
Procedural Text Generation from
Instructional Videos

Taichi Nishimura

Graduate School of Informatics
Kyoto University

This thesis is submitted for the degree of
Doctor of Philosophy in Informatics

August 2023

Acknowledgements

It seems that my Ph.D. journey is finally over. When I entered the graduate school of
Informatics at Kyoto University, I did not know anything about research. I learned its essence
here, such as surveying existing work, designing experimental settings, writing efficient
codes, rebutting reviewers’ comments and publishing academic papers. Although I improved
my research skills, there is still plenty of room for improvement in them—But, anyway, my
Ph.D. life is coming to an end. Here, I would like to express my gratitude to many people.

I am first deeply grateful to my supervisor, Professor Shinsuke Mori. He has hospitably
guided me since I was an undergraduate student at Kyushu University. His insightful and
constructive comments lead me to have an opportunity to think deeply about my research.

I also wish to express sincere appreciation to my thesis committee, Professor Ko Nishino
and Professor Yuichi Nakamura, for taking the time to review my thesis and giving many
helpful comments.

I especially thank the main two co-authors in my papers: Dr. Atsushi Hashimoto and Dr.
Yoshitaka Ushiku, who are working at OMRON SINIC X Corporation. They are familiar
with vision-and-language research, and their comments gratefully lead my research to be
successful. They have always discussed with me not only the main concept of my research
but also its technical details. During my research, we shared joy and sorrow with each other.
Many rejected papers we wrote together made me grow significantly; I sometimes remember
that we stayed up all night to submit the ECCV’20 paper. Besides research topics, I enjoyed
small talk with them. I will have never forgotten their cheerful support in my Ph.D. life.

Special thanks to other co-authors who I worked with. I thank Associate Professor Yoko
Yamakata at The University of Tokyo. She supported me when I was an undergraduate
student at Kyushu University. I am also deeply grateful to Dr. Jun Harashima, who supported
me to build a new dataset. I also thank Dr. Katsuhiko Ishiguro, Dr. Keita Higuchi and Dr.
Masaaki Kotera, who are mentors at the summer internship at Preferred Networks (PFN).
I really enjoyed working with them. Based on the work, I could publish my paper at the
international conference and surprisingly win the best paper award. I also thank Dr. Fumihito
Ono and Ms. Natsuko Okuda at Osaka Medical and Pharmaceutical University. Based on
their support, I could construct the BioVL2 dataset and publish it. Without their support, I

iv

could not accomplish this work. Gladly, I could achieve the best paper award at the annual
meeting of the Association for Natural Language Processing.

I am also thankful for the members at Mori Laboratory. Assistant Professor Hirotaka
Kameko and Mr. Keisuke Shirai have discussed with me the detailed experimental settings
and technical supports, such as how to implement the proposed method. I thank Professor
Hiroaki Nanjo at Shiga University. His comments are always useful for improving my
research. I also enjoyed the small talk with him. Other lab members helped me to move my
research forward in many respects, and their insightful comments through the discussion
were an enormous help to me. Especially, I thank the students I mentored during my Ph.D.
course: Mr. Kojiro Sakoda, Kento Tanaka, Komei Hoshijima, Sho Kinoshita, Kosuke Morita,
Jieyong Zhu, Keyaki Ohno, Tomoya Yoshida, Koki Yamamoto, Keiya Kajimura and Yuto
Haneji. In addition to the research discussion, we enjoyed the small talk, which significantly
relieved my stress. I am also thankful for the members of the PFN Smashbros group. I
enjoyed playing the game with them all.

This thesis could not be completed without financial support. I am deeply grateful to
JSPS doctoral fellowship (DC1), which totally supports my research life. This is my first
grant and I remember that I had a hard time writing the proposal. Dr. Hiroshi Anzai, a
friend I met when I was an undergraduate student at Kyushu University, supported me to
write proposals by reading and making a lot of insightful comments on my proposal. I really
appreciate your help, which definitely leads me to obtain the grant. In addition, I enjoyed
talking about various topics with him, such as our research and future plans.

I wish to express my gratitude to my family, Yuichi, Hisami and Minoru. Without their
financial and mental support, I could not complete my Ph.D. course. Finally, I wish to express
my deepest gratitude to my wife, Kokoro. Without her, I absolutely could not complete my
Ph.D. I hope we stay together forever and ever.

Abstract

The overarching goal of this thesis is to develop an integrated intelligence that processes
procedural text and instructional videos to assist people in their work. To achieve this
goal, researchers have constructed multimedia archives for high-level video processing and
proposed methodologies to utilize them to support human activities.

With the rapid growth of deep learning, computers have become capable of linking
with different media using neural networks, leading to the emergence of novel multimedia
applications. Among them, video captioning is a remarkable approach, which aims at
generating descriptive sentences from the input videos. If we can extend this technology
to generate procedural text from instructional videos, a broad impact is expected on the
multimedia community. For example, it contributes to expanding the multimedia archives
by converting video content into textual symbols directly without preparing the triplets of
videos, transcription and procedural text that previous video-text alignment research utilized.

Motivated by this, in this thesis, we tackle procedural text generation from instructional
videos. Given the videos, our task requires computers to (1) extract key events that are
essential to achieve a task and (2) generate sentences that reflect on their contents. The key
challenges of the task are three-fold: (1) developing models capable of generating accurate
procedural text based on video content, (2) learning both the event extractor and sentence
generator in a story-aware manner and (3) extending our research focus from everyday to
important domains that are in high demand for video verbalization.

Challenge (1) is important to develop reliable systems that can generate accurate proce-
dural text (Chapter 3). It consists of two sub-tasks: (a) recognizing actions and materials in
the events and (b) generating sentences by considering the dependency of the actions and
materials throughout the entire video. While practical performance on (a) was achieved in
multimedia food computing research, (b) is still challenging because models should be robust
to recognize material state changes, which are often accompanied by drastic appearance trans-
formations. For instance, while preparing scrambled eggs, we recognize the eggs through
their changes in form from raw to cracked and finally stirred. We observe that the general
video captioning models are not capable of tracking them, failing to generate accurate proce-
dural text. To address this issue, we propose a novel approach to represent the material state

vi

changes as the transitions of material vectors in the latent feature space. Our experimental
results show that it can generate more accurate procedural text than state-of-the-art video
captioning models. In addition, the qualitative evaluation demonstrates that they can model
the material state changes like humans and generate procedural text based on them.

Challenge (2) is essential to achieve efficient comprehension of videos for humans
(Chapter 4). This task is similar to dense video captioning (DVC), which aims at detecting
events thoroughly and generating sentences describing them. However, the state-of-the-art
DVC models adopted parallel prediction on events and sentences independently, leading to
redundant outputs, which are not suitable for humans to grasp the video contents. In contrast,
our task requires the models to extract the appropriate numbers of events in the correct order
and generate sentences based on them. In this thesis, we refer to this characteristic as the
story of instructional videos. To achieve this, we propose a multimodal recurrent learning
approach of the event extractor and sentence generator. It predicts events and generates
sentences recurrently by memorizing and mixing the previous prediction on both events and
sentences, which encourages the model to achieve story awareness. Our experimental results
show that the proposed method achieves better performance than DVC models and confirm
that it can extract the appropriate number of events in the correct order in a story-aware
manner.

Challenge (3) is crucial in order to spread the developed system widely (Chapter 5).
Previously, many researchers focused on the cooking domain as the benchmark because
of its easiness of constructing large-scale video and text pairs collected from the web. In
addition, the cooking domain also has the merit to cover a large variety of actions and
objects. More recently, several researchers started to collect instructional videos on a
large variety of everyday topics, such as DIY and house gardening. However, the covered
domains are typically limited to everyday topics, lacking the motivation to verbalize the
video content. Towards real-world applications, it is crucial to explore new domains that
are highly demanded from a perspective of reproducibility. To achieve this, we select the
biochemical domain and construct the first, egocentric biochemical video-and-language
dataset (BioVL2), which contains four basic biochemical experiments with eight videos
per experiment, summing 32 videos in total. Based on it, we tackled the task of generating
protocols from experiment videos. We apply the existing procedural text generation method
and analyze the model’s behavior (i.e., strength and weakness) for details. In addition, from
our lessons, we provide guidelines for dataset construction.

Finally, we conclude our work and discuss future research directions (Chapter 6).

Table of contents

List of figures xi

List of tables xv

1 Introduction 1
1.1 Background and motivations . 1
1.2 Challenges . 4

1.2.1 Developing models capable of generating accurate procedural text
based on video content . 4

1.2.2 Learning both the event extractor and sentence generator in a story-
aware manner . 5

1.2.3 Extending our research focus from everyday to important domains
that are in high demand for video verbalization 6

1.3 Contributions . 7
1.3.1 Imitating human-like understanding of the material state changes for

accurate procedural text generation 7
1.3.2 Multimodal recurrent learning of the event selector and sentence

generator . 8
1.3.3 Exploring important domains in terms of practical applications: a

case study on the biochemical domain 8
1.4 Thesis outline . 9

1.4.1 Introduction (Chapter 1) . 9
1.4.2 Related work (Chapter 2) . 9
1.4.3 State-aware procedural text generation from segmented key events

(Chapter 3) . 9
1.4.4 Multimodal recurrent learning of the event selector and sentence

generator (Chapter 4) . 10

viii Table of contents

1.4.5 BioVL2: Egocentric biochemical video-and-language dataset (Chap-
ter 5) . 10

1.4.6 Conclusion (Chapter 6) . 10

2 Related Work 11
2.1 Multimedia research that targets procedural text and instructional videos . . 11
2.2 Vision and language . 14

2.2.1 Tasks, methods and datasets . 15
2.3 Vision and language in instructional domains 18

2.3.1 Multi-modal understanding for procedural text with vision 19
2.3.2 Procedural text generation from visual observations 20
2.3.3 Multi-modal instructional video datasets 21

3 State-aware Procedural Text Generation from Segmented Key Events 25
3.1 Introduction . 25
3.2 Proposed method . 26

3.2.1 Overview . 27
3.2.2 Encoder . 28
3.2.3 Visual simulator . 29
3.2.4 Decoder . 31
3.2.5 Textual re-simulator . 33
3.2.6 Loss functions . 33

3.3 Experiments . 34
3.3.1 Experimental settings . 35
3.3.2 Word-overlap evaluation . 38
3.3.3 Ingredient prediction . 40
3.3.4 Retrieval evaluation . 43
3.3.5 Qualitative analysis . 43
3.3.6 Discussion of the learned embedding 44
3.3.7 Experiments on the full prediction setting 47

3.4 Conclusion . 49

4 Multimodal Recurrent Learning of the Event Selector and Sentence Generator 51
4.1 Introduction . 51
4.2 Oracle-based analysis of the existing DVC model 54

4.2.1 Quantitative evaluation . 56
4.2.2 Qualitative evaluation . 57

Table of contents ix

4.3 Proposed method . 57
4.3.1 Event selector . 60
4.3.2 Sentence generator . 61
4.3.3 Multimodal memory mixing . 61
4.3.4 Loss functions . 62

4.4 Extended model . 62
4.4.1 Dot-product visual simulator . 64
4.4.2 Textual attention . 66
4.4.3 Loss functions . 67

4.5 Experiments . 69
4.5.1 Word-overlap evaluation . 71
4.5.2 Discussion on the number of predicted events 71
4.5.3 Qualitative analysis . 72
4.5.4 Discussion on the detailed model settings 73

4.6 Conclusion . 76

5 BioVL2: Egocentric Biochemical Video-and-Language Dataset 79
5.1 Introduction . 79
5.2 BioVL2 dataset . 82

5.2.1 Dataset construction . 82
5.2.2 Statistics . 85
5.2.3 Annotation agreement . 87

5.3 Protocol generation from experiment videos 89
5.3.1 b-NE sequence construction . 91
5.3.2 Generating protocol candidate sentence from b-NE sequence 91
5.3.3 Protocol generation . 94

5.4 Experiments . 94
5.4.1 Experimental settings . 94
5.4.2 Quantitative evaluation . 96
5.4.3 Qualitative evaluation . 97
5.4.4 Discussion . 98
5.4.5 PMI-based analysis on the language model between objects and actions 98
5.4.6 Relationship between the number of steps and word-overlap evaluation 99
5.4.7 Future development of the BioVL project 100

5.5 Conclusion . 100

x Table of contents

6 Conclusion 103
6.1 Summary . 103
6.2 Limitation . 104
6.3 Future work . 105

6.3.1 Build accurate models for untrimmed egocentric videos 105
6.3.2 Build domain-agnostic models to generate procedural text from

instructional videos . 105
6.3.3 Transfer the learned representations into other tasks 106

References 107

List of figures

1.1 An overview of our task in this thesis. 2
1.2 An overview of challenge (1) and its solution. 4
1.3 An overview of challenge (2) and its solution. 5
1.4 An overview of challenge (3) and its solution. 6

2.1 A prototype screen of the Infomedia project quoted from Figure 2 in [22]. . 12
2.2 An overview of the vision-and-language tasks. Example images and videos

are used from the MSCOCO [68] and YouCook2 [147] datasets. 16

3.1 Concept of the proposed method. Given key events and material list, the
proposed method generates a procedural text by reasoning the state transition
of materials at each step. 26

3.2 An overview of the proposed method. To track material states in key events,
we incorporate the visual simulator Rv into the transformer-based encoder-
decoder architecture (E and D). In addition, based on our intuition that the
state transition of materials is traceable from the generated procedural texts,
we attach the textual re-simulator Rt to the model. 27

3.3 An overview of the (visual) simulator. The simulator recurrently reasons the
state transition of the materials at each step. Specifically, it predicts executed
actions and involved materials in (1) the action and (2) material selector and
then updates the state of materials in (3) the updater. The updated materials
are forwarded to the next step. The textual re-simulator has the same modules. 27

3.4 An overview of the material and key event encoders. 28
3.5 An overview of the decoder. 32
3.6 A screen of our browser-based web annotation tool. Annotators write ingredi-

ents that appear in the recipes. To ease annotation, we estimated ingredients
using the NER method [1] pre-trained on the English recipe flow graph
corpus [138], and we set the default values of inputs. 36

xii List of figures

3.7 An overview of our baseline +ingredients (-I) implementation. These models
also incorporate the material encoder described in Chapter 3.2.2 and copy
mechanism into the baselines. 37

3.8 An example of videos taken from different viewpoints: exocentric and
egocentric views. 40

3.9 Examples of generated recipes. Here, we compare four models, MART-I
(baseline), VI, VIV and VIVT with the ground truth. Green bold and red
words represent semantically correct and incorrect ingredients, respectively.
Words in parentheses indicate missing ingredients, which should be included
in the sentence. Note that parallel words in a sentence are not separated from
the commas in the YouCook2 dataset (see step 1 in (a) in the ground truth). 41

3.10 An annotation example of the visual simulator. 44
3.11 Learned embedding of ingredients obtained by the VIVT model. Note that

only raw and updated (the attention weight in the material selector is higher
than 0.5) ingredients are transformed by t-SNE [120]. Red and blue colors
represent the raw and updated ingredients, respectively. 46

3.12 Arithmetics using the learned embedding of ingredients. Examples (a) to
(d) and (e) to (g) represent the first-order (raw-to-updated) and second-order
(updated-to-updated) transformations, respectively. (d) and (g) show the
failure cases for each transformation. 47

3.13 An overview of how to integrate ingredient decoder into the model. 48

4.1 A conceptual comparison of our approach and existing DVC studies. While
the existing DVC models adopted parallel prediction, our approach employ
multimodal recurrent prediction, which estimates events and sentences by
memorizing and fusing the previously prediction results. 52

4.2 tIoU distribution of oracle events on the training and validation sets of
YouCook2. 56

4.3 Comparison of the procedural texts generated by the oracle selection and
ground truth. N = 100, which is a default hyper-parameter of PDVC, is used
in this example. 57

4.4 An introductory overview of our approach. Unlike the previous DVC ap-
proaches, we propose a multimodal recurrent learning approach to train the
event selector and sentence generator. Both modules represent the previ-
ously predicted events and sentences as memory vectors and predict the next
step. These memory vectors are updated and mixed to effectively share the
previous prediction belonging to different modalities. 58

List of figures xiii

4.5 Multimodal recurrent learning approach of the event selector and sentence
generator for recipe generation from unsegmented cooking videos. The event
selector chooses oracle events from event candidates repeatedly (Chapter
4.3.1) and the sentence generator outputs sentences for the selected events
(Chapter 4.3.1). The memories are updated and mixed to effectively remem-
ber the history of the events/sentences for predicting the next step (Chapter
4.3.3). 59

4.6 An overview of the extended model for procedural text generation from
unsegmented instructional videos. To generate more accurate procedural
text, it has additional two modules: (1) dot-product visual simulator and (2)
textual attention. The dot-product visual simulator is introduced to learn the
state transition of materials. The textual attention module encourages the
sentence generator to verbalize actions and materials more accurately. . . . 63

4.7 An overview of the extended dot-product visual simulator that reasons about
the state transition of materials. It has three components: (1) action selector,
(2) material selector and (3) updater. The dot-product attention is employed
to treat the event candidates. 64

4.8 An overview of loss computation of visual selector loss and textual attention
loss. 68

4.9 Histogram of the number of predicted events and ground truth. 72
4.10 Examples of the generated procedural texts. We compare three models:

PDVC, B and BIVT with the ground truth. 73

5.1 An overview of the BioVL2 dataset, which consists of two types of video-
and-language annotations: (a) alignment between events and sentences and
(b) bounding boxes for objects that appear in the protocols. 80

5.2 “まほろ,” a robot conducting biomedical experiments developed by National
Institute of Advanced Industrial Science and Technology. The proto is quoted
from https://www.aist.go.jp/sst/ja/exhibition/innovation_zone/zone11/index.
html (accessed 5/21, 2023). 81

5.3 (a) and (b) shows the recording studio of experiments and the view from the
equipped first-person camera, respectively. 82

5.4 A screen of the bounding box web annotation tool. (A), (B) and (C) shows
the objects in the protocols, annotation bounding box pane and operation
pane, respectively. 84

5.5 Distribution of event length d (d represents seconds). 87

https://www.aist.go.jp/sst/ja/exhibition/innovation_zone/zone11/index.html
https://www.aist.go.jp/sst/ja/exhibition/innovation_zone/zone11/index.html

xiv List of figures

5.6 (a) and (b) shows AP and mean of APs (mAP) and the number of true
positives and false positives, respectively. 89

5.7 A comparison of frames between manipulating Primer1 and Primer2. 90
5.8 An overview of the protocol generation from experiment videos. 91
5.9 Transformer-based sentence generation model. Given objects, the model is

trained to generate corresponding sentences. 92
5.10 Examples of the generated protocols and the ground-truth on PCR. The model

in this figure is “Reagent, Location and Device (w/ #word filtering).” We
also show the selected frames with b-NE annotation information. Note that
the registered trademark symbol ®is shown in the figure, but the generated
protocols do not contain them. 97

5.11 The experiment environments, where QR codes ®are attached to objects
used in the protocol. 101

List of tables

2.1 Comparative overview of multi-modal instructional video datasets. 21

3.1 YouCook2-ingredient+ dataset statistics. 35
3.2 Paragraph- and sentence-level word-overlap evaluation for the baseline

and the proposed models with ablation studies. The scores in bold are
the best among the comparative models. “I” indicates whether the model
uses ingredient information or not. B=BLEU, M=METEOR, C=CIDEr-D,
RL=ROUGE-L. 38

3.3 Change in paragraph-level word-overlap evaluation with controlled λ 39
3.4 Change in paragraph-level word-overlap evaluation on different viewpoints:

egocentric, exocentric and mixed views. 39
3.5 Results of ingredient prediction. 42
3.6 Results of retrieval evaluation. ↓ indicates that lower is better. 42
3.7 Quantitative evaluation of the visual simulators. 44
3.8 Paragraph- and sentence-level word-overlap evaluation on the full prediction

setting. 48
3.9 Results of ingredient prediction on the full prediction setting. 49
3.10 Results of retrieval evaluation on the full prediction setting. 49
3.11 Performance of an ingredient decoder on the full prediction setting. Note

that we compute the micro-recall, precision, and F1 on the multi-label classi-
fication setting. 50

4.1 Word-overlap metrics of the oracle selection on the YouCook2 dataset. N
represents the number of candidate events, a hyper-parameter of PDVC. The
bold scores are the best among the comparative settings. 55

4.2 Word-overlap metrics for the baseline and proposed method. The bold scores
are the best among the comparative methods. 71

xvi List of tables

4.3 Percentage of procedural texts that satisfy |p−q|≤ η , where p,q,η repre-
sents the number of predicted events, ground-truth events, and a threshold,
respectively. In this experiment, we change η from 0 to 3. 72

4.4 Loss ablation studies. MS, AS, MA, and AA represent material selection,
action selection, material attention, and action attention losses, respectively. 74

4.5 Comparison of memory update strategies: separate vs joint. 74
4.6 Comparison of input modalities: video only and multimodal versions. . . . 75
4.7 Comparison of the model’s performance when varying the event encoders:

TSN and MIL-NCE. Note that unlike TSN, which is pre-trained on only
vision resources, the MIL-NCE is pre-trained on instructional vision-and-
language resource, Howto100M. 75

4.8 Comparison of the model’s performance when varying the number of the
event candidates N. 76

5.1 An example of the annotation for PCR. The values in the table represent
seconds. Note that ®is written in the table, but not included in the real dataset. 83

5.2 Statistics of text annotations. The average and standard deviation (std) are
written in the table. Note that in miniprep and agarose gel creation, several
steps are skipped depending on the situation. Thus, note that their standard
deviations are not equal to 0. 85

5.3 The number of unique objects and verbs, which do not appear in the other
kinds of protocols. 85

5.4 Statistics of video length. The table values show mean and standard deviations. 86
5.5 Statistics of frames that has bounding box annotations. 86
5.6 Statistics on unique objects associated with bounding box annotations after

classifying them into b-NE tag category types. Although amoung b-NE tags,
object-based NEs are Reagent, Location, Device, and Seal, Seal does not
appear in the BioVL2 dataset. Thus, we count Reagent, Location, Device in
the table. 88

5.7 Statistics on bounding box annotations. 88
5.8 Agreement of event-and-sentence alignments. The mean of tIoU is shwon in

the table. 89

List of tables xvii

5.9 Statistics on the WLP dataset, including three filtering settings in the table.
The first one is using all of the b-NE tags, the second is using only the
object-based NEs, and the third is using only the Reagent and Location tags
in the WLP dataset. For each case, we also show the statistics, where more
than 20 words are filtered. We use the original dataset split to the original
WLP dataset because BioVL2 is used for the test set. 95

5.10 Word-overlap evaluation. The bold scores represent the best among the
methods. 96

5.11 The most frequent top-10 verbs and objects which has the highest PMIs for
the verbs on the training set of the WLP dataset. The PMI scores overestimate
the low frequency words, thus we report the objects which appear more than
10 times in the dataset. 98

5.12 The most frequent top-10 objects and verbs have the highest PMIs for the
verbs on the training set of the WLP dataset. The PMI scores overestimate
the low frequent words, thus we report the verbs which appear more than 10
times in the dataset. 99

5.13 Relationship between the number of steps in the protocols and the word-
overlap evaluation results. The model we use in this table is “Reagent,
Location, and Device (w/ #word filtering).” 100

Chapter 1

Introduction

1.1 Background and motivations

What Descartes did was a good step. You have added much several ways, and
especially in taking the colours of thin plates into philosophical consideration. If
I have seen a little further it is by standing on the shoulders of giants.

Isaac Newton, Letter to Robert Hooke.

Human beings have accumulated knowledge by standing on the shoulder of giants. We
have invented based on the existing ideas and written down the procedures to reproduce the
work. Procedural text (e.g., recipes and scientific protocols) is sequential instructions written
in natural language and contains actions, objects and supplementary information (e.g., time
and quantity) to achieve a specific task. It plays an important role in telling our procedural
knowledge to others efficiently. We acquire new skills by reading and executing it, come up
with new ideas and yield inventions to develop our civilization.

Another method of documenting tasks is recording the work as videos. While text formats
are suitable for describing quantitative information (e.g., time and quantity), videos help
convey qualitative information (e.g., color and shape). For instance, instead of explaining
the term “golden brown” to a cooking beginner, visual information can be used to intuitively
demonstrate the concept. These advantages lead to the abundance of instructional videos up-
loaded on video-sharing platforms (e.g., YouTube), which greatly assist us in our procedural
tasks.

The overarching goal of this thesis is to develop an integrated intelligence that processes
video and language from different modalities to assist people in their work. This research
topic has been discussed in the multimedia community for over 30 years. The motivation is
to construct intelligent multimedia archives, which understand the users’ demands from their

2 Introduction

1

2

3

(1)

time 1

2

3

Add the butter
into a pan

Crack the egg
and stir

Add the egg
mixture
and cheese

(2)

Video Events Procedural text

Fig. 1.1 An overview of our task in this thesis.

textual queries and provide the corresponding video information, such as retrieving a video
from a video database or searching specific scenes, objects and actions from the videos.

Towards this objective, in the 1990s, Infomedia [126] was introduced at the forefront of
that era. It pioneered the association of videos and audio with text and laid the foundation for
constructing multimedia archives for such high-level video processing. In the early 2000s,
a research group led by Hamada et al. [41, 43, 42, 78] focused on the cooking domain and
developed multimedia archives by proposing methods to align video segments with recipe
steps. In addition, based on the constructed archives, they also proposed a smart kitchen that
assists people to cook by providing both visual and textual information on the next step. The
core concept of the smart kitchen has been followed by successor researchers [46, 86, 45].

From the mid-2000s to early 2010s, following the success of statistical machine learning
(ML), much research on unsupervised video-text alignment research emerged. Shibata
et al. [109] utilized structural representations of recipes and proposed a method to align
video and text using hidden Markov models (HMMs). Several researchers subsequently
embraced this idea to achieve video narration alignment [10, 72] as well as video-(verb,
noun) alignment [81, 82]. However, the integration of video and language processing was not
yet fully established due to a lack of methods for embedding the feature space that captures
common high-level semantics from low-level features of vision and language. Therefore,
they utilized transcription (e.g., narrations and closed captions) as a cue to align video and
text, leveraging two merits: (1) timestamps that correspond to the videos and (2) ease of
computing similarity to procedural text.

1.2 Challenges 3

With the rapid advancement of deep learning [64], computers have become capable of
constructing the joint representation space to connect different modalities, leading to the
development of novel multimedia applications. Among them, video captioning [123], a task
of generating descriptive sentences from input videos, made remarkable progress recently.
Before the deep-learning era, traditional methods adopted the pipeline approach of object
detection and template-based language models but failed to achieve satisfactory performance
due to the accumulated errors [39, 5]. With the benefit of deep neural networks, the current
video captioning research can jointly optimize these modules in an end-to-end manner,
achieving practical performance on short video datasets. However, it is still challenging how
to develop a new video captioning model on long, instructional videos that contain a large
variety of actions and objects.

If we can extend this technology to generate procedural text from instructional videos, its
potential impact is substantial for both academic and industrial communities. In academia,
video captioning greatly contributes to expanding multimedia archives because it can link
video and text by directly converting video content into textual symbols. This point represents
a clear advancement from previous video-text alignment [109, 108, 2, 72], which requires
the triplets of a video, transcription, and procedural text. The accumulation of generated
video-text pairs would provide a foundation for future interdisciplinary research between
computer vision (CV), natural language processing (NLP) and robotics, extending beyond the
multimedia community. In industry, the generated procedural text enables us to comprehend
an overview of instructional videos by providing multimedia summarization through pairs of
videos and sentences. This ability is also useful for ensuring the reproducibility of their work
by assisting people to write procedural text.

Motivated by this, in this thesis, we focus on procedural text generation from instructional
videos. We formulate this as a two-stage prediction task (Fig. 1.1), which requires computers
to (1) extract key events that are essential to complete the goal and (2) generate sentences
that reflect their contents. Although the definition of events varies in CV literature [57, 147]
according to task settings, in this thesis, we define events as specific segments in a video that
humans want to focus on to accomplish a particular task. Although our work is an extension
of video captioning research, it contains unique challenges specifically tailored to procedural
text and instructional videos. In the subsequent section, we will describe these distinctive
challenges.

4 Introduction

1

2

3

1

2

3

Add the milk
into a pan

Crack the egg
and stir

Cook the
ingredients

Events Wrong procedural text

Video
captioning

models
1

2

3

Add the butter
into a pan

Crack the egg
and stir

Accurate
procedural text

Our
models

Add the egg
mixture
and cheese

1

2

3

Events2

3

State-aware
(Chapter 3)

Crack

Add

Add

Fig. 1.2 An overview of challenge (1) and its solution.

1.2 Challenges

The key challenges of the task are three-fold: (1) developing models capable of generating
accurate procedural text based on video content, (2) learning both the event extractor and
sentence generator in a story-aware manner and (3) extending our research focus from
everyday to important domains that are in high demand for video verbalization. Figs 1.2, 1.3
and 1.4 show an overview of these challenges and solutions.

1.2.1 Developing models capable of generating accurate procedural text
based on video content

Challenge (1) is important to develop reliable systems that can generate accurate procedural
text. It consists of two sub-tasks: (a) recognizing actions and materials in the events and (b)
generating sentences by considering the dependency of the actions and materials throughout
the entire video. (a) has been treated in multimedia food computing research. Several
researchers have constructed video datasets to recognize actions/materials and proposed
methods to predict them accurately [27, 46, 59]. Owing to their effort, practical performance
on event-level recognition has been achieved.

It is still challenging to tackle (b) because models should be robust to recognize material
state changes, which are often accompanied by drastic appearance transformations [139,
3]. For example, when cooking scrambled eggs, the eggs are transformed from raw to
cracked, added, and finally stirred form. While humans can easily identify the materials after
manipulations, computers cannot. We observe that the general video captioning models lack
this ability, failing to generate accurate sentences for the events. They miss and hallucinate
materials (e.g., in step 1 in Fig. 1.2, say “milk” instead of the accurate objects “butter”),

1.2 Challenges 5

Ours: multimodal recurrent prediction

Event Candidates

T

…

…

1 Add the butter
into a pan

3

Crack the eggs
and stir

Add the egg
mixture and cheese
and stir

2

DVC: parallel prediction
Input Video

T

…

…

…

Events

…

Sentences

Add the butter to the pan
Add the butter to the pan

…
Crack the eggs

Add them into the bowl
…

Cook ingredients
Cook ingredients

Input Video Events and sentences

Event
selector

Sentence
generator

Multimodal
memory
mixing

Our
model

DVC
Event

Extractor

Event
extractor

Sentence
generator

Fig. 1.3 An overview of challenge (2) and its solution.

or output abstract sentences (e.g., say “cook the ingredients”). This impels us to develop
a model that acquires a human-like understanding of material state changes to generate
accurate procedural text from instructional videos. We address this problem in the context of
generating procedural text based on key events in videos and the associated materials.

1.2.2 Learning both the event extractor and sentence generator in a
story-aware manner

Challenge (2) is essential to achieve efficient comprehension of videos for humans. The task
is to train event extraction and sentence generation jointly, and each task was handled in the
previous research in CV and NLP literature. They are called as temporal event localization
[110, 21] and video captioning [123, 148, 65], respectively. The straightforward method is to
pipeline them, but good performance cannot be achieved because of the accumulated errors
of the individual components.

6 Introduction

1

2

3

Transfer 1ml
of culture

Centrifuge for
5 minutes

Resuspend
pellet
with 250μl

Ours: Exploring important domains in terms of practical applications

Previous work: Verifying the method in the daily domain (cooking, makeup)

model

1

2

3

Add the butter
into a pan

Crack the egg
and stir

Add the egg
mixture and cheese

BioVL2 (our work, biochemical)

model
(Applicable to

the small dataset)

model

1

2

3

Apply concealer
on eyelids

Apply powder
on eyelids and
lower lash line

Apply eyeshadow
On eyelids by blush

Fig. 1.4 An overview of challenge (3) and its solution.

To address this issue, Krishna et al. [57] proposed dense video captioning (DVC), which
optimizes both modules to detect events thoroughly and generate sentences for them. To
achieve dense prediction on events and sentences, the common DVC approaches adopted
parallel prediction, where events and sentences are predicted independently (Fig. 1.3 top).
This leads to redundant outputs but is reasonable for the DVC objective of thoroughly
detecting events and generating sentences for multimedia retrieval. However, it is not suitable
for our procedural text generation task because we place high importance on providing an
overview of videos that can be easily grasped by humans. Our task requires the models to
extract the appropriate numbers of events in the correct order and generate sentences based
on them. In this thesis, we refer to this characteristic as the story awareness of procedural
text, and it remains an unresolved problem to train both modules jointly while considering
this.

1.2.3 Extending our research focus from everyday to important do-
mains that are in high demand for video verbalization

Challenge (3) is crucial in order to spread the developed system widely. Previous work mostly
focused on the cooking domain as the benchmark because of its easiness of constructing

1.3 Contributions 7

large-scale video and text pairs collected from the web. In addition, the cooking domain also
has the merit to cover a large variety of actions and objects [99, 27].

The research community found that it remains uncertain whether the methods developed
for a single domain are effective in other domains. Exploring other domains beyond cooking
is necessary for the research community to verify the universality of their developed ap-
proaches. To address this, recently, several researchers started to collect instructional videos
in a large variety of domains, such as DIY, makeup and house gardening [75, 9, 131] (Fig.
1.4 top). COIN [116] is the largest annotated dataset, which consists of 11,827 web videos
covering 180 different tasks and manual annotations of events and sentences.

Nevertheless, the covered domains are typically limited to everyday topics, lacking the
motivation to verbalize the video content. To address this issue, it is crucial to explore new
domains that are highly demanded from a perspective of reproducibility, such as biochemical
experiments and industrial manufacturing. Due to the lack of web videos in such domains,
it is difficult to construct a large-scale video dataset automatically. Therefore we have to
cope with two issues: (a) how to prepare the dataset by designing a scalable video collection
framework and (b) how to achieve procedural text generation models on the limited dataset.

1.3 Contributions

To achieve the above challenges, our contributions are the following three-fold.

1.3.1 Imitating human-like understanding of the material state changes
for accurate procedural text generation

To imitate the human-like understanding of the material state changes, we get inspiration
from natural language understanding (NLU), which aims at acquiring human-like reading
comprehension ability from documents [96, 137]. The procedural text has long been a
popular target for NLU, and two broad approaches have been proposed: representing state
changes as graph structures [53, 54, 80] and latent feature transitions [12, 40, 4].

In this thesis, we focus on the latter approach by extending it to the multi-modal version
and incorporating it into procedural text generation models. We call this state-aware approach,
which can represent the material state changes in the latent space to generate procedural text
in an end-to-end manner. Compared with the graph-based approach [85, 89], this method
has two merits: (1) it is trainable without any manual annotations and (2) it is less likely to
propagate the failure of this module to the downstream process because of its soft prediction.
In our experiments, we confirm that they perform better than the current state-of-the-art

8 Introduction

video captioning models. The qualitative evaluation demonstrates that these models generate
accurate procedural text by modeling the material state changes.

1.3.2 Multimodal recurrent learning of the event selector and sentence
generator

Although the events predicted by DVC models are redundant, we observed that (1) several
events are adoptable as a story of procedural text, but (2) the generated sentences for such
events are not grounded well to the visual contents (i.e., materials and actions in the sentences
are incorrect). We confirm this by analyzing the outputs of the state-of-the-art DVC model
and set our goal to obtain correct procedural text by selecting oracle events from the event
candidates and re-generating sentences for them.

To achieve this, the crucial idea is multimodal recurrent prediction, which estimates the
next step by understanding previously predicted events and generated sentences (Fig. 1.3
bottom). We realize this idea by proposing a multimodal recurrent learning approach of the
event extractor and sentence generator. The advantage of this approach is that the modules
can memorize and mix the history of the previously predicted events and sentences, which
facilitates the model to acquire story awareness. Our experimental results show that the
proposed method achieves better performance than the DVC models. In addition, we confirm
that it can grasp the story of procedural text; that is, it extracts the appropriate number of
events in the correct order and generates accurate procedural text that reflects the event
contents.

1.3.3 Exploring important domains in terms of practical applications:
a case study on the biochemical domain

To address the challenge (3), we focus on the biochemical domain because this domain
seriously suffers from the reproducibility problem [7] and it is highly needed to generate
procedural text to resolve it (Fig. 1.4 bottom). The main issue is no public biochemical
video-and-language datasets. In addition, it is difficult to prepare the datasets automatically
due to the poor resources on the web.

To address this, we construct the BioVL2, egocentric biochemical video-and-language
dataset, which consists of eight egocentric videos for four types of experiments with text
protocols and two types of video-and-language annotations. Here, we selected the first-person
cameras because they are suitable for a scalable video collection framework. Unlike third-

1.4 Thesis outline 9

person cameras that require wet-lab researchers to set up multiple cameras and synchronize
them, first-person cameras are easy to use without any special configurations.

Based on the BioVL2 dataset, we develop a system of generating protocols from experi-
ment videos. Because the dataset size is limited, we opt to utilize an existing procedural text
generator that is specifically designed to be applicable in such scenarios. Our experimental
results and behavior analysis of the model highlight the insights and limitations of this ap-
proach. Additionally, we provide guidelines based on our experiences in dataset construction
for the future development of the BioVL project.

1.4 Thesis outline

This thesis consists of six chapters as follows.

1.4.1 Introduction (Chapter 1)

In this chapter, we describe the background and motivations to tackle the task of generating
procedural text from instructional videos. Then, we enumerate three key challenges and
explain the solutions to them.

1.4.2 Related work (Chapter 2)

In Chapter 2, we review the related work to the thesis from two perspectives: (1) multimedia
and (2) CV and NLP research. From the viewpoint of multimedia research, we emphasize
the novelty and usefulness of our work by describing the detailed evolution steps in the
past 30 years. From the viewpoint of CV and NLP, we especially focus on “vision and
language,” an interdisciplinary research field between them. After reviewing the general
vision-and-language research by enumerating tasks, common approaches and benchmark
datasets, we focus on describing the existing work that specifically targets procedural text
and instructional videos.

1.4.3 State-aware procedural text generation from segmented key events
(Chapter 3)

In Chapter 3, we propose a state-aware procedural text generation model from segmented key
events and materials. This model focuses on representing their state transition in the latent
feature space and generating procedural text based on the simulated results. Our experimental
results show that the proposed method achieves better performance than the video captioning

10 Introduction

models. In addition, the qualitative analysis of material vectors reveals that they acquire the
state transition of materials effectively.

1.4.4 Multimodal recurrent learning of the event selector and sentence
generator (Chapter 4)

In Chapter 4, we propose a multimodal recurrent learning approach for the event selector
and sentence generator. The event selector chooses the events from the event candidates of
DVC outputs and the sentence generator generates procedural text based on them. Their
prediction results are shared between both modules by memory vectors, which hold the
history of previously predicted events and sentences. Our experimental results show that
our method achieves better performance than the DVC models. In addition, we reveal that it
captures the overall story of instructional videos; that is, it can select the appropriate number
of events in the correct order. Our detailed ablation studies show the essential components to
achieve optimal performance.

1.4.5 BioVL2: Egocentric biochemical video-and-language dataset (Chap-
ter 5)

In Chapter 5, we build the BioVL2 dataset, which consists of wet-lab experiment videos,
protocols and the two types of video-and-language annotations: (1) event-sentence alignment
and (2) bounding boxes for objects in the protocols. This is the first attempt to release the
video-and-language dataset in the biochemical domain. We analyze the characteristics of the
video and language sides and ensure their diversity. Then, we apply the existing procedural
text generation model to the dataset. Our experimental results show that it achieves better
performance than the weak baseline. Our further investigation reveals the insights and
limitations of the method. Finally, we discuss the model’s behavior and limitations for details
and provide guidelines from experiences of the dataset construction for future development
of the BioVL project.

1.4.6 Conclusion (Chapter 6)

In Chapter 6, we state the summary, limitation and future work.

Chapter 2

Related Work

In this chapter, we first review related multimedia research and clarify the novelty and
usefulness of our work by describing the detailed evolution steps in the past 30 years. Then,
we review the vision-and-language research, interdisciplinary research between CV and NLP.
After introducing general research topics on vision and language, we describe existing work
that specifically targets procedural text and instructional videos.

2.1 Multimedia research that targets procedural text and
instructional videos

Here, we overview the previous multimedia research that focuses on procedural text and
instructional videos. We define multimedia as a collection of technologies that deal with
multiple media (e.g., images, videos, audio and text) to assist human activities. In this
community, the long-standing question is how to develop an integrated intelligence that
processes video and language from different modalities to assist people in their work. Here,
we describe the detailed evolving research steps in chronological order.

In the 1990s, the researchers at Carnegie Mellon University launched the Infomedia
project (Fig. 2.1), where its aim is mentioned as1:

The overarching goal of the Informedia initiatives is to achieve a machine
understanding of video and film media, including all aspects of search, retrieval,
visualization and summarization in both contemporaneous and archival content
collections.

Howard Wactlar, Informedia Digital Video Library.

1https://www.ri.cmu.edu/project/informedia-digital-video-library/

https://www.ri.cmu.edu/project/informedia-digital-video-library/

12 Related Work

Fig. 2.1 A prototype screen of the Infomedia project quoted from Figure 2 in [22].

The technology developed under the Infomedia project is to associate speech, images, videos
with natural language to segment and index for high-level video processing (e.g., text-based
moment retrieval). For example, Smith et al. [111] proposed a method to integrate the
video and audio information and create a skimmed video that represents a very short video
abstraction from the original videos. Based on this, Christel et al. [23] studied how to
create video summarization to satisfy user’s demands for video watching. In this way, the
Infomedia project presented many novel technologies and could be located as a pioneer study
in multimedia archiving.

In the early 2000s, a group led by Hamada and Ide et al. started to focus on instructional
videos as a research target towards novel multimedia applications, such as the virtual assistant
to help us achieve procedural tasks. Their goal is to construct multimedia archives and develop
an assistant system for users to cook well. To achieve this, [41] aims at associating video
segments and text recipes. Their proposed method first extracts keywords and key events
from the audio and video, respectively, then associates text recipes with video events using
keywords and corresponding timestamps as a pivot. In line with this work, they also tackled
the task of video summarization. Miura et al. [78] focused on the motion repetition of

2.1 Multimedia research that targets procedural text and instructional videos 13

cooking actions and proposed a method to extract important frames that can represent the
best overview of the video.

Based on the findings knowledge on the above studies, they developed a cooking naviga-
tion system [43], which assists people to cook by providing multimodal information about
the next step. Note that this system requires the chief to press the foot switch to obtain the
information. Hashimoto et al. [45] extended this idea and proposed a user-centric assistant
system that provides useful information to cook without any user actions. Another line
of this idea is to introduce language-based communication between humans and systems.
Laroche et al. [63] proposed a dialogue-based cooking coach, which guides people to cook
by answering user’s questions using voice. Such voice-based assistant systems drew attention
from the market. In 2006, Nintendo released a navigation game [150], and it became a huge
hit, selling one million copies.

In the mid-2000s, following the success of statistical ML, ML-based approaches were
introduced. For example, Shibata et al. [109] proposed a structural learning method that
converts procedural text into graphical representations and links them into video clips. To
connect vision and language information efficiently, they utilized closed captions, and their
corresponding timestamps are fully leveraged to connect different two modalities. Based on
it, they developed a video summarization and retrieval system, which is helpful for users to
grasp the video contents without watching them [108].

An Inria group [2, 3, 10] also focused on the narration in the video and proposed a method
to learn video-text alignment in an unsupervised manner. The goal of this study is to discover
K important steps from the video and narration pairs, and their approach is to construct
discriminative clustering by preserving the textual constraint. Naim et al. [81, 82] also
proposed an unsupervised approach to align video segments and key steps in the procedural
text. They incorporate HMMs into the IBM model [14], which was originally proposed in
the machine translation field to compute word alignment in different languages.

Despite the significant progress in unsupervised approaches, the integration of video and
language processing was not yet fully established due to a lack of methods for embedding the
feature space that captures common high-level semantics from low-level features of vision
and language. Therefore, their approaches utilized transcription as a cue to align video and
text, leveraging two merits: (1) timestamps that correspond to the videos and (2) ease of
computing similarity to procedural text.

From the 2010s to the present, the rapid advancement of deep learning has enabled
computers to connect different modalities using neural networks. Among various research
topics, video captioning has paid attention to multimedia researchers because of a high
expectation for real-world applications. One of the innovative aspects of video captioning

14 Related Work

is its ability to directly convert video content into textual symbols, without relying on tran-
scription, accelerating the construction of multimedia archives. This is a clear advancement
from the previous video-text alignment that requires input as triplets of videos, transcription,
and procedural text. Moreover, the generated procedural text is also useful to assist human
understanding of the videos by providing multimedia summarization through pairs of videos
and sentences.

Despite such broad benefits, few researchers tackled this problem in the literature. Ushiku
et al. [119] were unique researchers to tackle this topic and proposed a procedural text
generation method from instructional videos. Their approach is designed for a task setting
that is applicable to the small dataset. This is reasonable as a first attempt because they can
create a prototype, avoiding the annotation costs between video-and-text pairs. In general, it
is difficult to train end-to-end video captioning models on a small dataset, thus they combine
two off-the-shelf modules of an object detector and language model. The former detects
objects from the videos and the latter generates candidate sentences based on them. The
procedural text is outputted by exploring the most plausible combinations using the Viterbi
algorithm [125]. In Chapter 5, we applied this method to the BioVL2 dataset because it
contains only 32 videos, which is not enough to train end-to-end models.

Their approach has a clear limitation on generating correct actions because it inputs only
the object names and discards other visual information. In this thesis, we realize an end-to-
end procedural text generation model in Chapters 3 and 4. Although our approaches require
annotated pairs between videos and sentences, they have a powerful ability to verbalize both
objects and actions based on the input videos.

2.2 Vision and language

CV and NLP are essential research topics to achieve human-like intelligence in computers.
While CV aims at acquiring eyes for computers to see the world like us, NLP aims at
understanding language to communicate with us. For a long time, researchers recognized
the importance of dealing with multiple modalities as well as developing single-modal
intelligence. For example, template-based approaches have been investigated for visual
captioning [36, 61, 88]. However, the lack of flexibility causes a large gap between manual
and machine descriptions.

The breakthrough of neural networks, deep learning [64], is a game changer in this field.
It enables computers to connect vision and language sequentially to transform images into
texts and vice versa. The show and tell paper [124] firstly proposed a neural-network-based

2.2 Vision and language 15

image captioning model, which consists of convolutional neural networks (CNNs) [58] and
recurrent neural networks (RNNs) [114] to encode and decode images and texts, respectively.

Vision and language are hot topics in CV and NLP now. The goal is to accomplish multi-
modal intelligence, which can convert multi-modal information mutually. The researchers
believe that this is an essential component of embodied agents that complete tasks in the real
world [13, 35]. In this chapter, we show representative tasks with commonly-used approaches
and datasets in vision and language.

2.2.1 Tasks, methods and datasets

Various kinds of tasks have been proposed with a rapid advance in vision and language.
Among them, we mainly focus on four representative tasks: (1) vision-and-language align-
ment, (2) vision-and-language retrieval, (3) visual captioning and (4) dense video captioning.
Fig. 2.2 shows an outline of these four tasks.

Vision-and-language alignment

Vision-and-language alignment (1 in Fig. 2.2) is a task to estimate the correspondence
between visual information (e.g., objects, relationships and video events) with textual expres-
sions (e.g., phrases and sentences). This task derives into two sub-topics, depending on the
types of input visual/textual resources. In the case where the inputs are images and sentences,
this task is called image grounding. When the input pairs are videos and paragraphs, it is
called video-text alignment. Here, we describe both of these subtopics.

Image grounding is a task to estimate the alignment between objects in images and
phrases (namely spans, word sequences) in sentences. The common approach is to cascade
two-stage predictions: (1) detecting objects using the object detection models (e.g., Faster
RCNN [98]) and (2) computing the correspondence of objects and phrases using image and
text encoders. ResNet [47] and BERT [32] are frequently used for powerful encoders of
images and texts, respectively. The common datasets are RefCOCO, RefCOCO+ [141],
RefCOCOg [73] and Flickr30k entities [93], which provide annotations between objects and
phrases in the sentences for MSCOCO [68] and Flickr30k [140] datasets.

Video-text alignment is a task to localize events (start and end timestamps) given
sequential sentences. Note that it assumes that one sentence corresponds to one event
in the video. This task was well-investigated [10, 2, 72] before the deep-learning era by
employing the hidden Markov model (HMMs) and conditional random fields (CRFs) [62].
However, it is necessary to pre-compute the correspondence scores with hand-crafted features
(e.g., how many objects are matched) for learning HMMs and CRFs. The current common

16 Related Work

(1) Vision-and-language alignment

(a) Image grounding (b) Video-text alignment

(2) Vision-and-language retrieval

(3) Visual captioning

(4) Dense video captioning

Image
databaseQuery (Input)

A cat laying on a piano
in front of a window

Retrieve

Image or
short video events (Input)

Decode

Long video (Input)
Detect
And

Decode

A cat

laying

on a piano

in front of

a window

Image
A cat laying on a piano

in front of a window

Video
A man adds the butter

Into the pan

Time
Add the butter
into the pan

Crack the eggs
and stir

Add the egg mixture
and cheese and stir

…

…

Add the butter
into the pan

Crack the eggs
and stir

Add the egg mixture
and cheese and stir

Encode

Encode

Encode

Encode

Fig. 2.2 An overview of the vision-and-language tasks. Example images and videos are used
from the MSCOCO [68] and YouCook2 [147] datasets.

2.2 Vision and language 17

approach is to employ neural networks to directly compute correspondence between events
and sentences with differentiable alignment [17, 105], enabling to train the model in an end-
to-end manner. The commonly-used benchmark datasets are TACoS [97], which provides
annotations between events and sentences.

Vision-and-language retrieval

Given visual or textual queries, vision-and-language retrieval aims at retrieving other modality
items that are semantically similar to the query (2 in Fig. 2.2). The common approach is to
encode modality-independent representations and project them into common feature space
to acquire their joint representations. To achieve this, many kinds of neural architectures
and loss functions have been explored [101, 70, 113]. Recent research demonstrated that
contrastive learning [20] is quite effective to construct the joint representations of vision and
language. CLIP [94] is the most popular one, which learns 400 million image-text pairs and
achieves the best performance on the many vision-and-language downstream tasks. Several
researchers tried to extend CLIP to video-and-text versions, such as VideoCLIP [135] and
Frozen [6]. The commonly-used benchmark datasets are MSCOCO [68], Flickr30k [140],
ActivityNet Captions [57], YouCook2 [147] and MSR-VTT [136], which consists of visual
resources with manually-created textual descriptions.

Visual captioning

Visual captioning is a task to describe the content of an input image or video in natural
language (3 in Fig. 2.2). This task requires computers to recognize not only fine-grained
objects but also their relationships (e.g., positions and context) to generate accurate and
concrete descriptions. The common approach of visual captioning is to employ seq2seq
[114], an encoder-decoder architecture of neural networks, originally proposed for machine
translation. The encoder converts images/videos into visual representations and the decoder
translates the encoded representations into textual descriptions. As mentioned in Chapter
2.2, Vinyals et al. [124] was a pioneer to apply the encoder-decoder architecture to the
image captioning task. They demonstrated the effectiveness of the neural architecture for
the image captioning task by outperforming the previous template-based image captioning
models. They employed the CNN encoder and RNN decoder as ResNet [47] and LSTM [48],
respectively. Several researchers reported that similar architectures are effective for video
captioning [123, 34]. The commonly-used datasets are the same as the vision-and-language
retrieval.

18 Related Work

Dense video captioning

DVC is a sub-topic of video captioning, aiming at detecting events thoroughly and generating
sentences for them (4 in Fig. 2.2). This task is similar to our task because the input/output
pairs are in the same format: an input is videos and the outputs are events and sentences.
What is the difference between DVC and our task? To clarify this, we first describe traditional
DVC approaches and datasets, then explain the key difference.

DVC aims at thoroughly detecting events from the video and generating sentences for
them. The naive baseline pipelines the event extractor and the sentence generator [57], but
it does not perform well because the sentence generation loss is not backpropagated to the
event extraction module. To address this issue, several researchers tried to train them in
an end-to-end manner. Zhou et al. [145] proposed a Transformer [121]-based DVC model,
Masked Transformer, which detects events and generates sentences via a differentiable mask.
Their approach, however, outputs more than 200 redundant events per video on average [37].
To handle this issue, Wang et al. [129] proposed parallel DVC (PDVC), which detects events
in parallel, re-ranks the top K (K is also the prediction target) and generates sentences for the
re-ranked events. The commonly-used datasets are ActivityNet Captions [57] and YouCook2
[147], which have the annotations of event timestamps and corresponding sentences.

The key difference between our task and DVC lies in the story awareness of instructional
videos. Although DVC allows computers to exclusively detect false-positive events, our
task requires computers to extract an appropriate number of events in the correct order.
The redundancy of the outputs of DVC makes it difficult for users to grasp an overview
of the video contents. In Chapter 4, our task resolves this problem by introducing the
story-awareness into the model.

2.3 Vision and language in instructional domains

In this section, we describe the vision and language research that specifically targets procedu-
ral text and instructional videos. Here, we emphasize the novelty of the work by comparing it
with existing works from three perspectives: (1) multi-modal understanding of the procedural
text with vision, (2) procedural text generation from visual observations and (3) multi-modal
instructional video datasets.

2.3 Vision and language in instructional domains 19

2.3.1 Multi-modal understanding for procedural text with vision

This thesis discusses how to model the material state changes in Chapter 3. The idea for
the proposed methods is inspired by this research topic, so we review the previous work of
multi-modal understanding for procedural text with vision.

The origin of this topic is NLU and multi-modal versions are extended from previous
NLU work. Thus we first describe NLU research for procedural text, then review the
multi-modal extensions.

Procedural text understanding. In NLU, procedural text is a popular target for under-
standing, and recipes have been featured in this field for a long time. Many researchers have
proposed methods to understand recipes, which are roughly divided into two categories: (1)
a graph-based parser and (2) a reasoning-based simulator.

The initial idea of a graph-based parser dates back to the 1980s. Momouchi [79] proposed
a PT (Procedural Text)-chart, which represents an entire workflow of actions and materials
as the Backus-Naur form. This work is pioneer research to convert procedural text into
graphical representations. After several rule-based or supervised methods were proposed
[42, 71], Kiddon et al. [54] firstly proposed an unsupervised method to estimate a graph
structure, dubbed action graph from a recipe. An action graph is also used in the challenging
visual reference resolution task described in [49, 50]. There are several varieties of graphical
representations. Mori et al. [80] provided a recipe flow graph dataset, which contains fine-
grained expressions as nodes and expresses their relationships as edges. Although the action
graph targets actions, ingredients and tools, the recipe flow graph additionally covers other
textual expressions, such as times, quantity and the state of foods. Jermsurawong and Nizar
[53] have proposed the Simplified Ingredient Merging Map in Recipes (SIMMR) dataset,
which provides a merging tree, a tree structure tracking the ingredient merging operations.

A reasoning-based simulator was recently proposed to model the state transition of
ingredients in recipes by updating the ingredient states at each step. Compared with the
graph-based parser, the reasoning-based simulator enables the computers to softly predict the
state transition of ingredients. Gupta and Durrett [40] proposed a structured simulator that
imposes constraints on the state transition of ingredients (e.g., stir-fried potatoes are not cut
in later steps). Bosselut et al. [12] proposed the neural process network (NPN), which learns
the state transition of ingredients by predicting executed actions and involved ingredients
from the procedural text. Owing to the ability to capture the state transition of ingredients,
these simulators reported competitive results in NLP downstream tasks, such as question
answering (QA) and natural language generation (NLG).

Multi-modal understanding for procedural text. When reading and executing pro-
cedural text, we identify objects through the material state changes (e.g., cut potatoes) and

20 Related Work

interpret the procedures by connecting their visual information to the descriptions. To imitate
this, several studies proposed NLU-inspired multi-modal extensions.

The multi-modal version of a graph-based parser was recently investigated research topic.
The main issue of the multi-modal graph-based parser is the limited available datasets. To
address this issue, Pan et al. [89] recently created an MM-ReS dataset, which consists of
9,850 recipes, image sequences and annotated tree structures, allowing researchers to analyze
the cause-and-effect relations between step sentences and images in the recipe and image
sequence. In line with this work, Nishimura et al. [85] proposed visual SIMMR (vSIMMR),
which can be seen as a simple extension of the MM-ReS dataset by connecting images
not only with step texts but also with ingredients on the Cookpad Image dataset [44]. The
connection between images and ingredients allows us to further investigate the state changes
from raw to manipulated processes. They verify the effectiveness of vSIMMR for the task of
generating procedural text from image sequences [83, 16].

The multi-modal version of a reasoning-based simulator was also recently investigated.
Amac et al. [4] proposed a method to answer multi-modal QA tasks by reasoning the state
transition of ingredients using a relation reasoning network [102]. They reported that a
reasoning-based simulator is quite effective for multi-modal QA.

Our extension from previous work. This thesis focuses on the reasoning-based simula-
tor to learn the material state changes. Compared with the graph-based approach [85, 89],
it has two clear merits: (1) the model is trainable without any manual annotations and (2)
it is less likely to propagate the failure of this module to the downstream process because
of its soft prediction. In Chapter 3, we extend the NPN to the multi-modal version, called a
visual simulator, which can represent the state transition of ingredients as the trajectory of
ingredient vectors in the latent feature space. We incorporate this into the transformer-based
encoder-decoder architecture and verify the effectiveness of generating procedural text from
key events.

2.3.2 Procedural text generation from visual observations

Procedural text is a popular target in NLG to verify the computer’s ability to generate coherent
sentences [55, 11]. Recipes are commonly used as the testbed for this task, and the inputs of
previous work are the title and ingredients of recipes. Recently, many multi-modal cooking
datasets have appeared [101, 44] and recipe generation from images has also been proposed
[100, 127]. Salvador et al. [100] tackled this problem using a transformer-based model to
generate high-quality recipes from a single image of a completed dish. Other researchers
focused on generating a recipe from an image sequence depicting the intermediate food states
[16, 83, 85].

2.3 Vision and language in instructional domains 21

Table 2.1 Comparative overview of multi-modal instructional video datasets.

Domain Procedural text? Materials? Visual data #Videos
CMU MMAC [29] Cooking Third-person 185
TUM Kitchen [117] Cooking Third-person 20

50 salads [112] Cooking Third-person 50
KUSK [46] Cooking ✓ Third-person 14

Breakfast [59] Cooking Third-person 433
TACoS [97] Cooking ✓ Third-person 212

YouCook [28] Cooking ✓ Third-person 88
YouCook2 [147] Cooking ✓ Third-person 2,000

YouMakeup [131] Makeup ✓ Third-person 2,800
Howto100M [75] General Third-person 1.22M

COIN [116] General ✓ Third-person 11,827
EPIC-Kitchens [27] Cooking Egocentric 700
Assembly101 [104] Assembly Egocentric 4,321

EgoProceL [9] General Egocentric 329
BioVL2 (ours) Biochemical ✓ ✓ Egocentric 32

The essential limitation of generating recipes from images or image sequences is the
lack of detailed, continuous scene information of human manipulations, which images do
not contain. Hence, this task is essentially an ill-posed problem. It depends on the obtained
language model to generate correct actions. Meanwhile, videos contain this information and
have been attracting the attention of many researchers in recent years [84, 133, 106, 107].
The task of this thesis requires computers to (1) extract key events from videos and (2)
generate accurate sentences for events. Most researchers have focused on (2) and formulated
a task of generating accurate recipes from pre-segmented key events [84, 107, 133]. However,
only a few researchers attempt to learn both (1) and (2) to generate recipes from unsegmented
videos. Shi et al. [106] are pioneer researchers that have tackled this problem by utilizing
the narration of videos effectively. Although this approach is effective for narrated videos,
transcription is not always available for all cooking videos. Speaking during cooking or
adding narration to videos requires significant effort. In addition, narrations may lead the
model to attend to textual features, ignoring the visual features of videos. In Chapter 4, we
first tried to generate a procedural text only from the videos. This enables the model to treat
even non-narrated videos and be more practical than the previous settings.

2.3.3 Multi-modal instructional video datasets

Multi-modal instructional video datasets, which consist of procedural text with visual obser-
vations, are rising in popularity for learning procedural tasks [149, 75, 2]. Table 2.1 shows a

22 Related Work

comparison of the constructed BioVL2 with other video datasets. The datasets are roughly
divided into two categories: the third-person and egocentric datasets.

Third-person datasets

In the last decades, third-person instructional videos are widely used for training and evaluat-
ing the model on CV downstream tasks [147, 2, 116, 75] because of its easiness to collect
videos from the Internet. Based on it, video and language annotations have been provided by
researchers. The domains of such video datasets can be divided into two categories: cooking
and other domains.

Cooking domain. For a decade and more, the cooking domain was targeted by many
researchers because of its large variety of actions and objects [33, 41, 43, 42, 46, 29, 117,
112, 28]. From the 2000s to early 2010s, the main topic among them was fine-grained action
and object recognition [29, 117, 112, 59, 28]. The researchers proposed generative and
discriminative approaches to recognize actions and objects using HMMs, CRFs and support
vector machines (SVMs). These datasets were proposed before the deep-learning era and
the size of the dataset was not emphasized. As shown in Table 2.1, YouCook, TaCoS and
Breakfast have 88, 212 and 433 videos, respectively, and more than a thousand scale datasets
did not appear in this era.

In the late 2010s, researchers recognized that neural networks are data-hungry thus
constructing large-scale datasets is inevitable to improve the model’s generalization ability.
In addition, the rapid growth of video-sharing platforms enables researchers to collect videos
from the web. Zhou et al. [147] are a pioneer and constructed the YouCook2 dataset, which
consists of 2,000 YouTube videos, recipes and annotations of alignment between events in
the video and sentences in the recipe. The dataset size is much larger than the previous work.
In Chapters 3 and 4, we use the YouCook2 dataset for the experiments.

Other domains. As with YouCook2, several domain-specific datasets have been proposed
in anticipation of real-world applications. YouMakeup [131], which consists of 2,800
makeup videos with the same annotation format as YouCook2, was released for multi-
modal retrieval and video captioning of makeup videos. More recently, several researchers
started to try to collect instructional videos in the general domain not limited to specific
domains. Howto100M [75] is the largest dataset, which consists of about 1.22M videos and
narrations automatically collected from YouTube. Based on the constructed dataset, they
proposed multiple instance learning and noise contrastive estimation (MIL-NCE) models
[74] pre-trained on it and reported that MIL-NCE outperforms the existing models on the CV
downstream tasks, such as action recognition, temporal action localization and video-text
retrieval.

2.3 Vision and language in instructional domains 23

Because the narrations in Howto100M are collected automatically by using automatic
speech recognition, the video-text annotations are weakly-paired and noisy. The manual
annotations are necessary at least for evaluating the model’s performance. COIN [116] is
another largest dataset, which consists of 11,827 videos with manual annotations of video
events and textual descriptions. It is now used for tasks of learning from instructional videos,
such as video procedure captioning [133] and procedure planning [18, 144].

Egocentric datasets

The egocentric dataset [27, 59, 104], which includes videos captured from a first-person view
using wearable cameras, has attracted significant interest from researchers in recent years.
The egocentric view can capture detailed human-object interactions during task completion,
providing valuable insight for applications such as augmented reality and robotics.

Scalability is the main problem to construct egocentric datasets because of the cost to
collect large-scale videos. This leads to a limited dataset size of fewer than 100 videos.
Damen et al. [27] first reached this problem and constructed the EPIC-KITCHEN dataset,
which consists of 700 videos that record all of the cooking manipulation processes completed
by 32 participants. Each video contains linguistic annotations of fine-grained human actions
(e.g., opening the refrigerator and cutting the potatoes). Bansal et al. [9] followed this
research and constructed the EgoProceL dataset, which consists of 329 egocentric videos
with key step annotations in the general domain. Now, the largest egocentric instructional
dataset is Assembly101 [104], which has 4,321 videos of assembling toy cars. It also has
a rich variety of annotations, including coarse and fine actions, key events, 3D hand poses,
skill levels and mistake actions of the workers. This dataset was used for the shared task
benchmark at the ECCV workshop in 2022 2.

Covering various domains is still problematic for dataset construction. In this thesis,
we focus on the biochemical domain because of its potential applications to enhance the
reproducibility of experiments. Although a few researchers tackle video-and-language
research in wet-lab domains [81, 82], there are no publicly available datasets on the web.
To address this issue, in Chapter 5, we build the BioVL2 dataset, which is the first attempt
to release the egocentric biochemical video-and-language dataset on the web only for the
research purpose 3. It consists of eight videos for four kinds of experiments, summing 32
videos with 2.5 hours. As shown in Table 2.1, the dataset size is much smaller than that of the
EPIC-KITCHEN, Assembly101 and EgoProceL. However, we believe that it will be the first

2https://sites.google.com/view/egocentric-hand-body-activity/home
3https://github.com/awkrail/BioVL2

https://sites.google.com/view/egocentric-hand-body-activity/home
https://github.com/awkrail/BioVL2

24 Related Work

step for the future development of new video-and-language technologies in the biochemical
domain.

Chapter 3

State-aware Procedural Text Generation
from Segmented Key Events

3.1 Introduction

In this chapter, we focus on generating a procedural text from key events and materials
pre-segmented in instructional videos (Fig. 3.1). As mentioned in Chapter 1, the essential
difficulty is to track material state changes to describe detailed material manipulations from
visual observations. For example, when generating step 3 in Fig. 3.1, the models should
be aware that the yellow liquid in the bowl and white liquid in the pan correspond to the
eggs and butter manipulated in steps 1 and 2, respectively. Existing video captioning models
[34, 115, 65, 134, 145] cannot track material states, leading to the failure to generate accurate
procedural text.

To address this challenge, this chapter aims to generate procedural texts by modeling
the state transition of materials from visual observations. Previously, NLU researchers
share the same motivation of tracking material state changes and proposed the reasoning-
based simulator [12, 4]. These simulators represent materials in the latent feature space and
recurrently update them by predicting executed actions and involved materials at each step in
procedural text.

Inspired by these ideas, we propose a novel method, which modifies an existing NLU
simulator as a visual simulator and incorporates it into an encoder-decoder architecture.
We call this approach a state-aware method. Fig. 3.1 illustrates the idea of the proposed
method. Given key events and material sets, the proposed method reasons the state transition
of materials and generates procedural text accurately. We emphasize that this work is the first
attempt to integrate the NLU simulator into a video captioning model. In addition, based on

26 State-aware Procedural Text Generation from Segmented Key Events

Material
list eggsbutter

Key events

cheese

step 3

step 2

step 1 added

cracked
stirred

added
stirred

action(s) : state

State transition

add the
butter into a pan

crack the
eggs and stir

add the egg mixture
and cheese and stir

Procedural text

Fig. 3.1 Concept of the proposed method. Given key events and material list, the proposed
method generates a procedural text by reasoning the state transition of materials at each step.

the intuition that the state transition of materials is consistently traceable from the generated
procedural text, we attach a novel textual re-simulator, facilitating the model to generate
procedural text even more accurately.

In our experiments, we test the proposed method in the cooking domain and compare it
with two state-of-the-art video captioning models on four evaluations: word-overlap evalua-
tion, ingredient prediction, retrieval evaluation and qualitative analysis. Our experimental
results show that the proposed method outperforms the state-of-the-art video captioning
models. In addition, ablation studies show the effectiveness of integrating visual and textual
simulators into the model. Our analysis of the learned embedding demonstrates that the
simulators effectively capture the state transition of materials. Finally, we conduct the full
prediction settings, where the materials are not given, but are predicted from the video events
in advance. Then we discuss whether the proposed method performs well with the input of
the predicted ingredients or not.

3.2 Proposed method

In this section, we present the proposed method. After describing an overview in Chapter
3.2.1, we explain the components of the proposed method from Chapter 3.2.2 to Chapter
3.2.5. Finally, in Chapter 3.2.6 we explain the loss functions to train the model.

3.2 Proposed method 27

Materials

eggs

Event sequence

1

2

3

butter

Encoder (sec 3.2) E

step 1

step 2

step 3

Material vectors

Event vectors

Decoder (sec 3.4) D

Training
and inference

Training
only
Loss

calculation

Generated

Visual simulator (sec 3.3) Rv

Event
sequence
encoder

Material
encoder

Decoder Textual
encoder

Textual re-simulator (sec 3.5) Rt

step 1

cheese

e01

e02

e03

Sentence vectors

h1

h2

h3

State-aware
step vectors

u1

u2

u3

step 2 crack…

step 3

add…

add…

step 1

step 2 crack…
stir…

step 3

add…

add…

Ground truth

step 1

step 2

step 3

s1

s2

s3

step 1

step 2

step 3

added

cracked
stirred

added
stirred

added

cracked
stirred

added
stirred

Action
label

Material
label

Construct
distant supervision

un ⊂

Fig. 3.2 An overview of the proposed method. To track material states in key events, we
incorporate the visual simulator Rv into the transformer-based encoder-decoder architecture
(E and D). In addition, based on our intuition that the state transition of materials is traceable
from the generated procedural texts, we attach the textual re-simulator Rt to the model.

Simulator

-th event vectorn

Event vector

State-aware
step vector

hn

Recurrent
attention

(2) Material selector
an

(3) Updater
Updated material vectors

∑

Action embedding

MLP

wp

(1) Action selector

Bilinear

Event
attention

∑

Action vector
Material vector

Training
and inference

Loss
calculation

0
1
0
1

1
1
1Input vectors

-th material
vector

(n − 1)

en−13

Next step

Next step

Forward
to next step

en−12

en−11

Update
gate

crack

add

boil

stir

fcrack

fadd

fstir

fboil

f̄n

Selected
action
vector

en−13

en−12

en−11
ēn

Selected
material
vector

ln
Action-aware

proposal
vector

̂e1

f̄n

hn

ēn

Action
label

Material
label

Material
selection loss

Action
selection loss

̂e2

̂e3

un ∈ ℝ3×d

×

×
×

×

×
×
×

Fig. 3.3 An overview of the (visual) simulator. The simulator recurrently reasons the state
transition of the materials at each step. Specifically, it predicts executed actions and involved
materials in (1) the action and (2) material selector and then updates the state of materials in
(3) the updater. The updated materials are forwarded to the next step. The textual re-simulator
has the same modules.

3.2.1 Overview

Fig. 3.2 shows an overview of the proposed method. Given key events V =(v1, . . . ,vn, . . . ,vN)

and a material list G = (g1, . . . ,gm, . . . ,gM), our goal is to output procedural text Y =

(y1, . . . ,yn, . . . ,yN) by recurrently generating sentences from corresponding events. To gen-
erate accurate procedural text, it is essential for models to track material states in the key
events (e.g., eggs are transformed into cracked, stirred, then fried forms).

Inspired by recent advances in NLU, we achieve this by modifying the existing reasoning-
based NLU simulator NPN as the visual simulator Rv, and incorporate it into the transformer-
based encoder-decoder architecture (E and D). Specifically, given event H and material
encoded vectors E 0, the visual simulator reasons the state transition of materials and outputs

28 State-aware Procedural Text Generation from Segmented Key Events

eggs

Key event encoder

1

2

3

butter

cheese
[CLS]

[CLS]

[CLS]

1st Transformer

2nd
 Transformer

1st Transformer

1st Transformer

h1

h2

h3

GloVe
 (freeze)

+
MLP

e01

e02

e03

Material encoder

Fig. 3.4 An overview of the material and key event encoders.

state-aware step vectors as U = Rv(H ,E 0). Then, the decoder D outputs procedural text
conditioned on U . We observe that this simple integration of the visual simulator is effective
for the model to generate accurate procedural text.

In addition, based on our assumption that the state transition of materials should be
consistently traceable from the generated procedural text, we attach a novel textual re-
simulator Rt , encouraging the model to generate procedural text even more accurately.
Specifically, the textual re-simulator Rt reasons the state transition of materials from the
generated procedural text as Rt(S ,E 0), where S represents the encoded sentence vectors.
Note that the textual re-simulator is only used during the training phase and detached during
the inference phase.

3.2.2 Encoder

The input has two components: a material list G and key events V . Thus, we develop a
suitable encoder for each component. Fig. 3.4 shows an overview of the encoders.

Material encoder

To encode a material list, we input them to concatenated neural networks of pre-trained
GloVe [92]1 word embedding and multi-layer perceptrons (MLPs) with the ReLU activation

1We employ pre-trained 300D word embedding, which can be downloaded from http://nlp.stanford.edu/
data/glove.6B.zip

http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip

3.2 Proposed method 29

function. Multi-word materials (e.g., parmesan cheese) are represented by the average
embedding vector of words. As following the above procedure, we obtain the initial material
vectors E 0 = (e0

1, . . . ,e
0
m, . . . ,e

0
M).

Key event encoder

The key events V are hierarchical because they contain multiple events, and each event is
composed of sequential frames. Thus, to encode key events effectively, we design a two-stage
transformer suitable to encode a sequence of sequences. First, the former transformer encodes
each event into a feature vector by extracting the vector, which corresponds to the [CLS]
token as in [32, 113, 65]. Then the latter transformer is trained over the sequence to obtain
the step-aware event vectors H = (h1, . . . ,hn, . . . ,hN) in the key events.

3.2.3 Visual simulator

Based on the encoded vectors of the key events and material list (H ,E 0), the visual simulator,
shown in Fig. 3.3, reasons the state transition of materials at each step. Specifically, at the
n-th step, given the n-th event hn and (n− 1)-th material list E n−1, the visual simulator
predicts executed actions and involved materials in (1) the action and (2) material selector
and then updates the state of materials in (3) the updater. After n-th reasoning, it outputs a
state-aware step vector un ∈ R3×d , which concatenates the n-th event hn, selected action f̄n

and material vectors ēn (d represents the dimension of these vectors). The visual simulator
recurrently repeats the above process until processing the end element of the key events. This
simulation process is the same as NPN except for the input modality. We replace the textual
sentence and entity vectors for NLU with visual event H and material vectors E 0 for our
task.

Action selector

Given an event vector hn, the action selector outputs the selected action vector f̄n by choosing
actions executed in the event from the predefined action embedding F . For example, in Fig.
3.3, the actions “crack” and “stir” are executed in the event, thus both fcrack and fstir should
be selected. To consider multiple actions, the action selector computes a soft selection wp as
an action probability for each action in F . Then it outputs the selected action vector f̄n as a
weighted sum of the action embedding F and action probability wp.

30 State-aware Procedural Text Generation from Segmented Key Events

Specifically, the calculation of the action selector is written as follows:

wp = MLP(hn) (3.1)

w̄p =
wp

∑ j w j
p

(3.2)

f̄n = w̄T
pF , (3.3)

where MLP(·) represents two-layer MLPs with the sigmoid function and wp ∈ R∥F∥ is the
attention distribution over ∥F∥ possible actions.

Material selector

Based on the action probability wp and event vector hn, the material selector outputs a
selected material vector ēn by choosing materials that are involved in the event from the
material list E n−1. For example, in Fig. 3.3, the raw “cheese” and manipulated “eggs”
and “butter” should be selected. To consider such a combination of raw and manipulated
material selection, the material selector has two attention modules: (1) event attention and
(2) recurrent attention.

The event attention chooses relevant materials from the event vector hn and action
probability wp:

ĥn = ReLU(W1hn +b1) (3.4)

dm = σ((en−1
m)TW2[ĥn;wp]) (3.5)

where W1 and W2 are linear and bilinear mapping, b1 and b2 are biases, and en−1
m and dm

represent the m-th material vector and its attention weight.
The recurrent attention selects materials based on information from both current and

previous events. Using the result of event attention, it computes a soft selection an as a
material probability for each material in the material list:

c = softmax(W3ĥn +b3) (3.6)

an
m = c1dm + c2an−1

m + c30 (3.7)

where W3 is a linear mapping, c ∈ R3 is the choice distribution, an−1
m is the attention weight

of the previous event for each material, an
m is the final distribution for each material, and

0 is a vector of zeros (providing the option not to select any materials). Finally, using the
calculated attention weights, the selected material vector ēn is computed as the normalized

3.2 Proposed method 31

weighted sum of the selected materials.

α
n
m =

an
m

∑ j an
j

(3.8)

ēn = ∑
m

α
n
men−1

m . (3.9)

Updater

Based on the selected actions and materials, the updater represents the state transition of
materials by computing a new material vector êm. To this end, it first calculates an action-
aware proposal vector ln of materials with a bilinear transformation of selected action and
material vectors (f̄n, ēn):

ln = ReLU(f̄nW4ēn +b4), (3.10)

where W4 is a bilinear mapping.
Then, based on the material probability an, it computes the new material vector êm by

interpolating the action-aware proposal vector ln and the current material vector en−1
m .

êm = am
n ln +(1−am

n)e
n−1
m . (3.11)

The new m-th new material vector êm is assigned to E n
m, which is forwarded to the next

(n+1)-th step.

3.2.4 Decoder

The decoder D outputs procedural text by recurrently generating sentences from the n-th
output vector un of the visual simulator. Fig. 3.5 shows an overview of the decoder. As our
decoder D, we use the transformer, which achieves state-of-the-art performance in video
captioning tasks [148, 106, 107]. Our task allows the model to refer to a material list, thus
to encourage the decoder to generate materials, we incorporate the copy mechanism [103]
into the decoder D. When generating the k-th word in the n-th sentence, given the updated
materials en

m ∈ E n, the copy mechanism first calculates the attention probability β m
n,k using

the bilinear dot product of the vectors of the decoder output on,k and each material en
m ∈ E n

as:

β
m
n,k =

exp{(on,k)
TWcen

m}
∑i exp{(on,k)TWcen

i }
, (3.12)

32 State-aware Procedural Text Generation from Segmented Key Events

Add the … (shifted right)

Word embedding

Masked multi-head
attention

Positional
encoding

f̄n

hn

ēn

State-aware
step vector

x N

̂e1

̂e2

̂e3

Updated
material vectors

Feed forward

Multi-head
attention

Add & norm

Feed forward

Add & norm

+

Linear
Attention
Eq. (1)

Copying gate
Eq. (2)βm

n,k

on,k

gn,k Softmax

Pvoc
n,k (w)

Word probability
Eq. (3)

Copy
mechanism

eggs

Fig. 3.5 An overview of the decoder.

where Wc represents a bilinear map.
Then it calculates the copying gate gn,k (0 ≤ gn,k ≤ 1), which makes a soft choice between

selecting a material from the material list and generating a word from the vocabulary:

gn,k = σ(Wg[on,k;∑
m

β
m
n,ken

m]+bg), (3.13)

where [·], σ(·), Wg and bg represent the concatenation function, sigmoid function, linear
map and bias, respectively. Based on gn,k, the final predicted word probability Pn,k(w) is
computed as the weighted sum of the copy probability and generation probability as follows:

Pn,k(w) =
(
1−gn,k

)
Pvoc

n,k (w)+gn,k

(
1

∥gm∥ ∑
i:wi∈gm

β
i
n,k

)
, (3.14)

3.2 Proposed method 33

where Pvoc
n,k (w) and ∥gm∥ represent the probability of the n-th sentence’s k-th word w in the

vocabulary and the number of words of in the m-th material, respectively2.

3.2.5 Textual re-simulator

Because the state transition of materials is identical in the visual and textual worlds, it should
be consistently traceable from the generated procedural text. Based on this assumption, we
add a novel textual re-simulator Rt , encouraging the model to generate procedural text even
more accurately.

The textual re-simulator consists of two sub-modules: (1) a textual encoder and (2) a
textual simulator. The textual encoder converts generated procedural text into step-aware
sentence vectors S = (s1, . . . ,sn, . . . ,sN). First, it applies the straight-through version of
Gumbel softmax resampling [52] to sample procedural text, preserving the differentiable
chain. The sampled procedural text is further converted into feature vectors by computing
the average vector of the word embedding at each step. Note that the word embedding is
shared between the decoder and textual encoder. They are then converted into step-aware
sentence vectors S using a biLSTM encoder. Finally, based on S , the textual simulator,
another NPN described in Chapter 3.2.3, reasons the state transition of materials again as
Rt(S ,E 0).

3.2.6 Loss functions

To train the model, we compute three types of losses: (1) sentence generation loss Lsent , (2)
visual simulation loss Lv_sim and (3) textual re-simulation loss Lt_sim.

Sentence generation loss Lsent

This loss aims to train the decoder, and is computed as the summed negative log-likelihood
for all input/output pairs {(V ,G),Y } in the training set.

Visual simulation loss Lv_sim

This loss aims to train the visual simulator and consists of two losses: (1) material selection
and (2) action selection loss. These losses are computed as the summed binary cross-entropy
loss based on whether the materials/actions are involved/executed in the event. To avoid
costly human annotations, we compute the loss from distant supervision [77] following
the original NPN training method [12]. For the material selection loss, labels are obtained

2To consider multiple words of materials, we divide the probability by the number of words.

34 State-aware Procedural Text Generation from Segmented Key Events

whether or not each step contains materials in the material list. For the action selection loss,
labels are obtained whether or not each step contains actions in the 384 actions defined by
[12]. For example, from the sentence “crack the eggs and stir,” “eggs” is extracted as a
material label, and “crack” and “stir” are extracted as an action label. As the action selection
loss, the simple binary cross-entropy does not work in our preliminary experiment because
the ratio of positive to negative actions is imbalanced; a few actions are positive and most of
the actions are negative. Thus, as the action selection loss, we use asymmetric loss [142],
which is a weighted binary cross-entropy loss, to defuse the imbalanced problem.

Textual re-simulation loss Lt_sim

To train the textual re-simulator, we also compute the above visual simulation loss from the
sampled procedural text.

Total loss

Consequently, to train the entire model in an end-to-end manner, the total loss is computed as

Ltotal = Lsent +Lv_sim +λLt_sim, (3.15)

where λ is a hyper-parameter used for weighting the importance of the textual re-simulation
loss.

3.3 Experiments

We test the proposed method in the cooking domain and compare it with two state-of-the-art
video captioning models on four evaluations: word-overlap evaluation, ingredient prediction,
retrieval evaluation and qualitative analysis with thorough ablation. We also visualize the
learned embedding of ingredients, demonstrating that the visual simulator effectively reasons
the state transition of ingredients. Finally, we conduct experiments on the full prediction
settings and discuss whether the proposed method performs well with the predicted materials
or not.

3.3 Experiments 35

Table 3.1 YouCook2-ingredient+ dataset statistics.

train val test
#recipes 1,331 228 229
#steps / #recipes 7.8 7.6 7.7
#ingredients / #recipes 10.4 10.3 10.4

3.3.1 Experimental settings

Dataset construction

We use the YouCook2 dataset [147], which consists of 2,000 cooking videos from 89 recipes
(=procedural text) categories. All of the videos have 3–16 events with a start/end timestamp
annotated by humans, and each event is also annotated with an English sentence. Because
ingredients (=materials) are not annotated in the original dataset, we prepared the YouCook2-
ingredient+ dataset by annotating ingredients for recipes with 1,788 valid videos that are
available online. Table 3.1 shows the statistics of the YouCook2-ingredient+ dataset.

Annotation process. To build the YouCook2-ingredient+ dataset, we hired three
annotators to write ingredients that appear in the recipe using our developed web tool shown
in Fig. 3.6. This annotation tool presents a recipe, corresponding video and text boxes for
writing ingredients. In this paper, ingredients are defined as raw materials that are necessary
to complete the dish. For example, “tomato” and “cucumber” should be written as ingredients,
although “salad” should not be written because it represents a mixture of ingredients.

To annotate ingredients easily, “jump” buttons, which allow annotators to see an event
corresponding to a step, are implemented based on the start/end timestamp from the original
YouCook2 dataset. Moreover, to encourage annotators to write ingredients easily, this tool
displays estimated ingredients using the named entity recognition (NER) model, flair [1]
pre-trained on the English recipe flow graph corpus (E-rFG corpus) [138]3. If the estimated
words are not appropriate for the ingredients, they can be deleted or rewritten.

Data preprocessing

As event features, we use concatenated features of appearance and optical flow provided by
[147]. For the appearance, 2,048D feature vectors extracted from the “Flatten-673” layer in
ResNet-200 [47] are used, and for the optical flow, 1,024D feature vectors extracted from
the “global pool” layer in BN-Inception [51] are used. As in [65], we truncated sequences

3In the tag definitions of the E-rFG corpus, we display food entities as the estimated ingredients. These
entities cannot be directly used for our dataset because the definition of food slightly differs from the ingredient
definition in this paper (for example, “it” or “salad” are recognized as food in the E-rFG corpus). Therefore, we
asked annotators to delete or rewrite ingredients if they were not appropriate.

36 State-aware Procedural Text Generation from Segmented Key Events

Recipe pane Video pane

Ingredient annotation pane

Pre-estimated ingredients

Fig. 3.6 A screen of our browser-based web annotation tool. Annotators write ingredients that
appear in the recipes. To ease annotation, we estimated ingredients using the NER method
[1] pre-trained on the English recipe flow graph corpus [138], and we set the default values
of inputs.

longer than 100 for the event and 20 for the sentence and set the maximum length of the
event sequence to 12. Finally, we built the vocabulary based on words that occurred three
times or more, and the resulting vocabulary contained 991 words.

Hyper-parameter settings

For both the encoder and decoder transformers, we set the hidden size to 768, the number
of layers to two, and the number of attention heads to 12. We train the model following the
optimization method described in [32, 65]; we use the Adam optimizer [56] with an initial
learning rate of 0.0001, β1 = 0.9 and β2 = 0.999. The L2 weight decay is set to 0.01, and the
learning rate warmup is over the first five epochs. We set the batch size to 16, and continue
training at most 50 epochs using early stopping with CIDEr-D. We tune λ with four different
values λ ∈ {0.25,0.5,0.75,1.0} and set λ to 0.5 in our experiments (for details, see Chapter
3.3.2).

3.3 Experiments 37

Transformer-XL
MART

eggs milk herbs butter

crack the ..
(shifted right)

eggs
vocabulary

[SEP] [BOS] crack

ok

[CLS] the

Material encoder

copy?

Fig. 3.7 An overview of our baseline +ingredients (-I) implementation. These models also
incorporate the material encoder described in Chapter 3.2.2 and copy mechanism into the
baselines.

Baseline models

We test the proposed method by comparing it with two state-of-the-art video captioning
models, as described below.

• Transformer-XL [25] is a powerful transformer-based language model that was
originally proposed for capturing long-term dependency in natural language. As in
[65], we adapt it for our task; the model directly uses all of the previous hidden states
to generate a current sentence.

• MART [65] is a transformer-based video captioning model that achieves state-of-the-
art performance on the video paragraph description. This model generates a sentence
with a gated recurrent memory module, which does not pass all of the previous hidden
states, but effectively summarize important information in the previous step.

Ingredient-enriched models. Note that these video captioning models originally have
no ingredient set in the inputs and copy mechanism in the decoder. Thus for a fair comparison,
we prepare for additional baselines, baseline + ingredient (-I) models, which incorporate the
material encoder (Chapter 3.2.2) and the copy mechanism into the models.

38 State-aware Procedural Text Generation from Segmented Key Events

Table 3.2 Paragraph- and sentence-level word-overlap evaluation for the baseline and the
proposed models with ablation studies. The scores in bold are the best among the comparative
models. “I” indicates whether the model uses ingredient information or not. B=BLEU,
M=METEOR, C=CIDEr-D, RL=ROUGE-L.

Paragraph-level Sentence-level
Baseline I B1 B2 B3 B4 M C RL B1 B2 B3 B4 M C RL
Transformer-XL 39.0 22.0 12.1 6.7 15.2 22.7 30.9 26.5 13.5 5.3 1.5 10.6 57.3 27.8
+ Ingredients (Transformer-XL-I) ✓ 37.7 22.5 13.4 8.2 15.4 35.4 34.2 29.6 17.0 8.2 3.5 12.6 69.6 31.3
MART 37.9 21.7 12.4 7.6 15.0 29.1 32.3 28.0 14.5 6.1 2.4 11.1 62.1 29.4
+ Ingredients (MART-I) ✓ 42.3 26.2 16.1 9.9 17.6 48.2 36.2 31.3 18.5 9.4 4.4 13.7 81.0 32.9
Ours
Video only (V) 43.2 24.5 14.0 8.1 16.6 32.4 31.9 28.0 13.9 6.0 1.9 11.4 60.7 28.3
V + Ingredients (VI) ✓ 49.1 29.5 17.6 10.5 20.3 63.3 35.2 31.9 18.0 9.3 3.8 13.9 81.7 31.3
VI + Visual simulator (VIV) ✓ 49.4 30.1 18.0 11.0 21.0 66.1 36.8 33.7 19.3 9.7 4.4 15.2 93.0 33.3
VIV + Textual re-simulator (VIVT) ✓ 49.4 30.9 18.3 11.3 21.1 67.1 37.1 33.5 19.4 10.1 4.9 15.2 96.7 33.7

These models are based on the transformer that encodes sequential inputs and decodes
a sentence by attending to all of the elements in the input sequence. Thus, to fit this
characteristic, we concatenate the encoded ingredient and video vectors, and input them to
the model, as shown in Fig. 3.7. When decoding, based on the output of the decoder ok

and ingredient vectors E0, the copy mechanism calculates the copying gate to make a soft
choice between selecting an ingredient from the ingredient set or generating a word from the
vocabulary.

Ablations

To reveal the impact of the components in the proposed method, we conduct ablation studies
on the following variations.

• Video only (V) encodes an event sequence with the event sequence encoder, then
generates a procedural text.

• V + Ingredient (VI) incorporates the material encoder and copy mechanism in the
model.

• VI + Visual simulator (VIV) incorporates the visual simulator into the VI model.
• VIV + Textual re-simulator (VIVT) additionally incorporates the textual re-simulator

into the VIV model.

3.3.2 Word-overlap evaluation

To evaluate the captioning performance of the proposed method, we compute commonly used
word-overlap metrics, such as BLEU [90], ROUGE-L [67], METEOR [8] and CIDEr-D [122]
in the test set. We conduct two types of word-overlap evaluation: recipe (paragraph-level)
[65, 91, 134] and step (sentence)-level evaluation [107].

3.3 Experiments 39

Table 3.3 Change in paragraph-level word-overlap evaluation with controlled λ .

B1 B2 B3 B4 M C RL
λ = 0 (VIV) 49.4 30.1 18.0 11.0 21.0 66.1 36.8
λ = 0.25 49.6 30.4 18.3 11.3 21.1 65.5 36.6
λ = 0.5 49.4 30.9 18.3 11.3 21.1 67.1 37.1
λ = 0.75 50.3 30.4 18.0 10.8 21.2 65.7 36.3
λ = 1.0 49.1 30.0 18.0 11.0 21.0 64.4 36.7

Table 3.4 Change in paragraph-level word-overlap evaluation on different viewpoints: ego-
centric, exocentric and mixed views.

B1 B2 B3 B4 M C RL
VIV
Exocentric 49.0 29.1 17.3 10.4 20.3 68.3 35.6
Egocentric 50.5 31.3 18.9 11.8 21.7 67.4 37.6
Mixed 47.3 28.6 16.7 10.0 20.5 65.8 36.8
VIVT
Exocentric 48.7 29.3 17.3 10.5 20.4 62.2 35.1
Egocentric 50.5 31.4 19.5 12.4 21.9 72.2 38.4
Mixed 46.9 28.7 16.9 10.1 20.5 70.7 37.5

Table 3.2 shows the results of the word-overlap evaluation. We observe that the proposed
method consistently outperforms the state-of-the-art captioning models by a significant
margin in both paragraph- and sentence-level evaluation. Our ablation studies show that the
VIV model performs better than the VI model, and the VIVT model further improves the
VIV model. This indicates that both the visual simulator and the textual re-simulator are
effective for generating a recipe accurately.

Performance change of controlling the hyper-parameter λ

Table 3.3 shows the results by varying the λ ∈ {0.0,0.25,0.5,0.75,1.0}. Note that λ = 0 is
equivalent to the VIV model, which does not have a textual re-simulator. The results indicate
that (1) the VIVT model achieves a performance that is better or comparable to the VIV
model for any λ values, and (2) λ = 0.5 performs the best among the three metrics (BLEU2-
4, ROUGE-L, and CIDEr-D) and obtains competitive results in BLEU1 and METEOR. Thus,
we set λ = 0.5 in our experiments.

Performance change on different viewpoints: egocentric, exocentric and mixed view

The YouCook2 dataset contains diverse videos featuring various viewpoints, including
egocentric, exocentric, and mixed views. Fig. 3.8 shows an example of egocentric and

40 State-aware Procedural Text Generation from Segmented Key Events

Egocentric view

Exocentric view

Fig. 3.8 An example of videos taken from different viewpoints: exocentric and egocentric
views.

exocentric videos. Note that the mixed view represents that the videos have scenes taken
from both egocentric and exocentric viewpoints. This arises a research question of whether
the performance varies with viewpoints. To answer this, we partition the generated recipes
in the test set into subsets based on their viewpoint types by annotating three types of
view (egocentric, exocentric or mixed) with videos on the test set. As a result, we obtain 79
exocentric, 108 egocentric and 42 mixed-view videos. Then the paragraph-level word-overlap
metrics are computed per each subset.

Table 3.4 shows the results of the word-overlap evaluation on VIV and VIVT models.
We observe that both models achieve the best performance on the egocentric videos by a
significant margin to other viewpoints. One of the possible reasons for this difference is that
the egocentric videos highlight their work for the audience to understand, resulting in the
success of the models to recognize the actions and ingredients accurately.

3.3.3 Ingredient prediction

To evaluate whether the models use the correct ingredients at each step without missing
and hallucinating them, we design the ingredient prediction, which measures the step-level
overlap of ingredients between generated and ground-truth recipes. To this end, we first
construct an ingredient dictionary from all unique ingredients in the YouCook2-ingredient+

3.3 Experiments 41

Ingredients flour, eggs, baking soda, salt, pepper, water, shrimp, batter, breadcrumbs, oil
step 1 step 2 step 3

Key events

MART +
Ingredients
(MART-I)

add flour salt pepper to a bowl (✗ baking
soda, egg)

add flour salt pepper and milk to the bowl and
mix (✗ water)

add flour and shrimp in the bowl (✗ batter,
breadcrumbs)

V + Ingredients
(VI)

mix flour salt pepper and breadcrumbs (✗
baking soda, eggs)

mix flour salt pepper and breadcrumbs (✗
water)

coat the shrimp in the batter (✗ batter,
breadcrumbs)

VI + Visual
simulator (VIV)

mix flour baking soda salt pepper and
breadcrumbs (✗ eggs) mix the eggs with eggs (✗ water) coat the shrimp in the batter (✗ breadcrumbs)

+ VIV + Textual
re-simulator

(VIVT)

mix flour baking soda salt and pepper
together (✗ eggs) mix the eggs with the water coat the shrimp in the batter (✗ breadcrumbs)

Ground truth add flour eggs baking soda salt and pepper
to the bowl and stir add cold water to the bowl and stir cover the shrimp in the batter and

breadcrumbs

step 4 step 5

Key events

MART + Ingredients
(MART-I) fry the shrimp in oil remove the shrimp from the oil

V + Ingredients
(VI) fry the shrimp in a pan with oil remove the shrimp from the oil

VI + Visual simulator
(VIV) heat oil in a pan and fry the shrimp remove the shrimp from the oil

VIV + Textual re-simulator
(VIVT) heat oil in a pan and fry the shrimp remove the shrimp from the oil

Ground truth place the shrimp into a pan of hot oil remove the shrimp from the pan

Ingredients soy sauce, brown sugar, water, garlic, green onions, sesame oil, ribs
step 1 step 2 step 3

Key events

MART +
Ingredients
(MART-I)

add soy sauce sesame oil soy sauce sesame oil and
sesame oil to a pan
(✗ brown sugar, garlic, green onions, water)

cut the ribs into small pieces add soy sauce sesame oil soy sauce sesame oil
and sesame oil to a bowl (✗ marinade)

V + Ingredients
(VI)

add chopped garlic sesame oil brown sugar
and red pepper flakes to a pan and mix (✗
green onions, water)

put the marinade in the ribs and soy sauce add sesame oil garlic and the bowl (✗
marinade)

VI + Visual
simulator (VIV)

add garlic soy sauce sugar garlic green
onions and garlic to a bowl and mix
(✗ sesame oil, water)

cover the ribs with plastic wrap and place in a
paper towel pour the marinade over the ribs

+ VIV + Textual
re-simulator

(VIVT)

add garlic sesame oil sugar soy sauce garlic
and water to a blender
(✗ green onions)

place the ribs in a bag put the ribs into a bag (✗ marinade)

Ground truth combine soy sauce brown sugar water garlic
green onions and sesame oil place the ribs in the bag pour the marinade into the bag

step 4 step 5

Key events

MART + Ingredients
(MART-I) cook the ribs in the pan cook the ribs on a grill

V + Ingredients
(VI) flip the pancakes over place the ribs on the grill

VI + Visual simulator
(VIV) flip the ribs over cook the ribs on a grill

VIV + Textual re-simulator
(VIVT) grill the ribs place the ribs on the grill and cook them until it is golden brow on

both sides

Ground truth oil the grate of the grill cook the ribs on the grill

(a)

(b)

Fig. 3.9 Examples of generated recipes. Here, we compare four models, MART-I (baseline),
VI, VIV and VIVT with the ground truth. Green bold and red words represent semantically
correct and incorrect ingredients, respectively. Words in parentheses indicate missing ingredi-
ents, which should be included in the sentence. Note that parallel words in a sentence are not
separated from the commas in the YouCook2 dataset (see step 1 in (a) in the ground truth).

42 State-aware Procedural Text Generation from Segmented Key Events

Table 3.5 Results of ingredient prediction.

Baseline Recall Precision F1
Transformer-XL 12.6 19.1 15.2
+ Ingredients (Transformer-XL-I) 17.3 30.4 22.0
MART 11.3 20.2 14.5
+ Ingredients (MART-I) 21.9 34.0 26.7
Ours
Video only (V) 13.5 19.8 16.0
V + Ingredients (VI) 24.3 33.1 28.1
VI + Visual simulator (VIV) 28.9 43.2 34.7
VIV + Textual re-simulator (VIVT) 29.7 43.2 35.2

Table 3.6 Results of retrieval evaluation. ↓ indicates that lower is better.

Baseline MedR (↓) R@1 R@5 R@10
Transformer-XL 162.5 2.0 6.3 11.0
+ Ingredients (Transformer-XL-I) 139 1.6 8.1 13.6
MART 138.5 1.9 7.1 11.4
+ Ingredients (MART-I) 79 3.1 11.9 19.4
Ours
Video only (V) 134 2.2 8.4 13.6
V + Ingredients (VI) 65 4.6 14.5 21.2
VI + Visual simulator (VIV) 49 4.6 17.3 25.1
VIV + Textual re-simulator (VIVT) 49 5.2 17.3 25.2
Ground truth 7 19.0 45.2 59.7

dataset. Then, at each step, we extract ingredients that are exact-matched between generated
recipes and the ingredient dictionary. The same process is performed to extract ingredients
in ground-truth recipes. Finally, based on the extracted ingredient sets, we compute the
micro-recall, precision and F1 scores, respectively.

Table 3.5 shows the results of the ingredient prediction. This result shows that the
proposed method outperforms the state-of-the-art video captioning models. In our ablation,
we observe the same tendency of performance change to the word-overlap evaluation. We
note that the VIV model performs much better than the VI model by 6.6% in F1, indicating
that not only the copy mechanism but also the visual simulator are important for generating
ingredients correctly. We also notice that the VIVT model improves the VIV model by 0.5%
in F1, demonstrating the effectiveness of the textual re-simulator.

3.3 Experiments 43

3.3.4 Retrieval evaluation

To evaluate whether the generated procedural text is sufficiently concrete to describe the
input events, we design a step-level zero-shot sentence-to-event retrieval evaluation. As
a retrieval model, we employ the MIL-NCE model [74] pre-trained on the HowTo100M
dataset [75], achieving state-of-the-art performance. In this task, given a generated step-level
sentence as a query, the MIL-NCE model embeds it and computes the cosine similarly as
a score between the query vector and all the 1,768 event vectors from the test set. Then,
we sort scores with events in descending order and calculate the median rank (MedR) and
recall rate at the top K (R@K). The median rank represents the median ranking of retrieved
corresponding events, hence a lower is better; in contrast, R@K represents the percentage of
all the step-level sentence queries where the corresponding event is retrieved in the top K,
hence a higher is better.

Table 3.6 shows the results of the retrieval evaluation. We observe that the proposed
method significantly outperforms the state-of-the-art video captioning models. In MedR,
the VIVT model achieves 49, which is marginally lower than that of Transformer-XL-I 139
and MART-I 79. This indicates that the proposed method generates a more concrete recipe
based on events than the state-of-the-art video captioning models. In our ablation, the VIV
model dramatically improves the VI model, indicating that the visual simulator is essential
for generating concrete recipes. In addition, the VIVT model shows a steady improvement
from the VIV model, indicating the effectiveness of the textual re-simulator.

3.3.5 Qualitative analysis

Fig. 3.9 shows two examples of the generated recipes. We discuss the insights and limitations
of the proposed method.

Insights

For our task, it is important to generate the correct ingredients that are manipulated in
an event. MART-I fails to generate ingredients correctly. The model tends to miss and
hallucinate ingredients (e.g., “flour” and “milk” in step 2 (a) and “garlic” in step 1 (b)). A
similar tendency can be observed in the VI model, indicating that these models superfluously
generate ingredients listed in the ingredient set.

The VIV model suppresses these problems (e.g., “baking soda” and “batter” in steps 1
and 3 in (a) and “marinade” in step 3 in (b)). In addition, owing to the textual re-simulator,
the VIVT model can generate ingredients that are missed or unrecognized in the VIV model
(e.g., “water” in steps 1 and 2 in (a) and in step 1 in (b)).

44 State-aware Procedural Text Generation from Segmented Key Events

Action annotation Ingredient annotation

Add cold water
to the bowl and mix

Add cold water
to the bowl and mix

add, mix

action
label

flour eggs water batter shrimp oil

Step 1

Step 2

Step 3

Step 4

Step 5

Step 1
Add flour eggs to the bowl
Used: (flour, eggs)
Step 2
Add water to the bowl
Used: (step1, water)
Step 3
coat shrimp in the batter
Used: (step2, shrimp, batter)
Step 4
fry shrimp in oil
Used: (step3, oil)
Step 5
Remove shrimp from oil
Used: (step4)

Fig. 3.10 An annotation example of the visual simulator.

Table 3.7 Quantitative evaluation of the visual simulators.

Ingredient Action
Recall Precision F1 Recall Precision F1

VIV 22.6 77.5 35.0 49.5 18.7 27.1
VIVT 21.4 75.9 33.4 49.1 19.9 28.3
Distant supervision 30.5 97.8 46.5 94.7 57.1 71.2

Limitations

Although the proposed method generates recipes more accurately than the baseline models,
we still found some differences from the ground truth. For example, in step 2 in (a), the VIV
and VIVT models refer to “eggs,” superfluously, but only “water” is added to the ground
truth. In addition, in step 3 in (b), the VIV and VIVT models generate “ribs” but it is not used.
To solve these problems, we believe that incorporating fine-grained ingredient recognition
modules [19] would help the model to generate a recipe more precisely.

3.3.6 Discussion of the learned embedding

Quantitative evaluation of visual simulators

We evaluate the visual simulators by measuring the performance of the action and material
selectors. These models are trained from distant supervision, as described in Chapter 3.2.6,
which does not always agree with human judgment. Thus, we manually annotated the action
and material labels for 50 recipes that were randomly sampled from the test set.

3.3 Experiments 45

Fig. 3.10 shows an annotation example. For actions, we manually extracted action
words from sentences at each step (e.g., “add” and “mix” were extracted in Fig. 3.10). For
ingredients, step sentences do not explicitly include all of the ingredients manipulated in the
real world because they mention only the difference from the previous steps. For example, in
step 2 in Fig. 3.10, a mixture of “flour” and “eggs” is used, but it is not mentioned in the
sentence. To address this, we annotated the ingredient tree structure [53, 85], where each
step node indicates a mixture of ingredients. The tree structure allows us to determine which
ingredients are used at each step by back-tracking its leaf nodes.

We compute micro-recall, precision and F1 as evaluation metrics for the visual simulator.
Table 3.7 shows that VIV and VIVT achieve competitive results; while VIV performs better
in terms of ingredient selection, VIVT performs better for action selection. We also note that
even distant supervision performs only F1=46.5% in the ingredient selection. This happens
because recipes mention only the difference from the previous steps; “flour” and “eggs” are
manipulated in step 2 in Fig. 3.10, but are not mentioned. Therefore, distant supervision
is not perfect for simulating human material manipulation in the real world. However, it
effectively guides the model to predict incremental ingredients and is adequate for improving
the captioning performance of the task.

Visualization of the learned embedding

To investigate how the visual simulator represents the state transition of ingredients, we
visualize the ingredient embedding by projecting it to 2D space using t-SNE [120]. Fig. 3.11
shows the projected learned embedding of ingredients obtained by the VIVT model. Note
that only raw (red) and updated (blue)4 ingredients are shown in the figure. This result shows
that the raw and updated points are located on the outer and inner sides of the distribution,
respectively5.

We also investigate the ingredients’ trajectory with the retrieved top-2 nearest ingredient
vectors from updated ingredient vectors (see the zoomed parts of the figure). The retrieved
ingredients indicate their state awareness. The ingredients with similar states are embedded
into the same cluster in the vector space regardless of the difference in their recipe categories
defined by [147]. For example, the near vectors of updated “milk” with the “add” state are
also updated “milk” with “add”-like states (e.g., mix and pour). “tomatoes” also have the
same tendency.

4The attention weight in the material selector was higher than 0.5.
5The raw and updated ingredients correspond to an embedding E 0 by the material encoder and an embedding

E n updated from E 0 by the visual simulator, respectively.

46 State-aware Procedural Text Generation from Segmented Key Events

Event Predicted
ingredient

Recipe
category

tomatoes fattoush

tomatoes tomato
soup

tomatoes bean
burrito

Event Predicted
ingredient

Recipe
category

milk eggs
benedict

milk croque
monsieur

milk naan

tomatoes

milk

Fig. 3.11 Learned embedding of ingredients obtained by the VIVT model. Note that only raw
and updated (the attention weight in the material selector is higher than 0.5) ingredients are
transformed by t-SNE [120]. Red and blue colors represent the raw and updated ingredients,
respectively.

Semantic vector arithmetic

To demonstrate the state-awareness of learned embedding, we attempt to apply simple
arithmetic operations as performed in the literature [76, 95, 101]. In the context of our
task, the state transition of ingredients is expected to be computed as v(cut potatoes) =
v(potatoes)+ v(cut tomatoes)− v(tomatoes), where v represents the map in the embedding
space.

Fig. 3.12 shows seven examples of arithmetic operations. From (a) to (d), first-order
transformations (raw-to-updated) are described, and from (e) to (g), second-order transforma-
tions (updated-to-updated) are described. We can see that the learned embedding simulates
the state transition of ingredients by specific actions in both transformations. For example, in
(a) and (e), “canadian bacon” and “drained spaghetti” are converted into “cut canadian bacon”
and “mixed drained spaghetti,” respectively. However, we observe some failure cases, where

3.3 Experiments 47

Ingredient Updated ingredient Raw
ingredient

Updated ingredient
(nearest vector)

(a) canadian bacon cut
 tuna tuna cut canadian

bacon

(b) lettuce add
 tomatoes

tomatoes added
 lettuce

(c) beef fry
 chicken chicken fried beef

(d) chicken cut
 tuna tuna added

 chicken (fail)

(e) drained
 spaghetti

 mix
 rice rice mixed drained

 spaghetti

(f) cut
 dogs

 fry
 chicken chicken fried cut

dogs

(g) cut
 potatoes

 fry
 chicken chicken mixed

 potatoes (fail)

Fig. 3.12 Arithmetics using the learned embedding of ingredients. Examples (a) to (d) and
(e) to (g) represent the first-order (raw-to-updated) and second-order (updated-to-updated)
transformations, respectively. (d) and (g) show the failure cases for each transformation.

(d) and (g), “raw chicken” is transformed into “added chicken” via “cut” and “cut potatoes”
into “mixed potatoes” via “fry.” In these examples, ingredients are consistent before and
after, but executed actions are different because of the failure in action selection. We believe
that noisy action labeling causes this failure, and a sophisticated action selection would ease
this problem.

3.3.7 Experiments on the full prediction setting

This work discusses the proposed method under the condition that the input has ground-
truth ingredients. Then, a natural question arises: is the proposed method effective with the
predicted ingredients? To answer this question, we conduct experiments on the full prediction
setting, where the material set is not given, but is predicted from the video events in advance.
To achieve this, we add an ingredient decoder of the multi-label classifier and train the entire
model as multi-task learning.

Fig. 3.13 shows how to integrate the ingredient decoder into the model. The ingredient
decoder consists of a two-layered MLP with a sigmoid function and converts ĥ of a max-
pooled vector of event vectors into a probability vector p ∈Rq of materials, where q indicates

48 State-aware Procedural Text Generation from Segmented Key Events

h1

max

eggs

cheese

butter

h2

h3

MLP
+

Sigmoid

Ingredient
decoder

Probability

Ingredient
label

top kh̄Key
event

encoder
Downstream
Process

Sampled

_ingr

Fig. 3.13 An overview of how to integrate ingredient decoder into the model.

Table 3.8 Paragraph- and sentence-level word-overlap evaluation on the full prediction setting.

I B1 B2 B3 B4 M C RL B1 B2 B3 B4 M C RL
Video only (V) 43.2 24.5 14.0 8.1 16.6 32.4 31.9 28.0 13.9 6.0 1.9 11.4 60.7 28.3
w/ Predict ingredients
V + Ingredients (VI) ✓ 42.5 24.3 13.9 8.1 16.5 28.4 32.3 28.5 14.6 5.9 2.2 11.8 62.1 28.7
VI + Visual simulator (VIV) ✓ 42.5 24.3 13.9 8.1 16.7 33.9 32.5 28.9 14.6 6.2 2.3 11.9 63.8 28.8
VIV + Textual re-simulator (VIVT) ✓ 42.7 24.0 13.3 7.7 16.7 31.6 31.9 28.3 14.0 5.5 2.3 11.7 60.8 28.3
w/ Ground-truth ingredients (Table 3.2)
V + Ingredients (VI) ✓ 49.1 29.5 17.6 10.5 20.3 63.3 35.2 31.9 18.0 9.3 3.8 13.9 81.7 31.3
VI + Visual simulator (VIV) ✓ 49.4 30.1 18.0 11.0 21.0 66.1 36.8 33.7 19.3 9.7 4.4 15.2 93.0 33.3
VIV + Textual re-simulator (VIVT) ✓ 49.4 30.9 18.3 11.3 21.1 67.1 37.1 33.5 19.4 10.1 4.9 15.2 96.7 33.7

the number of unique ingredients appearing more than three times in the training set (we
obtained q = 668 in the experiment). During training, we compute the ingredient decoder
loss Lingr, which is an asymmetric loss [142] on the multi-label classification settings, and
add it to the total loss. Note that we adopt teacher-forcing [132] to stabilize the training;
while the models learn using the ground-truth ingredients for the downstream process in the
training phase, they generate a recipe based on predicted ingredients at the inference phase
(we sample the top k = 15 ingredients from the probability). Another modification of the
model is to remove the copy mechanism because we find that it degrades the captioning
performance with this setting.

Results. We conduct three types of evaluations: word-overlap evaluation, ingredient
prediction and retrieval evaluation. Table 3.8, 3.9 and 3.10 shows their results. Compared
with the video-only (V) model, the performance of VI, VIV and VIVT models is competitive
in the word-overlap evaluation and ingredient prediction and is worse for retrieval evaluation.
Compared with the models with ground-truth ingredients, we observe a performance drop
by a significant margin. This performance degradation likely occurs because of the accumu-

3.4 Conclusion 49

Table 3.9 Results of ingredient prediction on the full prediction setting.

Recall Precision F1
Video only (V) 13.5 19.8 16.0
w/ Predict ingredients
V + Ingredients (VI) 14.8 21.5 17.5
VI + Visual simulator (VIV) 16.2 22.5 18.8
VIV + Textual re-simulator (VIVT) 15.8 21.9 18.3
w/ Ground-truth ingredients (Table 3.5)
V + Ingredients (VI) 24.3 33.1 28.1
VI + Visual simulator (VIV) 28.9 43.2 34.7
VIV + Textual re-simulator (VIVT) 29.7 43.2 35.2

Table 3.10 Results of retrieval evaluation on the full prediction setting.

MedR (↓) R@1 R@5 R@10
Video only (V) 134 2.2 8.4 13.6
w/ Predict ingredients
V + Ingredients (VI) 138.5 2.1 7.8 13.1
VI + Visual simulator (VIV) 133.5 1.6 7.2 12.1
VIV + Textual re-simulator (VIVT) 141 2.0 7.0 12.6
w/ Ground-truth ingredients
V + Ingredients (VI) 65 4.6 14.5 21.2
VI + Visual simulator (VIV) 49 4.6 17.3 25.1
VIV + Textual re-simulator (VIVT) 49 5.2 17.3 25.2

lated errors of the ingredient decoder and visual simulators. Table 3.11 indicates that the
performance of the ingredient decoder is around F1=34% to 35% on average. Therefore, we
conclude that the proposed method performs well with the input of ground-truth ingredients,
rather than the predicted ingredients. This is another limitation of our work.

3.4 Conclusion

In this chapter, we tackled a task for generating a procedural text from key events and
materials. To generate accurate procedural text, it is essential for models to track material
states in key events. To achieve this, we proposed a novel state-aware method, which modifies
the existing simulator as a visual simulator and incorporates it into the encoder-decoder
architecture. Our experimental results demonstrated the effectiveness of the proposed method,
which outperforms the state-of-the-art video captioning models. The learned embedding of
materials showed that the simulator effectively captures their state transition. Finally, we

50 State-aware Procedural Text Generation from Segmented Key Events

Table 3.11 Performance of an ingredient decoder on the full prediction setting. Note that we
compute the micro-recall, precision, and F1 on the multi-label classification setting.

Recall Precision F1
VI 45.2 27.2 34.0
VI + Visual simulator (VIV) 46.0 27.8 34.7
VIV + Textual re-simulator (VIVT) 45.3 27.3 34.1

conducted experiments on the full prediction settings and found that the proposed method
performs well on the ground-truth ingredients, rather than the predicted ingredients.

Chapter 4

Multimodal Recurrent Learning of the
Event Selector and Sentence Generator

4.1 Introduction

In this chapter, we tackle the full prediction task of generating procedural text from un-
segmented instructional videos: (1) extracting events from the videos and (2) generating
descriptive sentences for them. As discussed in Chapter 1, this task is similar to DVC
[57, 129, 30], which aims at detecting events densely from videos and generating sentences
for them. Although the input/output pairs of our task (video/(events, sentences)) and that
of the DVC are of the same format, our task is different from the perspective of the story
awareness of instructional videos. DVC allows computers to exclusively detect false-positive
events in its evaluation metrics. Our task, on the other hand, requires them to extract the
accurate number of events in the correct order and generate sentences for them. Fujita et
al. [37] reported that DVC models produce more than 200 redundant events per video on
average on the ActivityNet captions dataset [57] while the number of manually-annotated
events is only 3-4. Such redundant events and sentences make it difficult for users to grasp
an overview of the video content.

The reason for the redundant outputs is that existing DVC approaches employed parallel
prediction, wherein events and sentences are estimated independently (Fig. 4.1 top). These
approaches consist of two modules: event prediction and sentence generation modules. Both
modules do not take into account the surrounding events and sentences when predicting the
current ones, leading to duplicated outputs. The choice of parallel prediction is reasonable for
the DVC objective of thoroughly detecting events and generating sentences for multimedia

52 Multimodal Recurrent Learning of the Event Selector and Sentence Generator

Ours: multimodal recurrent prediction

Event Candidates (N=10)

T

…

…

1 Add the butter
into a pan

3

Crack the eggs
and stir

Add the egg
mixture and cheese
and stir

2

DVC: parallel prediction
Input Video

T

…

…

Parallel
event

prediction
…

Events

Parallel
sentence

generation
…

Sentences

Add the butter to the pan
Add the butter to the pan

…
Crack the eggs

Add them into the bowl
…

Cook ingredients
Cook ingredients

Parallel
event

prediction

Input Video Events and sentences

Event
selector

Sentence
generator

Proposed method

Multimodal
memory
mixing

Fig. 4.1 A conceptual comparison of our approach and existing DVC studies. While the
existing DVC models adopted parallel prediction, our approach employ multimodal recurrent
prediction, which estimates events and sentences by memorizing and fusing the previously
prediction results.

retrieval. However, it is not suitable for our procedural text generation task because we place
high importance on providing an overview of videos that can be easily grasped by humans.

Although the events predicted by DVC models are redundant, we observed that (1)
several events are adoptable as a story, but (2) the generated sentences for such events are not
grounded well to the visual contents (i.e., materials and actions in the sentences are incorrect).
We confirm this by analyzing the outputs of the state-of-the-art DVC model. We refer to
the DVC output events as event candidates. Through an approach that we refer to as oracle
selection, we select events that have the maximum temporal IoU (tIoU) to ground-truth
events (i.e., manually-annotated events) and compute the DVC scores [37, 57]. The results
support our observations. Although oracle selection ensures that events that are adoptable as
the story of a procedural text are selected, the obtained sentences are not grounded in the
visual content.

4.1 Introduction 53

Based on this analysis, we set our goal to obtain correct procedural text by selecting
oracle events from the event candidates and re-generating sentences for them. To realize
this, the crucial idea is multimodal recurrent prediction, which estimates the next step by
understanding previously predicted events and generated sentences. The bottom of Fig. 4.1
shows a concept of our idea. To predict the events and sentences in step 3, the models
should understand both the visual and textual content of step 2. To achieve this, we propose
a transformer[121]-based recurrent learning approach of an event selector and sentence
generator. As with [65], both of the modules have memory representations, which remember
previously selected events and generated sentences to predict events and sentences accurately.
In addition, the proposed multimodal memory mixing method enables the modules to share
the history of the previous prediction results, contributing the better performance. The overall
model is designed to be trainable in an end-to-end manner because the modules of the model
are connected without breaking a differentiable chain. We refer to this model as the base
model.

We also propose an extended model in the settings where the inputs are videos with ma-
terials as in [84, 133]. The motivation behind this extension is to enhance the model’s ability
to generate more accurate procedural text by incorporating the actual materials depicted in
the videos. Relying solely on video inputs is problematic since even humans struggle to
verbalize precise materials without additional contextual information. For example, the kinds
of seasoning (e.g., salt and sugar) or meat parts (e.g., chuck and rib) are the exact cases. To
develop a reliable procedural text generation system, it is essential for the models to accept
supplementary material inputs.

This task requires agents to describe detailed manipulations of materials from instructional
videos. To achieve this goal, our extended model has two additional modules: (1) a dot-
product visual simulator and (2) a textual attention module. The dot-product visual simulator
is introduced by the insights from Chapter 3, where we discovered that learning the material
state changes contributes to generating accurate procedural text. The motivation for the
extension is the difference in the inputs. Although the pre-segmented ground-truth events
are given in Chapter 3, the inputs in this work are event candidates. The dot-product visual
simulator accepts them and reasons about the state transition of materials. Furthermore, we
also introduce a textual attention module that verbalizes grounded materials and actions in
the procedural text. These modules are effective for grounded procedural text generation
from instructional videos.

In our experiments, we use the YouCook2 [147] dataset and test the proposed method. It
outperforms the state-of-the-art DVC approaches based on commonly used DVC metrics.
In addition, the extended models boost the model’s performance. We also show that the

54 Multimodal Recurrent Learning of the Event Selector and Sentence Generator

proposed models can select the correct number of events that effectively reflects the ground-
truth events. In addition, our qualitative evaluation reveals that the proposed approaches
can select events in the correct order and generate procedural text that reflects on the video
contents. We discuss the detailed experiment settings for optimal procedural text generation.

In summary, our contributions are summarized as follows:

• This study focuses on enhancing the story awareness of procedural text, where agents
need to accurately extract the number of events in the correct order and generate
corresponding sentences. Based on the analysis of the DVC models, we set our goal to
obtain accurate procedural text by selecting oracle events from the DVC output events
and re-generating sentences for them.

• To achieve this goal, we propose transformer-based multimodal recurrent learning of
an event selector and sentence generator. Building upon the predicted events from
DVC models, our method effectively recurrently estimates the next step by memorizing
and mixing previously predicted events and sentences.

• Furthermore, we extend our model to handle inputs comprising videos and materials.
The motivation behind this extension is to enhance the model’s ability to generate
more precise procedural text by incorporating actual materials observed in cooking
videos. We introduce two additional modules to the base model, allowing it to verbalize
detailed manipulations of materials in the instructional videos.

• Our experiments demonstrate that the proposed methods obtain the story awareness of
procedural text. They outperform the DVC approaches especially on the story-oriented
metrics, select the accurate number of events in the correct order, and generate accurate
sentences for them. In addition, we investigate the detailed experiment settings for
optimal procedural text generation.

4.2 Oracle-based analysis of the existing DVC model

As Fujita et al. [37] reported, the outputs of DVC models are redundant. However, we
observed that although (1) several events are adoptable as a story, (2) the generated sentences
for such events are not grounded well in the visual contents. To verify this, we analyze the
outputs of the state-of-the-art DVC model. Specifically, we select events with the maximum
tIoU scores to ground-truth events from event candidates and compute the DVC scores, an
approach referred to as oracle selection hereinafter. The analyzed results demonstrate that
the oracle selection boosts the performance, especially on story-oriented DVC metrics.

4.2 Oracle-based analysis of the existing DVC model 55

Table 4.1 Word-overlap metrics of the oracle selection on the YouCook2 dataset. N represents
the number of candidate events, a hyper-parameter of PDVC. The bold scores are the best
among the comparative settings.

dvc_eval SODA
BLEU METEOR CIDEr-D METEOR CIDEr-D tIoU

PDVC (reproduced) 0.89 4.52 21.50 3.98 25.30 27.80
Oracle
N=25 0.58 6.09 27.12 7.62 26.32 56.55
N=50 0.84 6.92 31.63 8.83 29.93 64.58

N=100 0.97 7.68 36.26 9.64 35.08 71.16
N=200 1.10 8.15 38.60 10.43 36.89 76.71

We use the YouCook2 dataset [147], one of the largest cooking video-and-language
datasets. For the DVC model, we employ PDVC [129], the state-of-the-art DVC model. It
detects N events densely and then re-ranks the top K of them for its outputs. Note that N is a
hyper-parameter1 and K is the prediction target. We adopt this model because it achieves the
best performance on DVC tasks and it is easy to control N before training the model. We use
the N detected events for the analysis, not the re-ranked K events.

Evaluation metrics

We use two commonly-used DVC metrics: dvc_eval [57] and SODA [37].

• dvc_eval firstly computes tIoU of all the combinations between the prediction and
ground-truth events and then computes word-overlap metrics (e.g., METEOR or CIDEr-
D), if the tIoU scores are over the threshold θ . θ ranges from 0.3 to 0.9 by 0.2. Their
average is the output score of these metrics.

• SODA stands for story-oriented dense video captioning evaluation, whereby the story
awareness of the output events is evaluated. Specifically, it uses dynamic programming
to explore an alignment of events between prediction and ground truth for obtaining
the maximum story scores. The story scores are computed as a product of tIoU and
word overlap metrics. Because SODA evaluates the predicted events by penalizing
redundant outputs, it is suitable for computing story awareness.

This study thinks highly of SODA because it evaluates whether the output event/sentence
pairs are appropriate as a story. As word-overlap metrics, we use BLEU [90], METEOR [8]

1N is set to be a sufficiently large number. For YouCook2, the authors of [129] set N to be 100 as a default
parameter.

56 Multimodal Recurrent Learning of the Event Selector and Sentence Generator

0

1000

2000

3000

4000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(a) Training

(b) Validation

0

300

600

900

1200

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N=25 N=50 N=100 N=200

Fig. 4.2 tIoU distribution of oracle events on the training and validation sets of YouCook2.

and CIDEr-D [122], which are commonly-used metrics for text generation tasks. We also
introduce SODA tIoU, which computes story scores as tIoU scores, rather than a product
of tIoU and word overlap metrics. These metrics can evaluate whether the selected events
are appropriate as components of the generated procedural text. In this analysis, we range N
from 25,50,100, and 200.

4.2.1 Quantitative evaluation

Table 4.1 shows the results of the oracle selection on dvc_eval and SODA metrics, indicating
that the oracle selection outperforms the PDVC. Specifically, the SODA scores of the oracle
selection are quite better than that of the PDVC, demonstrating that the generated procedural
text is more suitable as a story than the ones generated by the PDVC.

Fig. 4.2 shows the distribution of tIoU scores of the oracle events on training and
validation sets. The number of candidate events N was directly proportional to the average
tIoU. This is because the more N was, the more suitable oracle events appear in the candidate.
Both the training and validation sets confirm this tendency.

4.3 Proposed method 57

… … …

Oracle Selection

Time

…

Ground-Truth

Oracle SelectionGround-Truth
(a)Add flour eggs baking soda salt and

pepper to the bowl and stir
(b)Add cold water to the bowl and stir
(c)Cover the shrimp in the batter and

breadcrumbs
(d)Place the shrimp into a pan of hot oil
(e)Remove the shrimp from the pan

(a)Add flour and mix to a bowl and mix
(b)Mix the ingredients in the bowl
(c) Place the chicken in the batter
(d)Fry the chicken in the oil
(e)Remove the soup from the oil

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

Fig. 4.3 Comparison of the procedural texts generated by the oracle selection and ground
truth. N = 100, which is a default hyper-parameter of PDVC, is used in this example.

4.2.2 Qualitative evaluation

Fig. 4.3 shows a comparison of the procedural text generated by the oracle selection and
ground truth. The selected event timestamps are close to the ground-truth events, indicating
that the appropriate selection can construct the correct procedural text. However, the sentences
are different from the ground truth (e.g., “baking soda”, “salt”, and “pepper” are missing in
step (1)).

The main reason for this error is parallel prediction, where the events and sentences
are predicted independently. This causes the model to miss or hallucinate materials and
motivates us to propose a model that re-generates sentences for the predicted events, rather
than using the corresponding generated sentences without modification.

4.3 Proposed method

Based on the oracle-based analysis, we set our goal to obtain correct procedural text by
selecting oracle events from the output events of the DVC model and re-generating sentences
for them. To achieve this goal, multimodal recurrent prediction is essential, which memorizes

58 Multimodal Recurrent Learning of the Event Selector and Sentence Generator

DVC approaches:
parallel prediction

Ours:
multimodal recurrent prediction

… …

Frames

Event extractor
(Transformer)

Parallel event/sentence prediction

Event

…

Sentence generator
(Transformer, LSTM)

Add the ingredients
to the bowl

… …

Multimodal Recurrent prediction
of the events and sentences

previous events

1
2

next step

3

previous sentences

1 add shrimp to the bowl
2 add eggs and water
and mix it

3 add shrimp into
the frying pan

Event

…

Memory
Event extractor

(Memory-
augmented

Transformer)
Memory

Multimodal memory mixing

Sentence generator
(Memory-

augmented
Transformer)

update
mix

Memory

Memory

next step

Fig. 4.4 An introductory overview of our approach. Unlike the previous DVC approaches,
we propose a multimodal recurrent learning approach to train the event selector and sentence
generator. Both modules represent the previously predicted events and sentences as memory
vectors and predict the next step. These memory vectors are updated and mixed to effectively
share the previous prediction belonging to different modalities.

and mixes the previously predicted events and generated sentences to estimate the next step
(Fig. 4.4).

We realize this idea by proposing transformer-based models, consisting of event selection
and sentence generation modules (Fig. 4.5), which we refer to them as an event selector and
sentence generator. The event selector chooses oracle events from event candidates repeatedly
(Chapter 4.3.1) and the sentence generator outputs sentences for the selected events (Chapter
4.3.1). Both encoders are based on memory-augmented recurrent transformers (MART)
[65], which contain memory vectors to learn the recurrence by remembering the previous
prediction to estimate the next step. In addition, the proposed multimodal memory mixing
approach enables the model to share the previous prediction belonging to different modalities
by fusing their memory vectors (Chapter 4.3.3).

It is worth noting the advancements over MART. This study presents two improvements:

• Task extension. We extend the scope of the model to verify both event selection and
sentence generation tasks, whereas the original paper only validated its effectiveness
in generating sentences from pre-segmented key events.

4.3 Proposed method 59

… …

Event encoder (frozen)Event
End token

[END]

Positional
Encoding

+

Multi-head
Attention

Add & Norm

Feed Forward

× N

Q K V

Feed Forward

Add & Norm

ConcatVl
t−1

[END]

Event
Transformer

Event Selector Sentence Generator

Multi-head
Attention

(Shifted right)

Word embedding

Positional
Encoding

Selected
Event Vector

Masked Multi-head
Attention

Add & Norm

Feed Forward

× N

Q K V

Feed Forward

Add & Norm

Concat

Sentence
Transformer

Multi-head
Attention

Linear

Softmax

Sl
t−1

add cold water
to the bowl…

Next
step

e1 e2 e3 e4 e5 e6 e7 e8 e9

h1 h2 h3 h4 h5 h6 h7 h8 h9

w1 w2 w3 w4 w5 w6

Timestamp
Encoding TE h5 +

Multimodal
Memory
mixing Next

step

Sl
t

Sl
t

Vl
t

Vl
t

Multimodal
Memory
mixing

Fig. 4.5 Multimodal recurrent learning approach of the event selector and sentence generator
for recipe generation from unsegmented cooking videos. The event selector chooses oracle
events from event candidates repeatedly (Chapter 4.3.1) and the sentence generator outputs
sentences for the selected events (Chapter 4.3.1). The memories are updated and mixed to
effectively remember the history of the events/sentences for predicting the next step (Chapter
4.3.3).

• Multimodal memory mixing. We introduce a novel memory mixing method that
integrates memory vectors from both modules to ensure coherent procedural text
generation (Chapter 4.3.3).

We formulate this task using notations. Let X = (x1,x2, . . . ,xn, . . . ,xN) ∈ R2×N be
event candidates, where xn consists of start and end timestamps. Note that X is sorted
on the start time of the events in chronological order. Given X , the model generates pairs
(C,Y) = ((c1,y1), . . . ,(ct ,yt), . . . ,(cT ,yT)), where ct , yt and T represent an index of the or-
acle event candidates, corresponding generated sentences and the number of the selected
events, respectively. The memories V l

t in the event selector and Sl
t in the sentence generator

are updated at each t step, where l represents the layer number of transformers.

60 Multimodal Recurrent Learning of the Event Selector and Sentence Generator

4.3.1 Event selector

The event selector can be divided into two main components: event encoder and event trans-
former. The event encoder converts given candidate events X into event-level representations
E = (e1,e2, . . . ,en, . . . ,eT), based on which the event transformer outputs a holistic represen-
tations of events H = (h1,h2, . . . ,hn, . . . ,hT). They are used for computing event probabilities,
which represent the likelihood of oracle events. We apply Gumbel softmax resampling [52]
to select events and forward them to the sentence generator without breaking a differentiable
chain during the training phase. In the inference phase, events are deterministically selected
by applying argmax to event probabilities.

Event encoder

The event encoder converts events xn into representations en. First, we extract events from
the video, according to the start and end time of xn, and input them into pre-trained visual
encoders. One of the straightforward ways to encode events is to average frame-level image
representations extracted by ResNet [47]. However, we find that this approach is unable to
capture fine-grained event semantics for overlapped events. For example, assume that the
ground-truth event is a scene of cutting potatoes, and the event candidates have two scenes,
where one is a scene of cutting potatoes and tomatoes, and another is of cutting only potatoes.
We expect the model to select the latter scene because the former contains extra information
about cutting tomatoes. Representing events based on the average of frame-level features
cannot capture the semantic difference of these events effectively. Thus, it is necessary to
employ an event encoder that focuses on extracting fine-grained event-level semantics.

To achieve this, we focus on the multiple instances learning-noise contrastive estima-
tion (MIL-NCE) model [74] pre-trained on Howto100M [75]. The model is trained on
more than 100M pairs of an event with narration, and it can capture event-level seman-
tics of overlapped events. Using this encoder, we obtain event-level representations as
E = (e1,e2, . . . ,en, . . . ,eT). Then, the positional encoding (PE) [121] and relative encoding
of events [130] are added to en.

Event transformer

Given E, the event transformer outputs holistic representations of events H =(h1,h2, . . . ,hn, . . . ,hT).
This module is based on the memory-augmented recurrent transformer [65], where each l
layer has the memories V l

t to remember the history of the selected events. The output vectors
H = (h1,h2, . . . ,hn, . . . ,hT) and memories V l

t are used to compute n-th event probability

4.3 Proposed method 61

p(ct = n|V l
t ,X) as follows:

Vt = max(V 1
t , . . . ,V

l
t , . . . ,V

L
t), (4.1)

p(ct = n|V l
t ,H) =

exp{(ht
n)

TVt}
∑i exp{(ht

i)
TVt}

, (4.2)

where max(·) represents an element-wise max-pooling of vectors. During training, the event
selector selects events through a Gumbel softmax resampling [52], which enables us to train
the model in an end-to-end manner without breaking a differentiable chain. This indicates
that the loss computed on the sentence generator is backpropagated to the event selector.
During inference, the model selects the event index based on the argmax of p(ct = n|V l

t ,H).

4.3.2 Sentence generator

Based on the selected event representations, the sentence generator outputs sentences
grounded for them. Let the selected event index be ĉt , and the selected event representation
can be written as hĉt . This vector is added to the word vectors W = (w1,w2, . . . ,wk, . . . ,wK)

from the word embedding layer, which is the concatenated neural networks of the pre-trained
global vectors for word representation (GloVe) [92]2 and one-layer perceptron with ReLU
activation. We also add PE to word vectors W and input them into the sentence transformer,
another memory-augmented transformer. The model generates words repeatedly by applying
softmax and argmax operations to the output vectors of the sentence transformer.

4.3.3 Multimodal memory mixing

One of the important contributions of this study is to mix the memories for sharing the
prediction results between the event selector and sentence generator. The motivation of
this approach is that mixing memories is intuitively effective for coherent procedural text
generation because the history of the selected events contributes to sentence generation and
vice versa. Specifically, the memory vectors V l

t ,S
l
t are first separately updated by following

the equations described in Section 3.2 in MART paper, and then mixed as follows:

V̂t = f1(Vt)⊙σ(g2(g1(St))), (4.3)

Ŝt = g1(St)⊙σ(f2(f1(Vt))), (4.4)

2We employ pre-trained 300D word embedding, which can be downloaded from http://nlp.stanford.edu/
data/glove.6B.zip

http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip

62 Multimodal Recurrent Learning of the Event Selector and Sentence Generator

where f∗(·),g∗(·) represents a single linear layer and ⊙,σ represents the Hadamard dot
product and sigmoid function, respectively. The obtained V̂t and Ŝt are forwarded into the
next t +1 step. Note that we compare this with the original MART algorithm that updates
memory vectors separately, and confirm its effectiveness in Chapter 4.5.4.

4.3.4 Loss functions

To train the model in an end-to-end manner, we sum up two types of losses: event selection
and sentence generation loss. These losses are formulated as a negative log-likelihood of the
event selection and sentence generation tasks as follows:

Lbase = Le +Ls, (4.5)

Le = − ∑
(X ,C)

∑
t

log p(ct |X ,V l
<t), (4.6)

Ls = − ∑
(X ,C,Y)

∑
t

log p(yt |hĉt ,S
l
<t), (4.7)

where Lbase,Le, and Ls represent the base, event selection and sentence generation losses,
respectively.

4.4 Extended model

In addition to the base model, we also propose an extended model that can generate more
accurate procedural text in the settings where the inputs are videos with materials. The
motivation behind this extension is to enhance the model’s ability to generate more accurate
procedural text by incorporating the actual materials depicted in the videos. Relying solely on
video inputs is problematic since even humans struggle to verbalize precise material names
without additional contextual information. In Fig. 4.10, for instance, the correct material is
“pork,” yet the base model mistakenly generates “meat” and “veal.” To develop a reliable
procedural text generation system, it is essential for the models to accept supplementary
material inputs.

This task requires computers to describe detailed manipulations of materials from in-
structional videos. To achieve this goal, our extended model has two additional modules: (1)
dot-product visual simulator and (2) textual attention module (Fig. 4.6). The dot-product
visual simulator is introduced based on the insights from Chapter 3, where we discovered
that learning the material state changes is effective for procedural text generation. Although
pre-segmented ground-truth events are regarded as input in our previous work, the event

4.4 Extended model 63

… …

Event encoder (frozen)Event
End token

[END]

Positional
Encoding+

Multi-head
Attention

Add & Norm

Feed Forward

× N

Q K V

Feed Forward

Add & Norm

ConcatVl
t−1

Event
Transformer

Event Selector Sentence Generator

Multi-head
Attention

(Shifted right)

Word embedding

Positional
Encoding

Selected
Event Vector

Masked Multi-head
Attention

Add & Norm

Feed Forward

× N

Q K V

Feed Forward

Add & Norm

Concat

Sentence
Transformer

Multi-head
Attention

Linear

Softmax

Sl
t−1

add cold water
to the bowl…

e1 e2 e3 e4 e5 e6 e7 e8 e9 w1 w2 w3 w4 w5 w6

Timestamp
Encoding TE

h5Concat

Ingredients

Dot-product
Visual simulator

Ingredients

+
Concat

+

Textual Attention Module

Next
step

…

Updated ingredients

…

Weighted actions

gt1

gt
M

·a1
h

Ingredient encoder Ingredient encoder

Flour
Baking soda

Shrimp
…

Batter

Flour
Baking soda

Shrimp
…

Batter

[END] h1 h2 h3 h4 h5 h6 h7 h8 h9 ·a2
h

·aR
h

gt2

Next
step

Next
step

Multimodal
Memory
mixing

Sl
t

Vl
t

Multimodal
Memory
mixing

Vl
t

Sl
t

Fig. 4.6 An overview of the extended model for procedural text generation from unsegmented
instructional videos. To generate more accurate procedural text, it has additional two modules:
(1) dot-product visual simulator and (2) textual attention. The dot-product visual simulator is
introduced to learn the state transition of materials. The textual attention module encourages
the sentence generator to verbalize actions and materials more accurately.

candidates should be considered in this study. To this end, we extend it to the dot-product
visual simulator described in Chapter 4.4.1. In addition, we also introduce a textual attention
module that verbalizes grounded materials and actions in the procedural text. These modules
are effective for grounded procedural text generation from instructional videos.

Another extension is to add a material encoder to convert materials into representations
G0. The material encoders are concatenated neural networks of pre-trained GloVe [92] word
embedding and MLPs with ReLU activation function and are added to the event selector and
sentence generator without sharing their parameters. Note that multi-word materials (e.g.,
parmesan cheese) are represented by the average embedding vector of the words. They are
concatenated with event/word representations and inputted to the event/sentence transformers
as shown in Fig. 4.6.

64 Multimodal Recurrent Learning of the Event Selector and Sentence Generator

event vectors

-th material
vector

(n − 1)

gn−11

action vectors

add
crack
stir

h1
h2
h3
h4
h5

a1
a2
a3

(1) Action selector

Event-action
Attention
eq. (4.10)

(2) Material selector

Event-material
Attention
eq. (4.13)

Material-event
Attention
eq. (4.11)

(3) Updater

Action-material
Attention
eq. (4.14)

·Ha

̂e1

̂e2

̂e3

Next step

·Ah

·Gt−1
h

A

H

Gt−1

oracle
event

gn−12

gn−13

Action-event
Attention
eq. (4.8)

Computing
event probability

eq. (4.2)

·Hg

Gt

Computing
event probability

eq. (4.2)

Fig. 4.7 An overview of the extended dot-product visual simulator that reasons about the
state transition of materials. It has three components: (1) action selector, (2) material selector
and (3) updater. The dot-product attention is employed to treat the event candidates.

4.4.1 Dot-product visual simulator

We first revisit the original visual simulator and then describe how we extend it to the
dot-product visual simulator.

Visual simulator revisit

In Chapter 3, the inputs are the pairs of materials and ground-truth events. Let G0 =

(g0
1,g

0
2, . . . ,g

0
m, . . . ,g

0
M) and Ĥ = (ĥ1, ĥ2, . . . , ĥt̂ , . . . , ĥT̂) be the material and ground-truth

event vectors encoded by the material encoder (e.g., GloVe) and event encoder (e.g., MIL-
NCE), respectively. Given (G0, Ĥ), the visual simulator reasons about the state transition of
the materials by updating them at each t̂-th step. To this end, it consists of three components:
(1) action selector, (2) material selector and (3) updater. The action selector and material
selector predict executed actions and used materials at t̂-th step. Based on the selected
actions/material, the (t̂ −1)-th material vectors G(t̂−1) are updated into t̂-th new proposal
material vectors G(t̂), which are forwarded into the next step. The visual simulator recurrently
repeats the above process until processing the end element of the ground-truth events.

4.4 Extended model 65

Proposed extension

The proposed model is similar to the visual simulator because it also has the same three
components to update the material vectors. However, instead of the ground-truth event
vectors Ĥ, the event candidates H are assumed to be the inputs in this study, that is, the model
needs to predict not only the actions/materials but also the events that constitute the story.

To achieve this, we extend the visual simulator into the dot-product visual simulator
shown in Fig. 4.7. It computes the relationships between action-to- and material-to-events as
attention matrices and outputs four vectors: action-weighted and material-weighted event
vectors, event-weighted action and material vectors. The former two vectors are used to
calculate the event probabilities and the latter two vectors are forwarded to the textual
attention module.

Action selector

The action selector outputs event-weighted action and action-weighted event vectors by pre-
dicting the executed actions and related events. Let the action vectors be A = (a1,a2, . . . ,aR),
that is, the pre-defined action embedding, where ar represents r-th actions and R is the
number of the actions. In Fig. 4.7, the actions “crack” and “stir” are executed at the oracle
event h3; thus a∗ that corresponding crack and stir indices should be selected with the relation
to h3. This computation can be formulated as the dot-product attention as follows:

Âh = softmax{
(W Q

a A)T (W K
h H)√

d
}, (4.8)

Ȧh = Âh(WV
h H)T , (4.9)

where W Q
a ,W K

h ,WV
h represents a linear layer and d represents the dimension size of A and

H. Note that Softmax(·) represents the row-wise softmax operation on a matrix. We also
acquire action-weighted event vectors Ḣa as follows:

Ḣa = softmax{
(W Q

h H)T (W K
a A)

√
d

}(WV
a A)T , (4.10)

where W Q
h ,W K

a ,WV
a represents a linear layer.

Material selector

The material selector outputs the event-weighted material and material-weighted event vectors
by predicting the materials used and related events. For example, in Fig. 4.7, the raw “eggs”

66 Multimodal Recurrent Learning of the Event Selector and Sentence Generator

should be selected at h3. This computation is achieved by replacing A with Gt−1 in Eq (4.9)
and Eq (4.10) as follows:

Ĝt−1
h = softmax{

(W Q
g Gt−1)T (W K

h H)√
d

}, (4.11)

Ġt−1
h = Ĝt−1

h (WV
h H)T , (4.12)

Ĥg = softmax{
(W Q

h H)T (W K
g Gt−1)

√
d

}(WV
g Gt−1)T , (4.13)

where W Q
g ,W K

g ,WV
g represents a linear layer.

Updater

The updater represents the state transition of the materials by updating the material vectors
Gt−1. Based on the selected actions and materials (Ȧh, Ĝt−1

H), the updater computes the
updated material representations as follows:

Gt = Gt−1 + Ġt−1
h ⊙ repeat(max(Ȧh)), (4.14)

where repeat(·) expands the max-pooled action vector by repeating it M times (M is the
number of materials).

Output representations

The action- and material-weighted event representations (Ḣa, Ḣg) are used to compute the
event probability by replacing H with Ḣ = H + Ḣa + Ḣg in Eq (4.2). The event-weighted
action vectors Ȧh and updated materials Gt are forwarded to the textual attention module. Gt

is also set to be the material vectors at (t +1)-th prediction.

4.4.2 Textual attention

The textual attention module encourages the sentence generator to output accurate procedural
based on the actions and materials. Let Ŵ = (w1,w2, . . . ,wk, . . . ,wK) be the output word
vector sequence from the sentence transformer. Given (Gt , Ȧh) and Ŵ , the textual attention
module computes two attention matrices: (1) word-action attention and (2) word-material

4.4 Extended model 67

attention. Then it outputs the context vectors Û as follows:

Zm = softmax(
Ŵ T Gt
√

d
), (4.15)

Um = Zm(Gt)T , (4.16)

Za = softmax(
Ŵ T Ȧh√

d
), (4.17)

Ua = Za(Ȧh)
T , (4.18)

Û = concat(Ŵ ,(Um)
T ,(Ua)

T), (4.19)

where concat(·) indicates a concatenation function of vectors. ûk is forwarded to the linear
layer and softmax activation to obtain the word probability across the vocabulary.

4.4.3 Loss functions

In addition to the losses described in Chapter 4.3.4, we introduce the following two types of
loss functions: (1) visual simulator loss Lvsim and (2) textual attention loss Ltattn. Fig. 4.8
shows an overview of the loss computation for these two losses.

Visual simulator loss

This loss aims to train the visual simulator, consisting of two losses: (1) material selection
and (2) action selection loss. Given the action- and material-event attention matrices in Eq
(4.9) and Eq (4.11), they are computed as the summed negative log-likelihood based on the
materials/actions and events that constitute the story.

To avoid costly human annotations, we compute the loss through distant supervision [77]
following our previous work. For the material selection loss, labels are obtained on whether
the sentence corresponding ground-truth event contains materials and whether the events
are oracle or not at each step. For the action selection loss, labels are obtained whether the
sentence has actions in the 384 actions defined by [12] and whether the events are oracle
or not at each step. For example, in Fig. 4.8, “eggs” at the oracle event index of three are
extracted as a material label, and “crack” and “stir” are extracted at the same event index as
an action label. Mathematically, let Äh, G̈t−1

h be the action- and material-label binary matrices
respectively, where each element represents 0 or 1. Based on Âh, Ĝt−1

h , Äh, G̈t−1
h , the material

68 Multimodal Recurrent Learning of the Event Selector and Sentence Generator

Visual simulator loss

Oracle events (index=3)

Ground-truth sentence

h1 h2 h3 h4 h5

Crack the eggs and stir it in a bowl

eggs are
used

at event 3

Material label

Material-event
attention matrix

Eq. (4.11)

Material
selection

loss

Action label

Crack and
Stir are

executed
at event 3

Action-event
attention matrix

Eq. (4.8)

Add

Crack

Stir

Action
selection

loss

Textual attention loss

Crack

the

eggs

and

stir

Sentence
Transformer

…

Add Crack Stir

Crack
the

eggs
and
stir

Crack
the

eggs
and
stir

Word-action
attention matrix

Eq. (4.17)

Word-material
attention matrix

Eq. (4.15)

Action label

Material label
Material
attention

loss

Action
attention

loss

̂Ah

Ĝt−1
h

··Gt−1
h

··Ah

Zm

··Zm

··Za

Za

eggs

crack

stir

Fig. 4.8 An overview of loss computation of visual selector loss and textual attention loss.

and action selection losses are computed as:

Lis = −SumMat(log(Ĝt−1
h ⊙ G̈t−1

h)), (4.20)

Las = −SumMat(log(Âh ⊙ Äh)), (4.21)

Lvsim = Lis +Las, (4.22)

where SumMat(·) represents the sum of all of the elements of matrix.

Textual attention loss

This loss aims to train textual attention, consisting of two losses: (1) material attention loss
and (2) action attention loss. Given the word-material/action attention matrices, they are
computed as the sum of the negative log-likelihood based on whether the k-th word is the

4.5 Experiments 69

same as the materials/actions. Mathematically, let Z̈a, Z̈m be the action- and material-word
binary matrices, which represent whether the k-th word is the same as the actions/materials.
Given the word-material/action attention matrices Zm,Za and Z̈a, Z̈m, they are computed as:

Lia = −SumMat(log(Zm ⊙ Z̈m)), (4.23)

Laa = −SumMat(log(Za ⊙ Z̈a)), (4.24)

Ltattn = Lia +Laa. (4.25)

Total loss

We simply add these losses to the loss defined in Chapter 4.3.4 as follows:

Lextended = Lbase +Lvsim +Ltattn. (4.26)

4.5 Experiments

We use the YouCook2-ingredient+ dataset [147], which consist of 1,788 cooking (= instruc-
tional) videos, recipes (= procedural text) and ingredients (= materials). We use the official
split proposed by [147] for evaluation. Because the test set is not available online, we use the
validation set for evaluation.

Event encoder

We employ different two encoders described below:

• TSN [128] converts the appearance and optical flow into frame-level representations,
and then outputs the event-level representations by averaging them. For appearance,
we use 2,048D feature vectors extracted from the “Flatten-673” layer in ResNet-200
[47]. For the optical flow, 1,024D feature vectors are extracted from the “global pool”
layer in BN-Inception [51]. Note that these models are pre-trained on only vision
resources (e.g., ImageNet [31]).

• MIL-NCE [74] converts the events into representations. The model is pre-trained on
Howto100M [75], which consists of automatically constructed 100M clip-narration
pairs. We expect the MIL-NCE to yield better event representations than the TSN
because this model is pre-trained on instructional vision-and-language resources.

70 Multimodal Recurrent Learning of the Event Selector and Sentence Generator

Data preprocessing

As in [65], we truncated sequences longer than 100 for the event and 20 for the sentence and
set the maximum length of the event sequence to 12. Finally, we built the vocabulary based
on words that occurred at least three times. The resulting vocabulary contained 991 words.

Hyper-parameter settings

For both the encoder and decoder transformers, we set the hidden size to 768, the number
of layers to two and the number of attention heads to 12. We train the model using the
optimization method described in [32, 65]; we use the Adam optimizer [56] with an initial
learning rate of 0.0001, β1 = 0.9 and β2 = 0.999. The L2 weight decay is set to 0.01, and the
learning rate warmup is over the first five epochs. We set the batch size to 16, and continue
training at most 50 epochs using early stopping with SODA:CIDEr-D.

Models

We test the proposed method by comparing it with four state-of-the-art dense video captioning
models, as described below:

• Masked Transformer (MT) [148] is a transformer-based encoder-decoder DVC model
that can be trained in an end-to-end manner by using a differentiable mask.

• Event-centric Hierarchical Representation for DVC (ECHR) [130] is an event-
oriented encoder-decoder architecture for DVC. The ECHR incorporates temporal and
semantic relations into the output events for generating captions accurately.

• SGR [30] is a top-down DVC model consisting of four processes. The model (1)
generates an overall paragraph from the input video, (2) grounds the sentences with
events in the video, (3) refines captions based on the grounded events and (4) refines
events, referring to the refined captions.

• PDVC [129] is the state-of-the-art DVC model. It detects N events densely, re-ranks
the top K of them and generates sentences for the re-ranked top K events. Note that K
is the prediction target. This model is used in our preliminary experiments described
in Chapter 4.2.

Ablations

We examine the impact of the components of the proposed method through ablation studies
on the following variations:

4.5 Experiments 71

Table 4.2 Word-overlap metrics for the baseline and proposed method. The bold scores are
the best among the comparative methods.

Input modality Video feature dvc_eval SODA
BLEU4 METEOR CIDEr-D METEOR CIDEr-D tIoU

MT Video (V) TSN 0.30 3.18 6.10 - - -
ECHR V TSN - 3.82 - - - -
SGR V TSN - - - 4.35 - -

PDVC (reported) V TSN 0.80 4.72 22.71 4.42 - -
PDVC (reproduced) V TSN 0.56 5.80 21.47 3.99 15.10 27.80

Base (B) V MIL-NCE 1.04 6.03 24.98 5.45 25.09 33.23
Base + Ingredients (BI) Video + Ingredients (VI) MIL-NCE 1.39 7.18 31.07 6.44 31.69 35.10

BI + Visual simulator (BIV) VI MIL-NCE 1.40 7.27 32.67 6.46 32.95 34.13
BIV + Textual attention (BIVT) VI MIL-NCE 1.92 8.04 37.24 7.29 38.93 35.06

Oracle V TSN 0.97 7.68 36.30 9.64 35.09 71.16

• Base model (B) is the model introduced in Chapter 4.3.

• B + Ingredient (BI) incorporates the ingredient encoder into the base model.

• BI + Visual simulator (BIV) incorporates the visual simulator into the BI model.

• BIV + Textual attention (VIVT) additionally incorporates the textual attention module
into the BIV model.

4.5.1 Word-overlap evaluation

Table 4.2 demonstrates the results of the word-overlap evaluation on both dvc_eval and
SODA with BLEU, METEOR and CIDEr-D. We observe that the base model consistently
outperforms state-of-the-art captioning models by a significant margin in both evaluations. In
the ablation, the BIV model outperforms the BI model, and the BIVT model further improves
the BIV model. This indicates that both the dot-product visual simulator and the textual
attention module are effective for accurate recipe generation.

4.5.2 Discussion on the number of predicted events

In addition to the word-overlap metrics, we discuss the generated recipes from the perspective
of the number of predicted events. Table 4.3 shows the percentage of recipes that satisfy
|p− q|≤ η , where p,q,η represents the number of predicted events, ground truth and a
threshold, respectively. In this experiment, we change η from 0 to 3. This result demonstrates
that the proposed models consistently predict a more precise number of events than the PDVC.
Fig. 4.9 shows the histogram of the number of the predicted events. While the PDVC outputs
the specific number of events (i.e., 5, 7, 10), the histogram of the proposed method draws a
similar curve to that of the ground truth.

72 Multimodal Recurrent Learning of the Event Selector and Sentence Generator

Table 4.3 Percentage of procedural texts that satisfy |p− q|≤ η , where p,q,η represents
the number of predicted events, ground-truth events, and a threshold, respectively. In this
experiment, we change η from 0 to 3.

η 0 1 2 3
PDVC 14.4 40.0 63.0 76.4
Model

B 18.6 52.1 71.7 83.4
BI 18.8 51.6 73.5 87.3

BIV 20.5 51.8 74.2 86.2
BIVT 19.7 51.8 73.5 87.5

Fr
eq

ue
nc

y

0

45

90

135

180

#Predicted events

3 4 5 6 7 8 9 10 11 >11

PDVC
B
BI

BIV
BIVT
GT

Fig. 4.9 Histogram of the number of predicted events and ground truth.

4.5.3 Qualitative analysis

Fig. 4.10 shows the predicted events and generated recipes from the PDVC, B and BIVT
models, in comparison to that of the ground truth. In terms of the predicted events, PDVC
outputs highly overlapped events. The proposed method, on the other hand, predicts events in
the correct order, with minimal overlap. This story-oriented sequential event prediction is an
advantage of the proposed method. In terms of the generated recipes, the PDVC repeatedly
generates the same contents, ignoring the events (see (c) to (g)). The proposed methods
suppress this problem. A comparison of B and BIVT reveals that the BIVT can generate
sentences that are grounded with events (e.g., “pork” is accurately verbalized in (a) in BIVT,
whereas “fat” is generated in (a) in B).

4.5 Experiments 73

Ground Truth

PDVC

BIVT

Base (B)

… Time

Ground Truth PDVC Base (B) BIVT

(a) (b) (c) (d) (e) (f) (g)

(a) (b) (c) (d)(e) (f) (g)

(a) (b) (c) (d) (e)(f)

(a) (b) (c) (d) (e) (f)

(a) Cut the pork into slices
(b) Cover the pork in
plastic wrap and pound
(c) Sprinkle salt and
pepper on top of the meat
(d) Melt butter in the pan
(e) Mix eggs milk salt and
pepper together
(f) Dip the pork in the egg
mixture and the bread
crumbs
(g) Fry the pork in the pan

(a) Add oil and salt to a
bowl
(b) Mix the chicken in the
flour and mix
(c) Fry the chicken in a
pan
(d) Fry the chicken in a
pan
(e) Heat the oil in a pan
(f) Fry the chicken in a
pan
(g) Fry the chicken in the
pan

(a) Cut the fat off of the
fat
(b) Season the meat with
salt and pepper
(c) Pour buttermilk into a
bowl and add salt and
pepper
(d) Coat the veal in flour
(e) Coat the meat in the
flour mixture
(f) Place the veal in the
pan

(a) Cut the pork in half
and remove the pork
(b) Season the pork
with salt and pepper
(c) Season the pork
with salt and pepper
(d) Heat some butter in
a pan
(e) Coat the pork in the
break crumbs
(f) Fry the pork in a
pan

… … … …

Fig. 4.10 Examples of the generated procedural texts. We compare three models: PDVC, B
and BIVT with the ground truth.

4.5.4 Discussion on the detailed model settings

Here, we discuss the detailed model settings from five perspectives: (1) loss ablation studies,
(2) memory update strategies, (3) input modalities, (4) event encoders and (5) parameter
sensitivity and the event candidates N. The results demonstrate that these parameters are
important to succeed in our task.

Loss ablation studies

Table 4.4 shows ablation studies on the loss function for the BIVT model. The experiment
yields two insights. First, all the losses are essential for training the model. This is confirmed
by removing all of them from the full model (compare (a) and (g)). Second, material-based
losses are more necessary than action-based ones. Removing the material selection loss
has a more significant influence on the performance, compared to the action selection loss

74 Multimodal Recurrent Learning of the Event Selector and Sentence Generator

Table 4.4 Loss ablation studies. MS, AS, MA, and AA represent material selection, action
selection, material attention, and action attention losses, respectively.

MS AS MA AA dvc_eval SODA
BLEU4 METEOR CIDEr-D METEOR CIDEr-D tIoU

(a) 1.11 6.37 26.54 5.69 26.54 33.15
(b) ✓ 1.28 7.31 31.59 6.46 33.10 33.78
(c) ✓ 1.44 7.32 32.19 6.35 30.86 33.35
(d) ✓ ✓ 1.57 7.45 33.56 6.76 35.45 34.56
(e) ✓ ✓ ✓ 1.76 7.79 36.84 7.12 36.96 34.91
(f) ✓ ✓ ✓ 1.57 7.70 34.58 6.93 37.42 34.53
(g) ✓ ✓ ✓ ✓ 1.92 8.04 37.24 7.29 38.93 35.06

Table 4.5 Comparison of memory update strategies: separate vs joint.

dvc_eval SODA
BLEU4 METEOR CIDEr-D METEOR CIDEr-D tIoU

B
Separate 0.92 5.67 24.19 5.19 23.12 33.96

Joint 1.04 6.03 24.98 5.45 25.08 33.26
BIV

Separate 1.39 7.24 33.02 6.54 33.00 33.81
Joint 1.40 7.27 32.67 6.46 32.95 34.13
BIVT

Separate 1.78 7.85 36.65 6.92 36.84 33.85
Joint 1.92 8.04 37.24 7.29 38.93 35.06

(compare (b) with (d) and (c) with (d)). This tendency is the same as the relationship between
the material and action attention losses.

Memory update strategies: separate or joint?

Table 4.5 shows a comparison of the memory update strategies. While the separate memory
update does not mix the memories in the event and sentence transformers, the joint approach
proposed in Chapter 4.3 fuses these memories. The result demonstrates that the joint approach
outperforms the separate approach, indicating the effectiveness of the joint memory update
strategy.

Input modalities: video only or multimodal?

MIL-NCE has two branches of encoders: video and text encoders. In our experiments, we use
only the video branch but can employ a text encoder by inputting the predicted events with
generated captions of PDVC. We compare video only version and the multimodal version;

4.5 Experiments 75

Table 4.6 Comparison of input modalities: video only and multimodal versions.

dvc_eval SODA
BLEU4 METEOR CIDEr-D METEOR CIDEr-D tIoU

B
Video only 1.04 6.03 24.98 5.45 25.08 33.26
Multimodal 0.44 3.91 15.49 3.51 13.21 27.33

BIV
Video only 1.40 7.27 32.67 6.46 32.95 34.13
Multimodal 0.60 4.68 19.02 4.03 14.17 27.32

BIVT
Video only 1.92 8.04 37.24 7.29 38.93 35.06
Multimodal 0.78 5.18 21.00 4.66 19.51 28.94

Table 4.7 Comparison of the model’s performance when varying the event encoders: TSN
and MIL-NCE. Note that unlike TSN, which is pre-trained on only vision resources, the
MIL-NCE is pre-trained on instructional vision-and-language resource, Howto100M.

dvc_eval SODA
BLEU4 METEOR CIDEr-D METEOR CIDEr-D tIoU

B
TSN 0.36 4.24 15.55 3.79 14.98 31.71

MIL-NCE 1.04 6.03 24.98 5.45 25.08 33.26
BIV
TSN 0.52 4.93 18.98 4.51 18.32 31.77

MIL-NCE 1.40 7.27 32.67 6.46 32.95 34.13
BIVT
TSN 0.99 5.87 23.60 5.26 22.84 32.36

MIL-NCE 1.92 8.04 37.24 7.29 38.93 35.06

in the multimodal version, we convert event timestamps and sentences into vectors using
MIL-NCE branches, simply concatenate them and input them into the models.

Table 4.6 shows a comparison of the input modalities, indicating that the video-only
inputs achieve much better than the multimodal inputs. This occurs because the sentences
generated by PDVC are semantically overlapped (see Fig. 4.10) and do not contribute to our
recipe generation task.

Event encoders

Table 4.7 shows the performance difference when changing the event encoders, indicating
that the MIL-NCE proved significantly superior to the TSN in all of the settings. This occurs
because the MIL-NCE is pre-trained on the vision-and-language resource, Howto100M,

76 Multimodal Recurrent Learning of the Event Selector and Sentence Generator

Table 4.8 Comparison of the model’s performance when varying the number of the event
candidates N.

dvc_eval SODA
BLEU4 METEOR CIDEr-D METEOR CIDEr-D tIoU

B
N=25 1.27 6.49 27.84 6.19 29.34 35.26
N=50 0.98 6.42 27.12 5.89 26.34 33.79

N=100 1.04 6.03 24.98 5.45 25.08 33.26
N=200 0.93 6.16 25.93 5.52 26.13 33.93

BIV
N=25 1.71 7.50 34.18 7.02 36.39 36.13
N=50 1.51 7.52 33.37 6.86 34.24 35.60

N=100 1.40 7.27 32.67 6.46 32.95 34.13
N=200 1.23 6.81 29.51 5.95 28.86 33.15
BIVT
N=25 1.87 7.95 36.12 7.51 39.06 36.74
N=50 1.81 7.99 36.48 7.36 38.49 36.38

N=100 1.92 8.04 37.24 7.29 38.93 35.06
N=200 1.78 7.66 35.21 6.77 35.64 33.48

which captures the fine-grained event-level semantics of cooking procedures. We conclude
that pre-training on an appropriate resource is essential to effective performance on our task.

Parameter sensitivity and the event candidates N

The PDVC allows users to select the number of candidates N when training the model.
In the original study on the PDVC, N is set to be 100 on the YouCook2 dataset. In this
experiment, we change the parameter N to be 25,50,100 and 200 to investigate the parameter
sensitivity of the model. Table 4.8 shows the performance change of the proposed method in
different model settings: B, BIV and BIVT. The results demonstrate that the proposed method
consistently performs well on N = 25. We observe that increasing N degrades the model
performance. Although a higher N makes the maximum tIoU larger (shown in Chapter 4.2),
the ratio of events that are not oracle but highly overlapped with the ground-truth increases.
This prevents the model from selecting oracle events precisely and causes it to overfit the
training set.

4.6 Conclusion

In this paper, we tackled procedural text generation from unsegmented instructional videos, a
task that requires agents to (1) extract key events that are essential to dish completion and

4.6 Conclusion 77

(2) generate sentences for the extracted events. We first analyzed the state-of-the-art DVC
models and set our goal to obtain correct procedural text by selecting oracle events from the
output events of the DVC model and re-generating sentences for them.

To achieve this, we proposed a transformer-based multimodal recurrent learning model,
which consists of the event selector and sentence generator. The event selector selects oracle
events from the event candidate in the correct order, and the sentence generator generates
procedural text grounded in the events. Both modules have memory vectors to remember
the history of previous predictions to estimate the next step. The proposed memory mixing
approach efficiently combines them, effectively sharing the previous predictions between
the event selector and sentence generator. To generate more accurate procedural text, we
also proposed an extended model by introducing two additional modules: dot-product visual
simulator and textual attention module.

In the experiments, we tested the methods in the cooking domain and confirm that the
base model outperforms the state-of-the-art DVC models and the extended model boosts the
model’s performance. In addition, we showed that the proposed models can select the correct
number of events, as with the ground-truth events. The qualitative evaluation revealed that
the proposed approaches can select events in the correct order and generate procedural text
grounded in the video content. Finally, we discussed the detailed experimental settings for
optimal procedural text generation.

Chapter 5

BioVL2: Egocentric Biochemical
Video-and-Language Dataset

5.1 Introduction

In this chapter, we aim to extend our research focus from everyday domains to important
domains in terms of practical applications. We selected the biochemical domain because of
the need to generate protocols in terms of the reproducibility of experiments. As reported in
[7], the wet-lab research, such as biochemistry and life science, faces a reproducibility crisis
because 75% to 80% researchers have failed to reproduce another scientist’s experiments in
this field.

One of the reasons for this issue is the inadequacy of the protocols. In wet-lab research,
the protocols (Fig. 5.1) play an important role in ensuring reproducibility. They should
describe not only actions and objects but also other essential information for reproduction,
such as the number of objects, time and object states, if necessary. For example, in Fig.
5.1, “Thoroughly resuspend pellet with 250 µL of Cell Resuspension Solution” contains an
action “resuspend” with two target objects (“pellet” and “cell resuspension solution”) with
their quantity “250µL” and adverb “thoroughly.” Although the ideal protocols enable the
researchers to reproduce experiments completely, the real ones are sometimes insufficient
due to missing manipulations and unclear descriptions that prevent the researchers from
following the protocols precisely.

The integrated processing of vision and language can be the solutions to this problem.
For example, the video-and-text alignment can automatically create multimedia protocols,
encouraging the researchers to understand the content of the experiments intuitively. The
video captioning technology reduces the burden of writing the protocols by providing the

80 BioVL2: Egocentric Biochemical Video-and-Language Dataset

Transfer 1-10 ml
of culture
overnight
to Eppen

Centrifuge
for 5 minutes

…

Thoroughly resuspend
pellet with 250 μl

of Cell Resuspension
Solution

Time

…

Event 1

Step 1 Step 2

Event 2

Step 3

Event 3

Culture Eppen
Cell Resuspension Solution

Pellet

(a) Alignment between events and sentences

(b) Bounding boxes for objects that appears in the protocols

Protocol

Fig. 5.1 An overview of the BioVL2 dataset, which consists of two types of video-and-
language annotations: (a) alignment between events and sentences and (b) bounding boxes
for objects that appear in the protocols.

researchers with a draft, leading to a decrease in the protocol writing problems mentioned
above.

Despite such potential promising applications, few researchers have tackled video-and-
language research in the wet-lab domain [81, 82]. One of the difficulties is constructing
and releasing the benchmark dataset online. To address this issue, we first propose an
egocentric biochemical video-and-language dataset, called BioVL2 (Fig. 5.1), which consists
of experiment videos, protocols and two types of annotations to connect videos with text
protocols:

1. Event-and-sentence alignment. We divide protocols into sentences by actions and
align them with events in the video. We follow the annotation formats to the existing
video-and-language research [147, 57] and assume that this annotation can be used for
video captioning [136, 84] and video-text alignment [81, 82].

2. Bounding boxes for objects in the protocols. We attach bounding boxes with objects
that appear in the protocols, which enables researchers to analyze spatial information
of objects, such as object classes and states. This annotation enables the researchers to
try tracking spatiotemporal object changes [146] from the videos.

5.1 Introduction 81

Fig. 5.2 “まほろ,” a robot conducting biomedical experiments developed by National
Institute of Advanced Industrial Science and Technology. The proto is quoted from https:
//www.aist.go.jp/sst/ja/exhibition/innovation_zone/zone11/index.html (accessed 5/21, 2023).

Not limited to the above research directions, this project has a wide range of potential ap-
plications in the future. For example, one can use the dataset for challenging interdisciplinary
research between CV, NLP and robotics, such as training robots to conduct experiments
from protocols and videos. “まほろ,” a robot conducting biomedical experiments, is a good
example for applications of our resources (Fig. 5.2). We believe that the BioVL2 dataset is
the first step toward the goals.

As discussed in Chapter 2.3.3, constructing an egocentric dataset poses scalability chal-
lenges. To overcome this issue, we adopted a user-oriented design for data collection. Our
approach involved envisioning biochemical researchers capturing videos of their experi-
ments and sharing them with other researchers for future replication. However, expecting
researchers to configure camera settings and equipment for recording experiments would be
a burden, and such an approach would not scale up the dataset. To address this challenge, we
leveraged unedited first-person videos as the primary visual source, inspired by [27]. Unlike
third-person cameras that require researchers to set up multiple cameras and synchronize
them, first-person cameras are easy to use and cover a wide range of the experiment space.
Consequently, we collected 32 videos from four protocols, with a total length of 2.5 hours.

https://www.aist.go.jp/sst/ja/exhibition/innovation_zone/zone11/index.html
https://www.aist.go.jp/sst/ja/exhibition/innovation_zone/zone11/index.html

82 BioVL2: Egocentric Biochemical Video-and-Language Dataset

(a) (b)

Camera

Fig. 5.3 (a) and (b) shows the recording studio of experiments and the view from the equipped
first-person camera, respectively.

Based on the constructed BioVL2 dataset, we tackle the task of generating protocols from
experiment videos. Because the dataset size is quite smaller than the general benchmarks on
video captioning [57, 147, 136], it is infeasible to train a deep model in an end-to-end manner.
Therefore, we employ the model proposed by [119], which is designed to be applicable
to small datasets by utilizing external resources on the web. Our experimental evaluation
demonstrates that the model can generate more accurate protocols than a weak baseline,
which outputs objects appearing in the videos. In addition, we analyze the model’s behavior
and limitations in detail and discuss the future directions of the BioVL project.

5.2 BioVL2 dataset

In this section, we describe the detail of the BioVL2 dataset. We first explain how to construct
the dataset and then report the statistics and annotation agreement.

5.2.1 Dataset construction

Video recording

Participant. We asked one researcher (1 female) for our video collection. During experi-
ments, the researcher put on a headset that fixes a wearable first-person camera (Fig. 5.3).

5.2 BioVL2 dataset 83

Table 5.1 An example of the annotation for PCR. The values in the table represent seconds.
Note that ®is written in the table, but not included in the real dataset.

Sentence Start End
add sterile distilled water 30 45
add primer1 64 99
add primer2 106 130
add template 149 173
add primeSTAR®Max Premix 190 238
set in DNA engine 260 266

Note that the headset is light enough for researchers to concentrate on their experiments 1.
We asked her to conduct experiments as usual.

Experiment target. We choose the basic well-known four experiments that have well-
established protocols in the biochemical domain: miniprep, PCR, DNA extraction and
agarose gel creation. We took eight videos per experiment, collecting 32 videos in total 2.
Only DNA extraction has two different methods: Phenol-chloroform extraction and Ethanol
precipitation. We took videos four times for each method.

Data preprocessing. In a few experiments, the researcher needed to wait while executing
specific instructions (e.g., centrifuge samples). During the waiting time, the researcher put
off the headset, leaving the camera on. We manually trimmed such waiting times because
they are not related to any instructions.

Event-and-sentence alignment annotation

Based on the collected videos, we annotated the alignment annotation between events and
sentences. The protocols are graphically described using figures or illustrations and are not
well-organized as text documents. Thus, we asked the researcher to explain the content of the
experiments and transcribed it as text protocols. Then, we divide the protocol into sentences
by actions and obtain a sequence of instructions. For example, “Invert 4 times to mix and
add 10 µl of Alkaline Protease Solution.” can be divided into “Invert 4 times to mix” and
“Add 10 µ l of Alkaline Protease Solution.” Here, we remove “and” from the text. Finally, the
annotator watched the videos and annotated events in the start and end timestamp format for
each sentence. In this process, to remove the ambiguity of event timestamps, we annotated
the period from the starting time when the researcher touches the target objects to the ending
time when she releases them after her manipulation. Table 5.1 shows the annotation example
of PCR.

1We use Panasonic HX-A500 for recording experiments.
2We took multiple videos for the same experiment because of the large variety of actions.

84 BioVL2: Egocentric Biochemical Video-and-Language Dataset

(A) Objects in the protocol

(B) Bounding box annotation pane

(C) Operation pane

Fig. 5.4 A screen of the bounding box web annotation tool. (A), (B) and (C) shows the
objects in the protocols, annotation bounding box pane and operation pane, respectively.

Bounding boxes for objects in the protocols

In addition to the alignment annotations, we annotate bounding boxes for objects in the
protocols. We extracted frames per 4 seconds (4 fps) and annotate bounding boxes with
objects if (1) her hands touch them and (2) they appear in the protocols (Fig. 5.4). Note that
objects in the protocols are categorized into object-based bio-NEs (b-NEs) defined in the
WLP dataset [60] and they are manually extracted from the protocols. We also emphasize
that our annotation targets are all of the video frames, rather than only events. This is because
annotating all video frames is helpful for a wide range of applications, including protocol
generation from experiment videos.

5.2 BioVL2 dataset 85

Table 5.2 Statistics of text annotations. The average and standard deviation (std) are written in
the table. Note that in miniprep and agarose gel creation, several steps are skipped depending
on the situation. Thus, note that their standard deviations are not equal to 0.

#steps #words/#steps #objects #verbs

DNA extraction
Phenol chloroform 4.0 (±0.0) 6.0 (±1.9) 2.0 (±0.0) 4.0 (±0.0)
Ethanol 9.0 (±0.0) 4.9 (±2.9) 4.5 (± 1.7) 4.3 (±0.5)

PCR 6.0 (± 0.0) 3.0 (±1.0) 6.0 (±0.0) 2.0 (±0.0)
Agarose gel creation 10.3 (±0.4) 4.7 (±2.4) 5.5 (±0.5) 7.0 (±0.0)
Miniprep 28.2 (±0.4) 6.4 (±2.5) 7.9 (±1.4) 8.1 (±1.2)

Table 5.3 The number of unique objects and verbs, which do not appear in the other kinds of
protocols.

#Unique objects #Unique verbs

DNA extraction
Phenol chloroform 2.0 (±0.0) 0.0 (±0.0)
Ethanol 4.5 (±1.7) 0.3 (±0.5)

PCR 6.0 (± 0.0) 0.0 (±0.0)
Agarose gel creation 5.5 (±0.5) 4.0 (±0.0)
Miniprep 7.9 (±1.4) 3.0 (±1.1)

5.2.2 Statistics

Next, we describe the statistics on the BioVL2 dataset from the perspective of textual and
visual sides. Our analysis demonstrates that the BioVL2 dataset contains a large variety of
experiments from both sides.

Protocol

Table 5.2 shows the textual statistics, indicating that the number of words attached to
sentences has a big gap between experiments. This reveals the variety of instructions in the
BioVL2 dataset; the largest one is miniprep and the smallest is phenol-chloroform. The
number of kinds of objects has the same tendency as this, but the smallest kinds of actions
are PCR. To verify the diversity of objects and actions, we investigate the number of unique
actions and objects that do not appear in other kinds of protocols (Table 5.3). A comparison
of the right two columns in Table 5.2 and Table 5.3 shows that the objects’ kinds are equal
but the action kinds are substantially small. This reveals that the verbs are similar, but the
objects are unique in the dataset, indicating the diversity of the objects.

86 BioVL2: Egocentric Biochemical Video-and-Language Dataset

Table 5.4 Statistics of video length. The table values show mean and standard deviations.

Video length(second)

DNA extraction
Phenol chloroform 269.4 (±58.6)
Ethanol 399.4 (±19.2)

PCR 254.6 (± 18.1)
Agarose gel creation 312.6 (±64.5)
Miniprep 382.1 (±69.9)

Table 5.5 Statistics of frames that has bounding box annotations.

#Annotated frames #All frames Ratio

DNA extraction
Phenol chloroform 195 263 74.1
Ethanol 265 394 67.3

PCR 322 498 64.7
Agarose gel creation 282 614 45.9
Miniprep 245 752 32.6

Video

Table 5.4 and Fig. 5.5 show the statistics on video and event length, respectively. The results
indicate that the BioVL2 dataset has a large variety of video lengths; the maximum video
length is Ethanol precipitation (399 seconds) and the shortest is PCR (254 seconds). When
focusing on the event-wise length, the miniprep consists of 72.4% of short events that have
less than 10 seconds, while the phenol-chloroform consists of 50.0% of long events that have
more than 30 seconds.

Bounding box annotation

Table 5.5 and Table 5.7 describe statistics on the number of frames that have at least one
bounding box. Table 5.6 shows statistics on unique objects associated with bounding boxes
after classifying them into b-NE tag categories. Note that “Seal” does not appear although
other b-NEs, such as “Reagent”, “Location” and “Device” appear in the BioVL2 dataset.
To this end, we count the number of Reagents, Locations and Devices in the table. This
result indicates that while the most frequent object is a Reagent, the least frequent one is a
Device. From the result of Table 5.5, the number of annotated frames is different between
experiments. The highest ratio of annotated frames is Phenol chloroform and the lowest one
is miniprep.

5.2 BioVL2 dataset 87

PCR

0 25 50 75 100

29.239.614.616.6

Ethanol

0 25 50 75 100

21.134.228.915.8

Phenol chloroform

0 25 50 75 100

50.012.518.818.8

Agarose gel creation

0 25 50 75 100

15.614.329.940.0

Miniprep

0 25 50 75 100

0.54.322.772.2

d<10 10<d<20 20<d<30 30<d

Fig. 5.5 Distribution of event length d (d represents seconds).

5.2.3 Annotation agreement

To verify the quality of the annotations, we asked other annotators to attach alignment and
bounding boxes and computed the annotation agreement. All instructions to the annotators
are the same as those described in Chapter 5.2.1. Because annotating all of the videos is
costly, we randomly choose one video per experiment for the re-annotation process. The
following subsequent sections report the annotation agreement.

Alignment annotation between events and sentences

We asked another researcher to annotate alignments between events and sentences and
computed agreement scores by comparing them with the results in Chapter 5.2.1. Here, we
use tIoU as agreement metrics for computing the overlap of the event annotations. Table
5.8 shows an agreement ratio, indicating that tIoU scores are over 75% on average in all
experiments. In existing text-based event retrieval tasks [66], recall is computed by regarding

88 BioVL2: Egocentric Biochemical Video-and-Language Dataset

Table 5.6 Statistics on unique objects associated with bounding box annotations after classi-
fying them into b-NE tag category types. Although amoung b-NE tags, object-based NEs are
Reagent, Location, Device, and Seal, Seal does not appear in the BioVL2 dataset. Thus, we
count Reagent, Location, Device in the table.

#Reagent #Location #Device

DNA extraction
Phenol chloroform 1 1 0
Ethanol 6 0 0

PCR 5 0 1
Agarose gel creation 2 3 1
Miniprep 11 4 0
Total 25 8 2

Table 5.7 Statistics on bounding box annotations.

Total Mean Max

DNA extraction
Phenol chloroform 68 1.0 1
Ethanol 130 1.0 2

PCR 176 1.0 1
Agarose gel creation 372 1.1 2
Miniprep 627 1.2 3

the events as correct if tIoU is over 70%, thus 75% tIoU scores are enough high end ensure
the annotation quality.

Bounding box annotations for objects that appear in the protocols

We also compute the agreement ratio of bounding boxes by comparing the results in Chapter
5.2.1 with the newly-annotated ones. As the evaluation metrics, we use mean Average
Precision (mAP) that is commonly used in object detection tasks [98]. We regard the newly-
annotated ones as prediction and the annotation results in Chapter 5.2.1 as the ground-truth
labels and computed the mAP scores 3.

Fig. 5.6 shows the mAP scores and the distribution of true positives and false positives.
mAP is 72.73%, ensuring the high quality of annotations by considering that mAP scores of
the state-of-the-art practical object detection models range from 0.6 to 0.7. On the other hand,
we observe that there exist objects with low AP, such as the lowest one of new_tube. The
main reason for the low AP is that the new annotator attaches annotations on all of the tubes
in the videos while the original annotator annotates tubes that appear after an intermediate
instruction. We need to consider such instance-level annotations, which is the future work of
this study.

3We use https://github.com/Cartucho/mAP (accessed 2022/11/10)

https://github.com/Cartucho/mAP

5.3 Protocol generation from experiment videos 89

Table 5.8 Agreement of event-and-sentence alignments. The mean of tIoU is shwon in the
table.

tIoU

DNA extraction
Phenol chloroform 88.9
Ethanol 91.7

PCR 99.4
Agarose gel creation 82.2
Miniprep 76.0

(b)(a)

Fig. 5.6 (a) and (b) shows AP and mean of APs (mAP) and the number of true positives and
false positives, respectively.

5.3 Protocol generation from experiment videos

Based on the constructed BioVL2 dataset, we tackle protocol generation from experiment
videos. Because of the limited dataset size, it is infeasible to train end-to-end video captioning
models proposed in the literature [57, 148]. To this end, we use the model proposed by [119],
which focuses on generating procedural text from a small number of instructional videos by
utilizing external resources. Specifically, it targets the cooking domain and generates recipes
by following the five steps: (1) detecting objects using the Faster-RCNN [98] for each frame,
(2) extracting recipe-Named entities (r-NEs) from the detected objects, (3) constructing
r-NE sequence by concatenating the subsequent frame information, (4) generating candidate
sentences by using the language model pre-trained on r-NE and sentence pairs and (5)
outputting a recipe by exploring the generated candidate sentences based on the Viterbi
algorithm [125]. The characteristic of this approach is unnecessary for large-scale video-text
pairs because it does not use other visual information except for the objects. The pairs of

90 BioVL2: Egocentric Biochemical Video-and-Language Dataset

Primer1 Primer2

Fig. 5.7 A comparison of frames between manipulating Primer1 and Primer2.

r-NEs and sentences can be acquired by crawling recipes on the web, enabling to pre-train a
language model, which leads to generating recipes without video-text pairs.

To apply this approach to the BioVL2 dataset, we modify the model on the following two
points:

• Instead of (1) and (2), we directly use the annotated bounding boxes in the downstream
processes. Although we can train the object detection models in the cooking domain
[46], it is hard to train them in the biochemical domain because the different objects
have a similar appearance. We take an example in Fig. 5.7, where Primer1 and Primer2
appear in (a) and (b) frames respectively. Even humans cannot distinguish them from
only single frames though they can recognize them properly after watching the whole
video. Therefore, we tackle the task of generating a protocol based on the annotated
bounding boxes. This task assumes that objects can be acquired automatically by using
QR codes®in the future.

• We use the pre-trained language model as a transformer, rather than LSTM. The trans-
former achieves better performance on machine translation, document summarization
[69] and image captioning [24] than LSTM, and is expected to be effective for our
task. In addition, we incorporate the copy mechanism [103] into the model, which
encourages the decoder to generate the input object information. To pre-train the
transformer, we use the WLP dataset.

Fig. 5.8 shows an overview of this approach with the above two modifications. Let
frames that have at least one bounding boxes be F = (f1, f2, . . . , fn, . . . , f|F |). Based on the
annotated objects in the subsequent frames, we construct the b-NE sequences, such as DNA
engine and (DNA engine, Template) in Fig. 5.8. Based on the constructed b-NE sequence,
the pre-trained language generation model generates protocol candidate sentences for each of

5.3 Protocol generation from experiment videos 91

Time

Video
(Frame sequence)

b-NE
set

b-NE
sequence

Protocol
candidate
sentence

Protocol

b-NE

Template

b-NE

DNA engine

DNA engine

Set it in DNA
engine

DNA engine
Template

e11 e12 e13 e14 e15 e16 e17 e18
e21 e22 e23 e24

e31 e32el
n

Fig. 5.8 An overview of the protocol generation from experiment videos.

b-NE (“Set it in DNA engine” in Fig. 5.8). Finally, the system outputs protocols by exploring
the most plausible combination from the protocol candidate sentences.

5.3.1 b-NE sequence construction

Based on the subsequent frames f n+(l−1)
n (l is a subsequent length), we follow process (3) to

acquire the b-NE sequence. Let the n-th frame fn has the b-NE set En. Here, we formulate
the b-NE set En+(l−1) of the subsequent frames f n+(l−1)

n as el
n ∈ En ×En+1 × . . .×En+(l−1)

(× is the Cartesian product). For example, in Fig. 5.8, the l = 1 b-NE set contains only the
DNA engine and the l = 2 b-NE set consists of (DNA engine, Template). We construct the
b-NE sequence for l = 1,2, and 3 as with the original paper.

5.3.2 Generating protocol candidate sentence from b-NE sequence

Pre-training the language model

Based on the b-NE sequence e, the model generates protocol candidate sentences. Fig.
5.9 shows an overview of the transformer-based language model pre-trained on the WLP

92 BioVL2: Egocentric Biochemical Video-and-Language Dataset

Add the … (shifted right)

Word embedding

Masked multi-head
attention

(self attention)

Positional
Encoding

x N

Feed forward

+

Linear
Attention
Eq. (3)

Copy gate
Eq. (4)βi

oj

gj Softmax

pvoc(yj |y< j, H)

Word distribution
Eq. (5)

Primer1

Residual&LayerNorm

x N

Word embedding

[CLS] Primer1 [SEP] Primer2 [SEP]

Input (b-NE set) Output sentence

Feed forward

Multi-head
attention

(self attention)

Encoder Decoder

Copy
mechanism

H

Multi-head
attention

(Source-target attention)

Residual&LayerNorm

Residual&LayerNorm

Residual&LayerNorm

Fig. 5.9 Transformer-based sentence generation model. Given objects, the model is trained
to generate corresponding sentences.

dataset. The model is designed as the auto-regressive encoder-decoder architecture with the
copy mechanism. Given the input of the b-NE sequence X = (x1,x2, . . . ,xi, . . . ,x|X |)(xi is
i-th word) that has the special head and separate token of [CLS] and [SEP], the model
generates a sentence Y = (y1,y2, . . . ,y j, . . . ,y|Y |)(y j is j-th word). we formulate this task
mathematically. Let E(·) be the transformer encoder and D(·) be the transformer decoder.
Given the output representations H = (h1,h2, . . . ,hi, . . . ,h|X |) of the encoder, the output
vector o j corresponding to j-th word is computed as:

H = E(X), (5.1)

o j = D(Y< j,H), (5.2)

5.3 Protocol generation from experiment videos 93

where Y< j represents the subsequent words of less than j. As shown in Fig. 5.9, the encoder
outputs are injected into the source-target attention layer in the decoder. Note that the word
embedding layer in the encoder and decoder is optimized without sharing the parameters and
positional encoding is added only to the decoder side, not to the encoder side because the
inputs are the set representations.

Because the input objects must be included in the output sentences in our task setting,
modeling this explicitly encourages the decoder to generate accurate sentences. To achieve
this, we introduce the copy mechanism into the model. Based on the encoder and decoder
output H and o j, the attention probability is computed as β i

j:

β
i
j =

exp{(o j)
TWchi}

∑k exp{(o j)TWchk}
, (5.3)

where Wc represents a linear layer. Then, the copy gate g j(0 ≤ g j ≤ 1) that selects words
from the vocabulary or b-NE set is computed as:

g j = σ(Wg[o j;∑
m

β
m
j hm]+bg), (5.4)

where [·], σ(·), Wg, bg represent the concatenation function, sigmoid function, linear weights
and bias. Based on the g j, the word probability distribution p(y j|y< j,H) is computed as:

p(y j|y< j,H) = (1−g j)pvoc(y j|y< j,H)+g j ∑
i:xi=y j

β
i
j, (5.5)

where pvoc(y j|y< j,H) represents the probability for the word y j in the vocabulary. Given the
input/output pairs (X ,Y) ∈ D (D represents the training dataset), the following negative-log
likelihood is minimized to train the model:

L (θ) =− ∑
(X ,Y)∈D

log p(Y |X ;θ), (5.6)

where θ represents the trainable parameters in the model.

Score computation

Based on the language model pre-trained on the WLP dataset, we acquire the protocol
candidate sentences based on the b-NE sequence described in Chapter 5.3.1. In this process,
we compute the likelihood scores for each of them. Specifically, given the b-NE subsequence

94 BioVL2: Egocentric Biochemical Video-and-Language Dataset

el
n, the scores are computed as:

Score(el
n) =

N

∏
i=1

p(di|d1,d2, . . . ,dk−1;el
n), (5.7)

where di represents i-th word in the output sentence and N represents the length of the word
sequence.

5.3.3 Protocol generation

Based on the protocol candidate sentences, we acquire the sequence that has the maximum
plausible scores by exploring the computed scores using the Viterbi algorithm. Here we
introduce two types of heuristics. Since it is almost impossible for one researcher to perform
two operations in parallel, the corresponding partial frame sequences of the protocol candidate
sentences must not be overlapped. In addition, to prevent the same protocol sentences from
appearing more than once, the score of the protocol candidate sentences which has appeared
once in the protocol is set to 0. Under this condition, the score of a protocol candidate
sentence can change. Although it should be searched for score maximization, we use the
Viterbi algorithm for the calculation, because the change of the score is limited at the time
of generation of the same sentence and it is considered that it does not occur so much. By
calculating the path of the protocol candidate sentence sequence for increasing the score,
the generated protocol sequence is output as a protocol. The higher the score, the more
protocol-like the sentences are.

5.4 Experiments

In this section, we evaluate the model’s performance on protocol generation from experiment
videos. First, we describe the detailed experimental settings, datasets, and evaluation metrics.
Then, we show the quantitative and qualitative results and confirm that the model can
generate protocols more accurately than the baseline approach. Finally, we analyze the
model’s behavior and limitations and discuss the future development of the project.

5.4.1 Experimental settings

Dataset

A large-scale pair of b-NE sets and sentences is necessary to train the language model. We
use the WLP dataset, which consists of b-NE annotations with 18 tag categories. From them,

5.4 Experiments 95

Table 5.9 Statistics on the WLP dataset, including three filtering settings in the table. The
first one is using all of the b-NE tags, the second is using only the object-based NEs, and the
third is using only the Reagent and Location tags in the WLP dataset. For each case, we also
show the statistics, where more than 20 words are filtered. We use the original dataset split to
the original WLP dataset because BioVL2 is used for the test set.

All b-NE tags object-based NEs Reagent and Location
w/o filtering #sentences Avg. #words Avg. #b-NEs #sentences Avg. #words Avg. #b-NEs #sentences Avg. #words Avg. #b-NEs

Training 8,005 15.6 5.8 6,992 16.6 2.3 6,729 16.8 2.2
Validation 2,709 15.5 5.8 2,353 16.6 2.4 2,261 16.7 2.2
w/ filtering

Training 5,984 11.5 4.6 4,996 12.1 1.9 4,761 12.2 1.8
Validation 2,025 11.3 4.6 1,678 12.0 1.9 1,594 12.0 1.8

we use Reagent, Location and Device tags because the annotated objects in the BioVL2
dataset belong to one of them. In addition, based on the fact that the average number of words
in the BioVL2 dataset is less than 10 words, we filter the dataset (1) if the sentence does not
contain any of the three tags or (2) if the sentence has more than 20 words. Furthermore, the
number of Device tags is much smaller than other tags, thus we modify filtering condition
(1) to the case whether the sentence does not contain any of the Reagent and Location. The
influence on this filtering is discussed in Chapter 5.4.2 for details. Table 5.9 shows the
statistics on the original and filtered dataset. Note that this dataset is used only for training
the model because BioVL2 is used for evaluation.

Data preprocessing and hyperparameters

We replace the words that have at most 5 times frequency with the unknown words to train
the model, resulting in a 1,827 vocabulary size. We set the hidden size of the Transformer
to 768, the number of layers to 2 and the number of heads to 12 in the multi-head attention
layers. We use the positional encoding as with [121]. For train the transformers, we use
Adam optimization [56] with α = 0.0001, β1 = 0.9 and β2 = 0.999 and L2 delay to 0.01.
The first 5 epochs are used for warmup and the maximum epoch is set to be 50. The batch
size is set to be 16. For evaluation, we use the trained model that has the minimum loss on
the validation set.

Evaluation metrics

We use BLEU [90], METEOR [8] and ROUGE-L [67] as the word-overlap metrics, which
are commonly used in text generation tasks. We report the BLEU scores by varying N to be
N = 1,2,3,44. Because the number of steps in the generated protocols is not always equal to

4For evaluation, we use https://github.com/tylin/coco-caption (accessed on 2022/11/10)

https://github.com/tylin/coco-caption

96 BioVL2: Egocentric Biochemical Video-and-Language Dataset

Table 5.10 Word-overlap evaluation. The bold scores represent the best among the methods.

Model BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGE-L
Baseline 3.0 2.0 1.1 0.5 6.2 6.1
All b-NE tags (w/o #word filtering)
Transformer 15.0 8.7 4.2 2.0 11.1 22.3
Transformer + Copy mechanism 13.0 8.5 5.2 3.3 12.4 28.1
All b-NE tags (w/ #word filtering)
Transformer 15.2 9.7 6.0 4.0 10.8 19.9
Transformer + Copy mechanism 13.3 7.9 3.7 1.8 12.2 27.6
Object-based b-NEs (w/o #word filtering)
Transformer 43.8 29.3 19.5 13.4 20.0 29.4
Transformer + Copy mechanism 36.8 26.9 20.0 14.8 18.5 36.7
Object-based b-NEs (w/ #word filtering)
Transformer 39.9 26.9 18.1 12.6 18.5 27.5
Transformer + Copy mechanism 42.5 30.6 21.3 15.5 20.7 32.7
Reagent and Location (w/o #word filtering)
Transformer 36.8 25.8 18.2 13.3 19.5 24.9
Transformer + Copy mechanism 44.0 30.9 21.8 16.4 21.7 33.1
Reagent and Location (w/ #word filtering)
Transformer 38.1 27.2 20.0 15.5 18.8 26.2
Transformer + Copy mechanism 44.7 31.7 21.8 15.2 21.1 32.2

those of the ground truth, it is impossible to conduct the sentence-level evaluation. Instead,
we concatenate the sentences and conduct the document-level evaluation.

5.4.2 Quantitative evaluation

For the language model, we compare the baseline (outputting b-NEs in the inputs), trans-
former only, with the transformer+copy mechanism. Table 5.10 shows the word-overlap
metrics, revealing the following four insights.

First, it is necessary to train the language model for accurate protocol generation. We
can confirm this by comparing the weak baseline with the learning-based approaches of the
transformer and transformer+copy mechanism. Second, the WLP dataset can be used for
training the language model for the BioVL2 dataset. The WLP dataset collects the protocols
in the biological domain, and the research fields are a bit different from the BioVL2 dataset.
However, 83% of the vocabulary appears in the WLP dataset and has no big difference
between them. Third, the copy mechanism is quite effective for training the model because it
outperforms the Transformer only model. It encourages the decoder to generate the input
b-NEs correctly, leading the model to generate accurate protocols. Finally, the kinds of input
b-NEs for training the model have a big impact on the model’s performance. This can be
confirmed by comparing the model that uses all of the b-NE tags as inputs with other models.
In addition, the model trained on only Reagent and Location achieves higher performance

5.4 Experiments 97

Transformer only Transformer + copy mechanism Ground-truth protocol

PCR

Step 1
Step 1

Step 2

Step 3

Step 2

Step 3

Step 4

Step 5

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Add sterile
Distilled water

Add Primer1

Add Primer2

Add PrimeSTAR®
Max Premix

Add Template

Set in DNA
engine

Prepare distilled
Water for 1 minute

to pull distilled
water

Add 1 volume
of Primer1

Add 1 volume
of Primer2

Add 300l PrimeSTAR®
To the PrimeSTAR®

column

Optional step: danse
treatment to remove

PrimeSTAR® from step 2

Rinse
the sterile water
with sterile water

Add 1 volume
of the incubator

Add 1 ml of the
same as a second

Tube

sterile distilled water

Primer1

Primer2

PrimeSTAR® Max
Premix

Template

DNA engine

sterile distilled water

Primer1

Primer2

PrimeSTAR® Max
Premix

sterile distilled water

PrimeSTAR® Max
Premix

Primer1

PrimeSTAR® Max
Premix, PrimeSTAR® Max

Premix

Fig. 5.10 Examples of the generated protocols and the ground-truth on PCR. The model in
this figure is “Reagent, Location and Device (w/ #word filtering).” We also show the selected
frames with b-NE annotation information. Note that the registered trademark symbol ®is
shown in the figure, but the generated protocols do not contain them.

than that trained on Reagent, Location and Device. This is because of the Reagent and
Location amount for a large part of objects in the BioVL2 dataset. On the other hand, word
count filtering does not have a large influence on the model’s performance.

5.4.3 Qualitative evaluation

Fig. 5.10 shows the generated protocols from the transformer only and transformer+copy
mechanism, in comparison to that of the ground-truth.

Insights

As described in Chapter 5.1, the generated protocols should include the actions with the
target objects and correct adverb, quantity and time information, if necessary. Although
the transformer-only model generally fails to generate objects, the transformer+copy model
can generate accurate objects (e.g., “Primer1,” “Primer2,” and “PrimeSTAR” in steps 1, 2
and 4), indicating that the copy mechanism encourages the decoder to verbalize the objects
effectively.

98 BioVL2: Egocentric Biochemical Video-and-Language Dataset

Table 5.11 The most frequent top-10 verbs and objects which has the highest PMIs for the
verbs on the training set of the WLP dataset. The PMI scores overestimate the low frequency
words, thus we report the objects which appear more than 10 times in the dataset.

Verb Frequency The top-10 objects with the highest PMI
add 949 dna stripping solution (6.74), precipitation solution (6.74), chloroform (6.65), stand (6.60), genomic lysis buffer (6.49)

incubate 496 dark (6.84), assays (6.80), sections (6.67), nanobeads (6.35), primary antibody (6.29)
mix 374 dna stripping solution (8.08), precipitation solution (7.94), components (7.93), choloform (7.93), contents (6.99)

remove 346 upper phase (8.05), forceps (7.45), petri dish (7.32), xylenes (7.19), upper reservoir (6.81)
centrifuge 339 centrifuge tube (8.22), centrifuge (8.20), upper phase (8.08), cell strainer (7.57), cell pellet (7.36)

place 293 magnetic rack (7.72), petri dish (7.56), top (7.40), magnetic stand (7.30), magnet (7.22)
wash 283 ethanol wash (8.45), wash buffer (8.45), intracellular staining perm wash buffer (8.45), dna pellet (8.21), each well (7.94)

transfer 223 pcr tube (7.74), microfuge tube (7.69), isopropanol (7.55), cuvette (7.50), aqueous dna (7.09)
discard 220 flow-through (8.40), cell pellet (8.07), supernatants (7.67), spin cartridge (7.57), supernatant (7.52)

resuspend 187 cell strainer (8.43), mojosort (8.28), intracellular staining perm wash buffer (8.20), te (7.81), cell staining buffer (7.78)

Limitations

Even though the copy mechanism enhances the model to generate objects correctly, this
model has clear three limitations. First, it fails to generate verbs accurately. In Fig. 5.10,
instead of “prepare” generated by the model, “add” should be verbalized. Our approach
does not incorporate visual information except for objects into the inputs. It depends on the
language model to generate correct verbs. This is one of the insufficient points to generate
reliable protocols. Second, it does not always cover all of the objects in the generated
protocols. For example, “DNA engine” is generated in Fig. 5.10, but not included in the
generated protocol. Verbalizing all of the objects in the protocols is essential to accurate
protocol generation. The third limitation is generating the correct quantity and time. The
current outputs, such as “1 volume,” “1 minutes,” and “300l” in Fig. 5.10 are incorrect. As
with the action generation, this point also depends on the acquired language model and is
insufficient to generate correct protocols.

5.4.4 Discussion

Then we move to the analysis of the model’s behavior based on the above insights and
limitations. Finally, we discuss the future development of this project.

5.4.5 PMI-based analysis on the language model between objects and
actions

In steps 2 and 3 in Fig. 5.10, although we input only the object names to the transformer+copy
mechanism, the model can verbalize “add.” Our research question arises: why does the model
generate correct actions Are there any relationships between the objects and actions? To
answer this, we use Point-wise mutual information (PMI), which computes the co-occurrence

5.4 Experiments 99

Table 5.12 The most frequent top-10 objects and verbs have the highest PMIs for the verbs
on the training set of the WLP dataset. The PMI scores overestimate the low frequent words,
thus we report the verbs which appear more than 10 times in the dataset.

Object Frequency The top-10 verbs with the highest PMI
tube 435 flicking (7.71), placing (7.48), disturbing (7.35), inverting (7.31), insert (7.12)
cells 406 scale up (7.82), seperating (7.72), lyse (7.67), working (7.58), flicking (7.44)

sample 309 load (6.88), insert (6.62), process (6.62), determine (6.47), cool (6.47)
supernatant 298 pour off (7.70), dissociate (7.56), discard (7.43), save (6.95), decent (6.85)

ethanol 171 disturbing (8.69), pipette off (8.53), invert (7.42), immerse (7.30), removed (7.21)
plate 170 plate (9.22), dissociate (8.95), spread (8.37), read (8.32), seal (8.07)
dna 162 precipitate (8.72), invert (8.20), elute (7.91), running (7.55), store (7.50)
ice 162 chill (8.55), thaw (8.55), kept (8.28), keep (8.00), incubating (7.87)

tubes 157 disturbing (8.59), precipitate (7.71), aliquot (7.67), label (7.48), clamp (6.87)
beads 130 disturbing (9.28), vortexing (7.92), seperate (7.60), spin (7.38), pipet (7.32)

of objects and actions and is commonly used to analyze the language model. If the PMI
scores are high, objects and actions frequently co-occur in the sentences, otherwise do not.
Specifically, PMI is computed as follows:

PMI(object,action) = log2
P(object,action)

P(object)P(action)
= log2

C(object,action)N
C(object)C(action)

, (5.8)

where C(·) computes the number of objects, actions and co-occurrence of them and N
represents the number of all words in the training set.

Table 5.11 and 5.12 show the computed PMI results, indicating that the top-5 values are
competitive thus verb/action are not uniquely determined for each object/action. Therefore,
why then can the model generate “add” in the protocols correctly? One of the acceptable
hypotheses is that the model tends to generate frequent actions. We found that “Primer1” and
“Primer2” is processed as unknown words, but the copy mechanism can generate protocols
including them by copying them into the output sentences. The action “add” is the most
frequent action in this experiment, thus the model generates “add” for them.

5.4.6 Relationship between the number of steps and word-overlap eval-
uation

Chapter 5.2 reveals the large variety of the number of steps for each experiment, but it is
unclear whether the number of steps has a relationship to the word-overlap evaluation. To
clarify this, we report the experiment-wise word-overlap evaluation with the number of
generated and ground-truth steps in the protocols.

Table 5.13 shows the relationship between the number of steps in the protocols and
word-overlap evaluation. The minimum gap between the steps of generated and ground-truth

100 BioVL2: Egocentric Biochemical Video-and-Language Dataset

Table 5.13 Relationship between the number of steps in the protocols and the word-overlap
evaluation results. The model we use in this table is “Reagent, Location, and Device (w/
#word filtering).”

Generated protocols Ground truth BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGE-L

DNA extraction
Phenol chloroform 3.0 (±0.0) 4.0 (±0.0) 34.5 23.5 16.0 11.2 18.2 39.1
Ethanol 6.3 (±1.5) 9.0 (±0.0) 28.7 15.5 6.7 0.0 15.9 30.0

PCR 5.0 (±0.0) 6.0 (±0.0) 23.5 15.0 8.5 0.0 22.3 33.5
Agarose gel creation 5.0 (±1.2) 10.3 (±0.4) 33.2 21.4 10.0 0.0 13.8 24.7
Miniprep 10.9 (±2.7) 28.2 (±0.4) 49.4 36.6 26.8 19.8 24.5 36.1

protocols is PCR and Phenol chloroform, and the maximum one is miniprep. However, we
can observe that the word-overlap metrics achieve the best performance on miniprep despite
the gap. The main reason for this is increasing the number of steps causes an increase in the
number of words, resulting in the increased agreement of the number of n-grams and higher
performance on the word-overlap metrics. In future work, we need to consider the number of
steps for evaluation in addition to the word-overlap metrics.

5.4.7 Future development of the BioVL project

Based on the insights we learned from this research, we enumerate two future directions of
the project as follows:

• Use QR codes ®to detect objects. Although we annotated bounding boxes manually
in this research, it is costly and time-consuming. We believe that QR codes ®are
suitable for this project because most objects are solid and do not change their form 5,
unlike the cooking domain, where the object form changes drastically. Inspired by this
idea, we start to collect the videos by attaching QR codes to the objects (Fig. 5.11).

• Create a useful app. Collaboration with biochemical researchers is essential to collect
the wet-lab experiment videos. Although we asked them to take videos in this study, it
is necessary to build a framework for researchers to take videos spontaneously in the
future. Creating a useful app is one of the promising approaches. Constructing such
win-win relationships is essential for future development.

5.5 Conclusion

In this chapter, we aim to extend the single target domain to multiple domains. Especially,
this study focused on the biochemical domain because of its need of generating protocols
from experiment videos in terms of the reproducibility of experiments. The main problem

5Liquid is mainly used in the container.

5.5 Conclusion 101

Fig. 5.11 The experiment environments, where QR codes ®are attached to objects used in
the protocol.

is, there are no public video-and-language datasets online. To address this issue, we first
constructed the BioVL2 dataset, which is an egocentric biochemical video-and-language
dataset. For each of the four experiments, the BioVL2 dataset has eight videos, summing
up to 32 videos. All of the videos are attached with two kinds of video-and-language
annotations: (1) event-and-sentence alignment and (2) bounding boxes for objects appearing
in the protocols. Based on the constructed BioVL2 dataset, we tackled protocol generation
from experiment videos. As a result, the model can generate accurate protocols to a certain
extent, compared with the weak baseline approach. We analyze the model’s behavior and
limitations in detail and discuss the future development of the project. We hope that this
dataset enhances video-and-language research, resulting in innovative products to enhance
reproducibility in the biochemical domain.

Chapter 6

Conclusion

6.1 Summary

One of the overarching research topics in multimedia is to construct intelligent multimedia
archives by linking multi-modal information for high-level video processing, such as retriev-
ing a video from a video database or searching specific scenes, objects and actions from the
videos. Video captioning contributes to this goal because it enables computers to connect
multiple modalities by converting video content into textual symbols directly. The motivation
of this thesis is to extend this technology to generate procedural text from instructional videos
for broad benefits in both academic and industrial communities.

We formulate procedural text generation task as a two-stage prediction task: (1) extracting
key events to achieve the goal and (2) generating sentences that reflect on the extracted events.
The key challenges of this task are three-fold: (1) developing models capable of generating
accurate procedural text based on video content, (2) learning both the event extractor and
sentence generator in a story-aware manner and (3) extending our research focus from
everyday to important domains that are in high demand for video verbalization.

Challenge (1) has two sub-tasks: (a) recognizing materials in the videos and (b) generating
sentences by considering the dependency of actions and materials. In this study, we addressed
(b) in the setting of generating procedural text from key events in the video and materials.
The essential ability is to be robust to recognize material state changes, which are often
accompanied by drastic appearance transformations. To achieve this, we proposed the state-
aware approach, which modified the existing NLU reasoning-based simulator into the visual
simulator and introduced it into the transformer-based encoder-decoder architecture. The
visual simulator effectively represents the state changes as the transition of material vectors
in the latent feature space. Without any manual annotations of material state changes, the
proposed method achieved better performance than the state-of-the-art video captioning

104 Conclusion

models, indicating the effectiveness of the visual simulator. In addition, our qualitative
evaluation revealed that these models could generate accurate procedural text by considering
the state changes of materials effectively. Finally, we discussed the full prediction settings of
materials and found that the proposed method worked well with the ground-truth materials,
rather than the predicted ones.

Challenge (2) is similar to DVC, which aims at detecting events thoroughly and generating
sentences describing them. However, the traditional DVC approaches focused on detecting
events in parallel, leading to redundant output without capturing the story awareness. To
address this issue, we proposed the multimodal recurrent learning approach of the event
selector and sentence generator. Our approach is to predict the next steps of events and
sentences by memorizing and mixing the history of the previous prediction, encouraging the
model to predict the accurate number of events in the correct order. Our experimental results
showed that the proposed methods achieved better performance than the traditional DVC
approaches. In addition, we also confirmed that they could generate accurate procedural text
by selecting an appropriate number of events in the correct order.

To address Challenge (3), we selected the biochemical domain as the target domain
because of its high demand to generate protocols in terms of reproducibility. The main
problem is no public biochemical video-and-language datasets available on the web, thus
we constructed BioVL2, which consists of 32 egocentric biochemical video-and-language
datasets, covering the basic biochemical experiments with diverse characteristics from both
the video and language sides. Based on it, we applied the existing procedural text generation
model. The experimental results showed that this approach could generate more accurate
protocols than the weak baseline that outputs objects appearing in the input frames. We also
analyzed the model’s behavior and limitations and discussed the future development of the
BioVL project.

6.2 Limitation

To implement the proposed system for practical use, our research has the following three
limitations.

• It is needed for accurate prediction to input all of the materials. In Chapters 3 and 4,
we indicated the significance of inputting ground-truth materials for precise procedural
text generation. However, these constraints render the current system inconvenient for
users as they are forced to remember all of the materials and input them in addition to
the videos. To make the system more practical and user-friendly, we need to develop a

6.3 Future work 105

method to reduce this burden. One idea to address this issue is to predict the materials
from the videos beforehand, suggest them to users and allow for corrections if needed.

• Performance issue for practical use. From Chapters 3 to 5, we developed procedural
text generation models from instructional videos. Although the proposed methods
performed better than the baseline methods, they still did not achieve enough perfor-
mance for practical use. Improving the performance is essential to launch the system
to production environments in the future.

• Limited kinds of data in the biochemical domain. In Chapter 5, we constructed the
BioVL2 dataset, which covers four basic experiments in the biochemical domain. The
kinds of experiments we covered are limited, basic and different from the experiments
that the wet-lab researchers daily conduct. For practical use, we need to increase the
variety of experiments in the biochemical domain. To achieve this, it would be essential
to construct a good relationship between informatics and biochemistry researchers.

6.3 Future work

Finally, we itemize the future work of this thesis.

6.3.1 Build accurate models for untrimmed egocentric videos

The proposed approaches in Chapters 3 and 4 in this thesis were verified on third-person
instructional videos collected from the web. Recently, egocentric videos have been paid
attention to by researchers because they have rich information about our procedural activities
to achieve a task, and video-and-language egocentric datasets have appeared. Building
accurate models on egocentric videos is a promising research direction to extend our research
from web to real-world data.

6.3.2 Build domain-agnostic models to generate procedural text from
instructional videos

In this thesis, we focused on training the models in the specific domain: the cooking (Chapters
3, 4) and biochemical domains (Chapter 5). Although the domain-specific supervised
approaches worked well, it is necessary to prepare large-scale datasets for each domain.
This is costly, thus training domain-agnostic models that do not require domain-specific
annotations is desirable for practical use. Recently, with the rapid growth of foundation

106 Conclusion

models [94, 15], such as GPT4 [87], researchers started to try to generate sentences from
images without image-text pairs [118, 143]. Although their performance is currently limited
compared with the supervised approaches, the researchers reported that the foundation models
can generate accurate text only with a few examples (This is called in-context learning [15])
without paired annotations. Utilizing these models is an interesting research direction to
achieve domain-agnostic models.

6.3.3 Transfer the learned representations into other tasks

It is known to be effective to transfer the learned representations to other tasks in NLP [26, 38]
and CV [94, 20, 74]. The learned representations in this thesis are vision-and-language, thus
it is an interesting direction to transfer them into real-world applications. For example, in
Chapter 3, we tried to imitate the human-like understanding by modeling the state transition
of materials and showed that the material embedding captures the semantic vector arithmetic
of actions and materials. If we can inject such knowledge into robots, they might be more
intelligent to read procedural text by interpreting the state transitions of materials with visual
observations. Investigating the capability of the learned embedding in real-world tasks is a
promising research idea that involves CV, NLP and robotics.

References

[1] Akbik, A., Blythe, D., and Vollgraf, R. (2018). Contextual string embeddings for
sequence labeling. In Proc. COLING, pages 1638–1649.

[2] Alayrac, J.-B., Bojanowski, P., Agrawal, N., Sivic, J., Laptev, I., and Lacoste-Julien, S.
(2016). Unsupervised learning from narrated instruction videos. In Proc. CVPR, pages
4575–4583.

[3] Alayrac, J.-B., Sivic, J., Laptev, I., and Lacoste-Julien, S. (2017). Joint discovery of
object states and manipulation actions. In Proc. ICCV, pages 2127–2136.

[4] Amac, M. S., Yagcioglu, S., Erdem, A., and Erdem, E. (2019). Procedural reasoning
networks for understanding multimodal procedures. In Proc. CoNLL, pages 441–451.

[5] Aradhye, H., Toderici, G., and Yagnik, J. (2009). Video2text: Learning to annotate video
content. In Proc. ICDM Workshop.

[6] Bain, M., Nagrani1, A., Varol, G., and Zisserman, A. (2021). Frozen in time: A joint
video and image encoder for end-to-end retrieval. In Proc. ICCV, pages 2183–2192.

[7] Baker, M. (2016). 1,500 scientists lift the lid on reproducibility. Nature, 533:452–454.

[8] Banerjee, S. and Lavie, A. (2005). METEOR: An automatic metric for MT evaluation
with improved correlation with human judgments. In Proc. ACL Workshop IEEMMTS,
pages 65–72.

[9] Bansal, S., Arora, C., and Jawahar, C. (2022). My view is the best view: Procedure
learning from egocentric videos. In Proc. ECCV.

[10] Bojanowski, P., Lajugie, R., Grave, E., Bach, F., Laptev, I., Ponce, J., and Schmid, C.
(2015). Weakly-supervised alignment of video with text. In Proc. ICCV, pages 4462–4470.

[11] Bosselut, A., Celikyilmaz, A., He, X., Gao, J., Huang, P.-S., and Choi, Y. (2018a).
Discourse-aware neural rewards for coherent text generation. In Proc. NAACL-HLT, pages
173–184.

[12] Bosselut, A., Levy, O., Holtzman, A., Ennis, C., Fox, D., and Choi, Y. (2018b).
Simulating action dynamics with neural process networks. In Proc. ICLR.

[13] Brohan, A., Brown, N., Carbajal, J., Chebotar, Y., Dabis, J., Finn, C., Gopalakrishnan,
K., Hausman, K., Herzog, A., Hsu, J., Ibarz, J., Ichter, B., Irpan, A., Jackson, T., Jesmonth,
S., Joshi, N. J., Julian, R., Kalashnikov, D., Kuang, Y., Leal, I., Lee, K.-H., Levine, S., Lu,

108 References

Y., Malla, U., Manjunath, D., Mordatch, I., Nachum, O., Parada, C., Peralta, J., Perez, E.,
Pertsch, K., Quiambao, J., Rao, K., Ryoo, M., Salazar, G., Sanketi, P., Sayed, K., Singh,
J., Sontakke, S., Stone, A., Tan, C., Tran, H., Vanhoucke, V., Vega, S., Vuong, Q., Xia, F.,
Xiao, T., Xu, P., Xu, S., Yu, T., and Zitkovich, B. (2022). Rt-1: Robotics transformer for
real-world control at scale.

[14] Brown, P. F., Pietra, S. A. D., Pietra, V. J. D., and Mercer, R. L. (1993). The mathematics
of statistical machine translation: Parameter estimation. Computational Linguistics,
19:263–311.

[15] Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan,
A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan,
T., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler,
E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A.,
Sutskever, I., and Amodei, D. (2020). Language models are few-shot learners. In Proc.
NeurIPS, pages 1877–1901.

[16] Chandu, K., Nyberg, E., and Black, A. W. (2019). Storyboarding of recipes: Grounded
contextual generation. In Proc. ACL, pages 6040–6046.

[17] Chang, C.-Y., Huang, D.-A., Sui, Y., Fei-Fei, L., and Niebles, J. C. (2021). D3tw: Dis-
criminative differentiable dynamic time warping for weakly supervised action alignment
and segmentation. In Proc. CVPR, pages 3546–3555.

[18] Chang, C.-Y., Huang, D.-A., Xu, D., Adeli, E., Fei-Fei, L., and Niebles, J. C. (2020).
Procedure planning in instructional videos. In Proc. ECCV, pages 334–350.

[19] Chen, J. and wah Ngo, C. (2016). Deep-based ingredient recognition for cooking recipe
retrieval. In Proc. ACMMM, pages 32–41.

[20] Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. (2020). A simple framework for
contrastive learning of visual representations. In Proc. ICML, pages 1597–1607.

[21] Cheng, F. and Bertasius, G. (2022). Tallformer: Temporal action localization with a
long-memory transformer. In Proc. ECCV, pages 502–521.

[22] Christel, M., Kanade, T., Mauldin, M., Reddy, R., Sirbu, M., Stevens, S., and Wactlar,
H. (1995). Informedia digital video library. Communications of the ACM, pages 57 – 58.

[23] Christel, M., Smith, M., Taylor, C. R., and Winkler, D. B. (1998). Evolving video skims
into useful multimedia abstractions. In Proc. CHI, pages 171 – 178.

[24] Cornia, M., Stefanini, M., Baraldi, L., and Cucchiara, R. (2020). Meshed-memory
transformer for image captioning. In Proc. CVPR, pages 10578–10587.

[25] Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q., and Salakhutdinov, R. (2019).
Transformer-xl: attentive language models beyond a fixed-length context. In Proc. ACL,
pages 2978–2988.

[26] Dalvi, B., Huang, L., Tandon, N., tau Yih, W., and Clark, P. (2018). Tracking state
changes in procedural text: a challenge dataset and models for process paragraph compre-
hension. In Proc. NAACL, pages 1595–1604.

References 109

[27] Damen, D., Doughty, H., Farinella, G. M., Fidler, S., Furnari, A., Kazakos, E., Molti-
santi, D., Munro, J., Perrett, T., Price, W., and Wray, M. (2018). Scaling egocentric vision:
The EPIC-KITCHENS dataset. In Proc. ECCV, pages 753–771.

[28] Das, P., Xu, C., Doell, R. F., and Corso, J. J. (2013). A thousand frames in just a few
words: Lingual description of videos through latent topics and sparse object stitching. In
Proc. CVPR, pages 2634–2641.

[29] de la Torre, F., Hodgins, J. K., Montano, J., and Valcarcel, S. (2009). Detailed human
data acquisition of kitchen activities: the cmu-multimodal activity database (cmu-mmac).
In Proc CHI Workshop. Developing Shared Home Behavior Datasets to Advance HCI and
Ubiquitous Computing Research.

[30] Deng, C., Chen, S., Chen, D., He, Y., and Wu, Q. (2021). Sketch, ground, and refine:
Top-down dense video captioning. In Proc. CVPR, pages 234–243.

[31] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). ImageNet: A
large-scale hierarchical image database. In Proc. CVPR, pages 248–255.

[32] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). Bert: Pre-training of
deep bidirectional transformers for language understanding. In Proc. NAACL-HLT, pages
4171–4186.

[33] Doman, K., Kuai, C. Y., Takahashi, T., Ide, I., and Murase, H. (2012). Smart video-
cooking: a multimedia cooking recipe browsing application on portable devices. In Proc.
ACMMM, pages 1267–1268.

[34] Donahue, J., Hendricks, L. A., Rohrbach, M., Venugopalan, S., Guadarrama, S.,
Saenko, K., and Darrell, T. (2015). Long-term recurrent convolutional networks for
visual recognition and description. In Proc. CVPR, pages 2625–2634.

[35] Driess, D., Xia, F., Sajjadi, M. S. M., Lynch, C., Chowdhery, A., Ichter, B., Wahid, A.,
Tompson, J., Vuong, Q., Yu, T., Huang, W., Chebotar, Y., Sermanet, P., Duckworth, D.,
Levine, S., Vanhoucke, V., Hausman, K., Toussaint, M., Greff, K., Zeng, A., Mordatch,
I., and Florence, P. (2023). Palm-e: An embodied multimodal language model. In arXiv
preprint arXiv:2303.03378.

[36] Farhadi, A., Hejrati, M., Sadeghi, M. A., Young, P., Rashtchian, C., Hockenmaier, J.,
and Forsyth, D. (2010). Every picture tells a story: Generating sentences from images. In
Proc. ECCV, pages 15–29.

[37] Fujita, S., Hirao, T., Kamigaito, H., Okumura, M., and Nagata, M. (2020). Soda: Story
oriented dense video captioning evaluation framework. In Proc. ECCV, pages 517–531.

[38] Gao, T., Yao, X., and Chen, D. (2021). Simcse: Simple contrastive learning of sentence
embeddings. In Proc. EMNLP, pages 6884–6910.

[39] Guadarrama, S., Krishnamoorthy, N., Malkarnenkar, G., Venugopalan, S., Mooney, R.,
Darrell, T., and Saenko, K. (2013). Youtube2text: Recognizing and describing arbitrary
activities using semantic hierarchies and zero-shot recognition. In Proc. ICCV, pages
2712–2719.

110 References

[40] Gupta, A. and Durrett, G. (2019). Tracking discrete and continuous entity state for
process understanding. In Proc. NAACL Workshop SPNLP, pages 7–12.

[41] Hamada, R., Ide, I., and Sakai, S. (2000a). Associating cooking video with related
textbook. In Proc. ACMMM, pages 237–241.

[42] Hamada, R., Ide, I., Sakai, S., and Tanaka, H. (2000b). Structural analysis of cooking
preparation steps in japanese. In Proc. IRAL, pages 157–164.

[43] Hamada, R., Okabe, J., Ide, I., Satoh, S., Sakai, S., and Tanaka, H. (2005). Cooking
navi: assistant for daily cooking in kitchen. In Proc. ACMMM, pages 371–374.

[44] Harashima, J., Someya, Y., and Kikuta, Y. (2017). Cookpad image dataset: An image
collection as infrastructure for food research. In Proc. ACM SIGIR, pages 1229–1232.

[45] Hashimoto, A., Mori, N., Funatomi, T., Yamakata, Y., Kakusho, K., and Minoh, M.
(2008). Smart kitchen : A user centric cooking support system. In Proc. IPMU, pages
848–854.

[46] Hashimoto, A., Sasada, T., Yamakata, Y., Mori, S., and Minoh, M. (2014). Kusk
dataset: Toward a direct understanding of recipe text and human cooking activity. In Proc.
Ubicomp, pages 583–588.

[47] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image
recognition. In Proc. CVPR, pages 770–778.

[48] Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Computa-
tion, 9:1735–1780.

[49] Huang, D.-A., Lim, J. J., Fei-Fei, L., and Niebles, J. C. (2017). Unsupervised visual-
linguistic reference resolution in instructional videos. In Proc. CVPR, pages 2183–2192.

[50] Huang, D.-A., Nair, S., Xu, D., Zhu, Y., Garg, A., Fei-Fei, L., Savarese, S., and Niebles,
J. C. (2019). Neural task graphs: Generalizing to unseen tasks from a single video
demonstration. In Proc. CVPR, pages 8565–8574.

[51] Ioffe, S. and Szegedy, C. (2015). Batch normalization: accelerating deep network
training by reducing internal covariate shift. In Proc. ICML, pages 448–456.

[52] Jang, E., Gu, S., and Poole, B. (2017). Categorical reparametrization with gumble-
softmax. In Proc. ICLR.

[53] Jermsurawong, J. and Habash, N. (2015). Predicting the structure of cooking recipes.
In Proc. EMNLP, pages 781–786.

[54] Kiddon, C., Ponnuraj, G. T., Zettlemoyer, L., and Choi, Y. (2015). Mise en Place:
Unsupervised interpretation of instructional recipes. In Proc. EMNLP, pages 982–992.

[55] Kiddon, C., Zettlemoyer, L., and Choi, Y. (2016). Globally coherent text generation
with neural checklist models. In Proc. EMNLP, pages 329–339.

[56] Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In Proc.
ICLR.

References 111

[57] Krishna, R., Hata, K., Ren, F., Fei-Fei, L., and Niebles, J. C. (2017). Dense-captioning
events in videos. In Proc. ICCV, pages 706–715.

[58] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with
deep convolutional neural networks. In Proc. NeurIPS, pages 1097–1105.

[59] Kuehne, H., Arslan, A., and Serre, T. (2014). The language of actions: Recovering the
syntax and semantics of goal-directed human activities. In Proc. CVPR, pages 780–787.

[60] Kulkarni, C., Xu, W., Ritter, A., and Machiraju, R. (2018). An annotated corpus for
machine reading of instructions in wet lab protocols. In Proc. NAACL-HLT, pages 97–106.

[61] Kulkarni, G., Premraj, V., Dhar, S., Li, S., Choi, Y., Berg, A. C., and Berg, T. L. (2011).
Baby talk: Understanding and generating simple image descriptions. In Proc. CVPR,
pages 1601–1608.

[62] Lafferty, J., McCallum, A., and Pereira, F. C. (2001). Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In Proc. AAAI, pages
282–289.

[63] Laroche, R., Dziekan, J., Roussarie, L., and Baczyk, P. (2013). Cooking coach spo-
ken/multimodal dialogue systems. In Proc. CwC, pages 34–35.

[64] LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521:436–444.

[65] Lei, J., Wang, L., Shen, Y., Yu, D., Berg, T., and Bansal, M. (2020a). Mart: memory-
augmented recurrent transformer for coherent video paragraph captioning. In Proc. ACL,
pages 2603–2614.

[66] Lei, J., Yu, L., Berg, T. L., and Bansal, M. (2020b). Tvr: A large-scale dataset for
video-subtitle moment retrieval. In Proc. ECCV, pages 447–463.

[67] Lin, C.-Y. and Och, F. J. (2004). Automatic evaluation of machine translation quality
using longest common subsequence and skip-bigram statistics. In Proc. ACL, pages
605–612.

[68] Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., and
Zitnick, C. L. (2014). Microsoft coco: Common objects in context. In Proc. ECCV, pages
740–755.

[69] Liu, Y. and Lapata, M. (2019). Hierarchical transformers for multi-document summa-
rization. In Proc. ACL, pages 5070–5081.

[70] Lu, J., Batra, D., Parikh, D., and Lee, S. (2019). Vilbert: Pretraining task-agnostic
visiolinguistic representations for vision-and-language tasks. In Proc. NeurIPS.

[71] Maeta, H., Sasada, T., and Mori, S. (2015). A framework for procedural text under-
standing. In Proc. IWPT, pages 50–60.

[72] Malmaud, J., Huang, J., Rathod, V., Johnston, N., Rabinovich, A., and Murphy, K.
(2015). What’s cookin’? interpreting cooking videos using text, speech and vision. In
Proc. NAACL, pages 143–152.

112 References

[73] Mao, J., Huang, J., Toshev, A., Camburu, O., Yuille, A. L., and Murphy, K. (2016).
Generation and comprehension of unambiguous object descriptions. In Proc. CVPR,
pages 11–20.

[74] Miech, A., Alayrac, J.-B., Smaira, L., Laptev, I., Sivic, J., and Zisserman, A. (2020).
End-to-end learning of visual representations from uncurated instructional videos. In Proc.
CVPR, pages 9879–9889.

[75] Miech, A., Zhukov, D., Alayrac, J.-B., Tapaswi, M., Laptev, I., and Sivic, J. (2019).
HowTo100M: Learning a text-video embedding by watching hundred million narrated
video clips. In Proc. ICCV, pages 2630–2640.

[76] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013). Distributed
representations of words and phrases and their compositionality. In NeurIPS, pages
3111–3119.

[77] Mintz, M., Bills, S., Snow, R., and Jurafsky, D. (2009). Distant supervision for relation
extraction without labeled data. In Proc. ACL-IJCNLP, pages 1003–1011.

[78] Miura, K., Hamada, R., Ide, I., Sakai, S., and Tanaka, H. (2002). Motion based
automatic abstraction of cooking videos. In Proc. ACMMM Workshop on Multimedia
Information Retrieval, pages 29–32.

[79] Momouchi, Y. (1980). Control structures for actions in procedural texts and pt-chart.
In Proc. COLING, pages 108–114.

[80] Mori, S., Maeta, H., Yamakata, Y., and Sasada, T. (2014). Flow graph corpus from
recipe texts. In Proc. LREC, pages 2370–2377.

[81] Naim, I., Song, Y., Liu, Q., Kautz, H., Luo, J., and Gildea, D. (2014). Unsupervised
alignment of natural language instructions with video segments. In Proc. AAAI, pages
1558–1564.

[82] Naim, I., Song, Y. C., Liu, Q., Huang, L., Kautz, H., Luo, J., and Gildea, D. (2015). Dis-
criminative unsupervised alignment of natural language instructions with corresponding
video segments. In Proc. NAACL, pages 164–174.

[83] Nishimura, T., Hashimoto, A., and Mori, S. (2019). Procedural text generation from a
photo sequence. In Proc. INLG, pages 409–414.

[84] Nishimura, T., Hashimoto, A., Ushiku, Y., Kameko, H., and Mori, S. (2021). State-
aware video procedural captioning. In Proc. ACMMM, pages 1766–1774.

[85] Nishimura, T., Hashimoto, A., Ushiku, Y., Kameko, H., Yamakata, Y., and Mori, S.
(2020). Structure-aware procedural text generation from an image sequence. IEEE Access,
9:2125–2141.

[86] Nouri, E., Sim, R., Fourney, A., and White, R. W. (2020). Proactive suggestion
generation: Data and methods for stepwise task assistance. In Proc. SIGIR, pages 1585–
1588.

[87] OpenAI (2023). Gpt-4 technical report.

References 113

[88] over Vision to Describe Images, C. L. (2021). Ankush gupta and yashaswi verma and c.
jawahar. In Proc. AAAI, pages 606–612.

[89] Pan, L., Chen, J., Wu, J., Liu, S., Ngo, C.-W., Kan, M.-Y., Jiang, Y.-G., and Chua, T.-S.
(2020). Multi-modal cooking workflow construction for food recipes. In Proc. ACMMM,
pages 1132–1141.

[90] Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). BLEU: A method for
automatic evaluation of machine translation. In Proc. ACL, pages 311–318.

[91] Park, J. S., Rohrbach, M., Darrell, T., and Rohrbach, A. (2019). Adversarial inference
for multi-sentence video description. In Proc. CVPR, pages 6598–6608.

[92] Pennington, J., Socher, R., and Manning, C. (2014). Glove: global vectors for word
representation. In Proc. EMNLP, pages 1532–1543.

[93] Plummer, B. A., Wang, L., Cervantes, C. M., Caicedo, J. C., Hockenmaier, J., and
Lazebnik, S. (2017). Flickr30k entities: Collecting region-to-phrase correspondences for
richer image-to-sentence models. IJCV, 123:74–93.

[94] Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry,
G., Askell, A., Mishkin, P., Clark, J., Krueger, G., and Sutskever, I. (2021). Learning
transferable visual models from natural language supervision. In Proc. ICML, pages
8748–8763.

[95] Radford, A., Metz, L., and Chintala, S. (2015). Unsupervised representation learning
with deep convolutional generative adversarial networks. arXiv.

[96] Rajpurkar, P., Jia, R., and Liang, P. (2018). Know what you don’t know: Unanswerable
questions for squad. In Proc. ACL, pages 784–789.

[97] Regneri, M., Rohrbach, M., Wetzel, D., Thater, S., Schiele, B., and Pinkal, M. (2013).
Grounding action descriptions in videos. TACL, 1:25–36.

[98] Ren, S., He, K., Girshick, R., and Sun, J. (2016). Faster r-cnn: Towards real-time object
detection with region proposal networks. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 39:1137–1149.

[99] Rohrbach, M., Rohrbach, A., Regneri, M., Amin, S., Andriluka, M., Pinkal, M., and
Schiele, B. (2015). Recognizing fine-grained and composite activities using hand-centric
features and script data. IJCV, 119:1–28.

[100] Salvador, A., Drozdzal, M., Giro-i-Nieto, X., and Romero, A. (2019). Inverse Cooking:
recipe generation from food images. In Proc. CVPR, pages 10453–10462.

[101] Salvador, A., Hynes, N., Aytar, Y., Marin, J., Ofli, F., Weber, I., and Torralba, A.
(2017). Learning cross-modal embeddings for cooking recipes and food images. In Proc.
CVPR, pages 3020–3028.

[102] Santoro, A., Faulkner, R., Raposo, D., Rae, J., Chrzanowski, M., Weber, T., Wierstra,
D., Vinyals, O., Pascanu, R., and Lillicrap, T. (2019). Relational recurrent neural networks.
In Proc. NeurIPS, pages 7299–7310.

114 References

[103] See, A., Liu, P. J., and Manning, C. D. (2017). Get to the point: Summarization with
pointer-generator networks. In Proc. ACL, pages 1073–1083.

[104] Sener, F., Chatterjee, D., Shelepov, D., He, K., Singhania, D., Wang, R., and Yao,
A. (2022). Assembly101: A large-scale multi-view video dataset for understanding
procedural activities. In Proc. CVPR.

[105] Shen, Y., Wang, L., and Elhamifar, E. (2021). Learning to segment actions from visual
and language instructions via differentiable weak sequence alignment. In Proc. CVPR,
pages 10156–10165.

[106] Shi, B., Ji, L., Liang, Y., Duan, N., Chen, P., Niu, Z., and Zhou, M. (2019). Dense
procedure captioning in narrated instructional videos. In Proc. ACL, pages 6382–6391.

[107] Shi, B., Ji, L., Niu, Z., Duan, N., Zhou, M., and Chen, X. (2020). Learning semantic
concepts and temporal alignment for narrated video procedural captioning. In Proc.
ACMMM, pages 4355–4363.

[108] Shibata, T. (2007). Structural understanding of instruction videos by integrating
linguistic and visual information.

[109] Shibata, T. and Kurohashi, S. (2006). Unsupervised topic identification by integrating
linguistic and visual information based on hidden markov models. In Proc. ACL-COLING,
pages 755–762.

[110] Shou, Z., Wang, D., and Chang, S.-F. (2016). Temporal action localization in
untrimmed videos via multi-stage cnns. In CVPR, pages 1049–1058.

[111] Smith, M. and Kanade, T. (1997). Video skimming and characterization through the
combination of image and language understanding techniques. In Proc. CVPR, pages
775–781.

[112] Stein, S. and McKenna, S. J. (2013). Combining embedded accelerometers with
computer vision for recognizing food preparation activities. In Proc. UbiComp, pages
729–738.

[113] Sun, C., Myers, A., Vondrick, C., Murphy, K., and Schmid, C. (2019). Videobert:
a joint model for video and language representation learning. In Proc. ICCV, pages
7464–7473.

[114] Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with
neural networks. In Proc. NeurIPS, pages 3104–3112.

[115] Tan, G., Liu, D., Wang, M., and Zha, Z.-J. (2020). Learning to discretely compose
reasoning module networks for video captioning. In Proc. IJCAI, pages 745–752.

[116] Tang, Y., Ding, D., Rao, Y., Zheng, Y., Zhang, D., Zhao, L., Lu, J., and Zhou, J.
(2019). Coin: A large-scale dataset for comprehensive instructional video analysis. In
Proc. CVPR, pages 1207–1216.

[117] Tenorth, M., Bandouch, J., and Beetz, M. (2009). The tum kitchen data set of
everyday manipulation activities for motion tracking and action recognition. In Proc.
ICCV Workshop. THEMIS, pages 1089–1096.

References 115

[118] Tewel, Y., Shalev, Y., Schwartz, I., and Wolf, L. (2022). Zerocap: Zero-shot image-to-
text generation for visual-semantic arithmetic. In Proc. CVPR, pages 17918–17928.

[119] Ushiku, A., Hashimoto, H., Hashimoto, A., and Mori, S. (2017). Procedural text
generation from an execution video. In Proc. IJCNLP, pages 326–335.

[120] van der Maaten, L. and Hinton, G. (2008). Visualizing data using t-sne. Journal of
Machine Learning Research, 9:2579–2605.

[121] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L.,
and Polosukhin, I. (2017). Attention is all you need. In Proc. NeurIPS, pages 5998–6008.

[122] Vedantam, R., Zitnick, C. L., and Parikh, D. (2015). CIDEr: consensus-based image
description evaluation. In Proc. CVPR, pages 4566–4575.

[123] Venugopalan, S., Rohrbach, M., Donahue, J., Mooney, R., Darrell, T., and Saenko, K.
(2015). Sequence to sequence-video to text. In Proc. ICCV, pages 4534–4542.

[124] Vinyals, O., Toshev, A., Bengio, S., and Erhan, D. (2015). Show and tell: A neural
image caption generator. In Proc. CVPR, pages 3156–3164.

[125] Viterbi, A. (1967). Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm. IEEE Transactions on Information Theory, 13:260–269.

[126] Wactlar, H. D., Kanade, T., Smith, M. A., and Stevens, S. (1996). Intelligent access to
digital video: Informedia project. Computer, 29:46–52.

[127] Wang, H., Lin, G., Hoi, S. C. H., and Miao, C. (2020). Structure-aware generation
network for recipe generation from images. In Proc. ECCV, pages 359–374.

[128] Wang, L., Xiong, Y., Wang, Z., Qiao, Y., Lin, D., Tang, X., and Gool, L. V. (2019a).
Temporal segment networks for action recognition in videos. IEEE Trans. on Pattern
Analysis and Machine Intelligence, pages 2740–2755.

[129] Wang, T., Zhang, R., Lu, Z., Zheng, F., Cheng, R., and Luo, P. (2021a). End-to-end
dense video captioning with parallel decoding. In Proc. ICCV, pages 6847–6857.

[130] Wang, T., Zheng, H., Yu, M., Tian, Q., and Hu, H. (2021b). Event-centric hierarchical
representation for dense video captioning. IEEE Trans. on Circuits and Systems for Video
Technology, pages 1890–1900.

[131] Wang, W., Wang, Y., Chen, S., and Jin, Q. (2019b). YouMakeup: A large-scale
domain-specific multimodal dataset for fine-grained semantic comprehension. In Proc.
EMNLP-IJCNLP, pages 5133–5143.

[132] Williams, R. J. and Zipser, D. (1989). A learning algorithm for continually running
fully recurrent neural networks. Neural Computation, 1:270–280.

[133] Wu, J., Pan, L., Chen, J., and Jiang, Y.-G. (2022). Ingredient-enriched recipe genera-
tion from cooking videos. In Proc. ICMR, pages 249–257.

[134] Xiong, Y., Dai, B., and Lin, D. (2018). Move forward and tell: a progressive generator
of video descriptions. In Proc. ECCV, pages 489–505.

116 References

[135] Xu, H., Ghosh, G., Huang, P.-Y., Okhonko, D., Aghajanyan, A., Metze, F., Zettlemoyer,
L., and Feichtenhofer, C. (2021). Videoclip: Contrastive pre-training for zero-shot video-
text understanding. In Proc. EMNLP, pages 6787–6800.

[136] Xu, J., Mei, T., Yao, T., and Rui, Y. (2016). MSR-VTT: A large video description
dataset for bridging video and language. In Proc. CVPR, pages 5288–5296.

[137] Yagcioglu, S., Erdem, A., Erdem, E., and Ikizler-Cinbis, N. (2018). RecipeQA: A
challenge dataset for multimodal comprehension of cooking recipes. In Proc. EMNLP,
pages 1358–1368.

[138] Yamakata, Y., Mori, S., and Carroll, J. (2020). English recipe flow graph corpus. In
Proc. LREC, pages 5187–5194.

[139] Yamakta, Y., Kakusho, K., and Minoh, M. (2010). Object recognition based on object’
s identity for cooking recognition task. In Proc. ISM, pages 278–283.

[140] Young, P., Lai, A., Hodosh, M., and Hockenmaier, J. (2014). From image descrip-
tions to visual denotations: New similarity metrics for semantic inference over event
descriptions. TACL, 2:67–78.

[141] Yu, L., Poirson, P., Yang, S., Berg, A. C., and Berg, T. L. (2016). Modeling context in
referring expressions. In Proc. ECCV, pages 69–85.

[142] Zamir, N., Noy, A., Friedman, I., Protter, M., and Zelnik-Manor, L. (2020). Asymmet-
ric loss for multi-label classification. arXiv.

[143] Zeng, A., Attarian, M., Ichter, B., Choromanski, K., Wong, A., Welker, S., Tombari,
F., Purohit, A., Ryoo, M., Sindhwani, V., Lee, J., Vanhoucke, V., and Florence, P. (2022).
Socratic models: Composing zero-shot multimodal reasoning with language. arXiv.

[144] Zhao, H., Hadji, I., Dvornik, N., Derpanis, K. G., Wildes, R. P., and Jepson, A. D.
(2022). P3iv: Probabilistic procedure planning from instructional videos with weak
supervision. In Proc. ECCV, pages 2938–2948.

[145] Zhou, L., Kalantidis, Y., Chen, X., Corso, J. J., and Rohrbach, M. (2019a). Grounded
video description. In Proc. CVPR, pages 6578–6587.

[146] Zhou, L., Louis, N., and Corso, J. J. (2019b). Weakly-supervised video object
grounding from text by loss weighting and object interaction. In Proc. BMVC.

[147] Zhou, L., Xu, C., and Corso, J. J. (2018a). Towards automatic learning of procedures
from web instructional videos. In Proc. AAAI, pages 7590–7598.

[148] Zhou, L., Zhou, Y., Corso, J. J., Socher, R., and Xiong, C. (2018b). End-to-end dense
video captioning with masked transformer. In Proc. CVPR, pages 8739–8748.

[149] Zhukov, D., Alayrac, J.-B., Cinbis, R. G., Fouhey, D., Laptev, I., and Sivic, J. (2019).
Cross-task weakly supervised learning from instructional videos. In Proc. CVPR, pages
3537–3545.

[150] 任天堂 (2006). 任天堂：しゃべる！dsお料理ナビ.

List of Publications

Journal (Peer Reviewed)

1. Taichi Nishimura, Atsushi Hashimoto, Yoshitaka Ushiku, Hirotaka Kameko, and Shin-
suke Mori, “Recipe Generation from Unsegmented Videos,” ACM Transactions on
Multimedia Computing, Communications, and Applications (Major revision), 2023 →
Chapter 4.

2. Taichi Nishimura, Atsushi Hashimoto, Yoshitaka Ushiku, Hirotaka Kameko, and Shin-
suke Mori, “State-aware Video Procedural Captioning,” Multimedia Tools and Appli-
cations, 2023 → Chapter 3.

3. 西村太一，迫田航次郎，牛久敦，橋本敦史，奥田奈津子，小野富三人，亀甲
博貴，森信介, “BioVL2データセット:生化学分野における一人称視点の実験
映像への言語アノテーション”，自然言語処理，第29巻4号，2022 (優秀論文
賞) → Chapter 5．

4. Taichi Nishimura, Atsushi Hashimoto, Yoshitaka Ushiku, Hirotaka Kameko, Yoko
Yamakata, and Shinsuke Mori, “Structure-Aware Procedural Text Generation from an
Image Sequence,” IEEE Access, Vol 9, 2021.

5. 西村太一，橋本敦史，森信介，“料理における重要語に着目した写真列から
のレシピの自動生成”，自然言語処理，第27巻2号，2020．

Journal (Peer Reviewed, Co-author)

1. 白井圭佑，橋本敦史，西村太一，亀甲博貴，栗田修平，森信介，“調理動作
後の物体の視覚的状態予測を目指したVisual Recipe Flowデータセットの構築
と評価”，自然言語処理，2023 (採録決定)．

118 References

International Conference (Peer Reviewed)

1. Taichi Nishimura, Katsuhiko Ishiguro, Keita Higuchi, and Masaaki Kotera, “Multi-
modal Dish Pairing: Predicting Side Dishes to Serve with a Main Dish,” In Proceedings
of the 1st International Workshop on Multimedia for Cooking, Eating, and related
APPlications in conjunction with ACMMM, 2022 (Best Paper Award).

2. Taichi Nishimura, Atsushi Hashimoto, Yoshitaka Ushiku, Hirotaka Kameko, and Shin-
suke Mori, “State-aware Video Procedural Captioning,” In Proceedings of the 29th
ACM International Conference on Multimedia, 2021.

3. Taichi Nishimura, Kojiro Sakoda, Atsushi Hashimoto, Yoshitaka Ushiku, Natsuko
Tanaka, Fumihito Ono, Hirotaka Kameko, and Shinsuke Mori, “Egocentric Biochemi-
cal Video-and-Language Dataset,” In Proceedings of the 4th Workshop on Closing the
Loop Between Vision and Language in conjunction with ICCV, 2021.

4. Taichi Nishimura, Suzushi Tomori, Hayato Hashimoto, Atsushi Hashimoto, Yoko
Yamakata, Jun Harashima, Yoshitaka Ushiku, and Shinsuke Mori, “Visual Grounding
Annotation of Recipe Flow Graph,” In Proceedings of the 12th International Conference
on Language Resources and Evaluation, 2020.

5. Taichi Nishimura, Atsushi Hashimoto, and Shinsuke Mori, “Procedural Text Genera-
tion from a Photo Sequence,” In Proceedings of the 12th International Conference on
Natural Language Generation, 2019.

6. Taichi Nishimura, Atsushi Hashimoto, Yoko Yamakata and Shinsuke Mori, “Frame
Selection for Producing Recipe with Pictures from an Execution Video of a Recipe,” In
Proceedings of the 11th Workshop on Multimedia for Cooking and Eating Activities
in conjunction with ICMR, 2019 (Best Paper Award).

International Conference (Peer Reviewed, Co-author)

1. Keisuke Shirai, Atsushi Hashimoto, Taichi Nishimura, Hirotaka Kameko, Shuhei
Kurita, Yoshitaka Ushiku and Shinsuke Mori. “Visual Recipe Flow: A Dataset for
Learning Visual State Changes of Objects with Recipe Flows,” In Proceedings of the
29th International Conference on Computational Linguistics, 2022.

2. Sara Ozeki, Masaaki Kotera, Katsuhiko Ishiguro, Taichi Nishimura, Keita Higuchi,
“Recipe Recommendation for Balancing Ingredient Preference and Daily Nutrients,” In

References 119

Proceedings of The 1st International Workshop on Multimedia for Cooking, Eating,
and related APPlications 2022 in conjunction with ACMMM2022, 2022.

3. Kento Tanaka, Taichi Nishimura, Hiroaki Nanjo, Keisuke Shirai, Hirotaka Kameko,
and Masatake Dantsuji, “Image Description Dataset for Language Learners,” In Pro-
ceedings of the 13th International Conference on Language Resources and Evaluation,
2022.

4. Jieyong Zhu, Taichi Nishimura, Makoto Goto, and Shinsuke Mori, “Multimedia Re-
trieval of Historical Materials,” In Digital Humanities, 2022.

5. Atsushi Hashimoto, Taichi Nishimura, Yoshitaka Ushiku, Hirotaka Kameko, and Shin-
suke Mori, “Cross-modal Representation Learning for Understanding Manufacturing
Procedure,” In Proceedings of the 23th International Conference on Human-Computer
Interaction, 2022.

Domestic Conference (Non Peer-Reviewed)

1. 西村太一，“「BioVL2データセット:生化学分野における一人称視点の実験
映像への言語アノテーション」の研究経緯”，自然言語処理．

2. 大野けやき，西村太一，亀甲博貴，森信介，“テキスト中の場所表現認識と
係り受けに基づく緯度経度推定ツールの開発”，言語処理学会第29回年次大
会 (NLP2023)．

3. 木下聖，西村太一，亀甲博貴，森信介，“株式投資家の関心を考慮したニ
ュース記事抽出によるストーリー生成”，言語処理学会第29回年次大会
(NLP2023)．

4. 山本航輝，西村太一，亀甲博貴，森信介，“VideoCLIPを用いた実験動画から
のプロトコル生成”，言語処理学会第29回年次大会 (NLP2023)．

5. 吉田智哉，西村太一，亀甲博貴，森信介，“単語の階層関係に基づくデータ
拡張を利用した画像キャプション生成の検討”，言語処理学会第29回年次大
会 (NLP2023)．

6. 森田康介，西村太一，亀甲博貴，森信介，“テキストアナリティクスツー
ルのログからの実験設定の説明文生成”，言語処理学会第29回年次大会
(NLP2023)．

120 References

7. 八木拓真，西村太一，清丸寛一，唐井希，“大規模言語モデルからの知識抽
出に基づく画像からのスクリプト予測の検討”，言語処理学会第29回年次大
会 (NLP2023)．

8. 尾関沙羅，小寺正明，石黒勝彦，西村太一，樋口啓太，“ユーザ嗜好と栄養
摂取基準に基づくレシピ推薦手法の開発”，第30回インタラクティブシステ
ムとソフトウェアに関するワークショップ (WISS2022)．

9. 森田康介，西村太一，亀甲博貴，森信介，“テキストマイニングツールのロ
グからの実験設定の説明文生成”，第253回自然言語処理研究会 (NL253)．

10. 西村太一，橋本敦史，牛久祥孝，森信介，映像からのストーリー生成:
イベント選択器と文生成器の同時学習，言語処理学会第28回年次大会
(NLP2022)．

11. 迫田航次郎，西村太一，森信介，小野富三人，田中奈津子，生化学分野に
おけるVideo&Languageデータセットの構築，言語処理学会第28回年次大会
(NLP2022)．

12. 星島洸明，西村太一，亀甲博貴，森信介，“市民科学でのアノテーション作
業支援と作業者の能力向上支援”，言語処理学会第28回年次大会 (NLP2022)．

13. 田中健斗，西村太一，南條浩輝，白井圭佑，亀甲博貴，“画像描写問題にお
ける学習者作文の訂正文生成”，言語処理学会第28回年次大会 (NLP2022)．

14. Jieyong Zhu, Taichi Nishimura, Makoto Goto, Shinsuke Mori, “Cross-modal Retrieval
of Historical Materials,”言語処理学会第28回年次大会 (NLP2022).

15. 田中健斗，西村太一，白井圭佑，亀甲博貴，森信介，“写真描画問題におけ
る自動採点手法の検討”，人工知能学会全国大会 (JSAI2021)．

16. 西村太一，橋本敦史，牛久祥孝，森信介，“手順構造を考慮した作業映像か
らの手順書生成”，言語処理学会第27回年次大会 (NLP2021)．

17. 迫田航次郎，西村太一．森信介，順構造を考慮した手順書からの作業画像検
索，言語処理学会第27回年次大会 (NLP2021)．

18. 星島洸明，西村太一，亀甲博貴，森信介，“複数作業者を想定したアノ
テーションツールの作成と機能の検討”，言語処理学会第27回年次大会
(NLP2021)．

References 121

19. 西村太一，橋本敦史，牛久祥孝，森信介，“写真列と構造要素からの手順構
造と手順書の同時学習”，言語処理学会第26回年次大会 (NLP2020)．

20. 西村太一，友利涼，橋本隼人，橋本敦史，山肩洋子，原島純，牛久祥孝，森
信介，“レシピフローグラフへのVisual Groundingアノテーション”，言語処理
学会第26回年次大会 (NLP2020)．

21. 西村太一，橋本敦史，森信介，“作業写真列からの手順書の自動生成”，ヒュ
ーマンコミュニケーション基礎研究会 (HCS2019)．

22. 西村太一，橋本敦史，原島純，山肩洋子，森信介，Bounding Boxを付与した
フローグラフコーパスの提案，自然言語処理若手の会 (yans2019)．

23. 西村太一，橋本敦史，山肩洋子，森信介，写真付き手順書生成のための実施
映像からのフレーム選択，第11回データ工学と情報マネジメントに関するフ
ォーラム (DEIM2019)．

24. 島﨑郁花，西村太一，上岡玲子，テキスタイルセンサを用いた腹巻型笑いロ
グシステムによる笑い検出の検討，第22回日本バーチャルリアリティ学会
(VRSJ2017)．

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Background and motivations
	1.2 Challenges
	1.2.1 Developing models capable of generating accurate procedural text based on video content
	1.2.2 Learning both the event extractor and sentence generator in a story-aware manner
	1.2.3 Extending our research focus from everyday to important domains that are in high demand for video verbalization

	1.3 Contributions
	1.3.1 Imitating human-like understanding of the material state changes for accurate procedural text generation
	1.3.2 Multimodal recurrent learning of the event selector and sentence generator
	1.3.3 Exploring important domains in terms of practical applications: a case study on the biochemical domain

	1.4 Thesis outline
	1.4.1 Introduction (Chapter 1)
	1.4.2 Related work (Chapter 2)
	1.4.3 State-aware procedural text generation from segmented key events (Chapter 3)
	1.4.4 Multimodal recurrent learning of the event selector and sentence generator (Chapter 4)
	1.4.5 BioVL2: Egocentric biochemical video-and-language dataset (Chapter 5)
	1.4.6 Conclusion (Chapter 6)

	2 Related Work
	2.1 Multimedia research that targets procedural text and instructional videos
	2.2 Vision and language
	2.2.1 Tasks, methods and datasets

	2.3 Vision and language in instructional domains
	2.3.1 Multi-modal understanding for procedural text with vision
	2.3.2 Procedural text generation from visual observations
	2.3.3 Multi-modal instructional video datasets

	3 State-aware Procedural Text Generation from Segmented Key Events
	3.1 Introduction
	3.2 Proposed method
	3.2.1 Overview
	3.2.2 Encoder
	3.2.3 Visual simulator
	3.2.4 Decoder
	3.2.5 Textual re-simulator
	3.2.6 Loss functions

	3.3 Experiments
	3.3.1 Experimental settings
	3.3.2 Word-overlap evaluation
	3.3.3 Ingredient prediction
	3.3.4 Retrieval evaluation
	3.3.5 Qualitative analysis
	3.3.6 Discussion of the learned embedding
	3.3.7 Experiments on the full prediction setting

	3.4 Conclusion

	4 Multimodal Recurrent Learning of the Event Selector and Sentence Generator
	4.1 Introduction
	4.2 Oracle-based analysis of the existing DVC model
	4.2.1 Quantitative evaluation
	4.2.2 Qualitative evaluation

	4.3 Proposed method
	4.3.1 Event selector
	4.3.2 Sentence generator
	4.3.3 Multimodal memory mixing
	4.3.4 Loss functions

	4.4 Extended model
	4.4.1 Dot-product visual simulator
	4.4.2 Textual attention
	4.4.3 Loss functions

	4.5 Experiments
	4.5.1 Word-overlap evaluation
	4.5.2 Discussion on the number of predicted events
	4.5.3 Qualitative analysis
	4.5.4 Discussion on the detailed model settings

	4.6 Conclusion

	5 BioVL2: Egocentric Biochemical Video-and-Language Dataset
	5.1 Introduction
	5.2 BioVL2 dataset
	5.2.1 Dataset construction
	5.2.2 Statistics
	5.2.3 Annotation agreement

	5.3 Protocol generation from experiment videos
	5.3.1 b-NE sequence construction
	5.3.2 Generating protocol candidate sentence from b-NE sequence
	5.3.3 Protocol generation

	5.4 Experiments
	5.4.1 Experimental settings
	5.4.2 Quantitative evaluation
	5.4.3 Qualitative evaluation
	5.4.4 Discussion
	5.4.5 PMI-based analysis on the language model between objects and actions
	5.4.6 Relationship between the number of steps and word-overlap evaluation
	5.4.7 Future development of the BioVL project

	5.5 Conclusion

	6 Conclusion
	6.1 Summary
	6.2 Limitation
	6.3 Future work
	6.3.1 Build accurate models for untrimmed egocentric videos
	6.3.2 Build domain-agnostic models to generate procedural text from instructional videos
	6.3.3 Transfer the learned representations into other tasks

	References

