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Plan of lecture: 1. 

A symplectic structure is a rather elusive geometric structure that can be 
put on an even dimensional space. After a brief introduction I will explain 
some recent developments in the symplectic embedding problem. 

► (1): Very brief introduction to symplectic geometry 

► (11) The symplectic embedding problem 

► (111) The Fibonacci staircase 
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What is symplectic geometry? 

Euclidean (or Riemannian) geometry makes measurements using a symmetric 
bilinear form, such as 

X · Y = X1Y1 + · · ·XnYn, x,y E JRn. 

Symplectic geometry makes measurements using a skew symmetric bilinear 
form, such as 

More generally, a symplectic form won a (necessarily even dimensional) 
manifold is a differential 2-form w that locally looks like wo with respect to 
suitable local coordinates. 

Thus in 2-dimensions, w is an area form , and symplectic geometry is the study 
of area preserving diffeomorphisms. These have many interesting properties 
(e.g. more fixed points than an arbitrary diffeomorphism). Arnol'd realised that 

in higher dimensions these properties do not hold for volume preserving 
diffeomorphisms, but he conjectured that they do hold for symplectic 
diffeomorphisms. His conjectures have inspired much work. 

The standard symplectic form w0 in ffi.4 

wo := dx1 I\ dy1 + dx2 I\ dy2 , 
a sum of area forms 

5 is a piece of surface that 
you project in two different ways 
and then add the areas. 

Since wo is closed , i.e. dwo = 0, 
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we get flabby measurements: ~-'+"-==-~, J 8 w = J s' w 
by Stokes' theorem, the area 
of a surface S can be written as an integr;- -- :-~tthf; does not change as 5 
moves as long as the boundary remains fixed. In physics, the pair x;,y; 

represents the position and velocity of a particle in one direction - so a particle 
moving in 3-space gives 6 coordinates. The symplectic form in JR6 gives an 

important (but geometrically somewhat obscure) measurement of the mutual 
entanglement of position and velocity. 

2. 

3. 
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Many symplectomorphisms: 4. 

In general, a symplectic structure on a 2n-dimensional manifold M is a closed, 
nondegenerate 2-form w. 

Every function H : M-+ JR generates a flow ¢~, t E JR (1-parameter group of 

motions of space) that preserves w: (c/>n*(w) = w. Such transformations are 
called symplectomorphisms. 

The flow is a solution of Hamilton's differential equations - generated by the 
vector field XH given by w(XH, •) = dH(·) - so that in JR2n we have 
ox_ oH oy _ oH 
ot - oy , ot - - ox · 

Example: if H = ½(x2 + y 2) on (JR2, dx I\ dy), we find 

dH = xdx + ydy ===} XH = YOx - XOy 

giving a clockwise rotation , preserving the circles H = const. 

But there are many, much more twisty symplectomorphisms Because there are 
so many, symplectic geometry is very flexible . 

But it also displays interesting rigidity 

Symplectic embeddings 5. 

In 1985 Gromov asked: 
what can be said about the image cf>(B2n) of a ball under a symplectomorphism 
c/> of JR2n? 

In 2-dimensions nothing interesting happens: 

(Moser - 1965) If a closed disc D C JR2 is diffeomorphic to a closed region U of 

the same total area, there is an area preserving diffeomorphism cf>: 0 -=r U. 

But higher dimensions are very interesting. Consider the ball 

B2n(a) = { (z1, ... , Zn) : 1r(lz112 + · · · + lznl 2) ~ a} C en= JR2n 

and the cylinder Z(A) = {(z1, ... ,zn): 1rlz112 ~ A} C JR2n. 

Nonsqueezing Theorem (Gromov: 1985) There is a symplectic embedding 

8 2n(a) y Z(A) if and only if a~ A. 

The volume preserving map (z1, ... , Zn) >--+ (Az1, ½ z2, z3, ... , Zn), 

A := ~ squeezes the ball into the cylinder. 
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Symplectic capacities: 6. 

Although the Nonsqueezing Theorem may seem just like a curiosity, it turns 
out to be a cornerstone of the modern theory. 

Gromov, Ekeland-Hofer (1980s): Given an open U C JR2n define the 

symplectic capacity by 

c(U) = sup{a: 8 2n(a) embeds symplectically in U}. 

► c( U) is a symplectic invariant; 

► it is essentially 2-dimensional , eg the cylinder Z(A) is a set of infinite 

volume with finite capacity 

► any orientation preserving diffeomorphism ¢ that preserves c (i.e. 

c(cp(U)) = c(U) for all U) is an (anti)-symplectomorphism , i.e. 
¢*(w) = ±w. So: it characterizes symplectomorphisms 

► What other obstructions are there to symplectic embeddings? 

Embedding 4-dimensional Ellipsoids 7. 

Let E(a,b) be the ellipsoid {(z1,z2): 1r('zr + lzf) :S 1}. 

G ' ' 1r(lzi1'/a + lz,1 2/b) :'o 1 

, 

the ellipsoid E "·' 

Hofer conjectured around 2010 that intE(a, b) embeds symplectical/y in 
intE(c, d) if and only if N(a, b) '.S N(c, d) . Here N(a, b) is the set of all 
numbers ka + £b, k, £, ~ 0, arranged with multiplicities in increasing order.So, 

N(2, 2) = (0, 2, 2, 4, 4, 4, 6, 6, 6, 6, 8, 8, 8, 8, 8, ... ), and 
-....,,,.,., '-v-' ...__,__,, ~ 

N(l, 4) = (0, 1, 2, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 8, .. , Thus N(l, 4) ~ N(2, 2) because 
-....,,,.,., '-v-' ...__,__,, ~ 

the first sequence is termwise no larger than the second. 

These numbers are the actions of the ECH generators: ECH = embedded contact 
homology - a 4-dimensional Floer-type homology theory related to gauge theory; 
whose generators are unions of closed orbits of the boundary Hamiltonian flow. 

This conjecture now proved by McDuff (2012). An illustration of what it means: 
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The "ellipsoid into ball" embedding capacity s. 
For x 2: 1 define c(x) :=inf{µ: E(l, x) embeds sympl. in 8 4 (µ) }. 
This function was calculated by McDuff-Schlenk (2012). 

1 2 3 4 7 8 9 

► For x < T 4 ~ 6.7 (where T = 1\v'5) there is an infinite staircase (with 
numerics based on the Fibonacci numbers), 

► for x 2: 8tr; = (\7-)2, c(x) = y'x- no obstruction except for volume 

► T 4 < x < 8tr; is a transitional region; 

► there are rather few results or plausible guesses as to behavior in dim > 4. 
The obvious analog of Hofer's conjecture is false (Guth) since 

E(l, 5, 5)YE(3 + c:, 3 + c:, 5 3) for all 5 

Connection with number theory via T oric models 13. 

Using coordinates ( t = 1rlzl2, 0 = arg z) and forgetting 0 gives a map 

C2 -+ lR2, (z1,z2) f---+ (t1, t2) := (1rlz1l2, 1rlz2l2). 

It takes the ellipsoid E(a, b) = { 1r lzr + 1r 12t12 :S 1} to the triangle 

The ball 8(1) maps to the standard triangle T(l, 1) , with various affine 
equivalent images given by integral changes of basis of C2 (eg use (z1, z1 +z2)). 
Thus T(l, 3) can be cut into three standard triangles; cf. diagram on right. 

Hence E(l, 3) contains three disjoint balls 8(1) LJ 8(1) LJ 8(1). 
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General Triangle decompositions 

In fact any triangle T(a, b) with a, b E Z can be decomposed into 
standard 6s of different sizes, (a standard triangle is linearly equiv to some 

T(c,c)) 

On the top: we build T(5, 3) from T(3, 3) LJ T(2, 2) LJ T(l, 1) LJ T(l, 1). 
s 

s s s s 

I 

r 

r rn1 
On bottom: we build a rectangle from squares. Combinatorially these 
decamp are same, but the second is much easier to understand. To get the 

triangles from the rectangles, remove the top right point and collapse top and right 

sides to points in affine way. 

Continued fractions and decompositions 15 

The combinatorics of this decomposition of a triangle into standard 
triangles (or of a rectangle into squares), is the same as that governing 
the weight expansion W( ~) of a rational fraction ~. e.g. 

wnn = ( 9, 9, 7, 2, 2, 2, 1, 1) ..__,_,, ~ ..__,_,, 

9 9 

corresponds to 

/ 

21212~-
9 7 

1 

1 

25 1 1 7 
- = [2; 1, 3, 2] = 2 + 1 = 2 + --2 = 2 + g· 
9 1 + 3+½ 1 + 7 

The entries of the continued fraction are the multiplicities of the weights 

9 
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Embedding ellipsoids vs disjoint balls. 

Key Points: Suppose that ~ has normalized weight expansion 
w(~) = (w1, w2, ... , wn) (where w1 = 1). Then 

10 

► E(l, ~) embeds into B4 (µ) if and only if one can embed the disjoint union 

of balls u7=1 B(w;) into B4 (µ). 

► u7=1 B(w;) embeds into the ball B4 (µ) if and only if there is a symplectic 
form on the n-fold blow up of CP2 (µ) in the cohomology class 
o: := µ PD(L) - w1 PD(E1) - · · · - wnPD(En) (PD(E;) is the Poincare dual 
to the exceptional divisor given by the ith blow up) 

► (Li-Li, 1990s) this happens if and only if 

- o:2 > 0 (volume constraint) 
- JE o: > 0 for all exceptional divisors in the blow up. 

So we now have a geometric/algebraic problem - what are the homology 
classes of the relevant exceptional divisors? In the case when we map 
into a ball, their coefficients come from Fibonacci numbers. 

Fibonacci staircase revisited 11 

~ r (b',b) 

' ,r' ) 

' 

' 

/ .;'.•:+<···· • I • 
/;:- ,i (1;'/6)2 

V p Jf, 

1 2 3 4 5 6 7 8 9 

► We found that the exceptional classes in blow ups of CP2 that gave the 
sharpest obstruction to embedding E(p, q) had the form 
dL - ~ m;E;,where (m;) = W(p/q) and d, p, q are odd placed Fibonacci 
numbers. These are called perfect classes. 

► Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13, 21, 34, ... 

► For example at p/ q = 2/1 with W(2) = (1 x2) the obstruction is 
L - E12 = L - E1 - E2 (blow up of a line through 2 generic points. 

► at p/q = 5/1 with W(5) = (1 xs) the obstruction is 2L - £1 ... 5 (blow up 
of a conic through 5 generic points. 

► at p/q = 13/2, we have W(13/2) = (2x 6 , 1 x6 ) and the obstructive class 
is 5L - 2E1 ... 5 - E78. 

► Recently I (and various collaborators) have been studying the staircases 
that exist for embeddings ellipsoids into Hirzebruch surfaces (one point 
blow up of CP2). We found a very interesting fractal pattern. 
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