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Abstract

While general relativity (GR) has certainly proven a formidable framework via which we understand
the past history and current dynamics of our Universe, modern observations are also suggesting there
could exist a more complete theory of gravity. First, GR is infamously non-renormalizable, and there
is currently no accepted extension of GR in the high energy regimes. Furthermore, modern cosmology
faces the mysteries of dark matter as well as dark energy, both of which could be framed as limitation
of GR. Last but not least, probing beyond GR also helps us gain a deeper insight into the theory
itself.

In a first part, we briefly review GR along the common tools invoked in cosmology, before painting
an overview of some modified gravity theories, with a focus on the ones used thereafter. This work
indeed aims at demonstrating how these alternative theories can help us answer the aforementioned
puzzles.

In a second part, we first establish the Wheeler-DeWitt equation in the formalism of Hořava-
Lifshitz (HL) gravity in d + 1 dimensions. We also show that the DeWitt wave function for tensor
perturbation is indeed well-defined around the classical Big Bang singularity, unlike GR. HL gravity
is a recent quantum gravity candidate that aims at addressing the non-renormalizability of GR by
treating time and space separately at higher energies. Incidentally, this theory also incorporates
dark matter as an integration constant. Subsequently, we consider a previously proposed relaxation
mechanism for the cosmological constant (CC) that provides a dynamical explanation to the small
value of the CC. While this would address the CC problem, and thus dark energy as well, the process
simultaneously empties the Universe of its content. Using a Horndeski class model, we then build a
proof-of-concept model that incorporates a reheating phase to resolve this last issue.

In a last part, the focus is put on a type-II minimally modified gravity denominated as “VCDM”.
Similarly to HL gravity, this class of theory is not invariant under four-dimensional diffeomorphism
as time is treated as physically different than space, and, like GR, only propagates two degrees of
freedom. We start by numerically investigating the collapse of a scalar field in VCDM and verify
the sane creation of an apparent horizon, thusly bringing an extra validation of the theory. Finally,
we construct a bouncing Universe scenario by exploiting the specificities of VCDM. Such a scenario
has the advantage of avoiding any initial singularity altogether, but has often proven difficult to
implement in a stable way. The setup built here satisfies the near scale invariant scalar perturbation
power spectrum and the small tensor-to-scalar ratio. Additionally, a possibly observable signature of
the model is found in its blue-tilted tensor perturbation power spectrum.

Throughout this work, all analytical computations are supplemented by numerical simulations
that produce a qualitative and perhaps more instinctive understanding of this work.
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Introduction

Physics starts with the familiar. The mass of an apple, the speed of a falling apple, the temperature of an
apple or an apple rolling down a hill are all concepts that are as well-known to Newton as they are to all.
And, through the ages, we learned to model and describe these in rigorous mathematical terms. In so
doing, physics expanded into new territories. As of today, while some familiar phenomena still require
their own formulation, such as the dynamics of sand, many physicists have now trouble to sleep because
of other observations, far from life’s everyday’s scales, observations that bring deeply puzzling mysteries.
These apparently come in two flavors. On the one end, considering larger and larger distances, there is
realm of astrophysics and cosmology. On the other end, diving into smaller and smaller objects, stands
the quantum land and the standard model of particles.

It is fair to say that both fields have undergone revolutionary developments in the XXth century,
when their unintuitive yet highly successful frameworks were formulated. In particular, relevant for the
present text, gravity, whose dynamics seemed long settled by the inverse square law Newton wrote, was
famously reformulated under the equivalence principle by Einstein in circa 1916 into what is called general
relativity [1]. First a curiosity that only accounted for Mercury’s perhelion’s advance [2], it soon got further
comforted when light was observed to be deflected by the Sun’s gravitational imprint in the Eddington
experiment in 1920 [3]. The third test proposed by Einstein at the time, the redshift of light, was only
observed and confirmed much later, in 1954 [4]. Since the early days of its genesis, general relativity has
demonstrated time and time again to be a brilliantly successful framework to talk about gravity. And
yet...

At about the same time, the seeds of quantum mechanics also sprouted into the successful framework
describing much smaller length scales that is now called the standard model. The two formalisms could
have remained distant and forever estranged worlds, but, in some peculiar cases, both must somehow
cohabite and collaborate. How? By which operation? Quantum theory had established a common
procedure —renormalization— to regularize its inhabitants. Unfortunately, and now infamously, the
approach is unapplicable to general relativity: the latter theory is non-renormalizable [5, 6]. While the
fault may lie on the side of quantum field theory, the opposite is just as likely. Squaring this circle and
matching the two ends into an all-encompassing theory of quantum gravity has proven a formidable
challenge, which does not have yet any admitted answer. The most commonly explored path to that
aim is probably superstring theory [7, 8, 9, 10], but others are also under consideration, such as loop
quantum gravity [11, 12]. A fairly recently proposed path in this field —and one that we shall work with in
chapter III— is Hořava-Lifshitz gravity [13], which assumes a fundamental and physical difference between
time and space to achieve renormalizability, in principle.

While this issue alone is already a strong enough motivation to explore the landscape beyond general
relativity, modern astrophysics has hit on other tenacious mysteries for which a new theory of gravity
could be a possible answer. The two main ones are surely dark matter and dark energy, sometimes
bundled together under dark sector. This “dark” naturally does not stem from any “dark arts” or mystical
fantasies.

Dark matter comes from the significant discrepancy between the observed luminous mass populating
our Universe and the gravitating one inferred from the observed dynamics of astrophysical entities [14,
15, 15, 16]. The latter being much larger, the name is logically referring to that non-luminous and
unobserved mass. As numerical simulations tend to support, this missing puzzle piece behaves very much
as a pressureless fluid; some even say a superfluid[17, 18]. It is therefore only natural research turned
towards a possible missing particle that the standard model had not accounted for[19]. Yet, one by one,
candidates for dark matter seem to be ruled out and the search space is shrinking as ice melts in Kyoto’s
summer. Some alternative candidates still stand, such as primordial black holes [20], and new, more
powerful search experiments are being devised and built as these lines are being written [21, 22]. But could
there not be any other explanation? Actually, early on already, it was suggested to modify Newtonian
dynamics to account for the first imprints of dark matter on the galaxy’s rotational curves [23, 24, 25, 26].

1



2 List of Tables

These were abbreviated MOND theories and, while the underlying idea is not entirely ruled out, other
candidates have also been devised[27], and dark matter’s deep nature still remains more elusive than ever.
Nevertheless, unsettling as may be, there remains the very tangible possibility that dark matter survives
our scrutiny as a mathematical artifact mimicking matter, but with no apparent manifestation outside of
gravity.

Dark energy is a more subtle, yet possibly deeper problem. Again, invisible by itself, dark energy
is the conjectured culprit for driving the recently observed acceleration of the Universe’s expansion [28,
29]. But its raison d’être is fundamentally the underlying cosmological constant problem. The latter
reveals itself when physicists coming from high-energy physics confront their computations of the vacuum
expectation value (which should amounts to the cosmological constant) with cosmological observations.
The two simply do not match. Not only do they not match, they mismatch spectacularly as the value
inferred from observations is about sixty orders of magnitude lower. Rarely, if ever, physics has had two
values so strongly differ.

It turns out all these three problems, non-renormalizability, dark matter and dark energy, can each be
approached by assuming a more general theory of gravity. However, as if these were not enough incentives
to investigate whether a more general theory of gravity exists, there is at least one more motivation worth
mentioning. Modelling and understanding deviations from general relativity also helps us deconstruct the
latter and better understand its numerous ramifications and rich structure. Under the assumptions of
Lovelock’s theorem, general relativity is the most general theory in four dimensions[30]. Being so tightly
constrained also explicitly spells for us which paths can be taken to write a new extended gravity.

In this thesis, we will consider through different and somewhat independent case studies what modifying
gravity can allow us to achieve and how it can answer the aforementioned mysteries of the Universe. A
probably obvious start would be to consider the simple, yet fruitful formalism of scalar-tensor theories
(see section II.1). These take general relativity (the tensor) and add a single field (the scalar). This can
be done in different ways, but a frequent starting point would be the class of Horndeski theories [31, 32,
33], and we shall do so in chapter IV. Even more general, one could consider the DHOST[34, 35, 36, 37,
38, 39] or even the U-DHOST framework[40, 41, 42]. Many more exist and are being investigated and
exploited everyday. Nowadays, numerical simulations can also be used to explore where a pen and paper
get bogged down, and we shall take advantage of these in this work as well.

But all attempt always has to eventually bridge and match with observations to represent an admissible
and healthy option to consider. And observations tell us deviations from general relativity, if truly there
are any, must be incredibily small[43]. In part because of that, invoking Occam’s razor, we shall, in this
work, argue for minimalism. General relativity is equipped with only two degrees of freedom. Minimally
modified gravity thus aim for no more, despite invoking an auxiliary scalar field. Indeed, this recently
formulated class of theories has been trying to do more with no more degree of freedom. Its similarity will
be verified in chapter V. And, while there is still much to be developed, its formalism has managed to
explore areas inaccessible to general relativity, as a bouncing Universe presented at the end of this work,
in chapter VI, shall show.

On a bright last note, we shall end this introductory body by noticing that important observations for
gravity are planned in the upcoming years. Since the detection of the long yearned for observations of
gravitational waves, physicists have started to unravel that rich and new window on our Universe. Just
as the cinema was first silent before acquiring a sound and music, gravitational waves being intrisically
associated with gravity appear as a promising mine of information for the years to come. Among the
new observatories that should be established in the near future, we find LiteBIRD[44, 45], KAGRA[46] or
LISA[47], to name only these. In parallel, more traditionnal channels of observations are also significantly
improving as the recent “photo” of a black hole shadow can testify [48]. While general relativity is still
proving to extremely difficult champion to dethrone, very wise, or a fool, would be the physicist betting
all on the upcoming observations disproving or comforting Einstein’s gravity.

Structure This text fundamentally bundles and contextualize into a cohesive whole three works that
have now been published [49, 50, 51]. The fourth one, also here included, should hopefully soon be
submitted to a journal as well. We also mention that, in parallel to these studies, another work was not
included here [52]. It is true that it may have frayed its way in, but, unlike all the other works gathered
here, it is not resorting to any modified gravity theories. Nonetheless, while we decided not to include it,
any curious reader is naturally welcome to independently consult it.

The current work is articulated around three distinctive parts, each coincidentally split into two
chapters. The overall aim is first to contextualize modifiying gravity, then to illustrate possible venues
that this opens, before finally focusing on minimally modified gravity theories. We would thus like to
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argue that, without ruling out any paths yet, minimally modified gravity theories can represent a potent
alternative to general relativity, whose framework, while minimal, has enough room to accommodate
phenomena general relativity cannot.

Part I In a first part, we have decided to provide a review of general relativity and its candidate
extensions. The first chapter is thus focused on the former, where we start by formally formulating general
relativity (section I.1), talking of the deep symmetries it calls, before spelling Lovelock’s theorem to
lead us into its mathematical definition. We shall also spend time to introduce the ADM decomposition
(section I.2). The latter is indeed of particular importance to this work, as the alternative theories of
gravity that are subsequently studied hypothesize a physical differentation between time and space, a
feature that is conveniently expressed in the ADM formalism. As general relativity would not be of much
interest if it had remained just a theory, it is also relevant to recall its predictions under the “cosmological
principle” and its implications on the history of the Universe (section I.3). Last but certainly not least in
the context of this text, we review three important shortcomings of general relativity (section I.4), namely:
the non-renormalizability of general relativity, the cosmological constant problem and dark matter.

Once general relativity and commonly used theoretical tools are well-established, chapter II turns to
different possible theories of gravity and attempts to present them in brief terms. The list does not aim
to be exhaustive, but simply to give some reference points to the reader. We start with scalar-tensor
theories (section II.1) and continue with vector-tensor (section II.2) and scalar-vector-tensor theories
(section II.3), before talking of bimetric and massive gravity (section II.4). We mention the maybe more
agnostic effective field approach (section II.7), before introducing two of the theories we work with in the
subsequent chapters: Hořava-Lifshitz gravity (section II.5) and minimally modified gravity (section II.6).

Part II In the second part, we shall concretely apply, and thus illustrate, two different modified gravity
frameworks. Firstly, in chapter III, we work with Hořava-Lifshitz gravity and establish, in its d + 1
dimensional formalism, the Wheeler-DeWitt equation. Hořava-Lifshitz gravity is a recent attempt to fit
the observational constraints that restrict modifying gravity to stay in the vicinity of general relativity.
Incidentally, Hořava-Lifshitz also brings along a component that could account as dark matter. After its
presentation in section II.5, we establish the working setup in section III.1 and exhibit the Wheeler-DeWitt
equation, along with a numerical realization, in the following section III.2.

Secondly, we turn our attention towards the cosmological constant problem that underlies dark energy
(chapter IV). A previous mechanism was set up to phenomenologically explain the small value of the
cosmological constant by invoking a dynamical relaxation mechanism, but in so doing also emptied the
Universe of its content [53, 54]. We therefore here exploit the framework of Horndeski theories, presented
in section II.1.3, to build a subsequent reheating phase to repopulate the Universe. We first establish what
is the cosmic evolution we wish to achieve (section IV.1) before writing down the perturbative expansion
of the model and deriving stability conditions (section IV.2). From there, we explicitly define all the
components of the model (section IV.3) and numerically verify its well-behavior (section IV.4).

The first chapter in this part was aiming to find a known result is a new formalism, while the second
consisted in building up an early Universe scenario. And now, with these two case studies under our belt,
we then turn our attention to minimally modified gravity in the next part, and we will essentially go
through two case studies of the same kind.

Part III The third and last part of delves into applications of one particular (type-II) minimally modified
gravity theory called VCDM. In the first chapter of the part, we investigate the spherical collapse of a
scalar field in VCDM (chapter V). Whether a theory can accommodate a healthy black hole solution or
not has often acted as a litmus test to determine the validity of a new theory. We know general relativity
does predict the existence of black holes. A new contender for the title of theory of gravity must thus also
if not admit a black hole solution, at the very least incorporate some mechanism or entity that closely
mimic a black hole.

After this satisfying health check of VCDM, we take advantage of VCDM to go beyond general relativity.
Similarly to before, we build an early Universe scenario within the formalism of VCDM. We construct a
healthy bouncing Universe scenario (chapter VI). This option implies doing away with any initial cosmic
singularity in the distant past. While the idea is not new, its stable implementation has proven to be not
impossible, but a challenge. Again, after working out the equations of motion (section VI.1), we carry
out a perturbative analysis of the system (section VI.2). This will guide the concrete implementation
subsequently presented and finally numerically supported (section VI.3).
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This brings us to the end of this work. In a last chapter, chapter VII, we conclude with a brief summary
of the achievements given in this text and a discussion of their importance and possible future expansions.
Some appendices are collected afterwards, before the list of references.

Conventions and notations We hereafter list some of the conventions and notations we shall adopt
in this text.

• The metric has the signature (−,+,+,+).

• We adopt natural units, where both the speed of light c and the reduced Planck constant ~ are set
to 1, i.e. c = ~ = 1.

• Unless explicitly stated otherwise we adopt Einstein’s convention of summing over repeated indices.
That is to say that an expression such as: AiBi would be implicitly strictly equivalent to writing∑

i AiBi.

• Spacetime indices are written using greek characters (e.g. µ, ν, ρ, σ,…) and spatial only indices are
written using latin characters (e.g. i, j, k, `,…).

• We recall that the reduced Planck mass MPl is related to Newton’s gravitational constant G by the
relation

M2
Pl = 1

8πG . (1)
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Chapter I

Gravity in general relativity

We shall start with a chapter that gives a short —but helpful— review of general relativity (GR), along
the recall of well-known results and common manipulations. This will enable us to clearly frame the
mathematical apparatus that is exploited in the subsequent chapters and allow us to refer to it whenever
needed. Shall any further interest arise, we also indicate for the more curious readers thorough reviews
of the topics discussed in this text. In so assuming minimal knowledge of the reader, we hope to ease
the reading and understanding of the current the work. However, we assume a working knowledge of the
mathematical foundations of GR

I.1 Formulation of General relativity

As a first and essential stepping stone, this section naturally formulates GR. While most of the work
subsequently presented will stray away from it, GR today probably represents the central pillar in
cosmology around which research is carried on, and the results of this text are no exceptions. It is not to
say that GR is the final theory of gravitation: modern cosmological observations do show its predictions
are insufficient to account for e.g. dark energy (DE) and dark matter (DM). After giving its mathematical
expression in this section I.1, we briefly review some of its predictions in section I.3. Finally, we list some
of the main mysteries yet unsolved that GR alone seems unable to elucidate in section I.4.

I.1.1 Symmetries
Often, enunciating the symmetries a theory must respect allows to pin down in part or in full the underlying
theory itself. It is again the case for GR through Lovelock’s theorem, given in section I.1.2.

That is however not the initial path Einstein followed when formulating GR. The weak equivalence
principle can be simply formulated as “all bodies fall in a gravitational field with the same acceleration
regardless of their mass or their internal structure”. An equivalent mathematical formulation would be
to say that the intertial mass mI, appearing in Newton’s second law F = mIa, is equal to the passive
gravitational mass mP, the mass in Newton’s law of gravity F = mPg. In other words, as long as tidal
effects can be neglected, a free-falling apparatus behaves as if the embedding gravitational field was absent
altogether.

Einstein extended the idea from mechanical laws to all the laws of physics paving the way to the
formulation of GR. This latter reformulation of the equivalence principle is commonly referred to as the
Einstein equivalence principle. Diffeomorphism invariance or general covariance, the idea that physics is
completely independent of any choice of coordinates, transpires from there into an intrinsic property of
GR.

I.1.2 Lovelock’s theorem
We now state Lovelock’s theorem closely to how it was initially stated in ref. [30]. Consider a rank two
tensor Aµν in such that it is{

Aµν(gµν ; ∂ρgµν , ∂ρσgµν) concomitants of gµν and its first two derivatives (I.1a)
∇νA

µν = 0 divergence free (I.1b)

then it can be written as
Aµν = aGµν + b gµν (I.2)

7
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where a and b are constants and Gµν is the Einstein tensor defined in eq. (I.7).
The same assumptions also imply that Aµν is both symmetric and at most linear in the second

derivatives of the metric tensor g. Moreover, in four dimensions, the only admissible equations of motion
are the Einstein field equations (given in eq. (I.8)) [55]. This sets the basis for GR, but also reveals how
to depart from GR: at least one of the hypotheses must be relaxed. This can be achieved in different
ways, by e.g.

• considering extra (or fewer) dimensions,

• adding extra fields,

• going beyond the second order derivatives of the metric,

• Non-locality

• assuming the field equations do not come from an action.

I.1.3 Formal definition

Lovelock’s theorem and discussion now clearly restricted the building blocks for building GR. Not any
action can yields eq. (I.2) as its equations of motion (EoM). The action that describe GR, called the
Einstein-Hilbert action, must actually read

SEH := M2
Pl

2

∫ √
−g (R+ Λ) d4x (I.3)

where MPl is Planck’s mass, g is the determinant of the metric gµν , R is the scalar curvature and Λ
denotes the CC. At this stage, this action only describes spacetime itself, without any matter. If one adds
matter, we would simply write

Stotal := SEH + Smatter . (I.4)

The natural following steps, now that an action is defined, would be to derive the corresponding
equations of motions. These are the Einstein field equations and are usually defined along with the
two following quantities. Firstly, we shall define the stress-energy-momentum tensor, that is going to
essentially encapsulate the role of matter, by

Tµν := 2√
−g

· δSmatter

δgµν
. (I.5)

The conservation of the stress-energy-momentum tensor can be expressed as

∇µT
µν . (I.6)

Secondly, we introduce the Einstein tensor Gµν as

Gµν := Rµν − 1
2Rgµν (I.7)

where Rµν denotes the Ricci curvature tensor.
Using these eqs. (I.5) and (I.7), we write the Einstein field equations compactly as

Gµν + Λgµν = 8πGTµν . (I.8)

These equations are very general and should encompass all the gravitational phenomena GR describes.
Unfortunately, they can also easily turn out very difficult or impossible to solve analytically.

Now, before looking into particular solutions, in section I.3, we shall first describe the ADM decompo-
sition and what is called the null energy condition.
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I.2 The ADM decomposition

The ADM decomposition, named after Arnowitt, Deser and Misner who first suggested it [56], could be
seen as a simple re-writing of terms to separate temporal and spatial contributions in equations. To this
aim, the main idea is to slice spacetime into three dimensional manifolds and isolate hypersurfaces at
constant times. In doing so, we only mathematically treat space and time independently. Most notably
perhaps, this approach enables us to easily adopt a Hamiltonian perspective, the point-of-view traditionally
favored in quantum field theory. Both HL gravity and the VCDM model, both of which we detail in
sections II.5 and II.6.1, take advantage of it for their formulation.

We here give a working introduction to its formalism and ideas [57, 58], but the curious reader is
invited to consult more thorough summaries such as refs. [56, 59, 60, 58].

I.2.1 Formalism
To realize the ADM decomposition, we thus decide to cut spacetime at constant t (non-intersecting)
hypersurfaces. While we call it t as we will often choose this parameter to coincide with the time, it does
not necessarily have to be so and another parameter may be chosen without altering any of the following
derivations. Moreover, some considerations in the current development will be given for three spatial
dimensions. However, the overall formalism can be easily generalized to higher (or lower) dimensions as
well.

Let us consider one particular hypersurface defined by the position function Xµ. We can describe the
tangent space of any point with the basis (ei)µ := ∇iX

µ where ∇i stands for the covariant derivative.
There is then a unique perpendicular vector nµ that satisfies the two conditions{

gµνe
µ
i n

ν = 0 ,
gµνn

µnν = −1 .
(I.9a)
(I.9b)

If we are now to make our hypersurface “evolve” along t and thus foliate spacetime, we connect each point
from one hypersurface to the next along the fourvector

Nµ := ∂tX
µ . (I.10)

Expressed in terms of the basis {eµ
i , N

µ} that we previously defined, it reads

Nµ =: Nnµ +N ieµ
i . (I.11)

This expression defines the lapse function N and the shift function N i. Given eq. (I.10), we can interpret
the lapse function as dictating how the proper time evolves, while the shift function indicates how a same
spatial position is “shifted”. For it may help to grasp the idea, it is also illustrated in fig. I.1.

x

x′

t

t + dt

N
µ

dt

N
n

µ
dt

N i
e µ
i dt

Figure I.1: Illustration of the decomposition given by eq. (I.11) [57, 58]. The two wavy curves are
understood to represent schematically two hypersurfaces that are dt apart from each other.

I.2.2 The metric
Naturally, the mathematical formulation of the metric needs to be adapted accordingly. The relations
given in eq. (I.9b) already reveal us some of the metric representation. The remaining ones simply define
a metric γij with signature (+,+,+) as

γij := gµνe
µ
i e

ν
i (I.12)

and the overall metric is described by the line element

ds2 = −N2dt2 + γij(dxi +N idt)(dxj +N jdt) . (I.13)
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Note that these quantities contain 1 + 3 + 6 = 10 variables, which is indeed equal to the total number of
variables in the spacetime metric. From there, the volume element can be computed and reads

√
gd4x ≡ N

√
γd4x . (I.14)

I.2.3 The Hilbert-Einstein action
To re-write the Hilbert-Einstein action within this formalism, we introduce the extrinsic curvature Kij ,
which we define as

Kij := 1
2N (∂tγij −DiNj −DjNi) , (I.15)

where Di denotes the covariant derivative with respect to the metric γ on the hypersurface.
In terms of the extrinsic curvature, the Einstein-Hilbert action of eq. (I.3) is now concisely written as

SEH =
∫

dt
∫

d3x
√
γN

(
R3D +KijK

ij −K2) (I.16)

where the scalar curvature R3D is here understood to be the three dimensional scalar curvature, in
opposition to the four dimensional scalar curvature R appearing in eq. (I.3).

I.2.4 Hamiltonian formalism

In this decomposition, treating N and N i as Lagrange multipliers and neglecting boundary contributions,
the total Hamiltonian of GR can be written

Htot =
∫
d3x

[
NH0(γ, π) +N iHi(γ, π)

]
, (I.17)

in which H0 is the Hamiltonian constraint and Hi is the momentum constraint, given by

H0 = 2
M2

Pl
√
γ

(
γikγlj − 1

2γ
ijγkl

)
πijπkl −

M2
Pl

√
γ

2 R3D, (I.18)

Hi = −2√
γγikN

kDj

(
πij

√
γ

)
, (I.19)

where πij denotes the canonical momentum of γij , MPl = 1/
√

8πG is the reduced Planck mass (eq. (1)), G
denotes Newton’s gravitational constant, γ is the determinant of γij , and R3D denotes the three-dimensional
Ricci scalar of γij .

I.3 Observational successes

Most of our understanding of our Universe and cosmology stem from applications of general relativity. It
is thus important to establish the foundations that GR entails. This section paints in broad strokes the
history of our Universe and thus review the important successes of GR.

I.3.1 The Friedmann-Lemaître-Robertson-Walker metric
As just mentioned, eq. (I.8) can lead to system of equations difficult to deal with. However, if we are to
consider the Universe at very large scales (i.e. ∼ 109 ly), two simplifying assumptions are often made: the
Universe is homogeneous and isotropic. In layman’s words, we are saying that the large-scale properties of
the Universe are the same anywhere (homogeneity) and in any direction (isotropy). These two hypotheses
are together called the cosmological principle, and, while their validity may be discussed, they have overall
proven robust until now [43].

Assuming the cosmological principle and using polar coordinates, the metric would accurately be
described by the line element

ds2 = −N2dt2 + a(t)2
(

dr
1 − k r2 + r2dΩ2

)
(I.20)

where a is called the scale factor and dΩ2 accounts for the angular part, which, in spherical coordinates,
can be expressed as

dΩ2 = dθ2 + sin(θ)2dφ2 , (I.21)
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while k is a constant determining the type of curvature the Universe adopts
k > 0 ⇒ closed spacetime , (I.22a)
k = 0 ⇒ flat spacetime , (I.22b)
k < 0 ⇒ open spacetime . (I.22c)

The metric corresponding to the line element of eq. (I.20) is commonly called the Friedmann-Lemaître-
Robertson-Walker (FLRW) metric. We have explicitly included the lapse function N here, but it is often
set to 1 when working in cosmic or proper time. We shall do so in the rest of this section.

Surprisingly, as of today, cosmological observations do not allow us to confidently rule out any of
these scenarios: k must be close to 0. Accordingly, this means that a flat spacetime (k = 0) is, in many
applications, a reasonable assumption to make.

I.3.2 The Friedmann equations
For convenience, we set here N ≡ 1. Assuming the cosmological principle, the only non-vanishing
components of the energy-momentum tensor read

T00 = ρ (I.23a)
Tij = a2 γij p (I.23b)

where ρ and p are a priori parameters of the energy-momentum tensor, but, upon closer inspection, play
a role akin to an energy density and pressure of some perfect fluid filling the Universe. The ratio between
the two is often defined by the equation of state, i.e.

w := p

ρ
(I.24)

In these terms, the conservation eq. (I.6) now reads

dρ
dt = −3H(ρ+ p) . (I.25)

where we introduce the Hubble expansion rate parameter H as

H := ȧ

N a
. (I.26)

To keep this definition general, we have kept N explicit here only.
Using this result of eq. (I.23) and the FLRW metric, one can work out Einstein’s equations eq. (I.8).

In order, the temporal and the spatial equations are
ȧ2 + k

a2 = 8
3πGρ+ 1

3Λ ,

ä

a
= −4πG

3 (ρ+ 3 p) + 1
3Λ .

(I.27a)

(I.27b)

In light of eq. (I.26), We can then rewrite the Friedmann equations as
H2 = 8

3πGρ+ 1
3Λ − k

a2

Ḣ = −4πG (ρ+ p) + k

a2 .

(I.28a)

(I.28b)

The meaning of the first equation will be investigated in details soon, in section I.3.5. As for the second
equation, it is now a differential equation dictating the time evolution of H in terms of ρ and p.

I.3.3 The redshift
Now that we introduce the Hubble expansion rate H, let us also define what is meant by the redshift.
Given an observered (obs) and the original emitted (em) signals, we can define the redshift z as the
quantity

z := a(tobs)
a(tem) − 1 = λobs

λem
− 1 , (I.29)
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where λobs and λem are the wavelength when the signal is observed respectively emitted. As the Universe
expands, the further the emission source is located, the more the observed wavelength λobs is stretched.
Consequently, the redshift z increases monotonically with the distance of the emission source. By
construction, z = 0 is here and now.

The redshift z can further be related to the Hubble parameter H, by

z ≈ (tobs − tem)H(tobs) . (I.30)

I.3.4 Conformal time
Another quantity is neatly related to the Hubble parameter as well. We define the proper time τ (sometimes
denoted η) by

dτ := dt
a(t) ⇔ τ(t) :=

∫ dt
a(t) (I.31)

Obviously, if a is constant in time t, we find τa = t.
Looking at eq. (I.13), we observe that dt always comes accompanied by the lapse function N . Therefore,

if we “replace” the lapse by the scale factor, we can easily read out the proper time and work with it. In
proper time, it is also customary to define the corresponding Hubble expansion parameter H (not to be
confused with H of eq. (I.26)) as

H := ȧ

a
. (I.32)

If one replaces the lapse function N by the scale factor a, it is straightforward to observe that

H = a ·H . (I.33)

I.3.5 A short history of the cosmos
Let us now try to reason from eq. (I.28). If we define

ρΛ := Λ
8πG , (I.34)

ρk := 3
8πG

−k
a2 , (I.35)

we can consider some effective ρtot and ptot to account for the cumulative effect of all contributions.
Equation (I.28a) then becomes

3
2H

2 = 8πGρtot . (I.36)

This easily shows that, assuming a is a monomial in t, then

ρtot ∝ t−2 . (I.37)

Now eliminating p and subsequently ρ in eq. (I.28b) using eq. (I.24) respectively eq. (I.36) yields

Ḣ = −(1 + w)3
2H

2 . (I.38)

This is a first order differential equation that can easily be solved for H first, and then for a upon
substituting H = ȧ · a−1 (keeping N = 1 here). Treating independently the case where w = −1, we can
thus express the scale factor as

a ∝

{
t

2
3(1+w) if w 6= −1, (I.39a)

exp(t) if w = −1. (I.39b)

Therefore, as ρtot ∝ t−2 (eq. (I.37)), we also deduce ρtot ∝ a−3(1+w) if w 6= −1. We see, from these last
equations, that by knowing the value of w, the overall behavior of all other quantities can be approximated
under the cosmological principle.

The short mathematical discussion we have had until now will now make the following discussion easier.
Indeed, all main regimes driving the scale factor can be attributed a w. We can start by splitting the
original ρ into the sum of a radiative component ρrad and a matter component ρmatter. A detour through
microphysics attributes to the former w = 1

3 , while the latter is modelled as a pressureless fluid, thus with
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w = 0. If ρΛ is assumed to be the dominant density in eq. (I.36), then solving for a and comparing with
eq. (I.39a), reveals the contribution of the cosmological constant can be interpreted as a fluid of negative
pressure, i.e. w = −1. And when considering ρk, a similar reasoning yields w = − 1

3 .
Given eq. (I.39), we would expect each of these contribution to dominate turn by turn. First, the

Universe is radiation-dominated, then matter-dominated. If k 6= 0, the spatial curvature k would then
possibly dominate before the cosmological constant, again if Λ 6= 0, takes the lead thanks to its exponential
behavior. This corresponds to the traditional view of the Universe’s history. Later in this work, we shall
consider different scenarios and diverge from this picture. For more details on the early Universe and its
scenarios, we can refer the reader to refs. [61, 62, 63, 64, 65, 66].

I.3.6 The very early Universe

In the previous ever expanding Universe scenario, the oldest era of our Universe was a radiation dominated
Universe, that is an era where photons would be frequently scattered, and the Universe can be seen
as opaque. The transition between radiation and matter domination eras, when matter and radiation
decoupled, approximately corresponds to the Universe becoming transparent to light. The photons emitted
then are thus still travelling in space and can be observed. These fossil radiations constitute what is called
the cosmic microwave background (CMB). Considering from where this fresco covering the distant sky is
coming to us, we can imagine a distant expanding shell around us from where the radiation comes from.
This is called the surface of last scattering.

−300

0

300

µK

Figure I.2: Anisotropies of the cosmic microwave background as observed by ESA’s Planck mission [67,
68]. The temperature indicated corresponds to the deviation, in µK, from the average temperature of
about 2.726 K.

As the Universe was opaque prior to it, the CMB thus represents the furthest in the past we can probe
with light. All models that try to explore beyond the CMB have thus, as their ultimate test, to match
this observed relic emission. This CMB radiation is an emission of near-uniform, black body thermal
energy coming from all parts of the sky.

The CMB also brings its own mysteries. A first one stems from this near uniformity. From modeling
the radiation and matter decoupling, one can compute an expected spectrum for the CMB and thus
how far in the past the surface of last scattering stands. Using the Friedmann equations we reviewed,
it is also possible to extrapolate the Universe expansion up to its hypothetical origin. Looking at both
results put side-by-side, one would observe that there is not enough time for integrality of the CMB to be
causally connected. Only tiny patches of this surface are. The question thus reads: how can the CMB be
uniform when there is no causal contact between its parts? This first problem is called horizon problem or
homogeneity problem.

The most commonly invoked solution to this problem is to incorporate an inflationary phase prior to
the CMB [69, 70, 71, 66, 61, 62]. That is a new expansion regime —inflation— would have dominated the
Universe in the past and stretched the Universe so much as to freeze quantum fluctuations at cosmological
scales and thus seeding the large-scale structures in the Universe.
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Moreover, when extrapolating the Universe curvature in the past using the Friedmann eqs. (I.27),
for it to be near-flat as it is observed today, the initial configuration of the Universe must have been
incredibly fine-tuned. This is, in very short, the essence of the flatness problem. Inflation also serves as an
explanatory mechanism for this question. Notice that one alternative to an inflationary scenario could be
a bouncing Universe; we shall discuss it in more details in chapter VI.

While the CMB is mostly homogeneous, it does exhibit tiny inhomogeneities. These can be observed,
and their spectrum is a constraining tools often referred to in order to invalidate models. Among other
observations, observations show that the spectrum of scalar perturbations must be near scale-invariant
[72]. Similarly, the ratio of tensor perturbations over scalar ones must be small (it has not yet been
observed) [72].

For more details on what was very briefly introduced here, we would suggest to consult refs. [61, 62,
66].

I.3.7 Perturbations

As we already stated, solving the Einstein field equations in an arbitrary case represents a very difficult
task, even when it is possible. To obtain the preceding results, we had to bring in the assumptions of
the cosmological principle. However, how to go beyond this approximation? This is where perturbation
theory comes in.

The idea is basically to Taylor expand and, since each order is linearly independent, solve order-by-order
the equations at hand. While higher order may be long equations with complicated terms, often, the lower
orders read as simple and understandable expressions. This approach will be repeatedly used throughout
this work (see sections IV.2.2 and VI.2).

I.3.8 The null-energy condition

Let us here, make a brief parenthesis and introduce the null energy condition (NEC). The NEC can be
formally defined by the concise expression

Tµνn
µnν > 0 (I.40)

where nµ is here any null or light-like vector, i.e. any vector for which gµνn
µnν = 0 [73].

What makes the NEC interesting is twofold. On the one hand, the NEC has proven to be robust. It is
fairly difficult to write a healthy theory that violate the NEC stably. More often than not, violating the
NEC will either lead to a ghost or some gradient instabilities. On the other hand, if one assumes the
NEC to be valid, then, under fairly broad assumptions, the Penrose theorem tells us that the Universe
must possess a singularity in the distant past [74].

Getting a better grasp of what the NEC means may be easier in the context of an homogeneous and
isotropic Universe. In this case, using eq. (I.23) simplifies eq. (I.40) to

ρ+ p > 0 . (I.41)

Considering the second Friedmann equation, eq. (I.28b), we observe that eq. (I.41) implies Ḣ to be
negative and the Hubble parameter H decreases in time. We here assumed k to be negligible (or negative).
If it is positive, there are ways to circumvent this conclusion, but these are subject to restrictions. So, as
a rule of thumb, breaking the NEC often amounts to modelling a contracting Universe.

I.3.9 Observational tests of general relativity

I.4 Apparent shortcomings

In spite of all its successes and its relative elegance, GR alone today appears insufficient to answer
several profund problems of cosmology. In this section, we shall briefly overview three of these: the
non-renormalizability of GR, the CC problem and DM. The subsequent chapters will exploit theories that
try to resolve the first two, but the last, DM, will leave our focus.1

1In truth, DM will briefly come back when we’ll describe Hořava-Lifshitz gravity. Indeed, while Hořava-Lifshitz was
initially conceived as an answer to the non-renormalizability of GR, it rather conveniently incorporates an artifact that
should behave like DM. The curious reader is invited to refer to section II.5.2 for more details.
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I.4.1 Non-renormalizability

The first problem we’re listing may be the most fundamental and it is a long-standing issue of GR. Simply
put, GR is not renormalizable. Therefore, it does not easily play with the formalism of the quantum world.
This is essentially due to Newton’s constant being dimensionful (with the mass dimension [GN ] = −2). The
non-renormalizability leads to uncontrollable ultraviolet (UV) divergences. Adding higher curvature terms
to the Einstein-Hilbert action can make the theory renormalizable [75], or even super-renormalizable [76],
but leads to massive ghosts and makes the corresponding quantum theory non-unitary in the UV. Naturally,
attempts to build a quantum field theory of gravity have been encountering many serious issues.

While a hasty observer may be tempted to put this problem aside and consider the two theories having
two disjointed domains of application, there are occurrences where both shall be invoked. This is most
notably the case in black holes and in the distant past, both situations where high-energies flirt with small
scales. More fundamentally, one may also be simply motivated to tackle this issue to, at last, obtain a
cohesive and united vision of the physical forces that govern our world.

Possible answers to this problem are numerous and diverse [8, 77, 13, 12]. As it involves the
reconciliation of two points of view on, one may decide to approach the issue from either high-energy and
particle physics or low-energy and gravity. In the former camp, the framework probably getting the most
traction nowadays are overall related to string theory [8]. Regarding the latter, this work considers HL
gravity [13, 78], whose details are presented in section II.5.

I.4.2 The cosmological constant problem

The cosmological constant problem is another issue where bridging cosmological observations and quantum
field theory fails. The first observations that highlighted the CC contribution to Einstein-Hilbert action
used supernovae [28, 29], the cataclysmic collapse of stars upon themselves during which stars emit a
tremendous amount of light. As the mechanism inside a star explaining supernovae can be reasonably
described, we are able to predict that amount of emitted light. Therefore, by measuring the “brightness”,
i.e. the magnitude, of the supernova, we can fairly reasonably estimate the distance between the star and
our observing position. Not only does it provide us a robust way to measure distances, it also allows us to
measure distances way further other techniques are able to. To explain these observations, one could, in
principle simply put some constant number, the cosmological constant Λ, in the Einstein-Hilbert action
(eq. (I.3)) and voilà! It is therefore quite natural to consider modifying gravity at long ranges. As it is
in probing these long distances that one may witness the effect of DE, it simultaneously defines the CC
problem as a large-scale problem.

But what is dubbed the CC problem runs deeper than this. Indeed, observational developments in
the past few decades have proven their potential to pin down cosmological parameters to high precision.
Despite some recent discrepancy in the determination of the observed value of the expansion rate [79,
72, 80, 81, 82], it is now a well accepted fact that our Universe as a whole not only expands but at an
accelerated rate. What causes the accelerated expansion is often dubbed dark energy (DE), though there
is no agreed consensus about its true nature. The simplest possibility is the CC; it can be freely added
to the Einstein equation with an arbitrary value at the classical level, while quantum-mechanically the
zero-point energy possessed by vacuum fluctuations could contribute to it.

The discrepancy between the observed and theoretically expected values of the CC is the major source
of the so-called CC problem. In the viewpoint of quantum field theory, one would sum all zero-point
diagrams and thus obtain some value that is subject to UV physics, which should compose the vacuum
energy. On the other hand, one might wish that the CC, written as Λ, which enters in the Einstein
equations, would incorporate all the above contributions. However, if it does then the observational
bounds on the CC require an enormous cancellation among different contributions. Without such a
cancellation, these two numbers would not match, but more than that, they would differ by many orders
of magnitude (the observational bounds being extremely smaller) [83, 84, 85]. The CC problem can thus
also be seen as a bridging problem between the cosmological and the quantum worlds, and any significant
progress on its resolution could eventually lead to a fundamental progress in both paradigms.

Furthermore, the CC problem, while already an issue on its own, begs yet another problem: the
coincidence problem. It basically asks the following question: why is the small value of the vacuum energy,
i.e. the density of DE, of the same order as that of DM today? The scaling of the DE density with respect
to time is different from that of the DM, and only a few Hubble times would deviate their values by orders
of magnitude. This implies that we live at a very special moment, nested at the hinge between a DM
dominated and a DE dominated era. Such a coincidence requires a delicate fine tuning [86], leaving us
with a speculation that there may be a physical mechanism at play to realize it.
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While numerous attempts have been made to solve the CC problem, including from supersymmetry
perspectives to effective modifications of gravity (see e.g. [83, 85] for review and references therein), none
have yet provided a satisfactory and definitive answer. One may also be tempted to invoke the so-called
anthropic principle to give a reasoning to it, i.e. the DE is so small and the transition occurs now, because
the physical conditions to our existence are only united at this precise moment and with that physical
parameter. While it might as well serve as a valid answer, and one cannot totally refute its relevance, its
nature makes it difficult to test and to quantify new predictions out of it. In other words, taking it as the
final answer too hastily runs into the risk of missing some more fundamental physical connection, and
it therefore appears essential to further investigate a concrete mechanism to address the issue at hand.
Chapter IV does precisely that and tries to bring in a CC relaxation mechanism into the early Universe.

I.4.3 Dark matter
In parallel to DE stands dark matter (DM), which, apart from the prefixed adjective, is seemingly unrelated
to DE. Unlike the two previous discrepancies we discussed, it does not arise from invoking quantum field
theory. Rather, when mapping galaxies and their properties, one quickly wonders what stars and their
clustering may weight. To do so, roughly two paths can be taken and give diverging conclusions, hence
the problem. On the one hand, one can measure the luminosity of the distant objects. By mathematically
modelling a galaxy, the galaxy brightness can directly be related to its mass. This approach gives us a
first mass estimate. On the other hand, one may consider the dynamics of the stars within the galaxy, via
e.g. the virial theorem [15]. This gives us a second estimate, which, in practice is about four times higher
than the previous one. Therefore, the difference, this missing mass in the former estimate, must not emit
any light [15, 87, 16]. Hence the name dark matter.

The mystery does not end there: observations so far seem coincide with the existence of some large and
obscure mass that affects the cosmic dynamics. At the time of this writing, there exists no unanimously
agreed solution to identify the nature of dark matter. Approaches from particle physics, which have often
hypothesized some kind of weakly-interacting particle have not yet been validated by any experiments
[19].

From a cosmological and astrophysical perspective, this missing matter was also imagined to be e.g.
large wandering baryonic objects or primordial black holes [88, 89], i.e. black holes that formed in the
early ages of the Universe and that have survived until now. The former was ruled out [90, 91], while the
latter, while still admissible, is being constrained more and more [20]. An alternative and less explored
venue is to modify gravity (again) [92]. Modified Newtonian dynamics (MOND theories) [24, 25, 26, 23]
have attempted to do so, but have so far not been able to provide a full answer to the issue at hand [93,
94, 95]. In this text, we shall talk of Hořava-Lifshitz gravity [13, 78], which could, in principle, bring an
answer to the DM mystery [27]. While we give more details about this in section II.5, we work within its
formalism in chapter III.



Chapter II

Beyond general relativity

As Lovelock’s theorem made clear, under the broad assumptions it makes, GR is the only metric theory
of gravity admissible. Therefore, naturally, to go beyond the boundaries set by GR and witness any new
gravitational phenomena, one must break at least one of the theorem’s hypotheses.

In this chapter, we shall quickly review different possible paths for going beyond GR and focus our
attention on two in particular that we deem interesting in the subsequent two chapters. As this work
explore paths to modify gravity and effectively go beyond general relativity, we consider relevant to first
briefly skim through some of the common frameworks that have been and still are explored to this aim.
The subsequent list is however not extensive and aims only at supporting the reader in naming points on
the map of currently explored alternatives to GR. We do not, for example, describe f(R, T ) gravity or
its more simple f(R) version, nor do we talk about teleparallel gravity or supergravity [77]. Quadratic
gravity, which attempts to make gravity a renormalizable theory, and the special case of Chern-Simons
theories are also absent, as well as many other modified gravity theories. For more thorough reviews, we
suggest: for a very wide overview, ref. [96], for massive and bi-metric gravity ref. [97], for post-Newtonian
limit ref. [43] and/or for applications specifically geared towards DE and the early Universe ref. [98, 99].

II.1 Scalar-tensor theories

The most common and perhaps simple path to explore what lies beyond GR is probably the broad class
of so-called scalar-tensor theories. As their name already suggests, scalar-tensor theory add to the metric
(the tensor) a single scalar field φ in the formulation of their action. This mathematical simplicity has also
allowed these to remain flexible, while also demonstrating a rich phenomenology, making them resilient
alternatives to GR.

II.1.1 Brans-Dicke theory

The first attempts in this direction are old and could be traced back to Brans and Dicke Basing themselves
on Fierz and Jordan [43], they wrote their now eponym Brans-Dicke theory [100]. A naive prototype
scalar-tensor theory could read as∫ (

φR− ω(φ)
φ

gµν∂µφ∂νφ− U(φ)
)√

−gd4x (II.1)

where φ is the new scalar field, with the potential U , and ω stands for some coupling function. The
Brans-Dicke theory would be equivalent to setting the coupling amplitude ω to some constant and removing
the potential U .

II.1.2 Quintessence and k-essence

Another more general model would be k-essence [101, 102, 103, 104]. Its action is often expressed as∫
(B(φ)R+ P (X,φ))

√
−gd4x (II.2)

where we chose to write X = gµν∂µφ∂νφ. In the Einstein’s frame, the coupling function B is often
absorbed by redefining other quantities.
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Provided the function can be easily decomposed as

P = X + V (φ) , (II.3)

we can talk of quintessence, rather than k-essence. While quintessence is often used to model inflation
by determining an appropriate potential V , the more general k-essence also allows itself to influence the
dynamics via the kinetic term X. Given their simplicity, this class of models have been ubiquitous and
used to model inflatons, dilatons, curvatons, DE and many other phenomena [101, 99, 105]. We shall take
advantage of them in both chapters IV and VI.

II.1.3 Horndeski theories
A more “modern” framework is found in Horndeski theories [31, 32, 33]. These were long held to be the
most general scalar-tensor theories with second-order Euler-Lagrange equations (before the development
of DHOST theories, see section II.1.4). While they were first exhibited by Horndeski in 1974, they passed
unnoticed for a long time, before interest for these made a recent resurgence from 2011.

The action expressed by Horndeski actually turns out to be general enough to encompass several other
scalar-tensor theories, including the previous two. It can also be used to describe e.g. galileons, k-inflation
or k-essence [101]. That is why we may prefer designated Horndeski theories as a class rather than one
particular theory.

To formulate the action of Horndeski’s theories, we first define four “sub-Lagrangians”, for convenience,

L2 := K , (II.4a)
L3 := −G3�φ , (II.4b)
L4 := G4R+ ∂XG4

(
(�φ)2 − (∇µ∇νφ)2) , (II.4c)

L5 := G5Gµν∇µ∇νφ− 1
6∂XG5

(
(�φ)3 − 3(�φ)(∇µ∇νφ)2 + 2(∇µ∇νφ)3) (II.4d)

where K, G3, G4 and G5 are arbitrary functions of both φ and X, and X is the standard kinetic term

X := −1
2∂µφ∂

µφ . (II.5)

Each of the four function K, G3, G4 and G5 completely define its own sub-Lagrangian, as eq. (II.4) shows,
hence the decomposition. It turns out that L4 with G4 = X and L5 with G5 = φ coincide. The same can
be said up to a total derivative for L3 with G3 = f(φ) and L2 with K = −2X∂φf .

It is thus now straightforward to define the action of this class of theories as∫ √
−g

( 5∑
i=2

Li

)
d4x . (II.6)

Setting G4 = 1 and K = G3 = G5 = 0 recovers the Einstein-Hilbert action (eq. (I.3)). As the framework
offered by Horndeski theories is exploited in chapter IV. The equations of motion of eq. (II.6) for G5 = 0
and G4 = constant can thus be obtained by setting P = 0 and rewriting ϕ2 as φ in eq. (IV.29).

II.1.4 DHOST theories
Before going further, we wish to mention another recently developped class of theories, even more general
than the Horndeski one, called degenerate higher-order scalar-tensor or DHOST for short [34, 35, 36, 37,
38, 39]. This framework was itself recently extended further into U-DHOST [40, 41, 42].

II.2 Vector-tensor theories

If the previous example was to add a scalar, another alternative that would now appear natural would be
to add a vector Uµ instead of a scalar. Vector-tensor theories were motivated to explore violations of
Lorentz invariance in gravity. The action employed in this approach reads[106, 107, 108]

1
16πG

∫ √
−g
(
(1 + ω UµU

µ)R−Kαβ
µν ∇αU

µ∇βU
ν + λ(UµUµ − 1)

)
(II.7)
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where
Kαβ

µν := c1g
αβgµν + c2(δK)α

µ(δK)β
ν + c3(δK)α

ν (δK)β
µ + c4U

αUβgµν (II.8)

and ω, c1, c2, c3, c4 are constants, λ is a Lagrange multiplier and δK stands for the Kronecker delta.
If the Lagrange multiplier is kept (i.e. λ 6= 0), the theory is called Einstein-Æther and the term in ω

can be shown to be superfluous. A sub-version called khronometric, which restrict the vector Uµ, can be
used to describe a low-energy limit of Hořava-Lifshitz gravity (section II.5) [109, 110]. At a Newtonian
level, this amounts to an unobservable modification of the gravitational constant G. The Einstein-Æther
and the khronometric versions coincide at the linear perturbations level. The theory has also been invoked
to investigate a possible a Lorentz-violation of DM, for example [111, 112].

II.3 Both vector and scalar theories

Having seen both scalar-tensor theories and vector-tensor theories, the “both-worlds” option would thus
naturally be to combine them all together. Indeed, There exist at least two such an approach. Tensor-
vector-scalar theories, sometimes abbreviated TeVeS, were introduced to model the so-called modified
Newtonian dynamics, or MOND, theories [23, 24, 25, 26]. More recently, scalar-vector-tensor gravity,
abbreviated SVTG and sometimes called modified gravity, or MOG, was also advanced, where both a
dynamical scalar and a massive vector field are incorporated [113]. While the names can be confusingly
similar, and both approach were introduced to model DM, the theories are different. Both theories also
seem to not match recent observations of gravitational waves (GWs) [95, 114]. We shall also underline
that we do not refer to the scalar-vector-tensor gravity as modified gravity anywhere else in this text, as
“modified gravity” is more commonly used to designate any theory of gravity different from GR.

II.4 Massive and bimetric gravity

Bimetric theories add to GR not a scalar, not a vector, but another tensor, a second metric. The first
well-known such realization may be Rosen’s bimetric theory of gravity [115] whose action reads

1
64πG

∫
ηµνgαβgρσ

(
(∇η)µgαρ(∇η)ν − 1

2(∇η)µgαβ(∇η)νgρσ

)√
−ηd4x (II.9)

where η is a flat background metric and ∇η denotes the corresponding covariant derivative. This theory
accommodates two distinct metrics. While a first gµν accounts describes the gravitational fields (and thus
the geometry of spacetime), a second flat metric ηµν is used for inertial forces. Rosen’s theory incorporates
extremely compact objects, but that do not have any event horizon [43]. However, despite its strong
alignment with GR, the theory died with the Hulse-Taylor binary pulsar. Indeed, the theory predicts
violation of the strong equivalence principle in the presence of strong gravitational events, which did not
survive observational tests [43].

II.4.1 Massive gravity

Although it may not have been Einstein’s intent when he penned GR, his theory can also be viewed as the
unique massless spin-2 particle description [97]. This (hypothetical) particle would be called the graviton.
To go beyond Lovelock’s theorem, a physicist coming from a high-energy background may be tempted
to endow the particle with a mass. Again, one could see here a possible approach to think about GR
non-renormalizability, as we would model GR in a formalism much more akin to quantum field theory.

At first sight, massive gravity encounters two obstacles. Firstly, with five degrees of freedom (DoF)
against two for GR, massive gravity may appear too exotic. The answer to this paradox is the Vainshtein
screening mechanism [116, 117], which enable to effectively hide the extra DoF.

Secondly, naive attempts are plagued the so-called Boulware-Deser ghost [118]. This has been
a longstanding obstacle to the development of a massive gravity. However, there has been a recent
resurgence of interest in such formalism thanks to some breakthroughs. Ghost free massive gravity was
indeed achieved in e.g. de Rham-Gabadadze-Tolley (dRGT) massive gravity [119, 120], sometimes called
new massive gravity (NMG). Lastly, let us mention the name of the more recent minimal massive gravity
and minimal theory of bigravity (MTBG) [121], which exploit the construction principles of minimally
modified gravity that we shall discuss in section II.6.
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II.5 Hořava-Lifshitz gravity

We already mentioned that GR is non-renormalizable in section I.4.1 and why it was an issue. That is
where HL gravity [13] enters. As we shall see, this quantum gravity theory is in principle power-counting
renormalizable, thanks to the presence of higher-order spatial curvature terms. The action and equations
of motion in HL gravity contain only terms up to second order in time derivatives and thus the theory
is free from Ostrogradsky ghosts associated with higher time derivatives. The HL theory was recently
proved to be perturbatively renormalizable [122, 123], and, therefore, has come to be regarded as a valid
UV completion path of quantum gravity.

So how does HL gravity achieves this? The core idea is to treat space and time as physically
different. This is not the same thing as the Hamiltonian and Lagrangian formalisms, where the distinction
between the two concepts introduced in the former is of a mathematical nature. For the HL gravity, the
differentiation intervenes via the so-called anisotropic scaling, or Lifshitz scaling. That is rescaling space
by a factor b will requires to multiply time by a factor bz, i.e.

t → bzt , ~x → b~x , (II.10)

where t is the time coordinate, ~x represents the spatial coordinates vector and z is a number called
dynamical critical exponent. Naturally, shall z be 1, we would respect the assumption of GR and actually
treat time and space on an equal footing.

Otherwise, the foliation of spacetime is here not just a choice of coordinates, but translates a physical
feature of the theory. Therefore, the fundamental symmetries of HL are then foliation-preserving
diffeomorphism i.e. either space-independent time reparametrization (t → t′(t)) or time-dependent spatial
diffeomorphism (x → x′(t,x)). The theory is also assumed to be invariant under spatial parity (x → −x)
and time reflection (t → −t).

In 3 + 1 dimensions, an anisotropic scaling of z = 3 in the UV regime breaks Lorentz symmetry, but
ensures renormalizability, while the usual z = 1 scaling is recovered in the infrared (IR) regime. An
anisotropic scaling of z = 3 also handily provides a mechanism for generating scale-invariant cosmological
perturbations, simultaneously solving the horizon problem [124] without inflation and providing the
so-called anisotropic instanton, which could be an answer to the flatness problem [125]. HL could even
provide mechanism to explain DM [27, 126], which we will hint in section II.5.2.

II.5.1 Framework formulation in d+ 1 dimensions

This distinction between the two concepts of time and space quite naturally invites us to write, similar to
the ADM decomposition of the metric in GR [56], the d+ 1 dimensional metric as

ds2 = −N2dt2 + γij(dxi +N idt)(dxj +N jdt) , (II.11)

where i = 1, . . . , d, N is the lapse function, N i the shift vector, and γij is the d dimensional spatial metric
with positive definite signature (+,+, · · · ). The d+ 1 dimensional action S describing HL gravity is the
sum of a kinetic part LK and a potential part LV [78]; that is

SHL := Md−1
HL
2

∫
dt ddxN

√
g (LK + LV ) , (II.12)

where MHL sets an overall mass scale. If we define the d-dimensional extrinsic curvature Kij similarly as
in eq. (I.15), then the kinetic part LK can be written as

LK = KijKij − λK2 , (II.13)

with λ being a coupling constant, and ∇i the spatial covariant derivative compatible with γij . The indices
i, j run from 1 to d and the inverse of γij is written as γij . Accordingly, we wrote Kij := γikγjlKkl and
K := γijKij .

For simplicity, we will consider the projectable HL gravity: that we assume the lapse function depends
only on time, i.e. N = N(t). However, we shall see later on (section III.1.1) how the subsequent result
can easily be extended to the non-projectable version of the theory, where the lapse depends on both time
and space.

As for the potential part, it shall be built out of any possible renormalizable operators without
parity violating terms, and must be expressed in terms of invariants assembled from the products of the
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d-dimensional Riemann tensor (schematically denoted as Rm below) and its derivatives [127, 128]. For
the highest-order potential part, denoted as Lz, the list of possible terms is{

(Rm)d, (∇Rm)2(Rm)d−3, (∇Rm)4(Rm)d−6, (∇Rm)6(Rm)d−9, · · ·
}
. (II.14)

Now, including lower-dimensions terms as well, we come to write
LV = L0 + L1 + L2 + L3 + · · · + Lz−1 + Lz , (II.15)

where Li denotes a collection of invariant terms with 2i spatial derivatives acted on the spatial metric.
Here, the first two terms L0 + L1 are necessary to recover the d+ 1-dimensional GR in the IR limit, the
third term L2 includes all possible quadratic and spatial curvature terms, and so on. Explicitly, the four
five terms Li read

L0 = −2Λ , (II.16a)
L1 = c2

gR̃ , (II.16b)

L2 = c2,1R̃
2 + c2,2R̃

j
i R̃

i
j + c2,3R̃

ijklR̃ijkl , (II.16c)

L3 = c3,1R̃
3 + c3,2R̃ R̃

j
i R̃

i
j + c3,3R̃

j
i R̃

k
j R̃

i
k + c3,4∇iR̃∇iR̃+ c3,5∇iR̃jk∇iR̃jk + · · · , (II.16d)

L4 = c4,1R̃
4 + c4,2R̃

2R̃j
i R̃

i
j + c4,3R̃ R̃

j
i R̃

k
j R̃

i
k + c4,4R̃

j
i R̃

k
j R̃

l
kR̃

i
l

+ c4,5R̃∇iR̃∇iR̃+ c4,6R̃∇iR̃jk∇iR̃jk + · · · ,
(II.16e)

where R̃, R̃ij and R̃ijkl respectively denote the Ricci scalar, the Ricci tensor and the Riemann tensor, all
in d spatial dimensions, and dots represent terms depending on the Riemann tensor and its derivatives.
The constants Λ and cg are the cosmological constant and the propagation speed of tensor gravitational
waves, and cm,n are constants of appropriate dimensions. All those constants are subject to running under
the renormalization group (RG) flow.

In the UV regime, terms with two time derivatives and those with 2z spatial derivatives are dominant.
If z = d, the theory is renormalizable and if z > d, the theory is super-renormalizable. In the IR regime,
on the other hand, higher derivative terms are subdominant and the theory naturally converges to z = 1.
Moreover, if λ (of eq. (II.13)) goes to 1 in the IR limit, and if it does sufficiently quickly, then GR is
recovered thanks to an analogue of the Vainshtein mechanism [78, 129, 130]. For simplicity, in the rest of
the present chapter, we restrict our considerations to the renormalizable theory, i.e. z = d.

II.5.2 Dark matter as an integration constant
The lack of local Hamiltonian constraint also has a perhaps surprising cosmological implication. It is
possible for DM to appear “naturally” as a integration constant in HL gravity[78, 27, 126].

Indeed, consider, for a start, a flat spacetime described by the FLRW (eq. (I.20)). In GR, Friedmann
equations (eq. (I.27)) give four local constraints, since GR is invariant under four-dimensional diffeomor-
phism. This is not the case in the projectable version of HL gravity anymore, and we can only rely on
three local constraints and one global one. In other words, a local equivalent of eq. (I.27a) does not exist
and eq. (I.27b) —in HL gravity, in a flat spacetime— becomes here

− 3λ− 1
2

(
2Ḣ + 3H2) = 8πGp (II.17)

where λ is the same constant λ appearing in eq. (II.13). The equation of motion for matter reads
ρ̇+ 3H(ρ+ p) = −Q (II.18)

where Q represent some source/well term, which, at low energy, vanishes (Q → 0). From thereon, one can
obtain the following integral

3
2(3λ− 1)H2 = 8πG

(
ρ+ C(t)

a3

)
(II.19)

where we defined
C(t) := C0 +

∫
Q(τ)a(τ)3dτ (II.20)

and C0 is some integration constant.
As we said that Q goes to zero at low energy, this eq. (II.20) simply amounts to some constant

contribution in eq. (II.19). In other words, it can represent some pressureless dust of some sort, thus
effectively mimicking DM. The above discussion was carried out in a flat spacetime, but it can be extended
to a more general low-energy setting. We refer the reader to the review [78] and articles [27, 126] for a
more thorough discussion of this interesting venue.



22 Chapter II. Beyond general relativity

II.6 Minimally modified gravity

When GR was first formulated, it showed promise by solving observational riddles that deprived physicists
of their sleep at the time. Even still, GR continues to produce physically accurate predictions, e.g. the
detection of GWs by LIGO/Virgo [131, 132] and the first-ever photograph of a black hole [48]. However,
albeit a simple yet rigorous, elegant, and symmetrically satisfying theory, it has proven incomplete
on quantum gravity scales as well as some cosmological scales, failing to explain modern observations
consistently. Once more, physicists find themselves in a state of sleep deprivation.

This incentivizes us to look beyond GR. Do we need a completely new theory? Or is it possible to
modify gravity in a way such that it extends down to the quantum scales, and breeds a cosmological
framework that is consistent with observations? The experiments conducted at LIGO/Virgo open up
the possibility of probing strongly gravitating events through GWs, such as black hole binaries and
gravitational collapse. This allows for further validity testing of GR and alternative frameworks.

Several new theories of gravity have already been proposed. In the high-energy limit, supergravity
and HL gravity [13] are examples of candidates for theories of quantum gravity, while massive gravity,
bigravity, and various scalar-tensor theories [119, 133, 134, 135, 31] carry implications for the dark
sector of the universe as well as its accelerated expansion. A common artifact when modifying gravity is
accompanying degrees of freedom. On cosmological scales, these usually give rise to the phenomena we
aim to explain. However, on astrophysical scales, these must be treated in order to avoid contradictions
with well-established experimental data, the appearance of ghosts, and various instabilities [136]. One
common method of dealing with this is to implement various screening mechanisms [137]. Alternatively,
one could consider modifying gravity minimally, i.e. keeping the degrees of freedom at most two. Such a
theory is called a minimally modified gravity (MMG) theory.

It was previously established in ref. [138] that all MMG theories may be divided into two types: type-I
and type-II. The former are theories that are equivalent to GR, but that modify gravity due to non-trivial
matter coupling, while the latter are theories simply different from GR. Formally speaking, this means
type-I MMG have an Einstein frame, while type-II MMG have none (and are thus expressed in the Jordan
frame) [139]. For example, the class of MMGs studied in ref. [140] were, by [141], mostly shown to be
of type-I and the most generic construction of a type-I MMG is elaborated upon in subsection IV.A of
[142]. Another example would be [143]. Instances of type-II MMG theories include the Cuscuton [144],
the minimal theory of massive gravity [145], the previously mentioned MTBG [121], a consistent D → 4
Einstein-Gauss-Bonnet gravity [146], and VCDM [139] (see also [147, 148]).

These theories do not introduce additional local physical degrees of freedom other than those in GR,
while they may contain global modes called shadowy modes (or generalized instantaneous modes) 1 due
to the existence of a preferred frame. Therefore, they easily avoid instabilities and constraints that could
stem from extra propagating degrees of freedom that are common in other modified gravity theories, even
without needing any screening mechanisms.

II.6.1 VCDM: A type-II minimally modified gravity

In chapters V and VI, we will consider the VCDM model, a specific type of MMG theory [139]. According
to the classification introduced in ref. [138], the VCDM is a type-II MMG theory since it has no Einstein
frame [142]. The name “VCDM” comes from promoting the cosmological constant Λ of the standard
ΛCDM model to a function V (ϕ) of a nondynamical, auxiliary field ϕ. Extending its original usage for
the late-time universe, various aspects of the VCDM, including attempts to address tensions in late-time
cosmology [149, 150], black holes [151], stars [152], gravitational collapse [153] and the solution space
including GR solutions [154], have been explored.

The distinctive feature of VCDM is its substitution of the cosmological constant with a potential
function V (φ) of a non-propagating auxiliary scalar field φ in the gravitational action. In order to keep
the theory minimal, constraints are imposed on the field φ, which breaks 4D diffeomorphism invariance
(although 3D spatial diffeomorphism invariance still holds). A thorough comparison with the Cuscuton has
been performed in refs. [142, 154], the latter showing how any solution of VCDM is a solution of Cuscuton,
while the converse need not be true. It was further shown that there exists a subset of solutions in VCDM
that coincide with exact solutions in GR, given specific constraints set on the foliation of spacetime as
well as the defining parameters of VCDM. Some of its implications on cosmology, including the dark
sector and early Universe scenarios, have been explored in refs. [139, 149, 150], while static, spherically
symmetric objects and black holes were more closely studied in refs. [152, 151].

1See [40, 41] for shadowy modes in the context of U-DHOST theories.
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The construction of this class of theory is based on the ADM decomposition (see section I.2) and
is detailed in ref. [139]. For our intents and purposes, the Lagrangian formulation of VCDM is more
convenient and it reads

M2
Pl

∫
dtd3xN

√
γ

(
1
2
[
R3D +KijK

ij −K2 − 2V (φ)
]

−
λi

gf

N
∂iφ− 3

4 λ
2
0 − λ0 (K + φ)

)
, (II.21)

where K ≡ γijKij for Kij as defined in eq. (I.15), R3D is the Ricci scalar associated with γij , the quantities
λi and λ0 are Lagrange multipliers, and ϕ is an auxiliary scalar field. As we mentioned, because of its
non-trivial constraint structure, this theory contains only two propagating DoF; that is the same number
as GR.

Because the theory incorporates an extra scalar field, one may be tempted to classify this theory as a
scalar-tensor one. Nonetheless, in practice, the theory is often seen as in its own class, and we do so here
as well.

II.7 Effective field theories

The last approach we shall mention is using effective field theories. This would perhaps qualify as the
most agnostic way of doing things. The basic idea is to simply write all possible terms that may appear
in the Lagrangian and weight them [155, 156]. However, because of this agnosticism, an effective field
theory is almost always a computationally complicated one.

Yet, advances in this direction can sometimes be directly related to other approaches that may appear
as subcases of their formalism. Effective field theories are also an interesting path to put constraints
and guide the research and development of modified gravity theories. Positivity bounds obtained from
assuming fundamental principles such as unitarity, locality and causality [157, 158].
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Chapter III

The Wheeler-DeWitt equation in
Hořava-Lifshitz gravity

In section I.4, we highlighted major incompatibilities problems facing GR and brought forward possible
paths to modify gravity and thusly answers these concerns. In this chapter, we make concrete use
of one theory —Hořava-Lifshitz gravity—, which attempts to answer to the first listed issue: the non-
renormalizability of GR. We briefly reviewed its construction in section II.5 and we shall now exhibit —for
the first time— the Wheeler-DeWitt equation within its context.

Although there have been numerous works on the early cosmology based on the HL gravity, the early
Universe cannot be treated classically when quantum gravity is dominant, and we have to adopt a quantum
cosmology approach. A common approach, in quantum cosmology, is to separate space and time using
the ADM formalism (section I.2) and work with the Hamiltonian formulation. In this framework, the
Hamiltonian constraint is interpreted as an operator equation, the Wheeler-DeWitt (WDW) equation [159],
Ĥ[γ]Ψ[g] = 0 where Ĥ[γ] is the Hamiltonian operator and Ψ[γ] is called the wave function of the Universe
(see [160, 161] for a review).

Whether this wave function of the Universe gives finite correlation functions of physical perturbations
has a long history of debate among quantum cosmologists. In particular, in recent years, in the Lorentzian
path integral formulation of the no-boundary [162] and tunneling proposals [163] —well-known boundary
conditions of quantum cosmology—, it has been argued that the wave function of small perturbations
around the background may take an inverse Gaussian form and become uncontrollable [164, 165]. In
developments that follow, we adopt instead the so-called DeWitt boundary condition [159], which states
that the wave function of the Universe should vanish at the classical big-bang singularity. In a homogeneous
and isotropic Universe, the DeWitt boundary condition can be concisely expressed as Ψ(a = 0) = 0 and
is known to successfully regularize the behavior of the wave function near the classical singularity. In a
mini-superspace, where the dynamics of the Universe is parameterized only by the scale factor a(t), it is
easy to find an analytic expression for the DeWitt wave function, i.e. a solution to the WDW equation
with the DeWitt boundary condition. However, how to generalize this result beyond this mini-superspace
is not obvious.

Hereafter, we show, using the d+ 1 dimensional framework given in section II.5.1, that the DeWitt
wave function for tensor perturbations exhibits scale invariance near the classical big-bang singularity
and is thus regular. We also exhibit the well-behaved DeWitt wave function for tensor perturbations
numerically. This numerical demonstration for the first time illustrates the regular behavior of the DeWitt
wave function for tensor perturbations in HL gravity all the way from the classical big-bang singularity to
finite values of the scale factor.

In this chapter, we shall derive the DeWitt wave function for a d+ 1 dimensional Universe described by
a homogeneous and isotropic background and tensor perturbations around it (section III.1.1). We further
demonstrate that the wave function for the tensor perturbations is normalizable and scale-invariant on
constant-a hypersurfaces near a = 0, where a is the scale factor (section III.2.1). This result is due to
the anisotropic scaling with z = d. To support these conclusions, numerical results are demonstrated for
d = 3 for concreteness (section III.2.2).

III.1 Framework continuation

In this first section, we build upon the d+ 1 dimensional HL formulated in section II.5.1 to prepare the
ground for perturbatively solving the WDW equation in section III.2. Firstly, we thus expand the tensor
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perturbations in hyper-spherical harmonics and work out the action up to second order in perturbations.
Secondly, we perform the canonical quantization and write the WDW equation.

III.1.1 Cosmological setup
We shall assume the d-dimensional space of the model to be the union of connected pieces Σα (α = 1, . . . ),
each of which we shall call a local d-dimensional Universe. The union of all Σα would thus represent the
Universe in its entirety. In such a configuration, while the lapse function N = N(t) is common for all
pieces, we have a set of a shift vector N i = N i

α(t, x) and a spatial metric gij = gα
ij(t, x), which is different

for different local Universe Σα. In the ADM formalism, the lapse and the shift vectors basically act as
Lagrange multipliers. The variation of the projectable HL action (eq. (II.12)) with respect to N yields the
following Hamiltonian constraint∑

α

∫
Σα

ddxHg⊥ = 0 , where Hg⊥ =: Md−1
HL
2

√
g(LK − LV ) . (III.1)

It is important to stress here that in the projectable version of HL gravity, the Hamiltonian constraint
is not a local equation, but a result integrated over the whole space [78]. In other words, the constraint
expressed by eq. (III.1) constrains the sum of contributions from all Σα to vanish, but each individual
contribution does not have to vanish, i.e.∫

{Σα}
ddxHg⊥ =: Cα . (III.2)

where {Cα} are separation constants satisfying eq. (III.1):
∑

α Cα = 0. Therefore, if we are interested in
one particular local Universe, i.e. an element of {Σα}, the Hamiltonian constraint does not need to be
enforced (eq. (III.2)).

For the non-projectable theory, where the lapse function depends on not only the time coordinate but
also spatial coordinates as N(t, ~x) and the action includes terms constructed from the 3-vector ∂i lnN ,
the Hamiltonian constraint is local, but it basically only gives 2nd-class constraints due to the lack of time
diffeomorphism invariance. However, since the non-projectable theory enjoys the time reparametrization
symmetry, the global Hamiltonian constraint (which is just the spatial integral of the local Hamiltonian
constraint) is 1st-class. Therefore, there is only one global Wheeler-DeWitt equation that is imposed on
physical states. The rest of the local Hamiltonian constraints are all 2nd-class and thus may be solved at
the level of the operator equations. In the presence of more than one local universe, like here, solving
those 2nd-class constraints leads to Cα = Cβ for all α and β. Thus, the global Wheeler-DeWitt equation
implies Cα = 0 for all α, and the subsequent results of the present section can be directly translated to
the non-projectable theory as well, by simply setting Cα = 0.

We further assume that each connected space Σα is a closed universe, and that each closed universe is
described by a closed Friedmann-Lemaître-Robertson-Walker (FLRW) metric and perturbations around
it. Therefore, we can write

N i
α = 0 , gα

ij = a2
α(t)

[
Ωij(x) + hα

ij(t ,x)
]
, (III.3)

where Ωij is the metric of the unit d-sphere with the curvature constant set to 1, i.e. the Riemann
curvature of Ωij is simply δi

kδ
j
l − δi

lδ
j
k. Given this definition, the spatial indices i, j, . . . are thus raised and

lowered by Ωij and Ωij respectively. The tensor perturbation hα
ij must satisfy the transverse and traceless

condition, i.e. Ωijhα
ij = ΩkiDkh

α
ij = 0, where Di is the spatial covariant derivative compatible with Ωij .

Furthermore, the perturbation hα
ij can be expanded in terms of the hyper-spherical harmonics [166] as

hα
ij(t, xi) =

∑
snlm

hαs
nlm(t)Qsnlm

ij , (III.4)

where s = ± is the polarization label and the triplet (n, l,m) is comprised within the ranges n ≥ 3,
l ∈ [0, n− 1] and m ∈ [−l, l]. The tensor eigenfunctions Qsnlm

ij of the Laplacian operator D2[Ω] on the
unit d-sphere [167] satisfy

D2[Ω]Qsnlm
ij = −

[
n2 + (d− 3)n− d

]
Qsnlm

ij , (III.5)

and are normalized via the following relation∫
dd

√
ΩΩikΩjlQsnlm

ij Qs′n′l′m′

kl = Vd δ
ss′
δnn′

δll′
δmm′

. (III.6)
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With these assumptions and the harmonic expansion (III.4), the d + 1-dimensional HL action is
expanded up to the second order in perturbations as S = S(0) + S(2) + O(h3), where

S(0) = V
∑

α

∫
dt
(
Nad

α

)(d(1 − dλ)
2

(
ȧα

Naα

)2
+ αd

a2d
α

· · · + α3

a6
α

+ α2

a4
α

+ c2
g
d(d− 1)

2a2
α

− Λ
)
, (III.7a)

S(2) = V
∑

α

∫
dt
(
Nad−2

α

) ∑
snlm

(
1
8

(aα

N
ḣαs

nlm

)2
+
(
β1 + β2

a2
α

+ β3

a4
α

· · · + βd

a2d−2
α

)
(hαs

nlm)2
)
. (III.7b)

Here, αi and βi are constants that are linear combinations of coupling constants in the action, V = Md−1
HL Vd

and Vd =
∫

ddx
√

Ω is the volume of the unit d-sphere. For the tensor perturbations of each connected
space Σα, in the following for simplicity we restrict our attention to the dynamics of only one mode
hαs

nlm with (s, n, l,m) = (sα, nα, lα,mα), which we denote by hα. With this reduction, the system is thus
described by {aα, hα}.

III.1.2 Canonical quantization

Now, we turn attention to quantum cosmology, equipped with HL gravity and assuming that the dynamics
of the homogeneous and isotropic Universe (including any tensor perturbations) is governed by the wave
function of the WDW equation. From the HL action for perturbations (eq. (III.7)), we can compute the
corresponding Hamiltonian and obtain

H :=
∑
α=1

(
Πaα

ȧα + Πhα
ḣα

)
− L (III.8a)

=
∑
α=1

V
(

N

ad−2
α

)(
− 1

2γΠ2
aα

− αd

a2
α

· · · − α3

a8−2d
α

− α2

a6−2d
α

− c2
g
d(d− 1)
2a4−2d

α

+ Λ
a2−2d

α

+ 2
V2a2

α

Π2
hα

−
(

β1

a4−2d
α

+ β2

a6−2d
α

+ β3

a8−2d
α

· · · + βd

a2
α

)
h2

α

)
,

(III.8b)

where L is defined by S(0) + S(2) =:
∫

dtL, γ := d (dλ− 1) V2 and the canonical momenta Πaα
and Πhα

conjugate respectively to aα and hα are given by

Πaα
:= ∂L

∂ȧα
= −d (dλ− 1) V a

d−2
α

N
ȧα , Πhα

:= ∂L
∂ḣα

= V
4
ad

α

N
ḣα . (III.9)

We can now carry out the canonical quantization of HL gravity. This is done by transforming
the canonical variables of Hamiltonian mechanics into Hermitian operators that satisfy the canonical
commutation relations. The algebra generated by commutative quantities (c-numbers) becomes an algebra
generated by non-commutative quantities (q-numbers) in quantum mechanics. Therefore, an ambiguity
in the operator ordering here arises. In performing the canonical quantization, the canonical conjugate
momenta are transformed into Hermitian operators, i.e.

Πaα
7→ −i ∂

∂aα

Πhα 7→ −i ∂

∂hα

=⇒
Π2

aα
= − 1

ap
α

∂

∂aα

(
ap

α

∂

∂aα

)
Π2

hα
= − ∂2

∂h2
α

, (III.10)

where we should take into account the operator ordering ambiguity of aα [162]. In quantum cosmology,
there exists two well-known orderings: the Laplace-Beltrami operator ordering (p = 1) and the Vilenkin
ordering (p = −1) [168].

Once the canonical quantization of the Hamiltonian of eq. (III.8) is realized, we obtain the WDW
equation

∑
α

1
ad−2

α

(
1

2γ

(
∂2

∂a2
α

+ p

aα

∂

∂aα

)
− αd

a2
α

− · · · − α2

a6−2d
α

− c2
g
d(d− 1)
2a4−2d

α

+ Λ
a2−2d

α

− 2
V2a2

α

∂2

∂h2
α

−
(

β1

a4−2d
α

+ β2

a6−2d
α

+ · · · + βd

a2
α

)
h2

α

)
Ψ ({aα, hα}) = 0 ,

(III.11)
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where Ψ ({aα, hα}) is the wave function of the entire Universe, as mentioned in introduction. By separating
the variables, one can easily obtain special solutions of the form Ψ =

∏
α Ψα(aα, hα;Cα), where {Cα} are

the separation constants satisfying
∑

α Cα = 0 (eq. (III.2)). A general solution can be then written as a
linear combination of these special solutions, explicitly

Ψ ({aα, hα}) =
∫ (∏

β

dCβ

)
A{Cβ}

∏
α

Ψα (aα, hα;Cα) . (III.12)

where each Ψα (aα, hα;Cα) represents the wave function of one local Universe Σα.
For notational convenience, we now redefine the variables and constants in eq. (III.11) as well as the

separation constant Cα.

h = hα

2√
γ

; C = γCα ;

gd = γαd , · · · , g2 = γα2 , g1 =
γc2

gd(d− 1)
2 , g0 = γΛ ;

fd = −8γ2βd , · · · , f2 = −8γ2β2 , f1 = −8γ2β1 ;

Notice how the cosmological constant Λ is now incorporated into the g0 coefficient. The WDW equation
for each local universe can then be equivalently re-expressed as(

1
2

(
∂2

∂a2 + p

a

∂

∂a

)
+
(

Cad−2 − gd

a2 − · · · − g2

a6−2d
− g1

a4−2d
+ g0

a2−2d

)
− 1

2V2a2
∂2

∂h2 + h2

2

(
f1

a4−2d
+ f2

a6−2d
+ · · · + fd

a2

))
Ψ(a, h) = 0 , (III.13)

where we have dropped the index α and abbreviated Ψα (aα, hα;Cα) as Ψ(a, h).

III.2 DeWitt wave function with tensor perturbations

In this section, we compute the d+ 1-dimensional DeWitt wave function for a universe represented by
a homogeneous and isotropic background and tensor perturbations around it. This extends the results
of [169] to d + 1 dimensions. In particular we show that the DeWitt wave function near the classical
big-bang singularity features scale-invariant tensor perturbations due to the anisotropic scaling with z = d.
A brief discussion of the case without tensor perturbations can be consulted in appendix B. Notice that
we consider d ≥ 3 hereafter, as in the d = 1 and d = 2 cases, talking of tensor perturbations is irrelevant.

III.2.1 Analytical estimation
In order to obtain a solution of the WDW equation (eq. (III.13)) that satisfies the DeWitt boundary
condition —Ψ(0, h) = 0 for all h—, we adopt the following expansion around a = 0,

Ψ(a, h) = ac
∞∑

i=0
Fi(h) ai , (III.14)

where F0(h) is not identically zero and c is a positive constant to be determined. For Ψ(a, h) to be
normalizable on constant-a hypersurfaces, we also impose the following condition on Ψ(a, h)

lim
h→±∞

Fi(h) = 0 . (III.15)

If this condition (eq. (III.15)) is not satisfied, the correlation functions such as the power spectrum of h on
constant-a hypersurfaces would diverge. In order to determine the positive constant c, we take advantage
of the this requirement, i.e. F0(h) is a non-trivial smooth function satisfying the condition of eq. (III.15)
(with i = 0).

In GR, it was previously demonstrated that there is no parameter set for which F0(h) can satisfy the
condition of eq. (III.15) (with i = 0) and the tensor perturbations are not smoothly suppressed [169]. In
other words, no DeWitt wave function is normalizable on constant-a hypersurfaces around the classical
big-bang singularity, unless higher spatial derivative terms are present, as we shall observe in what follows.
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Therefore, let us turn our attention back to HL gravity. By substituting the small-a expansion
(eq. (III.14)) into the WDW equation (eq. (III.13)), and solving it order by order, we can explicitly
determine the functions Fi. For i = 0, 1, 2, we find the following three equations

∂2
hF0 − V2 [fdh

2 + (c+ p− 1)c− 2gd

]
F0 = 0 , (III.16a)

∂2
hF1 − V2 [fdh

2 + (c+ p)(c+ 1) − 2gd

]
F1 = 0 , (III.16b)

∂2
hF2 − V2 [fdh

2 + (c+ p+ 1)(c+ 2) − 2gd

]
F2 = V2(fd−1h

2 − 2gd−1)F0 . (III.16c)

As the separation constant C starts to appear from the order i = d onwards of the expansion (see eq. (III.13)),
we remark it is absent from these first three equations.

Let us first consider the first relation, i.e. eq. (III.16a). By requiring eq. (III.15) (with i = 0) and the
continuity of F0(h) at h = 0, we obtain

F0(h) =


A√
h
W 1

4 +N,1/4(w) , (h > 0)

− A√
−h
W 1

4 +N,1/4(w) , (h < 0) , (III.17)

where Wµ,ν(w) is the Whittaker function, A is some constant, and w and N are defined by

w := V
√
fdh

2 ,
1
4 +N := − V

4
√
fd

[
c2(p− 1)c− 2gd

]
, (III.18)

which, in turn, constrains fd to be strictly positive. We further impose for ∂hF0(h) to be continuous as
well at h = 0, and find

lim
h→±0

∂hΨ(a, h) = ∓2A
√
πf

3/8
d V 3/4

Γ (N) . (III.19)

Thus, to have continuity at h = 0, we need N to be some non-negative integer. Therefore, imposing the
latter, the definition of N (eq. (III.18)) becomes a constraint on c, at each value N .

For eq. (III.16b), we again require eq. (III.15) (with i = 1) and the continuity of both F1(h) and ∂hF1(h)
at h = 0. However, the latter condition, similarly to what we just did, tells us F1 would be non-null only
for non-negative integer values of −(2c + p)V f−1/2

d 4−1. As the freedom offered by c has already been
used up and refraining from fine-tuning, we therefore conclude F1(h) ≡ 0 as the next-to-leading order
solution in a.

However, at the next-to-next-to-leading order, F2 cannot be identically zero. Once F0(h) is given, F2
is determined by eqs. (III.15) and (III.16c) (with i = 2). While the computation is straightforward, the
explicit expression for F2 is fairly long. Hence, we show only its structure, for N = 0, 1, 2, without explicit
expressions. Using the leading-order solution for different values of N , i.e.

F0(h) =


A0 exp

(
− 1

2w
)
, (N = 0)

(1 − 2w)A1 exp
(
− 1

2w
)
, (N = 1)(

1 − 4w + 4
3w

2)A2 exp
(
− 1

2w
)
, (N = 2)

, (III.20)

where AN (N = 0, 1, 2) is some integration constant, the solution for F2 takes the form

F2(h) =
N+1∑
Ñ=0

aN,Ñw
ÑAN exp

(
−1

2w
)
. (III.21)

Here, aN,Ñ (Ñ = 0, · · · , N + 1) are constant coefficients determined by the parameters of the WDW
equation (eq. (III.13)).

If N = 0, we obtain the ground state of the DeWitt wave function, which, in the a → +0 limit, can be
expressed as

Ψ(a, h) = A(V
√
fd)1/4ac

(
e−

V
√

fdh2

2 + O(a2)
)
. (III.22)

Since fd ∝ n2d for large n, the corresponding correlation function for the tensor perturbations then reads

lim
a→+0

〈h2〉 = lim
a→+0

∫
dh h2 |Ψ(a, h)|2∫
dh |Ψ(a, h)|2

= 1
2V

√
fd

∝ n−d , for large n and N = 0 . (III.23)
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This clearly shows the scale-invariance and the finiteness of the power spectrum of h for fd > 0 (see [169]
for more details in the d = 3 case). Also in the general case of eq. (III.17) with general N (≥ 0), the power
spectrum and other correlation functions of h are scale-invariant and finite in the UV limit (a → +0) as
far as fd > 0. In particular,

M3d−3
HL lim

a→+0
nd〈h2〉 = O(1) × Md−1 , for large n and any N ≥ 0 , (III.24)

where M is the mass scale such that βd ∼ n2d/M2d−2 (and thus V
√
fd ∼ ndM3d−3

HL /Md−1) for large n.
This is completely consistent with the result of ref. [124].

We have seen that eq. (III.18) and eqs. (III.16c) and (III.15) (with i = 0) requires fd > 0. Therefore, if
fd ≤ 0 then there is no non-trivial smooth solution satisfying eq. (III.15) (with i = 0). In particular, this is
the case in the absence of z = d terms (for which fd = 0). This no-go result applies to many gravitational
theories (including GR) for which the action does not contain terms with 2d spatial derivatives.

III.2.2 Numerical solution
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Figure III.1: Numerical integration result for the parameter set f2 = 0, C = 0, g0 = 0. For any N , while
the amplitude of Ψ here exponentially increases (central column) with a, the initial shape is conserved
unchanged (right column).

Numerically integrating the WDW equation (eq. (III.13)) is fairly straightforward. The equation is
hyperbolic, and one can use the expansion around a = 0 described by eq. (III.14) as the initial condition
on a constant-a hypersurface, provided that the initial value of a is sufficiently small. The initial condition
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Figure III.2: Numerical integration result for the parameter set f2 = 1, C = 0, g0 = 0. While overall
similar, unlike the case f2 = C = g0 = 0 of fig. III.1, the shape of the wave function evolves significantly
through the “evolution” towards larger a, as the rightmost columns exhibits. Essentially, the amplitude’s
growth is slowed down the further it is from h = 0 (central and right columns) as f2 actually enables a
term in h2 in eq. (III.26).

is uniquely specified by the non-negative integer N up to an overall amplitude. For concreteness, we fix
the overall amplitude by

lim
a→+0

a−cΨ(a, 0) = 1 . (III.25)

This translates into AN = 1 for all N = 0, 1, 2.
Concretely, in the numerical study, we shall only consider the 3 + 1 dimensional case, employ1 a second-

order finite difference scheme for derivatives with respect to h, and adopt a fourth order Runge-Kutta
method to evolve the system with respect to a. To this end, the “space” h is sampled on a grid of 40 000
points spaced by ∆h = 1 · 10−4. As for the “time”, the range in a is discretized into 106 steps, each of
size ∆a = 10−1 · ∆h = 1 · 10−5. We start from the small initial “time” a = a0 by using the solution
obtained in section III.2.1 —the expansion of eq. (III.14) with eqs. (III.20) and (III.21)—, which is valid
for sufficiently small a0. Here, we choose a0 = 10−1 · ∆a = 1 · 10−6.

For simplicity we set p = 1, g3 = 2, f3 = 1, and g2, g1, f1 and f0 to 0 (with d = 3) in all simulations
shown hereafter. Then, the Wheeler-DeWitt eq. (III.13) is specified by the remaining parameters f2, C

1A similar code was previously used in ref. [52]
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Figure III.3: Numerical integration result for the parameter set f2 = 1, C = 10, g0 = 0. Now that C is
set to 10, a term in a now enters eq. (III.26) and will quickly dominate over the previous −a−2 term. In
so doing, it brings the system in a regime of damped oscillation (central column). The effect of f2 (see
fig. III.2) remains, though now slightly muted (right column).

(dark matter) and g0 (dark energy). It thus comes down to the compact expression(
1
2

(
∂2

∂a2 + 1
a

∂

∂a

)
+
[
Ca− 2

a2 + g0a
4 +

(
f2 + 1

a2

)
h2

2

]
− 1

2V2a2
∂2

∂h2

)
Ψ(a, h) = 0 . (III.26)

From thereon, we show the numerical results in figs. III.1 to III.4, and make some comments.
In the four parameter sets exhibited here, we turn on one after the other each of the three parameters we

left free, i.e. f2, C and g0. Accordingly, we first set f0 = C = g0 = 0 and there are only two non-derivative
terms, both of which are proportional to a−2. The result is portrayed in fig. III.1. The system in this case
exhibits the exact z = 3 anisotropic scaling. The initial input here simply exponentially grows, without its
form being altered. This is easily understood by observing the separability of eq. (III.26) with respect to
h and a. For f2 = 1, on the other hand, a term ∝ h2 · a0 enters and, as seen in fig. III.2, visibly modifies
the shape of the wave function.

In the next and last two figures, figs. III.3 and III.4, as we set C, and then g0 to 10 (i.e. introducing
DM respectively DE), we enable, in order, terms ∝ a and ∝ a4, in eq. (III.26). They will drive the system
into a damped oscillatory regime; g0a

4 more strongly so than Ca. As these come to dominate, the effects
of f2h

2 and h2/a2, while remaining, are proportionately muted.
Overall, the afore-described behaviors are as expected from eq. (III.26) (or eq. (III.13)). Most

importantly, the wave function is obviously well-defined and normalizable on constant-a hypersurfaces,
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Figure III.4: Numerical integration result for the parameter set f2 = 1, C = 10, g0 = 10. The g0
coefficient now brings a a4 term, that will eventually overcome the previous a and −a−2 contributions,
pushing the system into an even more strongly damped oscillation regime (central column). The influence
of f2 remains visible, though now barely visible (right column).

all the way from the classical big-bang singularity to finite values of a. This is precisely the “desired”
behavior.

III.3 Summary

In this chapter, we have investigated the behavior of a d + 1-dimensional Universe near the classical
big-bang singularity based on the Wheeler-DeWitt equation and the DeWitt boundary condition, which
amounts to a vanishing wave function of the Universe at the classical singularity. For concreteness we
have studied a homogeneous and isotropic background and tensor perturbations around it described
respectively by the scale factor a and the amplitude of tensor perturbations h as a simple model of the
Universe.

In general relativity, the DeWitt wave function for h on constant-a hypersurfaces is not normalizable
near a = 0, meaning that the perturbative expansion breaks down. On the contrary, in Hořava-Lifshitz
gravity the higher dimensional operators required by the perturbative renormalizability of the theory
render the wave function of the tensor perturbations normalizable, all the way from the classical big-bang
singularity at a = 0 to finite values of a. The DeWitt wave function for h on constant-a hypersurfaces
is of a Gaussian shape for the ground state and a Gaussian multiplied by an even polynomial of h for
excited states. We have analytically proved these behaviors of the wave function near a = 0 for any d,
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and numerically demonstrated them in a finite interval from a = 0 to a finite value of a, for different
parameter values, including the corresponding the DM and DE constants.

The results exhibited in this chapter provide strong evidence for close connections between the regularity
of the DeWitt wave function of the Universe and the renormalizability of HL gravity.



Chapter IV

Relaxing the cosmological constant

Referring back to the three shortcomings of GR that we listed in section I.4, HL gravity may answer to
two. The last one is the CC problem, which is behind the mystery of the DE. Many different paths have
been investigated to solve the CC problem, and this is not the first time some CC relaxation processes, as
this chapter presents, have been considered. For example, one could consider to have some relaxation that
unfolds during an unconventional inflationary phase [170], to work within the framework of some bouncing
Universe scenario by dynamically decreasing the value of CC during a contracting phase [171], or to forbid
a non-vanishing 4d curvature of a maximally symmetric 3-brane world-volume embedded in 5d spacetime
[172]). Ideally, one’s solution should eventually be linked to some observational signatures (e.g. [173]).

The approach we are about to detail hereafter does not yet expose itself to this last test and rather
provides a proof of concept at this stage. It remains within the realm of effective field theories and should
still be adaptable for further considerations.

References [54, 53] proposed a model that dynamically relaxes the value of the CC to a tiny one
thanks to a scalar field that forever rolls down its potential 1. The kinetic term of this field is modulated
by a negative power of the Ricci scalar, and its apparent divergence in the limit of vanishing curvature
is dynamically prohibited by the classical motion of the scalar background. The relaxation mechanism
operates as the potential of the scalar field dominates over the kinetic term in the same limit, and yet the
dynamics results in a vanishing potential, which is the future attractor of the system. Importantly, the
potential can include not only that of the scalar itself but also all the other (constant) energy contents,
that is,

Vtotal = Vscalar alone + Vc.c. + Vzero point + Vall others , (IV.1)

and what approaches to zero is Vtotal; in a way, the scalar field dynamically fixes its potential value
Vscalar alone only to cancel the CC, the zero point energy and all the other (constant) contributions.
Therefore even if large bare cosmological constant and radiative zero point energy were present, the
effective vacuum energy would go as Λeff ≈ Vtotal/M

2
Pl → 0 after a long time, and the spacetime geometry

would anyway approach a flat one.
This relaxation mechanism partially holds a spirit similar to what Weinberg called “adjustment

mechanism” in ref. [83]. The related no-go theorem [83, 174, 85] is evaded in the current mechanism thanks
to the fact that, while the theorem only considers the physics at a dynamical equilibrium and thus assumes
translational invariance, an essential ingredient of the mechanism considered here is the non-vanishing
canonical momentum of the scalar field, rendering the mechanism considered here an exceptional case to
the theorem.

However, while this process alone is a powerful mechanism to resolve the CC problem, it also effectively
empties the Universe as an inevitable consequence, by eventually diluting everything away: the total
energy in the Universe — which includes any radiative corrections — is constrained to asymptotically
converge to a null value. To connect this empty space to our present Universe, the main purpose of
this work is to implement a reheating phase after the c.c relaxation so that the standard hot big bang
scenario is revived. To this aim, we not only construct a stable model that achieves the scenario, but also
demonstrate it by exhibiting a concrete realization along a numerical verification.

For the reheating phase, we rely in part on the Lagrangian of the Horndeski theory [33, 31, 32], as using
the latter has been shown to allow to violate the NEC in a stable manner [73, 175]. The gravitating energy
elevated by the NEC violation is then transferred to another sector that eventually reheats the Universe.

1This scalar field corresponds to ϕ1 in later sections, where the subscript number is introduced to distinguish among the
three scalar fields that are involved in the different processes in our scenario.

37
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Figure IV.1: Schematic illustration of the cosmic evolution according to the scenario described in this
chapter. The dashed curve on the left corresponds to the initial phase of the CC relaxation, and the solid
curve on the right depicts the NEC violation and the reheating dynamics. The Universe is eventually filled
with radiation and recovers the standard cosmic history. This figure is highly schematic and not to scale.

In order not to disrupt the CC relaxation mechanism, which is always in action, the NEC-violating and
reheating phases must occur for sufficiently short time compared to the time scale of the relaxation.
Moreover, we assume that these phases take place periodically, and our observed Universe can be the
result from any one of those recurring occurrences. In fine, the dynamical cosmological constant relaxation
described by our model would thus allow us to avoid invoking the anthropic principle to solve the CC
problem, as described in section I.4.2+.

This chapter introduces a new model. To this aim, we start by describing the overall cosmic history
model subsequently built aims to achieve. We also take this occasion to review the cosmological relaxation
process it employs (section IV.1). The NEC-violating and the reheating sectors are then assessed from a
theoretical perspective by considering their linear perturbations, explicitly providing the conditions under
which we avoid having any ghost or gradient instability against the background dynamics of the desired
behavior (section IV.2). We shall then focus on the reheating process, and the model and all its composing
functions are now either explicitly chosen or deduced (section IV.3). Lastly, we add a numerical approach
to explicitly and qualitatively witness the whole reheating process unfold (section IV.4), before concluding
this chapter (section IV.5).

IV.1 Overall picture of the cosmic history

The vacuum energy that drives the accelerated cosmic expansion at the present time is, whatever its
true nature is, observed to have an extremely small value, and this smallness demands an explanation.
We explore a dynamical solution to this issue, and in this regard, we employ the mechanism originally
proposed in refs. [54, 53]. However this mechanism alone leads to an empty universe, that is, it not only
reduces the contribution from the CC but also dilutes all other contents of the Universe. In order to
incorporate an additional process to eventually populate the Universe with energetic radiation, a couple
of potential candidates have been sketched in ref. [176]. Our mechanism shares some aspects with their
“fast violation” section but extends it further. We later provide a concrete realization of the reheating
(section IV.3) and show with numerical analyses that the scenario can indeed be achieved without any
instability (section IV.4).

To this end, the mechanism we propose incorporates three essential phases of cosmic history, namely
and in order:

1. Cosmological constant relaxation. A large valued CC, together with all the other matter
content, is dynamically relaxed to the small present value (section IV.1.1 for summary and [53, 54]
for details).

2. Null energy condition violation. The Universe is energetically revived by accommodating a
phase violating the NEC (section IV.1.2 for summary and section IV.3 for details).

3. Reheating. The Universe reheats and connects this process to the standard cosmological picture
(section IV.1.2 for summary and section IV.3 for details).
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This overall picture is schematically illustrated in fig. IV.1. After the relaxation, the NEC violation
re-energizes the Universe, which is the first rise of H in the figure; after some time, H abruptly drops to
some non-zero value, corresponding to the end of the NEC-violating phase during which a fraction of
energy is transferred to the reheating sector. Eventually this sector decays to radiation, recovering the
standard big bang cosmic history. We assume that the potential for the NEC-violating sector is periodic
so that the sequence described above (the CC relaxation, NEC violation and reheating) repeats many
times until the CC actually goes down to the observed tiny value.

The model setup can thus be described by the action

S =
∫

d4x
√

−g
(

LE.H.[gµν ] + Lc.c. relax[ϕ1, gµν ] + LNECV+reh[ϕ2, ϕ3, gµν ]
)
, (IV.2)

where LE.H., Lc.c. relax and LNECV+reh describe the Einstein-Hilbert part, the CC relaxation mechanism,
and the combined sector of NEC violation and reheating, respectively. The fields ϕ1, ϕ2 and ϕ3 are
responsible for the CC relaxation, NEC violation and reheating, respectively, and g denotes the determinant
of the spacetime metric gij . Let us note that, as we observe here and concretely show in section IV.3, the
reheating sector is nontrivially coupled to the NEC-violating sector, and thus they are not separable at
the level of Lagrangian. In the following subsections, we summarize the gist of the CC relaxation, NEC
violation and reheating sectors individually and the requirements to achieve the desired history of the
Universe.

IV.1.1 Cosmological constant relaxation

We follow [54, 53] and introduce a model that drives an initially large CC to the tiny value observed
today, and this subsection serves as a brief review of its mechanism. This relaxation mechanism is driven
by a scalar field ϕ1 that is non-minimally coupled to gravity, and the corresponding Lagrangian Lc.c. relax
together with the Einstein-Hilbert part LE.H. introduced in eq. (IV.2) reads

L =

gravity︷ ︸︸ ︷
M2

Pl
2 R︸ ︷︷ ︸

LE.H.

M2
Pl

2 R+ αR2 + X1

f(R) − V1(ϕ1)︸ ︷︷ ︸
Lc.c. relax

, (IV.3)

where we hereafter denote the kinetic terms of scalar fields ϕi (i = 1, 2, 3) by

Xi ≡ −1
2 g

µν∂µϕi∂νϕi , (IV.4)

and where R is the Ricci scalar associated with the spacetime metric gµν , V1 the potential of ϕ1, and MPl
and α are the (normalized) reduced Planck mass and a dimensionless constant, respectively. The curvature
quadratic term αR2 with e.g. α = O(1) (> 0) is needed to tame the instability that would otherwise arise
during the course of relaxation. The term is purely gravitational and thus could in principle be combined
with the Einstein-Hilbert term LE.H. to together compose a gravitational action. Nevertheless, since it
only affects the stability during the relaxation and becomes negligible at later stages of our scenario, we
simply include it in Lc.c. relax as expressed in eq. (IV.3) 2. Note that any non-zero CC term, including the
vacuum energy originated from the quantum fluctuations of matter fields, can be absorbed into V1(ϕ1)
without loss of generality.

A crucial part for the mechanism to work is that the coefficient of the kinetic term of ϕ1 diverges in
the limit of vanishing R. To this end, we demand that f vanishes at R = 0 as

f(R) ≈
(
R2

M4
Pl

)m

, (IV.5)

2Other higher-order terms of curvature invariants such as RµνRµν and RµνρσRµνρσ should arise due to quantum
corrections. We can always rearrange a linear combination of R2, RµνRµν and RµνρσRµνρσ into another one of R2, the
Gauss-Bonnet term and the Weyl tensor squared. Since the Gauss-Bonnet term does not contribute to equations of motion,
and the Weyl squared term is responsible for the ghost modes in UV, we call the coefficient of R2 in this linear combination
as α appearing in eq. (IV.3). Unless fine-tuned, the coefficients of those higher curvature terms are expected to be of O(1) in
the units of MPl, and the would-be ghost modes associated with them have masses of order MPl. Therefore the higher-order
terms are irrelevant at energies and momenta sufficiently below the Planck scale, with which we are concerned, and the
stability only requires α > 0 in IR.
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where m is some positive number and we assume m > 3/2 for the reason that we explain later in
this subsection. The constant M4

Pl is introduced to make the function dimensionless, and the overall
normalization of f can always be absorbed by redefining X1. Since the kinetic term depends nonlinearly
on the curvature, the system described by the Lagrangian (IV.3) contains two scalar degrees of freedom.
It is straightforward to show that both scalar degrees satisfy the no-ghost condition and that the two
speeds of propagation are both unity in the low-energy regime 3.

Starting with the kinetic Lagrangian of the assumed form X1/f(R), quantum corrections may generate
a more general kinetic Lagrangian consisting of terms of the form Xqi

1 /(R2/M4
Pl)mi (i = 1, 2, · · · ). In

this case, what controls the CC relaxation is the most singular-looking term. Fortunately, the more
singular-looking the dominant term is, the more robust the CC relaxation mechanism is. Therefore, less
singular-looking terms generated by quantum corrections do not spoil the CC relaxation mechanism, while
more singular-looking terms generated by quantum correction simply strengthen it. See [54] for some
details. In the rest of the present chapter, for simplicity, we consider the simplest kinetic Lagrangian
consisting of a term with qi = 1 and mi = m > 3/2.

Another important ingredient is that the potential V1(ϕ1) crosses zero at some finite value of ϕ1.
Starting the evolution from a positive value of V1, ϕ1 rolls down the potential and approaches 0, around
which V1 can be well approximated by a linear form

V1(ϕ1) ' cM3
Pl (ϕ1 − v) , (IV.6)

where v is the value of ϕ1 at which the potential would cross 0 and c is some dimensionless constant.
Then, on the flat Friedmann-Lemaître-Robertson-Walker (FLRW) background, the equation of motion for
the homogeneous background of ϕ1, denoted by ϕ̄1, takes the form

∂Π1

∂N
+ (3 + ε) Π1 + c = 0 , (IV.7)

where H is the Hubble expansion rate, N ≡ ln a is the number of e-folds with a being the scale factor,
Π1 ≡ H2∂N ϕ̄1/(M3

Plf), and ε ≡ −∂NH/H. Eq. (IV.7) makes it evident that, for a negligible time
variation of ε, the stationary solution is given by Π1 ' −c (3 + ε)−1.

At late time the first Friedmann equation around the stationary solution takes the approximate form,
that is,

V1 ' 3M2
PlH

2 . (IV.8)
This equation, together with the aforementioned result, leads to the time variation of V1 as

∂

∂N

(
2V1

M4
Pl

)2−2m

' 24 c2 (m− 1) (2 − ε)2m

3 + ε
' 22m+3 c2 (m− 1) , (IV.9)

where in the last equality the fact that ε is small during the relaxation phase is used. This result shows
that, when V1 approaches to 0, the field ϕ̄1 in fact stalls, and V1 never crosses 0, namely

V1 → +0 as N → +∞ (IV.10)

is the asymptotic behavior, provided that m > 3/2 as we have assumed. In fact, the behavior (IV.10)
only requires m > 1 besides the smallness of ε. However, if the scalar kinetic term X1/f in eq. (IV.3)
dominated over the αR2 term at low energy (H � MPl), the dynamics of the system would destabilize
the stationary solution above [54]. To prevent this, we demand X1/f < αR2 at low energy, which can be
achieved for m > 3/2 and is self-consistent with the solution obtained above.

The essence of the mechanism to relax a large CC is as described above. It is worth stressing that
the most important ingredient is the coefficient of X1 in eq. (IV.3) that has a singular-looking form in
the limit R → 0, and this mechanism is effective as long as the most singular term among many other
possible ones has the behavior described here. While quantum corrections should produce additional
regular operators in the action, the motion of ϕ̄1 nonetheless drives the total potential to the vanishing
value. On the other hand, one can show that quantum corrections do not generate a potential that is
singular at R = 0. Singular-looking kinetic terms of the form Xqi

1 /(R/M2
Pl)2mi (i = 1, 2, · · · ) can be

generated by quantum correction but this does not cause a problem. Actually, the more singular-looking
the radiatively-corrected kinetic term is, the more robust the CC relaxation mechanism becomes.

Now, we have achieved a tiny value of the CC/vacuum energy after a sufficiently long time. However,
by that same achievement, since, under the condition m > 3/2, the potential V1 approaches zero more
slowly than matter and radiation, the Universe would be empty after the mechanism under consideration
takes place. The Universe thus needs to be “reheated” once the CC is driven to a small value. This is the
subject of the subsequent subsections, and is the main purpose of our present study.

3See e.g. section V.A.4 of [177].
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Figure IV.2: Schematic illustration for the Hubble history, with H the Hubble expansion rate. This figure
is simplified in that it only extracts the behavior of the target NEC violation, with all the other sectors,
including the CC relaxation and reheating sector, turned off.

IV.1.2 Null energy condition violation and reheating
After the mechanism in section IV.1.1 operates, not only the CC and vacuum energy but also all other
energy contents decrease to a negligible value. In order to connect to the known cosmic thermal history,
“reheating” thus needs to subsequently take place to re-populate the Universe with energetic radiation.
The NEC is necessarily violated to achieve this scenario, in order for the energy required for reheating to
be temporarily available. Another field that mediates the reheating process is destabilized through its
coupling to the NEC-violating sector, and its acquired energy is finally transferred to radiation.

In order to stably violate the NEC we employ a subclass of the Horndeski theory [31, 32, 33], previously
recalled in section II.1.3, whose scalar field is now denoted by ϕ2. The reheating field ϕ3 couples to this
sector, and we introduce direct couplings besides the gravitational one for efficient energy transfer. A
minimal setup that satisfies these requirements adopts the following form of the Lagrangian in eq. (VI.2),

LNECV+reh = K(ϕ2, X2, ϕ3) −G3(ϕ2, X2, ϕ3)�ϕ2 + P (ϕ3, X3) , (IV.11)

where ϕ2 invokes the NEC violation. Here K and G3 are some functions of ϕ2, X2 and ϕ3, while P is a
function of ϕ3 and X3 only. The reheating field ϕ3 is implicitly coupled to radiation. For simplicity we
assume that LNECV+reh is in the Einstein frame and hence the total Lagrangian that is relevant to the
present mechanism is LE.H. + LNECV+reh. As far as ϕ1 stays almost constant, this assumption is expected
to be valid since, as explicitly shown in ref. [54] for linear perturbations, the model (IV.3) recovers general
relativity at low energy. For the consistency of this treatment, we shall later clarify what we precisely
mean by being “almost constant” and obtain the condition under which ϕ1 stays almost constant during
the NEC violation and reheating.

The CC relaxation sector discussed in section IV.1.1 is decoupled from the rest of the physics except
through gravity. The relaxation mechanism continues to operate throughout the cosmic history to keep
the vacuum energy from overdominating the Universe. Since it takes many (current) Hubble times to
make the CC small enough, we assume that the functions K and G3 are periodic in the NEC-violating
field ϕ2 so that a NEC-violating phase occurs periodically and (partial) reheating may occur several times.
This is done in order to avoid invoking any miraculous fine-tuning with respect to the timing of reheating.
On top of the periodicity, we assume that the functions of ϕ2 enjoy an approximate shift symmetry for
most of its domain and that the NEC violation (and reheating) is restricted to a short duration where
this approximate shift symmetry is broken.

For the purpose of presentation, let us for the moment turn off the reheating sector ϕ3 in order to
focus on the NEC violation part. The Lagrangian of eq. (IV.11) is then reduced to just

LNECV ≡ LNECV+reheat
∣∣
ϕ3=0, P =0 = K̃(ϕ2, X2) − G̃3(ϕ2, X2)�ϕ2 , (IV.12)

where K̃ ≡ K|ϕ3=0 and G̃3 ≡ G3|ϕ3=0. For simplicity we adopt the following ansatz for K̃ and G3,
keeping only terms lower-order in X2,

K̃ = f̃1(ϕ2)X2 + f̃2(ϕ2)X2
2 − Ṽ (ϕ2) , G̃3 = f̃(ϕ2)X2 . (IV.13)

The functions f̃1, f̃2 and f̃ are periodic in ϕ1 with a common period and should have appropriate forms –
their respective forms we consider in the present study, especially for the purpose of numerical evaluations,
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are fixed according to the desired evolution of the Hubble expansion rate H and are reconstructed using
the equations of motion. This procedure is discussed in detail in section IV.3.1. With these potential and
kinetic structures, the motion of ϕ2 accomplishes to violate the NEC and increases the value of H for
some finite time. A schematic shape of the resultant evolution of H with the NEC violation is illustrated
as a function of time in fig. IV.2. In this figure, all the matter contents other than the NEC-violating
ϕ2 are excluded. Once the reheating sector ϕ3 couples to ϕ2, the behavior of H is modified to the one
captured in fig. IV.1.

In order to reheat the Universe, the reheating field ϕ3 transfers the energy acquired during the
NEC-violating period to radiation. It thus couples to ϕ2, and this is realized by reintroducing the ϕ3
dependence into the previous functions. Formally, we make the changes

f̃1,2(ϕ2) → f1,2(ϕ2, ϕ3) , f̃(ϕ2) → f(ϕ2, ϕ3) , Ṽ (ϕ2) → V (ϕ2, ϕ3) , (IV.14)

and reintroduce P (ϕ3, X3). For simplicity we assume that ϕ3 is a canonically normalized scalar with a
simple potential, except for its coupling to ϕ2 via (IV.14). In mathematical terms, P , in eq. (IV.11), takes
the form

P (ϕ3, X3) = X3 − U(ϕ3) . (IV.15)

Thanks to these couplings in (IV.14), the effective potential of ϕ3 basically changes over time with respect
to the motion of ϕ2. As already invoked, we assume that ϕ2 enjoys approximate shift symmetry for most
of its domain except for the short NEC violating period. This in particular means that the effective
potential for ϕ3 changes only in the vicinity of the NEC violating period. We choose the coupling between
ϕ2 and ϕ3 so that, once the NEC violation starts operating, the effective potential forms a new local
minimum in which ϕ3 gets trapped. After the NEC-violating phase ends, ϕ3 stays at a new minimum for a
while, but, after a finite time, it eventually rolls back to the initial true minimum of the potential, around
which it oscillates and thus drives the reheating. For illustration of these behaviors, we refer to fig. IV.5.
These phase transitions in ϕ3 triggered by ϕ2 are the essential ingredient of our reheating mechanism.

Due to the approximate shift symmetry in the ϕ2 direction, the system away from the NEC violation
(and reheating) period realizes a phase of ghost condensation [135, 178] and the stress-energy tensor from
LNECV+reheat acts as an additional contribution to the CC. Without loss of generality, this additional
contribution to the CC can be absorbed into V1(ϕ1) so that the CC away from the NEC violation (and
reheating) period is precisely V1/M

2
Pl.

While this process of the NEC violation and reheating is overall decoupled from the first scalar field
ϕ1, one still has to be careful of the risk of overshooting. Indeed, the NEC violating and reheating eras
break the simple relation (IV.8) between the potential V1 for ϕ1 and the spacetime curvature, the latter
of which controls the relation between Π1 and ˙̄ϕ1. During the NEC violation and reheating eras, the
equation (IV.7) for Π1 is unchanged and thus Π1 = −c × O(1) still holds. On the other hand, f(R)
suddenly increases and affects the value of ˙̄ϕ1 = M3

PlH
−1fΠ1. As a result, the field ϕ1 rolls down its

potential V1 faster and may overshoot the zero of V1. Because of this risk, the NEC-violating part should
not last indefinitely; it needs to be constrained in time.

To better understand the issue at hand, let us consider the following calculations. Close to the zero
of its potential V1, the field ϕ1 follows a smooth evolution. Before the NEC violation and reheating, V1
is (virtually) locked at a height of say Vpre > 0. To avoid a runaway down the potential into effectively
negative CC, the potential after the NEC violation and reheating, denoted as Vafter ≡ Vpre + ∆V1, must
stay above zero. We thus require

|∆V1| < Vpre (IV.16)
during the NEC violation and reheating. One can easily estimate ∆V1 as

∆V1 ≈ cM3
Pl ˙̄ϕ1∆t = −c2M6

Pl
f

H
∆t× O(1) = −c2M6

Pl
f

H

∆ϕ2

M2 × O(1) , (IV.17)

where ∆t and ∆ϕ2 are the time duration and the corresponding field range of the NEC violating and
reheating period, f is supposed to be estimated during this period, and we have assumed that the
speed of ϕ2 takes an approximately constant value, ϕ̇2 ' M2. The last assumption will be explicitly
confirmed by the example in section IV.3. Let us denote by V2 (� V1) the effective energy density of ϕ2,
i.e. V2 ≈ 3M2

PlH
2, during the NEC violation. Then, the condition of eq. (IV.16) translates to a condition

on ∆ϕ2, i.e. how long the NEC violation can last in the field space, namely, neglecting order-one numerical
factors,

∆ϕ2

M
.

M

c2MPl

(
M4

Pl
V2

)(4m−1)/2
Vpre

M4
Pl
. (IV.18)
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As the Universe experiences many sequences of the CC relaxation, NEC violation and reheating, this
condition must be satisfied by every sequence all the way down to the last one before the present epoch
that we live today, each time with a different (decreasing) value of Vpre. Barring accidental cancellation
between Vpre and ∆V1 for the last sequence, this requirement is fulfilled if and only if

∆ϕ2

M
.

M

c2MPl

(
M4

Pl
V2

)(4m−1)/2 Λobs

M2
Pl
, (IV.19)

where Λobs is the observed value of the cosmological constant, corresponding to the present value of the ϕ1
potential V1|now = M2

PlΛobs. Recalling that the parameter m must take a value m > 3/2, this result says
that no matter how large the NEC violation is, i.e. how large V2 is, one can always achieve a sufficiently
long period of it to support reheating for a sufficiently large value of m. We can thus safely pass over the
overshooting problem.

IV.2 NECV and reheating sectors: background and perturbation

In this section we analyze the background system of the NEC-violating and reheating sectors and
the perturbations around it, in order to find the parameter space in which it is stable against small
perturbations. We do not include the CC relaxation sector ϕ1 in the present analysis to avoid extra
computational complexity; the ϕ1 sector has supposedly decreased to a negligible amount by the time
this analysis becomes relevant4, provided that the condition (IV.19) is satisfied. Hence, the action of our
interest in this section is

S =
∫

d4x
√

−g (LEH + LNECV+reheat)

=
∫

d4x
√

−g
[
M2

Pl
2 R+K(ϕ2, X2, ϕ3) −G3(ϕ2, X2, ϕ3)�ϕ2 + P (ϕ3, X3)

]
, (IV.20)

where ϕ2 and ϕ3 are scalar fields for the NEC-violating and reheating sectors, respectively. We expand
the two scalar fields as

ϕ2(t,x) = ϕ̄2(t) + δϕ2(t,x) , ϕ3(t,x) = ϕ̄3(t) + δϕ3(t,x) , (IV.21)

where ϕ̄2(t) and ϕ̄3(t) are the homogeneous background quantities, and δϕ2 and δϕ3 are their respective
perturbations. For the spacetime metric we conduct the ADM decomposition, as in section I.2,

ds2 = −N2dt2 + γij

(
N idt+ dxi

) (
N jdt+ dxj

)
, (IV.22)

where N and N i are the lapse and shift functions, respectively, and γij is the 3-D spatial metric. We
decompose these variables into their background and perturbations as (we follow here the notation of
e.g. [33])

N(t,x) = N̄(t) [1 + α(t,x)] , (IV.23a)

N i(t,x) = N̄(t)
a(t)

[
∂iβ(t,x) +Bi(t,x)

]
, (IV.23b)

γij(t,x) = a2(t) e2ζ(t,x)
[
δij + 2 ∂i∂jE(t,x) + 2 ∂(iEj)(t,x)

+ hij(t,x) + 1
2 hik(t,x)hkj(t,x)

]
,

(IV.23c)

where N̄ and a are the background lapse and scale factor, respectively, {α, β, ζ, E} are scalar modes, the
vector modes {Bi, Ei} satisfy the transverse conditions ∂iBi = ∂iEi = 0, and the tensor modes {hij} are
transverse and traceless: ∂ihij = hii = 0. This latter condition thus brings the number of degrees of
freedom of the tensor sector from 6 to 2. Under the general coordinate transformation xµ → xµ + ξµ(t,x),
each variable transforms as

∆α = ∂t(N̄ξ0)
N̄

, ∆β = a3

N̄
∂tξL − aN̄ξ0 , ∆ζ = HN̄ξ0 , ∆E = ξL ,

∆Bi = a

N̄
∂tξ

i
T , ∆Ei = ξi

T , ∆hij = 0 ,
(IV.24)

4For the analysis on the perturbative stability of the ϕ1 sector alone, we would like to direct readers to [54, 53].
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and

∆δϕ2 = ∂tϕ̄2 ξ
0 , ∆δϕ3 = ∂tϕ̄3 ξ

0 , (IV.25)

where the decomposition ξi = δij∂jξL + ξi
T with ∂iξ

i
T = 0 has been used, and H is the Hubble expansion

rate. Using the previous symmetry and appropriately choosing ξµ, we fix the gauge by setting

δϕ2 = E = Ei = 0 , gauge fixing , (IV.26)

leaving us with no further gauge freedom. Then at the level of linear perturbations, the remaining vector
modes Bi are nondynamical and fixed to null by constraints, and they can hence be omitted from our
discussion altogether. Thus our system of perturbations consists of the two sectors{

α , β , ζ , δϕ3 : scalar sector ,
hij : tensor sector .

(IV.27)

Among the scalar variables, α and β are nondynamical, and their values are fixed by the dynamical modes
ζ and δϕ3. Therefore, each of the scalar and tensor sectors is a system of 2 propagating degrees of freedom.
In particular, thanks to the background rotational symmetry, these sectors are decoupled at the level of
the quadratic action,5 i.e.

S(2) = Sscalar[α, β, ζ, δϕ3] + Stensor[h] . (IV.28)

In the following subsections, we formally derive the background equations of this two-scalar system and
the stability conditions against perturbations.6

IV.2.1 Background equations
The background quantities, defined in eqs. (IV.21) and (IV.23), obey their classical EoM, which are
obtained by varying the action eq. (IV.20) with respect to each of them. In order to avoid crowded
notations, we here take N̄ = 1 and omit the bars over background quantities in this subsection. The
EoM’s then read

0 = − ∂X2K ϕ̇2
2 − ∂X3P ϕ̇

2
3 + ∂ϕ3G3 ϕ̇3 ϕ̇2 + ∂ϕ2G3 ϕ̇

2
2 +K + P

− 3H∂X2G3 ϕ̇
3
2 + 3M2

PlH
2 ,

(IV.29a)

0 = − ϕ̇2 [∂ϕ3G3 ϕ̇3 + ϕ̇2 (∂X2G3 ϕ̈2 + ∂ϕ2G3)] +K + P +M2
Pl
(
2Ḣ + 3H2) , (IV.29b)

0 = − 3 ∂X2G3
(
Ḣ +H2) ϕ̇2

2 − 6H2∂X2G3 ϕ̇
2
2 + ∂ϕ2X2G3 ϕ̇

2
2ϕ̈2 + ∂ϕ2ϕ2G3 ϕ̇

2
2

− 3H
{
ϕ̇2
[
∂X2K + ϕ̈2

(
∂X2X2G3 ϕ̇

2
2 + 2 ∂X2G3

)
+ ∂ϕ2X2G3 ϕ̇

2
2 − 2 ∂ϕ2G3

]
+ ϕ̇3

(
∂X2ϕ3G3 ϕ̇

2
2 − ∂ϕ3G3

)}
− ∂X2X2K ϕ̇2

2ϕ̈2 − ∂ϕ2X2K ϕ̇2
2 − ∂X2K ϕ̈2 + ∂ϕ2K

+ ϕ̇3ϕ̇2 (−∂X2ϕ3K + ∂X2ϕ3G3 ϕ̈2 + 2 ∂ϕ2ϕ3G3) + ∂ϕ3ϕ3G3 ϕ̇
2
3 + ∂ϕ3G3 ϕ̈3

+ 2 ∂ϕ2G3 ϕ̈2 ,

(IV.29c)

0 = ∂ϕ3K − ϕ̈3
(
∂X3X3P ϕ̇

2
3 + ∂X3P

)
− ∂ϕ3X3P ϕ̇

2
3 + ∂ϕ3P

+ 3H (∂ϕ3G3 ϕ̇2 − ∂X3P ϕ̇3) + ∂ϕ3G3 ϕ̈2 .
(IV.29d)

The first eq. (IV.29a) is a constraint equation, and the remaining three equations constitute a system of
second-order differential equations for ϕ2, ϕ3 and a that shall be numerically solved in section IV.4.

We note that, in section IV.3, we restrict our interest to seeking the solution of the NEC-violating
sector that gives X2 = constant, i.e. ϕ2 ∝ t, in the absence of ϕ3. This ansatz greatly simplifies the search
of required forms of the functions K, G3 and P to achieve the target cosmic history as shown in fig. IV.1
(or fig. IV.2 in the absence of ϕ3). Before proceeding to the reconstruction procedure of those functions
that is described in detail in section IV.3, we collect the conditions necessary to ensure our background
solution to be stable against small perturbations in the following subsections.

5Note that the linear action only derives the background equations and gives no information about perturbations.
6For derivation of the equations for the background as well as perturbations, we refer to [33] for a detailed calculations

of a single-field case and to [179] for a general multi-field extension.
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IV.2.2 Perturbations
In this subsection we analyze the stability of the NEC violation and reheating sector against perturbations.
As described at the beginning of this section, we decompose the perturbations of the fields and metric as
in eqs. (IV.21) and (IV.23), respectively, and fix the gauge freedom as in eq. (IV.26). At the level of linear
perturbations, the scalar, vector and tensor sectors are mutually decoupled, thanks to the background
rotational symmetry, and the vector sector contains no dynamical degree of freedom. We thus need only to
study the decoupled scalar and tensor perturbations as in eq. (IV.28), which is done separately hereafter.

Tensor sector The tensor sector takes the standard form, that is, the action of the type shown in
eq. (IV.20) (without non-trivial G4 or G5 term in the Horndeski theory) leads to the same form of Stensor
as the one of General Relativity, i.e.

Stensor = M2
Pl

8

∫
N̄dt a3d3x

[
∂thij ∂thij

N̄2
− ∂khij ∂khij

a2

]
, (IV.30)

where the background lapse N̄ is put back.7 The tensor sector is here trivially free from ghost and gradient
instabilities. Therefore, we shall simply focus on the stability conditions in the scalar perturbations.

Scalar sector The scalar sector consists of 4 variables q := (α, β, ζ, δϕ3), where we can choose α
and β to be nondynamical and do not have their own kinetic terms, as explained around eq. (IV.27) .
Fourier-transforming each variable as

q(t,x) =
∫ d3k

(2π)3/2 eik·x q̂(t,k) , (IV.31)

with hat �̂ denoting here Fourier-transformed quantities, the quadratic action Sscalar can be formally
written in the form

Sscalar = 1
2

∫
dt d3k

[
∂tδ̂

†A∂tδ̂ +
(
∂tδ̂

†B δ̂ + h.c.
)

+ δ̂†C δ̂

+ N̂ †DN̂ +
(

N̂ †E ∂tδ̂ + h.c.
)

+
(

N̂ †F δ̂ + h.c.
)]

, (IV.32)

up to total derivatives, where δ̂ = {ζ̂, δϕ̂3} and N̂ = {α̂, β̂} are arrays grouping the dynamical and
nondynamical variables, respectively. Note that the reality condition of the variables in the coordinate
space is translated to q̂†(k) = q̂(−k) in the Fourier space. The coefficients A,B,C,D,E and F are all
2 × 2 square matrices whose components consist of the background quantities. These explicitly read

A = a3

N

(
−6M2

Pl 0
0 Gϕ

)
, B = a3

 0 3
2 c1

−3
2 c1 0

 ,

C = Na3

2M2
Pl
k2

a2
3
2 c2

3
2 c2 −k2

a2 (Gϕ − 2X3 ∂X3X3P ) + c3

 , D = Na3

2Σ + c2
4

Gϕ

2k2

a
Θ

2k2

a
Θ 0

 ,

E = a3

 6Θ c4

−2M2
Pl
k2

a
0

 , F = Na3

2M2
Pl
k2

a2 c5

0 k2

a
c1

 ,

(IV.33)

where we defined

Gϕ := ∂X3P + 2X3 ∂X3X3P , (IV.34a)

Σ := −3M2
PlH

2 − X2 (∂ϕ3G3)2

Gϕ
+X2

(
∂X2K + 2X2 ∂X2X2K − 2 ∂ϕ2G3

+ 12H ϕ̇2

N
∂X2G3 − 2X2 ∂ϕ2X2G3 + 6H ϕ̇2

N
X2 ∂X2X2G3 − ϕ̇2ϕ̇3

N2 ∂X2ϕ3G3

)
,

(IV.34b)

7In deriving the expression of eq. (IV.30), the background equations are not used, which is the benefit of defining hij by
adding the quadratic term of hij in eq. (IV.23c). Without it, the same form of Stensor can be derived, but only after the
background equations are imposed.
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Θ := M2
PlH − ϕ̇2

N
X2 ∂X2G3 (IV.34c)

c1 := ϕ̇2

N̄
∂ϕ3G3 − ϕ̇3

N̄
∂X3P , (IV.34d)

c2 := −
[

1
N
∂t

(
ϕ̇2

N

)
+ 3H ϕ̇2

N

]
∂ϕ3G3 − 2

N
∂t

(
ϕ̇2

N

)
X2∂X2ϕ3G3 − 2X2∂ϕ2ϕ3G3

− ϕ̇2ϕ̇3

N2 ∂ϕ3ϕ3G3 +
[

1
N
∂t

(
ϕ̇3

N

)
+ 3H ϕ̇3

N

]
∂X3P + 2

N
∂t

(
ϕ̇3

N

)
X3∂X3X3P

+ 2X3∂ϕ3X3P ,

(IV.34e)

c3 := ∂ϕ3ϕ3K +
[

1
N
∂t

(
ϕ̇2

N

)
+ 3H ϕ̇2

N

]
∂ϕ3ϕ3G3 + ∂ϕ3ϕ3P − 2X3∂ϕ3ϕ3X3P

−
[

1
N
∂t

(
ϕ̇3

N

)
+ 3H ϕ̇3

N

]
∂ϕ3X3P − 2

N
∂t

(
ϕ̇3

N

)
X3∂ϕ3X3X3P ,

(IV.34f)

c4 := ϕ̇2

N
∂ϕ3G3 − ϕ̇3

N
Gϕ , (IV.34g)

c5 := −2X2∂X2ϕ3K −
[

1
N
∂t

(
ϕ̇2

N

)
+ 3H ϕ̇2

N

]
∂ϕ3G3

− 6H ϕ̇2

N
X2∂X2ϕ3G3 + 2X2∂ϕ2ϕ3G3 + ϕ̇2ϕ̇3

N2 ∂ϕ3ϕ3G3

+
[

1
N
∂t

(
ϕ̇3

N

)
+ 3H ϕ̇3

N

]
∂X3P + 2

N
∂t

(
ϕ̇3

N

)
X3∂X3X3P ,

(IV.34h)

carefully noting that the bar �̄ is here omitted from the background quantities to avoid crowded notation.
By varying the action of eq. (IV.32) with respect to N̂ †, we find the constraint equations that fix the

nondynamical variables in terms of the dynamical ones δ, given by

N̂ = −D−1
(
E ∂tδ̂ + F δ̂

)
, (IV.35)

as det(D) 6= 0 in our current system. Plugging this back into eq. (IV.32), we obtain the action in terms
only of the dynamical degrees of freedom,

Sscalar = 1
2

∫
dt d3k

[
∂tδ̂

†Ã ∂tδ̂ +
(
∂tδ̂

†B̃ δ̂ + h.c.
)

+ δ̂†C̃ δ̂
]
, (IV.36)

where we defined

Ã := A− E†D−1E , B̃ := B − E†D−1F , C̃ := C − F †D−1F . (IV.37)

Notice that now the kinetic matrix Ã is no longer diagonal. In order to diagonalize it, we can perform the
following change of variables,

δ̂ = MR∆̂ , with MR =

 1 0

−M2
Plc4

GϕΘ 1

 , (IV.38)

which results in the action in terms of ∆̂, instead of δ̂

Sscalar = 1
2

∫
dt d3k

[
∂t∆̂†T̃ ∂t∆̂ +

(
∂t∆̂†X̃ ∆̂ + h.c.

)
− ∆̂†Ω̃2 ∆̂

]
, (IV.39)

where we defined

T̃ := M†
RÃMR , (IV.40a)

X̃ := M†
RB̃MR +M†

RÃ ∂tMR , (IV.40b)

Ω̃2 := −M†
RC̃MR − ∂tM

†
RÃ ∂tMR − ∂tM

†
RB̃MR −M†

RB̃
†∂tMR . (IV.40c)

Finally, by adding the total derivative − 1
4
∫

dtd3k
(
X̃ + X̃†), we arrive at our final expression for the

quadratic action

Sscalar = 1
2

∫
dt d3k

[
∂t∆̂†T ∂t∆̂ + ∂t∆̂†X ∆̂ − ∆̂†X ∂t∆̂ − ∆̂†Ω2 ∆̂

]
, (IV.41)
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where we accordingly now used

T = T̃ , X = X̃ − X̃†

2 , Ω2 = Ω̃2 + ∂tX̃ + ∂tX̃
†

2 . (IV.42)

Note that T and Ω2 are symmetric 2 × 2 matrices, and X is an anti-symmetric one. Now the kinetic
matrix

T = a3

N

(
2M2

Pl GS 0
0 Gϕ

)
, GS ≡ 3 +M2

Pl
Σ
Θ2 , (IV.43)

is diagonal, as desired. The conditions to prohibit ghost instabilities are therefore

GS > 0 , Gϕ > 0 , no ghost , (IV.44)

serving as part of the conditions of perturbative stability (Gϕ is defined in eq. (IV.34a)).
Another instability we need to suppress is the gradient instability. We are only concerned with high-

momentum catastrophic instability, as the low-momentum counterpart may be harmless at a non-linear
level à la Jeans instability. This amounts to imposing the positivity condition for the squared sound
speeds of the scalar perturbations, c2

s, as defined hereafter. In the high-k limit, we collect the terms in
the coefficient matrices of the order T ∼ O(k0), X ∼ O(k1) and Ω2 ∼ O(k2). The full expression of T is
given in eq. (IV.43) and does not depend on k. The other matrices in the high-k limit read

X = 0 + O(k0) , Ω2 = Ω2
O(k2) + O(k0) , (IV.45)

where Ω2
O(k2) only contains the terms proportional to k2 in the high-k limit. Taking the ansatz ∆̂ ∝

exp
(
i
∫ t
Ndt′csk/a

)
as an adiabatic solution for large k, the sound speed c2

s can be found by solving the
characteristic equation

det
(

−c2
sk

2 N
2

a2 T + Ω2
)

= 0 , (IV.46)

leading to

c4
s −

(
c2

χ + FS

GS
+ A + B

)
c2

s + c2
χ

(
FS

GS
+ A

)
= 0 , (IV.47)

where

FS ≡ M4
Pl

Na
∂t

( a
Θ

)
−M2

Pl , c2
χ ≡ ∂X3P

∂X3P + 2X3 ∂X3X3P
,

A ≡ − M4
Pl

2∂X3P GS Θ2

(
ϕ̇2

N
∂ϕ3G3 − ϕ̇3

N
∂X3P

)2
, B ≡ 4M4

PlX2X
2
3 (∂X3X3P )2 (∂ϕ3G3)2

∂X3P GS G2
ϕΘ2 .

(IV.48)

The values of c2
s are determined by the two roots of eq. (IV.47), and we impose the conditions

c2
s > 0 , gradient stability , (IV.49)

for each value of c2
s.

Notice from eq. (IV.47) that, in the particular cases of ∂ϕ3G3 = 0 and/or ∂X3X3P = 0, we have B = 0,
and the expressions of c2

s vastly simplify. In our numerical examples, we indeed take

∂ϕ3G3 = 0 & ∂X3X3P = 0 , numerical examples , (IV.50)

and in this case

c2
s = c2

χ or c2
s = FS

GS
+ A , (IV.51)

while

c2
χ = 1 , A = −M4

PlX3 ∂X3P

GS Θ2 . (IV.52)
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Therefore, in these particular examples, we only need to impose

FS >
M4

PlX3∂X3P

Θ2 , (IV.53)

to avoid gradient instability, as we have already imposed GS > 0 from the no-ghost condition. In summary,
to ensure the background evolution to be stable against small perturbations, we impose the conditions in
eqs. (IV.44) and (IV.49), or those in eqs. (IV.44) and (IV.53) for the particular and simpler examples, for
the entire history of the Universe, and particularly during the phases of NEC violation and reheating.

IV.3 A concrete implementation

We have until now kept arbitrary the free functions f1,2(ϕ2, ϕ3), f(ϕ2, ϕ3), V (ϕ2, ϕ3) and U(ϕ3) in the
NEC violating and reheating Lagrangian LNECV+reh, eq. (IV.11), but we now choose a concrete set of
functions to fully realize our desired cosmological scenario. For the purpose of the conceptual proof, we
take an inverted route: we first determine a desired cosmic history we would like to achieve, which is
summarized in section IV.1, and then reconstruct the functions accordingly. While we disregard the
reheating field ϕ3 in this procedure, we numerically verify the overall behavior of the whole system after
reviving the ϕ3 dependence into the reconstructed model.

IV.3.1 Reconstruction of the NEC-violating sector
We have a total of 3 independent functions, K, G3 and P , and expand K and G3 as polynomial functions
of X2 as in eq. (IV.13). To reconstruct them, we first consider the NEC-violating sector alone by turning
off the ϕ3 and disregarding P (ϕ3, X3). On the one hand, there are 4 independent functions, f̃1(ϕ2), f̃2(ϕ2)
and Ṽ (ϕ2) from K̃, and f̃(ϕ2) from G̃3 (recall tilde denotes quantities with ϕ3 dependence taken out).
On the other hand, we have 2 independent background equations from eq. (IV.29) (with ϕ3 turned off).
Therefore, the forms of two of these functions can be fixed by the background equations, once all other
arbitrary functions are chosen by hand. In the following we reconstruct these functions in the action so
that the system admits the following solution,

H = Hnecv(ϕ2) , ϕ2 = t , N̄ = 1 , (IV.54)

where H is the Hubble expansion rate and Hnecv(ϕ2) is a fixed function corresponding to the input Hubble
expansion rate.

The NEC-violating sector is assumed to be periodic in the field value of ϕ2, as discussed in section IV.1.2.
Without loss of generality, we shift ϕ2 such that the NEC-violating (and reheating) period is localized
around ϕ2 = 0. We then take the following ansatz for the forms of K̃ and G3, that is,

K̃ = M2
PlH

2
dip
[
F1(ϕ2)X2 + F2(ϕ2)X2

2 − v(ϕ2)
]
, v(ϕ2) = −v0 exp

(
− ϕ2

2
2T 2

dip

)
, (IV.55a)

G̃3 = M2
PlHnecv(ϕ2)Fkb(ϕ2)X2 , Fkb(ϕ2) = Fkb,0 + Fkb,1 exp

(
− ϕ2

2
2T 2

kb

)
, (IV.55b)

where Hdip is a constant of mass dimension 1, Tdip and Tkb of mass dimension −1, and v0, Fkb,0 and Fkb,1
are dimensionless constants. We here normalize ϕ2 so that it has mass dimension −1, and thus X2 is
dimensionless. The functions F1, F2 and Fkb correspond to f̃1, f̃2 and f̃ (eq. (IV.13)), respectively, that
are made dimensionless. The potential v has a “dip” of depth v0 at ϕ2 = 0 so that ϕ2 can be trapped to
sustain a NEC-violating period. The G̃3 contribution is needed to ensure the stability of the system in
this period. For this reason, we use the input Hubble expansion rate Hnecv(ϕ2) as an overall factor of G̃3
so that the G̃3 contribution becomes prominent in the NEC violating phase.

For the actual form of Hnecv that we employ, we introduce two scales to turn on and off NEC violation.
There are many possible forms to achieve this, and we simply take one particular choice, i.e.

Hnecv(ϕ2) = H0 +H1 exp
(

− ϕ2
2

2T 2

) 1 − tanh
(

ϕ2
τ

)
2 , (IV.56)

where H0 and H1 are constants of dimension 1, while T and τ those of dimension −1. The value of Hnecv
far away from the origin (i.e. |ϕ2| � T, τ) is H0, that is during a major duration of the cosmic history,
and is essentially the present value of the Hubble expansion rate if we apply this system to the last NEC
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Figure IV.3: Overall shape of the input Hubble expansion rate Hnecv. The plot uses the numerical
parameters exhibited in table IV.1.

violating phase before the present epoch of the Universe. However, during the NEC violating phase, it
ascends to the maximum value ∼ H0 +H1 within a time scale controlled by T , eventually going through
a step-function-like drop around ϕ2 = 0 to H0 with another scale controlled by τ . The overall shape of
Hnecv is graphically depicted in fig. IV.3. In practice, the drop needs to be sharper than the rise (T � τ)
in order to accommodate a reheating period toward the end of the NEC violation by transferring a large
portion of the energy in ϕ2 abruptly enough so that the reheating field ϕ3 starts oscillating using the
transferred energy.

We now have all the setups for the reconstruction. In order to ensure the target cosmic history of
eq. (IV.56) to be compatible with time evolution, we seek for a solution of the form eq. (IV.54). We then
substitute eq. (IV.54) and eq. (IV.55) into the background equations of motion in eq. (IV.29). Only two
of the equations are independent when ϕ3 is turned off, and they give

F1 = 4v + 3 (Fkb − 4) H
2
necv
H2

dip
+ F ′

kbHnecv

H2
dip

+ (Fkb − 6) H
′
necv
H2

dip
, (IV.57a)

F2 = −4v − 6 (Fkb − 2) H
2
necv
H2

dip
+ 4H ′

necv
H2

dip
, (IV.57b)

where prime denotes ∂/∂t = ∂/∂ϕ2 under eq. (IV.54). Recovering ϕ2 dependence by basically replacing
t → ϕ2, these two equations fix the forms of F1 and F2, given the predetermined functions Hnecv, Fkb
and v. This completes the reconstruction of the NEC-violating sector for our concrete implementation of
the model.

IV.3.2 Attractor behavior of the NEC-violating dynamics
We have fixed the forms of the model functions in the ϕ2 sector as eq. (IV.57) so that the NEC violation
as depicted in eq. (IV.56) and eq. (IV.54) is achieved as a solution of the background equations of motion.
However whether or not this particular solution is an attractor of the dynamical system is a separate issue,
which we would like to address in this subsection. The analysis here concerns the background eq. (IV.29)
with the reconstructed functions of eq. (IV.55) with eqs. (IV.56) and (IV.57).

We first perform a linearized analysis, and to this end we expand the background quantities as

ϕ2(t) = ϕ(0)(t) + ε ϕ(1)(t) , H(t) = H(0)(t) + εH(1)(t) , (IV.58)

where ϕ(0) = t and H(0) = Hnecv(t) denote the solutions assumed for the reconstruction in the previous
subsection while εϕ(1) and εH(1) are small perturbations, and ε is the expansion parameter. We then
expand the background eq. (IV.29) up to the linear order in ε. The O(ε0) equations are trivially satisfied,
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Figure IV.4: The phase portrait of ϕ2 and ϕ̇2 as a vector field. Arrows are scaled proportionally to
the gradient intensity. The above plot therefore exhibits the strong attraction to the solution ϕ2 ≡ t,
especially in the central area (between approximately ϕ2 = −5000 and 0). The lightly shaded regions
are where H takes a complex value as a solution to the constraint eq. (IV.29a), that is where a real
background solution does not exist.

and the O(ε1) equation for H(1) is a constraint equation that can be solved for H(1) in favor of ϕ(1)(t)
and ∂tϕ

(1). As a result, the master equation of the linearized system is only in terms of ϕ(1) with O(ε0)
coefficients, and reducing it to a coupled system of first-order equations gives, in a matrix form,

∂t

(
ϕ(1)

π
(1)
ϕ

)
= M

(
ϕ(1)

π
(1)
ϕ

)
, M =

(
0 1
A B

)
, (IV.59)

where A and B are functions of the O(ε0) quantities. While A and B are in general of lengthy expressions,
our restriction of including only up to the L3 terms of Horndeski theory with the EoM-consistent
reconstructed functions of eq. (IV.55) conveniently sets A = 0. Hence, the eigenvalues of the matrix M
are 0 and B. In order for the solutions ϕ(0) = t and H(0) = Hnecv(t) to be a local attractor of the system,
we thus require these eigenvalues be non-positive, i.e.8

B ≤ 0 . (IV.60)

This ensures the local stability of the solution assumed in the previous subsection.
The previous analysis is a linearized one, and in order to observe a more global behavior of the system,

we resort to a numerical phase-space illustration, a representative case of which is depicted in fig. IV.4.
As seen in the figure, ϕ2 = t, which is our input solution for the reconstruction, is indeed the global
attractor of the system. This justifies our ansatz and reconstruction of the model functions in the previous
subsection, and the system is resistant against small perturbations at least in the direction of positive ϕ̇2.
In fig. IV.4, the value of H0, which is essentially the Hubble expansion rate at present, is taken rather
close to that of H1, which corresponds to the amount of raise in H during the NEC violating phase, for
numerical ease. When the hierarchy between these values is closer to a realistic one, we note two cautions.
First, the shaded complex regions approach closer to the ϕ̇2 line. However, they never cross it provided
taking a sufficiently large value of v0. Second, when H0 becomes much smaller than H1, the attractor
behavior towards the input solution ϕ2 = t is rather weak away from the NEC-violating region. Indeed,
in a small H0 limit and sufficiently far from the NEC violation so that v ≈ 0 and Fkb ≈ Fkb,0, the value
of B takes

B ' −3H0 , H0 � H1 , (IV.61)

8In principle the non-positiveness condition could be imposed only on the real part of the eigenvalues. However, the
components of B (and A) consist of the O(ε0) quantities, and the only occasion in which they become complex is when the
value of H(0) becomes complex as a solution of the constraint equation, but this only means that there is no real solution at
the O(ε0) order. We exclude such a case.
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which makes the validity of the solution ϕ2 = t somewhat worrisome. However, it is still a local attractor
because B < 0. Moreover, we are assuming a period of the NEC-preserving phase much longer than that
of the NEC-violating one. Therefore, even though the attractor appears to be weak in the limit H0 � H1,
the background system is expected to go back to the solution ϕ2 = t during the long NEC-preserving era.

IV.3.3 Recovering the reheating sector coupled to NEC violation

To realize the known big bang universe after the NEC-violating era, the reheating field ϕ3 necessarily
couples to ϕ2 in a non-minimal manner. Our choice of the coupling amounts to making the following
replacements:

F1 → 1 + αkick e−βkickϕ3

1 + αkick
F1 , (IV.62a)

F2 → 1 + αkick e−βkickϕ3

1 + αkick
F2 , (IV.62b)

v → exp
[
−β2

dip

(
(ϕ3 − 1)2 − 1

)]
v , (IV.62c)

while we reintroduce the kinetic term and bare potential of ϕ3 as

P (ϕ3, X3) = M2
Plβ

2
kin X3 − U(ϕ3) , U(ϕ3) = 3M2

PlH
2
I

(
1 − e−βIϕ3

)2
, (IV.63)

where ϕ3 is normalized to be dimensionless, αkick, βkick, βdip, βkin and βI are all dimensionless parameters,
and HI is a constant of mass dimension 1. Note that setting ϕ3 = 0 gives the case of the NEC-violating
sector alone studied in the previous subsection.

The explicit but rather nontrivial forms of the interactions above are taken to accomplish the desired
efficient energy transfer from the NEC-violating sector to reheat the Universe. One feature we aim for
is to eventually yield to an oscillating reheating field ϕ3 (as explained with fig. IV.5, and numerically
verified in fig. IV.8). The above choices lead to the following dynamics:

• When the NEC is well preserved, ϕ3 is effectively decoupled from ϕ2. Then, ϕ3 stays at the minimum
of its Starobinsky-type bare potential U , i.e. ϕ3 = 0 while the NEC holds.

• During the time when the NEC violation takes place, the different potentials V and U together
shape the reheating potential. The potential U gives the bare potential of ϕ3, while V generates
an alternative local minimum for ϕ3 (recall that v is negative) when ϕ2 approaches to its origin.
Thus ϕ3 is moved to this new minimum at ϕ3 = 1 during the NEC violation. This process is further
discussed in section IV.3.4.

• The overall factor introduced for F1 and F2 in eqs. (IV.62) modulate the kinetic term of ϕ2, which
takes 1 for ϕ3 = 0 and the smaller value (1 + αkick)−1 for ϕ3 = 1, while ϕ3 is given an extra “kick”
through βkick around the time of NEC violation.

• The function G3 is taken independent of ϕ3 and makes important contribution only during the
NEC-violating phase. It returns to a negligible value afterwards, respecting the late-time constraints
[180].

To summarize everything, our total action of eq. (IV.20) consists of the functions K, G3 and P , whose
explicit forms are now

K = M2
PlH

2
dip

[
1 + αkick e−βkickϕ3

1 + αkick

(
F1(ϕ2)X2 + F2(ϕ2)X2

2
)

− e−β2
dip

(
(ϕ3−1)2−1

)
v(ϕ2)

]
, (IV.64a)

G3 = M2
PlHnecv(ϕ2)Fkb(ϕ2)X2 , (IV.64b)

P = M2
Plβ

2
kin X3 − U(ϕ3) , (IV.64c)

where v and Fkb are given by eq. (IV.55), Hnecv by eq. (IV.56), F1 and F2 by eq. (IV.57), and U by
eq. (IV.63). In the following subsection, we discuss the behavior of the effective potential for ϕ3 in more
detail.
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Figure IV.5: Evolution of ϕ3 and the shape of its total effective potential, which is altered by ϕ2. (1) The
field ϕ3 starts here at zero, and (2) it is then raised, until it starts rolling down to (3) a new minimum.
(4) As the potential regains its previous shape, the field ϕ3 falls back into (1) its original position. We
also call for attention to how the vertical scale changes.

IV.3.4 The reheating potential

We have determined our full Lagrangian as in eqs. (IV.20) and (IV.64). The reconstruction procedure of
section IV.3.1 is robust for the NEC-violating sector ϕ2 as shown in section IV.3.2, while the reintroduction
of the reheating field ϕ3 is done in section IV.3.3 in a rather ad hoc manner. In this subsection we further
describe the trajectory that ϕ3 is expected to take, which shall be verified numerically in section IV.4.
The reheating process operates essentially by the reheating field ϕ3 rolling down to the minimum of its
effective potential that is uplifted by the NEC violation. Then ϕ3 starts oscillating, releasing its energy
into the Universe. A coupling of ϕ3 with the Standard Model particles is necessary, but implicit hereafter,
and we do not specify its concrete form.

The time evolution of the effective potential of ϕ3 is illustrated in fig. IV.5. The reheating procedure is
essentially articulated around the evolution of ϕ3 along its total potential whose shape is in turn driven by
ϕ2 in the following way. For most of the cosmic period in which the shift symmetry of ϕ2 is well respected,
the reheating field ϕ3 stays at the minimum of its bare potential U . Once the NEC violation takes place
by ϕ2, however, the reheating field ϕ3 is transported upward and rolls to a new and higher minimum.
Later toward the end of the NEC-violating phase, the interaction between ϕ2 and ϕ3 becomes ineffective,
and ϕ3 is subsequently sent back to the initial minimum. On this return trajectory, the acquired kinetic
energy results in oscillations around this minimum, leading to reheating of the Universe.

The shape of the bare potential U(ϕ3) is of the type of Starobinsky’s inflation and is depicted in
fig. IV.5 (1). The total, “effective” potential for ϕ3 consists not only of U(ϕ3) but of the contributions
from K(ϕ2, X2, ϕ3), as is given in eq. (IV.64a). A rough description of each term in K is as follows: while
each term is approximately constant and takes a negligible value during the (long) NEC-preserving era,
the term proportional to F1X2 + F2X

2
2 is uplifted and erases the minimum around ϕ3 = 0 during the

NEC violation. The term proportional to v, on the other hand, arises and accommodates a new minimum
at ϕ3 = 1. The changing effective potential is visualized in fig. IV.5 (2) and (3). Toward the end of the
NEC-violation period, the modulation by ϕ2 effectively turns off, and ϕ3 is drifted back to ϕ3 = 0, as
shown in fig. IV.5 (4).

The period during the NEC violation and before the reheating may as well accommodate inflation
to produce the seeds of the structure formation. This is also an interesting possibility to realize, but is
beyond the scope of our current work, and we leave it to future studies.



IV.4. Numerical validation 53

Function Hnecv Function Fkb Function v
Reheating ϕ3 Reheating ϕ3
modulation sector

H0 10−3 Fkb,0 10−3 v0 5 · 10−2 αkick 10−2 βkin 1
H1 1 Fkb,1 1 Tdip 2T βkick 5 βI 3
T 5000 Tkb 3T Hdip

4H1
10

√
αkick

1+αkick
βdip 2 HI

5H1
10

√
αkick

1+αkick

τ 500

Table IV.1: Compilation of all the numerical parameters used in the numerical computations.

IV.4 Numerical validation

Now that we have constructed all the ingredients to achieve the scenario of our interest, we proceed to its
numerical verification in this section. Our goals are two-fold: to provide a concrete example in which our
model can indeed violate the NEC in a stable manner, and to demonstrate that a successful reheating
follows the NEC-violating period. We focus on the NEC-violating-reheating transitions for this discussion
and do not include the cosmological constant relaxation sector ϕ1 in our numerical computation, whose
time scale is much longer than the former eras and would thus be computationally rather impractical.
As far as the relaxation sector is concerned, we impose the condition of eq. (IV.19) to ensure that the
domination of ϕ2 would not lead the motion of ϕ1 to overshoot.

Before going further ahead, we make a brief note that a known robust no-go result for stable NEC
violation exists in the cases of Genesis scenario and non-singular bounce [181, 182]. However, the crucial
assumption for the no-go is that the scale factor either approaches to a non-zero constant value in the
asymptotic past or starts with a contracting initial condition. Our present model, on the other hand, is
different from either of the cases in that the Hubble expansion rate never vanishes, and thus the no-go
theorem does not apply. Our model also differs from the “rolling background” model that must obeys
other constraints [73].

IV.4.1 Implementation details

To execute the numerical integration of our model, we solve simultaneously the three equations of motion,
i.e. eqs. (IV.29b) to (IV.29d). We use the constraint equation, eq. (IV.29a), to monitor the numerical
convergence, as it must be compatible with the time evolution of the system. The second derivatives enter
the equations only linearly and are hence single-valued at a given time, and the system can be numerically
solved using any standard integration algorithm.

The functions K, G3 and P , appearing in the equations of motion, are substituted by eq. (IV.64)
together with v, Fkb, Hnecv and U in eqs. (IV.55a), (IV.55b), (IV.56) and (IV.63), respectively, and F1
and F2 reconstructed as in eq. (IV.57). In order to fix a reasonable set of model parameters, we choose
the values compiled in table IV.1 for our numerical integration. The duration of the NEC-violating
period relates to a few parameters, i.e. T , Tkb and Tdip, and we thus take them at roughly the same
order of magnitude. The ending time of the NEC violation is controlled by τ , and since we demand the
reheating field ϕ3 transit back to its true potential minimum quickly enough to start oscillating, the
value of τ is taken smaller than T . The parameter H1 approximately normalizes the value of the Hubble
expansion rate at the NEC-violating era, and we use it as the units for inverse time t−1, amounting to
fixing H1 = 1. In seeking a solution of the approximate form ∂tϕ2 ∼ 1, we also measure ϕ2 in the units of
H−1

1 . In order for ϕ2 to kinetically dominate the energy density during the NEC-violation, we take the
values of Hdip and HI smaller than H1. During the NEC violation the ϕ2 field receives a small “kick”
associated with αkick by the change of ϕ3. The value of H0 is that of the Hubble expansion rate during
the long-lasting NEC-preserving era, which is to our concern essentially the present Hubble value. It
is thus supposed to be extremely small; however, such a huge hierarchy is rather difficult to handle in
numerical computations, and we here take a relatively large (but much smaller than H1) value H0 = 10−3

for the purpose of demonstration. Values of order unity are chosen for other parameters. The reduced
Planck mass MPl does not affect the dynamics. Let us emphasize that this set of parameters is chosen to
support a proof-of-concept, and other choices can show behaviors similar to the current study.

We take the initial time of the numerical integration well before the onset of the NEC violation. We
choose to set the initial conditions as

ϕ2 = −5T , ϕ̇2 = 1 , ϕ3 = 0 , ϕ̇3 = 0 . (IV.65)
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Figure IV.6: Time evolution of the NEC-violating field ϕ2 on the left panel, and its time derivative ϕ̇2 on
the right. The dashed line on the left corresponds to ϕ2 = t, which would be the solution in the absence
of ϕ3.
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Figure IV.7: Time evolution of the Hubble expansion rate H. Notice the overall bell shape as well as the
small drop at later times. The input shape Hnecv (fig. IV.3) is here reminded by the dashed line, which
would be the behavior of H in the absence of ϕ3.

That is, the NEC-violation field ϕ2 is assumed to be on its attractor solution, and our choice of ϕ3
potential sets the minimum of ϕ3 at the origin during the period of conserved NEC. Now all the ingredients
are ready to perform the numerical computation.

IV.4.2 Numerical results

We show the result plots in figs. IV.6 to IV.8. The first, fig. IV.6, depicts the trajectories for ϕ2 and its
time derivative ϕ̇2. As can be observed, the overall behavior is close to ϕ2 = t, in accordance to the input
eq. (IV.54) of the reconstruction process, with a transient deviation during the NEC-violating phase. This
indicates that ϕ2 stays closely in the attractor regime discussed in section IV.3.2, despite the additional
ingredient for reheating, which is ϕ3. This justifies our separate treatment of the NEC-violation and
reheating sectors in section IV.3 and confirms the validity of our scenario.

The evolution of the Hubble expansion rate, shown in fig. IV.7, also verifies the desired behavior by
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Figure IV.8: Time evolution of the reheating field ϕ3 on the left, and its time derivative ϕ̇3 on the right.
One can refer to fig. IV.5 to observe that ϕ3 overall follows the target trajectory, and ends up oscillating
on its return to the true minimum of the reheating potential. The latter oscillation is also clearly visible
in the time derivative of ϕ3, as well as the comparatively small initial move to the temporary equilibrium
position.

violating the NEC violation for a finite duration. While the value of H drops toward the end of the NEC
violating period around t ≈ 2.5 · 104, it does not reach its final value immediately, but instead it stays at
a larger value for some time until finally dropping to the NEC-preserving value H0. This is due to the
contribution from the reheating field ϕ3, which is trapped at the local minimum of its effective potential as
illustrated in the bottom panels of fig. IV.5. Except for this small modulation, the overall behavior mimics
the shape of the predetermined Hnecv in eq. (IV.56), which is co-drawn as a dashed curve in fig. IV.7.

Thanks to the NEC violation, ϕ2 effectively stores energy, and the field ϕ3 that is coupled to it in
turn acquires part of the energy to reheat the Universe. For successful reheating and efficient energy
release, it is essential for ϕ3 to actually roll down at the end of the NEC violation and start oscillating
around its true potential minimum. This is the dynamics indeed observed in the numerical evolution as in
fig. IV.8. As seen, the initially stabilized ϕ3 at ϕ3 = 0 is displaced at the beginning of the NEC-violating
phase through its interaction with ϕ2. When H drops around t ≈ 2.5 · 104, ϕ3 is left at the same local
minimum, though its value slightly changes due to the drop. It stays there for some time, during which
its effective potential regains the true minimum at the origin as illustrated in the bottom right panel
of fig. IV.5. Eventually ϕ3 drops toward the minimum and starts the oscillation, which is the moment
reheating occurs. This concludes the concrete demonstration of the reheating mechanism of the Universe
that would otherwise be empty after the relaxation phase of the cosmological constant.

A few consistency checks are in order. First, we ensure that the presence of the NEC violation should
not mess up the relaxation mechanism, namely the condition for no overshooting, eq. (IV.19), needs to be
imposed. Under the current parametrization of the numerics, ∂tϕ2 ≡ M2 ≈ 1, and t is measured in the
units of H−1

1 , and so is ϕ2, where H1 is approximately equal to the value of the Hubble expansion rate
during the NEC violation. Then the condition of eq. (IV.19) translates to

∆ϕ2

H−1
1

.

(
MPl√
3H1

)4m−2
H2

0
M2

Pl
. (IV.66)

In our example numerical computation, ∆ϕ2 for the NEC violation is about a few times 104 in the units
of H−1

1 , and if we take H1 ∼ 1012 GeV ∼ 10−6MPl, assuming a high NEC violating energy scale, we have
H0 = 10−3H1 ∼ 10−9MPl. Then the above condition of eq. (IV.66) is satisfied for m & 1.45, which is
weaker than the theoretical constraint m > 3/2 already imposed (see after eq. (IV.10)). Note that the
realistic value of H0 is much smaller than that taken in our numerical example, and nonetheless the
condition can be met for a larger value of m without difficulty.

Moreover, we can easily verify that the stability conditions against small perturbations are also fulfilled
in our result. Among the no-ghost conditions summarized in eq. (IV.44), the second one, Gϕ > 0, is trivially
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Figure IV.9: Time evolution of the no-ghost condition GS , defined in eq. (IV.43). Its value is observed
to remain positive, satisfying the first no-ghost condition in eq. (IV.44). Note that the other no-ghost
condition is trivially satisfied, see the main text.
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Figure IV.10: The square of the speed of sound, c2
s, remains strictly positive and below unity during the

whole cosmic history, showing the absence of gradient instability and superluminality. The other sound
speed is trivially 1 in our present case.
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satisfied with our choice P ∝ X3 (i.e. Gϕ = M2
Plβ

2
kin), and the first one, GS > 0, is numerically confirmed

in fig. IV.9. On the other hand, the squared sound speeds c2
s obtained in eq. (IV.51) do not invoke any

instabilities. One of the values is trivially unity, c2
χ = 1, in our case, and the other, c2

s = FS/GS + A, is
shown to be bounded by 0 < c2

s < 1 in fig. IV.10 for the entire duration of the computation, and thus
neither gradient instability nor superluminality is present.

The above results therefore show the realization of our target scenario: while ϕ1 operates the relaxation
mechanism of cosmological constant, reviewed in section IV.1.1, the field ϕ2 stably violates the NEC, and
the reheating field ϕ3 moves to a new minimum, before oscillating on its way back to its true minimum
and eventually reheating the Universe.

IV.5 Summary and discussion

This section exhibits a concrete model that both answers to the cosmological constant problem by
dynamically relaxing the CC, and subsequently reheats the Universe (section IV.1). It builds upon
two previous works, [53, 54] and [176], and extends the studies on stability and potential overshooting
issues with numerical confirmation. This work provides a conceptual proof of a system that resolves the
CC problem without fine-tuning.

The model built here is the stable assembly of three components. Firstly, it introduces a scalar field ϕ1
[53, 54] equipped with an atypical kinetic term modulated by an inverse power of the spacetime curvature
invariant, which effectively lets the field ϕ1 roll down and eventually has its potential converge to a tiny,
but positive value. This final value becomes an effective CC. This dynamical relaxation process “feels” the
value of any existing contributions to the CC, including quantum vacuum energy, and fixes the classical
vacuum expectation value of ϕ1 such that it cancels out the CC. The mechanism is not vulnerable to
radiative corrections to curvature either, thus enjoying the advantage of avoiding known fine-tuning issues
associated with CC. However, it also effectively empties the Universe, by diluting its contents such as
radiation and matter by the cosmic expansion. This is by construction an inevitable consequence from
the ϕ1 sector alone, and an additional ingredient is in need for successful cosmology.

Secondly, to resolve this newly introduced issue, two other scalar fields ϕ2 and ϕ3 work together to
violate the null-energy condition and repopulate our Universe. The former field ϕ2 goes through the
dynamics that effectively raises the value of the Hubble expansion rate for transient periods, thus breaking
the null-energy condition. In order to ensure that the NEC violation does not destroy the CC relaxation
mechanism of ϕ1, we impose the condition of eq. (IV.19) to avoid the case in which ϕ2’s motion irreversibly
lets ϕ1 overshoot the zero of the effective CC. We also require the time scale of the former be much shorter
than that of the latter, giving sufficient time for the CC relaxation to operate, and that ϕ2 respects
(approximate) shift symmetry in the regions where the NEC is preserved. Moreover, for the sake of
naturalness with respect to the timing of NEC violation, the field space of ϕ2 is assumed to be periodic
with a period much longer than the duration of a single NEC violation phase. This way our Universe goes
through this phase multiple times and our current Universe merely occurs after many cycles of them. The
field ϕ3 acts as a reheating field that extracts the energy from the NEC violation sector, starts oscillating
after it, and eventually reheats the Universe.

Thirdly, the last component of our model is the gravity sector. It has non-minimal couplings to ϕ1
and ϕ2, as already described. As the metric-only part, together with the standard Einstein-Hilbert term,
our action includes the quadratic term of the Ricci scalar, which stabilizes the CC relaxation sector [53,
54]. These three ingredients together achieve our complete cosmological scenario of CC relaxation, NEC
violation, and reheating, in a stable manner.

In order to concretely realize the desired cosmological history, the model functions need to be fixed, and
we proceed to their reconstruction in section IV.3. While we determine the ϕ2 sector in an unambiguous
manner, the way ϕ3 is included is rather ad hoc. Nevertheless we conduct numerical integration for
the entire system of ϕ2 and ϕ3 (but without ϕ1, for numerical ease) in section IV.4, thus justifying our
methodology and confirming the realization of NEC violation followed by a reheating phase. The stability
conditions against small perturbations are also shown to be respected.

In our numerical example, the energy used for reheating is roughly one order of magnitude smaller
than the energy acquired by the NEC violation in the units of H, as seen in figs. IV.7 and IV.8. This is
basically the limitation due of the concrete implementation we have chosen, and we leave to future studies
the possibility of more efficient energy transfer and higher reheating scale. Moreover, our current choice
of parameters does not accommodate an inflationary phase and thus has no implications (for now) for the
structure formation and cosmic microwave background anisotropies. The connection to these observables
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is beyond the scope of our present work, as satisfying all the stability conditions simultaneously is already
a non-trivial task in the minimal scenario. We would like to return to this issue in the future work.

The current model is based on the Horndeski class of theories to violate the NEC. As an another
possibility, the so-called minimally modified gravity theories [140, 183, 139] could be an interesting
candidate. While this class of theory contains only two degrees of freedom and consequently avoids
instabilities with no difficulty, it nonetheless allows a large freedom for background evolution, not limited
by energy conditions. Our conceptual scenario may thus provide a fertile ground for model buildings.

The concrete model considered in these last sections is an effective theory. Linking it to some more
fundamental UV theory could also lead to an interesting path to explore. That would accomplish a
complete, self-containing solution to the long-standing CC problem. We wish our present study gives one
step forward in healing this conceptual pathology.
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Chapter V

Spherical gravitational collapse

As the first of the two applications of VCDM presented in this work, we will investigate numerically the
gravitational collapse of a massless scalar field in VCDM. For the introduction of VCDM, we refer to the
previous section II.6.1.

It is well-established that GR generates black holes following gravitational collapse. In fact, it is even a
possible test for candidate alternative theories of gravity: can the candidate theory accommodate a black
hole (BH), or at the very least include an object that imitates closely BH. By virtue of its aforementioned
overlap with GR solutions, one may already expect VCDM to admit BH from gravitational collapse as
well, at least in specific foliations of spacetime. On the other hand, unlike GR, the fundamental symmetry
of VCDM is no the 4D diffeomorphism invariance, but the invariance under the foliation-preserving
diffeomorphism (like for HL gravity, which we saw in chapter III). Thusly, one cannot change the time
slicing that is preferred by the theory. In VCDM, different time foliations represent physically different
solutions and, whether or not the apparent horizon (AH) appears before a singularity and a breakdown of
the time foliation carries great importance. A collapsing cloud of dust was recently subject to a numerical
study in ref. [153] and did indeed demonstrate the formation of a black hole, its solution coinciding with a
particular foliation of the Oppenheimer-Snyder collapse in which the AH forms prior to the singularity
and the breakdown of the foliation.

This chapter is articulated around two parts. Firstly, in section V.1, we derive the equations of motion
after assuming a spherically symmetric ansatz. These are simplified by demanding an asymptotically flat
spacetime, allowing us to integrate out the instantaneous shadowy mode and acquire a constant φ and
traceless extrinsic curvature. After specifying relevant boundary conditions and initial conditions, the
equations of motion are integrated. Secondly, we complete our investigation with a numerical study of our
system. The numerical setup, as well as the simulation results, are presented in section V.2. We confirm
the simulation convergence is well-behaved, the appearance of an AH, and the lapse evolution inside the
AH towards zero. Section V.3 ends this chapter with a summary and a discussion of the results obtained.

V.1 Setup

As a matter source, we consider a canonical massless scalar field ψ described by the action

M2
Pl

2

∫
dtd3xN

√
γ
[
(∂⊥ψ)2 − γij∂iψ∂jψ

]
, ∂⊥ ≡ 1

N
(∂t −N i∂i) . (V.1)

Combining eq. (II.21) and eq. (V.1) produces the total action. We shall now start by deriving the EoM
in a spherically symmetric case before defining the setup that will enable us to numerically evolve the
system in section V.2.

V.1.1 Basic equations
In its simplest form, a BH is traditionally expected to respect a spherical symmetry, as the Schwarzschild
metric in GR bears witness. Naturally, we then decide to adopt a spherically symmetric ansatz. In
mathematical terms, this translates as

N = α(t, r) , Nidx
i = β(t, r)dr , γijdx

idxj = dr2 + Φ(t, r)2dΩ2
2 , ψ = ψ(t, r) , (V.2)

where α and β now relate to the lapse and the shift, respectively, and Φ is the areal radius. In parallel, we
also write

φ = φ(t, r) , λ = λ(t, r) , λi
gf∂i = λ̃(t, r)∂r , (V.3)

61



62 Chapter V. Spherical gravitational collapse

where dΩ2
2 is the metric of the unit 2-sphere. In order to simplify the equations of motion, we introduce

trace of the extrinsic curvature Kij , which now reads

K = 2∂⊥ ln Φ − 1
α
∂rβ , (V.4)

where ∂⊥ = (1/α)(∂t − β∂r), as well as the following variables

Q := Kr
r − 1

3K = −2
3

(
∂⊥ ln Φ + 1

α
∂rβ

)
, P := ∂⊥ψ , a := ∂r lnα , (V.5)

where Ki
j is obtained by using the spatial metric, i.e. Ki

j = γikKkj .
Given this ansatz, the position of an AH, r = rAH, can be found by solving1

gΦΦ∣∣
r=rAH

= 0 , (V.6)

where
gΦΦ ≡ −(∂⊥Φ)2 + (∂rΦ)2 = −1

4Q
2Φ2 + (∂rΦ)2 . (V.7)

Equations (V.6) and (V.7) represent a known result that is explained again in appendix A. The EoM
entirely determine the Lagrange constraints λ and λ̄, and we can thus formulate the in the subsequent
EoM. These can be categorized into different types. There are three nondynamical equations, which read

∂2
r Φ
Φ = 1 − (∂rΦ)2

2Φ2 − 3
8Q

2 − 1
4P

2 − 1
4(∂rψ)2 − 1

2V (φ) + 1
6φ

2 , (V.8a)

∂rQ = −3Q∂r ln Φ + P∂rψ , (V.8b)
∂rφ = 0 , (V.8c)

and the five the dynamical equations are

∂tψ = αP + β∂rψ , (V.9a)
∂tP = α

(
−KP + ∂2

rψ + (a+ 2∂r ln Φ)∂rψ
)

+ β∂rP , (V.9b)

∂tΦ = α

(
1
3K − 1

2Q
)

Φ + β∂rΦ , (V.9c)

∂tQ = α

(
−KQ− 1

4Q
2 + 2

3(a2 + ∂ra− a∂r ln Φ) + 1 − (∂rΦ)2

Φ2 − 1
6P

2 + 1
2(∂rψ)2

+1
9φ

2 − 1
3V (φ)

)
+ β(P∂rψ − 3Q∂r ln Φ) , (V.9d)

∂tφ = α

(
−a2 − ∂ra− 2a∂r ln Φ + 3

2Q
2 + P 2 + 1

3φ
2 − V (φ)

)
. (V.9e)

Two of the nondynamical equations are derived from the definitions of (a,Q,K) and give the first spatial
derivative of the lapse and the shift as

∂r lnα = a , (V.10)

∂rβ = −α
(
Q+ 1

3K
)
. (V.11)

Two extra nondynamical equations are obtained by requiring that the time derivative of the constraints
be consistent with spatial derivatives of the dynamical equations as

∂2
rK = −2(a+ ∂r ln Φ)∂rK

−
(
a2 + ∂ra+ 2a∂r ln Φ − 3

2Q
2 − P 2 − 1

3φ
2 + V (φ)

)(
K + φ− 3

2V
′(φ)

)
,

(V.12)

∂2
ra = −3a∂ra+ a

(
(∂rΦ)2 − 1

Φ2 + 9
4Q

2 + 3
2P

2 + 1
2(∂rψ)2

)
− 2a2∂r ln Φ − a3

+ P (3Q∂rψ + 2∂rP ) − 9Q2∂r ln Φ + 2(a∂r ln Φ − ∂ra)∂r ln Φ . (V.13)

1For more details on this, consult subsection III B in [153] and/or subchapters 2.4 and 5.1.7 in [184].
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Finally, the extra equations that determine the Lagrange multipliers λ and λ̃, and which we can make use
to remove any depedence in these, are

λ = −2
3(K + φ) , ∂rλ̃+ 2λ̃∂r ln Φ = −

(
2
3(K + φ) − V ′(φ)

)
α . (V.14a)

We are interested in evolving the nine variables ψ, P , Φ, Q, φ, α, β, K and a. The two Lagrange
multipliers λ and λ̃ do not appear in any of the eqs. (V.8a) and (V.13). Hence, we shall not consider them
anymore.

V.1.2 Integrating out shadowy mode
In actual numerical studies, we restrict our considerations to the situation where the solution far from the
center approaches a flat spacetime in the standard Minkowski slicing without excitations of the scalar
field ψ. In vacuum (or for ψ = const.), the theory admits a flat spacetime in the standard Minkowski
slicing without spontaneous breaking of the spatial diffeomorphism invariance (and thus with λ̃ = 0) if
and only if φ = φ0, where φ0 is a constant that simultaneously satisfies

V ′(φ0) = 2
3φ0 , (V.15)

V (φ0) = 1
3φ

2
0 . (V.16)

One can see eq. (V.15) as the definition of φ0 and eq. (V.16) as the condition setting the effective
cosmological constant to zero. The latter can be achieved by tuning a constant in V (φ). Since eq. (V.8c)
says that φ is independent of r, the assumed asymptotic condition that the solution should approach the
flat spacetime far from the center implies that φ = φ0 everywhere, where φ0 is defined through eq. (V.15),
and that the effective cosmological constant should be set to zero as in eq. (V.16).

In this case, eqs. (V.9e) and (V.12) are greatly simplified and respectively become

∂ra = −a2 − 2a∂r ln Φ + 3
2Q

2 + P 2 (V.17)

∂2
rK = −2(a+ ∂r ln Φ)∂rK . (V.18)

As φ is no longer dynamical, the previously dynamical eq. (V.9e) for φ has been downgraded to a
nondynamical eq. (V.17) for a. Because of this, eq. (V.13) will no longer be listed; it simply follows from
the other equations.

The equation eq. (V.18) for K can be integrated once to give

∂rK(t, r) = f1(t)
α(t, r)Φ(t, r) , (V.19)

where f1(t) is an arbitrary function of t. The regularity of the solution at r = 0, where Φ(t, r = 0) = 0,
requires that α(t, r = 0) 6= 0 and that ∂rK(t, r = 0) = 0. Therefore, the regularity of the center r = 0
sets f1(t) = 0 and thus ∂rK(t, r) = 0 and K(t, r) = f0(t), where f0(t) is an arbitrary function of t. As
already stated, we assume that the solution far from the center approaches a flat spacetime in the standard
Minkowski slicing without excitations of the scalar field ψ. This implies that K(t, r) should vanish at the
spatial infinity, meaning that f0(t) = 0 and K(t, r) = 0. This way, we have successfully integrated out the
so-called shadowy mode, avoiding the corresponding boundary value problem.

V.1.3 Nondynamical Q
Integrating out the shadowy mode simplifies the EoM. For practical reasons —and we shall do so in the
subsequent numerical computations of section V.2— one can downgrade Q from a dynamical variable to
a nondynamical one by abandoning eq. (V.9d) and instead using eq. (V.8b) to determine the evolution of
Q. In this case, the dynamical equations, with the shadowy mode removed, are thus reduced to

∂tψ = αP + β∂rψ , (V.20a)
∂tP = α

(
∂2

rψ + (a+ 2∂r ln Φ)∂rψ
)

+ β∂rP , (V.20b)

∂tΦ = −1
2αQΦ + β∂rΦ , , (V.20c)
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and the nondynamical equations, with eq. (V.8b) now incorporated, become

∂rQ = −3Q∂r ln Φ + P∂rψ , (V.21a)
∂r lnα = a , (V.21b)
∂rβ = −αQ , (V.21c)

∂ra = −a2 − 2a∂r ln Φ + 3
2Q

2 + P 2 . (V.21d)

After downgrading eq. (V.8b), we only keep eq. (V.8a). It now reads

∂2
r Φ
Φ = 1 − (∂rΦ)2

2Φ2 − 3
8Q

2 − 1
4P

2 − 1
4(∂rψ)2 . (V.22)

For convenience, we can reformulate this constraint and define the derived quantity C as

C := ∂2
r Φ + (∂rΦ)2 − 1

2Φ +
(

3
8Q

2 + 1
4P

2 + 1
4(∂rψ)2

)
Φ . (V.23)

Therefore, if the constraint of eq. (V.22) is respected, C must remain identically zero. Deviations from
zero will later enable us to observe and quantify the numerical convergence.

Moreover, as K has now reduced to a constant (actually 0), it follows from eq. (V.14a) that λ also
does so. Accordingly, the solutions to eqs. (V.20) to (V.22) will, in fact, be exact GR solutions. We
are interested in whether or not an AH appears, and if it does, before or after breakdown of the time
foliation and formation of a singularity. We reiterate that in GR, a change of the spacetime foliation
could reverse the order of these events. However, different foliations in VCDM correspond to physically
different solutions. Any singularity or breakdown of the time foliation, once appeared in VCDM, cannot
be circumvented by a change of the time slicing.

V.1.4 Boundary conditions
We need to be careful about the boundary condition at the center of spherical symmetry, where Φ = 0.
By redefinition of the radial coordinate r, we set

Φ(t, r = 0) = 0 , (V.24a)
Φ(t, r > 0) > 0 (V.24b)

so that the center of spherical symmetry is at r = 0 and that we consider the region r ≥ 0. For the
regularity of the center we require ψ, P , Q, α to be even functions of r and Φ, β and a to be odd functions
of r. Furthermore, eq. (V.22) implies that

∂rΦ(t, r = 0) = 1 (V.25)

and eq. (V.21a) implies that
Q(t, r = 0) = 0 . (V.26)

Then, once ψ, P , Φ, Q, α, β and a are Taylor expanded with respect to r, the right hand sides of all
relevant eqs. (V.20a) to (V.20c), (V.21) and (V.22) are well-defined in the limit r → +0 and can also be
Taylor expanded with respect to r. As a consistency check, one can show that the right hand sides of
eqs. (V.20a), (V.20b), (V.21c), (V.21d) and (V.22) are even functions of r and that the right hand sides
of eqs. (V.20c), (V.21a) and (V.21b) are odd functions of r. Similarly as before, by using the r → +0
limits of eqs. (V.21c) and (V.22), respectively, one can also show that the first r-derivative of the right
hand side of eq. (V.20c) vanishes at r = 0.

We now introduce an outer boundary at r = rb and hereafter consider the region 0 ≤ r ≤ rb. In
order to evolve (ψ, P,Φ) by using the dynamical eqs. (V.20a) to (V.20c), we need to impose appropriate
boundary conditions on the outer boundary at r = rb. If rb is large enough then we can demand

ψ(t, rb) = 0 , (V.27)
P (t, rb) = 0 , (V.28)

∂2
r Φ(t, rb) = 0 . (V.29)
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Up to now, the overall normalization of α is not fixed, correspondingly to the fact that the theory enjoys
the time reparametrization symmetry. We fix it by imposing on the lapse

α(t, r = rb) = 1 (V.30)

so that the time t agrees with the proper time measured by an observer at the outer boundary. Equa-
tions (V.21c) and (V.21d) for the shift and the acceleration a do not require additional boundary conditions
since the fact that β and a are odd functions of r already imposes β(t, r = 0) = 0 = a(t, r = 0).

V.1.5 Initial condition

We consider the following initial condition at the initial time t = t0:

P (t0, r) = 0 , Q(t0, r) = 0 , α(t0, r) = 1 , β(t0, r) = 0 , a(t0, r) = 0 , (V.31)

and
ψ(t0, r) = ψ0(r) , Φ(t0, r) = Φ0(r) . (V.32)

We localize the initial scalar field ψ(t0, r) =: ψ0 at some fixed r0 (effectively forming a “shell”), and we
choose to practically model this as

ψ0(r) = A exp
(

− (r2 − r2
0)2

s4

)
. (V.33)

The constants A, r0 and s determine the amplitude, starting position, and width of the initial wave packet
respectively. Having defined ψ0, the constraint of eq. (V.22) implies that Φ0(r) is the solution to

∂2
r Φ0

Φ0
= 1 − (∂rΦ0)2

2Φ2
0

− 1
4(∂rψ0)2 (V.34)

with the boundary conditions
Φ0(r = 0) = 0 , ∂rΦ0(r = 0) = 1 . (V.35)

V.2 Numerical integration

This section now gives the results from numerically integrating the system we have just described. It
begins by explaining the schematics of the integration and stating the parameter choice for the initial
conditions. We then go on by presenting the simulation results and confirm the creation of an AH. Finally,
we make a short parenthesis to explore varying the initial conditions.

V.2.1 Setting up the computations

The dynamics of the collapse are fully described by three dynamical equations for ψ, P and Φ and four
nondynamical ones for α, β, a and Q. We solve the system of equations defined by eqs. (V.20a) to (V.20c),
(V.21) and (V.22) with the boundary conditions and initial conditions formulated in sections V.1.4
and V.1.5. In order to remain consistent, the nondynamical equations must be solved at every time
evaluation. Starting from the initial time t = t0, the initial condition must satisfy the eq. (V.22) and
the nondynamical eqs. (V.21) and (V.21a). We then evolve ψ, P and Φ to the next time step t = t1 by
using the dynamical eqs. (V.20a) to (V.20c). In order to obtain α, β, a and Q at t = t1, we integrate the
nondynamical eqs. (V.21) and (V.21a) on the time slice t = t1. At this point, the numerical accuracy of
the solution may be gauged by checking how well the data on the time slice t = t1 satisfies the constraint
(eq. (V.22)). The numerical scheme can then be advanced to the next time step by repeating the same
procedure.

Unless stated otherwise, the initial field ψ is given by an even Gaussian wave packet of height A = 0.15
and a width characterized by s = 4 positioned at r0 = 10. An outer boundary rb of the system is placed
far from the origin r = 0 and the initial wave packet, to prevent it from disturbing the collapsing process
and to best simulate an asymptotically flat spacetime. In our case, rb = 80 was used. Larger or slightly
smaller values yield equivalent results. Space and time are uniformly discretized into intervals of size ∆r
and ∆t, respectively. We decide here to keep the ratio ∆t/∆r = 0.2 constant. A smaller ratio would also
have been acceptable, but if ∆t is too large relative to ∆r, the system may become unstable.
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To prevent instabilities from jeopardizing the computations, we also adopt two additional safety
measures. Firstly —and most importantly— we use a series expansion near 0 to approximate the first
integration points of the nondynamical fields (see also section V.1.4). This significantly helps in taming
down numerical errors that are prone to appear near the origin. Secondly, we also include a Kreiss-Oliger
dissipation term [185], to mitigate high-frequency instabilities. As is standard, it is chosen to be two
orders higher than the convergence order of the spatial numerical derivatives.

The simulation was executed with different integration schemes with consistent result. As an extra
sanity check the quantity C, defined in eq. (V.23), was continuously and carefully surveilled to ensure it
remained sufficiently small throughout the simulation. A more quantitative examination of C was also
carried out, as demonstrated by fig. V.1. While the overall shape of C remains unchanged (left plot), the
amplitude of C is inversely proportional to the square of the time step ∆t or, equivalently, the spatial gap
∆r (right plot). The quadratic convergence is expected as the code uses Heun’s method, a second-order
method, to integrate the nondynamical equations in space. A fourth-order method was used to compute
spatial derivatives and integrate in time. At the time, the same code was used satisfactorily in previous
works [186, 49].
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Figure V.1: The left plot displays the constraint C, as defined in eq. (V.23), divided by the square of the
time step ∆t, versus the radius r, for two different values of ∆t. We reiterate that ∆t = 0.2∆r. As the
shape remains unchanged for the two values of ∆t, we conclude that C ∝ (∆t)2 and that the numerical
convergence is of quadratic order as expected. The right plot portrays the average absolute value of C
for 5 ≤ r ≤ 15 (the region in the left plot for which C clearly is non-zero) against ∆t. A simple linear
fit neatly illustrates the quadratic convergence order. The fit is here restricted to ∆t ≥ 10−3 values in
order to avoid the small numerical noise that starts seeping in at lower step sizes (the excluded points are
highlighted above). Both plots are generated at time t = 2. Albeit early after the numerical resolution is
engaged, choosing different times t does not affect the convergence order.

V.2.2 Simulation results

We now turn to the physical quantities thus obtained. Figure V.2 shows the areal radius Φ as a function
of r for some selected times t. Notice that one of the displayed times, in this figure and the subsequent
ones, is t ≈ 14.1. As we shall explain in section V.2.3, this corresponds to the AH formation time. At
t = 0, we observe that Φ ≈ r. As time proceeds, it only retains this behavior near r = 0, in accordance
with eq. (V.24), falling and settling down into a plateau elsewhere. Henceforth, we shall employ Φ as an
effective radial coordinate to display how the other quantities behave. Henceforth, we shall use Φ as an
“effective radius”. The height of its plateau, Φpl. ≈ 0.65, echoes in the other quantities, as the subsequent
figures show.
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Figure V.2: The areal radius Φ plotted against the proper distance r from the center, at different times t.
One may observe the boundary conditions established in section V.1.4 in the shape of Φ. Following the
fall of the right side of Φ, a plateau forms around Φpl. ≈ 0.65.

The other two dynamical quantities ψ and P are given for different times in fig. V.3. For the initial
conditions prescribed, the auxiliary scalar field ψ starts by splitting into two parts. One moves out to
r = ∞ and vanishes, while the other falls to the origin r = 0 under its self-gravity and eventually settles
near r = 0. Naturally, this foreshadows an AH formation (see section V.2.3). Similar behavior is observed
for the related variable P (:= ∂⊥ψ, as defined in eq. (V.5)).
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Figure V.3: The auxiliary field ψ (left) and P (right) against the areal radius Φ for different values of
time t. The two sharo changes seen at t = 25 — the dip under zero for ψ and the sharp turn for P —
are located around Φ = Φpl.. For the chosen range in Φ, the split of ψ is not explicitly observable (as
r0 = 10).

In parallel, the results for the nondynamical fields are given in fig. V.4. One can observe how the lapse
α and the shift β collapse to zero below the threshold value of Φpl.. Far from the origin, an asymptotically
flat value is manifestly recovered for both quantities. The variables a and Q simultaneously spike around
the same threshold value of Φpl..



68 Chapter V. Spherical gravitational collapse

2 4 6 8 10

0.5

1

Φpl.
Φ

α

2 4 6 8 10

1

2

Φpl.
Φ

a t = 0 t = 5
t = 10 t = 15
t = 20 t = 25

2 4 6 8 10

−0.6

−0.4

−0.2

Φpl. Φ

β

2 4 6 8 10

0.5

1

1.5

Φpl.
Φ

Q

Figure V.4: All four nondynamical fields α, a, β and Q, here plotted against the areal radius Φ at different
times t.

V.2.3 Apparent horizon formation

The quantity gΦΦ (defined in eq. (V.7)) is shown for different times in the left plot of fig. V.5. As the
behavior of ψ already suggested (see fig. V.3), the collapse does in fact yield an AH, which occurs when
gΦΦ crosses zero. This condition is satisfied at t ≈ 14.1, as the right plot of fig. V.5 shows. Furthermore,
in fig. V.4, one can deduce that α and β have not yet collapsed down to 0 at the time of the crossing,
implying that the AH indeed forms before any singularity does. Eventually, as the lapse and shift inside
the AH evolve towards zero, gΦΦ settles with a minimum around Φpl. ≈ 0.65 and an outermost crossing of
zero near Φ ≈ 0.88. This constitutes the main achievement of this work, namely that the gravitational
collapse of a massless scalar field in VCDM results in the manifestation of an AH before the breakdown of
the time foliation. The final stage of the collapse appears to be a static and stationary black hole.
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Figure V.5: The left panel gives gΦΦ at different times and demonstrates the creation of an AH eq. (V.6).
At late time, gΦΦ settles with a minimum around Φpl. and an outermost crossing near Φ ≈ 0.88. The right
panel details the minimum of gΦΦ as a function of time and portrays how the horizon forms at t ≈ 14.1,
at the “crossing”. A careful reader may wonder about the small cusp near t ≈ 4.1: it is a consequence of
ψ splitting into two at the beginning.
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V.2.4 Parameter variation

Until now, we have fixed the initial scalar field parameters of ψ0 as defined in eq. (V.33) to A = 0.15
and s = 4. However, depending on the values assigned to these two parameters, an AH may or may not
form. The parameter space where an AH does appear is illustrated in fig. V.6. A decrease in A and/or an
increase of s may both “dilute” the scalar field enough to allow it to bounce back around the origin before
any AH appears or the time slicing breaks down. The scalar field in such a situation is illustrated in the
left plot of fig. V.7 for s = 8. The right plot of the same figure makes the AH non-formation evident: gΦΦ

never crosses zero.
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Figure V.6: The minimal value (in time and space) that gΦΦ reaches before t = 30, which, given that the
initial wave packet ψ is placed at r0 = 10, is enough time to determine whether a horizon forms or not
(See eq. (V.6)). The black cross indicates the A = 0.15 and s = 4 parameter pair that was previously used,
while the black line approximately delimits min(gΦΦ) = 0. The range in A was uniformly sampled in 301
points from 0.0 to 0.3, while the values in s were sampled in 176 points uniformly spread from 2.0 to 9.0.
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Figure V.7: Evolution of the scalar field ψ for A = 0.15 and s = 8 on the left. Observe how the packet
moves toward the origin before bouncing back. At t = 25, the bulk is mostly out of the represented range.
The right plot gives min(gΦΦ) for the same configuration. Naturally, no AH forms (i.e. ∀t : gΦΦ > 0)

V.3 Summary and discussion

As is well-known, a gravitational collapse in the framework of GR leads to the formation of a black
hole, a trapped region of spacetime bounded by a marginally outer trapped surface, called the apparent
horizon. Deviations from this picture may lead to contradictions with various observations such as GWs
and BH shadows. So, whether an alternative theory of gravity admits black holes or not is often used as
a litmus test for its validity. It has been previously shown in ref. [154] that a subset of the solutions of
VCDM coincides exactly with solutions in GR when the 3+1-decomposition admits a constant trace of



70 Chapter V. Spherical gravitational collapse

the extrinsic curvature. This subset of VCDM solutions consists of those for which the auxiliary field φ
and Lagrange multiplier λ are constant. Reassuringly, [153] shows that the spherical gravitational collapse
of a homogeneous cloud of dust in VCDM coincides with a foliation of the Oppenheimer-Snyder collapse
in GR for which indeed the aforementioned criteria are satisfied.

In the continuation of [153], we have numerically investigating the collapse of a massless scalar field in
VCDM, in hopes of observing the formation of a black hole and whether its horizon appears before or after
any singularity or foliation breakdown. Starting from a spherically symmetric ansatz of the metric and
other relevant quantities in the total action (eq. (VI.2)), we derive the equations of motion. By requiring
vacuum flat spacetime in the standard Minkowski time slicing at infinity, regularity at r = 0, it has been
shown that φ to be constant and the trace of the extrinsic curvature to vanish. Equation (V.14a) then
further implies a constant λ. Hence, the sufficient conditions are satisfied for solutions of this system to
coincide with ones in GR in the specified time foliation.

The equations of motion reduce to a constraint eq. (V.22), three dynamical ones, eqs. (V.20a) to (V.20c),
and four nondynamical ones, eqs. (V.21) and (V.21a). These were integrated with the boundary conditions
in section V.1.4 and initial conditions in section V.1.5. Furthermore, the quantity C of eq. (V.23) was
used for assessing the numerical accuracy of the integration. The production of an AH was deduced by
observing gΦΦ as defined in eq. (V.7) and solving eq. (V.6). For stability purposes, the meshing in time
and space was chosen such that ∆t/∆r = 0.2. Moreover, possible short-distance instabilities were tamed
by implementing Taylor expansions near the origin and the Kreiss-Oliger dissipation term.

First and foremost, as a second-order method —Heun’s method— was employed in space, it is reassuring
that fig. V.1 portrays a quadratic convergence of the error. Secondly, as seen in fig. V.5, the solutions
to eqs. (V.20a) to (V.20c) and (V.21a) to (V.21d) indeed lead to the formation of an AH. Concurrently
considering fig. V.4, the lapse α and shift β are everywhere non-zero at the time of the AH formation,
meaning the foliation preferred by the theory fully describes spacetime inside the black hole at the time
of its formation. As the simulation proceeds, α and β evolve towards zero in a finite region inside (but
not up to) the AH. The proper time in this region proceeds slower and slower than that measured by
an observer far away at infinity as the universe evolves, eventually standing still. In other words, the
breakdown of the time foliation inside the AH is in the process, though from the perspective of an observer
outside the AH, it will take infinitely long for it to actually happen. This is by all means not an issue, as
there is also an infinite amount of time for the universe to evolve in VCDM. It does however imply that a
UV-completion of the theory is needed to fully describe the inside of the black hole.

As previously mentioned, [154] tested the corresponding Oppenheimer-Snyder case; this paper proceeded
with studying a collapsing massless scalar field. We have observed the creation of a black hole, its AH
forming prior to breakdown of the time foliation and the formation of the singularity. There would be
many possible future research paths. In the future, one could consider a collapsing star made up of more
realistic matter, such as a fluid, or adding further layers of properties, such as charge or angular momentum.
However, this would drastically complicate the dynamics of the collapse. Any form of non-symmetrical
dynamics — rotating black holes, black hole and neutron star binaries, GWs — may prevent φ from being
constant in time. This would yield non-GR solutions of VCDM, which necessarily need to be studied if
the theory is to be fully explored.



Chapter VI

Bouncing Universe

As previously described (section I.3.6), inflation [69, 70, 71] has proven to be a very successful framework
to simultaneously answer several major cosmological questions, e.g. the horizon problem, the flatness
problem and the origin of primordial fluctuations. Its paradigm is robust enough to pass high-precision
observational tests such as the one presented by the cosmological microwave background (CMB) [72].
However, while phenomenologically satisfying, inflation also leaves us with a set of unanswered questions
like the initial singularity [187, 188, 74] and the trans-Planckian problem [63, 65].

A popular alternative approach is the bouncing universe. That is a scenario of the universe where the
cosmic expansion we are now observing was preceded by a contracting phase. The turning point between
the two dynamics being called the “bounce”. In this case, the cosmic history is extended further in the
past and gives a natural explanation for causal-connectedness. By introducing this pre-bounce history,
the smoothness and flatness problems, as well as the horizon problem, are thus non-issues [65, 189, 190,
191, 64]. Therefore, a bouncing universe does not suffer from the aforementioned issues of inflation, while
answering the same concerns the inflationary approach was built to address.

Noticeably, general relativity (GR) does not admit any bouncing solution under the NEC (section I.3.8).
Therefore, if the Universe has to undergo a bounce, it must be described by an extended theory of gravity
or by a non standard matter content. Several attempts have been made, within different frameworks to
invoke such a cosmic history, in e.g. f(T ) gravity [192], DHOST [193, 194] or Hořava-Lifshitz gravity
[195], using a quintom matter field [196], a Cuscuton field [197, 198], and others.

However, constructing viable bouncing models is a challenge. First, due to the violation of the NEC,
these models tend to suffer commonly from ghost or gradient instabilities. Within the Horndeski framework
[32, 31, 33], that has led to a no-go theorem [181, 182], and a similar result [199] holds in k-essence models
[102, 103] as well. Nevertheless, these limitations have not prevented the development of a healthy bounce
without ghost or gradient instability near the bounce [200, 201] 1.

Alternatively, these issues can be avoided by working within more general frameworks like ghost
condensation [204, 205] and beyond Horndeski/DHOST models [206, 207], as also suggested by the
effective field theory of cosmological perturbations [208, 209]. Another issue is the anisotropic stress, or
the Belinski-Khalatnikov-Lifshitz (BKL) instability [210]. Besides the conceptual problems the current
observations set strict constraints on the scalar spectral index, ns ≈ 0.96, while the tensor-to-scalar ratio
must respect the bounds of r0.05 < 0.036 (95% CL) [211]. Naturally, a healthy bouncing scenario must
account for these observations. However, while for instance the matter bounce is successful in obtaining an
almost scale invariant power spectrum [212, 213], it breaks the bounds on the tensor-to-scalar ratio. Indeed,
a conjectured no-go theorem [214, 215, 216] forbids a naive single scalar-field (k-essence CITE) matter
bounce to simultaneously satisfy the requirement of a nearly scale-invariant scalar power spectrum, and
the tensor-to-scalar ratio bounds, without producing excessive non-Gaussianities. Introducing additional
scalar fields can reconcile the matter bounce via the curvaton mechanism [196].

In the present chapter, we build and exhibit a full and concrete model of a bouncing universe scenario,
conceived within the formalism of the minimally modified gravity (MMG) [140, 183, 139].

When applied to the very early universe, the VCDM model has the advantage, by construction, to
provide the freedom to realize this bouncing scenario as well as safely return to GR after the bounce. It
evades the aforementioned no-go theorems, yet provides just enough of a framework to violate the null
energy condition, similarly to what was shown recently with Cuscuton [197]. As recently demonstrated
in ref. [154], any solutions of the Cuscuton model [144] are solutions of the VCDM model. However, as
shown in the same paper [154], the VCDM also admits other solutions, such as GR solutions. Furthermore,

1Another model based on the cubic Galileon action was also put forward [202] with limitations [203] however.

71
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the framework of VCDM greatly simplifies the reconstruction of the potential in the Lagrangian from
background cosmological histories, as already shown in ref. [139] for general expanding backgrounds.
Within the present study, we shall consider whether the scalar power spectrum is (almost) scale invariant
at superhorizon scales, as well as investigate the tensor-to-scalar ratio, so that these observables are indeed
compatible with the observations.

This chapter is organized as follows. The general formulations of the background and linear perturba-
tions of the tensor, vector and scalar modes in VCDM (model introduced in section II.6.1) are derived in
sections VI.1 and VI.2, respectively. In section VI.3, a concrete bouncing dynamics is implemented in the
model, and the predictions of the scalar and tensor power spectra are computed. Section VI.4 is devoted
to discussions and conclusions of this chapter.

VI.1 Background bouncing solutions

We consider the action of VCDM given in eq. (II.21) to which we add a matter field that evolves on the
background. This field is here modelized by a (shift-symmetric) k-essence type of field, explicitly

Smatter = M2
Pl

∫
d4xN

√
γ P (X) , X ≡ −1

2 g
µν∂µχ∂νχ = 1

2

[
(∂⊥χ)2 − γij∂iχ∂jχ

]
, (VI.1)

where ∂⊥χ ≡ nµ∂µχ. We have chosen here to normalize the matter sector such that M2
Pl multiplies the

entire matter action. The total action is thus

S = SVCDM + Smatter . (VI.2)

Since the VCDM alone has only 2 (tensor) DoF, the introduction of the matter sector is essential to
generate scalar perturbations, which eventually seed the structure formation in the universe.

By considering a homogeneous and isotropic background, we can write the background quantities as

N = N̄(t) , N i = 0 , γij = a2(t) δij , ϕ = φ(t) ,
λi = 0 , λ0 = λ̄(t) , χ = χ̄(t) .

(VI.3)

Then the variations of the action (VI.2) with respect to N̄ , λ̄, φ, a, χ̄ lead, respectively, to

3H2 = V + φλ̄+ 3
4 λ̄

2 + 2XPX − P , (VI.4a)

0 = 3H + φ+ 3
2 λ̄ , (VI.4b)

0 = λ̄+ Vϕ , (VI.4c)

2 ∂tH

N̄
+ 3H2 = V + φλ̄+ 3

4 λ̄
2 − ∂tλ̄

N̄
− P , (VI.4d)

0 = (PX + 2XPXX) 1
N̄
∂t

(
∂tχ̄

N̄

)
+ 3HPX

∂tχ̄

N̄
, (VI.4e)

where H is the Hubble expansion rate of eq. (I.26), and V , X and P (and their derivatives) are all
evaluated at the background values. After some manipulations, the above equations, they can be rewritten
in a more convenient form as

0 = V − φ2

3 + ρχ , ρχ := 2XPX − P , (VI.5a)

0 = 3H + φ− 3
2 Vϕ , (VI.5b)

0 = λ̄+ Vϕ , (VI.5c)

2 ∂tH

N̄
= Vϕϕ

∂tφ

N̄
− (ρχ + P ) , (VI.5d)

0 = 1
N̄
∂t

(
∂tχ̄

N̄

)
+ 3c2

sH
∂tχ̄

N̄
, c2

s := PX

PX + 2XPXX
, (VI.5e)

provided that PX + 2XPXX 6= 0.



VI.2. Linear perturbations 73

Combining the time derivative of eqs. (VI.5b) and (VI.5d) in the above expressions, we find

∂tφ

N̄
= 3PXX = 3

2 (ρχ + P ) . (VI.6)

Also note that, as standard, eq. (VI.5e) can be rewritten as

∂tρχ

N̄
+ 3H (ρχ + P ) = 0 . (VI.7)

Combining these last two expressions, eqs. (VI.6) and (VI.7), one can formally write

φ = 3
2

∫ t

N̄dt′ (ρχ + P ) = −1
2

∫ t

dt′ ∂t′ρχ

H
. (VI.8)

For our purpose, we consider from now on a matter species with a constant equation of state
w := P/ρχ = const.. This can be realized by choosing P (X) as

P = P0 X
1+w
2w = P0 X

γ
2(γ−3) , γ := 3(1 + w) , (VI.9)

where P0 is some constant. Then we observe the energy density of χ behaves as a matter with equation of
state w, i.e.,

ρχ = ρ0

(a0

a

)γ

, (VI.10)

where subscript 0 denotes values at some fiducial time.

VI.2 Linear perturbations

We now consider perturbations around the background eq. (VI.3). We expand the lapse, shift and 3-D
metric as

N = N̄(t) (1 + ν) , N i = N̄(t)
a(t) (∂iβ +Bi) , γij = a2(t) e2ζ

[
δij + 2∂i∂jE + 2∂(iEj) + hij + 1

2 hikhkj

]
,

(VI.11)
where {ν, β, ζ, E} are scalar perturbations, {Bi, Ei} are vectors (∂iBi = ∂iEi = 0), and {hij} are tensors
(∂ihij = h[ij] = hii = 0), and they all depend on both time and space coordinates. We also expand the
auxiliary fields {ϕ, λ0, λ

i} and the matter field χ as

ϕ = φ(t)+δϕ(t,x) , λ0 = λ̄(t)+δλ0(t,x) , λi = 1
a2 [∂iδλs(t,x) + δλi(t,x)] , χ = χ̄(t)+δχ(t,x) ,

(VI.12)
where ∂iδλi = 0. The theory eq. (VI.2) under consideration does not respect the symmetry under
the temporal coordinate transformation but still preserves the spatial diffeomorphism. Under the
transformation

xi → xi + ξi(x) , (VI.13)

each variable transforms by the amount, at the linear order,

∆E = a2ξL , ∆Ei = a2ξi
T ,

∆ν = ∆β = ∆ζ = ∆Bi = ∆hij = ∆δϕ = ∆δλ0 = ∆δλs = ∆δλi = ∆δχ = 0 ,
(VI.14)

where ξi has been expanded as
ξi = ∂iξL + ξi

T , ∂iξ
i
T = 0 . (VI.15)

As can be seen, the hij components are gauge-invariant, as in GR. Additionally, ν and ζ are also
independent of the 3-D spatial gauge choice.2 We now use the freedom of ξL and ξi

T to fix the gauge by
setting

E = Ei = 0 , gauge choice . (VI.17)

2For 4-D transformation xµ → xµ + ξµ, writing ξ0 := N̄ξ0, the variables transform as

∆ν =
∂tξ0

N̄
, ∆β =

a

N̄
∂tξL−ξ0 , ∆ζ = Hξ0 , ∆E = a2ξL , ∆Bi =

a

N̄
∂tξi

T , ∆Ei = a2ξi
T , ∆hij = 0 , ∆δχ =

∂tχ̄

N̄
ξ0 .

(VI.16)
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Then, we work through the calculations for the following variables:

Scalar modes: ν, β, ζ, δϕ, δλ0, δλs, δχ ,

Vector modes: Bi, δλi ,

Tensor modes: hij ,

among which all scalar modes, but one, and all vector modes are nondynamical modes (i.e. they appear in
the action without time derivatives, up to total derivatives). On top of that, due to the peculiar constraint
structure of MMG, one of the remaining scalar degrees of freedom is also nondynamical. Therefore, at the
end of the day, we have the following number of propagating (dynamical) degrees of freedom:

Scalar: 1 DoF ,

Vector: 0 DoF (all nondynamical) ,
Tensor: 2 DoF .

This counting is the same as in GR (+ one matter DoF). Subsequently, we perform the perturbative
analysis of the quadratic action for each sector separately.

VI.2.1 Tensor sector

In what follows, we use the conformal time τ (akin to setting N̄ = a, see section I.3.4). The tensor sector
{hij} is essentially the same as GR. Decomposing hij into polarization modes in the Fourier space, it
reads

hij(τ,x) =
∑

σ

∫ d3k

(2π)3/2 eik·x Πσ
ij

(
k̂
)
hσ(τ,k) , (VI.18)

where we now used the conformal time τ , and where Πσ
ij is the polarization tensor for the 2 polarization

modes, satisfying

δijΠσ
ij

(
k̂
)

= k̂iΠσ
ij

(
k̂
)

= 0 , Πσ
ij

(
k̂
)

Πσ′ ∗
ij

(
k̂
)

= δσσ′
, Πσ ∗

ij

(
k̂
)

= Πσ
ij

(
− k̂
)
, (VI.19)

and these modes are decoupled at the linear order. Thanks to these properties and the reality condition
of hij(t,x), we see h†

σ(k) = hσ(−k). Then the quadratic action for hσ(τ,k) reads

S
(2)
T = M2

Pl
8
∑

σ

∫
dτ d3k a2 [|h′

σ|2 − k2 |hσ|2
]
. (VI.20)

where the prime (′) denotes a derivative with respect to conformal time. To obtain this, there is no use of
background equations. The tensor sector is as standard as GR.

VI.2.2 Vector sector

The vector sector {Bi, δλi} is as trivial as in GR. In fact δλi simply does not appear in the quadratic
action. We thus decompose Bi into polarizations in the Fourier space,

Bi(t,x) =
∑

s

∫ d3k

(2π)3/2 eik·x εsi
(
k̂
)
Bs(τ,k) , (VI.21)

where εsi is the polarization vector satisfying

k̂iεsi
(
k̂
)

= 0 , εsi
(
k̂
)
εs

′ ∗
i

(
k̂
)

= δss′
, εs ∗

i

(
k̂
)

= εsi
(

− k̂
)
, (VI.22)

and the reality condition of Bi(τ,x) results in B†
s(k) = Bs(−k). The quadratic action for the vector

sector then reads

S
(2)
V = M2

Pl
4

∫
dτ d3k a2k2 |Bs|2 . (VI.23)

Therefore there is no dynamical vector mode, just like in GR.
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VI.2.3 Scalar sector
The scalar sector {ν, β, δϕ, δλ0, δλs, ζ, δχ} is the non-trivial one. Let us first Fourier-decompose each
variable as

δ(t,x) =
∫ d3k

(2π)3/2 eik·x δ(τ,k) , (VI.24)

where δ = {ν, β, δϕ, δλ0, δλs, ζ, δχ}. Note the reality condition imposes δ†(k) = δ(−k). In order to
eliminate the nondynamical variables in favor of the dynamical ones, we employ the Faddeev-Jackiw
method [217]. Due to the non-trivial structure of the theory, we need to impose the background equations
before integrating out the nondynamical variables, in order to obtain all the constraint equations. As
counted at the beginning of this section, there is only 1 dynamical degree of freedom. We have some
freedom to choose the variable we wish to work with. It is convenient to choose the comoving curvature
perturbation, defined as

Rk := ζk − H
χ̄′ δχk (VI.25)

with the conformal Hubble expansion rate H := aH (see section I.3.4). Since this definition does not
contain any time derivatives of perturbation variables, this change of variable from the original variables
(eq. (VI.25)) amounts to a trivial canonical transformation. After eliminating all the other (nondynamical)
variables, we find the quadratic action for Rk as

S
(2)
S = M2

Pl
2

∫
dτ d3k z2 (|R′

k|2 − c2
Rk

2|Rk|2
)
, (VI.26)

where

z2 =a2α(1 + w)
k2 + 3

2 (1 + w)αH2

c2
s

(
k2 + 3

2 (1 + w)αH2
)

+ 1+w
2 αH2

( 1+w
2 α− ε

) , (VI.27a)

c2
R =c4

s(1 + w)2k4 +B1H2k2 +B2H4

c2
s(1 + w)2k4 +A1H2k2 +A2H4 (VI.27b)

with

A1 = 1
4(1 + w)3α(12c2

s + (1 + w)α− 2ε) , (VI.28a)

A2 = 3
8(1 + w)4α2(6c2

s + (1 + w)α− 2ε) , (VI.28b)

B1 = 1
4c

2
s(1 + w)2 ((1 + w)2α2 + 6(1 + w)α(1 + 3c2

s − ε) + 4εη
)
, (VI.28c)

B2 = 1
8(1 + w)3α

(
− (1 + w)2α2 + 2(1 + w)α(6c2

s + 9c4
s + (2 − 3c2

s)ε) (VI.28d)

+ 4ε(−(1 + 3c2
s)ε+ 3c2

s(1 + 3c2
s + η))

)
(VI.28e)

and
α = ρχa

2

H2 , ε = 1 − H′

H2 , η = ε′

εH
. (VI.29)

The equation of motion is then simply given by

v′′
k +

(
c2

Rk
2 − z′′

z

)
vk = 0 , (VI.30)

where we have introduced the Mukhanov-Sasaki-type variable vk = zRk. We note that the structure of z
and cR appears to include non-local terms. However, in the ultraviolet limit k → ∞ and with finite H as
well as in the regime of GR at the background level, i.e. α(1 + w) = 2ε and η = −3(1 + w) + 2ε, for all k,
we recover the usual equations of motion from GR.

VI.3 Bouncing scenario

VI.3.1 Set-up
In order to search for a viable parameter space in which the scalar power spectrum is almost scale
invariant, we first note that in the regime where the modified gravity from the potential V (φ) dominates,
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i.e. αH2/k2 � 1, the form of z2 and cR simplifies to

z2 ≈ a2α
(1 + w)
c2

s

, c2
R ≈ c2

s . (VI.31)

Therefore, in that regime we can solve eq. (VI.30) approximately. Supposing that the scale factor behaves
as a ∝ (τ2)n/2 we obtain

d2vk

dx2 +
(
c2

sκ
2 − n(3w − 1)(−2 + n(3w − 1))

4x2

)
vk ≈ 0 , (VI.32)

where we have introduced x = τ/τB and κ = kτB with τB > 0 the bouncing time scale. Therefore, at
that regime the independent solutions are as usual given by the Hankel functions, provided w and c2

s are
constant. Assuming that the regime α � 1 holds up to horizon crossing for the cosmological microwave
background (CMB) scales we can estimate that the spectral index is given via

n(3w − 1)(−2 + n(3w − 1)) = 15 − 8ns + n2
s , (VI.33)

which yields the following two solutions for n

5 − ns

3w − 1 and ns − 3
3w − 1 . (VI.34)

In order to have a valid bouncing solution we require that n > 0. Therefore, the first solution is valid for
w ' 1/3 and the second one for w / 1/3, since ns ≈ 0.96 [72].

However, an equation of state w / 1/3 can lead to issues since the anisotropies then grow faster than
the energy density of the scalar field in the contracting phase [210]. That is why we shall focus on the
first case with w ≥ 1. Note that this corresponds to z ∝ τ (−3+ns)/2. For ns < 3, which is the case for the
primordial curvature perturbation of our universe, z increases in time during the contraction phase and,
therefore, Rk has a decreasing and constant mode in contrast to common bouncing scenarios.

After the bounce we want to recover the usual evolution from GR. This can be achieved either by
considering a non-constant equation of state or a transition of the scale factor. We consider the latter
case so that

lim
τ→∞

a ∝ τ
2

3w+1 . (VI.35)

In order to match the background after the bounce with GR we have to further ensure that

lim
τ→∞

3H2

ρχa2 = 1 , (VI.36)

which fixes the normalization ρ0 of ρχ. To combine both ends and include the bounce we write the ansatz

a(τ) = a0

(
τ2

τ2
e

)n
2

Θ(τe − τ) + a1

[
1 +

(
τ

τB

)2
] 1

3w+1

Θ(τ − τe) , (VI.37)

where

a1 = a0

(
1 +

(
taue

τB

)2
) −1

3w+1

(VI.38)

to ensure continuity and the step function is operationally defined as

Θ(x) = lim
m→∞

1
1 + e−mx

. (VI.39)

In these choices, the time τe locates the transition between the two different regimes, which we place
before the bounce, i.e. τe < 0. For numerical purposes we have to choose a finite m. The bigger m the
sharper the transition, but this may also lead to numerical issues, since the derivatives start to diverge.
Later on, we will actually choose rather small values of m.

Furthermore, depending on n, finite m may again bring other numerical issues around τ = 0, at the
bounce. That is why it may be convenient to slightly detune the relation by introducing a small τa/τe

shift. Explicitly, the ansatz of eq. (VI.37) is modified to

a(τ) = a0

[(
τ

τe

)2
+
(
τa

τe

)2
]n

2

Θ(τe − τ) + a1

[
1 +

(
τ

τB

)2
] 1

3w+1

Θ(τ − τe) (VI.40)
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with

a1 = a0

(
1 +

(
τa

τe

)2
)n

2
(

1 +
(
τe

τB

)2
) −1

3w+1

, (VI.41)

where |τa| � |τe|. The role of τa is only to regulate the behavior of (the derivatives of) a at the bounce,
and we shall later check that the choice of τa with |τa| � |τe| does not impact the final result.

VI.3.2 Reconstruction of the potential V
Using the background equation of motion (eq. (VI.6)), we can solve φ in terms of the conformal time as

φ = 3
2

∫
dτ ′a(1 + w)ρχ + φ0 , (VI.42)

where φ0 is an integration constant. If we are to consider the full period, this equation can be solved
numerically. Before doing so, let us first have a look at the two different regimes separately.

On one hand, deep in the contraction phase, where −τ � |τe| the scale factor is well approximated by

a(τ) ≈ a0

(
τ

τe

)n

, (VI.43)

in which φ becomes a function of time as,

φ(τ) ≈ 3
2

(1 + w) a0 ρ0

1 − n (2 + 3w)

(
τ

τe

)−n (2+3w)
τ + φ0 . (VI.44)

The scalar field φ asymptotically approaches φ0 for τ → −∞ and then grows monotonically in the
contraction phase before the transition period. Using eq. (VI.5a), the potential can then be reconstructed
as

V (τ) = 1
3

(
3
2

(1 + w) a0 ρ0

1 − n (2 + 3w)

(
τ

τe

)−n (2+3w)
τ + φ0

)2

− ρ0

(
τ

τe

)−3n (w+1)
. (VI.45)

Since during this phase φ is monotonically increasing in time we can invert the relation (VI.44) to express
τ in terms of φ and V in terms of φ.

On the other hand, after the transition, but before the bounce, for large m � 1, the scale factor acts as

a(τ) ≈ a1

(
1 + τ2

τ2
B

) 1
3w+1

, (VI.46)

which leads to

φ(x) ≈ φ0 + 3
2

(
a0

a1

)3(1+w)
(1 + w) a1τBρ0x 2F1

(
1
2 ,

2 + 3w
1 + 3w,

3
2 ,−x

2
)
, (VI.47)

where 2F1 denotes the hypergeometric function. Similarly as before, the potential then reads

V (x) ≈ 1
3

(
φ0 + 3

2

(
a0

a1

)3(1+w)
(1 + w) a1τBρ0x 2F1

(
1
2 ,

2 + 3w
1 + 3w,

3
2 ,−x

2
))2

− ρ0

(
a0

a1

)3(1+w)
(1 + x)− 3(1+w)

1+3w .

(VI.48)

In fig. VI.1, we give the result obtained by the numerical simulation of φ(x) and V (φ), across the
bounce. The left-hand side plot shows the evolution of the scalar field φ(x) for the case where w = 1,
n = 2.02, m = 1, τe = −300τB and τa = 0 (corresponding to ns = 0.96). We there observe that the scalar
field is indeed monotonically growing. Therefore, we can invert φ(x) → x(φ) to reconstruct the potential
V (φ) which is given in the right-hand side plot of fig. VI.1. We choose the integration constant φ0 such
that φ goes to 0 in the limit x → ∞, and then we see V → 0 in the same limit. Before the bounce but
after the transition, i.e. −300(= τe/τB) � x � −1, the potential approaches a linear trend. This is
expected since for V (φ) ∝ φ, VCDM recovers GR. For x � −300(= τe/τB) the potential (eq. (VI.45))
models the impact of matter and is therefore expected to deviate from the linear trend. However, since the
scalar field is roughly constant in that regime the deviation is not visible anymore on this particular plot.
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Figure VI.1: The form of the reconstructed potential for w = 1, n = 2.02, m = 1, τe = −300τB and τa = 0
(right) and the evolution of the scalar field φ(x) for the same parameter set (left), where x = τ/τB . Notice
that the linear trend indicated (right) is here simply built from the tangent at the minimum of φ.

VI.3.3 Power spectrum

Scalar part

We first consider the scalar part and solve the equation of motion (VI.30) numerically. In the present
study, we fix the transition time scale τe = −300τB and choose a slow transition with rather small values
of m for computational ease. Note that in our convention the bouncing time scale τB is taken to be
strictly positive.

In fig. VI.2, we plot the sound speed square c2
R and z, for n = 2.02 and w = 1 (following eq. (VI.34)) for

different values of κ = kτB and m. We can observe that z remains positive throughout the evolution and,
as expected, it remains independent of m and κ both at very early times and after the bounce. However,
in the regime around the transition, at x = −300, z depends both on m and κ. In particular for very small
values of κ, the value of z starts to deviate earlier from the approximated behavior z2 ≈ a2α(1 + w)/c2

s.
This can be easily understood: the approximation is only valid for a large ratio of k2 = κ2/τ2

B to αH2.
The behavior of c2

R, which is defined in eqs. (VI.26) and (VI.27b), is similar. It deviates only around
the transition regime, i.e. when the dependency of m actually manifests itself. Again, the dependency on
κ depends on the ratio k2/(αH2). Note that for κ � 1 the sound speed square c2

R can become negative
around the transition regime. However, this does not correspond to the standard gradient instability with
the exponentially fast growth in the ultraviolet (UV), since in the UV limit (κ � 1) the sound speed
squared given in eq. (VI.27b) is positive-definite. On the other hand, in the infrared (IR) or at large scales
(κ � 1), where c2

R < 0, the frequency is still positive-definite since |z′′/z| � |c2
Rk

2| (and z′′/z < 0) so
that ω2 ≡ c2

Rk
2 − z′′/z > 0. Therefore, the model is not plagued by either UV or IR instabilities during

the transition phase. Furthermore, the model should be free from the strong coupling, which is usually 3

signaled by vanishing of the UV/subhorizon (i.e. κ � 1) sound speed and which is insensitive to the
dispersion relation in the intermediate/IR scales. Each mode remains within the regime of validity of the
perturbative expansion and smoothly evolves from the initial time to the final time.

In order to numerically obtain the scalar power spectrum, we fix the initial conditions to the standard
adiabatic vacuum so that

vk(x = xi)√
τB

=
√
π

2
√

−xiH
(1)
4−ns

2
(−csκxi) (VI.49)

and similarly for its derivative. Firstly, we check that our initial conditions for x � −300 are indeed valid.
In fig. VI.3 we plot the normalized error ∆EOM of the initial conditions for different values of κ or m,
that is the quantity

∆EOM =
∣∣∣ 1
vk

d2vk(x)
dx2

(
c2

Rκ
2 − 1

z

d2z

dx2

)−1

+ 1
∣∣∣ . (VI.50)

We verify that far away from the transition regime where αH2/k2 � 1 the error is negligibly small. It
only starts to increase during the contraction phase, just as expected. For smaller values of κ, the impact
of the scale-dependent mass and sound speed starts to matter earlier since the approximation depends on

3This is indeed the case e.g. in the framework of EFT of single-field inflation/DE, see e.g. [218].
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Figure VI.2: In the upper panels we plot the sound speed square for different values of κ (top left) and m
(top right). In the lower panels, we plot z for, again, different values of κ (bottom left) and m (bottom
right). For these plots we consider the case of n = 2.02 and w = 1.

the ratio of αH2 to k2 = κ2/τ2
B . On the other hand, changing the value of m does not have any impact at

early times. Thanks to the good agreement at x ≤ −106, we do not need to start evolving the EOM from
inside the horizon. We can instead start outside the horizon using the analytic approximation. In the
following we will fix the starting point for our numerical solution at x = −5 · 106 for 10−11 ≤ κ ≤ 10−7.
Different starting values do not affect the conclusions of this work. From thereon, we shall use m = 0.01.

In fig. VI.4, we exhibit the real part and the absolute value of κ3/2Rk for different values of κ. We
see that neither at the transition regime nor at the bounce, do we obtain any instability. In fact, neither
the transition nor the bounce has any significant impact on the curvature perturbation modes which are
already far outside the horizon. For large κ the comoving curvature perturbation is oscillating, while
for small κ the curvature perturbation is frozen. However, we still have to be careful. Our analytic
approximation holds as long as αH2 � k2 (= κ2/τ2

B). In fig. VI.5, the left-hand side plot shows the ratio
for small values of κ. For small values of κ, the approximation here breaks down outside the horizon but
still far away from the bouncing regime. The right-hand side plot shows the normalized absolute value
of the curvature perturbation (similarly to the right-hand side of fig. VI.4). As expected, the curvature
perturbation is frozen before the breakdown of our analytic approximation. During the regime where
αH2/k2 ≈ 1 the curvature perturbation falls down before freezing again. Therefore, the curvature power
spectrum after leaving the horizon does not coincide with the one after the bounce.

In fig. VI.6, the power spectrum is given before (at x = −106) and after the bounce (at x = 300) for
different combinations of w and n (compatible with ns = 0.96), along with their fit by a spectral index of
the form A · κns−1, where A is the amplitude of PR := k3|Rk|2/(2π2). The power spectrum PR is indeed
slightly red-tilted with the correct spectral index of ns = 0.96 for the three different combination of w
and n, for small values of κ. The overall amplitude is slightly different for the curvature power spectrum,
while the spectral shape is the same before and after the bounce, because of the aforementioned fall and
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Figure VI.3: The normalized error of the analytical solution for n = 2.02 and w = 1, for different values
of κ with m = 0.01 (left) and for different values of m with κ = 10−7 (right).
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Figure VI.4: The real part (left) and the absolute value (right) of the normalized evolution of the curvature
perturbation modes for n = 2.02 and w = 1, for different values of κ.

freezing behavior.

Tensor part

The tensor perturbations are the same as in GR and are governed by the equation

d2uk

dx2 +
(
κ2 − 1

a

d2a(x)
dx2

)
uk = 0 . (VI.51)

Therefore, it only depends on the specific form of the scale factor a. Before the transition period the scale
factor is given by a ∝ (−x)n. Therefore, for n 6= 1, the solutions are given by the Hankel functions

uk√
τB

=
√
π

2
√

−xH(1)
ν (−κx) , where ν = 2n− 1

2 . (VI.52)

The tensor power spectrum for the cosmological scales will explicitly depend on n and is not anymore
always almost scale invariant, but instead we have

nt = 4 − 2n (VI.53)

for n > 1/2, at horizon crossing in the contracting phase. Here nt is the spectral index of the tensor power
spectrum Ph :=

∑
σ k

3|hσ|2/(2π2) = Ahk
nt , with Ah being its amplitude. Therefore, among the three

different cases considered for the scalar part with n = 2.02, n = 1.01 and n = 101/150 ≈ 0.67333 · · · , only
the first case leads to an almost scale invariant power spectrum. The other ones are blue tilted.
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Figure VI.5: The left-hand side displays the ratio αH2/k2, and the right-hand side shows the normalized
absolute value of the curvature perturbation for n = 2.02 and w = 1.
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Figure VI.6: The scalar power spectrum before (left) the transition period and after the bounce (right)
for different combinations of w and n, i.e. w = 1 & n = 2.02, w = 5/3 & n = 1.01 and w = 7/3 &
n = 101/150.

The scale factor is decreasing in the contracting phase and, therefore, outside the horizon the tensor
modes are either frozen or growing, in contrast to the scalar modes. The time evolutions of the tensor
modes for n = 2.02 are given in fig. VI.7 and we observe that on superhorizon scales the modes are indeed
growing. However, as for the scalar modes, neither the bounce nor the transition period impacts the scale
dependency of the tensor power spectrum, as fig. VI.8 demonstrates. Instead, it only leads to an overall
amplification factor coming from the superhorizon growth in the contracting phase. Only for n = 2.02 do
we recover the almost scale invariant power spectrum. In fact, the spectral index of the tensor and scalar
modes are the same in this case, which renders the comparison straightforward.

However, in that case, the tensor-to-scalar ratio, i.e. r := Ph/PR, is extremely large (r � 1), making
this option unviable. This is apparent when comparing the scales of figs. VI.6 and VI.8. On the other
hand, for n < 2 the tensor spectrum is blue tilted and the tensor-to-scalar ratio becomes scale dependent.
Indeed, one can write the tensor-to-scalar ratio as

r = r0κ
nt−ns+1 . (VI.54)

Assuming ns ≈ 0.96 and using eq. (VI.53), the same conclusion is easily drawn. Numerically, it translates
as r ∝ κ1.94 for n = 1.01 or r ∝ κ2.61333··· for n = 101/150. In these two cases, on cosmological scales, the
tensor power spectrum is significantly lower than the scalar one r|k=kCMB

� 1 as long as the time scale of
the bounce is significantly shorter than the scale at the CMB, i.e. κCMB = kCMBτB � 1. Practically, this
latter assumption should be easily satisfied.
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Figure VI.7: The real part (left) and the absolute value (right) of the tensor modes are plotted for n = 2.02,
w = 1 and different values of κ.
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Figure VI.8: Tensor power spectra evaluated at x = −3000 before the transition (left) and at x = 300
after the bounce (right) are plotted for different combinations of w and n, i.e. w = 1 & n = 2.02, w = 5/3
& n = 1.01 and w = 7/3 & n = 101/150.

VI.4 Summary and discussion

In this chapter, we introduced an explicit and testable bouncing universe scenario, built within the
framework of minimally modified gravity theories, specifically the class of so-called VCDM models. The
proposed model successfully passes the first tests a bounce scenario has to face. It does not suffer from
ghost or gradient instabilities coming from the NEC violation and there are no issues related to the
anisotropic stress or the BKL instability thanks to the ekpyrotic (w ≥ 1) equation of state. From the
observational side, the scalar power spectrum can be adapted by the choice of the equation of state
and the form of the potential leading to a nearly scale-invariant power spectrum with a spectral index
of ns ≈ 0.96 in accordance of the results of the Planck collaboration [72]. Moreover, the tensor power
spectrum scales, in general, differently from the scalar one. An equation of state w > 1 leads to a blue
tensor spectrum. It is, therefore, possible to obtain a small tensor-to-scalar ratio within the observational
bounds at cosmological scales, while potentially detectable at much smaller scales such as those of the
gravitational-wave interferometers. To meet all these goals, the current model relies on a simple asymmetric
bounce with the minimal number of propagating DoF (1 scalar + 2 tensors), unlike previous works based
on Cuscuton [197, 198], in which case the authors introduced an additional scalar field to fulfill the
experimental constraints. This is a key part of this work: we have built our model based on the VCDM,
which can accommodate both modified gravity behavior and GR behavior, and have reconstructed the
potential in the Lagrangian from the background dynamics we chose.

Future work could investigate how sensitive to the bounce details (e.g. shape, duration, etc...) these
tests are. A priori, we argue that the conclusion of this work should prove relatively robust in this regard.
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Another crucial aspect to consider would be non-Gaussianities, and evading the no-go theorem associated
with it [216, 215]. However, since the curvature perturbations are frozen outside the horizon, non-
Gaussianities are generated inside the horizon when the kinetic energy of the scalar field is subdominant.
Naively, this should lead to small non-Gaussianities [219]. Otherwise, one may also worry of seeing a
superluminal sound speed in the matter sector (k-essence field). A standard ekpyrotic scalar field may
sooth this, but would require a more complicated, and probably more numerically involved, approach to
handle.
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Chapter VII

Conclusion

Motivated by the natural curiosity into puzzles —and what puzzling and quizzical puzzles the Universe has
laid ahead of us!— this work has explored diverse alternative theories of gravity to the highly successful, but
possibly incomplete general relativity. In so doing, we also approached some fundamental and deep-seated
mysteries currently debated in modern cosmology. The variety of frameworks and unresolved enigmas we
touched here could be seen as both a strength and a possible weakness. Indeed, in so doing, we never
extensively explored any single framework, but we believe that sweeping across the landscape of cosmology
constitutes a wise choice in order to gather original perspectives and enrich one’s dictionary of skills.
Incidentally, virtually all the directions taken here have exploited some numerical studies as supporting
arguments.

This work presents several original contributions, in different domains. Firstly, we exhibited a sane
Wheeler-DeWitt equation within Hořava-Lifshitz gravity in chapter III and demonstrated that the
corresponding DeWitt wave function for tensor perturbations is well-defined around the classical Big
Bang singularity. This enabled us to introduce and describe the recently proposed Hořava-Lifshitz gravity
that aims at tackling the longstanding issue of non-renormalizability intrinsic to general relativity, as well
as to distantly touch on the nature of dark matter. Secondly, we turned our our attention to an early
Universe reheating scenario bolted onto a cosmological constant relaxing mechanism in chapter IV. The
latter had the inconvenient side-effect of virtually emptying the Universe content. That why we conceived
a proof-of-concept reheating machinery to subsequently repopulate the Universe and connect the scenario
to standard cosmology. This model also gave us to talk of yet another popular modified gravity class of
theories: Horndeski theories. At this stage already, taken together, these two chapters already touch all
three shortcomings initially listed in section I.4.

In a kind of parallel way, all within a type-II theory of minimally modified gravity dubbed VCDM, we
then carry out a sanity check and imagine another early Universe scenario. Minimally modified gravity
theories aim at going beyond general relativity without introducing any extra propagating degrees of
freedom; as general relativity, it has only two tensor modes. To achieve this, and differentiate itself from
general relativity, it treats on unequal footing time and space, just as Hořava-Lifshitz gravity does. This
class of theories thus breaks the full spacetime diffeomorphism invariance that general relativity enjoys.
As a third contribution, and within this framework, we numerically investigated the spherical collapse
of a scalar field in chapter V, and demonstrated that an apparent horizon healthily forms, and hinted
at its conditional parameter dependence. Fourthly and lastly, we turned towards the early Universe in
chapter VI where we produced a bouncing Universe scenario. The latter respects current observational
constraints by exhibiting a near scale invariant scalar perturbation power spectrum as well as the ability
to accommodate a small tensor-to-scalar ratio. As a consequence of that latter constraint, the model also
offers itself to potential observational tests as it predicts a blue-tilted tensor perturbation power spectrum.

The number of research angles adopted in this text naturally allows sprawling into a wide panel of
possible continuations. We shall refer the invested reader to the discussions of outlooks given at the end
of each chapter. Nonetheless, let us here review the perhaps most promising paths laid out, as well as the
direction this work taken all together may suggest.

In regard to the Wheeler-DeWitt equation and the corresponding wave function that were exhibited,
possible future studies could investigate the addition of matter fields or attempt to get a finer interpretation
of the cosmic wave function.
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In parallel, we looked at the early Universe via two different scenarios, and both have room for
improvement. Regarding the cosmological constant relaxation mechanism along the reheating mechanism
developed in this text, this setup is not yet connected to the standard picture drawn in cosmology. As, at
this stage, the model remains merely a proof-of-concept, the future developments should probably aim
at more concretely connecting it to some observational signature. Incorporating yet another phase akin
to inflation subsequent to this reheating may be the shortest route to do so. Whether the observational
signature it shall entail are have some discriminating power remains to be seen.

In contrast, the bouncing Universe scenario may benefit from shorter path to observations. Actually,
the blue-tilted tensor power spectrum is already a potentially observable signature. Next, and they will
surely be the topic of a subsequent work, one can consider non-Gaussianities [219, 220]. This would bring
another test against observations for the scenario, but the investigation could also uncover new specific
features of the model. Preliminary computations are being carried out just as this works concludes.

Furthermore, a bouncing Universe is not the only singularity-free alternative to inflation. A perhaps
harder approach could be to devise what is called a genesis scenario, again in the formalism set by
minimally modified gravity. Genesis is a scenario where, instead of starting from a singularity, we start
from a flat Minkowski spacetime and an expanding Universe spontaneously emerge from it [221].

Notice also that VCDM is one instance of type-II minimally modified gravity theories. It would also
be enriching to remain at a more agnostic level and derive these results, for example, for an arbitrary
(type-II) minimally modified gravity or within the sister-theory of MTBG, and determine the conditions
under which the previously explored scenarios are possible. In that vein, the same kind of study as the
one on the spherical collapse of chapter V could be carried out within either a different theory, such as
MTBG, or with assuming a more realistic setup like with a non-pressureless fluid or some non-zero angular
momentum. As a black hole formation is often seen as a simple litmus test a theory must pass, this kind
of simple analysis is crucial to complete. Of course, doing so adds layers of complexity and it would
probably require a more involved mathematical treatment. However, Occam’s razor is, while a reasonable
principle, just a principle, not an absolute rule. No one knows (yet) which paths are the more fruitful...
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Appendix A

Apparent horizon

We want to derive eqs. (V.6) and (V.7), in a spherical symmetry, as it is considered in chapter V, i.e.

gµνdx
µdxν = −(α2 − β2)dt2 + 2βdtdr + dr2 + Φ2dΩ2 , (A.1)

where α and β are positive functions of t and r, and Φ = Φ(t, r) is non-negative. Let us first consider the
two radial null vector fields k± defined by

kµ
±∂µ = ∂t ± (α∓ β)∂r . (A.2)

The vector field k+ is tangent to a congruence of radially outgoing null curves, and similarly k− is tangent
to a congruence of radially ingoing ones. We note the relations

kµ
±k±,µ = 0, kµ

+k−,µ = kµ
−k+,µ = −2α2 < 0 . (A.3)

It is further necessary for us to define a transverse metric to the two null vector fields. Such a metric is
given by

hµν = gµν +
kµ

+k
ν
− + kµ

−k
ν
+

−kµ
+k−,µ

, (A.4)

for which htt = htr = hrt = hrr = 0. The AH radius r = rAH is found by solving for a marginally outer
trapped surface, i.e. demanding that the expansion scalar θ+ of k+ at r = rAH be 0, which is given by the
transverse projection of the covariant derivative of k+:

θ+ ≡ hµν∇νk+,µ = 2α∂⊥Φ + ∂rΦ
Φ . (A.5)

If we now set θ+|r=rAH
= 0, eq. (A.5) implies that

(∂⊥Φ)2∣∣
r=rAH

= (∂rΦ)2∣∣
r=rAH

, (A.6)

The latter can now simply be reformulated to conclude eq. (A.8). Indeed, using Φ(t, r) instead of r as the
radial coordinate, the metric component gΦΦ then reads

gΦΦ = ∂Φ
∂xµ

∂Φ
∂xµ

gµν

= −(∂⊥Φ)2 + (∂rΦ)2 ,
(A.7)

where ∂⊥ = 1/(α(∂t − β∂r)). Therefore, in terms of eq. (A.7), the condition of eq. (A.6) can now be
conveniently rewritten as

gΦΦ∣∣
r=rAH

= 0 . (A.8)

Consequently, one of the solutions to eq. (A.8) will correspond to the AH. It is then simply a matter of
substitution using eq. (V.5) to arrive at the right-hand side expression seen of eq. (V.7).

91





Appendix B

Hořava-Lifshitz DeWitt wave function
without tensor perturbations

We review quantum cosmology based on the HL gravity and consider the DeWitt wave function in the
WDW equation (eq. (III.13)) for a homogeneous and isotropic universe without any perturbations. For
only a in 3 + 1 dimensions, the HL DeWitt wave function has already been investigated in previous works
e.g. refs.. [222, 223, 224]. However, the HL gravity introduces an extra component that behaves like a
pressure-less dust and that is called DM as an integration constant [27, 126, 78]. The new DM component
was derived in the classical cosmology. Correspondingly, when one considers the WDW equation, the HL
gravity naturally introduces a DM as a separation constant (instead of an integration constant) into the
local universe [169].

Hereafter, we will consider the evolution of the early universe in the HL quantum cosmology. In the
anisotropic scaling regime, the HL term of g3 dominates and the solution of the WDW equation (eq. (III.13)
with ∂/∂h and h removed) approximately takes the from Ψ(a) = A1a

c̃, where A1 is a normalization
constant [222] and c̃ is a constant determined by c̃(c̃− 1) + pc̃− 2g3 = 0, i.e.

c̃ = 1
2

(
1 − p+

√
(1 − p)2 + 8g3

)
, (B.1)

where we must impose g3 > −(1−p)2/8 to ensure the regularity of the solution. Recalling that the DeWitt
wave function is regular at the classical big-bang singularity, the wave function describes a universe that
has emerged from the initial singularity to the anisotropic scaling regime.

In order to highlight the effects of the DM as an integration constant (or as a separation constant),
i.e. the C term, we set g2 = g1 = g0 = 0. In this case the WDW equation (eq. (III.13) with ∂/∂h and h
removed) reads, {

1
2

(
∂2

∂a2 + p

a

∂

∂a

)
+ Ca− g3

a2

}
Ψ (a) = 0 . (B.2)

Thus, imposing the DeWitt boundary condition on the wave function and using the asymptotic form of
Jν(z), we can get the following wave function

Ψ(a) = A2 3
p−1

3 a
1−p

2 (2C)
1−p

6 Γ
(

1 + 1
3
√

(1 − p)2 + 8g3

)
J 1

3

√
(1−p)2+8g3

(
2
3a

3/2
√

2C
)
, (B.3)

whose asymptotic forms are given by

Ψ(a � 1) ∼ A2 (Ca)
1−p+

√
(1−p)2+8g3

6 ,

Ψ(a � 1) ∼ A2 a
− 1+2p

4 (2C)− 1+2p
12 cos

(
2
3a

3/2
√

2C −
1 + 2

3
√

(1 − p)2 + 8g3

4 π

)
.

(B.4)

Here, A2 is a normalization constant. These expressions show that the DeWitt wave function is suppressed
and oscillates, respectively, in the anisotropic scaling regime and the dark-matter dominated regime. After
the Universe emerges through the classical big-bang singularity and the anisotropic scaling regime, the
DM as an integration constant (or as a separation constant) represented by the parameter C dominates the
energy density of the universe. Subsequently, in such a local universe, the DM component may eventually
decay into ordinary matter and radiation [125], and in this case the cosmological evolution would be
smoothly connected to the usual big-bang cosmology.
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