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Abstract. We present an algorithm to learn a deterministic timed
automaton (DTA) via membership and equivalence queries. Our algo-
rithm is an extension of the L* algorithm with a Myhill-Nerode style
characterization of recognizable timed languages, which is the class of
timed languages recognizable by DTAs. We first characterize the recog-
nizable timed languages with a Nerode-style congruence. Using it, we
give an algorithm with a smart teacher answering symbolic membership
queries in addition to membership and equivalence queries. With a sym-
bolic membership query, one can ask the membership of a certain set of
timed words at one time. We prove that for any recognizable timed lan-
guage, our learning algorithm returns a DTA recognizing it. We show how
to answer a symbolic membership query with finitely many membership
queries. We also show that our learning algorithm requires a polyno-
mial number of queries with a smart teacher and an exponential number
of queries with a normal teacher. We applied our algorithm to various
benchmarks and confirmed its effectiveness with a normal teacher.

Keywords: timed automata · active automata learning · recognizable
timed languages · L* algorithm · observation table

1 Introduction

Active automata learning is a class of methods to infer an automaton recogniz-
ing an unknown target language Ltgt ⊆ Σ∗ through finitely many queries to a
teacher. The L* algorithm [8], the best-known active DFA learning algorithm,
infers the minimum DFA recognizing Ltgt using membership and equivalence
queries. In a membership query, the learner asks if a word w ∈ Σ∗ is in the
target language Ltgt, which is used to obtain enough information to construct
a hypothesis DFA Ahyp. Using an equivalence query, the learner checks if the
hypothesis Ahyp recognizes the target language Ltgt. If L(Ahyp) �= Ltgt, the
teacher returns a counterexample cex ∈ Ltgt�L(Ahyp) differentiating the target
language and the current hypothesis. The learner uses cex to update Ahyp to
classify cex correctly. Such a learning algorithm has been combined with formal
verification, e. g., for testing [22,24,26,28] and controller synthesis [31].
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(a) A DFA A

ε a
ε � ⊥
a ⊥ ⊥
...

aa ⊥ ⊥

add b to S−−−−−−−→

ε a b
ε � ⊥ ⊥
a ⊥ ⊥ �
...

aa ⊥ ⊥ ⊥

(b) Intermediate observation tables for
learning A. a and aa are deemed equiv-
alent with extensions S = {ε, a} but
distinguished with S = {ε, a, b}.

l0 l1

a, c ≥ 1/c := 0

a, c < 1

a, c ≤ 1

a, c > 1

(c) A DTA A′ with one
clock variable c

{τ ′
0 | τ ′

0 = 0} {τ ′
0a | τ ′

0 ∈ (0, 1)}
{τ0 | τ0 = 0} � �

{τ0 | τ0 ∈ (0, 1)} � τ0 + τ ′
0 ∈ (0, 1)

...

{τ0aτ1 | τ0 ∈ (0, 1), τ1 ∈ (0, 1), τ0 + τ1 ∈ (0, 1)}(= p1) � τ0 + τ1 + τ ′
0 ∈ (0, 1)

...

{τ0aτ1aτ2 | τ0 ∈ (1, 2), τ1 ∈ (0, 1), τ2 ∈ (0, 1), τ1 + τ2 ∈ (0, 1)}(= p2) � τ1 + τ2 + τ ′
0 ∈ (0, 1)

...

(d) Timed observation table for learning A′. Each cell is indexed by a pair (p, s) ∈ P ×S
of elementary languages. The cell indexed by (p, s) shows a constraint Λ such that
w ∈ p · s satisfies w ∈ Ltgt if and only if Λ holds. Elementary languages p1 and p2 are
deemed equivalent with the equation τ1

0 + τ1
1 = τ2

1 + τ2
2 , where τ j

i represents τi in pj .

Fig. 1. Illustration of observation tables in the L* algorithm for DFA learning (Fig. 1b)
and our algorithm for DTA learning (Fig. 1d)

Most of the DFA learning algorithms rely on the characterization of regular
languages by Nerode’s congruence. For a language L, words p and p′ are equiva-
lent if for any extension s, p ·s ∈ L if and only if p′ ·s ∈ L. It is well known that if
L is regular, such an equivalence relation has finite classes, corresponding to the
locations of the minimum DFA recognizing L (known as Myhill-Nerode theorem;
see, e. g., [18]). Moreover, for any regular language L, there are finite extensions
S such that p and p′ are equivalent if and only if for any s ∈ S, p · s ∈ L if and
only if p′ · s ∈ L. Therefore, one can learn the minimum DFA by learning such
finite extensions S and the finite classes induced by Nerode’s congruence.

The L* algorithm learns the minimum DFA recognizing the target language
Ltgt using a 2-dimensional array called an observation table. Figure 1b illustrates
observation tables. The rows and columns of an observation table are indexed
with finite sets of words P and S, respectively. Each cell indexed by (p, s) ∈
P × S shows if p · s ∈ Ltgt. The column indices S are the current extensions
approximating Nerode’s congruence. The L* algorithm increases P and S until:
1) the equivalence relation defined by S converges to Nerode’s congruence and
2) P covers all the classes induced by the congruence. The equivalence between
p, p′ ∈ P under S can be checked by comparing the rows in the observation
table indexed with p and p′. For example, Fig. 1b shows that a and aa are
deemed equivalent with extensions S = {ε, a} but distinguished by adding b to
S. The refinement of P and S is driven by certain conditions to validate the DFA
construction and by addressing the counterexample obtained by an equivalence
query.
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Timed words are extensions of conventional words with real-valued dwell time
between events. Timed languages, sets of timed words, are widely used to formal-
ize real-time systems and their properties, e. g., for formal verification. Among
various formalisms representing timed languages, timed automata (TAs) [4] is
one of the widely used formalisms. A TA is an extension of an NFA with finitely
many clock variables to represent timing constraints. Figure 1c shows an exam-
ple.

Despite its practical relevance, learning algorithms for TAs are only available
for limited subclasses of TAs, e. g., real-time automata [6,7], event-recording
automata [15,16], event-recording automata with unobservable reset [17], and
one-clock deterministic TAs [5,30]. Timing constraints representable by these
classes are limited, e. g., by restricting the number of clock variables or by
restricting the edges where a clock variable can be reset. Such restriction sim-
plifies the inference of timing constraints in learning algorithms.

Contributions. In this paper, we propose an active learning algorithm for deter-
ministic TAs (DTAs). The languages recognizable by DTAs are called recogniz-
able timed languages [21]. Our strategy is as follows: first, we develop a Myhill-
Nerode style characterization of recognizable timed languages; then, we extend
the L* algorithm for recognizable timed languages using the similarity of the
Myhill-Nerode style characterization.

Due to the continuity of dwell time in timed words, it is hard to character-
ize recognizable timed languages by a Nerode-style congruence between timed
words. For example, for the DTA in Fig. 1c, for any τ, τ ′ ∈ [0, 1) satisfying τ < τ ′,
(1 − τ ′)a distinguishes τ and τ ′ because τ(1 − τ ′)a leads to l0 while τ(1 − τ)a
leads to l1. Therefore, such a congruence can make infinitely many classes.

Instead, we define a Nerode-style congruence between sets of timed words
called elementary languages [21]. An elementary language is a timed language
defined by a word with a conjunction of inequalities constraining the time dif-
ference between events. We also use an equality constraint, which we call, a
renaming equation to define the congruence. Intuitively, a renaming equation
bridges the time differences in an elementary language and the clock variables
in a TA. We note that there can be multiple renaming equations showing the
equivalence of two elementary languages.

Example 1. Let p1 and p2 be elementary languages p1 = {τ1
0 aτ1

1 | τ1
0 ∈

(0, 1), τ1
1 ∈ (0, 1), τ1

0 + τ1
1 ∈ (0, 1)} and p2 = {τ2

0 aτ2
1 aτ2

2 | τ2
0 ∈ (1, 2), τ2

1 ∈
(0, 1), τ2

2 ∈ (0, 1), τ2
1 + τ2

2 ∈ (0, 1)}. For the DTA in Fig. 1c, p1 and p2 are
equivalent with the renaming equation τ1

0 + τ1
1 = τ2

1 + τ2
2 because for any

w1 = τ1
0 aτ1

1 ∈ p1 and w2 = τ2
0 aτ2

1 aτ2
2 ∈ p2: 1) we reach l0 after reading either

of w1 and w2 and 2) the values of c after reading w1 and w2 are τ1
0 + τ1

1 and
τ2
1 + τ2

2 , respectively.

We characterize recognizable timed languages by the finiteness of the equiv-
alence classes defined by the above congruence. We also show that for any rec-
ognizable timed language, there is a finite set S of elementary languages such
that the equivalence of any prefixes can be checked by the extensions S.
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By using the above congruence, we extend the L* algorithm for DTAs. The
high-level idea is the same as the original L* algorithm: 1) the learner makes
membership queries to obtain enough information to construct a hypothesis DTA
Ahyp and 2) the learner makes an equivalence query to check if Ahyp recognizes
the target language. The largest difference is in the cells of an observation table.
Since the concatenation p·s of an index pair (p, s) ∈ P×S is not a timed word but
a set of timed words, its membership is not defined as a Boolean value. Instead,
we introduce the notion of symbolic membership and use it as the value of each
cell of the timed observation table. Intuitively, the symbolic membership is the
constraint representing the subset of p ·s included by Ltgt. Such a constraint can
be constructed by finitely many (non-symbolic) membership queries.

Example 2. Figure 1d illustrates a timed observation table. The equivalence
between p1, p2 ∈ P under S can be checked by comparing the cells in the rows
indexed with p1 and p2 with renaming equations. For the cells in rows indexed
by p1 and p2, their constraints are the same by replacing τ0 + τ1 with τ1 + τ2
and vice versa. Thus, p1 and p2 are equivalent with the current extensions S.

Once the learner obtains enough information, it constructs a DTA via the
monoid-based representation of recognizable timed languages [21]. We show that
for any recognizable timed language, our algorithm terminates and returns a
DTA recognizing it. We also show that the number of the necessary queries is
polynomial to the size of the equivalence class defined by the Nerode-style con-
gruence if symbolic membership queries are allowed and, otherwise, exponential
to it. Moreover, if symbolic membership queries are not allowed, the number of
the necessary queries is at most doubly exponential to the number of the clock
variable of a DTA recognizing the target language and singly exponential to the
number of locations of a DTA recognizing the target language. This worst-case
complexity is the same as the one-clock DTA learning algorithm in [30].

We implemented our DTA learning algorithm in a prototype library
LearnTA. Our experiment results show that it is efficient enough for some
benchmarks taken from practical applications, e. g., the FDDI protocol. This
suggests the practical relevance of our algorithm.

The following summarizes our contribution.

– We characterize recognizable timed languages by a Nerode-style congruence.
– Using the above characterization, we give an active DTA learning algorithm.
– Our experiment results suggest its practical relevance.

Related Work. Among various characterization of timed languages [4,10–13,21],
the characterization by recognizability [21] is closest to our Myhill-Nerode-style
characterization. Both of them use finite sets of elementary languages for char-
acterization. Their main difference is that [21] proposes a formalism to define a
timed language by relating prefixes by a morphism, whereas we propose a tech-
nical gadget to define an equivalence relation over timed words with respect to
suffixes using symbolic membership. This difference makes our definition suitable
for an L*-style algorithm, where the original L* algorithm is based on Nerode’s
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congruence, which defines an equivalence relation over words with respect to
suffixes using conventional membership.

As we have discussed so far, active TA learning [5,15–17,30] has been studied
mostly for limited subclasses of TAs, where the number of the clock variables or
the clock variables reset at each edge is fixed. In contrast, our algorithm infers
both of the above information. Another difference is in the technical strategy.
Most of the existing algorithms are related to the active learning of symbolic
automata [9,14], enhancing the languages with clock valuations. In contrast, we
take a more semantic approach via the Nerode-style congruence.

Another recent direction is to use a genetic algorithm to infer TAs in pas-
sive [27] or active [3] learning. This differs from our learning algorithm based on
a formal characterization of timed languages. Moreover, these algorithms may
not converge to the correct automaton due to a genetic algorithm.

2 Preliminaries

For a set X, its powerset is denoted by P(X). We denote the empty sequence
by ε. For sets X,Y , we denote their symmetric difference by X�Y = {x | x ∈
X ∧ x /∈ Y } ∪ {y | y ∈ Y ∧ y /∈ X}.

2.1 Timed Words and Timed Automata

Definition 3 (timed word). For a finite alphabet Σ, a timed word w is an
alternating sequence τ0a1τ1a2 . . . anτn of Σ and R≥0. The set of timed words over
Σ is denoted by T (Σ). A timed language L ⊆ T (Σ) is a set of timed words.

For timed words w = τ0a1τ1a2 . . . anτn and w′ = τ ′
0a

′
1τ

′
1a

′
2 . . . a′

n′τ ′
n′ , their

concatenation w · w′ is w · w′ = τ0a1τ1a2 . . . an(τn + τ ′
0)a

′
1τ

′
1a

′
2 . . . a′

n′τ ′
n′ . The

concatenation is naturally extended to timed languages: for a timed word w and
timed languages L,L′, we let w·L = {w·wL | wL ∈ L}, L·w = {wL ·w | wL ∈ L},
and L · L′ = {wL · wL′ | wL ∈ L, wL′ ∈ L′}. For timed words w and w′, w is a
prefix of w′ if there is a timed word w′′ satisfying w ·w′′ = w′. A timed language
L is prefix-closed if for any w ∈ L, L contains all the prefixes of w.

For a finite set C of clock variables, a clock valuation is a function ν ∈
(R≥0)C . We let 0C be the clock valuation satisfying 0C(c) = 0 for any c ∈ C.
For ν ∈ (R≥0)C and τ ∈ R≥0, we let ν + τ be the clock valuation satisfying
(ν + τ)(c) = ν(c) + τ for any c ∈ C. For ν ∈ (R≥0)C and ρ ⊆ C, we let ν[ρ := 0]
be the clock valuation satisfying (ν[ρ := 0])(x) = 0 for c ∈ ρ and (ν[ρ := 0])(c) =
ν(c) for c /∈ ρ. We let GC be the set of constraints defined by a finite conjunction
of inequalities c �� d, where c ∈ C, d ∈ N, and �� ∈ {>,≥,≤, <}. We let CC

be the set of constraints defined by a finite conjunction of inequalities c �� d or
c − c′ �� d, where c, c′ ∈ C, d ∈ N, and �� ∈ {>,≥,≤, <}. We denote

∧
∅ by �.

For ν ∈ (R≥0)C and ϕ ∈ CC ∪ GC , we denote ν |= ϕ if ν satisfies ϕ.
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Definition 4 (timed automaton). A timed automaton (TA) is a 7-tuple
(Σ,L, l0, C, I,Δ, F ), where: Σ is the finite alphabet, L is the finite set of loca-
tions, l0 ∈ L is the initial location, C is the finite set of clock variables,
I : L → CC is the invariant of each location, Δ ⊆ L×GC × (Σ ∪{ε})×P(C)×L
is the set of edges, and F ⊆ L is the accepting locations.

A TA is deterministic if 1) for any a ∈ Σ and (l, g, a, ρ, l′), (l, g′, a, ρ′, l′′) ∈ Δ,
g∧g′ is unsatisfiable, or 2) for any (l, g, ε, ρ, l′) ∈ Δ, g∧I(l) is at most a singleton.
Figure 1c shows a deterministic TA (DTA).

The semantics of a TA is defined by a timed transition system (TTS).

Definition 5 (semantics of TAs). For a TA A = (Σ,L, l0, C, I,Δ, F ), the
timed transition system (TTS) is a 4-tuple S = (Q, q0, QF ,→), where: Q =
L × (R≥0)C is the set of (concrete) states, q0 = (l0,0C) is the initial state,
QF = {(l, ν) ∈ Q | l ∈ F} is the set of accepting states, and → ⊆ Q × Q is the
transition relation consisting of the following1.

– For each (l, ν) ∈ Q and τ ∈ R>0, we have (l, ν) τ→ (l, ν + τ) if ν + τ ′ |= I(l)
holds for each τ ′ ∈ [0, τ).

– For each (l, ν), (l′, ν′) ∈ Q, a ∈ Σ, and (l, g, a, ρ, l′) ∈ Δ, we have (l, ν) a→
(l′, ν′) if we have ν |= g and ν′ = ν[ρ := 0].

– For each (l, ν), (l′, ν′) ∈ Q, τ ∈ R>0, and (l, g, ε, ρ, l′) ∈ Δ, we have (l, ν)
ε,τ→

(l′, ν′ + τ) if we have ν |= g, ν′ = ν[ρ := 0], and ∀τ ′ ∈ [0, τ). ν′ + τ ′ |= I(l′).

A run of a TA A is an alternating sequence q0,→1, q1, . . . ,→n, qn of
qi ∈ Q and →i ∈ → satisfying qi−1 →i qi for any i ∈ {1, 2, . . . , n}. A run
q0,→1, q1, . . . ,→n, qn is accepting if qn ∈ QF . Given such a run, the associated
timed word is the concatenation of the labels of the transitions. The timed lan-
guage L(A) of a TA A is the set of timed words associated with some accepting
run of A.

2.2 Recognizable Timed Languages

Here, we review the recognizability [21] of timed languages.

Definition 6 (timed condition). For a set T = {τ0, τ1, . . . , τn} of ordered
variables, a timed condition Λ is a finite conjunction of inequalities Ti,j �� d,
where Ti,j =

∑j
k=i τk, �� ∈ {>,≥,≤, <}, and d ∈ N.

A timed condition Λ is simple2 if for each Ti,j , Λ contains d < Ti,j < d+1 or
d ≤ Ti,j ∧Ti,j ≤ d for some d ∈ N. A timed condition Λ is canonical if we cannot
strengthen or add any inequality Ti,j �� d to Λ without changing its semantics.

1 We use
ε,τ→ to avoid the discussion with an arbitrary small dwell time in [21].

2 The notion of simplicity is taken from [15].
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Definition 7 (elementary language). A timed language L is elementary if
there are u = a1, a2, . . . , an ∈ Σ∗ and a timed condition Λ over {τ0, τ1, . . . , τn}
satisfying L = {τ0a1τ1a2 . . . anτn | τ0, τ1, . . . , τn |= Λ}, and the set of valuations
of {τ0, τ1, . . . , τn} defined by Λ is bounded. We denote such L by (u,Λ). We let
E(Σ) be the set of elementary languages over Σ.

For p, p′ ∈ E(Σ), p is a prefix of p′ if for any w′ ∈ p′, there is a prefix w ∈ p
of w′, and for any w ∈ p, there is w′ ∈ p′ such that w is a prefix of w′. For any
elementary language, the number of its prefixes is finite. For a set of elementary
languages, prefix-closedness is defined based on the above definition of prefixes.

An elementary language (u,Λ) is simple if there is a simple and canonical
timed condition Λ′ satisfying (u,Λ) = (u,Λ′). We let SE(Σ) be the set of simple
elementary languages over Σ. Without loss of generality, we assume that for any
(u,Λ) ∈ SE(Σ), Λ is simple and canonical. We remark that any DTA cannot
distinguish timed words in a simple elementary language, i. e., for any p ∈ SE(Σ)
and a DTA A, we have either p ⊆ L(A) or p ∩ L(A) = ∅. We can decide if
p ⊆ L(A) or p ∩ L(A) = ∅ by taking some w ∈ p and checking if w ∈ L(A).

Definition 8 (immediate exterior). Let L = (u,Λ) be an elementary lan-
guage. For a ∈ Σ, the discrete immediate exterior exta(L) of L is exta(L) =
(u · a, Λ ∪ {τ|u|+1 = 0}). The continuous immediate exterior extt(L) of L is
extt(L) = (u,Λt), where Λt is the timed condition such that each inequality
Ti,|u| = d in Λ is replaced with Ti,|u| > d if such an inequality exists, and oth-
erwise, the inequality Ti,|u| < d in Λ with the smallest index i is replaced with
Ti,|u| = d. The immediate exterior of L is ext(L) =

⋃
a∈Σ exta(L) ∪ extt(L).

Example 9. For a word u = a·a and a timed condition Λ = {T0,0 ∈ (1, 2)∧T0,1 ∈
(1, 2) ∧ T0,2 ∈ (1, 2) ∧ T1,2 ∈ (0, 1) ∧ T2,2 = 0}, we have 1.3 · a · 0.5 · a · 0 ∈ (u,Λ)
and 1.7 · a · 0.5 · a · 0 /∈ (u,Λ). The discrete and continuous immediate exteriors
of (u,Λ) are exta((u,Λ)) = (u · a, Λa) and extt((u,Λ)) = (u,Λt), where Λa =
{T0,0 ∈ (1, 2) ∧ T0,1 ∈ (1, 2) ∧ T0,2 ∈ (1, 2) ∧ T1,2 ∈ (0, 1) ∧ T2,2 = T3,3 = 0} and
Λt = {T0,0 ∈ (1, 2) ∧ T0,1 ∈ (1, 2) ∧ T0,2 ∈ (1, 2) ∧ T1,2 ∈ (0, 1) ∧ T2,2 > 0}.

Definition 10 (chronometric timed language). A timed language L is
chronometric if there is a finite set {(u1, Λ1), (u2, Λ2), . . . , (um, Λm)} of disjoint
elementary languages satisfying L =

⋃
i∈{1,2,...,m}(ui, Λi).

For any elementary language L, its immediate exterior ext(L) is chrono-
metric. We naturally extend the notion of exterior to chronometric timed lan-
guages, i. e., for a chronometric timed language L =

⋃
i∈{1,2,...,m}(ui, Λi), we

let ext(L) =
⋃

i∈{1,2,...,m} ext((ui, Λi)), which is also chronometric. For a timed
word w = τ0a1τ1a2 . . . anτn, we denote the valuation of τ0, τ1, . . . , τn by κ(w).

Chronometric relational morphism [21] relates any timed word to a timed
word in a certain set P , which is later used to define a timed language. Intuitively,
the tuples in Φ specify a mapping from timed words immediately out of P to
timed words in P . By inductively applying it, any timed word is mapped to P .
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Definition 11 (chronometric relational morphism). Let P be a chrono-
metric and prefix-closed timed language. Let (u,Λ, u′, Λ′, R) be a 5-tuple such
that (u,Λ) ⊆ ext(P ), (u′, Λ′) ⊆ P , and R is a finite conjunction of equations
of the form Ti,|u| = T

′
j,|u′|, where i ≤ |u| and j ≤ |u′|. For such a tuple,

we let �(u,Λ, u′, Λ′, R)� ⊆ (u,Λ) × (u′, Λ′) be the relation such that (w,w′) ∈
�(u,Λ, u′, Λ′, R)� if and only if κ(w), κ(w′) |= R. For a finite set Φ of such tuples,
the chronometric relational morphism �Φ� ⊆ T (Σ)×P is the relation inductively
defined as follows: 1) for w ∈ P , we have (w,w) ∈ �Φ�; 2) for w ∈ ext(P ) and
w′ ∈ P , we have (w,w′) ∈ �Φ� if we have (w,w′) ∈ �(u,Λ, u′, Λ′, R)� for one
of the tuples (u,Λ, u′, Λ′, R) ∈ Φ; 3) for w ∈ ext(P ), w′ ∈ T (Σ), and w′′ ∈ P ,
we have (w · w′, w′′) ∈ �Φ� if there is w′′′ ∈ T (Σ) satisfying (w,w′′′) ∈ �Φ� and
(w′′′ · w′, w′′) ∈ �Φ�. We also require that all (u,Λ) in the tuples in Φ must be
disjoint and the union of each such (u,Λ) is ext(P ) \ P .

A chronometric relational morphism �Φ� is compatible with F ⊆ P if for each
tuple (u,Λ, u′, Λ′, R) defining �Φ�, we have either (u′, Λ′) ⊆ F or (u′, Λ′)∩F = ∅.

Definition 12 (recognizable timed language). A timed language L is rec-
ognizable if there is a chronometric prefix-closed set P , a chronometric subset F
of P , and a chronometric relational morphism �Φ� ⊆ T (Σ) × P compatible with
F satisfying L = {w | ∃w′ ∈ F, (w,w′) ∈ �Φ�}.

It is known that for any recognizable timed language L, we can construct a
DTA A recognizing L, and vice versa [21].

2.3 Distinguishing Extensions and Active DFA Learning

Most DFA learning algorithms are based on Nerode’s congruence [18]. For a (not
necessarily regular) language L ⊆ Σ∗, Nerode’s congruence ≡L ⊆ Σ∗ × Σ∗ is
the equivalence relation satisfying w ≡L w′ if and only if for any w′′ ∈ Σ∗, we
have w · w′′ ∈ L ⇐⇒ w′ · w′′ ∈ L.

Generally, we cannot decide if w ≡L w′ by testing because it requires
infinitely many membership checking. However, if L is regular, there is a finite
set of suffixes S ⊆ Σ∗ called distinguishing extensions satisfying ≡L = ∼S

L,
where ∼S

L is the equivalence relation satisfying w ∼S
L w′ if and only if for any

w′′ ∈ S, we have w ·w′′ ∈ L ⇐⇒ w′ ·w′′ ∈ L. Thus, the minimum DFA recogniz-
ing Ltgt can be learned by3: i) identifying distinguishing extensions S satisfying
≡Ltgt = ∼S

Ltgt
and ii) constructing the minimum DFA A corresponding to ∼S

Ltgt
.

The L* algorithm [8] is an algorithm to learn the minimum DFA Ahyp rec-
ognizing the target regular language Ltgt with finitely many membership and
equivalence queries to the teacher. In a membership query, the learner asks if
w ∈ Σ∗ belongs to the target language Ltgt i. e., w ∈ Ltgt. In an equivalence
query, the learner asks if the hypothesis DFA Ahyp recognizes the target language

3 The distinguishing extensions S can be defined locally. For example, the TTT algo-
rithm [19] is optimized with local distinguishing extensions for some prefixes w ∈ Σ∗.
Nevertheless, we use the global distinguishing extensions for simplicity.
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Algorithm 1: Outline of an L*-style active DFA learning algorithm
1 P ← {ε}; S ← {ε}
2 while � do
3 while the observation table is not closed or consistent do
4 update P and S so that the observation table is closed and consistent

5 Ahyp ← ConstructDFA(P, S, T)

6 switch eqLtgt
(Ahyp) do

7 case � do
8 return Ahyp

9 case cex do
10 Update P and/or S using cex

Ltgt i. e., L(Ahyp) = Ltgt, where L(Ahyp) is the language of the hypothesis DFA
Ahyp. When we have L(Ahyp) �= Ltgt, the teacher returns a counterexample
cex ∈ L(Ahyp)�Ltgt. The information obtained via queries is stored in a 2-
dimensional array called an observation table. See Fig. 1b for an illustration. For
finite index sets P, S ⊆ Σ∗, for each pair (p, s) ∈ (P ∪P ·Σ)×S, the observation
table stores whether p · s ∈ Ltgt. S is the current candidate of the distinguishing
extensions, and P represents Σ∗/∼S

Ltgt
. Since P and S are finite, one can fill the

observation table using finite membership queries.
Algorithm 1 outlines an L*-style algorithm. We start from P = S = {ε} and

incrementally increase them. To construct a hypothesis DFA Ahyp, the observa-
tion table must be closed and consistent. An observation table is closed if, for
each p ∈ P · Σ, there is p′ ∈ P satisfying p ∼S

Ltgt
p′. An observation table is

consistent if, for any p, p′ ∈ P ∪P ·Σ and a ∈ Σ, p ∼S
Ltgt

p′ implies p·a ∼S
Ltgt

p′ ·a.
Once the observation table becomes closed and consistent, the learner con-

structs a hypothesis DFA Ahyp and checks if L(Ahyp) = Ltgt by an equivalence
query. If L(Ahyp) = Ltgt holds, Ahyp is the resulting DFA. Otherwise, the teacher
returns cex ∈ L(Ahyp)�Ltgt, which is used to refine the observation table. There
are several variants of the refinement. In the L* algorithm, all the prefixes of cex
are added to P . In the Rivest-Schapire algorithm [20,25], an extension s strictly
refining S is obtained by an analysis of cex , and such s is added to S.

3 A Myhill-Nerode Style Characterization
of Recognizable Timed Languages with Elementary
Languages

Unlike the case of regular languages, any finite set of timed words cannot cor-
rectly distinguish recognizable timed languages due to the infiniteness of dwell
time in timed words. Instead, we use a finite set of elementary languages to define
a Nerode-style congruence. To define the Nerode-style congruence, we extend the
notion of membership to elementary languages.
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Definition 13 (symbolic membership). For a timed language L ⊆
T (Σ) and an elementary language (u,Λ) ∈ E(Σ), the symbolic membership
memsymL ((u,Λ)) of (u,Λ) to L is the strongest constraint such that for any
w ∈ (u,Λ), we have w ∈ L if and only if κ(w) |= memsymL (L).

We discuss how to obtain symbolic membership in Sect. 4.5. We define a
Nerode-style congruence using symbolic membership. A naive idea is to distin-
guish two elementary languages by the equivalence of their symbolic member-
ship. However, this does not capture the semantics of TAs. For example, for the
DTA A in Fig. 1c, for any timed word w, we have 1.3 · a · 0.4 · w ∈ L(A) ⇐⇒
0.3 · a · 1.0 · a · 0.4 · w ∈ L(A), while they have different symbolic membership.
This is because symbolic membership distinguishes the position in timed words
where each clock variable is reset, which must be ignored. We use renaming
equations to abstract such positional information in symbolic membership. Note
that Ti,n =

∑n
k=i τk corresponds to the value of the clock variable reset at τi.

Definition 14 (renaming equation). Let T = {τ0, τ1, . . . , τn} and T
′ =

{τ
′
0, τ

′
1, . . . , τ

′

n′ } be sets of ordered variables. A renaming equation R over T

and T
′ is a finite conjunction of equations of the form Ti,n = T

′
i′,n′ , where

i ∈ {0, 1, . . . , n}, i′ ∈ {0, 1, . . . , n′}, Ti,n =
∑n

k=i τk and T
′
i′,n′ =

∑n′

k=i′ τ ′
k.

Definition 15 (∼S
L). Let L ⊆ T (Σ) be a timed language, let

(u,Λ), (u′, Λ′), (u′′, Λ′′) ∈ E(Σ) be elementary languages, and let R be a renam-
ing equation over T and T

′, where T and T
′ are the variables of Λ and

Λ′, respectively. We let (u,Λ) �(u′′,Λ′′),R
L (u′, Λ′) if we have the following:

for any w ∈ (u,Λ), there is w′ ∈ (u′, Λ′) satisfying κ(w), κ(w′) |= R;
memsymL ((u,Λ) ·(u′′, Λ′′))∧R∧Λ′ is equivalent to memsymL ((u′, Λ′) ·(u′′, Λ′′))∧R∧Λ.
We let (u,Λ) ∼(u′′,Λ′′),R

L (u′, Λ′) if we have (u,Λ) �(u′′,Λ′′),R
L (u′, Λ′) and

(u′, Λ′ �(u′′,Λ′′),R
L (u,Λ). Let S ⊆ E(Σ). We let (u,Λ) ∼S,R

L (u′, Λ′) if for any
(u′′, Λ′′) ∈ S, we have (u,Λ) ∼(u′′,Λ′′),R

L (u′, Λ′). We let (u,Λ) ∼S
L (u′, Λ′) if

(u,Λ) ∼S,R
L (u′, Λ′) for some renaming equation R.

Example 16. Let A be the DTA in Fig. 1c and let (u,Λ), (u′, Λ′), and (u′′, Λ′′) be
elementary languages, where u = a, Λ = {τ0 ∈ (1, 2)∧τ0+τ1 ∈ (1, 2)∧τ1 ∈ (0, 1)},
u′ = a ·a, Λ′ = {τ ′

0 ∈ (0, 1)∧τ ′
0+τ ′

1 ∈ (1, 2)∧τ ′
1+τ ′

2 ∈ (1, 2)∧τ ′
2 ∈ (0, 1)}, u′′ = a,

and Λ′′ = {τ0 ∈ (0, 1) ∧ τ1 = 0}. We have memsymL(A)((u,Λ) · (u′′, Λ′′)) = Λ ∧ Λ′′ ∧
τ1 + τ ′′

0 ≤ 1 and memsymL(A)((u
′, Λ′) · (u′′, Λ′′)) = Λ′ ∧ Λ′′ ∧ τ ′

2 + τ ′′
0 ≤ 1. Therefore,

for the renaming equation T1,1 = T
′
2,2, we have (u,Λ) ∼(u′′,Λ′′),T1,1=T

′
2,2

L (u′, Λ′).

An algorithm to check if (u,Λ) ∼S
L (u′, Λ′) is shown in Appendix B.2 of [29].

Intuitively, (u,Λ) �s,R
L (u′, Λ′) shows that any w ∈ (u,Λ) can be “simulated”

by some w′ ∈ (u′, Λ′) with respect to s and R. Such intuition is formalized as
follows.
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Theorem 17. For any L ⊆ T (Σ) and (u,Λ), (u′, Λ′), (u′′, Λ′′) ∈ E(Σ) satisfying
(u,Λ) �(u′′,Λ′′)

L (u′, Λ′), for any w ∈ (u,Λ), there is w′ ∈ (u′, Λ′) such that for
any w′′ ∈ (u′′, Λ′′), w · w′′ ∈ L ⇐⇒ w′ · w′′ ∈ L holds. ��

By
⋃

(u,Λ)∈E(Σ)(u,Λ) = T (Σ), we have the following as a corollary.

Corollary 18. For any timed language L ⊆ T (Σ) and for any elementary lan-
guages (u,Λ), (u′, Λ′) ∈ E(Σ), (u,Λ) ∼E(Σ)

L (u′, Λ′) implies the following.

– For any w ∈ (u,Λ), there is w′ ∈ (u′, Λ′) such that for any w′′ ∈ T (Σ), we
have w · w′′ ∈ L ⇐⇒ w′ · w′′ ∈ L.

– For any w′ ∈ (u′, Λ′), there is w ∈ (u,Λ) such that for any w′′ ∈ T (Σ), we
have w · w′′ ∈ L ⇐⇒ w′ · w′′ ∈ L. ��

The following characterizes recognizable timed languages with ∼E(Σ)
L .

Theorem 19. (Myhill-Nerode style characterization). A timed language
L is recognizable if and only if the quotient set SE(Σ)/∼E(Σ)

L is finite. ��

By Theorem 19, we always have a finite set S of distinguishing extensions.

Theorem 20. For any recognizable timed language L, there is a finite set S of
elementary languages satisfying ∼E(Σ)

L = ∼S
L. ��

4 Active Learning of Deterministic Timed Automata

We show our L*-style active learning algorithm for DTAs with the Nerode-style
congruence in Sect. 3. We let Ltgt be the target timed language in learning.

For simplicity, we first present our learning algorithm with a smart teacher
answering the following three kinds of queries: membership query memLtgt(w)
asking whether w ∈ Ltgt, symbolic membership query asking memsymLtgt

((u,Λ)), and
equivalence query eqLtgt

(Ahyp) asking whether L(Ahyp) = Ltgt. If L(Ahyp) =
Ltgt, eqLtgt

(Ahyp) = �, and otherwise, eqLtgt
(Ahyp) is a timed word cex ∈

L(Ahyp)�Ltgt. Later in Sect. 4.5, we show how to answer a symbolic membership
query with finitely many membership queries. Our task is to construct a DTA
A satisfying L(A) = Ltgt with finitely many queries.

4.1 Successors of Simple Elementary Languages

Similarly to the L* algorithm in Sect. 2.3, we learn a DTA with an observation
table. Reflecting the extension of the underlying congruence, we use sets of simple
elementary languages for the indices. To define the extensions, P ∪ (P · Σ) in
the L* algorithm, we introduce continuous and discrete successors for simple
elementary languages, which are inspired by regions [4]. We note that immediate
exteriors do not work for this purpose. For example, for (u,Λ) = (a, {T0,1 <
2 ∧ T1,1 < 1}) and w = 0.7 · a · 0.9, we have w ∈ (u,Λ) and extt((u,Λ)) =
(a, {T0,1 = 2 ∧ T1,1 < 1}), but there is no t > 0 satisfying w · t ∈ extt((u,Λ)).
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Algorithm 2: DTA construction from a timed observation table
Input : A cohesive timed observation table (P, S, T )
Output : A DTA Ahyp row-faithful to the given timed observation table

1 Function MakeDTA(P, S, T):
2 Φ ← ∅; F ← {(u, Λ) ∈ P | T ((u, Λ), (ε, τ ′

0 = 0)) = {Λ ∧ τ ′
0 = 0}}

3 for p ∈ P such that succt(p) /∈ P (resp. succa(p) /∈ P ) do
// Construct (u, Λ, u′, Λ′, R) for some p′ ∈ P and R
// Such R is chosen using an exhaustive search

4 pick p′ ∈ P and R such that succt(p) ∼S,R
Ltgt

p′ (resp. succa(p) ∼S,R
Ltgt

p′)

5 add (u, Λ, u′, Λ′, R) to Φ, where (u, Λ) = extt(p) (resp. exta(p)) and (u′, Λ′) = p′

6 return the DTA Ahyp obtained from (P, F, Φ) by the construction in [21]

For any (u,Λ) ∈ SE(Σ), we let Θ(u,Λ) be the total order over 0 and the
fractional parts frac(T0,n), frac(T1,n), . . . , frac(Tn,n) of T0,n, T1,n, . . . , Tn,n. Such
an order is uniquely defined because Λ is simple and canonical (Proposition 36
of [29]).

Definition 21 (successor). Let p = (u,Λ) ∈ SE(Σ) be a simple elementary
language. The discrete successor succa(p) of p is succa(p) = (u ·a, Λ∧τn+1 = 0).
The continuous successor succt(p) of p is succt(p) = (u,Λt), where Λt is defined
as follows: if there is an equation Ti,n = d in Λ, all such equations are replaced
with Ti,n ∈ (d, d + 1); otherwise, for each greatest Ti,n in terms of Θ(u,Λ), we
replace Ti,n ∈ (d, d + 1) with Ti,n = d + 1. We let succ(p) =

⋃
a∈Σ succa(p) ∪

succt(p). For P ⊆ SE(Σ), we let succ(P ) =
⋃

p∈P succ(p).

Example 22. Let u = aa, Λ = {T0,0 ∈ (1, 2) ∧ T0,1 ∈ (1, 2) ∧ T0,2 ∈
(1, 2) ∧ T1,1 ∈ (0, 1) ∧ T1,2 ∈ (0, 1) ∧ T2,2 = 0}. The order Θ(u,Λ) is such that
0 = frac(T2,2) < frac(T1,2) < frac(T0,2). The continuous successor of (u,Λ)
is succt((u,Λ)) = (u,Λt), where Λt = {T0,0 ∈ (1, 2) ∧ T0,1 ∈ (1, 2) ∧ T0,2 ∈
(1, 2) ∧ T1,1 ∈ (0, 1) ∧ T1,2 ∈ (0, 1) ∧ T2,2 ∈ (0, 1)}. The continuous succes-
sor of (u,Λt) is succt((u,Λt)) = (u,Λtt), where Λtt = {T0,0 ∈ (1, 2) ∧ T0,1 ∈
(1, 2) ∧ T0,2 = 2 ∧ T1,1 ∈ (0, 1) ∧ T1,2 ∈ (0, 1) ∧ T2,2 ∈ (0, 1)}.

4.2 Timed Observation Table for Active DTA Learning

We extend the observation table with (simple) elementary languages and sym-
bolic membership to learn a recognizable timed language.

Definition 23 (timed observation table). A timed observation table is a
3-tuple (P, S, T ) such that: P is a prefix-closed finite set of simple elementary
languages, S is a finite set of elementary languages, and T is a function mapping
(p, s) ∈ (P ∪ succ(P )) × S to the symbolic membership memsymLtgt

(p · s).

Figure 2 illustrates timed observation tables: each cell indexed by (p, s) show
the symbolic membership memsymLtgt

(p · s). For timed observation tables, we extend
the notion of closedness and consistency with ∼S

Ltgt
we introduced in Sect. 3.
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Algorithm 3: Counterexample analysis in our DTA learning algorithm
1 Function AnalyzeCEX(cex):
2 i ← 1; w0 ← cex
3 while �p ∈ P.wi ∈ p do
4 i ← i + 1

5 split wi−1 into w′
i · w′′

i such that w′
i ∈ p′

i for some p′
i ∈ succ(P ) \ P

6 let pi ∈ P and Ri be such that p′
i ∼S,Ri

Ltgt
pi

7 let wi ∈ pi be such that κ(w′
i), κ(wi) |= Ri

8 wi ← wi · w′′
i

9 find j ∈ {1, 2, . . . , i} such that wj−1 ∈ Ltgt�L(Ahyp) and wj �∈ Ltgt�L(Ahyp)
// We use a binary search with membership queries for 
log(i)� times.

10 return the simple elementary language including w′′
j

We note that consistency is defined only for discrete successors. This is because
a timed observation table does not always become “consistent” for continuous
successors. See Appendix C of [29] for a detailed discussion. We also require
exterior-consistency since we construct an exterior from a successor.

Definition 24 (closedness, consistency, exterior-consistency, cohe-
sion). Let O = (P, S, T ) be a timed observation table. O is closed if, for each
p ∈ succ(P )\P , there is p′ ∈ P satisfying p ∼S

Ltgt
p′. O is consistent if, for each

p, p′ ∈ P and for each a ∈ Σ, p ∼S
Ltgt

p′ implies succa(p) ∼S
Ltgt

succa(p′). O is
exterior-consistent if for any p ∈ P , succt(p) /∈ P implies succt(p) ⊆ extt(p). O
is cohesive if it is closed, consistent, and exterior-consistent.

From a cohesive timed observation table (P, S, T ), we can construct a DTA as
outlined in Algorithm 2. We construct a DTA via a recognizable timed language.
The main ideas are as follows: 1) we approximate ∼E(Σ),R

Ltgt
by ∼S,R

Ltgt
; 2) we decide

the equivalence class of ext(p) ∈ ext(P )\P in E(Σ) from successors. Notice that
there can be multiple renaming equations R showing ∼S,R

Ltgt
. We use one of them

found by an exhaustive search in Appendix B.2 of [29].
The DTA obtained by MakeDTA is faithful to the timed observation table in

rows, i. e., for any p ∈ P ∪succ(P ), Ltgt∩p = L(Ahyp)∩p. However, unlike the L*
algorithm, this does not hold for each cell, i. e., there may be p ∈ P ∪succ(P ) and
s ∈ S satisfying Ltgt ∩ (p · s) �= L(Ahyp) ∩ (p · s). This is because we do not (and
actually cannot) enforce consistency for continuous successors. See Appendix C
of [29] for a discussion. Nevertheless, this does not affect the correctness of our
algorithm partly by Theorem 26.

Theorem 25 (row faithfulness). For any cohesive timed observation table
(P, S, T ), for any p ∈ P ∪ succ(P ), Ltgt ∩ p = L(MakeDTA(P, S, T )) ∩ p holds. ��

Theorem 26. For any cohesive timed observation table (P, S, T ), ∼S
Ltgt

=∼E(Σ)
Ltgt

implies Ltgt = L(MakeDTA(P, S, T )). ��
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Algorithm 4: Outline of our L*-style algorithm for DTA learning
1 P ← {(ε, τ0 = 0)}; S ← {(ε, τ ′

0 = 0)}
2 while � do
3 while (P, S, T ) is not cohesive do

4 if ∃p ∈ succ(P ) \ P. �p′ ∈ P. p ∼S
Ltgt

p′ then // (P, S, T ) is not closed

5 P ← P ∪ {p} // Add such p to P

6 else if ∃p, p′ ∈ P, a ∈ Σ. p ∼S
Ltgt

p′ ∧ succa(p) �∼S
Ltgt

succa(p′) then

// (P, S, T ) is inconsistent due to a

7 let S′ ⊆ S be a minimal set such that p�∼S∪{{a·w|w∈s}|s∈S′}
Ltgt

p′

8 S ← S ∪ {{a · w | w ∈ s} | s ∈ S′}
9 else // (P, S, T ) is not exterior-consistent

10 P ← P ∪ {p′ ∈ succt(P ) \ P | ∃p ∈ P. p′ = succt(p) ∧ p′
� extt(p)}

11 fill T using symbolic membership queries

12 Ahyp ← MakeDTA(P, S, T)
13 if cex = eqLtgt

(Ahyp) then

14 add AnalyzeCEX(cex) to S
15 else return Ahyp // It returns Ahyp if eqLtgt

(Ahyp) = �.

4.3 Counterexample Analysis

We analyze the counterexample cex obtained by an equivalence query to refine
the set S of suffixes in a timed observation table. Our analysis, outlined in
Algorithm 3, is inspired by the Rivest-Schapire algorithm [20,25]. The idea is
to reduce the counterexample cex using the mapping defined by the congruence
∼S

Ltgt
(lines 5–7 ), much like Φ in recognizable timed languages, and to find a

suffix s strictly refining S (line 9), i. e., satisfying p ∼S
Ltgt

p′ and p �∼S∪{s}
Ltgt

p′ for
some p ∈ succ(P ) and p′ ∈ P .

By definition of cex , we have cex = w0 ∈ Ltgt�L(Ahyp). By Theorem 25,
wn �∈ Ltgt�L(Ahyp) holds, where n is the final value of i. By construction of Ahyp

and wi, for any i ∈ {1, 2, . . . , n}, we have w0 ∈ L(Ahyp) ⇐⇒ wi ∈ L(Ahyp).
Therefore, there is i ∈ {1, 2, . . . , n} satisfying wi−1 ∈ Ltgt�L(Ahyp) and wi �∈
Ltgt�L(Ahyp). For such i, since we have wi−1 = w′

i · w′′
i ∈ Ltgt�L(Ahyp),

wi = wi · w′′
i �∈ Ltgt�L(Ahyp), and κ(w′

i), κ(wi) |= Ri, such w′′
i is a witness

of p′
i �∼

E(Σ),Ri

Ltgt
pi. Therefore, S can be refined by the simple elementary language

s ∈ SE(Σ) including w′′
i .

4.4 L*-Style Learning Algorithm for DTAs

Algorithm 4 outlines our active DTA learning algorithm. At line 1, we initialize
the timed observation table with P = {(ε, τ0 = 0)} and S = {(ε, τ ′

0 = 0)}. In
the loop in lines 2–15, we refine the timed observation table until the hypothesis
DTA Ahyp recognizes the target language Ltgt, which is checked by equivalence
queries. The refinement finishes when the equivalence relation ∼S

Ltgt
defined by

the suffixes S converges to ∼E(Σ)
Ltgt

, and the prefixes P covers SE(Σ)/∼E(Σ)
Ltgt

.
In the loop in lines 3–11, we make the timed observation table cohesive. If the

timed observation table is not closed, we move the incompatible row in succ(P )\
P to P (line 5). If the timed observation table is inconsistent, we concatenate an
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(ε, τ ′
0 = 0)

(ε, τ0 = 0) τ0 = τ ′
0 = 0

(ε, τ0 ∈ (0, 1)) 0 = τ ′
0 < τ0 < 1

(a, τ0 = τ1 = 0) τ0 = τ1 = τ ′
0 = 0

(a) The initial timed observa-
tion table O1 = (P1, S1, T1)

l0 a

(b) DTA A1
hyp con-

structed from O1

l0 l1

a, c0 ≥ 1/c1 := 0

a, c0 < 1

a, c1 ≤ 1/c0 := c1

a, c1 > 1

(c) DTA A3
hyp constructed from O3

s0 = (ε, τ ′
0 = 0) s1 = (a, τ ′

1 = 0 < τ ′
0 < 1)

p0 = (ε, τ0 = 0) � �
p1 = (ε, τ0 ∈ (0, 1)) � τ0 + τ ′

0 ∈ (0, 1)
p2 = (a, τ0 = τ0 + τ1 = τ1 = 0) � �

(d) Timed observation table O2 = (P2, S2, T2) after processing cex
(ε, τ ′

0 = 0) (a, τ ′
1 = 0 < τ ′

0 < 1)
(ε, τ0 = 0) � �

(ε, τ0 ∈ (0, 1)) � τ0 + τ ′
0 ∈ (0, 1)

(ε, τ0 = 1) � ⊥
(a, τ0 = τ0 + τ1 = 1 ∧ τ1 = 0) ⊥ �

(a, τ0 = 1 ∧ τ1 ∈ (0, 1)) ⊥ τ1 + τ ′
0 ∈ (0, 1]

(a, τ0 = τ1 = 1 ∧ τ0 + τ1 = 2) ⊥ ⊥
(a, τ0 = τ0 + τ1 = τ1 = 0) � �

(a, τ0 = τ0 + τ1 ∈ (0, 1) ∧ τ1 = 0) � τ0 + τ1 + τ ′
0 ∈ (0, 1)

(ε, τ0 ∈ (1, 2)) � ⊥
(aa, τ0 = τ0 + τ1 = τ0 + τ1 + τ2 = 1 ∧ τ1 = τ2 = τ1 + τ2 = 0) � �

(aa, τ0 = 1 ∧ τ1 = τ1 + τ2 ∈ (0, 1) ∧ τ0 + τ1 = τ0 + τ1 + τ2 ∈ (1, 2) ∧ τ2 = 0) � τ1 + τ2 + τ ′
0 ∈ (0, 1)

(a, τ0 = 1 < τ1 < 2 < τ0 + τ1 < 3) ⊥ ⊥
(aa, τ0 = τ1 = τ1 + τ2 = 1 ∧ τ0 + τ1 = τ0 + τ1 + τ2 = 2 ∧ τ2 = 0) � ⊥

(e) The final observation table O3 = (P3, S3, T3)

Fig. 2. Timed observation tables O1, O2, O3, and the DTAs A1
hyp and A3

hyp made from
O1 and O3, respectively. In O2 and O3, we only show the constraints non-trivial from
p and s. The DTAs are simplified without changing the language. The use of clock
assignments, which does not change the expressiveness, is from [21].

event a ∈ Σ in front of some of the suffixes in S (line 8). If the timed observation
table is not exterior-consistent, we move the boundary succt(p) ∈ succt(P ) \ P
satisfying succt(p) � extt(p) to P (line 10). Once we obtain a cohesive timed
observation table, we construct a DTA Ahyp = MakeDTA(P, S, T) and make
an equivalence query (line 12). If we have L(Ahyp) = Ltgt, we return Ahyp.
Otherwise, we have a timed word cex witnessing the difference between the
language of the hypothesis DTA Ahyp and the target language Ltgt. We refine
the timed observation table using Algorithm 3.

Example 27. Let Ltgt be the timed language recognized by the DTA in Fig. 1c.
We start from P = {(ε, τ0 = 0)} and S = {(ε, τ ′

0 = 0}. Figure 2a shows the initial
timed observation table O1. Since the timed observation table O1 in Fig. 2a is
cohesive, we construct a hypothesis DTA A1

hyp. The hypothesis recognizable
timed language is (P1, F1, Φ1) is such that P1 = F1 = {(ε, τ0 = 0)} and Φ1 =
{(ε, τ0 > 0, ε, τ0,�), (a, τ0 = τ0 +τ1 = τ1 = 0, ε, τ0,�)}. Figure 2b shows the first
hypothesis DTA A1

hyp.
We have L(A1

hyp) �= Ltgt, and the learner obtains a counterexample, e. g.,
cex = 1.0 · a · 0, with an equivalence query. In Algorithm 3, we have w0 = cex ,
w1 = 0.5 · a · 0, w2 = 0 · a · 0, and w3 = 0. We have w0 �∈ L(A1

hyp)�Ltgt and
w1 ∈ L(A1

hyp)�Ltgt, and the suffix to distinguish w0 and w1 is 0.5 · a · 0. Thus,
we add s1 = (a, τ ′

1 = 0 < τ ′
0 = τ ′

0 + τ ′
1 < 1) to S1 (Fig. 2d).
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In Fig. 2d, we observe that T2(p1, s1) is more strict than T2(p0, s1), and we
have p1 �∼S2

Ltgt
p0. To make (P2, S2, T2) closed, we add p1 to P2. By repeating

similar operations, we obtain the timed observation table O3 = (P3, S3, T3) in
Fig. 2e, which is cohesive. Figure 2c shows the DTA A3

hyp constructed from O3.
Since L(A3

hyp) = Ltgt holds, Algorithm 4 finishes returning A3
hyp.

By the use of equivalence queries, Algorithm 4 returns a DTA recognizing
the target language if it terminates, which is formally as follows.

Theorem 28 (correctness). For any target timed language Ltgt, if Algorithm
4 terminates, for the resulting DTA Ahyp, L(Ahyp) = Ltgt holds. ��

Moreover, Algorithm 4 terminates for any recognizable timed language Ltgt

essentially because of the finiteness of SE(Σ)/∼E(Σ)
Ltgt

.

Theorem 29 (termination). For any recognizable timed language Ltgt, Algo-
rithm 4 terminates and returns a DTA A satisfying L(A) = Ltgt.

Proof (Theorem 29). By the recognizability of Ltgt and Theorem 19,
SE(Σ)/∼E(Σ)

Ltgt
is finite. Let N = |SE(Σ)/∼E(Σ)

Ltgt
|. Since each execution of line

5 adds p to P , where p is such that for any p′ ∈ P , p �∼E(Σ)
Ltgt

p′ holds, it is exe-
cuted at most N times. Since each execution of line 8 refines S, i. e., it increases
|SE(Σ)/∼S

Ltgt
|, line 8 is executed at most N times. For any (u,Λ) ∈ SE(Σ),

if Λ contains Ti,|u| = d for some i ∈ {0, 1, . . . , |u|} and d ∈ N, we have
succt((u,Λ)) ⊆ extt((u,Λ)). Therefore, line 10 is executed at most N times.
Since S is strictly refined in line 14, i. e., it increases |SE(Σ)/∼S

Ltgt
|, line 14

is executed at most N times. By Theorem 26, once ∼S
Ltgt

saturates to ∼E(Σ)
Ltgt

,
MakeDTA returns the correct DTA. Overall, Algorithm 4 terminates. ��

4.5 Learning with a Normal Teacher

We briefly show how to learn a DTA only with membership and equivalence
queries. We reduce a symbolic membership query to finitely many membership
queries, answerable by a normal teacher. See Appendix B.1 of [29] for detail.

Let (u,Λ) be the elementary language given in a symbolic membership query.
Since Λ is bounded, we can construct a finite and disjoint set of simple and
canonical timed conditions Λ′

1, Λ
′
2, . . . , Λ

′
n satisfying

∨
1≤i≤n Λ′

i = Λ by a simple
enumeration. For any simple elementary language (u′, Λ′) ∈ SE(Σ) and timed
words w,w′ ∈ (u′, Λ′), we have w ∈ L ⇐⇒ w′ ∈ L. Thus, we can construct
memsymL ((u,Λ)) by making a membership query memL(w) for each such (u′, Λ′) ⊆
(u,Λ) and for some w ∈ (u′, Λ′). We need such an exhaustive search, instead of
a binary search, because memsymL ((u,Λ)) may be non-convex.

Assume Λ is a canonical timed condition. Let M be the size of the variables
in Λ and I be the largest difference between the upper bound and the lower
bound for some Ti,j in Λ. The size n of the above decomposition is bounded by
(2 × I + 1)1/2×M×(M+1), which exponentially blows up with respect to M .
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In our algorithm, we only make symbolic membership queries with elemen-
tary languages of the form p · s, where p and s are simple elementary languages.
Therefore, I is at most 2. However, even with such an assumption, the number
of the necessary membership queries blows up exponentially to the size of the
variables in Λ.

4.6 Complexity Analysis

After each equivalence query, our DTA learning algorithm strictly refines S or
terminates. Thus, the number of equivalence queries is at most N . In the proof
of Theorem 29, we observe that the size of P is at most 2N . Therefore, the
number (|P | + |succ(P )|) × |S| of the cells in the timed observation table is at
most (2N + 2N × (|Σ| + 1)) × N = 2N2|Σ| + 2. Let J be the upper bound of
i in the analysis of cex returned by equivalence queries (Algorithm 3). For each
equivalence query, the number of membership queries in Algorithm 3 is bounded
by �log J�, and thus, it is, in total, bounded by N × �log J�. Therefore, if the
learner can use symbolic membership queries, the total number of queries is
bounded by a polynomial of N and J . In Sect. 4.5, we observe that the number
of membership queries to implement a symbolic membership query is at most
exponential to M . Since P is prefix-closed, M is at most N . Overall, if the learner
cannot use symbolic membership queries, the total number of queries is at most
exponential to N .

Table 1. Summary of the results for Random. Each row index |L| |Σ| KC shows the
number of locations, the alphabet size, and the upper bound of the maximum constant
in the guards, respectively. The row “count” shows the number of instances finished in
3 h. Cells with the best results are highlighted.

# of Mem. queries # of Eq. queries Exec. time [sec.] count

max mean min max mean min max mean min

3 2 10
LearnTA 35,268 14,241 2,830 11 6 4 2.32e+00 6.68e-01 4.50e-02 10/10

OneSMT 468 205 32 13 8 5 9.58e-01 2.89e-01 6.58e-02 10/10

4 2 10
LearnTA 194,442 55,996 10,619 14 7 4 2.65e+01 7.98e+00 4.88e-01 10/10

OneSMT 985 451 255 16 12 7 3.53e-01 2.09e-01 1.27e-01 10/10

4 4 20
LearnTA 1,681,769 858,759 248,399 21 15 10 8.34e+03 1.41e+03 3.23e+01 8/10

OneSMT 5,329 3,497 1,740 42 32 26 2.19e+00 1.42e+00 8.27e-01 10/10

5 2 10
LearnTA 627,980 119,906 8,121 19 8 5 1.67e+02 2.28e+01 1.96e-01 10/10

OneSMT 1,332 876 359 22 16 12 5.20e-01 3.66e-01 2.58e-01 10/10

6 2 10
LearnTA 555,939 106,478 2,912 14 9 6 2.44e+02 2.81e+01 4.40e-02 10/10

OneSMT 3,929 1,894 104 35 20 11 1.72e+00 8.01e-01 1.73e-01 10/10

Let Atgt = (Σ,L, l0, C, I,Δ, F ) be a DTA recognizing Ltgt. As we observe in
the proof of Lemma 33 of [29], N is bounded by the size of the state space of the
region automaton [4] of Atgt, N is at most |C|!×2|C|×

∏
c∈C(2Kc+2)×|L|, where

Kc is the largest constant compared with c ∈ C in Atgt. Thus, without symbolic
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membership queries, the total number of queries is at most doubly-exponential
to |C| and singly exponential to |L|. We remark that when |C| = 1, the total
number of queries is at most singly exponential to |L| and Kc, which coincides
with the worst-case complexity of the one-clock DTA learning algorithm in [30].

5 Experiments

We experimentally evaluated our DTA learning algorithm using our prototype
library LearnTA4 implemented in C++. In LearnTA, the equivalence queries
are answered by a zone-based reachability analysis using the fact that DTAs are
closed under complement [4]. We pose the following research questions.

RQ1 How is the scalability of LearnTA to the language complexity?
RQ2 How is the efficiency of LearnTA for practical benchmarks?

For the benchmarks with one clock variable, we compared LearnTA with
one of the latest one-clock DTA learning algorithms [1,30], which we call
OneSMT. OneSMT is implemented in Python with Z3 [23] for constraint solv-
ing.

For each execution, we measured the number of queries and the total execu-
tion time, including the time to answer the queries. For the number of queries, we
report the number with memoization, i. e., we count the number of the queried
timed words (for membership queries) and the counterexamples (for equivalence
queries). We conducted all the experiments on a computing server with Intel
Core i9-10980XE 125 GiB RAM that runs Ubuntu 20.04.5 LTS. We used 3 h as
the timeout.
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Fig. 3. The number of locations and the number of queries for |L| 2 10 in Random,
where |L| ∈ {3, 4, 5, 6}

4 LearnTA is publicly available at https://github.com/masWag/LearnTA. The arti-
fact of the experiments is available at https://doi.org/10.5281/zenodo.7875383.

https://github.com/masWag/LearnTA
https://doi.org/10.5281/zenodo.7875383
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Table 2. Summary of the target DTAs and the results for Unbalanced. |L| is the number
of locations, |Σ| is the alphabet size, |C| is the number of clock variables, and KC is
the maximum constant in the guards in the DTA.

|L| |Σ| |C| KC # of Mem. queries # of Eq. queries Exec. time [sec.]

Unbalanced:1 LearnTA 5 1 1 2 51 2 2.00e-03

Unbalanced:2 LearnTA 5 1 2 4 576,142 3 3.64e+01

Unbalanced:3 LearnTA 5 1 3 4 403,336 4 2.24e+01

Unbalanced:4 LearnTA 5 1 4 6 4,142,835 5 2.40e+02

Unbalanced:5 LearnTA 5 1 5 6 10,691,400 5 8.68e+02

5.1 RQ1: Scalability with Respect to the Language Complexity

To evaluate the scalability of LearnTA, we used randomly generated DTAs
from [5] (denoted as Random) and our original DTAs (denoted as Unbalanced).
Random consists of five classes: 3 2 10, 4 2 10, 4 4 20, 5 2 10, and 6 2 10, where
each value of |L| |Σ| KC is the number of locations, the alphabet size, and the
upper bound of the maximum constant in the guards in the DTAs, respectively.
Each class consists of 10 randomly generated DTAs. Unbalanced is our original
benchmark inspired by the “unbalanced parentheses” timed language from [10].
Unbalanced consists of five DTAs with different complexity of timing constraints.
Table 2 summarizes their complexity.

Table 1 and 3 summarize the results for Random, and Table 2 summarizes the
results for Unbalanced. Table 1 shows that LearnTA requires more membership
queries than OneSMT. This is likely because of the difference in the definition
of prefixes and successors: OneSMT’s definitions are discrete (e. g., prefixes are
only with respect to events with time elapse), whereas ours are both continuous
and discrete (e. g., we also consider prefixes by trimming the dwell time in the
end); Since our definition makes significantly more prefixes, LearnTA tends to
require much more membership queries. Another, more high-level reason is that
LearnTA learns a DTA without knowing the number of the clock variables,
and many more timed words are potentially helpful for learning. Table 1 shows
that LearnTA requires significantly many membership queries for 4 4 20. This
is likely because of the exponential blowup with respect to KC , as discussed
in Sect. 4.6. In Fig. 3, we observe that for both LearnTA and OneSMT, the
number of membership queries increases nearly exponentially to the number of
locations. This coincides with the discussion in Sect. 4.6.

In contrast, Table 1 shows that LearnTA requires fewer equivalence queries
than OneSMT. This suggests that the cohesion in Definition 24 successfully
detected contradictions in observation before generating a hypothesis, whereas
OneSMT mines timing constraints mainly by equivalence queries and tends to
require more equivalence queries. In Fig. 3c, we observe that for both LearnTA
and OneSMT, the number of equivalence queries increases nearly linearly to the
number of locations. This also coincides with the complexity analysis in Sect. 4.6.
Figure 3c also shows that the number of equivalence queries increases faster in
OneSMT than in LearnTA.
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Table 3. Summary of the target DTA and the results for practical benchmarks. The
columns are the same as Table 2. Cells with the best results are highlighted.

|L| |Σ| |C| KC # of Mem. queries # of Eq. queries Exec. time [sec.]

AKM
LearnTA 17 12 1 5 12,263 11 5.85e-01

OneSMT 17 12 1 5 3,453 49 7.97e+00

CAS
LearnTA 14 10 1 27 66,067 17 4.65e+00

OneSMT 14 10 1 27 4,769 18 9.58e+01

Light
LearnTA 5 5 1 10 3,057 7 3.30e-02

OneSMT 5 5 1 10 210 7 9.32e-01

PC
LearnTA 26 17 1 10 245,134 23 6.49e+01

OneSMT 26 17 1 10 10,390 29 1.24e+02

TCP
LearnTA 22 13 1 2 11,300 15 3.82e-01

OneSMT 22 13 1 2 4,713 32 2.20e+01

Train
LearnTA 6 6 1 10 13,487 8 1.72e-01

OneSMT 6 6 1 10 838 13 1.13e+00

FDDI LearnTA 16 5 7 6 9,986,271 43 3.00e+03

Table 2 also suggests a similar tendency: the number of membership queries
rapidly increases to the complexity of the timing constraints; In contrast, the
number of equivalence queries increases rather slowly. Moreover, LearnTA is
scalable enough to learn a DTA with five clock variables within 15 min.

Table 1 also suggests that LearnTA does not scale well to the maximum
constant in the guards, as observed in Sect. 4.6. However, we still observe that
LearnTA requires fewer equivalence queries than OneSMT. Overall, compared
with OneSMT, LearnTA has better scalability in the number of equivalence
queries and worse scalability in the number of membership queries.

5.2 RQ2: Performance on Practical Benchmarks

To evaluate the practicality of LearnTA, we used seven benchmarks: AKM,
CAS, Light, PC, TCP, Train, and FDDI. Table 3 summarizes their complexity. All
the benchmarks other than FDDI are taken from [30] (or its implementation [1]).
FDDI is taken from TChecker [2]. We use the instance of FDDI with two processes.

Table 3 summarizes the results for the benchmarks from practical applica-
tions. We observe, again, that LearnTA requires more membership queries and
fewer equivalence queries than OneSMT. However, for these benchmarks, the
difference in the number of membership queries tends to be much smaller than
in Random. This is because these benchmarks have simpler timing constraints
than Random for the exploration by LearnTA. In AKM, Light, PC, TCP, and
Train, the clock variable can be reset at every edge without changing the lan-
guage. For such a DTA, all simple elementary languages are equivalent in terms
of the Nerode-style congruence if we have the same edge at their last event and
the same dwell time after it. If two simple elementary languages are equivalent,
LearnTA explores the successors of only one of them, and the exploration is
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relatively efficient. We have a similar situation in CAS. Moreover, in many of
these DTAs, only a few edges have guards. Overall, despite the large number of
locations and alphabets, these languages’ complexities are mild for LearnTA.

We also observe that, surprisingly, for all of these benchmarks, LearnTA
took a shorter time for DTA learning than OneSMT. This is partly because
of the difference in the implementation language (i. e., C++ vs. Python) but
also because of the small number of equivalence queries and the mild number of
membership queries. Moreover, although it requires significantly more queries,
LearnTA successfully learned FDDI with seven clock variables. Overall, such
efficiency on benchmarks from practical applications suggests the potential use-
fulness of LearnTA in some realistic scenarios.

6 Conclusions and Future Work

Extending the L* algorithm, we proposed an active learning algorithm for DTAs.
Our extension is by our Nerode-style congruence for recognizable timed lan-
guages. We proved the termination and the correctness of our algorithm. We also
proved that our learning algorithm requires a polynomial number of queries with
a smart teacher and an exponential number of queries with a normal teacher.
Our experiment results also suggest the practical relevance of our algorithm.

One of the future directions is to extend more recent automata learning
algorithms (e. g., TTT algorithm [19] to improve the efficiency) to DTA learning.
Another direction is constructing a passive DTA learning algorithm based on our
congruence and an existing passive DFA learning algorithm. It is also a future
direction to apply our learning algorithm for practical usage, e. g., identification
of black-box systems and testing black-box systems with black-box checking [22,
24,28]. Optimization of the algorithm, e. g., by incorporating clock information
is also a future direction.
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