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Abstract

Numerical reasoning plays a pivotal role in both the realm of natural language

processing (NLP) research and real-life applications. Numerical reasoning, as an

integral component of NLP research, assumes a critical role in the field of artifi-

cial intelligence. It is regarded as a crucial metric for assessing a model’s capacity

for reasoning and stands as a vital element in the pursuit of achieving Artificial

General Intelligence (AGI). Leveraging numerical reasoning, researchers can de-

velop algorithms and models that exhibit the ability to comprehend, generate,

and analyze data from science, finance, news, and various other domains. This

application of numerical reasoning facilitates advancements in domains such as

language translation, sentiment analysis, and text summarization. In real life, the

ability to understand and manipulate numbers is essential in various contexts,

such as personal finance, data analysis, and problem-solving. Whether it’s calcu-

lating budgets, interpreting statistical information, or making informed decisions

based on quantitative data, numerical reasoning empowers individuals to navi-

gate the complexities of modern life. The integration of numerical reasoning and

NLP not only enhances everyday experiences but also propels the boundaries of

artificial intelligence in comprehending and processing human language.

This thesis examines the significance of numerical reasoning and its research

trajectory, followed by an introduction to relevant tasks and datasets. The pri-

mary focus of this research lies in highlighting a key characteristic of these tasks,

which involves the presence of answers with mathematical equivalency. Con-

sequently, such tasks present numerous challenges, we propose various methods

to address these challenges.

The initial section of this thesis provides a comprehensive overview of numer-
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ical reasoning, emphasizing its importance across various domains. Additionally,

the historical background of research in this field is explored, shedding light on

the progress made thus far and identifying the gaps that remain.

Subsequently, the thesis delves into the specifics of the tasks and datasets

associated with numerical reasoning. By examining these elements, the research

establishes a foundation for comprehending the intricacies and complexities in-

herent in this domain. Building upon previous research, this thesis focuses on the

identification and analysis of a crucial aspect of numerical reasoning tasks, that

the answer equation of one problem could have multiple equivalent expressions,

namely mathematical equivalency. This aspect introduces a range of challenges

that need to be addressed for effective problem-solving.

The Costly Expert Annotation Dilemma is explored, highlighting the

need for efficient and scalable methods to annotate training data, considering

the inherent complexity of numerical reasoning. We propose a novel data aug-

mentation method that reverses the mathematical logic of math word problems

to produce new high-quality math problems and introduce new knowledge points

that can benefit learning the mathematical reasoning logic. We also propose three

pretraining tasks that operate at both the whole program and sub-program level,

which guides the model to focus on useful variables and encourages the model to

identify key evidence.

Furthermore, the Challenge of Mismatch of Supervised Training Objec-

tive is addressed, as it poses a significant obstacle to training models effectively.

The thesis explores methods to reduce the training noise caused by the mismatch

and improve the robustness of the models, enabling them to handle real-world

scenarios and noisy data. We propose a Textual Enhanced Contrastive Learning

framework, which enforces the models to distinguish semantically similar examples

while holding different mathematical logic. We adopt a self-supervised manner

strategy to enrich examples with subtle textual variance by textual reordering or

problem re-construction. We then retrieve the hardest to differentiate samples

from both equation and textual perspectives and guide the model to learn their

representations. We also propose a controlled equation generation solver by lever-

aging a set of control codes to guide the model to consider certain reasoning logic
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and decode the corresponding equations expressions transformed from the human

reference.

Lastly, the thesis investigates the Enormous Search Space and False-

Matching in Weak Supervision challenge, which involves navigating through

a vast array of possible answers, some of which may appear correct but lack

mathematical equivalency. Strategies and techniques are proposed to mitigate the

impact of this challenge and enhance the accuracy of numerical reasoning systems.

We propose a novel search algorithm with the combinatorial strategy, which can

compress the search space by excluding mathematically equivalent equations. The

compression allows the searching algorithm to enumerate all possible equations

and obtain high-quality data. We investigate the noise in the pseudo labels that

hold wrong mathematical logic, which we refer to as the false-matching problem,

and propose a ranking model to denoise the pseudo labels.

By examining and understanding the challenges associated with numerical

reasoning tasks, this thesis seeks to contribute to the advancement of this field.

Through these five proposals, we have effectively addressed the issue of mathemat-

ical equivalency while significantly enhancing system performance. The proposed

solutions and strategies aim to enhance the accuracy and reliability of numer-

ical reasoning systems, facilitating their practical application across a range of

domains.
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Chapter 1

Introduction

In the realm of Natural Language Processing (NLP) and Artificial Intelligence

(AI), the ability to reason with numerical information has emerged as a crucial

aspect, enabling machines to navigate and comprehend the complexities of human

language. Numerical reasoning encompasses the capacity to interpret, analyze,

and draw meaningful insights from quantitative data embedded within textual or

tabular content. By integrating numerical reasoning capabilities into NLP and

AI systems, we could unlock a plethora of possibilities, ranging from advanced

question-answering systems to automated decision-making algorithms.

The rise of big data and the proliferation of textual and multimedia infor-

mation have generated unprecedented challenges in the field of NLP. While tradi-

tional NLP approaches have successfully addressed syntactic and semantic aspects

of language, incorporating numerical reasoning opens new avenues for understand-

ing complex relationships and phenomena concealed within massive datasets. By

augmenting machines with the ability to comprehend and manipulate numerical

information, we enable them to navigate intricate domains such as finance, health-

care, and scientific research, where quantitative analysis plays a pivotal role. In

Figure 1.1, we provide an example where an assistant AI with can automatically

understand and calculate a client’s monthly expenses on different projects such

as food through numerical reasoning.

Furthermore, the integration of numerical reasoning within NLP and AI sys-

tems offers immense potential for real-world applications. From analyzing finan-

1
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Figure 1.1: Example of numerical reasoning in real-life application.

cial reports and predicting market trends to understanding medical data and

assisting in evidence-based diagnoses, numerical reasoning empowers machines to

contribute meaningfully across various sectors. With the ability to process and

reason about numbers, machines can provide insights, generate accurate predic-

tions, and assist in decision-making processes, thereby revolutionizing industries

and enhancing human-machine collaborations.

This thesis aims to delve into the realm of numerical reasoning within NLP

and AI, shedding light on its fundamental concepts, methodologies, and its pivotal

role in modern information processing systems. We investigate existing method-

ologies, from rule-based systems to and machine learning algorithms, and recent

large language models development, which enable machines to extract numeri-

cal information and reason with it effectively. We point out the key challenge

of numerical reasoning task, namely mathematical equivalency, and propose five

methods addressing three major challenges caused by it. By comprehending the

nuances of numerical reasoning, we can design more robust and intelligent sys-

tems capable of unlocking the potential hidden within vast volumes of textual and

numerical data.

Ultimately, this research seeks to highlight the critical importance of numerical
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reasoning within NLP and AI. By unraveling the significance of this multidisci-

plinary field, we aim to pave the way for the development of more advanced and

capable information processing systems. As we embark on this journey, we an-

ticipate that the insights gained from this study will contribute to the ongoing

evolution of NLP and AI, enhancing their capacity to comprehend, reason, and

derive valuable insights from the ever-expanding realm of human language and

numerical data.

In this chapter, we will first delve into the historical development of numerical

reasoning, tracing its evolution within the field of NLP and AI. By examining the

progress made thus far and presenting novel methodologies, we aim to contribute

to the advancement of numerical reasoning in NLP and AI, ultimately fostering the

development of more sophisticated and effective information processing systems.

1.1 History of Numerical Reasoning

1.1.1 Rule-based systems

The section presents an overview of various early rule-based systems developed

for the purpose of reading and comprehending algebraic and arithmetic word

problems, with the aim of providing solutions and answers in natural language.

The pioneering system discussed is the STUDENT program [7]. This pro-

gram represents a significant milestone as it was the first to read and understand

algebraic problems expressed in restricted English language and respond in En-

glish as well. By utilizing a relational model, STUDENT effectively stores in-

formation and transforms complex sentences into simpler equations, ultimately

solving the given problems using established methods.

The DEDUCOM [98] focuses on storing LISP expressions of data statements

and employing conditional statements to infer answers. While DEDUCOM

showcased promising capabilities, it was found to be relatively slow in its re-

sponses and faced challenges in logical deduction, particularly within predicate

calculus. However, it demonstrated improved performance when provided with

more relevant facts arranged in an appropriate order.

WORDPRO [30] tackles the understanding and resolution of arithmetic word
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problems. It employs a set of propositions to represent the semantic meaning of

the problem text, employing the concept of set schemas for problem modeling.

WORDPRO relies on a sequential application of rules, arithmetic strategies,

and problem-solving procedures, leveraging the content of its short-term memory

to guide the problem-solving process.

Other rule-based systems include CHIPS [8], ARITHPRO [22], and RO-

BUST [3]. CHIPS and ARITHPRO focus on solving one-step arithmetic word

problems, predominantly involving addition and subtraction operations. While

these models categorize problems into compare, combine, and change scenarios,

they exhibit limitations concerning the choice of verbs and the sentence order

within the problem text. On the other hand, ROBUST excels in understanding

free-format multi-step arithmetic word problems, even when extraneous informa-

tion is present. ROBUST utilizes an expanded concept of ”change formulae” and

employs comprehensive schema categories to describe different types of changes

and solve complex problem scenarios.

Finally, several computer-aided instruction (CAI) systems are designed to as-

sist students in learning how to solve algebraic and arithmetic word problems.

These systems, including PAT [50], WORDMATH [69], DISCOVER [99],

WPS Tutor [107], and MathCAL [12], offer predefined strategies and instruc-

tion based on model problems stored in their databases. However, they lack

the capability to comprehend and solve novel, unseen problems presented by the

learners.

In summary, the various systems reviewed in this section have contributed

to the development of computational methods for tackling algebraic and arith-

metic word problems. From early systems like STUDENT and DEDUCOM

to more recent advancements like WORDPRO and ROBUST, each system has

employed distinct techniques to address the challenges associated with problem

understanding and solving. While these advancements have paved the way for

further research and innovation, however, these rule-based systems suffer from

poor generalization which limits the real-life applications.
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1.1.2 Statistic-based Methods

The section discusses statistic-based methods for solving arithmetic word prob-

lems using traditional machine learning models. These methods employ logic

inference procedures to identify entities, quantities, and operators from the prob-

lem text and generate numeric answers. Roy et al. Roy et al. [93] proposes a

quantity entailment scheme which utilizes classifiers to detect properties of the

word problem, such as quantity pairs, operators, and operand order. By inferring

expressions, the numeric answer can be straightforwardly calculated for simple

math problems.

To tackle multi-step arithmetic expressions, statistic-based methods require

advanced logic templates, which involve additional overhead for text problem an-

notation. For instance, ARIS [43] introduces a logic template called ”state” that

defines entities, containers, attributes, quantities, and relations. ARIS splits the

problem text into fragments and tracks state updates based on verb categoriza-

tion. Sundaram et al. [100] predefines a corpus of logic representations scheme

and matches the sentences in the text problem to trigger update operations.

Mitra et al. [76] propose a new logic template formula to solve problems with

addition and subtraction. They define formulas for part-whole, change, and com-

parison scenarios, allowing the conversion of text problems into algebraic equa-

tions. Liang et al. [60] converts the problem text into logic form representations

using predefined mapping rules. Logic inference is then performed on these de-

rived statements to obtain the answer.

Despite their usefulness, statistic-based methods have drawbacks. They re-

quire significant annotation effort, hindering their scalability for large-scale datasets.

Moreover, these methods heavily rely on predefined templates, making them

rigid and difficult to extend for supporting other operators or handling diverse

datasets. As a result, tree-based solutions have gained prominence as mainstream

approaches for solving arithmetic word problems.

Several tree-based approaches have been developed to solve arithmetic word

problems by representing arithmetic expressions as binary tree structures. These

approaches aim to construct equivalent tree structures in a bottom-up manner

without the need for additional annotations [51, 90, 91]. The tree construction
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process involves extracting quantities from the text, enumerating syntactically

valid candidate trees, and selecting the best matching tree using a scoring func-

tion. These approaches utilize local classifiers to determine the likelihood of op-

erators being selected as internal nodes and incorporate global scoring functions

to evaluate the overall tree likelihood.

Roy et al. [90] introduced the concept of expression trees, reducing the search

space by training a binary classifier to identify relevant quantities. The tree

construction procedure maps to prediction problems determining lowest common

ancestor operations. ALGES [51] explores all possible equation trees and uses

Integer Linear Programming to enforce constraints, resulting in higher computa-

tional costs.

1.1.3 Deep Learning Model based Methods

Deep learning (DL) has demonstrated significant success in various smart appli-

cations. Several DL-based solvers have been developed for math word problem

solving, leveraging effective feature representations learned in a data-driven man-

ner without human intervention.

Deep Neural Solver (DNS) [104] is serves as a pioneering work in this domain

which directly predicts the equation solution as a sequence decoding task, given

the problem text input.

Graph modeling has gained popularity in math word problem solving [65,102,

109,115]. Approaches like modeling the input problem as a graph or using graph

neural networks for both encoder and decoder have been explored. These graph-

based models capture complex semantic relationships, enable the representation of

linguistic and mathematical interactions, and show promising performance. Unit-

Dep [91] introduces a Unit Dependency Graph to enhance the scoring function,

considering associations between quantities and rates.

Contrastive learning approaches, leveraging Siamese networks and transform-

ers, have been proposed to overcome the challenge of different mathematical struc-

tures in linguistically similar word problems [59, 96]. By designing semantically

informed intermediate representations, these models aim to capture similarity

based on both language and mathematical concepts.
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Knowledge distillation and post-pretraining techniques, inspired by large pre-

trained models in NLP, have been applied to math word problem solving [18,

24, 61]. By fine-tuning large generic networks on smaller datasets, task-specific

models are distilled, focusing the learning of the generic model onto a more focused

one. This approach shows promise in adding semantic information and improving

performance, especially with limited data points.

These DL-based approaches showcase the application of deep learning tech-

niques in math word problem solving, demonstrating their potential to handle

complex problem structures and achieve accurate results.

In light of these observations, it could be contended that numerical reasoning

within the era of deep learning extends beyond mere search and pattern mem-

orization. Firstly, even when presented with a large number of variables, the

potential solution space can reach billions, yet models still demonstrate a degree

of generalization ability. This suggests that to some extent, they are engaging in

reasoning processes. Moreover, the most developed deep learning based methods

are capable of detecting subtle textual modifications, encompassing cases where

only a couple of words are changed yet fundamentally altering the mathematical

semantics, which results in a complete different equation solution. These advanced

models demonstrate a notable level of robustness, underscoring their ability for

nuanced reasoning rather than mere memorization of patterns.

1.1.4 Large Language Model based Methods

The rapid advancement of large language models has greatly propelled the field of

natural language processing. These models have demonstrated remarkable profi-

ciency in tasks such as text generation, translation, and sentiment analysis, among

others. However, despite their impressive linguistic capabilities, their ability to

perform mathematical reasoning remains limited, as the most advanced GPT-4

model cannot beat small size task specific models on numerical reasoning datasets

such as DROP. Mathematical reasoning involves understanding and manipulat-

ing mathematical concepts, solving complex equations, and drawing logical in-

ferences from numerical data. While large language models can handle basic

arithmetic and simple mathematical operations, they often struggle with more
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intricate mathematical reasoning tasks that require deep understanding of math-

ematical principles and techniques. This limitation poses a significant challenge

in leveraging these models for applications that heavily rely on mathematical rea-

soning, such as automated theorem proving, advanced data analysis, and math-

ematical problem-solving. Therefore, further research and development efforts

are needed to enhance the mathematical reasoning capabilities of large language

models, bridging the gap between natural language processing and mathematical

reasoning domains.

Few-shot in-context learning, also known as few-shot prompting, allows a

model to process a few examples before attempting a task [9]. This technique

gained popularity after the introduction of GPT-3 and is considered an emergent

property of large language models when scaled properly.

Chain-of-thought prompting demonstrates how reasoning abilities naturally

emerge in large language models. It involves providing a few demonstrations of

chain-of-thought as exemplars in prompting. [62,105,118]

It is crucial to recognize that numerical reasoning is a complex and multi-

faceted process, and fully addressing its challenges in large language models re-

quires ongoing research and exploration of novel techniques. While these methods

contribute to progress in the field, there is still a need for further advancements to

achieve comprehensive and robust mathematical reasoning capabilities in natural

language processing systems.

1.2 The Central Challenge in Numerical Reasoning:

Mathematical Equivalency

The history of research in numerical reasoning has witnessed significant advance-

ments across various methodological approaches. Despite the evolution of method-

ology, a key challenge of the task that sets the task apart from other multi-hop

question answering tasks due to its inherent characteristic of having multiple

mathematically equivalent possible solutions.

We show a multi-hop QA example of a popular benchmark HoppotQA in

Figure 1.2, to find the answer ’Sancramento Kings’, the model needs to first find
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Evidence 1: The 2015 Diamond Head Classic
was a college basketball tournament ... Buddy
Hield was named the tournament’s MVP.

Q: Which team does the player named 2015
Diamond Head Classic’s MVP play for?

Evidence 2: Chavano Rainier ”Buddy” Hield is
a Bahamian professional basketball player for

the Sacramento Kings of the NBA...

Answer: Sacramento Kings

Figure 1.2: The determined reasoning path of multi-hop QA.

which player was named 2015 Diamond Head Classic’s MVP, and then find which

team Buddy Hield is playing for. The reasoning path for solving this question is

determined.

On the other hand, numerical reasoning poses a unique challenge. Mathemat-

ical equivalency plays a crucial role in this context, as it allows for the existence

of multiple valid solutions that satisfy the given constraints. We show two plau-

sible reasoning paths of one math word problem in Figure 1.1. To calculate the

total distance between city A and B, the reasoning path on the right side first

calculates the individual distance that the two cars drive and then sums them up;

the reasoning path on the left side first calculates the total velocity of the two

cars and then calculate the total distance. These two reasoning paths are mathe-
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matically equivalent but the expression of the solution equation is different. Such

characteristics give rise to unique challenges in the task of numerical reasoning.

Various studies had pointed out this issue could harm model training and

addressed it with normalization, regularization, and weak supervision. Wang et

al. [102] normalized solution equation annotation so that various types of equiv-

alent expressions are normalized to one fixed form. Contrastive learning [59] and

adversarial training [95] based on mathematical equivalency were applied as regu-

larization terms to guide the model beyond token level supervision. Some studies

have suggested that utilizing weak supervision solely based on answer numbers

can circumvent mathematical equivalency. However, existing methods still require

searching for potential arithmetic expressions and cannot completely bypass this

challenge [42].

In conclusion, the history of research in numerical reasoning has seen the evolu-

tion of rule-based, statistic-based, tree-based, deep learning-based, and large lan-

guage model-based methods. While LLMs have demonstrated tremendous success

across various NLP tasks, their performance in numerical reasoning lags behind

DL-based methods. One of the most crucial research challenges lies in addressing

the multitude of difficulties posed by mathematical equivalency. While numerous

studies have been conducted to tackle this issue, they have proven insufficient. In

the subsequent sections, we will provide a more detailed analysis of the challenges

posed by mathematical equivalency and propose our own method to address them.



Chapter 2

Preliminary Background

In this section, we first introduce the specific task forms and relevant datasets of

numerical reasoning in NLP. As shown in Figure 2.1, we then highlight the com-

mon characteristics of these tasks, emphasizing how their answers and annotations

are influenced by mathematical equivalency, which sets them apart from general

multi-hop reasoning and presents unique challenges. Within this thesis, we ad-

dress three key challenges that have emerged in this domain, namely the Costly

Expert Annotation Dilemma, Mismatch of Super, and Enormous Search Space

and False-Matching. For each challenge, we propose corresponding solutions to

tackle them effectively.

2.1 Tasks and Datasets of Numerical Reasoning

2.1.1 Solving Math Word Problems

Solving math word problems (MWP) is the task of mapping a natural language

description of a mathematical problem into its solution. These mathematical

problems were originally designed as application exercises for human students

studying mathematics. As such, they were artificially created to provide practical

contexts for applying mathematical concepts and skills. These problems are often

used to test the numerical reasoning abilities of models. Researchers employ

these problems as benchmarks to assess the performance and capabilities of NLP

systems. By presenting these problems to the models, researchers can evaluate

12
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Problem The distance between the two

places A and B is 660 km, the car

starting from A drives 32 km/h,

and the car starting from B drives

34 km/h. The two cars are start-

ing from the two places at the same

time in inverse direction. How

many hours later would the two

cars meet?

Equation x = 660 / ( 32 + 34 )

Answer 10

Figure 2.2: One example of MWP. Problem refers to the natural language de-

scriptions. Equation refers to the formal math equation. Answer refers to the

final quantity solution.

their ability to comprehend, analyze, and solve mathematical challenges.

As shown in Figure 2.2, under the supervised training setting, the model

takes in the natural language description of the math word problem and predicts

an equation solution sequence. Then the final answer is obtained by calculating

the value of the equation solution. Under the weakly supervised training setting,

only the answer value is given as gold annotation. The system extracts candidate

solution equations via searching or sampling strategies.

Pioneer studies include ALG514 [56], a classical dataset comprising 514 word

problems, as a foundation for addressing word problem challenges on small datasets.

Hosseini et al. [43] introduced AddSub, focusing on simple addition and subtrac-

tion problems. Roy et al. [93] and Roy and Roth [90] proposed SingleOp and

MultiArith, respectively, enabling control over the number of operators employed.

Unique in its incorporation of long sentence structures for elementary-level school

problems, SingleEq was introduced by Koncel-Kedziorski et al. [51]. AllArith, as

presented by Roy and Roth [91], serves as a subset combining AddSub, SingleEq,

and SingleOp. All datasets provide annotations for equations and answers.
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With the advancement of deep learning techniques, researchers have been con-

structing larger datasets to train and evaluate models. The aim is to enhance the

performance and generalization capability of these models. These larger-scale

datasets not only provide richer samples and diverse features but also assist mod-

els in better understanding and capturing complex patterns and relationships

within the data. MAWPS [52] is a curated dataset that includes previously pro-

posed datasets, and AsDIV-A [73] is a single-equation subset of MAWPS for

diagnostic analysis. Dolphin18k [44] is an early proprietary dataset evaluated pri-

marily with statistical solvers. AQuA-RAT [63] introduced a large crowd-sourced

dataset, offering explanations and rationales for word problems across various do-

mains, distinguishing itself from earlier datasets in terms of size and annotation

scope. Amini et al. [1] critically analyzed AQuA-RAT and created MathQA, a

core subset annotated with a predicate list to expand its utility. It should be noted

that MathQA is a subset of AQuA-RAT. GSM8k [21] is a recent single-equation

dataset, representing a large-scale version of AsDIV-A [73]. Math23K is a popular

Chinese dataset for single equation math word problem solving.

With deep learning approaches reaching performance levels comparable to hu-

man capabilities, researchers have noted that these models often focus on learning

shallow patterns rather than engaging in genuine numerical reasoning. Conse-

quently, multiple challenge datasets and adversarial datasets have been proposed

to address this limitation and evaluate the models’ ability to perform robust nu-

merical reasoning tasks. SVAMP [81] and adv-AsDIV [55] are new datasets that

build on AsDIV-A, challenging solvers to capture nuances in textual descriptions.

In this paper, we primarily focus on exploring datasets that center around

2-3 operators and primarily cater to the elementary level, based on the exist-

ing developments in the field and available models. Recently, more challenging

datasets have been proposed, which extend beyond the scope of this study. We

acknowledge that the datasets used in this research mainly revolve around basic

arithmetic operations, typically suitable for elementary school students. However,

it is important to note that in the future work section, we discuss the potential

transferability and applicability of our proposed methods to address the emerging

and more intricate datasets. We recognize the importance of addressing these
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more complex datasets and believe that our approach’s adaptability can pave the

way for further advancements in the field.

2.1.2 Numerical Question Answering

In addition to math word problems designed specifically to assess students’ math-

ematical abilities, there exists a broader category of question answering that uti-

lizes numerical reasoning skills. DROP [25] is a reading comprehension dataset

that requires the model to entail understanding a given passage and performing

numerical calculations to arrive at a specific numerical answer. EQUATE [87]

dataset considers quantitative natural language inference (NLI) questions. These

questions involve performing simple arithmetic calculations to accurately clas-

sify the relationship between a given premise and hypothesis. Various studies

investigate numerical reasoning with external commonsense knowledge, such as

science formulas, chemistry, temporal commonsense knowledge, geometry and so

on [75,86].

Another research direction explores another common scenario in numerical rea-

soning, which involves tabular data. Tabular data plays a significant role in various

domains, including finance, healthcare, and scientific research. This research line

focuses on tasks that require understanding and reasoning with numerical infor-

mation presented in tables, such as performing calculations, making comparisons,

and extracting insights. Numerous studies have delved into question answering

different types of tables, including database (DB) tables, flat web tables, and hi-

erarchical tables [16, 19, 49]. These investigations aim to address the challenges

associated with extracting relevant information from structured data sources and

providing accurate answers to queries. Moreover, there has been a notable focus

on domain-specific question answering tasks involving hybrid text-and-table data,

particularly in financial domains [17,116,120]. This research direction has gained

popularity due to the wide range of applications in areas such as financial analysis.

We show an example of numerical question answering in Figure 2.3. Given

a relatively long passage with hybrid table-and-text information, the model ex-

tracts useful evidence corresponding to the question and then predicts the solution

equation. The final answer value is obtained by calculating the equation. The
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annotation of such datasets is usually annotated in semantic parsing program

style.

2.2 Challenges and Proposed Methods

Numerical reasoning sets itself apart from other multi-hop question answering

tasks due to its inherent characteristic of having multiple mathematically equiv-

alent possible solutions. This characteristic of numerical reasoning directly gives

rise to several challenges.

2.2.1 Costly Expert Annotation Dilemma

Mathematical equivalency poses challenges for crowd-sourced workers to achieve

high annotation consistency, resulting in suboptimal quality. Therefore, in gen-

eral, numerical reasoning datasets tend to rely on expert annotations to ensure

higher quality and consistency, which significantly increases the cost of annota-

tion compared to other NLP tasks. Therefore, it is crucial to leverage limited

annotated samples effectively and develop strategies to address these challenges

in order to mitigate the high cost and improve the quality of numerical reasoning

models.

To address the aforementioned problem, we propose two innovative methods.

Firstly, we introduce a data augmentation technique that leverages the concept

of mathematical equivalency in Chapter 3. By reversing the mathematical logic

of math word problems, we generate new high-quality math problems that intro-

duce novel knowledge points. This augmentation process enriches the training

data, enabling the model to learn the underlying mathematical reasoning more

effectively.

Secondly, we propose a pretraining-based method to mitigate the impact of

noise and irrelevant variables in the model input in Chapter 4. We observe that

coarse-grained supervision of the whole solution program impedes the model’s

ability to learn the underlying numerical reasoning process. To overcome this

challenge, we introduce three pretraining tasks operating at both the whole pro-

gram and sub-program levels. These tasks include Variable Integrity Ranking,
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which guides the model to focus on useful variables; Variable Operator Predic-

tion, which decomposes the supervision into fine-grained single operator predic-

tion; and Variable Keyphrase Masking, which encourages the model to identify

key evidence from which sub-programs are derived.

Overall, our research addresses the challenge of costly annotation in numerical

reasoning tasks by proposing innovative methods such as data augmentation and

pretraining tasks. These approaches aim to enhance the training data quality and

improve the model’s ability to reason effectively in mathematical contexts.

2.2.2 Mismatch of Supervised Training Objective

During the supervised training process, mathematical equivalency causes a mis-

match of supervised training objective and task target. The model may predict

one possible mathematical solution, while the annotation provides another equiv-

alent solution. This mismatch between model predictions and annotations can

hinder the learning process and make it harder for the model to converge effec-

tively.

To tackle the interference caused by equivalent equations, we propose two

innovative methods. Firstly, we introduce a Contrastive Learning framework en-

hanced with textual information in Chapter 5. Solving math word problems

requires a comprehensive understanding of contextual natural language informa-

tion and the analysis of quantity relations. However, existing models often rely

on shallow heuristics and can be easily misled by small textual perturbations. To

overcome this, our Textual Enhanced Contrastive Learning framework enforces

the model to distinguish semantically similar examples that hold different math-

ematical logic. Through a self-supervised approach, we introduce subtle textual

variance by reordering or reconstructing problem statements. We then select the

most challenging samples, both from an equation and textual perspective, to guide

the model in learning their representations.

Secondly, we propose a method that leverages prompts to control equation

generation in math word problem solving in Chapter 6. Human students employ

diverse reasoning logics, which can lead to different potential equation solutions.

In contrast, conventional automatic solvers based on sequence-to-sequence models
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aim to decode a fixed solution equation supervised by human annotation. To

address this limitation, our approach involves leveraging a set of control codes to

guide the model’s consideration of specific reasoning logics. These control codes

facilitate the decoding of equation expressions that are transformed from human

references, enabling the model to explore different reasoning pathways.

Overall, our research addresses the interference caused by equivalent equations

during training in numerical reasoning tasks. Through the adoption of a Textual

Enhanced Contrastive Learning framework and the utilization of prompts to con-

trol equation generation, we aim to improve the model’s ability to handle the

complexity of math word problems and enhance its reasoning capabilities in the

presence of equivalent equations.

In this thesis, it is essential to acknowledge the collaborative efforts that have

contributed significantly to the research presented herein. I wish to declare that

Chapter 5 and Chapter 6 of this work are based on co-first author papers I have

had the privilege of co-authoring alongside Yibin Shen. The collaboration with

Yibin Shen has been instrumental in producing the valuable insights and findings

within these chapters. I have also explicitly outlined my individual contributions

to each respective chapter. Moreover, I have obtained the full and informed

agreement from Yibin Shen to utilize the co-first author papers in the composition

of this thesis.

2.2.3 Enormous Search Space and False-Matching of Weak Su-

pervision

Despite the absence of the problem of equivalent expressions annotation, weakly

supervised training still faces challenges arising from mathematical equivalency.

This mathematical equivalency not only affects data annotated in the form of

equations, but even when using a deterministic answer value as the annotation

instead of an equation or rationale with multiple equivalent forms, the search

space for preferred equations remains enormous due to mathematical equivalency.

Moreover, numerical coincidences can still lead to mathematical logic errors, re-

sulting in false-matching samples where the final answer is correct but the gener-

ated equations are incorrect. This introduces additional noise during the training
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process, making it more challenging to train models effectively.

We discuss a weakly supervised training approach that collects only answer

value annotations without rationales or equations in Chapter 7. To tackle this

challenge, we present a novel search algorithm ComSearch which employs a

combinatorial strategy for candidate equation searching. ComSearch effectively

compresses the search space by excluding mathematically equivalent equations,

enabling the algorithm to enumerate all possible equations and obtain high-quality

training data. Additionally, we address the issue of the false-matching problem,

which refers to the noise in pseudo labels that hold incorrect mathematical logic.

To denoise the pseudo labels, we propose a ranking model that improves the

quality of the training data.



Chapter 3

RODA: Reverse Operation

based Data Augmentation for

Solving Math Word Problems

3.1 Introduction

Given the complexity of mathematical equivalence and the challenges in anno-

tating high-quality samples, expert annotation becomes necessary, which signifi-

cantly increases the cost of annotation compared to other NLP tasks. In order to

mitigate these challenges and improve the quality of numerical reasoning models,

it is crucial to leverage the limited annotated samples effectively. However, de-

spite the efforts made so far, the available data size remains insufficient, and the

performance of existing approaches has reached a bottleneck. As a result, the pri-

mary consideration for enhancing the performance of solving math word problems

(MWP) is to explore methods to augment the existing data. By finding effective

ways to augment data, researchers can overcome the limitations imposed by the

scarcity of annotated samples and further improve the performance of MWP solv-

ing models. Figure 3.1 shows two examples which include math word problems

and their corresponding solution equations and results.

Data augmentation for NLP has been a critical and challenging research topic,

22
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MWP1 MWP2

The distance between city A and B is 660

km, the car starting from A drives 32

km/h, and the car starting fromB drives

34 km/h. The two cars are starting from

the two places at the same time head-

ing toward each other. How many

hours later would the two cars meet?

The car starting from A drives 32 km/h,

and the car starting from B drives 34

km/h. The two cars are starting from

the two places at the same time heading

toward each other. 10 hours later the two

cars would meet. What is the distance be-

tween city A and B?

Equation: x = 660/(32 + 34) Equation: x′ = 10 ∗ (32 + 34)

Knowledge: Time = Distance / Speed Knowledge: Distance = Time * Speed

Answer: 10 Answer: 660

Figure 3.1: Two MWP Examples. The solution equations and mathematical

knowledge of MWP1 and MWP2 are reversed to each other.

especially in the case of MWP solving. Traditional data augmentation methods

are mainly based on paraphrase generation, such as EDA [106], which randomly

edits words, and back translation [112], which translates the example to an auxil-

iary language and then back to the original language to paraphrase the example.

These methods have two key drawbacks when applied to MWPs.

First, due to the preciseness of mathematics, the text description of each

math word problem must be absolutely rigorous, so that even missing only one

keyword could make the information incomplete and the problem unsolvable. As

shown in Figure 3.1, all key information points of the problem marked in bold

cover nearly one-third of the text content. With any of the key points missed,

the problem would become meaningless. Therefore, in the task of MWP solving,

paraphrase-based methods may potentially produce noise, mislead the model and

degrade the performance. Second, the critical difficulty of MWPs solving lies in

linking mathematical knowledge points and reasoning logic with examples. Here

the mathematical knowledge points refer to formulae that can solve the MWP,

such as areacircle = pi∗radius2, while the reasoning logic refers to the abstractive

understanding of the relationship between these concepts, which is the desired

ability of the MWP solving model. Paraphrase-based methods only introduce

lexicon level variance but do not generate new examples on the mathematical level.



24 CHAPTER 6. Reverse Operation based Data Augmentation

Therefore, the performance improvement of paraphrase-based data augmentation

methods in the task of MWP solving is limited. Recently, a new research line of

logic-based data augmentation uses task-specific logic to construct new examples

for Natural Language Inference and Question Answering [2,34,46]. These methods

introduce reliable rule-based logic, which does not produce noise, to generate logic-

level new examples. However, existing methods are task specifically designed and

cannot be directly applied to MWP solving. Meanwhile, these methods are based

on one or two-step simple logic operations and are relatively simple.

In this chapter, unlike the previous practice of data augmentation, we in-

stead simulate human double-checking and propose an MWP generation method

to obtain more high-quality MWPs that are inferred through the reverse oper-

ation of the original problems. As we observe, when humans solve MWPs, a

common technique to guarantee accuracy is to perform double-checking on the

problem. As shown in Figure 3.1, MWP1 asks about the time that the two cars

have spent before meeting each other, and its solution implicitly holds the math-

ematical knowledge point that time = distance/speed. With this knowledge, we

can get the equation x = 660/(32 + 34), where 10 is the final answer of x and

denotes the spent time. To verify the correctness of the solution of MWP1, hu-

mans conceive a reverse problem MWP2 with the mathematical knowledge point

distance = time ∗ speed, which takes the answer of MWP1 (i.e., x = 10) as a

known quantity and the distance x′ as unknown. We can efficiently produce a

new math word problem in the reverse operation and ensure its solution quality.

Concretely, we can seek one known quantity (e.g., 660 in MWP1) in the original

problem and change its surrounding declarative description into an interrogative

sentence (i.e., the last sentence in MWP2). At the same time, we change the

original interrogative description about the unknown quantity into a declarative

statement with the original solution (e.g., x = 10) substituted (i.e., the next to

last sentence in MWP2). Then, with most content unchanged, we can obtain a

new math problem (e.g., MWP2) from the original problem (e.g., MWP1).

We can see that this kind of reversion-based data augmentation has the follow-

ing benefits: First, this way of generating new data is relatively simple and reliable

so that the key information will not be lost; Second, the reverse operation can infer
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new knowledge points which helps to learn mathematical reasoning logic; Third,

more high-quality data can be used to train the neural networks well. Next, we

combine this Reverse Operation based Data Augmentation (RODA) with seq2seq

models and conduct experiments on Math23K, the most influential large-scale

dataset for MWPs. To be noticed, our method could be easily adapted to any

supervised model on high-quality arithmetic MWP corpora with equation solu-

tions. Experimental results show that our method could benefit various models

and outperform previous state-of-the-art results on solving MWPs.

In summary, our contributions are three-fold:

• We follow the double-checking mechanism and propose the reverse operation

based data augmentation method, which is easy to apply and accurate.

• We show how our method can introduce new mathematical knowledge points

to the new examples and help to learn the reasoning logic.

• We effectively use data augmentation results in the MWP solving and achieve

the state-of-the-art on the Math23K dataset.

3.2 Related Work

3.2.1 Math Word Problem Solving

3.2.2 Data Augmentation

The two most popular methods for sentence-level data augmentation in NLP

are back translation [112] and EDA [106]. Yu et al. [112] used a high-quality

machine translation system to translate the original text into a new language

and then backward to perform paraphrase style data augmentation. Wei and

Zou [106] slightly modified the input sentence on the token level by performing

four kinds of operations: synonym replacement, random insertion, random swap,

and random deletion. The drawback of applying these two methods on MWPs is

that MWPs are very sensitive to even slight modifications; any key information

missed the problem would become unsolvable. In addition, these methods only

provide lexical level variance but no new reasoning knowledge.
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Recently due to the reliability of rule-based data augmentation in NLP, task-

specific logic rules for data augmentation have been explored in Natural Language

Inference (NLI) and Question Answering. Kang et al. [46] studied NLI-specific

logic-based data augmentation, which generates new examples by replacing tokens

or changing labels on the original training examples.They only used the logic op-

erations of NOT(¬) and equivalence(⇔). Asai and Hajishirzi [2] further extended

entailment(→) operation for common domain question answering data augmen-

tation by measuring the transitive consistency of pairs of questions. Gokhale et

al. [34] studied disjunction(∨) and conjunction(∧) operation for yes-no style vi-

sual question answering. All these studies involve only one or two steps of simple

logic. By contrast, our method uses reversed operation of complex mathemat-

ical computation and can introduce new reasoning logic in the generated new

examples.

3.3 Methodology

Given a high-quality MWP dataset, we propose RODA, producing new accurate

math word problems to enlarge the data scale. There is a linear correlation be-

tween the number of new questions generated and the number of known variables

in the question. Next, we can use the augmented dataset to improve the super-

vised MWP solving models.

3.3.1 Reversion based Data Augmentation

To perform data augmentation, we reverse the original problems in the dataset to

new problems, and the reversion process consists of three steps: number identifi-

cation, problem transformation, and equation generation. To ensure the quality

of the new data, the main criteria of our reversion process is “quality first quantity

second”, so that our method relies on some well-designed empirical rules in the

three steps.
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Number Identification

This stage consists of two steps. We first use an LSTM classifier to perform signif-

icant number identification and determine irrelevant numbers. Then we further

filter out numbers that cannot perform reversed-based operation and then use

exact match to map the numbers in the equation to the numbers in the question

text. The statistics of this stage are given in Table 3.4.

A MWP might contain various numbers that are irrelevant to the solution,

such as the date or description text such as ‘tenth grade student’. Following

Wang et al. [104]’s work, we perform significant number identification by building

an LSTM-based classifier to determine the significance of the numbers and filtering

out the irrelevant numbers. The classifier uses single layer LSTMs with 128 nodes

and a symmetric window of length 3. The classification performance can reach

around 99% accuracy.

In addition, the numbers in a math word problem do not necessarily map one

to one with the numbers in the corresponding solution equation. One number

may appear in the solution equation but do not appear in the word problem, and

vice versa. Thus, to conduct high-quality word problem reversion, we first need to

identify the valid numbers which can be converted to an unknown quantity using

the reverse logic of the original solution. Here, we propose a rule-based method

to identify the possible numbers for reversion. Four key rules are explained as

follows, and we also show their examples in Table 3.1.

1. Problem Number Duplication If a number appears more than once in

the problem, we filter this number out because we cannot map the numbers

in the text to the equation with an injective function. As shown in Table

3.1, we cannot know whether a separate ‘2’ is related to A or B, and thus it

is difficult for us to conduct a precise reversion.

2. Equation Number Duplication If a number appears more than once in

the equation, we filter this number out because it may not be capable of

being solved with a linear equation with one unknown variable. To solve

higher-order polynomial functions, introducing new operators such as root

operation would be essential. However, such operators are out-of-domain
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Rule MWP examples Num Equation

1 A has 4 piles of 2 apples and B has 2 apples.

B gave 1 apple to A, how many does A have

in total now?

2 x = 4 ∗ 2 + 1

2 The side length of a square is 2, what is the

area?

2 x = 2 ∗ 2

3 The side length of a cube is 4, what is the

volume?

4 & 3 x = 43

4 The diameter of a circle is 5, what is the

perimeter?

π x = π ∗ 5

Table 3.1: Examples of In-valid Numbers.

(OOD) with the original data and would introduce noise.

3. Power Operation If a number is involved with power operation, we filter

it out because the inverse operation, which is logarithmic operation or root

operation, is OOD. We filter out both the base number and the exponent

number.

4. Constant Term Numbers Constant term numbers are not applicable for

reverse operation, such as π and unit conversion terms.

We then perform exact match between the numbers in the question and the

equation to align the numbers.

Problem Transformation

After collecting a set of valid number candidates, we perform problem reversion

for each number to get a new transformed math word problem. The main work is

to convert the original question sentence into a declarative sentence with a definite

quantity and convert the sentence with the identified number into a question sen-

tence with its question point on the number. Specifically, for the first conversion,

we name the original question sentence as Q. From Q, we find the interrogative

pronoun according to a list compiled in advance and replace the pronoun with
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the answer of the original problem. Next, we adjust the word order to make the

sentence fluent and natural and get the declarative sentence D′.

For the second conversion, given the candidate number ci, we get the sentence

D, which contains ci. Next, we take ci as the question focus and change D into a

question sentence Q′. For different languages, the conversion process is different.

For example, for Chinese, the conversion is relatively simple and just replaces ci

with an interrogative pronoun such as “多少 (How many)” without the need of

adjusting word order.

We show the list of interrogative pronouns used for question conversion here

in Table 3.2. Some of the interrogative pronouns also have other meanings in the

declarative discourse unit, so we only detect them if they are in the last discourse

unit of the sentence.

Chinese English Translation

多少 How many/much

几分之几 the fraction number is

几 How many

=† =

求 Please solve

((())/(())) ((())/(()))

多 † how much more than

Table 3.2: A list of interrogative pronouns. † denotes this pronoun is only valid

when it is in the last discourse unit of the question.

For English problem transformation, we follow the manually encoded trans-

formation rules from Heilman et al. [40]. We extend the interrogative pronoun

candidates to the following list: how many, how much, how far, how tall, how

long, how fast, how old, how big, what fraction, what.

We then edit the original math word problem. We delete the two sentences

D and Q, and add D′ and Q′ at the end of the text. Then we get the new

transformed math word problem. Our problem transformation method is simple

but effective, which is the basis of producing new high-quality MWPs.
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Equation Generation

For each new transformed word problem, we need to generate its solution equation.

Similar to problem transformation, we derive the new solution equation according

to the solution equation of the original problem.

To make the process of generating the new equation clear, we take the two

MWPs in Figure 3.1 as examples. For the pre-identified number 660 in MWP1,

it will be changed into a variable (i.e., x′). At the same time, we substitute the

original variable x with its answer 10. Then we can get an intermediate equation

10 = x′/(32 + 34).

Figure 3.2: Example of equation conversion.

Algorithm 1 The algorithm of equation conversion

Input: Left part of medium equation l tr and right part of equation r tr

Output: Inverse equation in tree structure

1: root = r tr.root

2: num tr, var tr = find var(r tr)

3: while root! = x
′
do

4: l tree = rule(l tr, num tr, root)

5: r tr = var tr

6: root = r tr.root

7: num tr, var tr = find var(r tr)

8: end while

9: return l tr = x
′

Next, we need to convert this equation to its equivalent format where the
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Figure 3.3: Rules of equation reversion

variable x′ is located on the right side of the equal-sign alone. Figure 3.2 displays

the equation conversion result of our running example. To conduct equation

conversion, we design a recursive conversion algorithm based on the syntax tree

structure. We first construct a quasi-binary syntactic tree for the original math

equation. We denote the part on the left to the equal sign as f1(the formula

in stage 1). For the part right to the equal sign, we build a binary tree with

one operator op1 as the root node with two child trees. The child tree which

has the new variable x′ is marked as v1(the child tree with a variable in stage

1) and the other one as n1(the child tree without any variables in stage 1), and

this identifying process is named as function find var in Algorithm 1. This step
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Figure 3.4: Illustration of recursive equation conversion.

corresponds to the upper left part of Figure 3.4. Next, like the upper middle part

of Figure 3.4, we move n1 to the left side and get a new operator op′1 according

to equation reversion rules, which are summarized from the basic mathematical

computation. We show thee rules in Figure 3.3. Regarding f1 and n1 as two new

child trees and op′1 as the new root node, we can get a new tree f2, which is the

black circular ring in the upper right part of Figure 3.4, and we just use a single

node f2 to represent it in the following step.

Then, v1 is further broken down as a binary tree which is composed of the

root node op2 and the child trees n2 and v2 as shown in the lower-left part of

Figure 3.4. If we ignore the dotted circular sign of v1, in this state, the equation

has the same structure as the beginning state, so the following process will repeat

until vn has only one node x′. At this time, referring to the lower right part of

Figure 3.4, all nodes of numbers and operators are moved to the left side and only

the variable node x′ is left on the right side. The concrete process of equation

conversion is shown in Algorithm 1.

Since one math equation can be written in several equivalent forms (e.g.,

4 + 2 − 3 and 4 − 3 + 2), which brings noise to the model training, we conduct

equation normalization for all the original and generated equations. We follow the

criteria of Wang et al. [102] that if one equation could be converted into a shorter

one, then it should be shortened, and the order of the numbers in one equation

should follow their occurrence order in the problem text as much as possible.

Wang et al. [102] performed equation normalization by applying a series of rules
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that only work on limited cases such as a sequence of multiplication. Here we

increase the applicable scope. We also use the simplification algorithm supported

by sympy [72] that heuristically simplifies the equations and matches with human

writing regulations. We show further details of the algorithm in the appendices.

This equation normalization is essential for assuring the model performance

since the equations generated by the reverse operation are written in a completely

different style from that of the equations in the original data. The normalization

can avoid domain shift of the prediction target equations.

To be noticed, sympy would put negative numbers in the first position of one

equation during simplification, which causes the problem that one equation no

longer can form a binary abstract syntax tree. We also design an algorithm to

avoid this problem by moving the first addition term to the first position. We

show an example in Table 3.3.

Step Equation

Equation x = c− a− c+ (c ∗ a) + (b/b)

Sympy x = −a+ 1 + (a ∗ c)
Adjusted x = 1− a+ (a ∗ c)

Table 3.3: One example of equation normalization

We show the algorithm for removing the negative terms in the front of the

equation during equation normalization in Algorithm 2. To be noticed, this pro-

cess does not change the mathematical value of the equation but only how it is

written.

3.3.2 MWP Solving Model

Our data augmentation method can be combined with any preferred neural model.

Here, we adopt two seq2seq models and one classification model, then examine

their performance. First, we implement Liu at el. [65]’s prefix model, which is

a light and effective baseline. At the same time, to show whether an advanced

model can be further improved by our augmented data, we use the SOTA model

named Goal-driven tree-structured MWP solver (GTS) [109], which is an exten-
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Algorithm 2 The algorithm of removing negative terms

Input: Original Equation

Output: New Equation Written Form

1: while True do

2: if Brackets in Equation then

3: subs = list of sub-equation in the brackets;

4: for all sub-equation in subs do

5: Remove Negative(sub-equation)

6: end for

7: end if

8: if Equation[0]==’-’ then

9: Find the first add token;

10: Move the token to the front;

11: end if

12: end while

13: return Equation

sion of the prefix baseline model. We also build a classification model based on

Transfromers following Kushman et al. [56] and Robaidek et al. [89], which con-

siders the equation template as the label of one MWP example. Here, we briefly

introduce the three models.

For the prefix model, formally, the model takes a sequence of tokens {xi}ni=0

as the input and embeds them into a sequence of word embedding representa-

tions {ei}ni=0 which are fed into a bidirectional long short term memory network

(BiLSTM) encoder. Then two context-aware representations h
encf
i and hencbi are

calculated and concatenated as henci for each token. Then these representations

are given to the decoder to decode the output equation.

The decoder adopts a unidirectional LSTM to generate the output in an au-

toregressive manner. At each decoding time step t, the decoder calculates the

attention weight distribution {ait} on {henci } with the embedding edect of the out-

put of the previous time step yt−1 and the current hidden state hdect of the decoder

LSTM, and assigns them to the encoder outputs {henci } to form an attention-aware
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representation st which is finally fed to a Multi-layer Perceptron (MLP) layer to

generate the output token yt.

hdt = LSTM(hdect−1, e
dec
t ) (3.1)

st =

n∑
i=1

αi
t · henci

=
n∑

i=1

exp(henci · hdect )∑n
j=1 exp(h

enc
j · hdect )

· henci

(3.2)

The GTS model [109] further extends the prefix baseline with subtree rep-

resentations which can provide more information for the decoding process. A

recursive neural network is used to encode subtrees of the equation in a bottom-

up manner. The subtree representation of one token yt is calculated based on its

children nodes with the gate mechanism. With the subtree representations, this

model can also well use the information of the generated tokens to predict a new

token.

It is noted, for the seq2seq models, directly generating the solution equation

with numbers suffers from a serious out-of-vocabulary (OOV) problem since the

vocabulary of numbers is enormous. To address this problem, we follow Kush-

man et al. [56], which used equation templates instead of actual equations as the

prediction target of the model. The numbers in one MWP are notated as tempi,

where i denotes the order of the numbers that appear in the problem. Extra con-

stant numbers such as π and 1 are also added to the decoder vocabulary. Then

the OOV problem can be solved.

For the classification model, we follow Kushman et al. [56] and Robaidek et

al. [89], which encodes the question text and then classifies the corresponding

equation template. We add a [CLS] token to the question text and use a Trans-

former to encode the question text. We feed the feature vector of the [CLS]

position to a multi-layer perception network to classify the equation template.

To further improve the models, we mix and shuffle the augmented data with

the original data as the new training set of the models. It is noticed that our

method does not limit to these three models.
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3.4 Experiments

3.4.1 Experiment Setup

In our experiments, we mainly experiment on Math23K1 which is the most influ-

ential large scale dataset for MWP solving in the Chinese language. It contains

23,162 one unknown variable elementary school level MWPs with the correspond-

ing equation solutions. In train-test setting, the dataset is splitted to 21,162

training examples, 1,000 validation examples and 1,000 test examples.

For the classification model, we use Transformer base with 12 layer, 768 hidden

state size and 12 attention heads. The classification model has 5693 labels. We

train with a 16 batch size for 20 epoches. We use the SGD optimizer with a

learning rate of 2e-5 and weight decay of 0.01.

For the two seq2seq MWP solving models, we fix their embedding size to be

128. For the prefix baseline model, the dimension of encoder hidden state is set

to 512 while the dimension of decoder hidden state is 1024. For the GTS model,

the hidden state of both encoder and decoder is 512. We use Adam optimizer to

optimize these parameters. The batch size is 128. To compare the performance

with baselines fairly, GTS model is tested by both train-test setting same as the

other models, and also 5-fold cross validation setting same as the original chapter2,

while others are tested on the test set3. The experiments are done on GTX 1080Ti

GPU, with a runtime of 10 hours for prefix baseline, 110 hours for GTS and 15

hours for the classification model.

For data augmentation, we perform the reverse operation on the training set

of Math23K, which includes 21,162 MWPs. From these problems, we can get

58,699 numbers by using the LSTM-based classifier. At the same time, we filter

out 1,490 problems which are composed of only numbers and operators such as

’Please calculate 5+7*10’, because they can not give effective supervision to the

MWP solving models. We also exclude 7,399 numbers in the problems which are

not easy to be reversed, because they do not map one to one with the numbers

1Download link: https://github.com/SumbeeLei/Math EN
2We filter out the augmented samples of test set for each cross. So in the training stage,

models can only learn from the training set and their augmented samples.
3We use the same split as Wang et al. [102]. Only training set is used for augmentation.
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Type # Prop.

Original Problems 21,162 -

Filtered Problems 1,490 0.07

Original Numbers 58,699 2.77

Candidate Numbers 54,717 2.59

Irreversible Numbers 7,399 0.35

Augmented Problems 47,318 2.24

Table 3.4: The statistics of the data augmentation on the training set of Math23K.

”Prop.” stands for the proportion of the item compared with original problems.

Type # Prop.

Dev Set Templates 377 -

Original Covered 307 81.4

+ RODA 322 85.4

Table 3.5: The statistics of the template coverage of Math23K train set templates

on development set. ”Prop.” stands for the proportion of the item compared

with original problems.

in the solution equations as stated in Section 3.1. Finally we totally get 47,318

new problem-equation pairs. We can see, our data augmentation method suc-

cessfully generates new data whose size is more than two times the original data,

demonstrating the method’s ability for performing large-scale data augmentation

cheaply. We illustrate the statistics of the data augmentation results in Table 3.4.

We also show the statistics of template coverage on the development set of

the original training set and the augmented training set in Table 3.5. As we

can see our data augmentation method increased the template coverage of the

development set, reducing the rate of uncovered templates by 21.5%. This can

show how our method introduces new mathematical knowledge points and benefit

the model.
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Model Acc

Retrieval Cosine [89] 23.8%

Jaccard [89] 47.2%

Classification Transformer [89] 56.8%

Bi-LSTM [89] 57.9%

Generation DNS [104] 58.1%

BiLSTM+Suffix+EN [102] 66.7%

TreeLSTM [65] 69.0%

Group-Attention [58] 69.5%

Ensemble DNS+Retrieval [104] 64.7%

DNS+suffix+EN Ensemble [102] 68.4%

Classification Transformer Ours 54.9%

Transformer Ours+RODA 63.7%

Generation Prefix [65] 67.8%

Prefix+RODA 70.5%

GTS [109] 75.6%

GTS+RODA 77.9%

GTS† [109] 74.3%

GTS+RODA† 76.0%

Table 3.6: Math word problem solving accuracy on Math23K. † denotes that the

result is 5-fold cross validation performance. All other models are tested on the

test set.

3.4.2 MWP Solving Results

We first evaluate the MWP solving performance by comparing our methods with

other baseline methods. Here we name our Reverse Operation based Data Aug-

mentation method RODA. In this experiment, we use all the 47,318 augmented

data for training the prefix and GTS models. Table 3.6 shows the results of our

methods and other novel systems on the Math23k evaluated by the final answer

accuracy. In this table, we classify the MWP solving models as retrieval-based,

classification-based, generation-based and ensemble models. The retrieval-based
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models mainly calculate a similarity score for questions in the test set and the

questions in the training set and assign the template that has the highest similar-

ity [89, 101]. Cosine and Jaccard respectively denote the methods which adopt

the corresponding similarities. The classification-based models train a classifier to

predict an equation template for each problem in a multi-class classification man-

ner [56]. For retrieval and classification models, we use the results from Robaidek

et al. [89].

The generation-based models are the recent mainstream for MWP solving and

use end-to-end seq2seq models to directly generate an equation template. Wang

et al. [104] proposed the DNS model, which used seq2seq with significant num-

ber identification to generate an equation template. Wang et al. [102] improved

their model and proposed the Suf+EN model, which extends the DNS model

by decoding the suffix notation and performs equation normalization for prepro-

cessing. TreeLSTM [65] uses a top-down tree-structured decoder to predict the

equations. Group-Attention [58] uses various attention methods to capture the

intra-relation of the numbers. We also use two ensemble models DNS+Retrieval

and Suf+EN Ensemeble for comparison, which uses bagging to combine the

results of different models.

Our data augmentation method is exerted on two generation models Prefix [65]

and GTS [109] which have been introduced in Subsection 3.2. We choose these

models as they can somewhat be representative of generation-based methods,

especially GTS achieves the SOTA performance. From Table 3.6, we can see that

generation-based methods generally outperform retrieval-based and classification-

based methods. To show the efficiency of our method, we conduct experiments

on both the classification models and the SOTA generation models. We can see

that our method gains 8.8 points of improvement over our Transformer baseline

classification model. We also show that our RODA method can further promote

the current SOTA models: Prefix+RODA and GTS+RODA boost Prefix and

GTS by about 2.7 points and 2.3 points, respectively. Under 5-cross validation

setting, our model also improves GTS by 1.7 points. This also exhibits that more

high-quality data is useful for improving the performance of MWP solving.
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Data Data Prop. Acc.

Original only – 68.0%

RODA Only(2.24 times) – 50.0%

Orig+RODA 1:0.5 69.5%

Orig+RODA 1:1 69.8 %

Orig+RODA 1:1.5 70.9 %

Orig+RODA(All) 1:2.24 71.0%

Table 3.7: Effects of data augmentation by adjusting the augmentation proportion

on the devlopment set. The middle column denotes the proportion of original data

and augmented data.

3.4.3 Analysis of Data Augmentation

Here we further investigate how the augmented data improves the MWP solving

model. In consideration of the balance of experiment time and accuracy, we use

the Prefix model on the development set of Math23K for analysis.

Previous studies on data augmentation [112] show that too much augmented

data might harm the performance of the model. Thus, we experiment with what

percentage of our augmented data can best improve the MWP solving model.

We only use our augmented data to train the model and achieve the accuracy of

50%, still far lower than only using the original Math23k training data (68%).

The cause of this low performance could be caused by various reasons. First,

the number identification stage filters out various types of questions, that the

model can not deal with these unseen examples. Second, the new examples might

introduce noise, that the augmented problem is similar to the original one in

lexical terms and is hard to differ for the solver. Third, while our method can

cover more mathematical knowledge points, it does not completely match with

the original distribution. For example, considering the rectangle circumference

formula C = (a + b) × 2, the reversed formula a = C/2 − b would appear less in

the problem distribution. We leave these problems for future work.

We also consider combining the original data with different proportions of

augmentation data as training data whose performance is shown in Table 3.7.
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Model Acc

BT Only 45.6 %

RODA(1:1) Only 48.2%

RODA(1:2.24) Only 50.0%

Origin 68.0%

+ BT 68.2 %

+ RODA(1:1) 69.8%

+ Full RODA 71.0%

Table 3.8: Comparison with Back Translate data augmentation method.

We can see that, as the size of the augmented data increases, the performance

stably increases, which shows how the size of the training data affects the perfor-

mance. The model performs similarly when the proportion is 1.5 and using the

whole augmented data. Because the performance of the model has not decreased

along with the increase of augmented data, we use the full augmented data for

the reported results. This can demonstrate the reverse operation can infer new

knowledge points, which helps to learn the mathematical reasoning logic while

more high-quality data can be used to well train the neural networks.

We also compare our data augmentation method with another novel data aug-

mentation method, back-translate (BT) [112] . For the BT method, we translate

the problem text into English and then back to Chinese by Google Translate4. As

BT can only perform data augmentation with the 1:1 proportion of the original

data, we also control the size of our augmented data. Table 3.8 compares the

MWP solving results. As shown in Table 3.8, We can see that the performance of

BT has a significant gap with RODA, even when the data augmentation propor-

tion is the same. There are two reasons for such a performance gap. First, BT

may introduce more noise into the training data through the translation-based

paraphrase and degrade the model performance, while our method can better en-

sure data quality. Second, BT only paraphrases the same meaning on the lexicon

level, while our data augmentation method can introduce new knowledge points

4https://translate.google.com/
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# Chinese Text English Translation Equation Coh Cor

1 甲,乙两同学相距 ta米,同时相
向而行,乙同学速度为tb米/秒,

与此同 时, 一只小狗以 tc 米/

秒的速度,从甲身边跑向乙,遇
到乙后又以同 样的速度 跑向
甲,…如此往返,直到甲、乙同学
相遇,问在此段时间内,小狗共
跑了 td 米, 甲同学速度为多少
米/秒？

The distance between A and B

is ta meters. The two are head-

ing toward each other. The

speed of B is tb m/s. Mean-

time, a dog starts with A and

then runs back and forth be-

tween the two people with a

speed of tc m/s, until the two

people meet. During this du-

ration, the dog ran td meters.

What is the speed of A?

x = ta ∗ tc/td − tb 5 1

2 几个 小朋友 分 苹果 , 如果
每人分 ta 个 , 如果每人分 tb

个 , 少 tc 个 , 小朋友 有 td 人
, 就 余 多少 个？

A few children are sharing ap-

ples. If each child gets ta ap-

ples. If each child gets tb apples,

there would be a shortage of tc

apples. There are td children.

How many apples are left?

x = td ∗ (tb − ta)− tc 2 0

Table 3.9: Examples of the output from the Data Augmentation Module. ”Coh”

and ”Cor” stands for Coherence and Correctness in Table 3.11.

that helps to learn the mathematical reasoning logic.

3.4.4 Human Evaluation

To further examine the data quality of our augmented data, we perform hu-

man evaluation to examine the original data, back-translate augmented data, and

RODA data. We sample 100 MWPs from each dataset. 25 examples have two

numbers, 25 examples have three, 25 examples have four, and the last 25 have

five or more numbers. The sampling in each category is random. The evaluation

involves two aspects. The first is the coherence which is ranked between 1-5. This

examines whether the generated text is coherent. The second is correctness which

is classified as either 0 or 1. This examines whether the equation matches the

problem text. Two annotators participate in ranking the data. Table 3.11 lists

the average scores for each dataset with respect to the two metrics. From Table

3.11, we can see our method can generate new data which has only a small perfor-

mance gap with the original data. Compared to the BT method, our augmented
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data is of higher quality in both coherence and correctness. This can demonstrate

how our method is reliable so that the key information is not lost, which is also

why our augmented data can well boost the model performance.

Model Coherence Correctness

Original 4.27 0.92

BT 3.24 0.55

RODA 3.86 0.84

Table 3.11: Human evaluation on Math23K.

Here we show two augmented examples in Table 3.9. In case 1, this newly

produced example has coherent text and correct solution, even if the original

mathematical logic and description text is fairly complex. The original example

involves the numbers that the time used by A, B, and the dog is the same so that

it can form the problems for each of the 5 variables: the speed of A, B, and the

dog, the distance between A and B and the distance that the dog has run. In

this example, the original training data can be augmented into 4 new high-quality

question-answer pairs, and each of them holds a new mathematical knowledge

point, which demonstrates the effectiveness of our model. We also show an exam-

ple where our method failed in case 2. When swapping the order of the sentences,

the coreference resolution of apples in the final question has changed that it no

longer asks about the origin variable; therefore, the new reversed question would

no longer be natural nor correct. In the case that the sentence order swapping

would influence the coreference resolution of natural text, our method would no

longer work. Such error are caused since our question generation module does not

consider the dependency between discourses. Such kind of error could be reduced

with an additional discourse analysis module, which could be left for further work.

We show one example of comparison between BT and RODA in Table 3.10.

As we can see, during the paraphrase BT translates 中流 into 中游 and 沿岸 into

海岸, which makes the question no longer natural and reasonable. Meanwhile,

it leaves out a key information point 顺中流而下 that the question meaning has

completely changed and the equation no longer matches with the question. Such

kind of minor errors during the paraphrase would be fatal for MWP data aug-
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mentation that the key information is changed. The noisy new examples would

reduce the performance of the model. Meanwhile, our method RODA correctly

formed a natural reversed question with a new mathematical knowledge point

corresponding to the reversed equation.

3.4.5 A Study on English Dataset

Model Acc

GTS 68.2%

+ BT 70.3 %

+ Full RODA 70.7%

Table 3.12: Results on AllArith.

We also extend our data augmentation method to AllArith5 [91], which is a

high-quality English MWP dataset with 831 problems, to show how our method

works on an English dataset. As shown in Table 3.13, our data augmentation

method generated 715 new examples for AllArith, respectively. We use the

GTS model in this experiment and compare it with the BT data augmentation

method. The results are based on 5-cross validation following the split of Roy and

Roth [91].As we can see in Table 3.12, our model achieves performance improve-

ment when adding the augmented data, which demonstrates the generalization

ability of our method beyond language. Here the BT data also achieve perfor-

mance improvement, slightly lower than using our augmented data. We consider

the reason why our data augmentation method does not exhibit significant ad-

vantages over back translation for two reasons: First, the samples in Math23K

have more variables in average (2.77 for Math23K and 2.35 for AllArith), that

our method can generate more new augmented examples for Math23K; Second,

the samples in Math23K are more difficult in mathematical reasoning complexity,

our method can introduce new mathematical knowledge points that can benefit

the model to learn mathematical reasoning logic. In the future, we will research

how to produce more high-quality data.

5Download link:https://github.com/CogComp/arithmetic
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Type # Prop.

Original Problems 831 -

Filtered Problems 1 0.00

Original Numbers 1953 2.35

Candidate Numbers 1951 2.35

Irreversible Numbers 1236 1.49

Augmented Problems 715 0.86

Table 3.13: The statistics of the data augmentation on the full set of AllArith.

”Prop.” stands for the proportion of the item compared with original problems.

3.5 Summary of This Chapter

In this chapter, we propose the reverse operation based data augmentation for

MWP solving, which converts the question and equation via reverse operation.

Enlightened by how humans perform double-checking during calculation, the

method can perform cheap and accurate data augmentation that could be adapted

to any model. The augmented data also provides supervision of new mathematical

knowledge points that could benefit the model beyond paraphrasing the text. We

evaluate our method on Math23K and achieve state-of-the-art performance. In

comparison with a strong baseline Back Translation, we show how our method sig-

nificantly outperforms on a complex and large-scale dataset Math23k and achieve

comparable performance on a simple and small dataset AllArith.



Chapter 4

Comprehensive Solution

Program Centric Pretraining

for Table-and-Text Hybrid

Numerical Reasoning

4.1 Introduction

Given the challenges associated with the complexity of mathematical equivalence

and the high cost of expert annotation, researchers have been actively exploring

techniques to improve numerical reasoning models. This study aims to address

the challenges by leveraging limited annotated samples effectively and developing

strategies to mitigate the high cost.

The field of natural language processing has seen a growing interest in de-

veloping techniques for Question Answering (QA) style numerical reasoning on

both textual data [26,44,104] and tabular data [19]. Recent research has focused

on addressing the challenge of numerical reasoning over Table-and-Text hybrid

data [17], which is a rich area for applications such as financial analysis. As

demonstrated in Figure 4.1, the pipeline [17] first uses a retriever to extract a

subset of supporting evidence that contains the required variables from a long

47
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table-and-text hybrid passage. Then, a sequence-to-sequence program solver is

trained on the retrieved variables to predict the solution program, as shown in

the example of ‘divide(1760, add(279, 320))’. This solution program can be rep-

resented as an abstract syntax tree, as illustrated in the right section of Figure

4.1.

Such retrieve-then-solve framework, while simple, has limitations that make it

difficult for the model to learn the task effectively. One issue is that the retrieved

evidence could be noisy and contain irrelevant variables, which hinders the perfor-

mance of the program solver. As illustrated in Figure 4.1, the red-colored variables

‘170.1’ and ‘7’ are irrelevant to the question. Numerical reasoning demands high

precision, and systems are sensitive to noise. Studies on adversarial attacks for

numerical question answering [55,81,110] have shown that irrelevant information

can mislead the model and harm performance. The model may struggle to select

the correct variables for reasoning, leading to incorrect predictions. Another limi-

tation is that the program generation task requires the model to perform multiple

steps of sub-program construction to generate the final solution program tree,

which is a challenging task for deep learning systems [111], especially considering

the task involves table-specific operators that involve multiple variables such as

‘table average’. Additionally, the system only receives coarse-grained supervision

of the whole program during training, meaning it only knows the final program,

not which evidence each sub-program is derived from. This makes it difficult for

the model to learn about the underlying reasoning process and to generalize to

new examples.

In this chapter, we aim to tackle these challenges by introducing a novel

structured pretraining framework that effectively leverages annotated programs

obtained from supervised data. Our proposed framework encompasses three pre-

training tasks, from the whole program level to the sub-program level. Specifi-

cally, to enhance the model’s ability to distinguish between required and irrelevant

variables in retrieved evidence, we propose Variable Integrity Ranking pretraining

task. As illustrated in Figure 4.1, given two evidence and question pairs that

contain different sets of variables, such as orange ‘set 1’ that contains all required

variables and green ‘set 2’ that only contains partial required variables, the model
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is trained to rank which set of variables contains more required variables. The

model can learn to eliminate irrelevant variables and focus on useful supporting

evidence for reasoning.

In order to provide fine-grained supervision for the construction of sub-programs,

we propose two novel pretraining tasks, namely Variable Operator Prediction and

Variable Keyphrases Masking, which decompose the coarse-grained annotation

into sub-program level. We observe that the variables in the target program

can provide direct guidance for sub-program construction by breaking down the

program into the smallest sub-program unit consisting of two variables and an

operator. As demonstrated in Figure 4.1, given an evidence and question pair,

the model is trained to predict the operator (e.g., ‘add’ ) between two variables

(e.g., ‘279’ and ‘320’), where the decomposition of the final program provides the

supervision. This single-operator reasoning task helps the model learn the under-

lying reasoning of sub-program construction, thus allowing the model to perform

more accurate numerical reasoning. We also observe that keyphrases such as tech-

nical terms and dates often serve as critical information for the construction of

sub-program. As illustrated in Figure 4.1, given an evidence and question pair,

the model is trained to recover the masked keywords describing the variables (e.g.,

‘Units’ ) by considering other pieces of evidence and inferring which variable infor-

mation is required to answer the question. This allows the model to understand

how keyphrases information determines the sub-program construction.

In the remaining of the chapter, we introduce task settings and baseline model

in Section 4.2, methodology of our three pretraining tasks in Section 4.3, exper-

imental settings of the dataset, evaluation metric and implementation details in

Section 4.4, results of applying the three pretraining tasks to existing transformer-

based pretrained language models (PLMs), ablation study and case study in Sec-

tion 4.5, and related works in Section 4.6.

4.2 Preliminary Background

As per the methodology outlined by Chen et al. [17], for each example in the

training data, a hybrid table-and-text hybrid passage, a question Q, a solution
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program P , and an annotation of the gold evidence set are provided. The cells

in the table are transformed into sentences by concatenating the row and column

headers using a template. For example, the purple cell labeled ‘Units’ in Figure

4.1 can be transformed into the sentence ‘The Charlotte at Midtown of Units is

279’. The cells within the same row are concatenated to form a single piece of

evidence.

We leverage FinQANet [17] as the numerical reasoning model. It is composed

of two main components: an evidence retriever that first retrieves the relevant evi-

dence from the input financial report, followed by a program solver that generates

the solution program.

Evidence Retriever The original hybrid passage forms an evidence candidate

sentence set S = s1, ...sn, and the gold evidence forms a set of sentences Sgold =

{sgold1 , ...sgoldk }. The objective of the evidence retriever is to assign a score to

each sentence in S, which reflects the likelihood of it appearing in Sgold. Each

candidate supporting evidence sentence si is concatenated with the question and

then passed through a binary classifier. The top-n retrieved facts, as determined

by the scores of the classifier, are reordered as they appear in the passage and

utilized as input for the program solver.

Program Solver The program solver is an extension of sequence-to-sequence

models, which takes the retrieved supporting evidence as the encoder input. The

decoding target is a flattened representation of the solution program. For example,

the program ‘divide(1760, add(279, 320))’ is flattened to add(279, 320), divide(1760,#0),

where #0 denotes the first decoded sub-program add(279, 320). To enhance the

model’s ability of capturing structural information provided by the decoding his-

tory of sub-programs, the representations of these sub-programs are also provided

as input to the decoder, in addition to the encoder outputs.

4.3 Methodology

Our proposed approach applies the three pretraining tasks to a universal encoder

for the three tasks. We then use the pretrained model to initialize the FinQA re-
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triever and solver encoder for task-specific fine-tuning. The construction pipeline

of the pretraining task data is depicted in Figure 4.2. In Section 4.3.1, we introduce

Variable Integrity Ranking (VIR), which utilizes whole program level supervision

to guide the model to contextually learn which variables are required. In Sec-

tion 4.3.2 and Section 4.3.3, we present two sub-program level pretraining tasks:

Variable Operator Prediction (VOP), which leverages fine-grained supervision

to enable the model to learn single operator reasoning, and Variable Keyphrase

Masking (VKM), which provides immediate guidance for the model to benefit

from the reasoning of using keyphrases to construct sub-programs. We perform

the pretraining using a multi-task training strategy, which is described in Section

4.3.4.

4.3.1 VIR: Variable Integrity Ranking

This pretraining task aims to train the model to rank the number of gold evidence

pieces in a question and evidence sentence, i.e., variable integrity levels, aiming to

improve the model’s ability to distinguish between required and irrelevant vari-

ables. In order to construct examples with varying integrity levels, as depicted in

Figure 4.2, a bag of sentences is selected from both gold (green) evidence and ir-

relevant (red) evidence within the passage to form pseudo-evidence sets Ei, where

the integrity level i signifies the number of irrelevant evidence included. Conse-

quently, smaller i sets correspond to higher integrity. These generated sets are

subsequently utilized to train the model in the learning-to-rank framework.

Specifically, given an example from the training data, the gold evidence set

E0 includes all the required variables and is thus defined as the level 0. To

construct subsequent evidence sets, one gold evidence sgoldj is selected from Ei,

and replaced with irrelevant evidence randomly drawn from the original passage

S. This replacement process is repeated k times, resulting in the collection of

k + 1 pseudo evidence sets E0, ...Ek. These sets are subsequently utilized for

training the model in the learning-to-rank framework by creating evidence set

pairs, denoted as (Eu, Ev)|kv=u+1|
k−1
u=0, yielding a total of (k + 1) ∗ k/2 pairs for

pretraining.

In order to rank the integrity of variables, we employ a pairwise learning-
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to-rank algorithm, RankNet [10]. The evidence set pair (Eu, Ev) is separately

concatenated with the question text Q and fed into a tranformer-based PLM

Encoder. The representations (hu, hv) of the example are obtained by utilizing

the [CLS] token representations. Then, the representations are mapped by one

layer of feed-forward network (FFN) and activation function tanh to a single

dimension score (su, sv), where a higher score stands for higher variable integrity

level.

hu = Encoder[CLS](Q;Eu)

su = tanh(FFN(hu))
(4.1)

The final loss is calculated by Binary Cross-Entropy over the subtraction of

the two scores:

Lrank = BCE(su − sv) (4.2)

4.3.2 VOP: Variable Operator Prediction

The proposed model is trained to predict the operator between two operands

within a given question and evidence sequence. As illustrated in Figure 4.2,

the program divide(1760, add(279, 320)) can be decomposed into sub-programs

add(279, 320) and divide(1760,#0). The latter sub-program contains an interme-

diate operand, for which the representation does not explicitly exist in text. Thus

to construct the training examples, the original solution program is decomposed,

and the sub-programs in which both operands are variables are extracted.

We adopt the corresponding descriptive phrase for each operand as its repre-

sentation, as opposed to previous studies that use the numerical variable alone [18].

For instance, consider the sentence, ”The total debt was $28.5 billion on Decem-

ber 31, 2015.” The phrase representation used as the operand would be VP ”was

$28.5 billion on December 31, 2015.” By utilizing phrase representations, we can

capture the contextual information and convey the intended message more effec-

tively, as the numerical variable lacks inherent semantic meaning. Specifically, for

variables from the table, we consider the unit description sentence; for variables

from plain text, we consider the constituency parsing VP or PP ancestor node of

the variable, which has a NP sibling node.
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The operator prediction task treats the operator yop as a relation between the

operand variables and employs relation classification methods [4,119] to construct

the operator prediction module. However, unlike relation classification tasks, some

program functions may have more than two operands (e.g., table sum can have

three or more operands). So instead of concatenating the token representations,

the final representation hop of the operator is calculated by averaging the PLM

Encoder representations h0, ...hm of the m operands’ first token. A feed-forward

network (FFN) and softmax function map the representation to the operator

prediction. The final loss is defined as:

hop = avg(h0, ...hm)

Lop = NLL(softmax(FFN(hop), yop)
(4.3)

Where yop belongs to {‘add’, ‘subtract’, ‘multiply’, ‘divide’, ‘exp’, ‘greater’,

‘table sum’, ‘table average’, ‘table max’, ‘table min’}.

4.3.3 VKM: Variable Keyphrase Masking

This task trains the model to recover masked keyphrases that describes the vari-

ables from a masked question and evidence sequence example. We leverage two

keyphrase extraction methods. To effectively extract keyphrases that describe the

required variables, we use cell-based evidence that contains less noise of irrelevant

variables.

First, we use TextRank [74] over the concatenation of the question text and

the gold evidence to extract keyphrases. TextRank constructs a graph over tokens

considering co-occurrence. Then PageRank [78] algorithm is applied over the

token graph to rank token importance. We only use the keyphrases that appear

twice or more for masking, to ensure they are valid descriptions for the required

variables.

Second, we consider a feature of table data, that headers naturally form

keyphrases that describe the variables. However, not all headers could be re-

constructed given the context, such as ‘The acklen west end’ in Figure 4.2, the

name of this community is only given in the table row. We use the headers that
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appear twice or more for keyphrase masking, that these headers describe more

than one variable, implying the relation of two or more variables.

We follow the Masked Language Model pretraining of BERT [24] to train the

model to recover the keyphrases. Given the concatenation of question and cell-

based evidence, each keyphrase is randomly masked for once occurrence. The

masked input text is given to the transformer-based language model, and the

model is trained to predict the token at the masked positions with Cross Entropy

Loss Lmask.

4.3.4 Multi-task Pretraining

To perform multi-task training, we leverage a streamlined version of MT-DNN [66,

67]. We construct fixed mini-batches {bt}, that in each mini-batch all examples are

of the same pretraining task t. In each training step, a mini-batch bt is selected

and the model is updated according to the task-specific loss Lt for the task t.

This optimization procedure could be seen as an approximation of the sum of

multi-task objectives Lrank, Lop and Lmask.

4.4 Experiments

4.4.1 Dataset

In this study, we conducted experiments using two datasets: the FinQA dataset [17]

and the more challenging MultiHiertt (MH) dataset [116] as shown in Table 4.1.

FinQA utilizes flat tables and each passage only has one table. MultiHiertt

presents a higher level of complexity, which contains both span prediction and

program prediction questions and features an average of 3.89 hierarchical tables

per example.

To the best of our knowledge, the TAT-QA dataset [120] is the only other

dataset that investigates hybrid table-and-text numerical reasoning. However,

the experimental setups and textual domains of TAT-QA are highly similar to

those of FinQA.
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Dataset #Q #Train/Dev/Test #Op. Max./Avg. #E. Max./Avg.

FinQA 8,281 6,251/883/1,147 6/1.54 9/1.71

MH 10,440 7,830/1,044/1,566 24/1.74 20/2.74

Table 4.1: Statistics of FinQA and MultiHiertt. #Q denotes the total number of

questions. #Op. denotes the number of the operator in the program solution per

example. #E. denotes the number of gold evidence pieces per example.

4.4.2 Evaluation Metric

We follow Chen et al. [17] and evaluate the overall performance of FinQA dataset

using two metrics: execution accuracy (exe) and program accuracy (prog). For

MultiHiertt, we follow Zhao et al. [116] and report exact matching (EM) and

adopted numeracy-focused F1.

To examine the performance of the retriever, we report the top-3 recall (R@3)

and top-5 recall (R@5) of the gold evidence on FinQA since it only has program

solution questions. The recall metric denotes the proportion of successfully re-

trieved gold evidence out of the total gold evidence.

4.4.3 Implementation Details

Following FinQANet, we use BERT-Base [24] for the retriever and give the

comparison of our method and the baseline on two PLMs for the program solver:

BERT-Base and RoBERTa-Large [68] to demonstrate the effectiveness of our

method on different scales of PLMs and different pretraining strategies.

For the retriever, we do not apply VOP and VKM, which are designed for

sub-program construction. We observe that the retriever needs to handle a large

volume of irrelevant information. To imitate the massive negative samples, we add

an additional irrelevant evidence to the ranking sets during pretraining, namely

noisy Variable Integrity Ranking (NVIR) for the retriever. For the program

solver, we apply all three pretraining tasks.

For MultiHiertt, we follow Zhao et al. [117] and extend FinQANet with a

question type classification module and span prediction module to solve span

prediction questions. We use vanilla PLMs for these modules since they do not
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Model PLM
FinQA Dev(%) FinQA Test(%) MH Dev(%) MH Test(%)

exe prog exe prog EM F1 EM F1

NeRd B-B 23.83 22.56 48.57 46.76 - - - -

Longformer - 47.53 45.37 21.90 20.48 2.71 6.93 2.86 6.23

ELASTIC R-L - - 62.16 57.54 - - - -

FinQANet B-B 52.10 49.83 51.43 49.26 35.69 37.81 34.32 36.17

Ours B-B 55.58 52.32 55.70 53.55 39.65 40.40 37.35 37.74

FinQANet R-L 63.19 61.11 61.95 59.81 37.05 39.96 36.22 38.43

Ours R-L 66.82 63.49 65.51 63.28 43.20 43.94 41.70 42.09

Expert - - - 91.16 87.49 - - 83.12 87.03

Crowd - - - 50.68 48.17 - - - -

Table 4.2: Main results of our method and baselines. Dev denotes performance

on the development set. Test denotes performance on the test set. PLM denotes

the PLM used for program solver.

involve numerical reasoning.

Our method is implemented using Pytorch [80] and Transformers [108]. BERT-

based models are trained on an NVIDIA 3090 GPU with 24G memory for approx-

imately 12 hours, while Roberta-large models are trained on an NVIDIA A100

GPU with 40G memory for approximately 24 hours. For pretraining, we use a

batch size of 4 and trained for 5 epochs. The initial learning rate is set to 5e-6,

and we employ a warm-up proportion of 0.1.

For fine-tuning, we followed the hyperparameters of FinQANet [17], except for

the learning rate. We observed that training failed to converge using the original

settings on transformer-large PLMs, and thus add a cosine learning rate scheduler

with 50 steps of warm-up, gradient clipping with a maximum norm of 1.0, and

weight decay of 1e-5 to avoid gradient explosion. To prevent overfitting, we utilized

loss-based early stopping with the patience of 30 epochs and then selected the

best model among the patience period for testing using development set accuracy.

We report results based on the average of three fixed random seeds. The top-3

retrieved evidence scored by the retriever is used as input for the program solver.
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Model
Dev Test

R@3 R@5 R@3 R@5

BERT-Base 90.47 93.91 88.98 93.56

VIR 90.97 94.22 89.28 94.08

NVIR 91.66 95.12 90.05 93.66

Table 4.3: Results of retriever performance on devlopment set and test set. R@n

denotes the top-n retriever recall of gold evidence. VIR denotes using Variable

Integrity Ranking as pretraining task. NVIR denotes using noisy Variable In-

tegrity Ranking as pretraining task.

4.5 Results and Analysis

4.5.1 Main Results

The experiment results are shown in Table 4.2. We compare our method with var-

ious competitive methods1. NeRD [86] assigns plus, minus or zero to all variables

and sums the signed variables. Longformer [5] uses a PLM designed for long

text as the encoder and takes in all evidence text as the input. ELASTIC [114]

uses an adapted program solver that separates the generation of operators and

operands; Crowd and Expert refers to crowd workers and professional expert

human performance reported in Chen et al. [17], where the latter result serves as

an upper bound of systems. FinQANet is results of our re-implementation of

the baseline model as described in section 4.2.

Our method surpasses all baselines and achieves the best performance on both

PLMs. Specifically, on FinQA test set we achieve 4.37% execution accuracy and

4.29% program accuracy improvement with BERT-Base solver, and 3.56% execu-

tion accuracy and 3.47% program accuracy improvement with RoBERTa-Large

solver; on MultiHiertt test set we achieve 3.03% EM and 1.57% F1 improve-

ment with BERT-Base solver, and 4.48% EM and 3.66% F1 improvement with

RoBERTa-Large solver. These results demonstrate the effectiveness of our whole

1As the official github implementation states, there was a data-leakage in the early version of

FinQA dataset, all results reported in this chapter remove this bug and could exist discrepancies

with the results in the original chapter.
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program and sub-program level pretraining approach.

4.5.2 Ablation Studies

To further understand the performance of our method, we conducted ablation

studies to break down the performance of each component. We focus on FinQA

dataset since it only contains program solution problems and explicitly shows the

improvement of numerical reasoning.

Retriever Recall In Table 4.3, we present a comparison of the retriever per-

formance using different pretraining settings. Our proposed method outperforms

the BERT-Base baseline on all evaluation metrics under both settings of Variable

Integrity Ranking. Specifically, NVIR achieves the best top-3 recall on both the

development set and test set, gaining 1.19% points and 1.07% points of improve-

ment, respectively. Additionally, VIR outperforms the baselines and achieves the

best top-5 recall performance on the test set. These results demonstrate that our

whole program level pretraining task is beneficial for the retriever, as it helps the

model learn to distinguish irrelevant evidence. Furthermore, the noisy Variable

Integrity Ranking setting further enhances the model’s ability to extract evidence

from massive negative irrelevant examples, although this advantage diminishes as

the number of retrieved evidence increases.

Program Prediction Accuracy To investigate how the pretraining tasks ben-

efit the final program prediction, we conducted an ablation study evaluating the

overall execution accuracy and program accuracy performance. As shown in Ta-

ble 4.4, our method substantially improves program prediction results. Specifi-

cally, the retriever NVIR on the test set gains 0.79% execution accuracy and

0.61% program accuracy with BERT-Base as the program solver, and 1.43%

execution accuracy and 1.57% program accuracy with RoBERTa-Large as the

program solver. The improvement in retriever recall, resulting from the whole

program level pretraining, is directly reflected in the final prediction accuracy.

For the program solver, we examine the performance of using the three pretrain-

ing tasks separately, to verify their individual effectiveness. We observed that all
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R P-S
Dev(acc/%) Test(acc/%)

exe prog exe prog

BERT-Base

– – 52.10 49.83 51.43 49.26

NVIR – 53.00 50.85 52.22 49.87

NVIR VIR 54.81 52.22 53.96 51.22

NVIR VOP 53.22 51.64 52.97 51.04

NVIR VKM 52.10 49.60 52.57 50.13

NVIR ALL 55.58 52.32 55.70 53.55

RoBERTa-Large

– – 63.19 61.11 61.95 59.81

NVIR – 65.57 62.40 63.38 61.38

NVIR VIR 66.59 63.65 64.87 62.86

NVIR VOP 66.16 62.28 64.44 61.60

NVIR VKM 65.46 62.51 64.60 62.25

NVIR ALL 66.82 63.49 65.51 63.28

Table 4.4: Ablation study using different pretraining tasks. R denotes retriever

and P-S denotes program solver. – denotes the PLM baselines with no additional

pretraining. VOP/VKM denotes using Variable Operator Prediction/Variable

Keyphrase Masking as pretraining task. All denotes using all three pretraining

tasks.

three pretraining tasks improve the performance compared to using no auxiliary

pretraining tasks. Among the three tasks, VIR achieves the most improvement,

1.74% execution accuracy and 1.35% program accuracy improvement on BERT-

Base, and 1.49% execution accuracy and 1.48% program accuracy improvement

on RoBERTa-Large. These results show that distinguishing the required and ir-

relevant variables is crucial for the task. Additionally, the two sub-program level

tasks also improved the test set accuracy of the program solver on both PLMs,

demonstrating the effectiveness of fine-grain level supervision. We achieved the

best results on both PLMs applying all three tasks on the program solver.
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Dataset Task VIR VOP VKM All

FinQA

VIR 93.78 - - 94.91

VOP - 87.74 - 92.20

VKM - - 52.43 68.37

MH

VIR 93.62 - - 96.88

VOP - 83.17 - 86.92

VKM - - 58.37 71.77

Table 4.5: Results of pretraining tasks accuracy.

4.5.3 Pretraining Task Performance

To investigate the model’s ability to fit the objectives of the auxiliary tasks, we

examined the RoBERTa-Large encoder performance of the three pretraining tasks

on the FinQA and MH development set. As shown in Table 4.5, the model

is able to fit the objectives of the three tasks, achieving high accuracy of over

85% accuracy for VIR and VOP. Because long consecutive tokens are masked in

VKM, the task is relatively challenging. We observed that multi-task pretraining

can benefit the results of each individual task. These results demonstrate that

jointly training the three tasks can further improve the model’s ability to examine

required variables at the whole program level and construct sub-programs at the

sub-program level.

4.5.4 Case Study

As shown in Figure 4.3, we conducted a case study on FinQA dataset to fur-

ther investigate how our method improves the whole program and sub-program

reasoning of the model. We compared the results of the original solver and our

proposal using RoBERTa-Large, given the same NVIR retriever inputs. In case 1,

while the baseline found the required variables, it failed to construct the ‘divide’

sub-program. However, our method, benefiting from fine-grain supervision, suc-

cessfully predicted the correct program. In case 2, although the baseline model

predicted the correct equation skeleton, it did not capture the information of

‘consolidated subsidiaries’ and was misled by the irrelevant ‘Minority Interests’
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evidence in the model input when selecting variables. The Variable Integrity

Ranking guides the model to focus on the required variables and generate the

correct solution program. In case 3, although both systems captured the correct

variable and operator information, they could not perform unit conversion of ‘mil-

lion’ and ‘percentage’ and failed the prediction. The model needs further guidance

to understand numerical concepts such as unit conversion, which we consider as

future work.

4.6 Related Works

4.6.1 Numerical Reasoning

Machine Reading Comprehension (MRC) style tasks predict a span or an option

from multi-choice, such as DROP [26], which predicts a text or number span out

of Wikipedia documents and questions and NumGLUE [75] that evaluates eight

tasks that require simple arithmetic understanding. Solution prediction style tasks

predict a semantic parsing style program such as MathQA [1], a mathematical

equation such as Math23K [104] and MAWPs [52], or a rational textual description

of the reasoning process [21]. For tabular numerical reasoning, HiTab [19] dataset

considers numerical reasoning question and program pairs on hierarchical tables.

For Table-and-Text Hybrid numerical reasoning, FinQA [17], TAT-QA [120]

and MultiHierr [116] consider numerical reasoning on financial reports. All ques-

tions in FinQA require program solution prediction, while a proportion of ques-

tions in TAT-QA and MultiHierr require span prediction.

4.6.2 Pretraining for Question Answering

Various post-pretraining methods have been proposed for question answering.

Span prediction tasks are utilized to benefit MRC [23, 33, 45, 85], which also use

token masking recovery. They aim to use cloze-like data to learn MRC, while our

approach focuses on fine-grain level sub-tree construction. To enhance numeri-

cal reasoning skills of MRC systems, Geva et al. [32] and Pi et al. [82] pretrains

the model to generate code programs and equations. Feng et al [28] maps en-

tity representations with numbers representations for Knowledge-Graph question
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answering.

The closest studies to our method are MWP-BERT [61] and FORTAP [18]

that consider solution prediction style numerical reasoning. Both studies leverage

a series of pretraining tasks to understand value magnitude and predict com-

ponents of the solution program, and the most similar task to our proposal is

operator prediction. However, their studies limit to considering only the variable

number for pretraining, while our proposal considers the contextual information

of operands.

4.7 Summary of This Chapter

In this chapter, we propose three solution program centric auxiliary pretraining

tasks at both the whole program level and sub-program level. At the whole-

program level, we propose the Variable Integrity Ranking pretraining task, which

guides the model to distinguish required and irrelevant variables in the noisy input.

To further enhance the model’s ability to learn the underlying reasoning process,

we propose two additional pretraining tasks: Variable Operator Prediction and

Variable Keyphrase Masking. These tasks help the model perform accurate sub-

program construction. Our experimental results demonstrate the effectiveness of

our method, showcasing substantial improvement on two datasets, namely FinQA

and MultiHiertt. The improvements are observed across PLMs of different scales.

These results highlight the potential of leveraging program annotations and un-

derscore the need for further exploration of various pretraining methods in future

studies.



Chapter 5

Textual Enhanced Contrastive

Learning for Solving Math

Word Problems

5.1 Introduction

The challenges encountered during the training process, such as noise introduced

by exposure bias in sequence-to-sequence (seq2seq) models and the mismatch be-

tween model predictions and annotations, highlight the complexity of solving math

word problems (MWPs). It is evident that addressing these challenges requires a

deeper understanding of the contextual information rather than relying solely on

shallow keyword matching. For example, as shown in Figure 5.1, while the first

problem shares high token-level overlapping with the third problem, the underly-

ing mathematical logic is different. While on the other hand, the first and second

problems have very low similarity at the textual level, while the equation solution

is the same. The challenge of the task is that the underlying mathematical logic

would change even with minor modifications in the text. While neural network

based models have greatly boosted the performance on benchmarks datasets, Pa-

tel et al. [81] argued that state-of-the-art (SOTA) models use shallow heuristics

to solve a majority of word problems, and struggle to solve challenge sets that

66
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Problem:  
 Dave bought  boxes of chocolate candy and gave 

to his little brother. If each box has  pieces inside it, how
many pieces did Dave still have? 

 

Different Textual, Similar logic:  
 A new building needed  windows. The builder had

already installed  of them. if it takes  hours to install
each window how long will it take him to install the rest? 

 

Similar Textual, Different Logic:  
 For halloween Faye got  pieces of candy. she ate 

 pieces the first night and then her sister gave her 
more pieces. How many pieces of candy does Faye have
now?  

 

Figure 5.1: Example of positive data point P+ = (T+, E+) and negative data

point P− = (T−, E−) for an anchor P = (T,E).

have only small textual variations between examples.

Motivated by recent progress in contrastive learning methods, which is a flex-

ible framework that has been successfully employed to representation learning

in various fields [20, 27, 31], we propose Textual Enhanced Contrastive Learning,

which is an end-to-end framework that uses both textual and mathematical logic

information to build effective representations. For each anchor data point, we

find the hard example triplet pair, which consists of a textual-different but logic-

similar positive data point P+, and a textual-similar but logic-different negative

data point P−. Our method aims to learn an embedding space where the vector

representations of P and P+ in Figure 5.1 are mapped close together, since they

hold the same mathematical logic even though the textual expression is entirely

different; on the other hand, because P and P− have similar textual expression

but different mathematical logic, their vector representations could be separated
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apart.

While previous studies also used Contrastive Learning to improve represen-

tations for solving MWPs [59], their method is limited to supervised contrastive

learning, ignores textual information during constructing the contrastive learn-

ing pairs and requires two-step pre-training and re-training. Our method pushes

the model to learn better text representations and understand the most minor

textual variance from these textual enhanced hard samples from both supervised

and self-supervised perspectives. Self-supervised contrastive learning encourages

the model to learn relevant features by constructing contrasting views of the same

data, promoting a deeper understanding of the underlying data distribution. This

leads to improved generalization and performance on downstream tasks. Mean-

while, self-supervised contrastive learning is more robust to noisy or erroneous

labels, as it inherently learns to distinguish relevant information from irrelevant

noise. Overall, these advantages position self-supervised contrastive learning as

a powerful and promising paradigm for representation learning in the absence of

traditional supervision.

To build such triplet pairs, we use a retrieval-based method to search in the

training data. We consider the equation annotation as the representation of the

mathematical logic in the example, and retrieve a positive and negative bag of

data points according to equation similarity. Then we further use textual simi-

larity to choose the hard examples in the bags, where positive examples have low

textual similarity with the anchor and vice versa. Given such hard sample data,

Contrastive Learning could empower the representations by leading the model to

distinguish these potential disorienting examples in the training stage.

Such approaches to retrieving triplet pairs from human-annotated training

data via label annotation are considered as supervised contrastive learning. An-

other research line of contrastive learning is self-supervised contrastive learning,

which does not require labeled data and use data augmentation methods to gener-

ate the positive or negative data points [15,36,39]. In the task of solving MWPs,

we can leverage self-supervised supervision by generating new examples via per-

forming synchronized changes to text and equations. The generated data is nat-

urally hard sample data, because the textual expression is similar to the origin
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example, while the equation could be either changed or the same. Specifically,

we leverage Reversed Operation-based Data Augmentation [64] and a Question

Reordering-based augmentation to form new data points. By enhancing the model

to detect the small perturbations in the augmented examples, contrastive learning

forces the model to learn more effective representations of contextual information.

We conduct experiments on two widely used datasets, the English dataset

ASdiv-A [73] and the Chinese dataset Math23K [104]. To further investigate

how our method improves the ability of the model to detect small textual per-

turbations, we collect a Chinese challenge set Hard Example (HE)-MWP. We

perform experiments on two challenge sets of MWPs, the English Asdiv-Adv-

SP dataset [55] and the Chinese HE-MWP dataset. Experimental results show

that our method achieves consistent gains under different languages and settings,

demonstrating the effectiveness of our method.

5.2 Related Work

5.2.1 Contrastive Learning

Contrastive Learning was first adopted in Computer Vision to learn representa-

tions of images via self-supervision without human annotation [15, 36, 39]. Self-

supervised contrastive learning is applied in NLP to learn sentence representa-

tions. Back translation [27] and dropout [31] are used to construct positive-

negative contrastive learning triplets. These perturbation-based techniques are

not suitable for MWP solvers, that MWPs are sensitive to small textual variance

and the perturbation might introduce noise.

[48] first introduced supervised contrastive learning in Computer Vision by

modifying the loss to allow supervision from label annotations. In NLP, various

studies have introduced natural language inference (NLI) datasets as supervised

annotations for contrastive learning [31, 88]. The agreement of equation annota-

tions of MWPs can be considered a form of NLI, that our supervised contrastive

learning could be considered a transformation of these methods.
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5.3 Methodology

We use Contrastive Learning to obtain text features with high differentiation of

small perturbations, so that for each anchor data point P = (T,E), where T

stands for the text and E stands for the equation, we construct a pair of examples

positive data point P+ = (T+, E+) and negative data point P− = (T−, E−), and

then use contrastive learning loss to map the representation of P and P+ closer

and vice versa. The pipeline of the triplet pairs retrieval is shown in Figure 5.2. We

first construct a candidate pool, which consists of supervised training data {Pi}
and augmented self-supervised data {P aug

i } as shown in the blue part of Figure 5.2.

The self-supervised data is generated by two methods, Reversed Operation based

Data Augmentation (RODA) and Question Reordering (QR), which is explained

in Section 5.3.1. Then we perform two-step retrieval to retrieve the triplet pairs

as described in Section 5.3.2. We first use an equation-based retrieval strategy

to extract positive candidate set {P̃+} and negative candidate set {P̃−}, and

then further introduce textual information by choosing one example from the

candidate set via a text-based retrieval strategy. Finally, we train the MWP

solving model that maps T to E by considering both the contrastive learning and

solution equation generation objective, as described in Section 5.3.3.

5.3.1 Enriching Candidate Pool via Self-Supervised Augmenta-

tion

The self-supervised examples are challenging for the model to distinguish; while

the perturbation in the text expression is extremely subtle, the corresponding

mathematical logic could still change. Compared to the supervised examples that

are retrieved from the training data, these self-supervised samples place a higher

demand on the model’s ability to detect subtle changes and understand contextual

information. We generate task-orientated augmented examples from training set

data point P = (T,E) via two methods that obtain reliable new text-equation

examples by modifying the text and equation in the same logic at the same time.

We split the sentences with punctuation marks to a question followed by various

declarative sentences T = {S1, S2, ..., Sk−1, Qk}. The question sentence is always
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the last sentence for Asdiv, and we check whether interrogative pronouns are in

the last sentence for Math23K.

Question Reordering

We move the question to the front of the MWP to form a reordered new MWP

similar to [55]. Given a problem text T = {S1, S2, ..., Sk−1, Qk}, we move the

question Qk to the front of the problem text to form a new problem text TQR =

{Qk, S1, ..., Sk−1} while the rest of the text remains the same. We simultaneously

edit the equation EQR so that the variables match with the new text order. The

new example PQR = (TQR, EQR) could either be a positive example that holds

the same equation as P or a negative example that holds a different equation

since the variable order might change during the reordering. The high textual

similarity but rotated variable order pushes the model to learn representations

that can differ from these small textual perturbations.

Reversed Operation based Data Augmentation

We perform RODA [64] that generates a new example by asking a question about

one of the original given variable. Given a problem text T = {S1, S2, ..., Sk−1, Qk}
where the question Q asks about an unknown variable nans, RODA chooses a

known variable n in one of the declarative sentence Si, and then generates a prob-

lem text which asks about this variable. To generate such an example, Si is trans-

formed to a question QSi which asks a question of n, while Q is transformed to a

declarative sentence Sk describing nans. We reorder the problem text by swapping

the two sentences, that a new problem text TRODA = {S1, ...Sk, ..Sk−1, Qi} is gen-

erated. Simultaneously we edit the equation by resolving the equation expression

ERODA of n given nans. While PRODA = (TRODA, ERODA) has a very similar

textual description of P , the underlying equation could be completely different,

which could benefit the model via contrastive learning. RODA requires text pars-

ing and transformation rules to modify the text and equation. For Chinese, it can

cover 93% of the examples, and for English, it covers 60% of the examples. The

generated text has a 0.83 out of 1 coherent score reported by human evaluation

by [64].
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5.3.2 Triplet Pair Retrieval

This subsection is majorly the proposal of Yibin Shen, the co-first author of this

paper, we leave this subsection in this thesis to describe the complete methodol-

ogy. We construct the positive and negative triplet pairs from both textual and

logical perspectives. For a given problem P , the positive sample P+ is consid-

ered to be a problem with similar equation expressions but relatively different

text descriptions; the negative sample P− is considered to be a problem with

highly textual similarity but different equation expression. However, it requires

a time-consuming bruce-forth enumeration of all possible example pairs to find

such optimal positive and negative samples. Considering the computational com-

plexity, we break down the retrieval to a two-step pipeline. we adopt a heuristic

searching algorithm to construct positive and negative samples (P+, P−) as fol-

lows:

1. Construct a similarity matrix M of all equation expressions {E1, E2, ...En}
in the training set, where Mij is the similarity of equation expression Ei,

Ej .

2. For a given anchor P , Retrieve a positive candidate set {P̃+} and a negative

candidate set {P̃−} of samples from the training set of the data via equation

expression similarity.

3. Extract the best positive example P+ and the best negative example P−

via textual similarity.

We investigate various strategies to retrieve (P+, P−) from both equation-

based and text-based perspectives.

Equation-based Retrieval Strategy

To evaluate the equation similarity during the retrieval, we design an equation

similarity metric Simeq based on length-wise normalized tree edit distance (TED).

TED is defined as the minimum-cost sequence of node operations that transform

one tree into another and is a well-known distance measure for hierarchical data.
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We define the TED of two equation expressions E1, E2 as the TED of their abstract

syntax tree. The similarity of two equation expressions E1, E2 is defined as:

Simeq(E1, E2) = 1− TED(E1, E2)

|E1|+ |E2|

Given this equation similarity metric, we design two retrieval strategies.

Exact Match The positive candidate set {P̃+} is constructed of the examples

that meets Simeq(E,Ei) = 1, which means their equation expression satisfies

E = Ej . If only the anchor itself holds this equation expression, the positive

candidate set {P̃+} has only the anchor P . The negative candidate set {P̃−} is

constructed of the examples that meets argmaxEi ̸=E(Sim(E,Ei)), which holds

the closest equation considering the anchor.

Nearest Neighbour The positive candidate set is constructed of the examples

that meets argmaxEi,Ti ̸=T (Simeq(E,Ei)). If no other example holds the same

equation expression as the anchor, the positive candidate set {P̃+} takes the exam-

ples that has the nearest neighbour equation expression. The negative candidate

set {P̃−} is constructed of the examples that meets argmaxEi ̸=E+(Simeq(E,Ei)),

which holds the closest equation considering the positive example.

The positive and negative candidate sets are then further screened by the

text-based strategy.

Text-based Retrieval Strategy

To lead the model to differentiate mathematical logic from similar textual expres-

sions, we use textual-based information to select the (P+, P−) pair. We select the

lowest textual similarity score example from the positive candidate set {P̃+},
which is the example with different textual expression but the same mathemati-

cal logic; and select the highest textual similarity score example from the negative

candidate set {P̃−}, which is the example with similar textual expression but dif-

ferent mathematical logic. We design two similarity measurement metrics for this

stage.
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Dataset Math23K Asdiv-A HE-MWP Adv-Asdiv

Language zh en zh en

Domain general general challenge challenge

#Train 21,162 1,218 - -

#Dev/#Test 1,000 / 1,000 - / - - / 400 - / 239

#Equation Templates 3,104 66 231 66

Table 5.1: Statistics and details of the datasets.

BERTSim Sentence-BERT (SBERT) is a strong sentence representation base-

line model [88]. We calculate the cosine similarity of the SentBERT representation

of the two sentences to obtain the similarity score:

SimBERTSim
text =

SBERT (T1) · SBERT (T2)

||SBERT (T1)||||SBERT (T2)||

The value range of SimBERTSim
text is from [−1, 1].

Bi-direction BLEU BLEU is a widely used evaluation metric for text gener-

ation that measures the similarity between the generated text and the reference.

We design a Bi-direction BLEU since BLEU is a not symmetrical similarity metric,

which is defined as:

SimBiBLEU
text =

BLEU(T1, T2) +BLEU(T2, T1)

2

The value range of SimBiBLEU
text is from [0, 1].

5.3.3 Training Procedure

We show the training procedure in Figure 5.3. The training loss consists of the

MWP solving loss Lsolver and the contrastive learning loss Lcl.

MWP Solving Model We follow [59] and use the strong baseline model BERT-

GTS as MWP solving model. The pre-trained language model BERT, which pro-

vides strong textual representations, is leveraged as the encoder. For the decoder,
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Figure 5.3: Overview of the training procedure.

we use Goal-driven tree-structured MWP solver (GTS) [109]. GTS directly gen-

erates the prefix notation of the solution equation by using a recursive neural

network to encode subtrees based on the representations of its children nodes

with the gate mechanism. With the subtree representations, this model can well

structured information of the generated part to predict a new token.

Contrastive learning Contrastive learning is performed on triplets pairs (P, P+, P−)

by pulling the representations of T and T+ together and pushing apart the rep-

resentations of T and T−. We follow the contrastive learning framework in [15],

which takes an in-batch cross-entropy objective. Let xi denote the encoder repre-

sentation of P , the training objective for (xi, x
+
i , x

−
i ) within the batch of N triplet

pairs is:

Lcl =

− 1

N

N∑
i=1

log
ecos(xi,x

+
i )/τ∑N

j=1(e
cos(xi,x

+
j )/τ + ecos(xi,x

−
j )/τ )

where τ is the temperature hyperparameter.
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Model Cand. Pool Math23K Asdiv-A HE-MWP Adv-SP

GTS [109] - 75.6 68.5 - 21.2

G2T [115] - 77.4 71.0 - 23.8

pattern [59] train 83.2 - - -

BERT-GTS - 82.9 73.4 55.5 59.9

w/ CL train 84.1 74.2 57.2 63.7

w/ RODA RODA+train 84.3 74.3 64.1 64.1

w/ QR QR+train 84.2 74.4 62.5 66.2

w/ All All 85.0 74.6 69.5 66.9

Table 5.2: Results on MWP datasets. All experiments only compute MWP solving

loss on the training set. The candidate pool only affects the choice of positive and

negative examples in the CL loss.

Assume the prediction target equation of P is y, the final training objective

is to minimize the sum of the MWP solution equation generation negative log-

likelihood loss Lsolver and the contrastive learning loss Lcl:

L = Lsolver + α ∗ Lcl

5.4 Experiments

5.4.1 Datasets

We perform experiments on four datasets, including two widely used datasets

to verify the generalization ability of our method and two challenge test sets to

show further how our method can enhance the robustness of the model. We show

detailed statistics of the datasets in Table 5.1.

Math23K is a Chinese dataset that contains 23,161 math word problems of

elementary school level [104]. We use the standard train-test split setting of this

dataset for the experiment.
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Asdiv-A is the arithmetic subset of ASDiv which has 1,218 MWPs mostly up to

grade level 4 [73]. Experiments of this dataset are evaluated by 5-cross validation.

HE-MWP Since no challenge dataset has been developed for Chinese MWP

solving, and existing challenge datasets have limited types of equation templates,

we use RODA and QR on Math23K validation set to generate examples that are

semantically similar to the original input but deceive the model into generating

an incorrect prediction. We randomly sample a subset of 600 examples from the

RODA result of the development set of Math23K and then manually delete the

examples that the text is not coherent. Then we randomly select 400 examples

out of this cleaned subset.

Adv-SP is challenge set of Asdiv-A, which is constructed of adversarial exam-

ples [55]. These adversarial examples are generated by sentence paraphrasing.

Results of the challenge datasets are tested on the highest performance models

trained on the corresponding benchmark datasets.

There exists other MWP datasets, which are relatively less challenging such as

ALG514, DRAW1K and MAWPS [53, 56, 101], or noisy such as Dolphin18K [44]

or use semantic parsing as annotation such as MathQA [1]. We use the two

benchmarks Math23K and Asdiv-A because they are both clean and challenging

with mathematical equation annotations.

5.4.2 Implementation Details

We use two language-specific BERT-base models as the problem encoder1. For

both models, the maximum text length of the encoder is fixed at 256, and the

maximum equation generation length of the decoder is fixed at 45. The decoder

embedding size is 128. The batch size is 16, with learning rate of 5e-5. We tune

the hyperparameters temperature τ in the set of {0.05, 0.1, 0.2} and α in the

range [0.1, 0.9]. Experiments of the Chinese datasets are conducted on V100 and

1English: https://huggingface.co/bert-base-uncased, Chinese:

https://huggingface.co/yechen/bert-base-chinese
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Eq Strategies

Text Strategies EM NN

Random 83.2 82.3

BERTSim 83.6 83.1

Bi-BLEU 84.1 83.2

BERT-GTS 82.9

Table 5.3: Results of different retrieval strategies for supervised contrastive learn-

ing. EM denotes exact match. NN denotes nearest neighbour. Random denotes

randomly choosing an example from the candidate set. BERTSim and Bi-BLEU

denotes choosing the examples by similarity metric.

RTX 3090 with approximately 6 hours of runtime. Experiments of the English

datasets are conducted on 1080Ti with approximately 1-hour runtime.

5.5 Results and Analysis

5.5.1 Pre-examination on Retrieval Strategy

We conduct a breakdown analysis on the most complex dataset Math23K of dif-

ferent retrieval strategies. We investigate the performance of different retrieval

strategies for supervised contrastive learning. As shown in Table 5.3, for the

equation-based retrieval strategy, the exact match equation strategy is more ef-

fective than the nearest neighbour strategy. This shows that the positive sam-

ple for the anchor must have accurate same mathematical logic for contrastive

learning to benefit the performance. Both text-based retrieval strategies can im-

prove the MWP solving performance compared to the random choosing baseline,

demonstrating the effectiveness of introducing textual information for contrastive

training. With textual-based retrieval, the extracted positive and negative exam-

ples would form hard examples that can push the model to differ textual-similar

but logic different examples. Bi-BLEU also has a slightly higher performance than

BERTSim. In the following experiments, we use the best combination of EM and

Bi-BLEU as retrieval strategies.
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5.5.2 Main Results

We show the results of our method compared with other baselines in Table 5.2. In

addition to our baseline BERT-GTS model, we also investigate three strong base-

line models. GTS [109] uses an LSTM encoder and the same decoder as BERT-

GTS that generates the abstract syntax trees through a tree structure decoder

in a goal-driven manner. G2T [115] is a graph-to-tree model that uses a graph-

based encoder for representing the relationships and order information among the

quantities. Pattern [59] proposes a pattern-based contrastive learning, that con-

siders the equation similarity with supervised contrastive learning. We can see

from the results that our method outperforms previous studies in all datasets.

Compared to Pattern CL which ignores textual information, our method allows

the model to have a stronger ability to bridge text descriptions to mathematical

logic even using the same candidate pool. The self-supervised methods outperform

the supervised settings, especially on challenge datasets, demonstrating the effec-

tiveness of leading the model to learn contextual representations of small textual

perturbations.

On benchmark datasets, we achieve 2.1% points of improvement on Math23K

and 1.2% points of improvement on Asdiv-A. One major reason is that RODA

can only generate 394 examples for the English dataset Asdiv-A. In contrast, it

can generate 47,318 examples for the Chinese dataset Math23K because English

has more strict grammar than Chinese. On challenge datasets, we achieve 14%

points of improvement on HE-MWP dataset and 7.0% points of improvement on

Adv-Asdiv-SP dataset. For HE-MWP ablation, RODA is more effective since

it could introduce new mathematical logic examples. For Adv-Asdiv-SP, since

QR is similar to paraphrasing techniques, it gains more improvement with self-

supervised supervision.

5.5.3 Visualization and Case Study

We show T-SNE visualization results of the representations of examples from the

top-five frequent equation templates in Math23K: n1∗n2/n3, n1∗n2, n1/n2, n2/n1

and n1 ∗ (1 − n2), which refers to orange, red, blue, green and purple in Figure
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Figure 5.4: T-SNE Visualization results of BERT-GTS w/o (left) and w/ CL

(right).

5.4. We can see that compared to the BERT-GTS baseline on the left subfigure,

in the right subfigure, the text representations of the same equations are pulled

closer via our contrastive learning, and the representation of different equations

are separated apart, which shows that our method can benefit the representation

learning.

We further investigate how our method improves the representation via case

study. In Table 5.4 the BERT-GTS baseline could not infer from the textual

description that the side area of a cylinder is the area of a rectangle but rather

uses shallow heuristics when the word ”cylinder” is encountered and generates

the constant π. By constructing positive and negative sample pairs from both

expressions and textual descriptions and changing the representation space via

contrastive learning, the model is not misled by the keywords and correctly infers

that the mathematical logic is to calculate the area of a rectangle so that the

model with contrastive learning generated the correct result. We also show T-

SNE visualization of the representation in Figure 5.5. The red dots are examples

with the keyword rectangle and hold the equation n1 ∗ n2. The blue dots are the

examples that hold the equation π ∗ n1 or π ∗ n2. The green dot is the studied

case. We can see that while BERT-GTS fails to separate the representation of

the case from the cylinder or circle-related equations, contrastive learning helps

the model to differentiate such confusing examples, learn better representations,
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Figure 5.5: T-SNE visualization for the case study on BERT-GTS w/o (left) and

w/ CL (right).

and predict the answer correctly.

5.5.4 Combination with Data Augmentation

While the high-quality and challenging augmented examples have shown remark-

able effectiveness for contrastive learning, a question remains whether contrastive

learning is still effective when these augmented examples are directly used as

training data. Thus, we further investigate using the augmented examples as an-

chors. We use the augmented examples and the original data as training data and

perform supervised contrastive learning in the training data. As shown in Table

5.5, we can see that while the augmented examples improve the performance,

contrastive learning can further boost the performance, achieving SOTA results

on Math23K.

5.6 Summary of This Chapter

In this chapter, we propose a Textual Enhanced Contrastive Learning framework,

which leverages both supervised and self-supervised supervision to help the model

understand contextual information and bridge subtle textual variance to mathe-

matical logic. We use two novel task-specific data augmentation methods to en-

rich the candidate pool with examples with minor textual variance for contrastive
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Text 用一张长n1 厘米，宽n2 厘米的长方
形纸围成一个最大 的圆柱，圆柱的
侧面积为多少平方厘米?

EN Given a piece of paper n1 centime-

ters long and n2 centimeters wide,

How many square centimeters is

the lateral area of the largest cylin-

der enclosed by the rectangle?

w/o CL π ∗ n2 (X)

w/ CL n1 ∗ n2 (Y)

Table 5.4: Case study on Math23K example. w/o CL denotes the BERT-GTS

baseline. w/ CL denotes using contrastive learning.

Model Acc

baseline 82.9

+QR aug w/o CL 84.9

+QR aug w/ CL 85.2

+RODA aug w/o CL 84.8

+RODA aug w/ CL 86.4

Table 5.5: Results of using augmented example for both training and contrastive

learning.
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learning triplet pair retrieval. We design a two-stage retrieval method to find hard

example triplet pairs with both equation and textual information and investigate

various retrieval strategies. Experimental results show that our method gained

improvement on both benchmark datasets and challenge datasets in English and

Chinese. We also conduct visualization for representation distribution on differ-

ent equations and also on a case study, which shows our method can benefit the

representation learning. With the combination of data augmentation, our method

still improves the performance and achieves SOTA results on Math23K dataset.



Chapter 6

Seeking Diverse Reasoning

Logic: Controlled Equation

Expression Generation for

Solving Math Word Problems

6.1 Introduction

The introduction of exposure bias during the training process can cause noise in

sequence-to-sequence (seq2seq) models, leading to a mismatch between model pre-

dictions and annotations. This mismatch hinders the learning process and poses

challenges for the model’s convergence. Espcially for recent studies researchers

that tackle more challenging variations of math word problems (MWPs), such as

MWPs with multiple unknowns. [11, 83, 84, 101]. For human students in prac-

tice, they intuitively use diverse reasoning logic to solve MWPs. Students could

consider the MWP solution from different aspects by considering diverse equiva-

lence relations in the MWP. As we show in the upper of Figure 6.1, we can solve

this problem in at least two different reasoning logic: As shown on the left side,

the equation set is formed by the first reasoning logic of “considering the equiva-

lence relation of the two sums of the cheeseburger and pizza calories given in the

85
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Diverse Reasoning Logic

Expression Bias during Decoding 

Problem: 1 pan pizza and 2 cheeseburgers provide 2860 calories. 2 pan 

pizzas and 1 cheeseburger provide 2990 calories. Find the caloric content 

of each item.

Expression 1 (annotated)

ቊ
1 ∗ 𝑥1 + 2 ∗ 𝑥2 = 2860
2 ∗ 𝑥1 + 1 ∗ 𝑥2 = 2990

Expression 2

ቊ
𝑥1 = (2 ∗ 2990 − 2860)/(2 ∗ 2 − 1)
𝑥2 = (2 ∗ 2860 − 2990)/(2 ∗ 2 − 1)

Answer value: 𝑥1 = 1040, 𝑥2 = 910

1 ∗ 𝑥1 + 2 𝑥1 = ( 2 ∗

Expression 1 (annotated) Expression 2

1 ∗ 𝑥1 + 2 𝑥1 = ( 2 ∗

Controlled Decoding

<orig> <sol>

Expression 1 (annotated) Expression 2

Figure 6.1: Example of diverse reasoning logic, expression bias, and our controlled

expression generation. ¡orig¿ and ¡sol¿ are the pre-defined control codes.

question”; or as shown in the right side, we can follow a second reasoning logic

“considering first only the equivalence relation of caloric content of the cheese-

burger by offsetting the calories from the pizza”. Such diverse reasoning logic

could lead to diverse equation expressions, that the solution equation is written

in various mathematically equivalent forms, such as expression 1 and expression

2 in the example. However, previous studies share a long-lasting limitation that

they force the solver to decode a fixed equation expression supervised by human

annotation. The fixed equation expression supervision used in previous studies

ignores diverse mathematical reasoning, which is especially common for human

students in multiple-unknown problems and complex single-unknown problems.

Meanwhile, directly introducing diverse equation expressions to the seq2seq

framework in a data augmentation manner could further aggravate the issue of
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expression bias, which refers to the discrepancy between the annotated equation

expression and the model’s correct prediction expression. As shown in the middle

of Figure 6.1, even if the model makes the correct prediction of the problem, the

training loss accumulated by diverse expressions could be enormous. [102] propose

an equation normalization that reorders the variables in the equations as close as

possible to their order in the input text. While their method could reduce the

expression bias issue, they ignore the inherent diverse mathematical reasoning and

limits to considering single-unknown problems.

Enlightened by recent methods in controlled text generation, which uses a

control code to influence the style and topic of subsequent generated text [47],

we propose a new training paradigm, where a control code guides the decoding

process to consider one type of mathematical reasoning logic and decode the

corresponding equation expression. As shown in the bottom Figure 6.1, the ¡sol¿

control code guides the model to consider the direct solution of each individual

unknown x1 and x2. Not only can it reduce the expression bias problem since

the control code can provide guidance for the reasoning logic, but also training on

the diverse equation expressions guided by the control codes can lead to better

interpretation of the MWPs by considering diverse reasoning logic. We design

various control codes for both single-unknown and multiple-unknown settings to

allow the model to understand different reasoning orders. We conduct experiments

on a single-unknown benchmark Math23K and two multiple-unknown benchmarks

DRAW1K and HMWP. Experimental results show that our method improves

the performance of both settings, with a more significant improvement in the

challenging multiple-unknown setting.

6.2 Methodology

This section describes the joint work with Yibin Shen. Specifically, he proposed

the diverse expression augmentation, while we designed the control decoding strat-

egy together. For each math word problem holding an original equation set

(e1, e2, ...), we generate new equation expressions based on five types of diverse

mathematical reasoning logic considering the ordering logic of given variables {ni}
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and unknown variables {xj}. i and j denote the ordered indices that the variables

appear in the text. We then assign a corresponding control code to the equation

expressions. The MWP solving model takes in the text and control code, and

then is trained to predict the corresponding equation expression.

6.2.1 Control Codes

We consider the diverse mathematical reasoning logic in two aspects. The first

aspect considers diverse reasoning orders of given variables, which reflects in the

diverse expressions of the commutative law and solution form. For example,

n1 ∗ x1 = n2 could be transformed to the solution form x1 = n2/n1 which does

not effect the mathematical equivalency. This approach is valid for both multi-

unknown and single-unknown problems. The second aspect considers diverse rea-

soning orders of unknown variables, which reflects in the diverse expressions of

equivalent equation sets. For example, swapping the equation order in the equa-

tion set does not affect the mathematical equivalency. This approach is valid for

multi-unknown problems.

We preprocess the equation annotations with Sympy [72] so that they follow

a predefined order similar to Wang et al. [102]. Then we generate different types

of equation expressions based on these preprocessed equations.

For the first aspect, we consider three types of diverse equation expressions.

• Commutative Law of Addition add We traverse the equation in prefix

order, and swap the left and right subtrees of the addition operators. For

example, x1 = n1+n2+n3 would be swapped two times. We first swap the

two subtrees n1 and n2 of the first addition operator to x1 = n2 + n1 + n3,

and then swap the two subtrees n2 + n1 and n3 of the second operator to

x1 = n3 + n2 + n1.

• Commutative Law of Multiplication mul Similarly, we traverse the

equation in prefix order, and swap the left and right subtrees of the multi-

plication operators. For example, from x1 = n1 ∗n2 ∗n3 to x1 = n3 ∗n2 ∗n1.

• Solution Form sol We consider a mathematical reasoning method that



6.2. METHODOLOGY 89

F
ig
u
re

6.
2:

S
ta
ti
st
ic
s
of

d
at
as
et
s
an

d
th
e
u
sa
ge

of
co
n
tr
ol

co
d
es
.



90 CHAPTER 6. Controlled Equation Expression Generation

directly considers the solution of each unknown variable. For example, from

n1/x1 = n2 to x1 = n1/n2.

For the second aspect, we consider two types of diverse equation expressions.

• Equation Swapping equ We swap the multiple-unknown equations in

sequential order, which means given a list of equations (e1, e2, ...en), we

swap them to the order (en, e1, e2, ...en−1).

• Unknown Variable Swapping var Similarly, we swap the multiple un-

known variables in sequential order, which means given a list of unknown

variables in the equation (x1, x2, ...xn), we change the correspondence be-

tween them and the unknown variables in the original question, that the

unknown variables in the new equation (xs1, x
s
2, ...x

s
n) follows x

s
1 denotes xn

and xsi denotes xi−1 for other indices. For example, from n1∗x1+n2∗x2 = 0

to n1 ∗ x2 + n2 ∗ x1 = 0.

To incorporate the control codes for guiding the equation expression decoding,

we follow studies in controlled text generation [47] and append a control code to

the encoder input. We use an independent special token for each expression

category as the control code, such as add, including orig for the example of the

original equation expression.

Various studies have shown that natural language style control codes that serve

as a description of the target text could benefit the model performance [38, 47].

We also use a description text based control code for each expression category,

such as Swap addition operands. We use the description text Original input for

the origin equation expression orig category, and also use it for inference at test

stage. The detailed descriptions are shown in Table 6.1.

We use the prediction of the original equation expression control code orig for

test inference since it has the most training examples.

6.2.2 MWP solving model

Solving multiple-unknown problems usually requires equation sets, which are

challenging to generate. To tackle this problem, we follow the decoding target
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Category English Chinese

add Swap addition operands 加法交换律
mul Swap multiplication operands 乘法交换律
sol Solution form 以解形式表达
equ Swap equation order sequentially 交换方程组算式
var Swap unknown variables order sequentially 交换未知量
orig Original Form 原始形式

Table 6.1: Description based control codes used for each category.

paradigm of Qin et al. [84], which introduces a Universal Expression Tree (UET)

to represent multiple-unknown equation sets uniformly as an expression tree by

using a dummy node as the head of the equation set. UET can also handle

single-unknown problems in a unified manner.

For the solver model, we use two strong baseline models for experiments. For

the first model, we leverage a seq2seq pre-trained language model BART [57, 95]

as the solver model, which has reported promising results for text generation

tasks. The encoder takes in the textual input and generates high-quality repre-

sentations of the problem text. The decoder generates the UET based on these

representations.

For the second model, we follow Li et al. [59] and use BERT-GTS as MWP

solving model. We leverage the contextual pre-trained language model BERT

as the encoder, and use a Goal-driven tree-structured MWP solver (GTS) [109]

based on Long-Short-Term-Memory networks (LSTM) as the decoder.

6.3 Experiments

6.3.1 Datasets

We evaluate our proposed method on one single-unknown Chinese dataset Math23K [104]

and two multiple-unknown datasets, DRAW1K [101] in English andHMWP [84]

in Chinese. We show the statistics of overall data size, single and multiple un-

known problem size, and the usage of control codes of the datasets in Figure
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Model Math23K DRAW HMWP

GTS [109] 75.6 39.9 44.6

G2T [115] 77.4 41.0 45.1

SAU-Solver [84] - 39.2 44.8

BART† [95] 80.4 32.1 41.5

BERT-GTS† [59] 82.6 42.2 48.3

Controlled BART 82.3 45.3 47.9

Controlled BERT-GTS token 84.0 50.2 54.1

Controlled BERT-GTS description 83.3 52.1 55.2

Table 6.2: Results on MWP datasets. † denotes our implementation results. token

denotes using special tokens as control code. description denotes using a piece of

description text as control code.

Model Math23K DRAW HMWP

BERT-GTS 82.6 42.2 48.3

+ add 83.0 46.8 50.8

+ mul 83.3 47.6 51.9

+ sol - 46.3 50.5

+ equ - 48.3 50.1

+ var - 47.4 50.1

All 84.0 50.2 54.1

- code 83.3 49.6 49.6

Table 6.3: Ablation Study on MWP datasets. + control code denotes using only

one control code. All denotes using all control codes. - code denotes using the

examples as data augmentation without control codes.
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6.2. The five control code methods are enumerated for each example to generate

new equation expressions. While sol is applicable for both single-unknown and

multiple-unknown problems, the annotation schema in Math23K uses the Solu-

tion Form, which corresponds to orig, that no more further equation expressions

are generated forsol. We use from 1.87 to 6.15 times of original data examples

size for training on the three datasets.

6.4 Experimental Details

We evaluate Math23K on the standard train test setting. DRAW1K and HMWP

are evaluated by 5-cross validation.

For DRAW1K, we use the bert-base pre-trained encoder. For Math23K and

HMWP, we use the pre-trained encoder that could be found here 1.

For Math23K, the max text length is 256, the max equation decoding length

is 45, the batch size is 16 and the epochs number is 50. We use AdamW with a

learning rate of 5e-5.

For DRAW1K, the max text length is 256, the max equation decoding length

is 32, the batch size is 16 and the epochs number is 50. We use AdamW with a

learning rate of 5e-5.

For HMWP, the max text length is 1024, the max equation decoding length

is 100, the batch size is 8 and the epochs number is 50. We use AdamW with a

learning rate of 5e-5.

Experiments are conducted on NVIDIA 3090 and A100(80G). The runtime for

the longest experiments is around 6 hours.

6.4.1 Results

We show our experimental results on the three datasets in Table 6.2. We compare

our results with three models: GTS uses an LSTM encoder and decoder, which

considers tree structure information during decoding; G2T uses a Graph Neu-

ral Network that considers quantity information as the encoder and similar tree

1https://huggingface.co/yechen/bert-base-chinese
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decoder; SAU-Solver introduces a semantically-alignment to the target vocab-

ulary of the equations to improve the GTS decoder. As we can see, our method

outperforms the baseline for both models on all datasets. The accuracy of differ-

ent models gains improvement from 1.8% to 1.9% for single-unknown problems

and from 4.8% to 13.2% for multiple-unknown problems. Description text based

control codes achieve better performance on multiple-unknown datasets, which

have more expression categories. Such control codes could be beneficial as more

controlled equation generation strategies are applied, which we leave as future

work. The results demonstrate the effectiveness of our method, especially for

multiple-unknown problems.

6.4.2 Ablation Study

We conduct further analysis on the more effective model BERT-GTS. In Table

6.3, we show the ablation study using different control codes. As shown in the

Table, using each control code individually can improve the model’s prediction.

mul is particularly effective for all datasets since it has an extensive example

size for each dataset. Using all control codes together further boosts the model

performance by providing diverse mathematical reasoning logic as guidance.

We also show the results of removing the control codes and solely using the

diverse equation expressions in a data augmentation manner in Table 6.3. Solely

introducing diverse mathematical reasoning logic can also improve the model per-

formance compared to the baseline model. However, the expression bias problem

limits the performance since training loss could accumulate for diverse equation

expressions. By incorporating control codes to guide the decoding process, our

method can consider diverse reasoning logic and reduce the expression bias prob-

lem in the meantime.

6.4.3 Study on Variable Size

We show the performance on different given variable sizes of the BERT-GTS base-

line model and our controlled equation generation method on Math23K in Figure

6.3. As the variable size grows, the problem becomes more complex, and the

performance gap between our method and the baseline becomes more significant.
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Figure 6.3: Performance on different given variable sizes.

Our method can incorporate diverse equation expressions to help the model learn

mathematical reasoning logic.

6.5 Summary of This Chapter

In this chapter, we introduce diverse mathematical reasoning logic to the seq2seq

MWP solver framework using five control codes to guide the solver to predict the

corresponding equation expression in a controlled equation generation manner.

The approach allows the solver to benefit from diverse reasoning logic beyond

the human-annotated fixed solution equation. Meanwhile, the controlled equa-

tion generation training paradigm reduces the expression bias problem caused

by diverse equation expressions. Experimental results show the effectiveness of

our method, outperforming strong baselines on single-unknown (Math23K) and

multiple-unknown (DRAW1K, HMWP) datasets.



Chapter 7

ComSearch: Equation

Searching with Combinatorial

Strategy for Solving Math

Word Problems with Weak

Supervision

7.1 Introduction

Despite the challenges posed by mathematical equivalence and the presence of

numerical coincidences, researchers have made efforts to address these issues in the

field of numerical reasoning. Various studies have focused on different settings for

the task of numerical reasoning. Traditionally, the ”full supervision” setting has

been employed, which involves the annotation of equation expressions. However,

this approach is expensive and time-consuming.

Hong et al. [42] (LBF) and Chatterjee et al. [14] (WARM) addressed this prob-

lem and proposed the weak supervision setting, where only the answer value an-

notation is given for supervision. Such a setting forms pseudo question-candidate

equation pairs, which hold the correct answer value for training with the complex-

96
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Figure 7.1: Example of MWP solving system under full supervision and weak

supervision.

ity of O(n2n) for n variables enormous possible equation space. Computational

efficiently extracting such pairs becomes the major challenge since it is computa-

tionally impossible to traverse all possible equations, especially when the example

has more variables (e.g., 88,473,600 for 6 variables). As we show in Figure 7.1,

previous studies sample a limited set of equations via random walk [42] or beam

searching [14]. However, the algorithms can only cover a limited part of the data,

which we refer to as recall. As shown in Table 7.1, LBF [42] only covers 30%

of the examples of more than 4 variables. Moreover, the random walk algorithm

lacks robustness and leads to a high performance variance.

We observe that although the equation search space is ample, many equa-

tions are mathematically equivalent under the commutative law, associative law,
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Model ≤ 3 ≥ 4

LBF 88.1% 30.9%

ComSearch 94.4% 94.5%

Table 7.1: Searching result recall on problems of different variable sizes.

or other equivalent forms. Hence, searching for these equivalent equations is re-

dundant, especially for difficult examples with a larger number of variables. For

example, a+b+c+d∗e has 48 equivalent forms that hold the same mathematical

meaning considering only the commutative law. Eliminating such redundancy in

the searching space could reduce computational complexity. In this paper, we

propose a combinatorial-strategy-based searching method ComSearch that enu-

merates non-equivalent equations without repeating, which can robustly extract

candidate equations for a wide range of unlabeled data and build a high recall

pseudo data with equation annotation even for difficult examples. To this end,

the main idea of Comsearch is to use depth-first search (DFS) to enumerate only

one representative equation for each set of equivalent equations and then check

whether the equation holds the correct answer value. Comsearch effectively com-

presses the searching space, e.g., up to 111 times for 6 variables compared to

bruce-force searching. As shown in Table 7.1, ComSearch can achieve a relatively

high recall for different variable sizes. Our method could be proven to have lower

approximate complexity.

While Comsearch only searches among non-equivalent equations, we observe

that many examples still have multiple candidate equations through which we can

get the final answer. As shown in Figure 1, Equation 1 (Eq1: X=150*2-50) and

Equation 3 (Eq3: X=50*2+150) can get the same value, but Equation 3 holds

a false mathematical reasoning logic, and using Equation 3 as the pseudo label

would bring in noise. We address this data noise as the false-matching problem,

which has been ignored in previous studies, since their methods do not consider

whether the multiple candidate equations of one example are caused by equivalent

equation forms or false matching. To address this problem, we investigate how

the false-matching problem drags down the system’s performance and propose two

ranking models to alleviate this problem. For examples with multiple candidate
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equations from ComSearch, the ranking module first collects a set of candidate

equations, then assign a score by a draft model trained on pseudo data with only

a single candidate equation to each candidate to choose the best pseudo label. In

addition to candidates from the searching result of ComSearch, we observe that

beam search results of the draft model can also serve as a high-precision candidate

equation. We investigate these two settings for candidate equation sets.

We conduct experiments on two strong MWP solvers, achieving state-of-the-

art (SOTA) results under the weakly supervised setting, especially for examples

with many variables. The results also demonstrate the effectiveness and general-

ization ability of our method.

In summary, our contribution is three-fold:

• We propose ComSearch, a searching algorithm that enumerates non-equivalent

equations without repeat to search candidate equations effectively.

• We are the first to investigate the false-matching problem that brings noise

to the pseudo training data. We propose a ranking module to reduce the

noise and give a detailed oracle analysis of the problem.

• We perform experiments on two MWP solvers with our ranking module and

achieve SOTA performance under weak supervision.

7.2 Methodology

We show the pipeline of our method in Figure 7.2. Our method consists of three

modules: the Search with combinatorial strategy (ComSearch) module that

searches for candidate equations; the MWP model that is trained to predict equa-

tions given the natural language text and pseudo labels; the Ranking module that

uses an explorer model to find candidate equations and select the best candidate

equation with a scoring model.

7.2.1 ComSearch

Directly searching for non-equivalent equation expressions is difficult because the

searching method needs to consider Commutative law, Associative law, and other
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equivalent forms. We show how equivalent equations could be merged into a

representative form X , and the enumeration of X can transverse all non-equivalent

equations for four arithmetic operations.

We define the set of non-equivalent equations using four arithmetic operations

as Sn. We first split the equations to two categories, either S± where the outer-

most operators are ±, such as n1/n2+n3−n4 and n1/n2− (n3−n4), or S
⋇ where

the outermost operators are ⋇, such as (n2+n1)∗(n3−n4/n5). We call the former

a general addition equation and the latter a general multiplication equation.

S±
m = {(n1 ⋇ (..))± (ni ⋇ (..))± ..nm} (7.1)

S⋇
m = {(n1 ± (..))⋇ (ni ± (..))⋇ ..nm} (7.2)

These two sets are symmetrical, so we only need to consider one set. Consider

elements in S±
m, we can rewrite the equation to the representative form X :

X =((ni ⋇ (..)) + (nj ⋇ (..)) + ..)

− ((nk ⋇ (..)) + (nl ⋇ (..)) + ..)

For example, n1/n2 −n3 +n4 and n1/n2 − (n3 −n4) are equivalent, that they

are both rewritten as (n1/n2+n4)−n3. (n2+n1) ∗ (n3−n4/n5) could be rewrit-

ten as (n1 + n2) ∗ (n3 − n4/n5). Trivially, any two equations that are represented

by the same X are equivalent. We give proof of the number of inequivalent ex-

pressions involving n operands in Appendix Section 7.4, which shows that any

two equivalent equations are written as the same X . Thus the enumeration of X
is equivalent to the enumeration of non-equivalent equations. The enumeration

problem of these equations is an expansion of solving Schroeder’s fourth prob-

lem [94], which calculates the number of labeled series-reduced rooted trees with

m leaves.

Considering elements in S±
n , we can rewrite the equation to x. Thus we can

form a mapping g : x → g(x) from a general addition equation x to a skeleton

structure expression g(x). :
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x =((xi ⋇ (..)) + (xj ⋇ (..)) + ..)

− ((xk ⋇ (..)) + (xl ⋇ (..)) + ..)

g(x) =(xi(..))(xj(..))..&(xk(..))(xl(..))..

The order of xi within the same layer of brackets is ignored in g(x), it can deal with

the equivalence caused by Commutative law and Associative law. The addition

and subtraction terms are split by &, that which can deal with equivalence caused

by removing brackets. g(x) is a bijection, so the enumeration problem transforms

to finding such skeletons:

n = 1 :a

g−1 :a

n = 2 :ab, a&b, b&a

g−1 :a+ b, a− b, b− a

n = 3 :abc, a&(b&c), (ab)&c, ...

g−1 :a+ b+ c, a− (b/c), (a ∗ b)− c, ...

...

The enumeration problem of these structures is an expansion of solving Schroeder’s

fourth problem [94], which calculates the number of labeled series-reduced rooted

trees with n leaves. We use a deep-first search algorithm shown in Algorithm 3 to

enumerate these skeletons. It considers the position of the first bracket and then

recursively finds all possible skeletons of sub-sequences of the variable sequence

X = {xk}ik=1 [103].

While considering such skeletons could enumerate all unique expressions, equa-

tions have at least one element on the left of & in our target domain and do not

start with − or ÷. We further extend the algorithm to consider these cases. To

be noticed, because there is at least one + or ∗ operator for each equation, the

left side of & must not be empty while the right part has no restrictions. Thus we

define the unit skel(i) equation to return possible skeletons with only one or none
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Algorithm 3 enum skel(n)

Require: n ≥ 1

Initialize empty list skills

for i ≤ n; i = 1; i++ do

left list = unit skel(i)

right list = enum skels(n− i)

for left in left list do

for right in right list do

move the start index of right to i

new skels += left + right

end for

end for

skels += new skels

end for

return skels

& and no brackets. This constraint is equivalent to finding non-empty subsets and

their complement of the variable sequence X . We can use Algorithm 3 to perform

the enumeration of such skeletons, except for defining two different unit skel(i) to

support the enumeration of subtraction and division operation. The enumeration

algorithm of non-empty subsets is trivial and omitted here.

unit skeldiv(i) = {(A&A)|A ⊆ X ;A ̸= ∅} (7.3)

unit skelsub(i) =

{((a(A− a))&A− a)|A ⊆ X ; a ∈ A}
(7.4)

We transform the skeletons back to equations to obtain all non-equivalent

equations Sn. Such enumeration considers absolute values and omits pairs of

solutions that are opposite to each other. To search effectively, for the equations

that contain subtraction, we add their opposite equation to the searching space.

Given the compressed search space, we substitute the values for variables in

the equation templates and use the equations of which value matches the answer

number as candidate equations. If no equations could be extracted by using all



104 CHAPTER 7. Combinatorial Equation Searching for Weak Supervision

numbers, we continue to consider: (1) omitting one number, (2) adding constant

number 1 and π, and (3) using one number twice. If the algorithm extracts

candidates at any stage, the further stages are not considered since it would

introduce repeating equations, e.g., 1 ∗ (a+ b) is a duplication of a+ b.

7.2.2 MWP Solving Models

Goal-driven Tree-structured Solver We follow Hong et al. [42] and Chat-

terjee et al. [14] and use Goal-Driven Tree-Structured MWP Solver (GTS) [109]

as the MWP model. GTS is a seq2seq model with the attention mechanism that

uses a bidirectional long short term memory network (BiLSTM) as the encoder

and LSTM as the decoder. GTS also uses a recursive neural network to encode

subtrees based on its children nodes’ representations with the gate mechanism.

With the subtree representations, this model can well use the information of the

generated tokens to predict a new token.

Graph-to-Tree Solver Following Chatterjee et al. [14], we conduct experi-

ments on Graph-to-Tree Solver (G2T) [115] . G2T is a direct extension of GTS,

which consists of a graph-based encoder capturing the relationships and order

information among the quantities.

7.2.3 Ranking

While ComSearch enumerates equations that are non-equivalent without repeat,

some variable sets can coincidentally form multiple equations with the same cor-

rect value, as shown in Figure 7.2. The equations 150 ∗ 2 − 50 and 150 + 50 ∗ 2
are non-equivalent. However, their values are equal, while only 150 ∗ 2− 50 is the

correct solution. We refer to this problem as false-matching, an important issue

that previous studies have overlooked. While previous studies also collect multi-

ple candidate equations for one example, they cannot differ whether the issue is

caused by equivalent forms of the equations or false-matching, and they do not

perform any processing on these false-matching examples, which brings in noise

to the pseudo data.
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To process these data that have multiple candidate equations, we propose two

ranking methods to choose the best candidate equation for each example. The

module first collects a set of candidate equation that holds the correct annotated

answer value and then score the candidates to choose the pseudo label for the

sample.

Before ranking, we train a draft model S on the single-candidate pseudo data

because the single-candidate data is relatively reliable with fewer false-matching

examples. In the first ranking method Basic Ranker, for a data example x, we

rank among the multiple search results of Comsearch {yeq}search. Then we use

the draft model S to calculate the conditional probability of yeq at each time step

t. The score of the length k equation seq is defined as:

seq =

k∑
t=0

log(S(x, yeqt )) (7.5)

We use the candidate equation that has the highest score as the pseudo label

of this example.

Empirically, we observe that performing beam search on the draft model

S could also generate high-precision candidate equations. Thus in the second

method Beam Ranker, we further explore more candidate equations with beam

search. We add beam search predictions of S that hold the correct value {yeq}beam

to the candidate equation set along with Comsearch results {yeq}search. The score
function is defined the same as the basic ranker.

7.3 Analysis on ComSearch

7.3.1 Search Statistics

We give statistics of ComSearch in Table 7.2. Among the 23,162 examples, 233

have more than 6 variables that we filter out, and 51 use the power operation that

our method is not applicable. 94.5% of the examples find at least one equation

that can match the answer value, significantly higher than WARM and LBF,

which cover only 80.1% of the examples. 17,959 examples match with only one

equation, and 3,947 examples match with two or more equations that need the
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Model Term # Prop(%)

- All Data 23,162 -

Ours

Too Long 233 1.0

Power Operator 51 0.2

Single 17,959 77.5

Multiple 3,947 17.0

Data 21,906 94.5

WARM
Data (w/o beam) - 14.5

Data (w/ beam) - 80.1

LBF - - 80.1

Table 7.2: Statistics of ComSearch Results.

#Variable Bruce-Force Brackets Commutative Ours Ratio

1 1 1 1 1 1

2 8 8 6 6 1.3

3 192 144 108 68 2.8

4 9,216 5,184 3,816 1,170 7.9

5 737,280 311,040 224,640 27,142 27.2

6 88,473,600 27,993,600 19,841,760 793,002 111.6

Table 7.3: Empirical Results of Search Space Size.
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#Var 1 2 3 4 5 ≥6

LBF 91.5 86.8 88.8 31.1 25.0 38.4

Ours 67.0 93.4 96.4 98.1 94.4 73.8

Table 7.4: Result of recall on different variable sizes

Figure 7.3: Distribution of all Candidate Equation Number.

ranking module to choose the pseudo label further. We show the distribution of

these examples in Appendix Section 7.3.2.

We further break down the recall on different variable sizes in Table 7.4. As we

can see, when the number of variables grows larger, the recall of LBF drastically

collapses, while the recall of our method keeps steady. Sampling based methods

cover only a small subset of the equation space and fail to extract candidate

equations for larger variable size examples. In contrast, our method can consider

a broader range of equation space, which demonstrates the superiority of our

enumeration based method.

7.3.2 Distribution of Candidate Equations

The largest candidate equation number of one example is 3914. We show the

distribution of candidate equations in Figure 7.3 and 7.4. The x-axis represents

the number of candidates, while the y-axis represents the number of examples that
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Figure 7.4: First 20 distribution of Candidate Equation Number.

have x candidate equations. We can see from Figure 7.3, which includes examples

that have 1 to 50 candidates, it is a long tail distribution that most examples only

have a few candidate equations. From Figure 7.4, where we zoom in and focus on

examples that have 2 to 20 candidates, we can see that there are a lot of examples

that have more than 2 candidate equations, and the ranking module is essential.

7.3.3 Eliminating Equivalent Equations in Search Space

We show the empirical compression of the search space with ComSearch in Table

7.3. As we can see, the compression ratio of ComSearch increases as the variable

number grows, up to more than 100 times when the number of variables reaches

6. Previous studies on reducing the redundancy of equivalent expressions consider

a limited set of rules, such as removing brackets [90] and Commutative Law [102].

We also show the results of considering removing brackets, where −/÷ can not

be the children node of +/∗, which is the compression considered in Roy and

Roth [90]; and Commutative Law, which is the compression considered in Wang

et al. [102]. Although the two methods can compress the search space to some

extent, there is a large gap between their compression efficiency and ours, up to

more than 20 times when the number of variables reaches 6.

The size of the Bruce-Force search space could be directly calculated, which is
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n!∗(n−1)!∗4n−1. If we consider the exponential generating function of card(Sn),

based on Smooth Implicit-function Schema, we can have an approximation of Sn:

card(Sn) ∼ C ∗ nn−1, which shows our searching method compresses the search

space more than exponential level. We give proof in appendix Section 7.4.

Advantages of Enumeration without repeat

The most important core of our approach is that it explicitly points out the

false-matching problem because it can enumerate a wide range of equations while

ensuring each equation holds an independent mathematical reasoning logic. Sam-

pling methods can only sample a small set of equations that may neglect other

potential candidates.

Compared to other enumeration methods, despite the enumeration efficiency,

Comsearch ensures the enumeration is among non-equivalent equations, so col-

lecting more than one candidate equation for one example shows that there exists

more than one mathematical reasoning logic that could reach the annotated an-

swer value. However, only one of the reasoning logic could be true, which elicits

the false-matching problem. Even if we add more rules to compress the search

space, as long as the non-equivalency of different equations cannot be ensured, we

cannot differ false-matching and multiple expressions of the same mathematical

reasoning logic.

7.4 Proof for Search Space Approximation

Because there is at least one + or ∗ operator for each equation (i.e. −a− b− c is

illegal), the target Sn is not symmetric and is hard to directly approximate. We

need two assisting targets to form the approximate. This proof majorly relies on

Flajolet and Sedgewick [29] and [77, A140606].

We first consider target U that considers only +, ∗ and ÷ three operators. We

sort it into two categories: U+ that the outermost operator is + and U⋇ that the

outermost operator is ⋇. Equations such as 1
a ∗ 1

b−c are still considered illegal.

Z corresponds to a single variable equation. We can have the construction of

U :
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U+ = Z + SET≥(U
⋇) (7.6)

U⋇ = Z + (22 − 1) ∗ SET=2(U
+) (7.7)

+ (23 − 1) ∗ SET=3(U
+)... (7.8)

We apply symbolic method to obtain the EGF of the constructions:

U+(z) = z +
∑
k≥2

1

k!
[U⋇(z)]k (7.9)

= z + [eU
⋇(z) − 1− U⋇(z)] (7.10)

U⋇(z) = z +
∑
k≥2

2k − 1

k!
[U+(z)]k (7.11)

= z + e2U
+(z) − eU

+(z) − U+(z) (7.12)

Meanwhile, we have:

U(z) = U+(z) + U⋇(z)− z (7.13)

Next, we consider target T that −a − b − c is considered legal. Similarly we

define T± and T⋇. We consider the construction:

T± = 2Z + SET≥(T
⋇) (7.14)

T⋇ = 2Z + 2[(22 − 1) ∗ SET=2(T
±/2) (7.15)

+ (23 − 1) ∗ SET=3(T
±/2)...] (7.16)

With symbolic method we have:

T±(z) = 2z +
∑
k≥2

1

k!
[U⋇(z)]k (7.17)

= 2z + [eT
⋇(z) − 1− T⋇(z)] (7.18)

T⋇(z) = 2z + 2
∑
k≥2

2k − 1

k!
[T±(z)/2]k (7.19)

= 2z + 2eT
±(z) − 2eT

±(z)/2 − T±(z) (7.20)
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The illegal equations such as −a − b − c in T equals the counts of a + b + c,

which is actually U . So we have:

S(z) = T (z)− U(z) (7.21)

We now have the EGF of Sn. We can sequentially compute the first few terms

of this sequence:

1, 6, 68, 1170, 27142, 793002, 27914126, ... (7.22)

With Smooth implicit-function schema and Stirling approximation function

we have, for an EGF y(z) =
∑

n≥0 ynz
n, Let G(z, w) =

∑
m,n≥0 gm,nz

mwn, thus

y(z) = G(z, y(z)):

n! ∗ [zn]y(z) ∼ c ∗ n!√
2πn3

∗ r−n+1/2 (7.23)

∼ c
√
2πnr√
2πn3

(
1

r
)n(

n

e
)n (7.24)

=
c
√
r

n
(
n

re
)n (7.25)

while r:

G(r, s) = s (7.26)

∂G(r, s)

∂w
= 1 (7.27)

and c:

c =

√
∂G(r, s)/∂z

∂2G(r, s)/∂w2
(7.28)

We still need the two assisting targets to perform the approximation. We have:

U+(z) = ez+e2U
+(z)−eU

+(z)−U+(z) (7.29)

− e2U
+(z) + eU

+(z) + U+(z)− 1 (7.30)
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Let G(z, w) = z + e2w − ew − ln(1 + e2w − ew), considering 7.26 and 7.28, r, s

and c would be constant numbers.

So we have:

n![zn]U+(z) ∼
c1
√
r1

n
(
n

r1e
)n (7.31)

Similarly we can approximate U⋇, T± and T⋇:

n![zn]U⋇(z) ∼
c2
√
r1

n
(
n

r2e
)n (7.32)

n![zn]T±(z) ∼
c3
√
r2

n
(
n

r3e
)n (7.33)

n![zn]T⋇(z) ∼
c4
√
r2

n
(
n

r4e
)n (7.34)

So we have:

un = n![zn]U(z) ∼
(c1 + c2)

√
r1

n
(
n

r1e
)n (7.35)

tn = n![zn]T (z) ∼
(c3 + c4)

√
r2

n
(
n

r2e
)n (7.36)

Since S(z) = T (z) − U(z), the subtraction of un and tn would be our ap-

proximation. However we observe that r1 ≫ r3, that un can be ignored. So we

have:

sn = n![zn]S(z) ∼
(c3 + c4)

√
r2

n
(
n

r2e
)n (7.37)

Q.E.D.

7.5 Experiments

7.5.1 Dataset and Baselines

We evaluate our proposed method on the Math23K dataset. It contains 23,161

math word problems annotated with solution expressions and answers. We only

use the problems and final answers. We evaluate our method using the train-test

split setting of Wang et al [102] by the three-run average.
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We compare our weakly-supervised models’ math word problem solving accu-

racy with two baseline methods.

Chatterjee et al. [14] proposed WARM that uses RL to train the candidate

generation model with the reward of whether the value of the equation is correct.

Since the reward signal is sparse due to the enormous search space, the top1

accuracy of the candidate generation model is limited, and they use beam search

to search for candidates further.

Hong et al. [42] proposed LBF, a learning-by-fix algorithm that searches in

neighbour space of the predicted wrong answer by random walk and tries to find

a fix equation that holds the correct value as the candidate equation. memory

saves the candidates of each epoch as training data.

7.5.2 Implementation Details

We run our experiments on single card GTX3090Ti, each run takes around 2-3

hours for all models. We did not perform extra hyperparameter searching and

use the same hyperparameters as the public release of the two models, except

for epoch number which is decided by the validation set. The code is conducted

based on Pytorch.

7.5.3 Main Results and Ablation Study

We show our experimental results in Table 7.5. We reproduced the results of

LBF with their official code and found that LBF+memory lacks robustness. As

we can see in the table, the performance of LBF has high variance on both the

validation and test set. For a fair comparison, we additionally ran 5-fold cross-

validation setting according to [42] for our model and LBF+memory with the

GTS model. The results show that LBF + memory achieves a cross-validation

score of 56.3% with a variance of ±6.2, while our model achieves a cross-validation

score of 59.7% with a variance of ±1.0, which performs similar to the train-test

setting. We observe that its performance highly relies on the initialization of

the model. When fewer candidates are extracted at early-stage training, the

performance drops drastically since LBF relies on random walks in an enormous

search space. Our method achieves state-of-the-art performance and outperforms
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Model Valid(%) Test(%)

GTS based

WARM - 12.8

+beam - 54.3

LBF† 57.2(±0.5) 55.4(±0.5)

+memory† 56.6(±6.9) 55.1(±6.2)

Ours† 61.0(±0.3) 60.0(±0.3)

Supervised† - 75.6

G2T based

WARM - 13.5

+beam - 56.0

Ours† 61.7(±1.1) 60.5(±0.6)

Supervised† - 77.4

Table 7.5: Results on Math23K. ± denotes the variance of 3 runs for valid/test.

Supervised denotes full supervision upper bound. † denotes the results of our

implementation, other results are from the original paper.

other baselines up to 3.8% and 2.7% on train-test and cross-validation settings.

Our method is also more robust with minor variance.

We perform an ablation study with the GTS-based train-test setting in Table

7.6. Single Equation denotes using the 17,959 examples that only match with

one equation, the model achieves 57.5% performance, which is slightly lower than

using all data and the ranking module, outperforming other baseline models. The

result shows that the examples with only one matching could be considered highly

reliable and achieve comparable performance with a smaller training data size. We

observe a performance drop of at least 2.9% without the ranking module, showing

that our ranking module improves the performance. We observe a performance

gap of 0.9% between the two rankers, demonstrating the importance of considering

candidate equations from the model prediction.
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Model Valid(%) Test(%)

Proposed Method 61.0 60.0

w/o Multiple Data 58.9 57.5

w/o Ranking 57.3 56.3

w/o Beam Search 60.1 59.2

Table 7.6: Results of Ablation Study for Ranking. ‘w/o Multiple Data’ denotes

only using single candidate pseudo data for training. ‘w/o Ranking’ denotes re-

moving the ranking module and randomly sampling an equation for the examples

that match with two or more equations. ‘w/o Beam search’ denotes using the

basic ranker for ranking.

Model Micro Eq Acc(%)

Single 81.4

Multiple 2.7

All Data 23.0

Basic Ranker(Multiple) 45.6

Beam Ranker(Multiple) 47.7

Beam Ranker(All Data) 76.3

Table 7.7: Equation accuracy of different methods. ‘All Data’ denotes considering

both the single and multiple data.

7.5.4 Analysis

We conduct analysis on GTS train-test setting since the model achieves similar

performance compared with G2T and the run time is less.

Oracle Test

While our searching method covers 94.5% of the training data, as shown in Table

7.2, there is still a significant performance gap of more than 15% between the

weakly supervised performance and fully supervised performance, as shown in

Table 7.5. As stated in Section 7.2.3, we observe that the false-matching problem

could potentially draw down the performance, which is verified by the effectiveness
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Figure 7.5: Results of Oracle Test with gold labels.

of the ranking module.

To further analyze our two modules, we perform two oracle tests for the weakly

supervised system. In Figure 7.5, using the same data examples, we replace the

weakly supervised annotations with the supervised gold labels and train the MWP

solver. We can observe a performance gap of around 10% using the same data

examples as training data, which indicates that the weakly supervised annotations

contain noise. Since all candidate equation annotations have the correct answer,

the false-matching problem is why this noise exists. The results show that the

false-matching problem is the critical issue in the weakly supervised setting that

causes the performance gap compared to supervised setting.

To investigate the noise in the pseudo training data, we perform an oracle

analysis of the Micro Equation Accuracy of the pseudo training data. Micro

Equation Accuracy is defined by what proportion of training instance holds the

correct equation solution, which means the instance is not a false-matching exam-

ple. In Table 7.7, we show the results of micro equation accuracy of the training

data. We check whether the pseudo equation annotations that our system obtains

are equivalent to the gold labels for each instance. We can see that even in the

Single data that can only extract one candidate equation, the micro equation

accuracy shows there is still noise in the pseudo training data. We show examples

in the case study section to explain this problem. The examples that extract more

than one candidate have an equation accuracy rate as low as 2.7%, which makes
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Text Candidates Gold Ans

Some children are planting trees

along a road every 2 meters. They

plant trees on both ends of the

road. At last they planted 11 trees.

How long is the road?

2*(11-1) (11-1)*2 20

A library has 30 books. On the

first day, 1
5 of the books were bor-

rowed out. On the second day, 5

books were returned. How many

book are there in the library now?

30 - 1
5 * 5 30*(1-(15)) + 5 29

Peter and a few people are stand-

ing in a line, one person every 2

meters. Peter found that there are

4 people before him and 5 people

after him. How long is this queue?

4*5-2 , (4+5)*2 4*2 + 5*2 18

Table 7.8: Case study of ComSearch. The blue color denotes that the candidate is

true-matching and the light red color denotes that the candidate is false-matching.

our ranking system essential. Benefiting from the ranking system, the multiple

candidate data can achieve a higher equation accuracy rate. The Beam ranker

performs better than the basic ranker considering beam search results.

Case Study

We conduct a case study for ComSearch on three examples to further discuss the

strengths and limitations of the method in Table 7.8. The first example extracts

only one candidate equation; although the written expression is different from the

gold label, the two equations are equivalent, and the candidate is true-matching.

The second example extracts only one candidate equation; the false-matching can-

didate coincidentally equals the correct answer with this set of variable numbers.

However, the candidate expression and gold label expression are not equivalent.

The algorithm reaches a candidate at the stage of using all numbers and does not

further search for candidates that use the constant number 1. The third example
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Train Test

Micro Eq Acc(%) Macro Eq Acc(%) Ans Acc(%)

#Var LBF Ours LBF Ours LBF Ours Prop(%)

1 91.8 96.3 88.2 64.9 75.0 50.0 1.6

2 82.9 94.8 78.1 88.7 75.2 73.4 33.1

3 54.2 78.9 57.4 76.1 56.2 62.9 48.5

4 38.0 58.0 13.6 57.4 4.8 25.8 12.4

5 8.6 31.1 4.2 29.4 3.2 16.1 3.1

≥ 6 5.1 50.6 1.2 38.1 0 30.1 1.3

Table 7.9: Results of different variable sizes.

extracts two candidate equations, while only (4 + 5) ∗ 2 holds the correct mathe-

matical knowledge. The two candidates appear at the same searching stage, and

such false-matching cannot be avoided by Comsearch, where we need the ranker

to help filter out the false-matching noise. In this example, the two rankers both

select the correct label.

Study on Number of Variables

The distribution of different variable size instances in Math23K dataset is imbal-

anced, so we further break down the performance of different variable sizes com-

pared with LBF in Table 7.9. The Micro Equation Accuracy shows our method

can extract higher quality pseudo data for all variable sizes compared to previous

sampling based methods, especially for examples with more variables.

The recall of candidate extraction methods is another important factor that af-

fects performance. Therefore, in addition to Micro Equation Accuracy, we further

investigate the Macro Equation Accuracy of the two methods, which is defined

as equation accuracy on an average of each math word problem. We show that,

except for 1 variable, our method has significant advantages over LBF, especially

for difficult examples. This demonstrates that our method can effectively extract

high equality data of a large quantity. We also show the test answer accuracy

of our method and LBF of different variable sizes, which positively correlates

with the Macro Equation Accuracy. Eliminating equivalent equations allows our
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method to consider the larger search space, while sampling based methods such as

LBF limit to a small neighbour space of the model prediction. When the variable

number is small, the in-place random walk of LBF can possibly reach the correct

equation, that for the examples with 1 or 2 variables, LBF has a slight perfor-

mance advantage. When the variable number grows larger, as shown in Table

7.3, the gap between the efficiency of our searching method and LBF expands,

and our method can consider more equations candidates and achieve higher recall

and better recall performance. Moreover, the false-matching problem is more se-

vere when there are more variables; ignoring the problem would cause low Micro

Equation Accuracy and bring in more noise to the pseudo training data.

7.6 Study on Large Language Models

Recent studies have investigated leveraging large language models for solving math

word problems [105]. Chain-of-Thought prompting [105] uses the prompt of Let’s

think step-by-step to force the model to generate a rationale of the question before

predicting the answer. Few-shot prompting [85] feeds in a set of data examples

to the model before predicting the result. In Table 7.10 we show the results

of using weak supervised pseudo candidate equations extracted by ComSearch

as annotation for few shot prompts on Math23K with GPT-3 text-davinci-002.

Although Math23K is an Chinese dataset, due to the relatively poor multilingual

ability of GPT-3, using English prompts to force the model to generate English

rationale can achieve better results. As we can see, using weakly supervised

examples for few shot prompting can greatly boost performance compared to few-

shot baseline. The performance is also comparable with using gold examples.

By extracting the equation predicted by the LLM and using a calculator for the

final answer, the performance could be further boosted. Under such setting, the

performance of using weak examples and gold examples is still comparable.
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Model Acc(%)

Zero-shot 10.1

Zero-shot Chinese CoT 16.5

Zero-shot English CoT 26.9

Few-shot 24.0

Few-shot Weak CoT 31.5

Few-shot Gold CoT 32.0

Few-shot Weak with calculator 44.1

Few-shot Gold with calculator 45.2

Table 7.10: Results of Large Language Models performance on Math23K. CoT

denotes Chain-of-Thoughts prompting.

7.7 Related Work

Early approaches to solving math word problems mainly depend on hand-craft

rules and templates [7, 13]. Later studies either rely on semantic parsing [92, 97,

121], or try to obtain an equation template [51,56,90,91]. Recent studies focus on

using deep learning models to predict the equation template for full supervision

setting.

For weakly supervised setting, Hong et al. [42] and Chatterjee et al. [14] suf-

fers from two major drawbacks. First, they apply equation candidate searching

on an enormous searching space, while our method can effectively extract high-

quality candidate equations. Hong et al. [42] results in low robustness and low

performance on examples with more variables. Chatterjee et al. [14] results in low

coverage of examples that can extract candidate equations. Second, they use all

candidate equations for training and neglect the false-matching problem, which is

the key issue that drags down the model performance in weakly supervised setting,

while our ranking module addresses this issue and further boosts the performance.

To eliminate equivalent expressions, Roy and Roth [90] proposed a model that

decomposes the equation prediction problem into various classification problems,

eliminating some equivalence forms of the equation. However, the compression

is highly integrated with their model and cannot generalize to other models, in-
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cluding the SOTA seq2seq based models. Moreover, it can only cover limited

equivalence forms, leaving out various important forms such as Commutative law

and Associative law. [102] proposed a normalization method for supervised MWP

systems that considers Commutative law. The method merges several equiva-

lent expressions into one expression, resulting in the compression of the target

equation space. However, their method requires bruce-force enumeration before

compression, which remains to have high computational complexity. Only limited

equivalent forms are considered in both studies, and the equation space is still

considerably ample.

Various studies [54, 71] in ARQMath competition [70] and NTCIR bench-

mark [113] have investigated the math retrieval task that retrieves the most re-

lated mathematical passage for a question, which have clear semantic meanings

given by the textual description. In our ranker setting, the scoring targets, i.e.,

plane mathematical equations, cannot provide the semantic meanings that con-

textual embedding similarity based methods used in math retrieval benchmarks

require. With fully supervised training data, retrieval-based methods only achieve

40% accuracy [104] on Math23K.

Spurious programs in weakly supervised semantic parsing is a close analogy of

the false-matching problem, which refers to incorrect programs that lead to cor-

rect denotations. The major difference is that the function names of the spurious

programs are natural language defined, so the programs have semantic meanings.

Extra knowledge bases [6] and lexicon clues [35] were used to denoise the spuri-

ous programs, which is not applicable for complex lexicon patterns MWPs that

the solution equation uses operators ‘+,−, ∗, /’ that have no semantic meaning.

Pasupat and Liang [79] uses a small human-annotated dataset for denoising. Guu

et al. [37], which proposes a re-weighted optimization loss for the examples. How-

ever, their method relies heavily on hyperparameter tuning and gains negative

results on many datasets. Thus these methods are not suitable for the setting in

our paper.
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7.8 Summary of This Chapter

In this chapter, we propose ComSearch, a searching method based on a Combina-

torial strategy, to extract candidate equations for Solving Math Word Problems

under weak supervision. ComSearch compresses the enormous search space of

equations beyond the exponential level, allowing the algorithm to enumerate all

possible non-equivalent equations to search for candidate equations. We investi-

gate the false-matching problem, which is the critical issue that drags down perfor-

mance, and propose a ranking model to reduce noise. Our experiments show that

our method obtains high-quality pseudo data for training and achieves state-of-

the-art performance under weak supervision settings, outperforming strong base-

lines, especially for examples with more variables.



Chapter 8

Conclusion

8.1 Overview

In this thesis, we addressed the unique challenges posed by numerical reasoning,

a multi-hop question answering task characterized by multiple mathematically

equivalent solutions. We identified three key challenges and proposed innovative

solutions to overcome them.

In Chapter 3, we introduced the complexity of mathematical equivalence,

which makes it difficult for the general crowd to annotate high-quality samples. To

address this, we proposed reverse operation based data augmentation for mathe-

matical word problem (MWP) solving. Inspired by human double-checking during

calculations, this method performed cheap and accurate data augmentation that

could be adapted to any model. The augmented data not only improved per-

formance but also provided supervision of new mathematical knowledge points.

Experimental results on the Math23K dataset demonstrated the state-of-the-art

performance of our method compared to a strong baseline.

Chapter 4 focused on enhancing the model’s ability to learn the underlying rea-

soning process in numerical reasoning tasks. We proposed three solution program-

centric auxiliary pretraining tasks at both the whole-program and sub-program

levels. These tasks guided the model to distinguish relevant and irrelevant vari-

ables, predict operators, and mask keyphrases. Our experimental results on the

FinQA and MultiHiertt datasets showcased substantial improvements across dif-

123
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ferent scales of pre-trained language models (PLMs), highlighting the potential of

leveraging program annotations for future research.

Chapter 5 presented the Textual Enhanced Contrastive Learning framework,

which leveraged both supervised and self-supervised supervision to enhance the

model’s understanding of contextual information and bridge textual variance to

mathematical logic. We introduced novel data augmentation methods and a two-

stage retrieval approach to enrich the candidate pool for contrastive learning.

Experimental results on benchmark datasets in both English and Chinese show-

cased the effectiveness of our method, which achieved state-of-the-art results on

the Math23K dataset.

In Chapter 6, we introduced diverse mathematical reasoning logic to the

seq2seq MWP solver framework using control codes. This approach enabled the

model to benefit from diverse reasoning logic beyond fixed solution equations,

reducing expression bias. Experimental results on single-unknown and multiple-

unknown datasets demonstrated the effectiveness of our method, outperforming

strong baselines.

Finally, in Chapter 7, we introduced ComSearch, a searching method based on

a Combinatorial strategy, to extract candidate equations for solving Math Word

Problems under weak supervision. ComSearch effectively compressed the enor-

mous search space, enabling the enumeration of all possible non-equivalent equa-

tions to search for candidate equations. We also addressed the false-matching

problem by proposing a ranking model to reduce noise. Experimental results

demonstrated that our method obtained high-quality pseudo data for training

and achieved state-of-the-art performance, outperforming strong baselines, par-

ticularly for examples with multiple variables.

Overall, this thesis contributed innovative solutions to address the challenges

posed by numerical reasoning tasks. The proposed methods and frameworks

achieved state-of-the-art performance on various datasets, highlighting their effec-

tiveness and potential for improving mathematical problem-solving capabilities.

The findings of this thesis pave the way for further research and development in

the field of numerical reasoning and its applications in multi-hop question answer-

ing tasks.
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8.2 Limitations and Future Studies

Rely on Supervised Data One limitation of these studies is that the effec-

tiveness of the proposed methods heavily relies on annotated data, whether it is

for data augmentation, pretraining tasks, searching algorithms, or control codes.

Annotating large-scale datasets with high-quality samples is a time-consuming

and labor-intensive process. Therefore, exploring techniques to reduce the de-

pendency on annotated data or developing semi-supervised or weakly supervised

approaches would be beneficial.

In the context of numerical reasoning ability, a promising avenue for addressing

this limitation lies in the application of self-supervised methods. Self-supervised

learning approaches leverage the inherent structure and patterns within data to

learn useful representations without explicit human annotations. By capitalizing

on the abundant unlabeled data available, these methods can potentially overcome

the challenges associated with data annotation.

To specifically enhance the model’s ability of numerical reasoning, we can con-

struct self-supervision by integrating textual descriptions with numerical values

and logical relationships. By combining these different modalities, the model can

learn to understand the context and meaning behind numerical data, enabling it to

perform more sophisticated numerical reasoning tasks. For example, by training

the model to predict missing values or infer relationships between textual descrip-

tions and corresponding numerical values, it can develop a stronger grasp of how

numbers are interconnected within a given context. This integration of textual

and numerical information in a self-supervised manner empowers the model to

not only process and manipulate numbers but also comprehend their underlying

semantic context, ultimately enhancing its overall numerical reasoning abilities.

Advancing Numerical Reasoning with LLMs Our current study primar-

ily focuses on deep learning-based task-specific models for numerical reasoning.

However, recent advancements in the field of NLP have demonstrated the po-

tential of general LLMs as a universal solution towards Artificial Intelligence for

General Computational tasks. Although the current performance of LLMs in nu-

merical reasoning tasks may be lower compared to task-specific models, further
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investigation into LLMs and their numerical reasoning abilities is warranted.

One important area for future research is the examination of LLMs in vari-

ous settings, including multilingual scenarios. Understanding how LLMs handle

numerical reasoning across different languages can shed light on their generaliz-

ability and adaptability. By evaluating their performance on multilingual tasks,

we can uncover insights into the potential strengths and weaknesses of LLMs in

numerical reasoning across diverse linguistic contexts.

Moreover, improving the numerical reasoning performance of LLMs should be

a significant topic for the next generation of numerical reasoning research. This

can involve exploring novel pretraining strategies, architecture modifications, or

fine-tuning techniques specifically designed to enhance the numerical reasoning

capabilities of LLMs. By addressing the current performance gap between LLMs

and task-specific models, we can unlock the full potential of LLMs as powerful

tools for numerical reasoning tasks.

Application for boarder domain In this thesis, we have successfully explored

and demonstrated the effectiveness of our proposed methods in the domain of nu-

merical reasoning, specifically focusing on datasets centered around basic arith-

metic operations at the elementary level. However, there are promising avenues

for extending our research to tackle more challenging and broader domains, such

as university-level math problem solving. Notably, the recently proposed MATH

dataset [41] presents an intriguing opportunity for further investigation. Despite

the current low performance of existing models on this dataset, our methods from

Chapter 4, involving pretraining, and Chapter 5, utilizing contrastive learning,

showcase potential for application in these advanced domains without the reliance

on equation parsing.

Moving forward, it is imperative to enhance the adaptability of methods that

rely on equation parsers to address these more complex mathematical challenges

to apply methods from Chapter 3 and Chapter 7 on more advanced datasets.

Integrating more advanced math tools and techniques will be crucial in achieving

higher performance on such datasets. Exploring the combination of state-of-the-

art equation parsing techniques such as SymPy and integrating them into our
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models will be a key focus of future research.

Furthermore, our proposed methods are not restricted to the realm of math-

ematics alone. We envision their application in other AI for science domains,

including biology, chemistry, physics, and beyond. Adapting and fine-tuning our

models to suit the specific data characteristics and problem-solving requirements

of these scientific domains holds tremendous potential for advancing research in

these fields.

To achieve these goals, further investigation is warranted to thoroughly eval-

uate the performance of our methods in more diverse and challenging scenar-

ios. Robust experimentation on university-level math datasets and AI for science

datasets will be conducted to assess the models’ capabilities comprehensively. Ad-

ditionally, gathering feedback from domain experts and educators will be essential

in refining and optimizing the methods to cater to the practical needs of real-world

applications.

In conclusion, this thesis lays the groundwork for future research in numerical

reasoning and beyond. We are confident that our current methods demonstrate

promising transferability to more difficult and broader domains and open the doors

for novel applications in various AI for science disciplines. By addressing these

challenges, we aim to contribute to the advancement of AI-driven problem-solving

techniques in diverse academic and real-world scenarios.
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