Quasi-isometric embeddings from mapping class groups of nonorientable surfaces

Takuya Katayama
Department of Mathematics, Faculty of Science, Gakushuin University Erika Kuno

Department of Mathematics, Graduate School of Science, Osaka University

1 Introduction

Let $S=S_{g, p}^{b}$ be the connected orientable surface of genus g with b boundary components and p punctures, and $N=N_{g, p}^{b}$ the connected nonorientable surface of genus g with b boundary components and p punctures. In the case where $b=0$ or $p=0$, we drop the suffixes that denotes 0 , excepting g, from $S_{g, p}^{b}$ and $N_{g, p}^{b}$. If we are not interested in whether a given surface is orientable or not, we denote the surface by F. The mapping class group $\operatorname{Mod}(F)$ of F is the group of isotopy classes of homeomorphisms on F which are orientation-preserving if F is orientable and preserve ∂F pointwise. For orientable surfaces S, if we consider also orientation-reversing homeomoriphisms, then we call it the extended mapping class group and write $\operatorname{Mod}^{ \pm}(S)$. Quasi-isometry classification of finitely generated groups is a key issue in geometric group theory.
Definition 1.1. Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces. A map $f: X \rightarrow Y$ is a quasi-isometric embedding if there exist $\lambda_{1} \geq 1$ and $\lambda_{2} \geq 0$ such that

$$
\frac{1}{k_{1}} d_{X}\left(x_{1}, x_{2}\right)-k_{2} \leq d_{Y}\left(f\left(x_{1}\right), f\left(x_{2}\right)\right) \leq k_{1} d_{X}\left(x_{1}, x_{2}\right)+k_{2}
$$

Furthermore, a quasi-isometric ambedding $f: X \rightarrow Y$ is a quasi-isometry if there exists $\lambda \geq 0$ such that for any $y \in Y$, there exists $x \in X$ such that $d_{Y}(y, f(x)) \leq \lambda$.

Let $j: S_{g-1,2 p}^{2 b} \rightarrow N_{g, p}^{b}$ be the orientation double covering of a nonorientable surface $N_{g, p}^{b}$ and $J: S_{g-1,2 p}^{2 b} \rightarrow S_{g-1,2 p}^{2 b}$ the deck transformation.
Lemma 1.2. ([2, Theorem 1], [7, Lemma 3], [5, Theorem 1.1]) For all but $(g, p, b)=$ $(1,0,0),(2,0,0)$, the orientation double covering j induces an injective homomorphism $\iota: \operatorname{Mod}\left(N_{g, p}^{b}\right) \hookrightarrow \operatorname{Mod}\left(S_{g-1,2 p}^{2 b}\right)$. Moreover, the image of $\operatorname{Mod}\left(N_{g, p}^{b}\right)$ given by ι consists of the isotopy classes of orientation-preserving homeomorphisms of $S_{g-1,2 p}^{2 b}$ which commute with J.

2 Main result

In this section, we state the main theorem (Theorem 2.1). and give the idea of the proof of Theorem 2.1.
Theorem 2.1. For all but $(g, p)=(2,0)$, the injective homomorphism $\iota: \operatorname{Mod}\left(N_{g, p}^{b}\right) \hookrightarrow$ $\operatorname{Mod}\left(S_{g-1,2 p}^{2 b}\right)$ is a quasi-isometric embedding.

To show Theorem 2.1, we use the following results.
Proposition 2.2. ([4], [6]) For any finite type orientable surface S, the mapping class group $\operatorname{Mod}(S)$ and the extended mapping class group $\operatorname{Mod}^{ \pm}(S)$ are semihyperbolic.
Proposition 2.3. ([1]) Let G be a semihyperbolic group. Then any centralizer H of G is quasi-isometrically embedded in G.

We can deduce Theorem 2.1 by the fact that $\operatorname{Mod}\left(N_{g, p}\right)$ is realized as an index 2 subgroup of the centralizer of $[J]$ in the extended mapping class group $\operatorname{Mod}^{ \pm}\left(S_{g-1,2 p}\right)$, and Propositions 2.2 and 2.3.

Acknowledgments

The second author wishes to express her great appreciation to the organizers for giving her a chance to talk at Women in Mathematics, and supporting her a lot. The first author was supported by JSPS KAKENHI, Grant Number 20J01431. The secound author was supported by JST, ACT-X, Grant Number JPMJAX200D and by JSPS KAKENHI, Grant Number 21K13791.

References

[1] J. M. Alonso and M. R. Bridson, Semihyperbolic groups, Proc. London Math. Soc. (3) 70 (1995), no. 1, 56-114.
[2] J. S. Birman and D. R. J. Chillingworth, On the homeotopy group of a non-orientable surface, Proc. Cambridge Philos. Soc. 71 (1972), 437-448.
[3] M. R. Bridson and A. Haefliger, Metric spaces of non-positive curvature, SpringerVerlag, Berlin, 1999.
[4] M. G. Durham, Y. N. Minsky, A. Sisto, Stable cubulations, bicombings, and barycenters, to appear in Geom. Topol. (arXiv: 2009.13647.)
[5] D. L. Gonçalves, and J. Guaschi, M. Maldonado, Embeddings and the (virtual) cohomological dimension of the braid and mapping class groups of surfaces, Confluentes Math. 10 (2018), no. 1, 41-61.
[6] T. Haettel, N. Hoda, and H. Petyt, The coarse Helly property, hierarchical hyperbolicity, and semihyperbolicity, to appear in Geom. Topol. (arXiv:2009.14053.)
[7] B. Szepietowski, Embedding the braid group in mapping class groups, Publ. Mat. 54 (2010), no. 2, 359-368.

