ERGODIC OPTIMIZATION AND ITS RELATION TO THERMODYNAMIC FORMALISM

MAO SHINODA

Let $T: X \to X$ be a continuous map on a compact metric space X. For a continuous function $\varphi: X \to \mathbb{R}$ we consider the ergodic maximum

(1)
$$\beta(\varphi) := \sup_{\mu \in \mathcal{M}_T(X)} \int_X \varphi \ d\mu$$

where $\mathcal{M}_T(X)$ is the space of all *T*-invariant Borel probability measures on X with the weak*-toplogy. An invariant measure attaining the supremum of (1) is called *maximizing measure* of φ . The study of maximizing measures is called *Ergodic optimization* and has been attracted interest by many authors for a decade (See for a nice survey [Jen19]).

On the other hand we are also interested in the topological pressure of φ

(2)
$$\mathcal{P}(\varphi) := \sup_{\mu \in \mathcal{M}_T(X)} \left(h_\mu + \int_X \varphi \ d\mu \right)$$

where h_{μ} is a metric entropy of μ . An invariant measure attaining (2) is called *equilibrium measure* and is a main object in *thermodynamic formalism*, which has been a powerful tool in ergodic theory and dynamical system and its applications to other topics.

In this paper we will illustrate a maximizing measure naturally appears as the "zero temperature limit" of equilibrium measures. In this paper we assume the entropy map $\mu \mapsto h_{\mu}$ is upper semi-continuous, which ensures the existence of equilibrium measures.

Let $\beta > 0$ and μ_{β} be an equilibrium measure of $\beta \varphi$. We consider the following problem:

Does (μ_{β}) converges as β goes to infinity?

This is called *zero temperature limit problem* [BLL13]. It is easy to see that any accumulation point of (μ_{β}) should be a maximizing measure of φ , i.e., letting μ_{∞} be an accumulation point of (μ_{β}) , we have

(3)
$$\beta(\varphi) = \int_X \varphi \ d\mu_\infty$$

Set $\mathcal{M}_{\max}(\varphi)$ be the set of all maximizing measures of φ . Then (3) implies that (μ_{β}) converges if $\mathcal{M}_{\max}(\varphi)$ is a singleton. If $\mathcal{M}_{\max}(\varphi)$ is not a singleton, what we should check next is entropy of maximizing measures. Indeed, we obtain that any accumulation point of (μ_{β}) should attains the maximum entropy among all maximizing measures, i.e.,

$$\sup_{\mu \in \mathcal{M}_{\max}(\varphi)} h_{\mu} = h_{\mu_{\infty}}.$$

This yields that (μ_{β}) converges if there exists unique $\mu \in \mathcal{M}_{\max}(\varphi)$ with the maximum entropy $\sup_{\mu \in \mathcal{M}_{\max}(\varphi)} h_{\mu}$.

MAO SHINODA

Taking account of the above observation, itt is natural to ask when $\mathcal{M}_{\max}(\varphi)$ is a singleton. This is studied by Jenkinson and for generic $\varphi \in C(X)$, $\mathcal{M}_{\max}(\varphi)$ is a singleton [Jen06]. Hence (μ_{β}) converges for generic $\varphi \in C(X)$. On the other hand, there remains many functions whose set of maximizing measures is far from singleton: If (X,T) satisfies the specification property, there exists a dense subset $\mathcal{D} \subset C(X)$ s.t. for every $\varphi \in \mathcal{D}$, $\mathcal{M}_{\max}(\varphi)$ contains uncountably many ergodic elements [Shi18].

It is also natural to expect (μ_{β}) converges for φ with nice continuity. Now we restrict our attention to symbolic dynamics. Let $X = A^{\mathbb{N}}$ with a finite set A and a metric $d(x, y) = 2^{-n}$ where $n = \inf\{i \in \mathbb{N} : x_i \neq y_i\}$. Let $T : X \to X$ be the left shift. A function $\varphi : X \to \mathbb{R}$ is a *locally constant* if there exists $N \in \mathbb{N}$ s.t. $\varphi(x) = \varphi(y)$ if $d(x, y) = 2^{-n}$ for $n \geq N$. For a locally constant function φ , (μ_{β}) converges, which is proved by different authors in different ways [Bré08, Lep14, CGU11]. However, for Lipschitz functions we may have non-convergence. Chazottes and Hochman first gives a Lipschitz function for which (μ_{β}) does not converges [CH10]. Another construction is given by Coronel and Rivera-Letelier [CRL15]. The situation in higher dimensional is more complicated [CH10, CS20, Ved20].

References

- [BLL13] Alexandre Baraviera, Renaud Leplaideur, and Artur Lopes, Ergodic optimization, zero temperature limits and the max-plus algebra. Paper from the 29th Brazilian mathematics colloquium – 29° Colóquio Brasileiro de Matemática, Rio de Janeiro, Brazil, July 22 – August 2, 2013, Publ. Mat. IMPA, Rio de Janeiro: Instituto Nacional de Matemática Pura e Aplicada (IMPA), 2013 (English).
- [Bré08] Julien Brémont, Entropy and maximizing measures of generic continuous functions, C. R., Math., Acad. Sci. Paris 346 (2008), no. 3-4, 199–201 (French).
- [CGU11] J.-R. Chazottes, J.-M. Gambaudo, and E. Ugalde, Zero-temperature limit of one-dimensional Gibbs states via renormalization: the case of locally constant potentials, Ergodic Theory Dyn. Syst. **31** (2011), no. 4, 1109–1161 (English).
- [CH10] Jean-René Chazottes and Michael Hochman, On the zero-temperature limit of Gibbs states, Commun. Math. Phys. 297 (2010), no. 1, 265–281 (English).
- [CRL15] Daniel Coronel and Juan Rivera-Letelier, Sensitive dependence of Gibbs measures at low temperatures, J. Stat. Phys. 160 (2015), no. 6, 1658–1683 (English).
 - [CS20] J. R. Chazottes and M. Shinoda, On the absence of zero-temperature limit of equilibrium states for finite-range interactions on the lattice \mathbb{Z}^2 , arXiv:2010.08998, 2020.
- [Jen06] Oliver Jenkinson, Ergodic optimization, Discrete Contin. Dyn. Syst. 15 (2006), no. 1, 197–224 (English).
- [Jen19] _____, Ergodic optimization in dynamical systems, Ergodic Theory Dyn. Syst. 39 (2019), no. 10, 2593–2618 (English).
- [Lep14] Renaud Leplaideur, Zero temperature and selection of maximizing measure, 2014.
- [Shi18] Mao Shinoda, Uncountably many maximizing measures for a dense subset of continuous functions, Nonlinearity 31 (2018), no. 5, 2192–2200 (English).
- [Ved20] Gregório Dalle Vedove, Chaos and turing machines on bidimensional models at zero temperature, arXiv:2010.11053, 2020.

Department of Mathematics, Ochanomizu University, 2-1-1 Otsuka, Bunkyoku, Tokyo, 112-8610, Japan

Email address: shinoda.mao@ocha.ac.jp