Facial achromatic number of triangulations on the sphere

Naoki Matsumoto
Research Institute for Digital Media and Content, Keio University

Yumiko Ohno
Research Initiatives and Promotion Organization, Yokohama National University

A graph consists of a set of vertices and a set of edges. All graphs considered in this paper are finite, undirected and simple unless we particularly mention it. If a graph G is drawn on a closed surface F^{2} without crossing edges, then G is said to be embedded on F^{2}. Each component of $F^{2}-G$ is called a face of G. A triangulation G on F^{2} is a simple graph embedded on F^{2} such that each face is triangular. In particular, if the degree of any vertex of a triangulation is even, then such a triangulation is called an even triangulation.

Let G be a graph. An n-coloring $c: V(G) \rightarrow\{1,2, \ldots, n\}$ is a function which assigns a color from $\{1, \ldots, n\}$ to each vertex of G such that any adjacent vertices receive different colors. The chromatic number of G is the minimum number n such that G has a proper n-coloring, and it is denoted by $\chi(G)$.

A complete n-coloring of G is an n-coloring such that each pair of colors appears on at least one edge. A $\chi(G)$-coloring of G is a complete $\chi(G)$-coloring since if there is a pair (i, j) of colors which does not appear on any edge, we can obtain a proper $(\chi(G)-1)$-coloring of G by recoloring all vertices with color j by color i, a contradiction. We define the achromatic number of G, denoted $\psi(G)$, to be the maximum number n for which G has a complete n-coloring.

Since $\psi(G) \geq \chi(G)$ for any graph G, there are some studies considering which graph does satisfy $\psi(G)=\chi(G)$. Hara [1] completely characterized triangulations on a closed surface with achromatic number 3, as follows. A complete tripartite graph $K_{n_{1}, n_{2}, n_{3}}$ is a graph satisfying the following conditions: (i) vertices of the graph are decomposed into three disjoint sets and the number of each sets are n_{1}, n_{2} and n_{3}, (ii) no two vertices in the same set are adjacent, and (iii) for any two vertices in the other two sets, they are adjacent.

Theorem 1 (Hara [1]). Let G be a triangulation on a closed surface. Then $\psi(G)=3$ if and only if G is isomorphic to $K_{n, n, n}$ for some $n \geq 1$.

In this paper, we introduce a new coloring of embedded graphs, called a facial complete coloring, which is an expansion of the complete coloring.

Let G be a graph embedded on a surface. An n-coloring $c: V(G) \rightarrow\{1,2, \ldots, n\}$ is a facial t-complete n-coloring if every t-tuple of colors appears on the boundary of some face of G. The facial t-achromatic number of G, denoted by $\psi_{t}(G)$, is the maximum number n such that G has a facial t-complete n-coloring. When $t=1$, a facial t-complete coloring is just a coloring using each color at least once, and if $t=2$, then a coloring is a complete coloring.

Remember that every graph G has a complete n-coloring for some $n \geq \chi(G)$. However, for any $n \geq 3$, there exists a triangulation G on the sphere which has no facial 3-complete n-coloring. On the other hand, every even triangulation G on the sphere has at least one facial 3 -complete n-coloring for some $n \geq \chi(G)$, since it is 3 -colorable [2]. Thus, in this paper, we principally focus on the facial 3 -achromatic number of even triangulations on the sphere.

Since $\psi_{3}(G) \geq 3$ for any even triangulation G on the sphere, we shall consider to characterize the graphs which hold $\psi_{3}(G)=3$. The double wheel $D W_{n}$ for $n \geq 3$ is a triangulation on the sphere which is obtained from the cycle C_{n} by adding two vertices x and y and joining them to all vertices of C_{n} (see the left of Figure 1). When n is even, $D W_{n}$ is an even triangulation on the sphere. We can completely characterize even triangulations on the sphere with facial 3 -achromatic number equal to 3 , as follows. The following is also an analog of Theorem 1.

Theorem 2. Let G be an even triangulation on the sphere. The facial 3-achromatic number of G is exactly 3 if and only if G is isomorphic to the double wheel $D W_{2 n}$ for $n \geq 2$ or one of the two graphs shown in the center and the right in Figure 1.

Figure 1: The double wheel $D W_{6}$ and graphs G with $\psi_{3}(G)=3$

References

[1] S. Hara, Triangulations of closed surfaces with achromatic number 3, Yokohama Math. J. 47 (1999), 225-229.
[2] M.T. Tsai and D.B. West, A new proof of 3-colorability of Eulerian triangulations, Ars Math. Contemp. 4 (2011), 73-77.

