N	lathematical reflections on locality
	Sylvie Paycha University of Potsdam joint work with Li Guo and Bin Zhang
W	omen in Mathematics, RIMS, Kyoto, 8th September 2022

Locality in axiomatic QFT

The Wightman field
$$arphi:\mathcal{S}(\mathbb{R}^d) o\mathcal{O}(H)$$
 obeys the locality axiom

 $\operatorname{Supp}(f_1) \| \operatorname{Supp}(f_2) \Longrightarrow [\varphi(f_1), \varphi(f_2)] = 0.$ (1)

The (relative) scattering matrix S_f satisfies the locality condition

$$Supp(f_1) ||Supp(f_2) \implies S_f(f_1 + f_2) = S_f(f_1) S_f(f_2)$$
$$\implies [S_f(f_1), S_f(f_2)] = 0.$$
(2)

Locality

Mathematical interpretation

We introduce two binary relations

on sets:

$$O_1 \top' O_2 \Leftrightarrow [O_1, O_2] = 0, \tag{3}$$

• on test functions:

$$f_1 \top f_2 \Leftrightarrow \operatorname{Supp}(f_1) \| \operatorname{Supp}(f_2). \tag{4}$$

(6)

Interpretation of (1) as a locality map (see later)
$$f_1 \top f_2 \Longrightarrow \varphi(f_1) \top' \varphi(f_2). \tag{5}$$

Interpretation of (2) as a locality morphism (see later) $f_1 \top f_2 \Longrightarrow S_f(f_1 + f_2) = S_f(f_1) S_f(f_2).$

Locality
II. Locality as a symmetric binary relation
Locality
Alexhuete le celitu
Algebraic locality
Definition of locality
A locality set is a couple (X, \top) where X is a set and $\top \subseteq X \times X$ is a
symmetric relation on X, called locality relation (or independence
relation) of the locality set.
$x_1 op x_2 \Longleftrightarrow (x_1, x_2) \in op, \forall x_1, x_2 \in X.$
First examples of locality
• $X \perp Y \iff X \cap Y = \emptyset$ on subsets $X \mid Y$ of a set Z
• $\Lambda + I \longrightarrow \Lambda + I = \emptyset$ of subsets Λ , I of a set Z .
• $X \top Y \iff X \perp Y$ on subsets X, Y of an euclidean vector space V .
(almost-)Separation of supports
Let $U \subset \mathbb{R}^n$ be an open subset and $\epsilon \geq 0$. Two functions $\phi, \psi \in \mathcal{D}(U)$
are independent i.e., $\phi \top \psi$ whenever $\overline{d}(\operatorname{Supp}(\phi), \operatorname{Supp}(\psi)) > \epsilon$.
For $\epsilon = 0$, this amounts to disjointness of supports, otherwise to
ϵ -separation of supports.

Further examples

Probability theory: independence of events

Given a probability space $\mathcal{P} := (\Omega, \Sigma, P)$ and two events $A, B \in \Sigma$: $A \top B \iff \mathcal{P}(A \cap B) = \mathcal{P}(A) \mathcal{P}(B).$

Geometry: transversal manifolds

Given two submanifolds L_1 and L_2 of a manifold M: $L_1 \top L_2 \iff L_1 \pitchfork L_2 \iff T_x L_1 + T_x L_2 = T_x M \quad \forall x \in L_1 \cap L_2.$

Number theory: coprime numbers

Given two positive integers m, n in \mathbb{N} :

 $m \top n \iff m \land n = 1.$

Locality

Partial products

- Locality set: (X, \top) ,
- Polar set: $U^{\top} := \{x \in X, x \top u \mid \forall u \in U\}$ for $U \subseteq X$;
- Graph of the locality relation: $\top = \{(x_1, x_2) \in X^2, x_1 \top x_2\};$
- Partial product: $m_X : X \times X \supset \top \longrightarrow X$ i.e. $m_X(\top) \subset X$.

(X, m_X, \top) locality semi-group

semi-group condition: $\forall U \subseteq X$, $m_X ((U^\top \times U^\top) \cap \top) \subseteq U^\top$ or equivalently

$$(x_1 \top u_1 \text{ and } x_2 \top u_2 \quad \forall u_1, u_2 \in U) \Longrightarrow (m_X(x_1, x_2) \top w \quad \forall w \in U).$$

ounterexampl.

```
Equip \mathbb{R} with the locality relation x \top y \iff x + y \notin \mathbb{Z}.

(\mathbb{R}, \top, +) is NOT a locality semi-group: for U = \{1/3\} we have (1/3, 1/3) \in (U^{\top} \times U^{\top}) \cap \top but

1/3+1/3 = 2/3 \notin U^{\top}
```


III. Evaluating meromorphic germs at poles in QFT

Functions of several variables in QFT

Speer's analytic renormalisation [JMP 1967] revisited

Eugene Speer considers Feynman amplitudes given by the coefficients of the perturbation-series expansion of the *S* matrix in a Lagrangian field theory (with non zero mass).

Excerpt of Speer's article

In this paper we apply a method of defining divergent quantities which was originated by Riesz and has been used in various contexts by many authors. [...] We find it necessary to consider functions of several complex variables z_1, \dots, z_k , one associated with each line of the Feynman graph. The main difficulty is the extension of the above [Riesz's] treatment of poles to the more complicated singularities which occur in several complex variables...

Locality

Brain teaser

(We assume the poles are at zero)

Speer shows [Theorem 1] that the divergent expressions lie in the filtered algebra $\mathcal{M}^{\text{Feyn}}(\mathbb{C}^{\infty}) := \bigcup_{k=1}^{\infty} \mathcal{M}^{\text{Feyn}}(\mathbb{C}^{k})$ consisting of Feynman functions $f : \mathbb{C}^{k} \to \mathbb{C}$,

$$f = \frac{h(z_1, \cdots, z_k)}{L_1^{s_1} \cdots L_m^{s_m}}, \quad L_i = \sum_{j \in J_i} z_j, \quad J_i \subset \{1, \cdots, k\}, \ h \text{ holom. at zero}$$

Questions:

- **1** How to evaluate f consistently at the poles $z_1 = \cdots = z_k = 0$?
- What freedom of choice do we have for the evaluator?

lating a fraction with a linear pole a	
$f(z_1, z_2) = \frac{z_1 - z_2}{z_1 + z_2} _{z_1 = 0, z_2 = 0} = \begin{cases} \\ \\ \end{cases}$	<pre>1? 0? 10000?</pre>

Speer's generalised evaluators

They consist of a family $\mathcal{E} = \{\mathcal{E}_k, \in \mathbb{N}\}$ of linear forms $\mathcal{E}_k : \mathcal{M}^{\text{Feyn}}(\mathbb{C}^k) \to \mathbb{C}$, compatible with the filtration, which fulfill the following conditions

- (extend ev_0) \mathcal{E} is the ordinary evaluation ev_0 at zero on holom. germs;
- **2** (partial multiplicativity) $\mathcal{E}(f_1 \cdot f_2) = \mathcal{E}(f_1) \cdot \mathcal{E}(f_2)$ if f_1 and f_2 depend on different sets (later called independent) of variables z_i ;
- 3 \mathcal{E} is invariant under permutations of the variables $\mathcal{E}_k \circ \sigma^* = \mathcal{E}_k$ for any $\sigma \in \Sigma_k$, with $\sigma^* f(z_1, \cdots, z_k) := f(z_{\sigma(1)}, \cdots, z_{\sigma(k)})$;
- $(\text{continuity}) \text{ If } f_n(\vec{z}_k) \cdot L_1^{s_1} \cdots L_m^{s_m} \stackrel{\text{uniformly}}{\longrightarrow} g(\vec{z}_k) \text{ as holomorphic} \\ \text{germs, then } \mathcal{E}_k(f_n) \xrightarrow[n \to \infty]{} \mathcal{E}_k(\lim_{n \to \infty} f_n).$

Drawback: Speer's approach depends on the choice of coordinates z_1, \dots, z_k, \dots .

Locality

IV. Locality on meromorphic germs comes to the rescue

Locality

Back to the locality principle in QFT

We consider $\mathcal{M} := \mathcal{M}(\mathbb{C}^{\infty}) := \bigcup_{k=1}^{\infty} \mathcal{M}(\mathbb{C}^k)$ consisting of meromorphic functions/germs $f : \mathbb{C}^k \to \mathbb{C}$ with linear poles at zero,

$$f = \frac{h(z_1, \cdots, z_k)}{L_1^{s_1} \cdots L_m^{s_m}}, \quad L_i \text{ linear in } z_1, \cdots, z_k, h \text{ holom. at zero}$$

Aim: evaluate meromorphic germs at poles according to the principle of locality: "two events separated in space can be measured independently"

Principle of locality: factorisation on independent events $a \text{ and } b \text{ independent } \underset{\text{factorisation}}{\Longrightarrow} Meas \underbrace{(a \lor b)}_{\text{concatenation}} = Meas(a) \cdot Meas(b).$

We shall later equip *M* with a locality relation *T*;

Principle of locality revisited: locality evaluators

 $f \top g \Longrightarrow \mathcal{E}(f \cdot g) = \mathcal{E}(f) \mathcal{E}(g)$ for two meromorphic germs f and g in an appropriate subalgebra \mathcal{M}^{\bullet} of \mathcal{M} .

Localit

Locality on/independence of meromorphic germs

Meromorphic germs with linear poles

•
$$\mathcal{M}(\mathbb{C}^k) \ni f = \frac{h(\ell_1, \cdots, \ell_m)}{L_1^{\mathbf{s}_1} \cdots L_n^{\mathbf{s}_n}}, h \text{ holomorphic germ, } s_i \in \mathbb{Z}_{\geq 0},$$

• $\ell_i : \mathbb{C}^k \to \mathbb{C}, \ L_j : \mathbb{C}^k \to \mathbb{C}$ linear forms with real coefficients (lie in $\mathcal{L}(\mathbb{C}^k)$).

Locality on meromorphic germs: orthogonality

- **Dependence** set $Dep(f) := \langle \ell_1, \cdots, \ell_m, L_1, \cdots, L_n \rangle$.
- Q inner product on \mathbb{R}^k induces one on $\mathcal{L}(\mathbb{C}^k)$
- $f_1 \perp^Q f_2 \iff \operatorname{Dep}(f_1) \perp^Q \operatorname{Dep}(f_2).$
- polar germs: $\mathcal{M}^{\bullet Q}_{-}(\mathbb{C}^k) \ni f \iff h \perp^Q L_i$ for all $i = 1, \cdots, n$.
- Theorem: (L. Guo, S.-P., B. Zhang/ N. Berline, M. Vergne 2015) $\mathcal{M}^{\bullet}(\mathbb{C}^k) = \mathcal{M}_+(\mathbb{C}^k) \oplus^{\circ} \mathcal{M}_-^{\bullet, old}(\mathbb{C}^k)$

Where we stand

Locality

Theorem [Guo, S.P., Zhang 2022]

Definition

A locality evaluator at zero $\mathcal{E} : \mathcal{M}^{\bullet} \longrightarrow \mathbb{C}$ is a linear form which i) extends the ordinary evaluation ev_0 at zero and ii) factorises on independent germs (or is a locality character):

$$f_1 \perp^{\mathsf{Q}} f_2 \Longrightarrow \mathcal{E}(f_1) \perp^{\mathsf{Q}} \mathcal{E}(f_2).$$

Example: Minimal subtraction scheme:

$$\mathcal{E}^{\mathrm{MS}}: \mathcal{M}^{\bullet} \xrightarrow{\pi_{+}^{\mathsf{ev}}} \mathcal{M}_{+} \xrightarrow{\mathrm{ev}_{\bullet}} \mathbb{C}$$
 is a locality evaluator.

Theorem

Given an inner product Q, a locality evaluator at zero $\mathcal{E} : \mathcal{M}^{\bullet} \longrightarrow \mathbb{C}$ is of the form: $\mathcal{E} = \underbrace{\operatorname{ev}_{0} \circ \pi_{+}^{Q}}_{\mathcal{E}^{\mathrm{MS}}} \circ \underbrace{\mathcal{T}_{\mathcal{E}}}_{\operatorname{Gal}^{Q}(\mathcal{M}^{\bullet}/\mathcal{M}_{+})}$.

Locality

ocality	
	L. Guo, B. Zhang and S. P., Renormalisation and the Euler-Maclaurin formula on cones, <i>Duke Math J.</i> , 166 (3) (2017) 537–571.
	L. Guo, B. Zhang and S. P., A conical approach to Laurent expansions for multivariate meromorphic germs with linear poles, <i>Pacific Journal of Mathematics</i> 307 (2020) 159–196.
	L. Guo, B. Zhang and S. P., Galois groups of meromorphic germs and multiparameter renormalisation (2022) (Preprint)
	L. Guo, B. Zhang and S. P., Mathematical reflections on locality (2022) (Preprint)
	R. Dahmen, A. Schmeding and S. P., A topological splitting of the space of meromorphic germs in several variables and continuous evaluators, arXiv:2206.13993 (2022)