 = 0.

We note that {ek}k∈N is uniformly bounded in L
n
2 (Rn). Hence, the Hardy–Littlewood–

Sobolev inequality (2.2) shows that

∥
∥|∇|−1ek

∥
∥2
2 ≤ CHLS‖ek‖1‖ek‖ n

2
≤ C‖ek‖1 → 0 as k → ∞.

Next, we shall estimate the vanishing term wk . We fix ε > 0 arbitrarily. For R > 0, we
separate the non-local term into three parts as follows:

∥
∥|∇|−1wk

∥
∥2
2 = cn

(∫∫

{|x−y|<R−1}
+
∫∫

{R−1<|x−y|<R}
+
∫∫

{|x−y|>R}

)
wk(x)wk(y)

|x − y|n−2 dx dy

≡ I1 + I2 + I3,

where cn = 1/((n − 2)ωn−1). For the integral I1, by the Hausdorff–Young inequality, we
have

I1 = cn

∫

Rn
wk(y)

∫

|x−y|<R−1

wk(x)

|x − y|n−2 dx dy ≤ C‖wk‖2p‖| · |2−nχ|·|<R−1(·)‖q ,

where χA(·) denotes the characteristic function of a set A, 1 ≤ p ≤ n
2 and 1 ≤ q < n

n−2
satisfy

2 = 2

p
+ 1

q
.

Then the integral of the kernel can be estimated as

∫

|x |<R−1
|x |−q(n−2) dx = ωn−1

∫ R−1

0
r−q(n−2)+n−1 dr = ωn−1

n − q(n − 2)
R−n+q(n−2).

By the uniform boundedness of L1 and L
n
2 for {uk}, there exists R0 > 0 independent of k

such that for any R > R0,

I1 ≤ CR
− n

q +n−2

0 <
ε

3
.

For the integral I3, it follows that

I3 = cn

∫

Rn
wk(y)

∫

|x−y|>R

wk(x)

|x − y|n−2 dx dy ≤ cn R
−(n−2)‖wk‖21.

Thus, there exists R1 > 0 independent of k such that for any R > R1,

I3 ≤ CR−(n−2)
1 <

ε

3
.
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We set R̃ ≡ max{R0, R1}. Lastly, the integral I2 can be estimated as

I2 = cn

∫

Rn
wk(y)

∫

R̃−1<|x−y|<R̃

wk(x)

|x − y|n−2 dx dy ≤ cn R̃
n−2‖wk‖1 sup

x∈Rn

∫

BR̃(x)
wk(y) dy.

Since wk is the vanishing term, we obtain

lim
k→∞ I2 ≤ cn R̃

n−2 lim
k→∞ sup

x∈Rn

∫

BR̃(x)
wk(y) dy = 0.

Thus, we conclude

lim
k→∞

∥
∥|∇|−1wk

∥
∥
2 = 0.

In order to extract at least one profile, we shall show that {v(tk)}k∈N∪{0} is not a vanishing
sequence by using the bump function method (see [2, 4, 5]). We set the bump function as

η(x) ≡ (1 − |x |2)2+.

For ε ∈ (0, 1/
√
3), the Hessian of η satisfies

Hη ≤ −cε I for |x | ≤ ε, (4.16)

where cε ≡ 4(1 − 3ε2). For R > 0 and a ∈ R
n , we define

ηR(x) ≡ R−4(R2 − |x − a|2)2+,

which satisfies

�ηR(x) = 4R−4(n + 2)|x − a|2 − 4nR−2 ≥ −4nR−2, (4.17)

in particular, ηR is concave on |x − a| < R
√
n/(n + 2) as (4.16). Multiplying the equation

(4.7) by ηR and integrating over x ∈ R
n , then we have

d

dt

∫

Rn
v(t)ηR dx = λ2k

∫

Rn
v(t)�ηR dx + λnk

∫

Rn
v(t)∇φ(t) · ∇ηR dx .

By the property (4.17), we see that

d

dt

∫

Rn
v(t)ηR dx ≥ −4nR−2λ2k

∫

BR(a)

v(t) dx + λnk

∫

Rn
v(t)∇φ(t) · ∇ηR dx .

On the second term in the right hand side, using Poisson representation and symmetry, we
decompose

∫

Rn
v(t)∇φ(t) · ∇ηR dx

=
∫∫

Rn×Rn
v(t, x)(∇xN (x − y)v(t, y)) · ∇ηR(x) dx dy

= 1

2

∫∫

Rn×Rn
v(t, x)v(t, y)∇xN (x − y) · (∇xηR(x) − ∇yηR(y)) dx dy ≡ J1 + J2,

where we set

J1 ≡ 1

2

∫∫

BεR(a)×BεR(a)

v(t, x)v(t, y)∇xN (x − y) · (∇xηR(x) − ∇yηR(y)) dx dy,

J2 ≡ 1

2

∫∫

Rn×Rn\BεR(a)×BεR(a)

v(t, x)v(t, y)∇xN (x − y) · (∇xηR(x) − ∇yηR(y)) dx dy.
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For J1, the integrand is rewritten by

∇xN (x − y) · (∇xηR(x) − ∇yηR(y))

= − 1

ωn−1

x − y

|x − y|n−2 · (∇xηR(x) − ∇yηR(y)).

We fix any ε ∈ (0,
√
n/(n + 2)). By the concavity of ηR as (4.16), we have

J1 = − 1

2ωn−1

∫∫

BεR(a)×BεR(a)

v(t, x)v(t, y)
x − y

|x − y|n−2 · (∇xηR(x) − ∇yηR(y)) dx dy

≥ cεR−2

2ωn−1

∫∫

BεR(a)×BεR(a)

v(t, x)v(t, y)

|x − y|n−2 dx dy.

Since we know that

1

|x − y|n−2 ≥
(

1

2εR

)n−2

for |x − a|, |y − a| ≤ εR,

it follows that
∫∫

BεR(a)×BεR(a)

v(t, x)v(t, y)

|x − y|n−2 dx dy

≥
(

1

2εR

)n−2 (∫

BR(a)

v(t, x) dx −
∫

εR≤|x−a|≤R
v(t, x) dx

)2

≥
(

1

2εR

)n−2 (∫

BR(a)

v(t, x) dx

)2

− 2

(
1

2εR

)n−2

×
∫

BR(a)

v(t, x) dx
∫

εR≤|x−a|≤R
v(t, x) dx .

If we set a constant as

Cε ≡ inf|x−a|≥εR
(1 − ηR(x)) = 1 − (1 − ε2)2 > 0,

then we have

−
∫

εR≤|x−a|≤R
v(t, x) dx ≥ −

∫

εR≤|x−a|≤R
v(t, x)

1 − ηR(x)

Cε

dx

≥ − 1

Cε

(∫

BR(a)

v(t, x) dx −
∫

Rn
v(t, x)ηR(x) dx

)

.

Thus, we obtain

J1 = 1

2

∫∫

BεR(a)×BεR(a)

v(t, x)v(t, y)∇xN (x − y) · (∇xηR(x) − ∇yηR(y)) dx dy

≥ cεR−n

2(2ε)n−2ωn−1

∫

BR(a)

v(t, x) dx

[∫

BR(a)

v(t, x) dx

− 2

Cε

(∫

BR(a)

v(t, x) dx −
∫

Rn
v(t, x)ηR(x) dx

)]

.

On the other hand, we recall that the integration over other regions is defined as

J2 ≡ 1

2

∫∫

Rn×Rn\BεR(a)×BεR(a)

v(t, x)v(t, y)∇xN (x − y) · (∇xηR(x) − ∇yηR(y)) dx dy.
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In order to estimate J2, it suffices to consider the integral over

{(x, y) ∈ R
n × R

n; |x − a| < R, |y − a| ≥ εR}
by the symmetry property of J2 and the fact that ∇ηR(x) vanishes on the set {x ∈ R

n; |x −
a| > R}. For |x − a| < R and |y − a| ≥ εR, we have

∇xN (x − y) · (∇xηR(x) − ∇yηR(y)) ≤ 2R−2

ωn−1

1

|x − y|n−2 .

Thus, we have

|J2| ≤ 2R−2

ωn−1

∫∫

{|x−a|<R}×{|y−a|≥εR}
v(t, x)v(t, y)

|x − y|n−2 dx dy.

By the Hardy–Littlewood–Sobolev inequality and ‖v(tk)‖ n
2

= 1, we have

J2 ≥ −2(n − 2)CHLS

ωn−1
R−2

∫

BR(a)

v(tk, x) dx

at t = tk . Hence, we have

d

dt

∫

Rn
v(t)ηR dx

∣
∣
∣
∣
t=tk

≥ −4nR−2λ2k

∫

BR(a)

v(tk) dx + J1 + J2

≥ −4nR−2λ2k

∫

BR(a)

v(tk) dx − 2(n − 2)CHLS

ωn−1
R−2λnk

∫

BR(a)

v(tk) dx

+ cεR−n

2(2ε)n−2ωn−1
λnk

∫

BR(a)

v(tk) dx

[∫

BR(a)

v(tk) dx

− 2

Cε

(∫

BR(a)

v(tk) dx −
∫

Rn
v(tk)ηR dx

)]

= R−2λnk

∫

BR(a)

v(tk) dx

[

−4nλ
−(n−2)
k + cεR−(n−2)

2(2ε)n−2ωn−1

∫

BR(a)

v(tk) dx

−2(n − 2)CHLS

ωn−1
− cεR−n

Cε(2ε)n−2ωn−1

(∫

BR(a)

v(tk) dx −
∫

Rn
v(tk)ηR dx

)]

.

There exists k0 ∈ N and ε0 > 0 such that for any k ≥ k0,

−4nλ
−(n−2)
k + cε0 R

−(n−2)

2(2ε)n−2ωn−1

∫

BR(a)

v(tk) dx − 2(n − 2)CHLS

ωn−1
> C0

for some constant C0 > 0. Thus, there exists R0 = R(ε0) > 0 such that for any k ≥ k0,

C0 − cε0 R
−n
0

Cε0(2ε0)n−2ωn−1

(∫

BR0 (a)

v(tk) dx −
∫

Rn
v(tk)ηR0(x) dx

)

> 0

since ‖v(tk)‖1 = 1. Therefore, it follows that for any k ≥ k0,
∫

Rn
v(tk)ηR0 dx ≥ C

for some constant C > 0, which implies that {v(tk)}k∈N is not vanishing sequence. ��
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The error estimate (4.15) gives the following decomposition:

Proposition 4.3 (Profile decomposition) There exist an integer J ∈ N and a non-negative
function sequence {U ( j)}Jj=1 ⊂ L1(Rn) ∩ L

n
2 (Rn) with suppU ( j) ⊂ BR( j) (x

( j)
k ) for some

sequences {x ( j)
k }k∈N, j=1,2,...,J ⊂ R

n and {R( j)}Jj=1 ⊂ R+ such that for any ε > 0, there
exists k∗ ≥ 1 such that for all k ≥ k∗,

(1 − ε)
∥
∥|∇|−1uk

∥
∥2
2 ≤

J∑

j=1

∥
∥
∥|∇|−1U ( j)

∥
∥
∥
2

2
, (4.18)

where suppU ( j) are disjoint and |x ( j)
k − x ( j ′)

k | → ∞ as k → ∞ if j �= j ′.

Proof of Theorem 1.4 (1) On the right hand side of the inequality (4.1), putting t = tk and
scaling with respect to λk , then the right hand side is rewritten by

∥
∥|∇|−1u(tk)

∥
∥2
2 =

∫

Rn
u(tk, x)(−�)−1u(tk, x) dx

= λ2nk

∫

Rn
uk(λk x)(−�)−1uk(λk x) dx = λn−2

k

∥
∥|∇|−1uk

∥
∥2
2 .

By the auxiliary inequality (4.1), it holds that for all k = 1, 2, . . . ,

2n

n − 2
‖u0‖1 ≤ λn−2

k

∥
∥|∇|−1uk

∥
∥2
2 . (4.19)

By the above inequality (4.19) and the profile decomposition (4.18), for any ε > 0, there
exists k∗ ∈ N such that for any k ≥ k∗, we see that

2n

n − 2
‖u0‖1 ≤ 1

1 − ε
λn−2
k

J∑

j=1

∥
∥
∥|∇|−1U ( j)

k

∥
∥
∥
2

2
.

By the Hardy–Littlewood–Sobolev inequality (2.2) and (4.13),

2n

n − 2
‖u0‖1 ≤ CHLS

1 − ε
λn−2
k

J∑

j=1

‖U ( j)
k ‖1‖U ( j)

k ‖ n
2

≤ CHLS

1 − ε
λn−2
k max

j=1,2,...,J
‖U ( j)

k ‖ n
2

J∑

j=1

‖U ( j)
k ‖1

≤ 1 + ε

1 − ε
CHLSλ

n−2
k ‖u0‖1 max

j=1,2,...,J
‖U ( j)

k ‖ n
2
.

Thus, there exists j0 ∈ {1, 2, . . . , J } such that
(

2n

(n − 2)CHLS

) n
2 ≤

(
(1 + ε)λn−2

k

1 − ε

) n
2 ∫

Rn
U ( j0)(y)

n
2 dy. (4.20)

Moreover, by (4.14), there exist x ( j0)
k ∈ R

n and R0 > 0 such that
∫

Rn
U ( j0)(y)

n
2 dy ≤ (1 + ε)

n
2

∫

|y−x
( j0)

k |<R0

uk(y)
n
2 dy
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= (1 + ε)
n
2

∫

|y−x
( j0)

k |<R0

λ
− n2

2
k u(tk, λ

−1
k y)

n
2 dy.

Substituting this to the inequality (4.20), then by scaling, we conclude that

(
2n

(n − 2)CHLS

) n
2 ≤

(
(1 + ε)2

1 − ε

) n
2
∫

|x−λ−1
k x

( j0)

k |<λ−1
k R0

u(tk, x)
n
2 dx .

By passing a subsequence if necessary, there exists a point x∗ ∈ R
n such that yk ≡

λ−1
k x ( j0)

k → x∗. Indeed, if we assume that {λ−1
k x ( j0)

k }k∈N is an unbounded sequence, then

λ−1
k |x ( j0)

k | → ∞ (k → ∞). For k ∈ N sufficiently large, we see that

M ≡
∫

BR0 (x
( j0)

k )

U ( j0)(y) dy ≤
∫

B
λ
−1
k R0

(λ−1
k x

( j0)

k )

u(tk, x) dx .

Then, we have
∫

B
λ
−1
k R0

(yk )
|x − x0|2u(tk, x) dx

≥ 2
∫

B
λ
−1
k R0

(yk )
|yk − x0|2u(tk, x) dx − 2

∫

B
λ
−1
k R0

(yk )
|x − yk |2u(tk, x) dx

≥ 2M |yk − x0|2 − 2‖u0‖1
for any k ≥ k0. While from the assumption of the initial condition, there exists a constant
C0 > 0 such that for any k ∈ N,

∫

Rn
|x − x̄ |2u(tk, x) dx ≤ C0. (4.21)

Since {λ−1
k x ( j0)

k }k∈N is not bounded, there exists k1 ∈ N such that for any k ≥ k1,

2M |yk − x0|2 − 2‖u0‖1 > C0,

which contradicts (4.21). Therefore, there exists a point x∗ ∈ R
n such that λ−1

k x ( j0)
k → x∗,

and hence, we obtain (1.10). ��

5 Proof of Theorem 1.4 (2)

In what follows, we show Theorem 1.4 (2). We assume that the initial data u0 ∈ L
n
2 (Rn) ∩

L1
b(R

n) satisfies the blow-up condition (1.6) and the solution u(t) to (1.1) blows up in a finite
time. Namely, for some T∗ < ∞,

lim sup
t→T∗

‖u(t)‖ n
2

= ∞.

Let {tk}k∈N be a sequence that gives the supremum of ‖u(t)‖ n
2
. We introduce the backward

self-similar transform

ũ(s, y) ≡ (T∗ − t)u(t,
√
T∗ − t y) with s = − log

(

1 − t

T∗

)

.
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Then ũ satisfies
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂s ũ − �ũ + 1

2
∇ · (yũ) − n − 2

2
ũ + ∇ · (ũ∇ψ̃) = 0, s > 0, y ∈ R

n,

− �ψ̃ = ũ, s > 0, y ∈ R
n,

ũ(0, y) = T∗u0(
√
T∗y), y ∈ R

n .

We note that

‖ũ(s)‖1 = e
n−2
2 sM with M ≡ ‖ũ(0)‖1 = T

− n−2
2∗ ‖u0‖1.

We set {sk}k∈N as

sk ≡ − log

(

1 − tk
T∗

)

.

We consider the scaling transform by λ > 0 that

Sλu(t, x) ≡ λ−nu(t, λ−1x).

This is the L1-invariant scaling ‖Sλu(t)‖1 = ‖u(t)‖1 = ‖u0‖1 and it also holds that

‖Sλu(t)‖ n
2

= λ2−n‖u(t)‖ n
2
.

For a blow-up solution u(t) and blow-up time sequence {tk}, we set

λk ≡ ‖u(tk)‖
1

n−2
n
2

= ‖ũ(sk)‖
1

n−2
n
2

and λ0 ≡ ‖u0‖
1

n−2
n
2

. (5.1)

Then we find that the rescale solution

v(s, x) ≡ λ−n
k ũ(s, λ−1

k x) for sk−1 < s ≤ sk, x ∈ R
n

is bounded in L
n
2 (Rn) and {e− n−2

2 skv(sk)}k∈N is bounded in L1(Rn). The rescaled solution
v(t, x) now solves the Cauchy problem of a semi-stationary equation
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂sv − λ2k�v + λ2k

2
∇ · (yv) − n − 2

2
λ2kv + λnk∇ · (v∇φ) = 0, sk−1 < s ≤ sk, y ∈ R

n,

− �φ = v, t > 0, x ∈ R
n,

v(0, y) = v0(y) ≡ λ−n
0 u0(λ

−1y), y ∈ R
n,

(5.2)

where s0 = 0. The solution preserves its total mass ‖v(s)‖1 = ‖ũ(s)‖1 for any time s ≥ 0
and ‖v(sk)‖ n

2
= 1.

We set the rescaled solution sequence

vk(y) ≡ v(sk) = Sλk ũ(sk, y) = λ−n
k ũ(sk, λ

−1
k y) (5.3)

satisfies

e− n−2
2 sk‖vk‖1 = M and ‖vk‖ n

2
= 1. (5.4)

In this case, one can apply Proposition 3.1 with {vk}k∈N:
Proposition 5.1 (Profile decomposition in L p) Let {vk}k∈N be a non-negative sequence in
L1(Rn) ∩ L

n
2 (Rn) with (5.4) defined by the above. Then for all ε > 0, there exists a sub-

sequence of {vk} (not relabeled), J ∈ N, {y( j)
k }k∈N, j=1,...,J ⊂ R

n, {R( j)}Jj=1 ⊂ R+, and
nonnegative function sequences {V ( j)

k } j=1,...,J
k∈N , {wk}k∈N, {ek}k∈N ⊂ L1(Rn)∩L

n
2 (Rn)which

satisfy the following properties:
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(1) vk is decomposed as

vk(x) =
J∑

j=1

V ( j)
k (x − y( j)

k ) + wk(x) + ek(x) a.a. x ∈ R
n, (5.5)

where {V ( j)
k } j=1,...,J

k∈N is a nonnegative function sequence with supp V ( j)
k ⊂ BR( j) (0).

Moreover, for each k ∈ N, BR( j) (y
( j)
k ) and suppwk are all disjoint for any j =

1, 2, . . . , J . For any R > 0, it holds that

lim
k→∞ sup

x∈Rn

∫

BR(x)
wk(x)

p dx = 0 for any 1 ≤ p ≤ n

2
(5.6)

and the error term satisfies

lim
k→∞ ‖ek‖ n

2
< ε (5.7)

(2) Almost orthogonality:

‖vk‖1 =
J∑

j=1

‖V ( j)
k ‖1 + ‖wk‖1 + ‖ek‖1, (5.8)

and for any j ∈ {1, 2, . . . , J }, it holds that
‖V ( j)

k ‖ n
2

= ‖vk‖L n
2 (BR( j) (y

( j)
k ))

. (5.9)

(3) Drift term estimate:

lim
k→∞ e− n−2

2 sk
∥
∥|∇|−1wk

∥
∥2
2 = lim

k→∞ e− n−2
2 sk

∥
∥|∇|−1ek

∥
∥2
2 = 0. (5.10)

In addition, if {vk}k∈N is radially symmetric, then J = 1 and {y(1)
k }k∈N is bounded.

For the proof of Proposition 5.1, see Appendix.
We set

uk(x) ≡ λ−1
k u(tk, λ

−1
k x)

and
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Ũ ( j)
k (x) ≡ (T∗ − tk)

−1V ( j)
k

(
x√

T∗ − tk

)

,

w̃k(x) ≡ (T∗ − tk)
−1wk

(
x√

T∗ − tk

)

,

ẽk(x) ≡ (T∗ − tk)
−1ek

(
x√

T∗ − tk

)

.

Then we see that

uk(x) =
J∑

j=1

Ũ ( j)
k (x − y( j)

k ) + w̃k(x) + ẽk(x) a.a. x ∈ R
n .

The estimate (5.8) implies that

J∑

j=1

‖Ũ ( j)
k ‖1 ≤ (1 + ε)‖uk‖1 = (1 + ε)‖u0‖1.
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By (5.10) and changing variables, we have

lim
k→∞

∥
∥|∇|−1w̃k

∥
∥2
2 = lim

k→∞
∥
∥|∇|−1ẽk

∥
∥2
2 = 0,

in particular, there exists k∗ ∈ N such that for all k ≥ k∗,

∥
∥|∇|−1uk

∥
∥2
2 ≤ 1

1 − ε

J∑

j=1

∥
∥
∥|∇|−1Ũ ( j)

k

∥
∥
∥
2

2
.

Proof of Theorem 1.4 (2) By the similar argument of the proof of Theorem 1.4 (1), for any
ε > 0, there exists k∗ ∈ N such that for any k ≥ k∗, we see that

2n

n − 2
‖u0‖1 ≤ λn−2

k

∥
∥|∇|−1uk

∥
∥2
2 ≤ 1 + ε

1 − ε
CHLSλ

n−2
k ‖u0‖1 max

j=1,2,...,J
‖V ( j)

k ‖ n
2
.

Thus, there exists j0 ∈ {1, 2, . . . , J } such that
(

2n

(n − 2)CHLS

) n
2 ≤

(
1 + ε

1 − ε

) n
2

λ
n(n−2)

2
k

∫

Rn
V ( j0)
k (y)

n
2 dy. (5.11)

Moreover, by (5.9), there exist x ( j0)
k ∈ R

n and R0 > 0 such that

∫

Rn
V ( j0)
k (y)

n
2 dy =

∫

|y−y
( j0)

k |<R0

ũk(y)
n
2 dy =

∫

|y−y
( j0)

k |<R0

λ
− n2

2
k ũ(tk, λ

−1
k y)

n
2 dy.

Substituting this to the inequality (5.11), then by scaling, we conclude that

(
2n

(n − 2)CHLS

) n
2 ≤

(
1 + ε

1 − ε

) n
2

λ
n(n−2)

2
k λ

− n2
2

k

∫

|y−y
( j0)

k |<R0

ũ(sk, λ
−1
k y)

n
2 dy

≤
(
1 + ε

1 − ε

) n
2
∫

|x−λ−1
k y

( j0)

k |<λ−1
k R0

ũ(sk, x)
n
2 dx .

Therefore, if we set xk ≡ λ−1
k

√
T − tk y

( j0)
k , then we obtain (1.12). ��

6 Radially symmetric case

In this section, we consider the case that u0 ∈ L
n
2 (Rn) ∩ L1

b(R
n) is radially symmetric and

nonnegative for b > 0. We assume that the initial data u0 satisfies the assumption (1.6) with
(1.9) for δ > 0. Let u(t, x) be a blowing up solution to (1.1). We set the scaling parameter
(5.1) and consider the rescaled solution (5.3).

Since the assumption on the data is different from the case of b ≥ 2, the lower estimate
has to be arranged.

Lemma 6.1 Let the initial data u0 be radially symmetric and satisfy (1.6)with (1.9) for δ > 0,
then there exists the corresponding radially symmetric solution u(t) to (1.1) blows up in a
finite time T . Then it holds that for any 0 < t < T ,

2(n + δ)

n − 2
‖u0‖1 ≤ ∥

∥|∇|−1u(t)
∥
∥2
2. (6.1)
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Proof of Theorem 1.5 By applying the similar argument in the proof of Theorem 1.4 (2), we
obtain (1.14). By Proposition 5.1, we note that the center {y(1)

k }k∈N of the profile V (1) is
bounded. Thus, we have

λ−1
k

√
T − tk y

(1)
k → 0 as k → ∞.

After admitting Lemma 6.1, we conclude the analogous result to (1.12): For any ε > 0,
(

2(n + δ)

(n − 2)CHLS

) n
2 ≤ lim

k→∞

∫

B
ε
√

T−tk
(y(1)

k )

u(tk, x)
n
2 dx,

which implies that (1.15).

To see Lemma 6.1, we need to introduce the modified moment and derive its dynamics
from the modified virial law. Let φ(x) be a radially symmetric smooth function such that

φ(x) =

⎧
⎪⎨

⎪⎩

|x |2, 0 ≤ |x | < 1,

smooth, 1 ≤ |x | < 2,

|x |b, 2 ≤ |x |
and set r = |x |. We define

�R(r) = R2φ
( r

R

)

for any R ≥ 1.

Proposition 6.2 (Modified virial law) For n
2 ≤ p < n, b > 0 let u ∈ C([0, T ); L1

b(R
n) ∩

L p(Rn)) be a solution to (1.1) with initial data u0 ∈ L1
b(R

n) with positive initial data
u0(x) ≥ 0. Then if n ≥ 4 or n = 3 and b < 1, then it holds for any t ∈ (0, T ) that

d

dt

∫

Rn
�R(x)u(t)dx

≤ 2n‖u(s)‖1 − (n − 2)
∫

Rn
u(s)ψ(s) dx + (n − 2)

∫

Bc
R(0)

u(t)(−�)−1u(t) dx

+
∫

Bc
R(0)

�R(r)∂2r ψ(t)ψ(t) dx + 1

4

∫

Bc
R(0)

�2�R |ψ(t)|2 dx,

(6.2)

where

�R(r) = �′
R(r)

r
− �

′′
R(r) =

⎧
⎪⎪⎨

⎪⎪⎩

0, |x | ≤ R,

smooth, R < |x | ≤ 2R,

− b(b − 2)
( r

R

)b−2
, 2R < |x |

is supported in Bc
R(0).

Lemma 6.3 Let �R(x) ∈ L1(Rn) ∩ L∞(Rn) be a radially symmetric function supported in
Bc
R(0) and u(t) is radially symmetric.

(1) Then there exists a constant C = C(φ) > 0 depending on �R and η such that
∫

Rn
�R(r)∂2r (−�)−1u(t) (−�)−1u(t) dx ≤ CR−(n−2)‖u0‖21.
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(2) For any R > 0, it holds that

1

4

∫

Rn
�2�R |ψ(t)|2 dx ≤ C(φ)R−(n−2)‖u0‖21.

Proof for Proposition 6.2 and Lemma 6.3, see [41].

Proposition 6.4 Let the initial data be radially symmetric in L
n
2 (Rn) ∩ L1

b(R
n) and satisfy

the condition (1.6) with (1.9), then
∫

Rn
|x |bu(t)dx ≤

∫

Rn
|x |bu0 dx. (6.3)

Proof of Proposition 6.4 By Lemma 6.3, choosing R > 0 sufficiently large such that
∫

Bc
R(0)

�R(r)∂2r ψ(t)ψ(t) dx + 1

4

∫

Bc
R(0)

�2�R |ψ(t)|2 dx ≤ 2(n − 2)CR−(n−2)M2 ≤ 2δM .

(6.4)

By the modified virial law (6.2), (6.4), and Shannon’s inequality (2.1), we have for M ≡
‖u0‖1,

d

dt

∫

Rn
�R(x)u(t) dx

≤ 2(n − 2)

[

H [u(t)] + n

n − 2
M + δ

n − 2
M −

∫

Rn
u(t) log u(t) dx

]

≤ 2(n − 2)

[

H [u(0)] + n + δ

n − 2
M + n

b
M log

(
bcn,be

nM1+ b
n

∫

Rn
|x |bu(t) dx

)]

= 2(n − 2)

⎡

⎣H [u0] + n

b
M log

⎛

⎝
bcn,be

1+ b(n+δ)
n(n−2)

nM1+ b
n

∫

Rn
|x |bu(t) dx

⎞

⎠

⎤

⎦ . (6.5)

Hence under the condition (1.6), the right hand side of (6.5) is negative if t = 0. Then

X(t) ≡
∫

Rn
�R(x)u(t) dx

is decreasing function of t in [0, η). Since it holds that
∫

Rn
|x |bu(t) dx ≤ Rb−2X(t) + RbM,

the b-th moment of u does not increase if the initial data satisfies

H [u0] < −n

b
M log

⎛

⎝
bcn,be

1+ b(n+δ)
n(n−2)

nM1+ b
n

∫

Rn
|x |bu0 dx

⎞

⎠ ,

where cn,b is the constant appearing in Proposition 2.1. Thus, we obtain the inequality (6.3).��
Proof of Lemma 6.1 From (1.3) we have

∫

Rn
u(t) log u(t) dx − H [u(t)] ≤ 1

2

∥
∥|∇|−1u(t)

∥
∥2
2.
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By the Shannon inequality (Proposition 2.1), it follows that

n

b
‖u0‖1 log

⎛

⎝
n‖u0‖1+

b
n

1

bcn,be
∫

Rn |x − x̄ |bu(t) dx

⎞

⎠− H [u(t)] ≤ 1

2

∥
∥|∇|−1u(t)

∥
∥2
2. (6.6)

We obtain from (6.3) and (6.6) that

n

b
‖u0‖1 log

⎛

⎝
n‖u0‖1+

b
n

1

bcn,be
∫

Rn |x − x̄ |bu0(x) dx

⎞

⎠− H [u0] ≤ 1

2

∥
∥|∇|−1u(t)

∥
∥2
2.

From the assumption (1.6) with (1.9), we have

2(n + δ)

n − 2
‖u0‖1 ≤ ∥

∥|∇|−1u(t)
∥
∥2
2 ,

and hence, we obtain the inequality (6.1). ��
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Appendix A. Proof of Proposition 5.1

Proof of Proposition 5.1 We apply the similar argument in the proof of Lemma 3.1 with

{v
n
2
k }k∈N ⊂ L1(Rn). We notice that the profile given by the convergence of {vk} in L

n
2

is not always non-zero function. From this reason, we define the profile, which depends on
k, as

V ( j)
k (x) ≡ vk(x + y( j)

k )χBR( j) (0)(x).

The decomposition (5.5), (5.8), and (5.9) are shown directly in Lemma 3.1. In what follows,
we show that the error estimates (5.10).

We note that {e− n−2
2 sk ek}k∈N is uniformly bounded in L1(Rn). Hence, the Hardy–

Littlewood–Sobolev inequality (2.2) and (5.7) show that

e− n−2
2 sk

∥
∥|∇|−1ek

∥
∥2
2 ≤ CHLSe

− n−2
2 sk‖ek‖1‖ek‖ n

2
≤ C‖ek‖ n

2
→ 0 as k → ∞.
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Next, we shall estimate the vanishing term wk . We fix ε > 0 arbitrarily. For R > 0, we
separate the non-local term into three parts as follows:

∥
∥|∇|−1wk

∥
∥2
2 = cn

(∫∫

{|x−y|<R−1}
+
∫∫

{R−1<|x−y|<R}
+
∫∫

{|x−y|>R}

)
wk(x)wk(y)

|x − y|n−2 dx dy

≡ I1 + I2 + I3,

where cn = 1/((n − 2)ωn−1). For the integral I1, by the Hausdorff–Young inequality, we
have

I1 = cn

∫

Rn
wk(y)

∫

{|x−y|<R−1}
wk(x)

|x − y|n−2 dx dy ≤ C‖wk‖2n
2

∥
∥
∥| · |−(n−2)χ{|·|<R−1}(·)

∥
∥
∥
q
,

where χA(·) denotes the characteristic function of a set A, and q satisfies q = n
2(n−2) . By the

uniform boundedness of L
n
2 for {vk}, there exists R0 > 0 independent of k such that for any

R > R0,

I1 ≤ CR
− n

2
0 <

ε

3
.

For the integral I3, we decompose Rn into countable cubes whose centers are lattice points,
that is, Rn = ⋃

j∈Zn Q ( j), where Q( j) ≡ {y ∈ R
n; max1≤i≤n |yi − ji | ≤ 1/2}. It follows

from the cubic decomposition and the Hölder and weak Hausdorff–Young inequalities that

I3 = cn

∫

Rn
wk(y)

∫

{|x−y|>R}
wk(x)

|x − y|n−2 dx dy

≤ C
∫

Rn
wk(y)

∑

j, j ′∈Zn ,

| j− j ′|≥R

(| · |−(n−2)χQ( j ′)) ∗ (wkχQ( j))(y) dy

≤ C‖wk‖ 2n
n+2

∑

| j− j ′|≥R

∥
∥
∥(| · |−(n−2)χQ( j ′)) ∗ (wkχQ( j))

∥
∥
∥ 2n

n−2

≤ C‖wk‖ 2n
n+2

∑

| j− j ′|≥R

‖wkχQ( j)‖ 2n
n+2

∥
∥
∥| · |−(n−2)χQ( j ′)

∥
∥
∥

n
n−2 ,w

≤ C3n‖wk‖22n
n+2

⎛

⎝
∑

| j ′|≥R

∥
∥
∥| · |−(n−2)χQ( j ′)

∥
∥
∥

2n
n−2

n
n−2 ,w

⎞

⎠

n−2
2n

,

where the last estimate is derived by Hölder’s inequality and the covering. By the radially
decreasing property, |x |−(n−2) attains the maximum in Q( j ′) at the closest point y j ′ to the
origin. For k ∈ Z

n satisfying max |ki | ≥ R, we see that

∥
∥
∥| · |−(n−2)χQ( j ′)

∥
∥
∥

2n
n−2

n
n−2 ,w

≤
(∫

Q( j ′)
|x |−n dx

)2

≤ C |y j ′ |−2n .

We draw a line from the origin to y j ′ and order cubes intersecting with this line. The first
cube is Q(0) and the second cube is the cube which the line meets when it goes out of Q(0),
and so on. We denote I (Q( j ′)) the second-to-last cube in this order. Then we have

|y j ′ |−2n ≤
∫

I (Q( j ′, 12 ))

|x |−2n dx .
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Thus, we see that

∑

| j ′|≥R

∥
∥
∥| · |−(n−2)χQ( j ′)

∥
∥
∥

2n
n−2

n
n−2 ,w

≤ C
∑

| j ′|≥R

∫

Q( j ′)
|y|−2n dy ≤ C

∫ ∞

R
r−n−1 dr ≤ CR−n .

Therefore, by the uniform boundedness of L1 for {e− n−2
2 skvk} and Hölder’s inequality, there

exists R1 > 0 independent of k such that for any R > R1,

e− n−2
2 sk I3 ≤ CR−n

1 <
ε

3
.

We set R̃ ≡ max{R0, R1}. Lastly, the integral I2 can be estimated as

I2 = cn

∫

Rn
wk(y)

∫

R̃−1<|x−y|<R̃

wk(x)

|x − y|n−2 dx dy ≤ cn R̃
n−2‖wk‖1 sup

x∈Rn

∫

BR̃(x)
wk(y) dy.

Since wk is the vanishing term, (5.6) gives

lim
k→∞ e− n−2

2 sk I2 ≤ cn R̃
n−2 lim

k→∞ sup
x∈Rn

∫

BR̃(x)
wk(y) dy = 0.

Thus, we conclude

lim
k→∞ e− n−2

2 sk
∥
∥|∇|−1wk

∥
∥
2 = 0.

By the similar argument in the proof of Proposition 4.2, we see that {vk}k∈N is also not a
vanishing sequence, and hence, we have J ≥ 1.

In the case that {vk}k∈N is radially symmetric, we see that {y( j)
k }k∈N is bounded for any

j = 1, 2, . . . , J . Indeed, if not, it follows from the radially symmetrically and weak L
n
2 -

convergence of {vk} that

‖vk‖
n
2
n
2

≥ C |y( j)
k |n

∫

BR( j) (y
( j)
k )

vk(y)
n
2 dy ≥ C |y( j)

k |n
∫

BR( j) (0)
V ( j)(y)

n
2 dy

for k ∈ N sufficiently large. The right hand side diverges to infinity as k → ∞, which
contradicts with ‖vk‖ n

2
= 1. Moreover, if we assume that J ≥ 2, then for j �= j ′, we see

that

|y( j)
k − y( j ′)

k | → ∞ as k → ∞.

For the same reason, this is a contradiction. ��
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