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Integrative analysis of cancer dependency data
and comprehensive phosphoproteomics data
revealed the EPHA2-PARD3 axis as a cancer
vulnerability in KRAS-mutant colorectal cancer†
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Colorectal cancer (CRC), a common malignant tumour of the gastrointestinal tract, is a life-threatening

cancer worldwide. Mutations in KRAS and BRAF, the major driver mutation subtypes in CRC, activate the

RAS pathway, contribute to tumorigenesis in CRC and are being investigated as potential therapeutic targets.

Despite recent advances in clinical trials targeting KRASG12C or RAS downstream signalling molecules for

KRAS-mutant CRC, there is a lack of effective therapeutic interventions. Therefore, understanding the unique

molecular characteristics of KRAS-mutant CRC is essential for identifying molecular targets and developing

novel therapeutic interventions. We obtained in-depth proteomics and phosphoproteomics quantitative data

for over 7900 proteins and 38 700 phosphorylation sites in cells from 35 CRC cell lines and performed

informatic analyses, including proteomics-based coexpression analysis and correlation analysis between

phosphoproteomics data and cancer dependency scores of the corresponding phosphoproteins. Our results

revealed novel dysregulated protein–protein associations enriched specifically in KRAS-mutant cells. Our

phosphoproteomics analysis revealed activation of EPHA2 kinase and downstream tight junction signalling in

KRAS-mutant cells. Furthermore, the results implicate the phosphorylation site Y378 in the tight junction

protein PARD3 as a cancer vulnerability in KRAS-mutant cells. Together, our large-scale phosphoproteomics

and proteomics data across 35 steady-state CRC cell lines represent a valuable resource for understanding

the molecular characteristics of oncogenic mutations. Our approach to predicting cancer dependency from

phosphoproteomics data identified the EPHA2-PARD3 axis as a cancer vulnerability in KRAS-mutant CRC.

Introduction

Colorectal cancer (CRC) is the second most fatal cancer
worldwide.1 Activating mutations in KRAS and BRAF, which are
in the Ras pathway, contribute to tumorigenesis in CRC and

are being investigated as potential therapeutic targets. As
recommended in The National Comprehensive Cancer Network
(NCCN) guidelines,2 anti-epidermal growth factor receptor
(EGFR) monoclonal antibodies are a clinically approved treatment
for patients with wild-type (wt) RAS/BRAF, and BRAF inhibitors
are approved for treating patients with BRAF mutations.3,4

However, effective strategies targeting KRAS mutations have not
yet been developed, and these mutations occur in approximately
45% of CRC patients.5 KRAS has historically been considered
‘‘undruggable’’ because mutant KRAS protein lacks a pharmaco-
logically targetable pocket.6 Although selective KRAS G12C inhi-
bitors have recently been developed, KRAS G12C is only present in
3% of patients with CRC,7 and a recent clinical trial showed
limited efficacy with monotherapy with the KRAS G12C inhibitor
sotorasib.8 Furthermore, no effective inhibitors have been
identified targeting the same or parallel signalling pathways of
the RAS signalling pathway. For example, previous studies have
demonstrated that pan-RAF inhibitors, which are inhibitors of
signalling molecules downstream of RAS, are not efficient for
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treating cancers with KRAS mutations.9 Unacceptable toxicity was
reported for a combination therapy of PI3K inhibitors, which
target a parallel pathway, and MEK inhibitors, and no response
was observed in the CRC patients enrolled.10 Therefore, under-
standing the unique molecular characteristics of KRAS-mutant
CRC is essential for identifying molecular targets and developing
novel therapeutic interventions for KRAS-mutant CRC.

Mass spectrometry (MS)-based proteomics and phosphopro-
teomics technology is widely used to analyse KRAS oncogenic
signalling. Recently, a comprehensive proteomics and phos-
phoproteomics study of 43 KRAS-mutant cancer cells from 7
tissues revealed diverse molecular signature subtypes in KRAS-
mutant cancers.11 The authors identified three KRAS-mutant
subsets across different KRAS-mutant cancer cells and deter-
mined the molecular signatures independent of tissue origin.
However, they profiled proteomics and phosphoproteomics
data in cells from only 11 CRC cell lines out of a total of 43
cell lines, with limited information available on the compre-
hensive analysis of molecular signatures triggered by oncogenic
mutations in CRC. Furthermore, the underlying differences in
molecular mechanisms between mutant KRAS and BRAF signal-
ling have not been investigated. Therefore, characterizing differ-
ences in molecular signatures among oncogenic KRAS-mutant,
BRAF-mutant and KRAS, BRAF wt CRC cells by large-scale
proteomics and phosphoproteomics analyses could provide
significant insights into developing therapeutic strategies for
KRAS-mutant CRC tumours.

Cancer driver mutations are translated to mutated residues,
leading to mutation-directed differential protein–protein inter-
actions (PPIs) and pathway rewiring. Previous studies have
reported that computational and experimental approaches can
detect differentially regulated proteins that directly interact with
mutant proteins produced from mutated oncogenes.12,13 How-
ever, generating a comprehensive static protein–protein inter-
action network catalogue after making a perturbation requires
substantial experimental effort, and no information is currently
available on a comprehensive map of protein–protein associa-
tion dynamics. Coexpression analysis based on correlation coef-
ficients of relative protein expression levels across a large panel
of cancer cell line proteomics data has been used to address this
challenge.14 Using this method, dysregulated functional protein–
protein network associations based on breast cancer subtypes
were identified. However, a study to map dysregulated protein–
protein associations based on oncogenic mutational status
across CRC cells has not been reported. Therefore, applying this
coexpression analysis to proteomics data from CRC cell lines
may provide information regarding the dysregulation of protein–
protein associations specific to the KRAS-mutant cell subgroup.

Protein phosphorylation is an important posttranslational
modification (PTM) in biological processes and the regulation
of signalling pathways. Based on recent technological advances
in MS-based phosphoproteomics analysis, PhosphoSitePlus15

contains 239 776 human phosphosites to date. However, only
11 927 human phosphorylation sites (less than 5%) have been
manually curated as regulatory sites by expert scientists. The
functions of the remaining phosphorylation sites are unclear.

A machine learning approach has been used to predict and score
functionally unknown protein phosphorylation sites. In that study,
112 large-scale publicly available phosphoproteome datasets
from the PRIDE database were assessed to rank the functional
importance of human phosphorylation sites.16 Recent studies have
shown that this computational prediction of phosphorylation sites
allows for ranking and prioritizing the significantly regulated
phosphorylation sites.17 However, this prediction method relies
on functional and physical features of the protein fragments,
leading to the inclusion of phosphorylation sites that do not impact
cancer phenotypes as functionally important phosphorylation sites.
The recently provided CRISPR/Cas9 screening data (DepMap18), a
comprehensive map of cancer dependence, has been utilized to
explore genes associated with cancer phenotypes. Previous studies
have reported a relationship between high protein expression levels
and genetic dependency in cancer cells.19 Therefore, genes with a
high correlation between protein expression and genetic depen-
dency are thought to be potential therapeutic targets for cancer
vulnerability. However, there is no comprehensive understanding
of the association between cancer dependency and phosphoryla-
tion sites that are essential for the regulation of signalling. Assess-
ment of the predictive power of phosphorylation levels for cancer
dependencies could provide a unique opportunity to explore novel
therapeutic candidate targets based on phosphorylation sites.

In this study, we investigated the effect of KRAS and BRAF
oncogenic mutations on phosphorylation signalling and dysregu-
lated protein-association networks by MS-based quantitative pro-
teomics and phosphoproteomics analyses of 35 CRC cell lines. By
integrating our phosphoproteomics data with gene dependency
data obtained from DepMap CRISPR/Cas9 screening, we pre-
dicted phosphorylation sites associated with cancer vulnerability
in KRAS-mutant CRC cancer, and these predictions are worth
further validation as potential drug targets in the future.

Materials and methods
Cell lines

The 39 CRC cell lines used in this study (C2BBe1, CaR-1, CCK-81,
COLO 320HSR, COLO205, COLO320 DM, CW-2, GP5d, HCT116,
HCT-15, HT115, HT29, HT55, LIM1215, LoVo, LS1034, LS123,
LS180, LS411N, LS513, MDST8, NCI-H508, NCI-H716, NCI-H747,
RCM-1, RKO, SK-CO-1, SNU-C1, SNU-C2B, SW1116, SW1417,
SW1463, SW48, SW480, SW620, SW837, SW948, T84, and WiDr)
were obtained from ATCC, ECACC, JCRB and Riken BRC
(Table S1A, ESI†). Cells were grown under standard conditions
(5% CO2, 95% relative humidity and 37 1C) in the recommended
medium for each cell source. Experiments were performed with
cells at o10 passages from the original vial. Purchase informa-
tion, culture type, and specific culture conditions are detailed in
Table S1A (ESI†).

Preparation of samples for MS-based proteome and
phosphoproteome analyses

Cells were cultured to 80% confluence in 15 cm diameter
dishes. Cells were lysed in phase transfer surfactant (PTS)
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buffer (50 mM ammonium bicarbonate, 12 mM sodium deoxy-
cholate, 12 mM sodium lauroyl sarcosinate) supplemented
with PhosSTOP and a cOmplete Protease Inhibitor cocktail
(Roche, Basel, Switzerland). Each sample was boiled at 95 1C
for 10 min. The lysate was further sonicated three times (15 min
per cycle) with a Bioruptor sonicator (Cosmo Bio, Tokyo, Japan).
Protein concentrations were determined by DC Protein Assay
(Bio-Rad Laboratories, Inc. Hercules, CA, USA). Lysates were
stored at �80 1C until use. We used six different genetic
background cell line mixtures, namely, LIM1215, COLO320DM,
HCT116, SW480, RKO, and WiDr, that were pooled for the
global reference internal standard (GIS) for these proteomics
analyses. Information on KRAS and BRAF mutational status and
microsatellite instability (MSI) status are detailed in Table S1B
(ESI†).20 Each sample lysate containing 1.6 milligrams of protein
in 1 mL of PTS buffer (1.6 mg mL�1) was reduced with 10 mM
TCEP, alkylated with 20 mM iodoacetamide, and quenched with

21 mM L-cysteine. The samples were digested with trypsin
(protein weight ratio: 1/50; Wako) and Lys-C (1 mAU/25 mg;
Wako) for 16 h at 37 1C. Samples were acidified with 1% TFA
and centrifuged at 20 000 � g for 10 min at 4 1C. Supernatants
were desalted with OASIS HLB cartridges (Waters, Milford, MA,
USA), and 0.1% of each sample was used for proteome analysis.
The remaining portions of the samples were subjected to
phosphopeptide enrichment via an immobilized metal affinity
chromatography (IMAC) method.21

Peptide/phosphopeptide-enriched samples were labelled
with TMTpro 16-plex reagents (Thermo Scientific A44522, Lot
No: LV310412). Technical triplicates sampled from each cell
line sample were randomly distributed across 7 TMT batches.
The 16th channel of each experiment was reserved for the GIS.
The TMT channel arrangement information is detailed in Table
S1C and Fig. 1A (ESI†). Peptide/phosphopeptide were labelled
with TMTpro 16-plex reagents at room temperature for 1 h, and

Fig. 1 Quantitative phosphoproteomics analysis of 35 colorectal cancer cell lines (CRC35). (A) Experimental workflow. Three technical replicates
prepared from each cell line (105 samples in total) were randomized into seven batches such that each batch contained one global internal standard (GIS)
sample. Digestion, desalting, IMAC phosphopeptide enrichment, and TMTpro labelling steps were performed. After TMTpro pooling, a portion of the
phosphopeptides was enriched in pY. All samples were fractionated by basic-pH reversed-phase (BPRP) chromatography and analysed via LC–MS/MS,
and raw data were processed with MaxQuant (version 1.6.14.0). (B) Cumulative number of quantified proteins and phosphosites. (C) Proportions of
phosphoserine (pSer, black), phosphothreonine (pThr, red), and phosphotyrosine (pTyr, green). (D) and (E) PCA (D) and unsupervised hierarchical
clustering analysis (E) of technical replicates of 35 CRC cell lines. The 8432 phosphorylation sites quantified in all 105 samples were used for analysis.
(F) Spearman’s correlation analysis between our phosphoproteomics data and data from Theodoros I et al. (2017). The 1527 phosphosites across 33 CRC
cell lines shared in both datasets were used in this study. Abbreviations: TMT = tandem mass tags pro (16-plex); LC–MS/MS = liquid chromatography-
tandem mass spectrometry.
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the reaction was quenched with hydroxylamine to a final
concentration of 0.3% (v/v). The TMT-labelled phosphopeptide
samples were pooled and divided into 10% for global phos-
phoproteome and 90% for phosphotyrosine (pY) proteome
analyses. pY enrichment was performed using a pY1000 anti-
body as previously reported.22 All samples were vacuum
centrifuged to near dryness.

The TMT-labelled peptide/phosphopeptides used for total
proteome and global phosphoproteome analysis were subjected
to off-line basic pH reversed-phase (BPRP) fractionation.23 We
used a Thermo Scientific UltiMate 3000 UHPLC system
equipped with a dual wavelength detector (set at 220 nm and
280 nm). The mobile phases were BPRP-A (5 mM ammonium
bicarbonate pH 9.2) and BPRP-B (5 mM ammonium bicarbo-
nate pH 9.2 and 60% acetonitrile). The LC gradient for total
proteomics samples was carried out as follows: 5–40% BPRP-B
for 7 min, 40–60% BPRP-B for 19 min and then 60–99% BPRP-B
for 7 min. The gradient for phospho-proteomics samples was
carried out as follows: 1–19.5% BPRP-B for 7 min and then
19.5–64% BPRP-B for 27 min. Digested peptides equivalent to
10 micrograms of protein were separated on an L-column3 C18
column (5 mm particles, 0.3 mm ID and 150 mm in length,
Chemicals Evaluation and Research Institute, Japan) at a flow
rate of 2 mL min�1. The peptide mixture was fractionated into a
total of 21 fractions, which were consolidated into 7 fractions.
Samples were subsequently vacuum centrifuged to near dry-
ness. Each fraction was reconstituted in 2% acetonitrile and
0.1% trifluoroacetic acid for LC–MS/MS processing.

MS data acquisition

Liquid chromatography-tandem mass spectrometry (LC–MS/MS)
was performed with an Ultimate 3000 U-HPLC system (Thermo
Fisher Scientific, Waltham, MA, USA) and an HTC-PAL auto-
sampler (CTC Analytics, Zwingen, Switzerland) coupled to an
Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher
Scientific). Peptides were delivered to an analytical column
(75 mm � 30 cm, packed in-house with ReproSil-Pur C18-AQ,
1.9 mm resin, Dr Maisch, Ammerbuch, Germany) and separated
at a flow rate of 280 nL min�1 using a 145-min gradient from 5%
to 30% solvent B (solvent A, 0.1% FA; solvent B, 0.1% FA and
99.9% acetonitrile). The Orbitrap Fusion Lumos mass spectro-
meter was operated in the data-dependent mode.

For global proteome and phosphoproteome analyses, survey
full-scan MS spectra (m/z 375 to 1500) were acquired with the
Orbitrap with 120 000 resolution after accumulation of ions to a
4� 105 target value. The maximum injection time was set to 50 ms,
and dynamic exclusion was set to 30 s. MS2 analysis consisted of
higher-energy collisional dissociation (HCD); AGC 1� 105; normal-
ized collision energy (NCE) 32; maximum injection time 105 ms;
50 000 resolution and isolation window of 0.7 Da. For phosphotyr-
osine proteome analysis, survey full-scan MS spectra (m/z 350
to 1500) were acquired with the Orbitrap with 120 000 resolution
after accumulation of ions to a 4� 105 target value. The maximum
injection time was set to 100 ms, and dynamic exclusion was set
to 5 s. MS2 analysis consisted of higher-energy collisional dissocia-
tion (HCD); AGC 1 � 105; normalized collision energy (NCE) 32;

maximum injection time 315 ms; 120 000 resolution and isolation
window of 0.7 Da.

We performed a total of 154 LC–MS/MS measurements for
18.6 days, which included 98 measurements for total proteome
analysis, 49 measurements for phosphoproteome analysis, and
7 measurements for tyrosine-enriched phosphoproteome analysis.

MS data analysis

Raw MS data were processed with MaxQuant (version 1.6.14.0)
supported by the Andromeda search engine for peak detection
and quantification.24 The MS/MS spectra were searched against
the UniProt25 human database (Homo Sapiens, organism ID:
9606, from March 2020) with the following search parameters:
full tryptic specificity, up to two missed cleavage sites, carba-
midomethylation of cysteine residues set as the fixed modifica-
tion, and N-terminal protein acetylation and methionine
oxidation set as variable modifications. Reporter ion intensities
were processed by PSM-level ratio normalization.26 For phos-
phoproteome analysis, phosphorylation of serine, threonine,
and tyrosine was added as a variable modification. The search
results were filtered to a maximum false discovery rate of
0.01 for the protein groups, PSMs, and phosphorylation sites.
We required two or more unique/razor peptides for protein
identification and a ratio count of two or more for protein
quantification. PTM sites with a measured localization probability
Z0.75 were considered to be localized. MaxQuant provides three
quantification values (multiplicity) with the phosphorylation sites
being quantified with a single, doubly, and triply-phosphorylated
peptide. We refer to these three values as phosphorylation events.
Quantitative values of the phosphorylation sites across different
fractions were automatically integrated and summarized in
‘‘Phospho (STY) Sites.txt’’ by MaxQuant.

Bioinformatic analysis

Statistical analysis and data visualization were performed using
Perseus 1.6.14.0,27 R software (version 4.2.0), and GraphPad
Prism version 9.0.0 for Windows [GraphPad Software, San
Diego, CA, USA, https://www.graphpad.com]. The quantitative
ratio was log 2-transformed, and the values were normalized by
the median-centring of each sample. We used the phosphoryla-
tion site with a quantified value of at least one sample.
Imputation was not performed for missing values. Quantitative
values for each technical replicate were averaged and used for
further analysis. Comparison of a continuous variable in 2 or
more than 2 groups was performed using either a parametric test
(Welch’s t test or one-way ANOVA followed by Tukey’s multiple
comparisons test). We used phosphorylation sites and proteins
for which at least half of the samples in each mutational group
(BRAF/KRAS wt (5/9), BRAF mutation (4/7), KRAS mutation (9/18))
had quantitative values. All tests were 2-tailed, and p o 0.05 was
considered significant. Correlation analysis between continuous
variables was performed using Spearman’s rank-order correlation.
Twenty-eight cell lines from CRISPR–Cas9 knockout screen data
(DepMap Public 22Q2 CRISPR_gene_dependency.csv) and 18 cell
lines from CTD2 cell line pharmacological profiling data (CTRPv2,
CTRPv2.0_2015_ctd2_ExpandedDataset.zip) were common to the
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35 cell lines used in our study. For Spearman correlation
analysis between phosphoproteomic data and dependency
scores, minimum cells being used for correlation was 14.
Over-representation analyses (ORAs), including Gene Ontology
(GO) terms (BP, CC, and MF), the protein complex database
CORUM,28 and Kyoto Encyclopedia of Genes and Genomes
(KEGG)29 pathway enrichment analysis, were performed with
WebGestalt 2017 (WEB-based GEne SeT AnaLysis Toolkit).30

Kinase activity prediction was performed using site-centric
posttranslational modification-signature enrichment analysis
(PTM-SEA)31 with the GenePattern32 platform, a seven-amino-
acid sequence flanking the phosphosite as an identifier and the
human kinase/pathway definitions of PTMsigDB (v.1.9.0)
according to the following parameters: (gene.set.database =
‘‘ptm.sig.db.all.flanking.human.v1.9.0.gmt’’, sample.norm.-
type = ‘‘rank’’, weight = 0.75, statistic = ‘‘area.under. RES’’,
output.score.type = ‘‘NES’’, nperm = 1000, global.fdr = TRUE,
min.overlap = 5, correl.type = ‘‘z.score’’). For protein–protein
association network construction, proteomics profiles were
correlated using Spearman’s rank correlation coefficients. We
calculated correlation coefficients for all possible protein pairs
among these 7777 proteins in the R environment using the
function rcorr( ) found in the Hmisc package. Constructed
networks were visualized in Cytoscape. To compare two correla-
tion coefficients, we used the R package cocor.33 The hotspot
mutation information data (DepMap Public 22Q2 CCLE_muta-
tions_bool_hotspot.csv) were downloaded from the DepMap
website (https://depmap.org/portal/). High-throughput CRISPR–
Cas9 knockout screen data (DepMap Public 22Q2 CRISPR_gene_
dependency.csv) were obtained from DepMap (https://depmap.org/
portal/). The literature-derived phosphoproteome dataset was
extracted from the curated site-centric databases in PTMsigDB,
version 1.9.0.31 This dataset contains 48000 phosphorylation sites
across three signature categories. To investigate the functional
importance of phosphorylation sites in signal transduction, we
extracted the 1139 phosphorylation sites of PTMsigDB annotated as
‘‘PATH-NP’’ and ‘‘PATH-WP’’. The cell line pharmacological profil-
ing data from the Cancer Therapeutics Response Portal (CTRPv2,
CTRPv2.0_2015_ctd2_ExpandedDataset.zip) dataset were down-
loaded from the DepMap website (https://depmap.org/portal/).34

Data availability

All raw data files generated in this study were deposited into jPOST,
a public proteome database certified by the ProteomeXchange
Consortium,35 under the accession number PXD040404 (https://
repository.jpostdb.org/preview/157215138363fd430e179d0, Access
key: 2594).

Results
Quantitative proteomics and phosphoproteomics analyses of
35 CRC cell lines (CRC35)

We performed proteomics and phosphoproteomics analyses
of 35 CRC cell lines. The proteomics and phosphoproteomics
data were acquired using high-resolution MS. Proteomics and

phosphoproteomics quantification across the samples was
achieved by a tandem mass tag (TMT) labelling approach
(Fig. 1A). Each cell line was acquired from three replicates
and randomly labelled based on the batch arrangement shown
in Table S1C (ESI†). One TMT channel in each batch was
dedicated to the GIS, representing a mixture of 6 different
genetic background cell lines (Fig. 1A and Table S1B, C, ESI†).
The resulting dataset contained the total number of quantita-
tive data for 7913 proteins, 38 710 phosphorylation sites and
6626 phosphorylated leading proteins (Fig. 1B and Table S1D,
E, ESI†). The 38 710 phosphorylation sites included 30 930
phosphoserine sites (79.9%), 6029 phosphothreonine sites
(15.6%), and 1715 pY sites (4.4%) (Fig. 1C). To evaluate whether
there were batch effects from TMT 16-plex labelling, we per-
formed unsupervised hierarchical clustering and principal
component analyses (PCAs) on the phosphorylation site levels
of each sample relative to the GIS (Fig. 1D and E). We observed
that three technical replicates from the same cell line clustered
together despite being distributed in different TMT batches.
PCA of three technical replicate data points indicated no
observable batch effect. We further compared our phosphopro-
teomics data with those of a previously reported large-scale
phosphoproteomics study of CRC cell lines.36 In a previous study,
a panel of 50 CRC cell lines was used for phosphoproteomics
based on isobaric peptide labelling (TMT-10-plex) and MS3 quan-
tification. They identified 11 647 phosphopeptides in total,
whereas in the current study, we identified 44 165 phosphoryla-
tion sites in total, approximately 3.8 times as many as in the
previous results. We also assessed the correlation of phosphoryla-
tion levels between our data and two previously reported large-
scale phosphoproteomic datasets obtained from independent
laboratories using different sample processing protocols.36,37 We
performed phosphosite-wise Spearman’s correlation analyses of
the phosphoproteomic data using complete phosphoproteomic
data from all overlapping cells between our data and previously
reported data. The median Spearman’s correlation coefficients
were 0.50 (n = 33, 1527 phosphosites (vs. the data obtained by TI
Roumeliotis et al. (2017)) and 0.44 (n = 23, 1827 phosphosites
(vs. the data obtained by Frejno, M., Meng, C., Ruprecht B, et al.
(2020)) (Fig. 1F and Fig. S1, ESI†). We observed that over 95% of
the phosphorylation sites were positively correlated with both
datasets. These data demonstrate that our large-scale phospho-
proteome data are deeply quantitative and highly reproducible.
The quantitative values for each technical replicate were averaged
and used for further analysis.

Comparative phosphoproteomics analysis of CRC cells
stratified based on the BRAF and KRAS mutational status
revealed distinct signalling pathways

To identify phosphoproteomics features associated with the
KRAS and BRAF mutational status, we classified cell lines into
three groups based on the KRAS and BRAF hotspot mutational
status (BRAF/KRAS wt, BRAF mutation, and KRAS mutation).
Many studies have indicated that mutations in KRAS and BRAF
are mutually exclusive in CRC.38 Out of 35 CRC cell lines, 34 cell
lines (except COLO320-HSR) were defined into 3 subgroups
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based on the hotspot mutational status indicated in the Cancer
Dependency Map.39 To identify phosphorylation sites that
exhibited significant upregulation across the three different
mutational statuses, we performed one-way ANOVA and
Tukey’s HSD post hoc test. The 343 differentially regulated
phosphorylation sites were grouped into 3 clusters (p value o
0.05, FDR o 0.1; Fig. 2A and Table S2A, ESI†). To capture the
molecular features of each subgroup, we performed an

overrepresentation analysis of the phosphoproteins of differen-
tially regulated phosphorylation sites in each cluster (Fig. 2B).
The results of the KEGG pathway analysis with p values less
than 0.05 are summarized in Fig. 2C and Table S2C (ESI†).
The ErbB signalling pathway was significantly enriched in all
three subgroups. To compare the effects of KRAS and BRAF
mutations on the downstream ErbB signalling pathway, we
illustrated the phosphoproteomics alterations in the ErbB

Fig. 2 Molecular features of each subset of KRAS and BRAF mutational status. (A) Hierarchical clustering of 343 significantly regulated phosphoryla-
tion sites according to the KRAS and BRAF mutational status (p value o 0.05, FDR o 0.1, one-way ANOVA followed by Tukey’s post hoc test). (B) Venn
diagram of significantly upregulated phosphorylated proteins in each cluster. The phosphoproteins identified from each of the three subgroups were
used for further analysis. (C) KEGG pathway enrichment analysis of differentially regulated phosphoproteins in each CRC subgroup. A bubble chart shows
the enrichment of differentially expressed genes in signalling pathways. The colour intensity reflects the enrichment ratio, and the node size reflects the
�log 10 p value. (D) Phosphorylation-level alterations in the ErbB signalling pathway. The colour represents the ratio of the phosphorylation level in BRAF
mut or KRAS mut versus BRAF/KRAS wt. Significantly differentially upregulated phosphosites (p o 0.05, FDA o 0.1 one-way ANOVA followed by Tukey’s
test for multiple comparisons) are depicted by asterisks. The colour indicates upregulation (red) or downregulation (blue). (E) Protein expression and
phosphorylation level of the key components of tight junctions. (F) String network analysis of the key components of tight junctions. The edge label
shows the confidence score based on the STRING database. (G) Correlation between OCLN and TJP3 protein expression levels in KRAS-mut cell lines
(Spearman’s test).
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signalling pathway in each subgroup (Fig. 2D). Asterisks denote
significantly different phosphorylation sites among the three
groups (one-way ANOVA, p value o 0.05, FDR o 0.1). A variety
of components were significantly different among the three
subgroups. In the BRAF/KRAS wt subgroup, we identified
upregulation of the phosphorylation level of EGFR S1039 and
GAB1 S381, S454, T503, and S650/S651. The phosphorylation
levels of other GAB1 proteins also tended to be upregulated in
the BRAF/KRAS wt subgroup. In the BRAF mutation subgroup,
the phosphorylation levels of MAP2K1 T386, MAP2K2 S222,
MTOR S2478/S2481, and PAK2 S141/T143 were significantly
upregulated. In the KRAS-mutant subgroup, the phosphoryla-
tion levels of ARAF S257 and NCK2 Y110 were significantly
upregulated (Fig. S2A, ESI†). Interestingly, these alterations
were not observed in protein expression levels (Fig. S2B and
Table S2B, ESI†). These results showed that the phosphoryla-
tion levels of downstream components of ErbB signalling are
differentially upregulated based on the BRAF and KRAS muta-
tional status.

To investigate the KRAS-mutant-specific upregulated signa-
ture, we focused on the tight junction pathway (Fig. 2C). The
phosphorylation levels of OCLN, PARD3, PATJ, and TJP3,
components of tight junctions, were significantly upregulated
in KRAS-mutant cells (Fig. 2E and Fig. S2C, ESI†). However, the
protein expression levels of these genes, except for PARD3,
which was not identified in this study, showed no statistically
significant differences among the three CRC subgroups (Fig. 2E
and Fig. S2D, ESI†). To examine the protein–protein association
of upregulated phosphoproteins in the KRAS-mutant subgroup,
we performed STRING network analysis. The ‘‘tight junction’’
and ‘‘cell–cell junction’’ terms were found to be most highly
enriched in this analysis (Table S2D, ESI†). Fig. 2F shows the
protein–protein interaction of the tight junction components
and their confidence scores from the STRING database.40 In
this network, the OCLN and TJP3 proteins showed the highest
confidence score. Indeed, we observed a significant positive
correlation between both the protein expression levels and
phosphorylation levels of OCLN and TJP3 across all CRC cell
lines (Fig. S2E and F, ESI†). We next compared the correlation
coefficients based on the KRAS mutational status at the pro-
teomics level. A positive correlation was found between these
two proteins across KRAS-mutant cells. In contrast, we found
no statistically significant positive correlation across cell lines
without KRAS mutations (Fig. 2G and Fig. S2G, ESI†). These
results suggest that a functional tight junction complex is
assembled in KRAS-mutant cells.

Proteomics-based protein coexpression analysis revealed
unique protein–protein association network dysregulation in
KRAS-mutant cells

Coexpression analysis allows the identification of functional
protein–protein associations. Previous studies have demon-
strated that the ratio of relative protein expression levels across
samples is consistent in protein complexes.14 To identify
commonly occurring protein complexes, we performed a coex-
pression analysis of all 34 CRC cell lines. We then performed a

coexpression analysis of 18 KRAS-mutant CRC cell lines and
compared these results with those obtained with all 34 cell
lines to characterize the dysregulated protein–protein associa-
tion networks in KRAS-mutant cells (Fig. 3A).

Coexpression was defined using Spearman’s rank correla-
tion coefficients. Spearman’s rank correlation coefficients for
30 240 864 possible protein pairs among 7777 proteins with
expression data across 34 CRC cell lines were calculated for
each subset. We first applied a positive correlation rate R Z 0.9
filter to the KRAS-mutant cell subset. In total, we obtained 503
differentially coexpressed protein pairs among 672 proteins
(Table S3A, ESI†). We then measured the difference in correla-
tion coefficients between two subsets for each protein pair
(subtracting the Rho value of all 34 CRC cell subsets from the
Rho value of the KRAS-mutant cell subset) and ranked protein
pairs based on correlation differences (Fig. 3A). We highlighted
the top 10% and the bottom 10% of absolute values of the
correlation differences between protein pairs. A larger absolute
value of the correlation difference indicated KRAS-mutant cell
line-specific network dysregulation (KRAS-specific protein pairs
(top 10% of the correlation difference)). In contrast, if the
correlation difference was low, proteins were coexpressed in all
34 CRC cell lines (commonly occurring protein pairs (bottom
10% of the correlation difference)).

To estimate the accuracy of the protein-derived networks, we
used both functional and physical protein associations (the full
STRING network) in the STRING database40 as a benchmark. In
the commonly occurring protein pairs (bottom 10%), we found
178 protein-based associations confirmed by the STRING data-
base and 20 novel associations identified in our study (Fig. 3B
and Fig. S3A, B, ESI†). The median Spearman’s rank correlation
coefficient between the protein–protein association of these 178
commonly occurring protein pairs (bottom 10%) was 0.78 in
both the KRAS-mutant and all 34 CRC cell subsets (Fig. S3C and
Table S3B, ESI†), indicating that the ratio of relative protein
expression levels in protein complexes based on the STRING
database is highly preserved across 34 CRC cell lines. We then
performed overrepresentation analyses of the commonly occur-
ring protein pairs of gene names using the CORUM sets
(Fig. 3C). We identified well-known human protein complexes
that were significantly enriched, such as ‘‘ribosome’’ and
‘‘respiratory chain complex’’ (Fig. 3B, C and Table S3C, ESI†).
An example of coexpression for the two ribosome subunits
RBL17 and RBL26 is shown in Fig. S3D (ESI†). We observed a
high correlation between the protein expression levels for these
known interactors in both subsets (R = 0.91 in KRAS-mutant
cells, R = 0.93 in all 34 CRC cell types).

To investigate protein–protein association dysregulation in
the KRAS-mutant cell lines, we compared the KRAS-specific
protein pairs (top 10% of the correlation difference) of protein
pairs of the correlation difference to protein associations
(the full STRING network) in the STRING database. We identi-
fied 48 novel protein-based associations with significantly
different correlation coefficients between the KRAS-mutant
and all 34 CRC cell subsets (p value o 0.05, implemented in
the R package cocor,33 Fig. 3D and Fig. S3E, F, Table S3B, ESI†).
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The genes of KRAS-specific protein pairs were subjected to
overrepresentation analyses of KEGG pathway sets (Fig. 3E).
We observed that the RAC2 and ROCK2 genes were shared by
multiple KEGG pathway enriched terms, including ‘‘proteogly-
cans in cancer’’, ‘‘axon guidance’’, ‘‘focal adhesion’’, and ‘‘Rap1
signalling pathway’’ (Table S3D, ESI†). Fig. 3F illustrates novel
protein–protein association pairs for four genes (ROCK2, RAC2,
PPP1R12A, COL4A1) enriched in the focal adhesion pathway as
an example. Previous studies have reported that some of the
selected genes are involved in the progression of CRC. COL4A1,
a tumour angiogenesis indicator, has been identified to play a
key role in CRC progression among all consensus molecular
subtypes (CMSs) in a weighted gene-based protein–protein
interaction network analysis.41 MRS2, an essential magnesium
transporter in the mitochondria, has been observed to have

relatively high mRNA expression levels in colorectal adenocar-
cinoma and rectum adenocarcinoma samples compared to
corresponding normal tissues.42 Although further investiga-
tions are needed to confirm these findings, the protein complex
of the magnesium transporter and extracellular matrix compo-
nent could contribute to the phenotypic characteristics of
KRAS-mutant CRC.

Phosphorylation sites crucial to the regulation of signal
transduction were associated with cancer vulnerability

The gene dependency score profiles obtained from the
CRISPER-Cas9 screens43 in a large number of cell lines con-
stitute a comprehensive catalogue of which genes are needed
for cancer cell growth or viability. The prediction of specific
phosphorylation sites that are important for cell growth and

Fig. 3 Protein coexpression analysis to identify protein–protein association dysregulation in KRAS-mutant cells. (A) Computational workflow for the
differential coexpression analysis. (B) Protein–protein association network of the commonly occurring protein pairs (bottom 10% of the correlation
difference). The largest network is shown. The rest of the network is shown in Fig. S3B (ESI†). The solid lines indicate STRING-confirmed associations. The
dotted lines indicate novel associations found in this work. (C) Bubble plot of CORUM enrichment analysis using gene names in the commonly occurring
protein pairs (bottom 10% of the correlation difference). The bubble colour and size correspond to the p value and number of genes enriched in the
pathway, respectively. (D) Protein–protein association network of the KRAS-specific protein pairs (top 10% of the correlation difference). The largest
network is shown. The rest of the network is shown in Fig. S3F (ESI†). The solid lines indicate STRING-confirmed associations. The dotted lines indicate
novel associations found in this study. (E) Bubble plot of KEGG enrichment analysis using gene names in the KRAS-specific protein pairs (top 10% of the
correlation difference). The bubble colour and size correspond to the p value and number of genes enriched in the pathway, respectively. (F) Four
correlation plots with KRAS-mut cells and 34 CRC cells. The protein expression of COL4A1, PPP1R12A, RAC2, and ROCK2, which are components of the
focal adhesion, are on the y-axis.
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viability by utilizing these gene dependency score profiles could
contribute to the development of therapeutic opportunities. We
undertook the following analysis based on the following
assumption: if the phosphorylation levels of phosphorylation
sites showed a high positive correlation to the gene dependency
of the corresponding protein, these phosphorylation sites were
associated with cancer vulnerability. We performed a pairwise
Spearman’s correlation analysis of phosphorylation levels and
gene-dependency scores (DepMap CRISPR/Cas9 screening)
of the corresponding genes for each phosphorylation site
(Table S4, ESI†). We used phosphoproteomics data of 29 585
phosphorylation sites and the corresponding gene dependency
scores of 5366 genes across 28 CRC cell lines.

To investigate whether phosphorylation sites involved in
oncogenic signalling pathway activation are correlated with
corresponding dependency scores, we focused on functionally
annotated phosphorylation sites in PTMsigDB, which is a

recently published database of curated resources for phosphosite-
specific analysis.31 In the signature of molecular signalling
pathways (PATH) category in the PTMsigDB, 1137 phosphorylation
sites were manually curated regardless of whether their functions
were activated (upregulated) or deactivated (downregulated) in
signalling pathways. Of these 1137 literature-annotated phosphor-
ylation sites, 417 and 57 were annotated as upregulated and
downregulated in our phosphoproteomics data, respectively. We
compared the correlation coefficients of site-gene pairs between
upregulated and downregulated pairs and found that the upregu-
lated site-gene pairs showed substantially higher correlations than
the downregulated site-gene pairs (p value = 0.0009, Welch’s t test;
Fig. 4A and Table S2A, ESI†). The top 5% significantly positively
correlated site-gene pairs in literature-annotated phosphorylation
sites are shown in Fig. 4B. For the 23 site-gene pair datasets, the
proportions of pSer/Thr/Tyr phosphorylation sites were 26.0%,
4.4% and 69.6%, respectively (Fig. 4C). We noted that the fraction

Fig. 4 Functionally annotated phosphorylation sites that are positively correlated with genetic dependency play essential roles in protein function.
(A) Distribution of phosphosite-gene dependency correlation comparing ‘‘up’’ annotated phosphosites (n = 417, red) with ‘‘down’’ annotated
phosphosites (n = 57, Blue) from PTMsigDB (p value = 0.0009, Welch’s t test). The top 5% correlation gene-site pairs are shown in the black dotted
frame. (B) List of Spearman’s correlation coefficients of the top 5% positive correlation site-gene pairs. The red dots indicate ‘‘up’’ annotated
phosphosites, and the blue dots indicate ‘‘down’’ annotated phosphosites (p value o 0.05). (C) Proportions of phosphoserine (pSer, black),
phosphothreonine (pThr, red), and phosphotyrosine (pTyr, green). (D) Correlation between the phosphorylation level of 4 phosphorylation sites of
IRS2 and their corresponding gene dependency scores. Rho and p values were obtained by Spearman’s correlation test. (E) Correlation between the
phosphorylation level of 5 phosphorylation sites of EGFR and their corresponding gene dependency scores. Rho and p values were obtained by
Spearman’s correlation test. (F) Beeswarm plot of the Spearman’s correlation coefficients for annotated and non-annotated gene-site pairs for EGFR and
IRS2 curated from the PTMsigDB. The colours of the dots indicate phosphorylation sites annotated in different databases (deep pink, PTMsigDB; grey, not
annotated) (Welch’s t test). (G) Beeswarm plots of the phosphorylation levels of EGFR Y1172 and PTK2 Y861 differentially regulated between CRC
subgroups. The horizontal line represents the median. (H) Distribution of phosphosite-gene dependency correlation of all 29 585 phosphorylation sites.
The 542 phosphorylation sites distributed in the black dotted frame have the same correlation coefficient (Rho 40.475) as the top 5% or more of the
correlation distribution of functionally annotated phosphorylation sites in PTMsigDB.
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of tyrosine residues (pTyr) was 16.6-fold higher than that of the
total quantitative phosphoproteomics data (Fig. S4A, ESI†).

To further investigate whether phosphorylation sites crucial
to the regulation of signal transduction were associated with
cancer vulnerability, we focused on the top two genes (IRS2 and
EGFR) with the highest number of highly correlated site-gene
pairs among the 23 site-gene pairs (Fig. 4D and E). We obtained
51 and 16 correlation coefficients of site-gene pairs for IRS2
and EGFR in our phosphoproteomics dataset, respectively.
We compared the correlation coefficients of site-gene pairs
between annotated and nonannotated pairs in PTMsigDB
(PATH) and found that the correlation coefficients of literature
annotated site-gene pairs were significantly higher than those
for the unannotated site-gene pairs in both IRS2 (p value =
0.0126, Welch’s t test) and EGFR (p value = 0.0018, Welch’s
t test) (Fig. 4F). We also identified EGFR Y1172 and PTK2 Y861,
which were significantly upregulated in the BRAF/KRAS wt and
KRAS-mutant subgroups, respectively, in this top 5% site-gene
correlation list (Fig. 4B, G). The correlation coefficients for

phosphorylation sites of IRS2, EGFR, and PTK2 are illustrated in
Fig. S4B (ESI†). Taken together, these data suggest that phosphor-
ylation sites crucial to the regulation of signal transduction are
associated with cancer vulnerability and are potential drug targets.

To explore phosphorylation sites as potential drug targets,
we filtered the correlation coefficients of all 29 585 phospho-
proteomics data by Rho 4 0.475, which is the same coefficient as
the top 5% or more of the correlation distribution of literature-
annotated phosphorylation sites. We identified 542 sites with a
high correlation coefficient (Fig. 4H and Table S2A, ESI†).

EPHA2 kinase is activated in KRAS-mutant CRC cells

Inference of protein kinase activity helps in better understanding
kinase-regulated signalling pathways and is used to identify novel
therapeutic targets. To infer upregulated kinase activities in KRAS-
mutant cells, we first applied PTM-SEA to the phosphoproteomics
data for each cell on a case-by-case basis. Then, the normalized
enrichment scores (NESs) of each kinase were compared between
the KRAS-mutant subgroup and the other subgroup, and the

Fig. 5 PARD3 Y378 is involved in KRAS-mutant cell viability. (A) Volcano plot of the enrichment of various phosphoproteome signatures. The x-axis
indicates the normalized enrichment scores between KRAS-mut and BRAF/KRAS wt and BRAF mut, and a positive value indicates upregulated
phosphoproteome signatures in KRAS-mut cells. The dot size indicates the percent overlap of phosphorylation sites associated with the signature
and quantified phosphorylation sites in CRC35. The blue colour indicates significantly upregulated signatures in KRAS-mut cells. (B) Heatmap of the
protein expression levels of EPHA2 and the phosphorylation levels of each phosphorylation site of EPHA2. �log 10 p values were determined by Welch’s t
test between KRAS-mut and BRAF/KRAS wt and BRAF mut. EPHA2 substrates are shown as asterisks. (C) Bubble plot of KEGG enrichment analysis using
gene names in the top 5% of phosphorylation sites correlated with EPHA2 kinase NES. The bubble colour and size correspond to the p value and number
of genes enriched in the pathway, respectively. (D) List of the phosphorylation sites that are significantly upregulated in KRAS-mutant cells among the top
5% of phosphorylation sites that are positively correlated with the EPHA2 kinase activity score. The x-axis shows the Spearman’s correlation coefficients
between the phosphorylation levels of phosphorylation sites and gene-dependency scores of the corresponding genes for each phosphorylation site.
(E) Correlation plot of the phosphorylation level of PARD3 Y378 and PARD3 dependency scores. (F) Correlation plot of the phosphorylation level of
PARD3 Y378 and EPHA2 kinase enrichment scores. (G) Correlation plot of the phosphorylation level of PARD3 Y378 and CTD2 AUCs of dasatinib.
(H) Model of signalling pathways in KRAS-mut cells and novel therapeutic target candidates.
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EPHA2 kinase signature was most significantly upregulated in the
KRAS-mutant subgroup (Fig. S5A, Fig. 5A and Table S5A, ESI†).
The protein expression and phosphorylation levels of EPHA2 itself
were significantly upregulated in KRAS-mutant cells (Fig. S5B,
Fig. 5B and Table S2A, B, ESI†). Furthermore, the protein expres-
sion level of EPHA2 and the phosphorylation levels of all EPHA2
substrates showed a significantly positive correlation with EPHA2
kinase activity (Fig. S5C and D, ESI†).

To investigate whether phosphorylation sites of EPHA2 are
therapeutic candidate targets, we highlighted the correlation
coefficients of each phosphorylation level of EPHA2 substrates
and gene dependency scores of EPHA2. We found that all
phosphorylation levels of EPHA2 substrates were inversely or
not correlated with EPHA2 gene dependency scores (Fig. S5E,
ESI†), suggesting that the EPHA2 phosphorylation sites them-
selves did not indicate cancer vulnerability in KRAS-mutant cells.

To further understand the downstream molecules of EPHA2
kinase-regulated signalling pathways, we performed a Spear-
man’s correlation analysis of the phosphorylation levels of each
phosphorylation site against the EPHA2 kinase activity scores.
We identified 1095 phosphorylation sites among the top 5%
positively correlated sites against EPHA2 kinase activity scores
(Table S2A, ESI†), which are candidates for EPHA2 downstream
components. The 478 phosphoproteins with these 1095 phos-
phorylation sites were subjected to functional annotation using
the KEGG pathway database. These proteins were significantly
enriched in pathways including ‘‘tight junction’’ and ‘‘focal adhe-
sion’’ (Fig. 5C and Table S5B, ESI†). The results of this functional
analysis were consistent with the characteristics of KRAS-mutant
cells based on the comparative phosphoproteomics analysis and
the proteomics-based protein coexpression analysis.

The EPHA2-PARD3 axis is involved in KRAS-mutant cell viability

To explore potential therapeutic target phosphorylation sites for
KRAS-mutant cells in a downstream molecule in EPHA2 signalling,
we filtered phosphorylation sites that were significantly upregu-
lated in the KRAS-mutant subgroups from the top 5% of phosphor-
ylation sites that were positively correlated with the EPHA2 kinase
activity score. Fig. 5D shows the Spearman’s correlation coefficients
between the phosphorylation levels of phosphorylation sites and
gene-dependency scores of the corresponding genes for each
phosphorylation site for 12 phosphorylation sites resulting from
this filtering. Among these 12 phosphorylation sites, the phosphor-
ylation level of PARD3 Y378 showed the highest positive correlation
coefficient with the corresponding gene dependency (Rho = 0.67,
p = 0.004; Fig. 5D and E) and a positive correlation coefficient with
EPHA2 kinase activity (Rho = 0.56, p = 0.009; Fig. 5F). These data
indicate that PARD3 Y378 is involved in KRAS-mutant cell viability.

To predict therapeutic candidates showing sensitivity to the
phosphorylation level of PARD3 Y378, we searched for kinase
inhibitors that showed an inverse correlation with the phos-
phorylation level of PARD3 Y378 and ACU scores for drug
sensitivity among the 18 FDA-approved kinase inhibitors in the
CTD2 dataset from the Cancer Target Discovery and Develop-
ment Network.44 We found that dasatinib was the most inversely
correlated drug (Rho = �0.53, p = 0.03; Fig. 5G and Fig. S5F,

Table S5C, ESI†). Dasatinib is known to be a multitarget kinase
inhibitor that also potently targets EPHA2. Taken together, these
findings suggest that PARD3 Y378, which is upregulated in
KRAS-mutant cells, is a downstream target phosphorylation site
of EphA2 signalling and a potential predictive biomarker for
dasatinib sensitivity (Fig. 5H).

The molecular features of KRAS mutant cell lines match those
of KRAS mutant human tumour samples

To evaluate the degree to which the results of the CRC35
phosphoproteomic data matched the clinical phosphoproteomics
data, we performed a comparative analysis of the publicly avail-
able phosphoproteomic data of tumour samples from the CPTAC
colon cancer study.45 We curated a characterized phosphoproteo-
mics dataset of 96 cases of CRC. This study used isotopic labelling
to quantify the relative abundance of phosphosites. We compiled
available clinical information on the mutational status: BRAF/
KRAS wt (n = 46), BRAF mut (n = 33), and KRAS mut (n = 17).
The phosphoproteomics data of tumour samples among three
different mutation subgroups were then subjected to one-way
ANOVA and Tukey’s HSD post hoc test, which revealed a total of
4103 differentially regulated phosphorylation sites among the
three subgroups (p value o 0.05, FDR o 0.1; Fig. S6A, ESI†),
and 1586 (1004) phosphorylation sites (phosphorylated proteins)
were significantly upregulated in the KRAS mut samples com-
pared to the other two groups (p value o 0.05, FDR o 0.1 Fig. S6B,
ESI†). Notably, we found that phosphorylation changes in the
KRAS mut group were markedly greater than those in the BRAF
mut group. The results from the KEGG pathway overrepresenta-
tion analysis are shown in Fig. S6C (ESI†). Consistent with the
CRC35 proteomics and phosphoproteomic data, we observed
upregulation of both focal adhesion and tight junction pathways
in the KRAS mut subgroup.

We then found a 34.5% overlap of phosphosites (11 578 phos-
phosites) in our CRC35 phosphoproteomic data (Fig. S6D, ESI†).
Among these phosphosites, the ARAF-T253, S257 phosphosites
were the only significantly upregulated phosphosites in the KRAS
mut group in both the CRC35 and CPTAC datasets (Fig. S6E,
ESI†). Although we quantified 89% of EPHA2 substrates (8 quan-
tified phosphosites/9 annotated phosphosites) in the CRC35 data,
only 22% (2 quantified phosphosites/9 annotated phosphosites)
were quantified in the CPTAC data. The phosphorylation levels of
EPHA2 Y772, which is significantly upregulated in KRAS mut CRC
cells in the CRC35 data, tended to be increased, albeit not
significantly, in the KRAS mut patient tumours in the CPTAC
data (Fig. S6F, ESI†). The quantified numbers of EPHA2 Y772
substrates each subset in the CPTAC data were 11 (23.9%) in the
BRAF/KRAS wt subgroup, 2 (11.7%) in the BRAF mut subgroup,
and 7 (21.2%) in the KRAS mut subgroup. Furthermore, PARD3
Y378 was not quantified in the CPTAC dataset.

Discussion

We performed comprehensive proteomic, phosphoproteomic
and pY-enriched phosphoproteomic analyses across 35 CRC
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cell lines. We quantified over 1700 tyrosine phosphorylation
sites, and this number is markedly higher than those previously
reported for large-scale phosphoproteomics data of CRC
(86 sites in the data found by TI Roumeliotis et al. (2017) and
1208 sites in the data reported by Frejno, M., Meng, C., Ruprecht
B, et al. (2020)). These results provide a highly valuable resource
for understanding important posttranslational modifications that
regulate receptor tyrosine kinase-mediated signalling in CRC cells.
The correlation between our phosphoproteomic data and the
other two datasets obtained by independent laboratories was
approximately 0.4–0.5. Furthermore, the correlation between the
data reported by TI Roumeliotis et al. (2017) and the data found by
Frejno, M., Meng, C., Ruprecht B, et al. (2020) was 0.38 (n = 23, 682
phosphosites), suggesting that differences in cell culture condi-
tions (medium condition, confluence at cell collection) and
phosphoproteomic methods may influence the results. Further
studies will be needed to improve the correlation between inde-
pendent laboratories that utilise different sample processing
protocols.

Although large-scale proteomics and phosphoproteomics
analyses of cell lines have been performed, a comprehensive
understanding of the molecular differences between mutant
KRAS and BRAF signalling in CRC cells has not been established.
In this study, we performed a deep proteomics and phospho-
proteomics analysis of a global steady-state of 35 CRC cell lines
and characterized phosphoproteomics features and dysregulated
protein–protein association networks associated with the KRAS
oncogenic mutation. We characterized the upregulation of
tight junction signalling and novel dysregulated protein–protein
association networks in KRAS-mutant cells. Furthermore, the
EPHA2-PARD3 axis has been suggested to confer cancer vulner-
ability to KRAS-mutant cells by integrated analysis of phospho-
proteomics data and gene dependency scores. Our results
provide novel insights into the biological and therapeutic infor-
mation of KRAS-mutant CRC.

Our data have demonstrated that phosphoproteomics data
are more valuable for understanding distinct activated signalling
pathways based on KRAS and BRAF mutational status than
proteomics data. We observed that the ErbB signalling pathway
was activated in all mutational subgroups. Interestingly, the
phosphorylation levels of direct downstream targets of each
mutated gene were significantly upregulated for each mutational
status. These findings were not recapitulated at the protein
expression level. We observed that the MAPK signalling pathway
was upregulated in the BRAF mutation subgroup. Our results are
consistent with previous studies showing that BRAF mutations
constitutively activate the MAPK pathway in cancer cells.46,47

Previous studies have shown that oncogenic KRAS activates
several downstream phosphorylation signalling pathways,
including the RAF/MEK/ERK, PI3K/AKT, and RALGDS/RAL
pathways.48 However, we did not observe the activation of any
of these pathways in KRAS-mutant cells. Our findings may reflect
differences in the degree of activation of these downstream
pathways in different KRAS-mutant cells.

Interestingly, we found that the tight junction KEGG signalling
pathway was most significantly activated in the KRAS-mutant

subgroup. Indeed, we observed that the phosphorylation levels
of tight junction scaffolding proteins, including OCLN, TJP, and
PARD3, were significantly upregulated in KRAS-mutant cells.
Previous studies have demonstrated that oncogenic Ras signalling
is involved in deficiencies in tight junctions, leading to loss of
apicobasal cell polarity and disruption of epithelial architecture.49

The phosphorylation of PARD3 has been reported to change its
affinity for its interaction partners, leading to loss of cell polarity
and induction of migration.50 The phosphorylation of OCLN has
been implicated in tight junction disassembly and assembly.51

Taken together, our data may provide phosphorylation sites that
contribute to tight junction regulation. However, the function of
these phosphorylation sites has not been functionally annotated
in the literature. Therefore, further studies are needed to confirm
whether these phosphorylation sites contribute to tight junction
regulation.

To the best of our knowledge, this is the first time that we
have identified protein–protein association networks that are
dysregulated in KRAS-mutant cells by comparing coexpression
data between KRAS-mutant cells and cells of 34 other cell lines.
Previous studies have demonstrated that the high level of
correlation using relative expression levels across samples
allows the identification of protein complexes.14 Consistent
with this view, we confirmed that well-studied multiprotein
complexes were enriched in the commonly occurring protein
pairs (the bottom 10% of correlation coefficients of differential
gene pairs). These results imply that our proteomics data were
reliable for investigating the KRAS-specific protein pairs (top
10% of correlation coefficients of differential gene pairs), which
reflect protein–protein association networks that are dysregu-
lated in KRAS-mutant cells. We focused on two novel protein
association pairs between PPP1R12A and FBLN2 and between
COL4A1 and MRS2 in the focal adhesion pathway. A functional
association between COL4A1 and FBLN2 was identified based
on the STRING database. Fibulin-2 (FBLN2) is a secreted
extracellular matrix glycoprotein that contributes to basement
membrane (BM) stability. Previous studies have demonstrated
that FBLN2 promotes tumour cell adherence to collagen in
KRAS(G12D) and p53 mutation lung adenocarcinoma cell line
models.52 PPP1R12A, which is mainly involved in the Rho/
ROCK signalling pathway, regulates focal adhesion formation
by actomyosin contraction. Thus, the two novel protein asso-
ciations mediated by the interaction between FBLN2 and
COL4A1 may represent features of focal adhesion in KRAS-
mutant CRC cells. Although further validation is needed to
investigate whether these proteins functionally comprise com-
plexes, our proteomics-based protein coexpression analysis
correlation analysis may provide insight into the dysregulated
protein–protein association landscape of each mutation.

To the best of our knowledge, this is the first analysis of
cancer vulnerability prediction by a pairwise correlation between
phosphorylation level and gene dependency across a large
number of CRC cell lines. Our data showed that phosphorylation
sites correlated with corresponding gene dependency could
play an important role in cancer cell growth or viability, and
these sites are worth further validation as potential drug targets.
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We found that the phosphorylation levels of EGFR Y1172 and
PTK2 Y861, which were upregulated in the BRAF/KRAS wt and
KRAS-mutant subgroups, respectively, showed a strong correlation
with the corresponding gene dependency scores. Previous studies
have reported that both phosphorylation sites contribute to kinase
activation. It has been experimentally validated that the phosphor-
ylation level of EGFR Y1172 is decreased by treatment with
cetuximab, an anti-EGFR inhibitor, in cetuximab-sensitive CRC cell
lines.53 The phosphorylation level of PTK2 Y861 is decreased by
treatment with TAE226, a focal adhesion kinase inhibitor, in
ovarian cancer cells.54 Therefore, applying this correlation analysis
to all quantified phosphorylation sites may lead to exploring
potential therapeutic target phosphorylation sites.

We found that EPHA2 kinase is activated in KRAS-mutant
CRC cells. Previous studies have shown that high phosphoryla-
tion levels of EPHA2 S897 and Y772 as well as the protein
expression level of EPHA2 were upregulated in invasive CRC
cell lines with KRAS mutation by western blotting of 14 CRC cell
line models.55 Our large-scale proteomics and phosphoproteo-
mics data across 35 CRC cell lines quantified 18 phosphoryla-
tion sites for EPHA2, including 8 EPHA2 kinase substrate
phosphorylation sites annotated in the PhosphoSitePlus data-
base. We demonstrated consistent upregulation of EPHA2
protein expression and phosphorylation levels of EPHA2 kinase
substrate sites in KRAS-mutant CRC cells compared to BRAF
mutant and BRAF/KRAS wt cells.

Our data indicated that inhibition of direct phosphorylation
sites of EPHA2 alone did not show cancer vulnerability in KRAS-
mutant CRC cells. Previous studies have proposed that EPHA2
is a therapeutic target in diverse cancers, including CRC.56–58

Additionally, several compounds targeting EPHA2 have been
evaluated and tested in clinical studies with limited clinical
success.59 One possible interpretation for this finding is that
EPHA2 exhibits both pro-oncogenic functions in a ligand-
independent manner and anti-oncogenic functions in a ligand-
dependent manner.60 A recent report has shown that EPHA2 Y772
has both ligand-dependent and ligand-independent functions.61

Due to its ligand-independent role, EPHA2 Y772 is responsible for
cell proliferation and could be a target of the EPHA2 tyrosine
kinase inhibitor ALW-II-41-27 in nasopharyngeal carcinoma
(NPC).62 However, our approach for predicting CRC cancer depen-
dency from phosphoproteomic data demonstrated that all phos-
phorylation levels of EPHA2 kinase substrate sites, including
Y772, showed an inverse or no correlation with EPHA2 gene
dependency scores. Thus, we speculated that common down-
stream molecules mediated by EPHA2 and KRAS are direct
therapeutic candidate targets in KRAS-mutant CRC.

We identified 1244 phosphorylation sites with a significantly
positive correlation against corresponding gene dependency
scores (p value o 0.05), indicating that these phosphorylation
sites play roles in cancer cell vulnerability. One of the narrowed-
down cancer vulnerability candidate phosphosites in KRAS-
mutant CRC is phosphorylation at Y378 of PARD3, which is a
cell polarity protein. A recent study demonstrated that PARD3
Tyr residues are a substrate of EPHA4 and modulate down-
stream signalling.63 The EPHA2-EPHA4 interaction has been

previously observed using BioID data.64 Based on these data,
PARD3 Y378 is also a potential downstream candidate of EPHA2.
Although the phosphorylation site of Y378 on PARD3 has not
been functionally annotated previously, aberrant tyrosine phos-
phorylation of Par3 is thought to be associated with dysfunction
of growth factor receptors, leading to pathological tight junction
assembly and disassembly in tumour cells.65,66 Previous reports
have shown that RAS activation disrupts epithelial homeostasis
and leads to loss of tissue polarity.67 Taken together, the results
indicate that the phosphorylation of PARD3 Y378, which is a
downstream component candidate of EPHA2, may contribute to
loss of cell polarity in KRAS-mutant CRC cells. Taken together,
our data suggest that the EPHA2-PARD3 axis is a cancer vulner-
ability in KRAS-mutant CRC. This study has one limitation.
Previous studies demonstrated that up to 65% of phosphosites
might be nonfunctional.68 It will be important to assess whether
PARD3 Y378 is a functional phosphorylation site involved in cell
viability through experiments, including experiments involving
phosphorylated amino acid substitutions.

We also demonstrated that the molecular features of KRAS
mutant cell lines, including tight junctions and focal adhesion,
were upregulated in KRAS mutant clinical samples based on
phosphoproteomic data from the CPTAC colon cancer study.
In contrast, we did not observe any upregulation of EPHA2
substrates or quantification of PARD3 Y378. One possible
explanation for this result is the low number of pY quantifica-
tions in CPTAC data across samples. The quantified sample
numbers of EPHA2 Y772 in the CPTAC data was 20 (20.8%),
indicating that the limited number of sample quantifications of
this phosphosite may not lead to reliable evaluation. It will be
possible to increase the quantitative depth of the tyrosine
phosphoproteome from clinical tissue samples by collecting
high-freshness tissue samples and performing phospho-tyrosine
enrichment.

Conclusion

In summary, our large-scale phosphoproteomics and proteo-
mics data across 35 steady-state CRC cell lines represent a
valuable resource for understanding the oncogenic signalling
pathways and dysregulated protein complexes associated with
different oncogenic mutations. Our integrated analysis of
phosphorylation levels of phosphorylation sites and cancer
dependency scores of corresponding proteins across CRC cell
lines provides a systematic assessment of the importance of
phosphorylation sites to cancer vulnerability. In the future, we
envision that matching the profile of phosphorylation sites
involved in cancer cell viability with phosphoproteomic
data of CRC patients will become an important tool for pre-
dicting phosphorylation sites that play a central role in cancer
viability.
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2015, 6, 20785–20800.

39 J. S. Boehm, M. J. Garnett, D. J. Adams, H. E. Francies,
T. R. Golub, W. C. Hahn, F. Iorio, J. M. McFarland, L. Parts
and F. Vazquez, Nature, 2021, 589, 514–516.

40 D. Szklarczyk, A. Franceschini, M. Kuhn, M. Simonovic,
A. Roth, P. Minguez, T. Doerks, M. Stark, J. Muller,
P. Bork, L. J. Jensen and C. Von Mering, Nucleic Acids Res.,
2011, 39, 561–568.

41 R. Chen, A. Sugiyama, H. Seno and M. Sugimoto, PLoS One,
2019, 14, e0221772.

42 J. Auwercx, P. Rybarczyk, P. Kischel, I. Dhennin-Duthille,
D. Chatelain, H. Sevestre, I. Van Seuningen, H. Ouadid-
Ahidouch, N. Jonckheere and M. Gautier, Nutrients, 2021,
13(1), 210.

43 C. Pacini, J. M. Dempster, I. Boyle, E. Gonçalves,
H. Najgebauer, E. Karakoc, D. van der Meer, A. Barthorpe,
H. Lightfoot, P. Jaaks, J. M. McFarland, M. J. Garnett,
A. Tsherniak and F. Iorio, Nat. Commun., 2021, 12, 1661.

44 B. A. Aksoy, V. Dancı́k, K. Smith, J. N. Mazerik, Z. Ji, B. Gross,
O. Nikolova, N. Jaber, A. Califano, S. L. Schreiber,
D. S. Gerhard, L. C. Hermida, S. Jagu, C. Sander,
A. Floratos and P. A. Clemons, Database, 2017, 1–10.

45 S. Vasaikar, C. Huang, X. Wang, V. A. Petyuk, S. R. Savage,
B. Wen, Y. Dou, Y. Zhang, Z. Shi, O. A. Arshad, M. A. Gritsenko,

L. J. Zimmerman, J. E. McDermott, T. R. Clauss, R. J. Moore,
R. Zhao, M. E. Monroe, Y.-T. Wang, M. C. Chambers,
R. J. C. Slebos, K. S. Lau, Q. Mo, L. Ding, M. Ellis,
M. Thiagarajan, C. R. Kinsinger, H. Rodriguez, R. D. Smith,
K. D. Rodland, D. C. Liebler, T. Liu and B. Zhang, Cell, 2019,
177, 1035–1049.

46 T. S. Niault and M. Baccarini, Carcinogenesis, 2010, 31,
1165–1174.

47 A. Ahmadzadeh, S. Shahrabi, K. Jaseb, F. Norozi,
M. Shahjahani, T. Vosoughi, S. Hajizamani and N. Saki,
Oncol. Rev., 2014, 8, 22–25.

48 M. B. Ryan and R. B. Corcoran, Nat. Rev. Clin. Oncol., 2018,
15, 709–720.

49 T. A. Tervonen, S. M. Pant, D. Belitškin, J. I. Englund,
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1

1

2 Supplemental Figure 1. Comparison between our phosphoproteomics data and data from a 

3 previously reported large-scale phosphoproteomics study of CRC cell lines, related to 

4 Figure 1.

5 Spearman’s correlation between our phosphoproteomics data and data from Frejno, M., Meng, 

6 C., Ruprecht B, et al. (2020). The 1,827 phosphosites across 23 CRC cell lines shared in both 

7 datasets were used in this study.

8
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2

9

10

11 Supplemental Figure 2. Boxplots and correlation matrix of proteins and phosphorylation 

12 sites in the enriched pathway that showed differential expression between the CRC 

13 subgroups, related to Figure 2.

14 A. Beeswarm plots of the 11 phosphosites of the ErbB signalling pathway showing differential 

15 regulation among CRC subgroups. The horizontal line represents the median.

16 B. Beeswarm plots of the 8 proteins of the ErbB signalling pathway among CRC subgroups. The 

17 horizontal line represents the median.

18 C. Beeswarm plots of the 5 phosphorylation sites of tight junction signalling showing differential 

19 regulation among CRC subgroups. The horizontal line represents the median.



3

20 D. Beeswarm plots of the 3 protein components of tight junction signalling among CRC 

21 subgroups. The horizontal line represents the median.

22 E. Correlation plot of the protein expression levels of TJP3 and OCLM.

23 F. Correlation plot of the phosphorylation levels of TJP3 S368 and OCLM S40 and S45.

24 G. Correlation matrix of the proteome expression levels of the key components of tight junctions 

25 in KRAS-mut cell lines (Spearman’s test). 



4

26

27 Supplemental Figure 3. Protein coregulation analysis for the identification of 

28 protein‒protein associations in KRAS-mutant cells, related to Figure 3.

29 A. Venn diagram of the commonly occurring protein pairs (the bottom 10% of protein‒protein 

30 interactions of the correlation difference) among STRING physical dataset, STING functional 

31 dataset and our CRC dataset.

32 B. Protein‒protein association network of the commonly occurring protein pairs (bottom 10%), 

33 related to Fig. 3B.

34 C. Violin plot of the Spearman’s correlation coefficient of functional protein‒protein associations 

35 based on the STRING database between KRAS-mutant cells and 34 CRC cell types.

36 D. Correlation plot of the protein expression levels of RPL17 and RPL26 in KRAS-mutant cells 

37 and 34 other CRC cell lines.

38 E. Venn diagram of the KRAS-specific protein pairs (the top 10% of protein‒protein interactions 



5

39 of the correlation difference) among the STRING physical dataset, STING functional dataset and 

40 our CRC dataset.

41 F. Protein‒protein association network of KRAS-specific protein pairs (top 10%) of the 

42 correlation difference, related to Fig. 3D.
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43

44 Supplemental Figure 4. Features of phosphorylation sites showing a high correlation 

45 between phosphorylation levels and gene dependency scores, related to Figure 4.

46 A. Distribution comparing the relative frequency of phosphoserine (pSer, black), 

47 phosphothreonine (pThr, red), and phosphotyrosine (pTyr, green) in the top 5% highly correlated 

48 phosphosites with gene dependency scores with that in all quantified phosphosites in CRC35.

49 B. Spearman’s correlation coefficient of phosphorylation sites identified in IRS2 (top), EGFR 

50 (middle) and PTK2 (down) with unknown (grey) and known activation in PTMsigDB (deep 

51 pink).
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52

53 Supplemental Figure 5. Potential therapeutic opportunity for KRAS-mutant cells, related 

54 to Figure 5.

55 A. Beeswarm plots of EPHA2 kinase enrichment scores showing differential enrichment between 

56 the CRC subgroups (p value = 0.009, Welch’s t test between KRAS mut vs. (BRAF mut and 

57 BRAF/KRAS wt)).

58 B. Beeswarm plots of EPHA2 protein expression levels showing differential expression between 

59 the CRC subgroups (p value = 0.02, Welch’s t test between KRAS mut vs. BRAF mut and 

60 BRAF/KRAS wt).

61 C. Correlation plots between EPHA2 kinase enrichment scores and protein expression levels of 

62 EPHA2.

63 D. Correlation plots between EPHA2 kinase enrichment scores and phosphorylation levels of 

64 substrates on EPHA2.
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65 E. Correlation plots between EPHA2 dependency scores and phosphorylation levels of substrates 

66 on EPHA2.

67 F. List of Spearman’s correlation coefficients between phosphorylation levels of PARD3 Y378 

68 and CTD2 AUCs of FDA-approved kinase inhibitors. Gene symbols of the protein targets for 

69 each inhibitor are shown in the right table.

70
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71

72 Supplemental Figure 6. Comparison of the phosphoproteomic data of CRC35 with data 

73 from the CPTAC Colon Cancer Study

74 A. Hierarchical clustering of 4,103 significantly regulated phosphorylation sites according to the 

75 KRAS and BRAF mutational status (p value < 0.05, FDR < 0.1, one-way ANOVA followed by 

76 Tukey’s post hoc test).

77 B. Venn diagram of significantly upregulated phosphorylation sites (phosphoproteins) in the 

78 KRAS mut vs. BRAF mut or KRAS mut vs. BRAF/KRAS wt subgroups.

79 C. Bubble plot of the KEGG pathway enrichment of differentially expressed genes (DEGs) in the 

80 KRAS mut group. The bubble size corresponds to the % scored in the pathway. The % score 

81 indicates the ratio of the number of DEGs mapped to a certain pathway to the total number of 

82 genes mapped to the pathway.
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83 D. Venn diagram demonstrating the overlap between in-house CRC35 phosphoproteomic data 

84 and CPTAC phosphoproteomic data (Vasaikar, et al. 2019). 

85 E. and F. Beeswarm plots of the phosphorylation levels of ARAF-T253, S257 (E), and EPHA2-

86 Y772 (F) showing differential regulation among the various KRAS and BRAF mutational status 

87 subgroups in the CPTAC data (left) and CRC35 data (right). The horizontal line represents the 

88 median.

89


	CrossMarkLinkButton: 


