# Region colorings for spatial graphs 

## Kanako Oshiro(Sophia University) Natsumi Oyamaguchi(Shumei University)

## 1 Dehn $p$-coloring

Let $\mathbb{Z}_{p}=\{0,1, \ldots, p-1\}$ denote the cyclic group $\mathbb{Z} / p \mathbb{Z}$. A Dehn $p$-coloring for a spatial graph diagram is an assignment of an element(color) of $\mathbb{Z}_{p}$ to each region. At each crossing and vertex, the following conditions are satisfied:


## 2 Pallets of Dehn $p$-coloring

Definition 2.1. Two elements $\boldsymbol{a}, \boldsymbol{b} \in \bigcup_{n \in 2 \mathbb{Z}_{+}} \mathbb{Z}_{p}^{n}$ are equivalent $(\boldsymbol{a} \sim \boldsymbol{b})$ if $\boldsymbol{a}$ and $\boldsymbol{b}$ are related by a finite sequence of the following transformations:
(Op1) $\left(a_{1}, \ldots, a_{n}\right) \longrightarrow\left(a_{2}, \ldots, a_{n}, a_{1}\right)$,
(Op2) $\left(a_{1}, \ldots, a_{n}\right) \longrightarrow\left(a, a_{2}+(-1)^{2}\left(a_{1}-a\right), \ldots, a_{i}+(-1)^{i}\left(a_{1}-a\right), \ldots, a_{n}+(-1)^{n}\left(a_{1}-a\right)\right)$ for $a \in \mathbb{Z}_{p}$,
(Op3) $\left(a_{1}, \ldots, a_{n}\right) \longrightarrow\left(a, a_{1}-a_{2}+a, \ldots, a_{1}-a_{i}+a, \ldots, a_{1}-a_{n}+a\right)$ for $a \in \mathbb{Z}_{p}$,
(Op4) $\left(a_{1}, \ldots, a_{n}\right) \longrightarrow\left(a_{1},-a_{1}+a_{2}+a_{3}, a_{3}, \ldots, a_{n}\right)$.
A region pallet of $\mathbb{Z}_{p}$ is a set $P=\bigcup_{\lambda \in \Lambda} C_{\lambda}$ for some $\left\{C_{\lambda}\right\}_{\lambda \in \Lambda} \subset \bigcup_{n \in 2 \mathbb{Z}_{+}} \mathbb{Z}_{p}^{n} / \sim$.

## 3 Results

Put $\boldsymbol{a}=\left(a_{1}, \ldots, a_{n}\right)$. We define $\tau_{p}: \bigcup_{n \in 2 \mathbb{Z}_{+}} \mathbb{Z}_{p}^{n} \longrightarrow \mathbb{Z}$ by

$$
\tau_{p}(\boldsymbol{a})=\max \left\{\begin{array}{l|l}
k \in\{1, \ldots, p\} & \begin{array}{c}
k \mid p, \\
a_{1}+a_{2} \equiv a_{2}+a_{3} \equiv \cdots \equiv a_{n}+a_{1} \\
(\bmod k)
\end{array}
\end{array}\right\} .
$$

Suppose $p$ is an even integer. We define $\varepsilon_{p}: \bigcup_{n \in 2 \mathbb{Z}_{+}} \mathbb{Z}_{p}^{n} \longrightarrow \mathbb{Z} \cup\{\infty\}$ by

$$
\varepsilon_{p}(\boldsymbol{a})=\left\{\begin{array}{lll}
0 & \text { if } a_{1}+a_{2} \equiv \cdots \equiv a_{n}+a_{1} \equiv 0 & (\bmod 2) \\
1 & \text { if } a_{1}+a_{2} \equiv \cdots \equiv a_{n}+a_{1} \equiv 1 & (\bmod 2), \\
\infty & \text { otherwise } &
\end{array}\right.
$$

We define $\mu_{p}: \bigcup_{n \in 2 \mathbb{Z}_{+}} \mathbb{Z}_{p}^{n} \longrightarrow \mathbb{Z}$ by

$$
\mu_{p}(\boldsymbol{a})=E\left(\left(a_{1}+a_{2}, \ldots, a_{n}+a_{1}\right)\right)-O\left(\left(a_{1}+a_{2}, \ldots, a_{n}+a_{1}\right)\right),
$$

where

$$
E(\boldsymbol{a})=\#\left\{i \in\{1, \ldots, n\} \mid a_{i} \equiv 0 \quad(\bmod 2)\right\}
$$

and

$$
O(\boldsymbol{a})=\#\left\{i \in\{1, \ldots, n\} \mid a_{i} \equiv 1 \quad(\bmod 2)\right\}
$$

For $\tau \in\{1, \ldots, p\}$ such that $\tau \equiv 0(\bmod 2), \tau \mid p$ and $\frac{p}{\tau} \equiv 0(\bmod 2)$, define $\mu_{p, \tau}: \bigcup_{n \in 2 \mathbb{Z}_{+}} \mathbb{Z}_{p}^{n} \longrightarrow$ $\mathbb{Z} \cup\{\infty\}$ by

$$
\mu_{p, \tau}(\boldsymbol{a})=\left\{\begin{array}{c|c}
\left\lvert\, \mu_{\frac{p}{\tau}}\left(\left(\frac{a_{1}-a_{1}}{\tau}, \frac{a_{2}-a_{2}}{\tau}, \ldots, \frac{a_{2 j-1}-a_{1}}{\tau}, \frac{a_{2 j}-a_{2}}{\tau}, \ldots, \frac{a_{n}-a_{2}}{\tau}\right)\right)\right. & \text { if } \tau_{p}(\boldsymbol{a})=\tau \\
\infty & \text { otherwise. }
\end{array}\right.
$$

We have the following theorem.
Theorem 3.1. (1) Let $n=2$.
(i) When $p$ is an odd integer, we have

$$
\mathbb{Z}_{p}^{2} / \sim=\left\{\mathbb{Z}_{p}^{2}\right\}
$$

(ii) When $p$ is an even integer, we have

$$
\mathbb{Z}_{p}^{2} / \sim=\left\{\eta_{\varepsilon} \mid \varepsilon \in\{0,1\}\right\}
$$

where

$$
\eta_{\varepsilon}=\left\{\boldsymbol{a} \in \mathbb{Z}_{p}^{2} \mid \varepsilon_{p}(\boldsymbol{a})=\varepsilon \quad(\bmod 2)\right\}
$$

(2) Let $n$ is an even integer greater than 2.
(i) When $p$ is an odd integer, we have

$$
\mathbb{Z}_{p}^{n} / \sim=\left\{\delta_{\tau} \mid \tau \in\{1, \ldots, p\} \text { s.t. } \tau \mid p\right\}
$$

where

$$
\delta_{\tau}=\left\{\boldsymbol{a} \in \mathbb{Z}_{p}^{n} \mid \tau_{p}(\boldsymbol{a})=\tau\right\}
$$

(ii) When $p$ is an even integer, we have

$$
\begin{aligned}
\mathbb{Z}_{p}^{n} / \sim= & \left\{\alpha_{\tau, \mu} \left\lvert\, \begin{array}{l}
\tau \in\{1, \ldots, p\} \text { s.t. }(\tau \mid p) \wedge(\tau \equiv 1 \quad(\bmod 2)) ; \\
\mu \in \mathbb{Z} \text { s.t. }(-n<\mu<n) \wedge(\mu \equiv 0 \quad(\bmod 2)) \wedge\left(\frac{n-|\mu|}{2} \equiv 0 \quad(\bmod 2)\right)
\end{array}\right.\right\} \\
& \bigcup\left\{\beta_{\tau, \varepsilon} \left\lvert\, \begin{array}{l}
\tau \in\{1, \ldots, p\} \text { s.t. }(\tau \mid p) \wedge(\tau \equiv 0 \quad(\bmod 2)) \wedge\left(\frac{p}{\tau} \equiv 1 \quad(\bmod 2)\right) ; \\
\varepsilon \in\{0,1\}
\end{array}\right.\right\} \\
& \bigcup\left\{\begin{array}{lll}
\left.\gamma_{\tau, \varepsilon, \mu} \left\lvert\, \begin{array}{l}
\tau \in\{1, \ldots, p\} \text { s.t. }(\tau \mid p) \wedge(\tau \equiv 0 \quad(\bmod 2)) \wedge\left(\frac{p}{\tau} \equiv 0\right. \\
\varepsilon \in\{0,1\} ; \\
\mu \in \mathbb{Z} \text { s.t. }(0 \leq \mu<n) \wedge(\mu \equiv 0 \quad(\bmod 2)) \\
\end{array}\right.\right\} \\
\hline\left(\frac{n-|\mu|}{2} \equiv 0 \quad(\bmod 2)\right)
\end{array}\right\}
\end{aligned}
$$

where

$$
\begin{aligned}
\alpha_{\tau, \mu} & =\left\{\boldsymbol{a} \in \mathbb{Z}_{p}^{n} \mid \tau_{p}(\boldsymbol{a})=\tau, \mu_{p}(\boldsymbol{a})=\mu\right\} \\
\beta_{\tau, \varepsilon} & =\left\{\boldsymbol{a} \in \mathbb{Z}_{p}^{n} \mid \tau_{p}(\boldsymbol{a})=\tau, \varepsilon_{p}(\boldsymbol{a})=\varepsilon\right\}
\end{aligned}
$$

and

$$
\gamma_{\tau, \varepsilon, \mu}=\left\{\boldsymbol{a} \in \mathbb{Z}_{p}^{n} \mid \tau_{p}(\boldsymbol{a})=\tau, \varepsilon_{p}(\boldsymbol{a})=\varepsilon, \mu_{p, \tau}(\boldsymbol{a})=\mu\right\}
$$

