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H-BASIS IN GEOMETRIC STRUCTURES WITH A 
DENSE/CODENSE INDEPENDENT SUBSET 

IKUO YONEDA 
GENERAL EDUCATION, NATIONAL INSTITUTE OF TECHNOLOGY, TOKUYAMA 

COLLEGE 

ABSTRACT. We discuss H-basis in geometric structures with a dense/codense 
independent subset, and algebraic n-gons in geometric structures to calculate 
the ranks of H-structures in trivial/non-trivial independence of base geometric 
structures. 

1. NOTATIONS AND ALGEBRAIC DIMENSION 

Let T be a complete L-theory and let M be a sufficiently saturated model of T. 
a, b, c, ... denote elements of M. a, b, c, ... denote finite tuples of M. A, B, C de
note small subsets of M. We write ii E acl(A) if I{ CT(ii) : CT E Aut(M/ A)}I is finite. 
The algebraic closure of A. 
Let i(2 1) be a natural number. We put ii<;:= ii1, ... ,ii;. ii<i = ii1, ... ,ii;-1-
ii<1 := 0. -
We say that a<n = a1, a2, ... , an is algebraically independent over B if a; rfc 
acl(Ba<;) for each i :S: n. 
We say that (M,acl(*)) has Steinitz exchange property if a E acl(Bb) \ acl(B) 
implies b E acl(Ba). 
We say that (M,acl(*)) is geometric if it has Steinitz exhchange property and 
eliminates :3 00 • 

Assume that (M,acl(*)) has Steinitz exchange property. Then for any a::;n = 
a1, a2, ... , an and B, after renumbering indices, there exists unique m(:S: n) such 
that 

a; rfc acl(Ba<;) for each i ::; m 
aj E acl(Ba:c:;m) for each j > m 

We write m = dim(a::;n/B), the dimension of a::;n over B. 
Basic properties on dimension 

(1) If A<;;;; B, then dim(a/A) 2 dim(a/B). 
(2) Transitivity: If A <;;;; B <;;;; C, then dim(ii/A) = dim(ii/C) iff dim(a/A) 

dim(a/ B) and dim(a/ B) = dim(a/C) 
(3) Sub-additivity: dim(ab/A) = dim(a/A) + dim(b/Aa). 
( 4) Finite coding: There exists a finite tuple b <;;;; B such that dim(a/ B) 

dim(a/b). 
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The independence relation by dimension 

We write ii 1,tm c if dim(ii/b) = dim(ii/bc). 

Symmetry: ii J_,tm c implies c j_,tim ii. 
Proof. By using sub-additivity, we have dim(c/iib) + dim(ii/b) dim(iic/b) 
dim(ii/bc) + dim(c/b). So dim(a/bc) = dim(ii/b) implies dim(c/iib) = dim(c/b). 

Monotonicity: if ii 1,tm c and iio <;;; ii, then iio 1,tm c. 

Proof. By symmetry c 1,tm ii. By transitivity c 1,tim iio. By symmetry again, 
- I dim -
ao '1.-,zj c. 

Now we define A J_, :m C if dim(ii/ B) = dim(ii/ BC) for any finite tuple ii<;;; A. 
We intruduce the imaginarr element e E Meq if e = ii/ E, where E(x, y) is an 

0-definible equivalence relation with lh(ii) = lh(x) = lh(y) and some ii c M. 
Fore E Meq and AC Meq we write e E acleq(A) if l{u(e): u E Aut(Meq/A)}I is 
finite. 

The independence calculus: See [A]. 
A symmetric ternary relation * J_, * on Meq has the independence calculus if the 
following 8 conditions hold: * 

(1) Normality: A J_, B C implies A J_, BBC. 
(2) Invariance: A J_, B C and ABC = A' B' C' imply A' J_, B' C' 
(3) Monotonicity: A J_, B C and A 0 <;;; A imply Ao J_, B C 
( 4) Transitivity : If B <;;; C <;;; D, then 

A J_, B D iff A J_, BC and A J_, 0 D 
(5) Extention: There exists A' =BA such that A' J_, BC. 
(6) Finite character: If ii J_, BC for any finite tuple ii <;;; A, then A J_, BC. 
(7) Local character: For any ii,A CM, there exists Ao<;;; A such that IAol :S: 

ITI and ii J_, Ao A. 
(8) Anti-reflexivity: ii J_, A ii implies ii E acleq(A). 

symmetric<;=}transitive<;=}local character holds modulo other properties of the in
dependence calculus. We have the following: stable=:.simple=:.rosy(i.e.having the 
independence calculus )¢co-minimal 
superstable(U < oo )=:.supersimple(SU < oo) =:.superrosy(UP < oo ). 
strongly minimal(O < U :S: RM= 1, degRM = 1)=:. SU= 1 =:, UP = 1 ¢co-minimal. 

2. NON-TRIVIALITY AND ALGEBRAIC n-GONS 

Assume that (M,acl(*)) has Steinitz exchange property and put J_, = J_, dim_ 

We say that a E M is non-trivial if there exists a2, a3, c such that a J_, c a2, a J_, c a3, a2 J_, c a3 

and a L- a2, a3. Then we say that a, a2, a3 is an algebraic triangle over b. 
C 

We say that a<n = a1, · · · , an is an algebraic n-gon over A if dim( a<n/ A) = n-1 
and dim(a<n \{~;}/A)= n - 1 for each 1 :S: i :S: n. -

Then a;~a1, ak is an algebraic triangle over Aa:,;n \{a;, a1, ak}, because a; LA \{ . . } a1, ak. 
a~n a1, ,a3 ,ak 

so any point of n-gon is non-trivial. 
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Fact 2.1. If a EM is non-trivial, then for each n < w, there exists b:,;n-1, A such 
that ab:,;n-1 is an algebraic n-gon over A. 

Proof. The case n = 3 is clear. By induction hypothesis, assume that ab:,;n-1 is 
an algebraic n-gon over A. As bn-1 is non-trivial, there exist bn, bn+l, c such that 
bn-1bnbn+l is an algebraic triangle over c. By an automorphism fixing bn-1, we 
may assume that bnbn+1C J,bn-l b:,;n-2A. 

CLAIM: ab:,;n-2bnbn+1 is an algebraic (n + 1)-gon over Ac. 

Subclaim 1: dim(ab:,;n-2bnbn+1/Ac) = n. 
As bn+l E acl(bn-lbnc) and bn-1 E acl(ab:,;n-2A), we have bn+l E acl(ab:,;n-2bnAc). 
On the other hand, we have bnc J,bn_, b:,;n-2A, bn J,c bn-1 and a E acl(b::;n-1A), 

we have bn J,c ab:,;n-2A. As c J,bn-, ab:,;n-2A and c j, bn-1, we have c j, A ab:,;n-2• 

Therefore dim(ab:,;n-2bnbn+i/Ac) = n. 

Subclaim 2: ab:,;n-2bn is independent over Ac. Similarly for ab:,;n-2bn+l· 
By bn 1/c acl(bn-1c) and bnbn+lc J,bn-, b:,;n-2A, we have bn 1/c acl(b:c;n-1Ac) 

acl(ab:,;n-2Ac) as ab:,;n-1 is an algebraic n-gons over A. 

We use the following: We have bnbn+l J,cA by bnbn+lc J,bn-, A and bn-1 J, A. 

Note that bn J, Ac bn+l. 

Subclaim 3: b<n-2bnbn+1 is independent over Ac. 
Since bn-1bnbn+1-is an algebraic triangle over c and bn J,bn_,c b:,;n-2A, we see that 

bn J,c b:,;n-2A. So b:,;n-2bn is independent over Ac. By bnbn+lc J,bn-, b:,;n-2A and 

bn-1 j, A b:,;n-2, we have bnbn+lbn-lC j, A b:,;n-2· Ifwe had bn+l E acl(bnb=:;n-2Ac), 
we would have bn+l E acl(bnAc). As we have bnbn+l J,_ A, bn+l E acl(bnc) follows, 
a contradiction to bn J, _ bn+l. c 

C 

Subclaim 4: ab:,;n-2bnbn+l \ {bj} is independent over Ac for each 1 ::; j ::; n - 2. 
As bn-1 j, A ab:,;n-2 \ {bj} and bnbn+lC J,bn-i ab:,;n-2A, we have bnbn+lbn-1C J, A ab:,;n-2 \ 

{bj }. So ab:,;n-2 \ {bj }bn is independent over Ac. If we had bn+l E acl(bnab:,;n-2 \ 
{bj}), we would have bn+l E acl(bnAc), a contradiction. □ 

3. H-STRUCTURE 

Let M be a sufficiently saturated model of a complete £-theory T. Suppose that 
(M,acl(*)) has Steinitz exchange property. We add a unary predicate H(x) for a 
dense/codense independent subset. LH denotes LU {H}. 

Definition 3.1. We say that (M, H(M)) is an H-structure if 

(1) H(M) is independent: If a1, · · · , an E H(M) are distinct, they are inde
pendent over 0. 

(2) density: If AC M is finite dimentional and p(x) is a unary non-algebraic 
£-type over A, then there exists a E H(M) such that a p= p(x). 

(3) codensity: If ACM is finite dimentional and q(x) is a unary non-algebraic 
£-type over A, then there exists b 1/c acl(AH(M)) such that b p= q(x). 
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For AC M we say A is fl-independent in M if Al, H(A) fl(M), where fl(A) = 

fl(M) n A. Note that if A is fl-independent, then acl(A) is also fl-independent. 
tp denotes £-type and tpH denotes Lwtype. 

Fact 3.2. (1) For any (M, fl(M)), there exists a sufficiently saturated fl-
structure (M,fl(M)) <;;; (M,fl(M)) with Mis fl-independent in M. 

(2) Suppose that (M, fl(M)) and (N, fl(N)) are fl-structures. If fl-independent 
tuples a c M, b c N with tp(a, fl(a)) = tp(b, fl(b)), then tpH(a) = 
tp H (b). In particular, all fl -structures are elementarily equivalent, let rind 
be the common theory. If r eliminates 300 , then rind is axiomatizable such 
that all lrl+ -saturated model of rind are fl-structures. 

The following theories eliminate 300 : strongly minimal theories, SU= 1 theories, 
dense a-minimal theories and the p-adics in a single sort. 

Let r be the theory of infinite dimensional countable vector space V over a 
finite field. Put fl (V) := { vi : i < w} a basis of V. Then (V, fl (V)) is a model 
of rind but not fl-structure because it does not satisfy codense property. Put 
flj(V) := {vi : i > j}. Then (V,flj(V)) is a model of rind but not fl-structure 
and (V,flj(V)) is not isomorphic to (V,flk(V)) for j =J k < w, so rind is not w
categorical. Put fleven(V) = {v2i : i < w }. Then (V, fleven(V)) is an fl-structure. 

4. fl-BASIS 

Let A c M be fl-independent. For any a c M we can take a finite tuple 
h c fl(M) such that al, Ali fl(M) and An h = 0. Suppose that h is minimal 

length. We show the uniqueness of h up to permutation. 

Take such another h' and let h1 := h n h', h = h1h2 and h' = h1h;. As fl(M) 
is an independent subset and h n A = h' n A = 0, we have h2 J_, H(A)li, h;. As A is 

fl-independent, Ah1 l, H(A)/i, h2h;, we have h2 J, Ali, h;. 
Let a = a1a2 be such that a1 J_, Afl(M) and a2 E acl(a1Afl(M)). Note that 

ii2 E acl(ii1Ah1h2) \ acl(ii1Ah1) and ii2 E acl(ii1Ah1h;) \ acl(ii1Ah1) by minimal
ity of h and h'. Note that 1,,; L- A-h h2 witnessed by ii2. By ii1 J_, Cfl(M), a, 1 

we have dim(h;/Ah1h2) = dim(h;/a1Ah1h2) < dim(h;/a1Ah1) = dim(h;/Ah1), 
h; L Ali, h2, a contradiction to the independency of fl(M). 

We write flB(a/A) := h, which is called fl-basis of tp(a/A), where A is fl
independent. Note that flB(a/A) E aclH(ii,A) and flB(a/A) = flB(a/acl(A)). 

Fact 4.1. (1) flB(ab/A) = fl B(a/A)flB(b/Aafl B(a/A)) for any fl-independent 
set A. 

(2) If A<;;; Bare fl-independent, then flB(a/A) <;;; flB(a/B)fl(B). 

Proof. (1): Put h1 := flB(a/A),h2 = flB(b/aAh1) and h = flB(ab/A). 
As al, Ali, fl(M), aAh1 is fl-independent, so we can consider h2 = fl B(b/aAh1). 

Claim 1: h <;;; h1h2. 
As al, Ali, fl(M) and b l,aA/i,/i2 fl(M), we have ab l, Ali,/i2 fl(M) as desired. 

Claim 2: h1h2 <;;; h. 
As ab l, Ali fl(M), we have ii J_, Ali fl(M), so h1 <;;; h follows. On the other hand, 
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we have b _LaAh fl(M), sob _LaAii,/i fl(M), h2 <;;;; h follows. 

(2): Put h = fl B(a/ B). As a _L Bii fl(M), we have aB _L Bii fl(M). As B is 

fl-independent, Bh _L H(B)ii fl(M). So we get a _L H(B)iiA fl(M). So fl B(a/ A) <;;;; 

fl(B)h = fl(B)flB(a/B). □ 

Question 4.2. If A <;;;; B are fl -independent, then fl B(a/ B) <;;;; fl B(a/ A)? 

Fact 4.3. Let (M,fl(M)) be an fl-structure. 

(1) Suppose that A is fl-independent, then acl(A) = aclH(A). 
(2) acl(AflB(A)) = aclH(A) for any Ac M. 

Proof. (1): acl(A) <;;;; aclH(A) is clear. 
We show that a ff. acl(A) implies a ff. aclH(A). 
The case that a ff. acl(Afl(M)): As a -1 A fl(M) and A is fl-independent, we see 
that Aa is fl-independent. By extension property take (a; : i < w) realizations of 
tp(a/A) which are ad-independent over Afl(M). As A is fl-independent, we see 
that Aa; is fl-independent. By Fact 3.2 (2), we see that tpH(a;/A) = tpH(a/A) as 
desired. 
The case that a E acl(Afl(M)): Take b E fl(M) such that a E acl(Ab). By coheir 
property take (b; : i < w) ad-independent realizations in fl(M) of tp(b/A). Let 
a; be such that a;b; F tp(ab/A). As Ab; is fl-independent and Aa;b; <;;;; acl(Ab;), 
Aa;b; is fl-independent. By Fact 3.2 (2), tpH(a;b;/A) = tpH(ab/A) follows, as 
desierd. 
(2): aclH(A) <;;;; aclH(AflB(A)) is clear. By (1) and fl-independence of AflB(A), 
we have aclH(AflB(A)) = acl(AflB(A)). As we have flB(A) E ac!H(A), we see 
acl(AflB(A)) <;;;; ac!H(A). D 

Proposition 4.4. Let b E acl( h1, · · · , hnA) where A is fl -independent, h = h1, · · · , hn C 
fl(M) and n is minimal. Then aclH(bA) = aclH(hA). 

Proof. We have aclH(bA) = acl(bAflB(bA)) by 4.3 (2). By 4.1 (1), flB(Ab) = 

flB(A)flB(b/AflB(A)) follows. Since A is fl-independent, we see acl(flB(A)) = 
acl(fl(A)). On the other hand we have b -1 Ah fl(M). By minimality of h, h = 
flB(b/A) follows. Thus acl(flB(Ab)) = acl(fl(A)flB(b/acl(A))) = acl(fl(A)h). 
So we have aclH(bA) = acl(bAh) = acl(Ah). As Ah is fl-indepedent, acl(Ah) = 

aclH(Ah) follows. Therefore we have ac!H(bA) = aclH(hA). □ 

5. RANK IN (M, fl(M)), WHERE M IS STRONGLY MINIMAL 

Let XH be an LR-definable set over A. We say that XH is small if X C 

acl(Afl(M)). Otherwise, we say that XH is large. 
Let X be an L-definable set over A. By codensity of fl, X is infinite iff X is large. 
Clearly fl(x) is small. 

Fact 5.1. In a sufficiently saturated fl-structure (M, fl(M)), let XH be an LH
definable set in M. Then there exists an L-definable set X in M such that XH LX 
is small. 

Recall that XL Z <;;;;(XL Y) U (Y L Z). 

The case that the base theory is strongly minimal 
(1) large Lwtype is unique: If XH, YH be large Lwdefinable, then XH 6 YH is 
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small. (Because there exist infinite L-definable sets X, Y in M such that XH 6 
X, YH 6 Y are small and X 6 Y is finite.) This argument holds if there exists the 
unique non-algebraic 1-type in geometric L-structures. 
(2) H(x) has the unique non-algebraic type over H-independent set A: Suppose 
that b, b' E H(M) such that tpH(b/A), tpH(b' /A) are non-algebraic. Clearly b, b' !/. 
acl(A). As tp(AbH(Ab)) = tp(Ab' H(Ab')) (by strong minimality) and Ab, Ab' are 
H-independent, we have tpH(Ab) = tpH(Ab'). 
(3) It is shown that (M, H(M)) is w-stable by counting of types over countable 
sets. By (2) RMH(H(x)) = 1. 

The case that the base theory is strongly minimal and trivial 
(1) Suppose that b E acl(AH(M)). Then by triviality either b E acl(A) or b E 

acl(h) \ acl(A) for some h E H(M). So we see that RMH(b/A) = RMH(h/A) = 
RMH(h) = 1. So RMH(small type):S 1. As any large type has the unique large 
extension, RMH(large type):S 2. 
(2) If acl(a) \ acl(0) is finite for all non-algebraic a EM , RMH(x = x) = 1. 
(3) If acl(a) \ acl(0) is infinite for all non-algebraic a EM , RMH(x = x) = 2. 

The case that the base theory is strongly minimal and non-trivial 
(1) Suppose that b E acl(AH(M)), where A is H-independent. Take 
h c H(M) be minimal length such that b E acl(Ah). Then aclH(Ab) = aclH(Ah). 
So RMH(b/A) = lhl. 
(2) Let a-c:n be an algebraic n-gon over H-independent set A. By density, we 
may assume that a-c:n-1 t;;; H(M). Then an !/. H(M) follows. Then we see that 
HB(an/A) = a-c:n-1 and aclH(Aan) = acl(Aa-c:n-1) by Proposition 4.4. So we see 
that RMH(an/A) = n - 1. 
(3) Suppose that b !/. acl(AH(M)). If b E acl(BH(M)), then RMH(b/B) < w. 
Large extension of tp(b/A) over Bis unique, we see that RMH(b/A) = w. 

6. AMPLENESS AND TRIVIALITY 

a-c:i denotes a0 ,a1, · · · ,ai, a<i denotes a0 ,a1, · · · ,ai-1 and a<o = 0. 
We say that (M, l,) is n-ample over c if there exist c, a-c:n such that for any 
0:Si<n 

(1) ai+i l, __ a<i 
(2) acleq(c;::a;+1) n acleq(ca<iai) = acleq(ca<i) 
(3) an _[cao 

If (M, l,) has weak canonical bases and a-c:n+i = a0 , a 1, • • • , an+l is (n + 1)
ample over c, then a 1 , • • • , an+I is n-ample over ca0 , so (n + 1)-ampleness implies 
n-ampleness. 

n-dimesional free pseudospace ( ( n+ 1 )-many sorts and n-many incident relations) 
is n-ample but not (n + 1)-ample. we have one-basedness{c}non-1-ampleness and 
CM-triviality{c}non-2-ampleness. 

For any sequence (ai : i E I), we write a#i := (ai : j E J \ { i}). 
We say that (ai : i EI) is independent over A if ail, A a#i• 
We say that (ai : i E J) is pairwise independent over A if ai l, A aj for any i i- j E J. 
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We say that T is trivial if any pairwise independent sequence in Meq is independent. 

We say that (M,acl(*)) is trivial if acl(A) = LJ acl({a}) for any ACM. 
aEA 

If (M,acl(*)) is not trivial, there exists a,b,c,B CM such that a E acl(bcB) \ 

(acl(bB) Uacl(cB)). (Take a minimal size A=: Be such that acl(A) = LJ acl({a}) 
aEA 

and if b ~ acl(A), then 0 i= acl(Ab)\(acl(A)Uacl(b)). Take a E acl(Bcb)\(acl(Bc)U 

acl(b)). As IAI = I Bbl, we have acl(Bb) = LJ acl( {d} ). So a~ acl(Bb), as desired.) 
dEBb 

The triviality of (M, acl( * )) coincides with the triviality of (M, JJ. 

7. A LOVELY PAIR AND AMPLENESS 

Let Lp =LU {P(x)}, where P(x) is a new unary predicate. Let "'2': ITI+ 
We say that (M, P(M)) is a t,,-lovely pair if 

(1) P(M) --< M FT 
(2) Coheir property: For any A C M with IAI < "' and any fininary L-type 

p(x) over A with al, P(A) A and a p= p(x), then p(x) is realized in P(M) 

(3) Extension property: For any ACM with IAI <"'and any fininary L-type 
p(x) over A there exists a p= p(x) such that a J_, A AP(M). 

If (M, J_,) has independence calculus, then a t,,-lovely pair exists. 
t,,-lovely pairs are elementarily equivalent, Tp denotes the theory of lovely pair, 
where T = Th(M). Any ITl+-saturated model of Tp is a lovely pair. 
If Tis simple, Tp is axiomatizable iff Tis low and has weak non-finite cover property. 
If T is simple and Tp is axiomatizable, then Tp is also simple. [B-YPiV]. 

Fact 7.1. (1) If T is simple, one-besed and Tp is axiomatizable, then Tp is 
simple and one-based. [B-YPiV]. 

(2) If T is stable, trivial and does not have finite cover property, then T is 
n-ample iff Tp is n-ample for any n 2". 1 assuming a nice characterization 
of forking in Tp: In general for A, B, CC M, we have 

p 

Aj_,B{c}APJ_,BP,Cb(AC/P) J_, Cb(BC/P). 
G GP Cb(G/P) 

The nice characterization of forking in Tp is as follows: For any P-independent 
subsets A, B, C, 

p 

A J_, B {cc} AP J_, BP, AC J_, BC. 
G GP G 

[CM-PP]. 
(3) If T has SU-rank one with QE, then T is one-based iff acl = aclp in Tp iff 

Tp has SU-rank::; 2 iff Tp is model-complete iff (M, acl) is modular over 
P(M). [Vl]. 

(4) If Tis geometric{=having Steinitz exchange property for acl and elimina
tion of 300 ), then T is weakly locally modular iff (M, acl) is modular over 
P(M) iff acl = aclp in Tp. [BVl]. 
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(5) IfT eliminates 300 and UP(T) = 1, then U~(Tp)::; w. [B]. 
Moreover ifT is weakly local modular, then U~(Tp)::; 2. [BVl]. 

Question 7.2. If T eliminates 300 , UP(T) = 1 and T is weakly local modu
lar, then is Tp weakly locally modular? There is a proof containing serious gaps 
in [BB-WKAP]. {We do not know whether Al,~ C and AP l,~P GP imply 

A l,BP,µ C or not. And we can not find the reason for al,~ _, C in the proof of 
a2a 

Theorem 4.2 in [BB-WKAP].) 

8. A DENSE INDEPENDENT SUBSET IN SUPERSIMPLE STRUCTURES AND 

AMPLENESS 

This section is almost due to [BV4]. We assume that (M, j,) is supersimple 
and Let T = Th(M). Fix a partial unary type II(x) over 0 and let H(x) be a new 
predicate. 

We say that (M, H(M)) is H-structure associated to II if 

(1) If h E H(M), then F II(h). 
(2) h1, · · · , hn E H(M) are distinct, then {h1, · · · , hn} is J,-independent. 
(3) Density: Let b C Mand let II(x) C p(x) be a complete type over b such that 

if a F p(x) then al, b. Then there exists h E H(M) such that h F p(x). 
(4) Codensity: Let b CM and let p(x) be a complete type over b. Then there 

exists a EM such that a F p(x) and a l,b H(M). 

An H-structure associated to II(x) exists. H-structures associated to II(x) are 
elementarily equivalent, TAnd denotes the common theory of H-structure associated 
to II(x). TAnd is axiomatizable if T has two conditions (1) (2): 

(1) For each formula 'P(x, y) there exists a formula ip(y)such that (there exists 
a such that a F 'P(x, b) and al, b) iff b F ip(y). 

(2) Let 'P(x, y) and ip(y, z) be formulas. The following condition on c is type
definable: For any b F ip(y, c) there exists a F 'P(x, b) we have a J,_ b. 

C 

Any ITl+-saturated model ofT{ind is a H-structure associated to II(x). 
If T is supersimple and TAnd is axiomatizable, then TAnd is supersimple. 

Fact 8.1. (1) [BV4] Let (M,H(M)) be an H-structure associated to IT(x), 
where M is supersimple. Then 

a 1,1 B {cc} a l,AH(M) BH(M),HB(a/A) = HB(a/B). 

(2) [BV3] Let (M, H(M)) be an H-structure, where SU(M) = 1. Suppose that 
A= aclH(A). 
(a) a EA iff SUH(a/A) = 0 

(b) a E acl(AH(M)) \ A iff aclH(aA) = acl(AHB(a/A)) iff SUH(a/A) = 

IHB(a/A)l-

(c) If a is trivial over A, then a E acl(AH(M)) \ A then SUH(a/A) = 1. 

(d) If a is trivial over A and a If. acl(AH(M)) then SUH(a/A) = l. 
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(e) If a is non-trivial over A, then a !fc acl(AH(M)) iff SUH(a/A) = w. 

Proof. (c) : By triviality there exists h E H(M) such that HB(a/A) = h. The 
conclusion follows from (b). 
(d): If al,! B with B = ac!H(B), by HB(a/B) <;;; HB(a/A) = 0, we have 
a 1, AH(M) BH(M). So a E acl(BH(M)). By triviality and a !/c acl(AH(M)) we 

have a E acl(B) \ acl(AH(M)). So SUH(a/B) = 0 follows by (a). Therefore we 
have SUH(a/A) = 1. D 

Fact 8.2. (1) [BV3] There exists a non-trivial one-based strongly minimal the-
ory T whose Tind is not one-based. (V, +, 0, H) be a vector space over 
Q, where H(V) = {vi E V : i < w}. Then (V,+,0,H) p= Tind . Let 
u E V \ H(V). Putt = u + v1 ,t' = u + v2. Then HB(tt') = v1v2 
because ac!H(tt') = acl(v1v2t') as t - t' = v1 - v2 and tt' ~v,v2 H(V) 

H H · d and tt' .Lv, H(V). We have t ~u ut' as V1 ~u V2- If rm was one-

based and ac!H(t) n ac!H( ut') = ac!H(0), then t ~ 0 ut'. On the other hand 
RMH(t/ut') = RMH(vi/ut') ~ 1 and RMH(t/t') = RMH(v1v2/t') = 2. So 
t 1,: ut', a contradiction. 

(2) If T is one-based and T~';,,~ is axiomatizable, then T is trivial iff T~';,,~ is 
one-based. 

(3) For any partial type II(x) over 0, if TA(~) is axiomatizable, Tis n-ample iff 

TA?~) is n-ample for any n 2". 2. 

Let SU(T) = w"'. Let cl(A) := {x EM: SU(x/A) < w"'}. We say that cl(*) is 
trivial if cl(A) = UaEA cl( {a}) for any ACM. 

Fact 8.3. Suppose that SU-rank is continuous. Let II(x) be the union of all the 
types over 0 of SU = w"'. Assume that T-jpd is axiomatizable and T is one-based. 
Then cl(*) on M is trivial iff TAnd is one-based. 

9. TRIVIALITY AND Tind 

This section is due to [BV3]. 

Fact 9.1. (1) If Tis strongly minimal and trivial, then RMH(Tind ) ~ 2. 
(2) If Tis strongly minimal and non-trivial, then RMH(Tind ) = w. 
(3) If SU(T) = 1 and trivial, then SU H(Tind ) = 1. 
(4) If SU(T) = 1 and non-trivial, then SUH(Tind) = w. 
(5) If UP(T) = 1 and trivial, then Ut,(Tind ) = 1. 
(6) If UP (T) = 1 and non-trivial, then ut,(Tind ) = w. 
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