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Abstract

The human brain exhibits both shared anatomical characteristics and individual variations.
While global structures such as the central sulcus are present in all human brains, local
variations in sulci and gyri exist. Despite anatomical alignment, differences in neural rep-
resentation and brain activity patterns persist due to diverse developmental environments
and experiences. However, it is plausible to assume that when presented with a particular
stimulus, brain activity patterns across different individuals encode relatively similar infor-
mation. Therefore, in theory, the brain responses of one individual could potentially predict
the responses of another individual to the same stimulus. Functional alignment, a technique
that aligns brain activity patterns without considering anatomical structure, has emerged as a
means to investigate the existence of neural representations shared across individuals.

The processing of visual information follows a hierarchical pathway, wherein early stages
detect simple local features, while later stages encode complex global features, ultimately
enabling holistic perception. However, it remains unclear whether this hierarchical and fine-
grained visual representation can be effectively converted across individuals while preserving
the encoded perceptual content. To address this issue, this thesis employs functional magnetic
resonance imaging (fMRI), functional alignment methods, and deep neural network models.
The study utilizes a functional alignment technique called the neural code converter, which
predicts a target subject’s brain activity pattern based on the response of a source subject
to the same stimulus. The converted patterns are then analyzed through the decoding of
hierarchical visual features and the reconstruction of perceived images.

Chapter 1 provides an introduction to brain differences among individuals, functional align-
ment, and visual features shared across individuals, along with a review of the current state
of the field. Chapter 2 describes the human brain activity data and experimental design in the
study. Chapter 3 demonstrates that human brain activity patterns and visual hierarchy can be
converted across individuals with moderate accuracy. Chapter 4 analyzes the converted brain
activity patterns through decoding of deep neural network features and visual image recon-
struction. Chapter 5 explicitly compares neural code conversions trained without imposing



viii

visual hierarchy to those that respect the visual hierarchy, highlighting the effectiveness of
data-driven approaches in detecting cortical hierarchy. Chapter 6 explores the pooling of data
from multiple subjects into a target subject’s space, resulting in slightly improved decoders
as assessed through visual image reconstruction evaluation. Finally, Chapter 7 discusses
the implication of neural code converters, future directions in inter-individual visual image
reconstructions and explores other visual features possibly shared across individuals.
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Chapter 1

Introduction

Human brains exhibit both individual uniqueness and shared characteristics in anatomical
and functional domains. Anatomical variations often become evident in local brain structures
such as gyrus and sulcus, while functional differences manifest in functional topography
and distinct responses to stimuli. While some common anatomical features are readily
apparent, exploring complex aspects such as structural connectivity and functional attributes
necessitates the use of brain imaging techniques, with this thesis primarily focusing on
functional magnetic resonance imaging (fMRI).

To uncover shared features, an alignment process is essential. Traditional fMRI studies have
employed anatomical alignment as a standard preprocessing step. However, the more recent
advent of functional alignment has unveiled a range of shared features across individuals.
This thesis will delve into these shared features, emphasizing the role of functional alignment
in their identification.

1.1 Commonalities and differences of human brains

While human brains share global structures such as hemispheres and four lobes - frontal,
temporal, parietal, and occipital - they exhibit variations in size, shape, and local structures
like gyri and sulci. These local differences persist even after accounting for variations in
brain size and shape. To align these global and local structures, several anatomical alignment
techniques have been proposed. However, these techniques have limitations as functional
topographies do not always align across individuals, posing challenges for group-level studies
where fMRI data are normalized to a common template.



2 Introduction

Furthermore, brains may respond differently to the same stimulus due to varying develop-
mental environments and experiences. However, it has been observed that brain responses
synchronized across individuals when viewing a movie (Hasson et al., 2004). This suggests
that the brain activity pattern in response to a stimulus in one individual could predict the
brain activity pattern in another.

1.1.1 Brain structures

The human brain is an intricate network of neural connections that define who we are as
individuals. Among its constituents, the cerebrum is the largest and arguably the most
complex part, responsible for various sophisticated functions such as cognition, language,
memory, and sensory processing. Understanding the structure of the cerebrum – including its
hemispheres, lobes, gyri, and sulci – and the functionalities associated with these structures,
is key to understand how the brain shapes our perceptions and behaviors.

The cerebrum is essentially split into two halves, referred to as the left and right hemispheres,
joined by a robust bundle of nerve fibers called the corpus callosum. This integration allows
for communication and coordination between the two hemispheres, enabling a comprehensive
perception of our world by integrating information from both sides of the body. Interestingly,
while the basic organization of these hemispheres is consistent across individuals, some
unique functionalities are often lateralized. For instance, language processing is typically
localized to the left hemisphere, while the right hemisphere often handles spatial abilities
and face recognition. These lateralizations, however, are not absolute and can show variation
among individuals, influenced by factors such as handedness and cultural upbringing.

Further subdividing each hemisphere, we find four primary lobes: the frontal, parietal,
temporal, and occipital lobes (Figure 1.1). Each lobe hosts specific functionalities and their
respective structure is generally conserved across individuals, although the size and specific
organization may differ slightly. The frontal lobe, located at the front of the brain, is essential
for higher cognitive functions such as decision-making, problem-solving, and planning.
It also controls voluntary motor activity. Adjacent to the frontal lobe, the parietal lobe
specializes in processing sensory information and maintaining spatial awareness, enabling us
to navigate and interact with our surroundings effectively. The temporal lobe, situated at the
sides of the brain near the ears, is primarily responsible for auditory processing and memory.
Finally, the occipital lobe, located at the back of the brain, is dedicated to visual processing,
translating the light that enters our eyes into images that we can comprehend.
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Figure 1.1: Four lobes of the human cerebrum. The frontal lobe (depicted in blue) is involved
in higher cognitive functions such as decision-making, planning, and voluntary motor activity.
The parietal lobe (depicted in yellow) processes sensory information and is integral to spatial
awareness. The temporal lobe (depicted in green) plays a crucial role in auditory processing
and memory. Lastly, the occipital lobe (depicted in red) is dedicated to visual processing,
transforming the light entering our eyes into comprehensible images.

An additional defining feature of the cerebrum is its convoluted surface, marked by folds
(gyri) and grooves (sulci). This folding pattern increases the surface area of the brain,
facilitating a higher density of neurons and therefore increasing cognitive capacity. While the
specific pattern of gyri and sulci can exhibit individual variation, the overall folding pattern,
as well as major landmarks like the central sulcus separating the frontal and parietal lobes,
are remarkably conserved across individuals.

Magnetic Resonance Imaging (MRI) is a non-invasive imaging technique that provides de-
tailed, high-resolution images of the internal structures of the body, including the brain. This
technology is capable of generating high-resolution images, thereby providing an intricate
view of the internal structure of the brain (Figure 1.2), which is otherwise unobservable
through mere external examination. This imaging technique does not merely show the gross
anatomical structure, but reveals minute details such as the gray and white matter, subcortical
structures, and complex neural pathways. These high-resolution images underscore the
existence of individual variations, particularly in the local structures of the brain, such as
differences in cortical fold size and shape, cortical thickness, or the relative dimensions of
distinct brain structures.

In summary, while the cerebrum’s anatomy maintains a degree of uniformity among indi-
viduals, variations in size, shape, and local structures do exist. This level of consistency
allows for generalized understandings of brain functionality, correlating certain functions
with specific regions within the cerebrum. Nonetheless, these individual differences present
challenges when exploring brain functions beyond global structures.
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Figure 1.2: T1-weighted (T1w) MRI image of the human brain. The high contrast between
gray and white matter demonstrates the intricate detail of internal brain structures, showcasing
the unique capabilities of MRI technology. Variation in brain structure can be observed
among the two subjects’ brain. This image is provided by Kamitani laboratory, Kyoto
University, with permission from the subjects.

1.1.2 Anatomical alignment

Over the years, numerous techniques, collectively termed as “anatomical alignment” or
“registration”, have been developed to precisely align anatomical features. These methods
comprise landmark-based, volume-based, and surface-based techniques.

The landmark-based registration technique was pioneered by Tailairach as a method to
standardize the alignment of brains across different individuals (Talairach & Tournoux, 1988).
This method performs piecewise affine transformation to register a brain to an atlas using
anatomical landmarks, including anterior and posterior commissure, midline sagittal plane,
and the exterior boundary of the brain. One significant drawback of this method lies in
the absence of an MRI image template for the atlas, and hence the registration is solely
dependent on the discernment of anatomical landmarks. Consequently, the preference has
shifted towards volume-based and surface-based registration techniques.

The volume-based registration registers 3D volumetric images to a brain template. The regis-
tration process typically commences with an initial linear and rigid registration, followed by
a nonlinear registration of an image to a template. A myriad of nonlinear registration algo-
rithms have been developed, each varying based on the deformation model, similarity metric,
and regularization utilized. For instance, SyN incorporates a bi-directional diffeomorphism
approach (Avants et al., 2008); SPM5 employs discrete cosine transforms; FNIRT utilizes
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cubic B-splines. Some of the most frequently used similarity metrics include least squares,
normalized correlation, correlation ratio, mutual information, and cross-correlation between
an image pair (refer to Poldrack et al., 2011 for further details).

The surface-based registration performs alignment based on surface features, such as gyri and
sulci. This method mandates the reconstruction of the cerebral cortex into a cortical surface
derived from the anatomical image, a process largely automated in the Freesurfer software
package (Dale et al., 1999). Initially, the cortical surface is first transformed into a spherical
representation, and the cortical folding pattern is represented as the average convexity on a
unit sphere. The alignment is then achieved by minimizing the mean square error between the
convexity of an individual and that of a template in a multi-scale manner in which a Gaussian
kernel with a decreasing standard deviation is applied (Fischl et al., 1999). The fsaverage, a
synthesis of 40 MRI scans of brains, is the most commonly employed template.

While anatomical alignment provides a valuable means of reconciling individual variances in
the brain structure, this approach alone is insufficient to mitigate the disparities observed in
the functional aspects of brain activity.

1.1.3 Functional topography

Functional brain topography is the specialized blueprint of our brain wherein each specific
region is assigned dedicated tasks. These functions range from language comprehension,
motor actions control, and visual perception, to name a few. While individual brain structures
may vary significantly in size and configuration, research has consistently pointed towards an
overarching pattern of functional organization that is shared across the majority of humans.
This shared functional blueprint is integral in allowing neuroscientists to extrapolate insights
about the neural mechanics underpinning cognition and behavior from a universal perspective,
rather than limiting it to individual-specific studies.

One well-established example of shared functional topography is the organization of the
motor cortex. Situated in the precentral gyrus of the frontal lobe, the primary motor cortex
plays a pivotal role in coordinating our body’s movements. Within this section of the brain,
different body parts find specific representation, adhering to an organized “somatotopic”
layout (Penfield and Boldrey, 1937; Grodd et al., 2001; Roux et al., 2020; Gordon et al., 2023).
Areas controlling the face and hands are notably more extensive, a pattern observed across
individuals. This pattern proves invaluable in medical and technological fields, enabling
neurosurgeons to target accurately during brain surgery and aiding in the development of
brain-computer interfaces for individuals with motor impairments.
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In the visual cortex, orientation columns, composed of an assembly of neurons, are selectively
responsive to the orientation of edges within the visual field, with different columns sensitive
to different edge orientations. The pattern of these orientation columns is often referred to as
a “pinwheel” arrangement, wherein neurons tuned to all possible orientations are represented
within a small area of the cortex (Blasdel & Salama, 1986). This intricate design allows for a
wide spectrum of orientations to be encoded, enabling the brain to process the complexity and
richness of the visual environment. Each pinwheel’s center corresponds to a singular point in
the visual field, and moving radially outward from this center results in a systematic change
in the preferred orientation, yielding a map of orientation preference across the cortical
surface.

Another example of functional topography in the visual cortex is the retinotopy, which is
the mapping of visual input from the retina to neurons in the visual cortex, maintaining
a spatially organized representation of the visual field (Figure 1.3). This mapping begins
with the photoreceptors in the retina and continues through the optic nerve to the primary
visual cortex located in the occipital lobe of the brain, where it maintains a topographical
representation of the visual field. However, this map is not an exact replica of the visual
field; rather, there’s a phenomenon called cortical magnification, where the central area of the
visual field, or the fovea, is overrepresented due to its higher density of photoreceptors.

While the existence of the functional topographies common among human brains under-
scores similarities in cognitive and behavioral processing across individuals, it’s important
to acknowledge that there are still variations on an individual level. For instance, even
with anatomical alignment taken into account, the positioning of the visual motion area
(known as area V5 or MT) can differ as much as approximately 20 mm across different
individuals (Watson et al., 1993). This variability in individual functional representations
poses substantial challenges, particularly when attempting to standardize fMRI data to a
common template for large-scale group studies. Consequently, while the shared functional
topography of the human brain offers insights into general patterns, a thorough understanding
of human cognition must also factor in individual variations.

1.1.4 Functional brain activity pattern

Functional brain activity pattern refers to the activation of regions of the brain in response to
stimuli or during cognitive processes. Neuroimaging techniques such as functional magnetic
resonance imaging (fMRI) and electroencephalography (EEG) are commonly used to study
the functional brain activity patterns in humans. In fMRI study, a brain activity pattern refers
to the pattern of voxel responses to a stimulus.
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Figure 1.3: Illustration of retinotopic mapping using rotating wedges and expanding rings.
This figure illustrates the principle of retinotopy. In panel A, a rotating wedge stimulus moves
in a clockwise direction around a central fixation point, mapping polar angle representation
in the visual cortex. In panel B, an expanding ring stimulus moves outward from the center,
mapping eccentricity representation in the visual cortex. Together, these stimuli help to create
a comprehensive retinotopic map of the visual field onto the brain’s visual cortex. Reprinted
from Visual Cortex - Current Status and Perspectives, 2012, Chapter 2, Brewer and Barton,
Visual Field Map Organization in Human Visual Cortex, licensed under CC BY 3.0.

https://www.intechopen.com/chapters/39300
https://creativecommons.org/licenses/by/3.0/deed.en
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Figure 1.4: Comparison of fMRI activity patterns in two subjects viewing the same image.
Even when two subjects view the identical picture, their brain processing of the visual
stimulus results in different fMRI activity patterns, highlighting the individual variability in
brain responses.

Functional brain activity patterns can vary depending on the task or state being studied. For
example, when a person is engaged in a visual task, such as watching a movie or looking
at a picture, there is increased neural activity in the visual cortex, which is responsible for
processing visual information. Similarly, when a person is engaged in a hearing task, such
as music listening, there is increased neural activity in the auditory cortex located on the
superior temporal gyrus. Functional brain activity patterns encode rich information about the
stimulus. With appropriate techniques, the stimulus information can be decoded and even
reconstructed, providing insights into the cognitive processing mechanisms.

However, an intriguing feature of these functional brain activity patterns lies in their variability
across individuals. While certain functional brain networks show shared characteristics
among many individuals, there is significant variability in the brain activity patterns between
different people (Figure 1.4). This variability poses a unique challenge to neuroscientists.
It complicates the process of drawing generalized conclusions about brain function or
developing decoding models that work reliably across a range of individuals. As such,
the study of functional brain activity patterns requires careful consideration of individual
differences to fully understand the intricate workings of the human brain.

1.2 Functional alignment

In fMRI studies, the brain response of an individual to a given stimulus is characterized by
a distinct pattern of fMRI activity that encodes the information pertaining to the stimulus.
These fMRI activity patterns for each subject can be represented as high-dimensional vectors,



1.2 Functional alignment 9

with each voxel serving as a dimension within the vector space. Consequently, each vector in
this space represents an fMRI activity pattern that corresponds to a specific stimulus. Stimuli
exhibiting common characteristics, such as being quadrupeds and possessing fur, demonstrate
brain response vectors that are spatially proximate to each other within the vector space. For
instance, the brain response vectors corresponding to a dog and a cat would be closer to one
another compared to a response vector associated with a house. In essence, the response
vectors encompassing all available stimuli collectively form a response manifold, which is
embedded within the vector space. It is important to note that the response manifolds of
different subjects generally do not overlap, indicating the presence of variability in responses
across individuals.

Functional alignment is based on the underlying assumption that it is possible to achieve
alignment of subjects’ response vectors for a specific stimulus within a common model space
(Figure 1.5), which is also known by various terms in the literature, including common space,
common template, shared feature space, or simply shared/common space (Haxby et al.,
2011; Chen et al., 2015; Bazeille et al., 2021). This alignment process entails learning the
relationships among voxels across subjects using a machine learning model. A prerequisite
for this approach is the availability of an fMRI training dataset containing the responses of
each subject to a predetermined set of stimuli. Each subject’s dataset is represented as a
data matrix, where each row corresponds to the fMRI activity pattern evoked by a specific
stimulus.

1.2.1 Hyperalignment

Hyperalignment is one of the earliest methods to tackle the problem of functional alignment
(Haxby et al., 2011; Haxby et al., 2020 for a recent review). Hyperalignment aligns subjects’
brain response vectors corresponding to a stimulus by performing a series of Procrustean
transformations (Schönemann, 1966). The algorithm consists of three iterative steps:

1. In the first iteration, the hyperalignment algorithm first selects an initial target subject
whose fMRI responses are used as a template, then aligns the second subject’s fMRI
responses to the template using Procrustes transformation. The template is then updated
as the mean of the current template and the newly aligned fMRI responses. The same
procedure is repeated for additional subjects.

2. In the second iteration, each subject’s original response is aligned to the mean aligned
responses of other subjects. The mean aligned response is recalculated and treated as a
template.
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Figure 1.5: Idea of functional alignment. The brain responses vectors to the same stimulus in
the high-dimensional individual spaces can be brought aligned in the common model space.
Reprinted from Elife, 2020;9: e56601, Haxby et al., Hyperalignment: Modeling shared
information encoded in idiosyncratic cortical topographies, Page No. 3, licensed under CC
BY 4.0

3. In the last step, each subject’s response is aligned to the template, and an orthogonal
transformation matrix is obtained for each subject.

Hyperalignment often does not work well in high-dimensional data when dealing with a large
region of interest (ROI) with more voxels than training samples. To partially tackle this issue,
Chen et al. (2015) proposed joint SVD-hyperalignment that first performs dimensionality
reduction by SVD, followed by hyperalignment in the lower-dimensional feature space.
However, they are still not optimal for the whole cortex analysis that generally involves
hundreds of thousands of voxels. A variant of hyperalignment, which is called searchlight
hyperalignment, tackles this issue by using disks of searchlights that cover the whole cortex
(Kriegeskorte et al., 2006; Guntupalli et al., 2016). The disk could be a three-dimensional
volume or a two-dimensional surface, depending on the type of fMRI data (Oosterhof
et al., 2011). Hyperalignment algorithm is then performed in each searchlight disk, and
a local transformation matrix is obtained (Figure 1.6). A whole-cortex transformation
matrix is obtained by aggregating all local transformation matrices of each searchlight disk.
Nevertheless, this method is computationally costly, and the matrix aggregation procedure
destroys the local structure imposed within each searchlight disk, thus the aggregated matrix
is not orthogonal in general. Despite this disadvantage, searchlight hyperalignment is often
the go-to method in the whole-brain functional alignment.

https://iiif.elifesciences.org/lax/56601%2Felife-56601-fig1-v1.tif/full/1500,/0/default.jpg
https://iiif.elifesciences.org/lax/56601%2Felife-56601-fig1-v1.tif/full/1500,/0/default.jpg
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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Figure 1.6: Schematic of searchlight hyperalignment. Reprinted from Elife, 2020;9: e56601,
Haxby et al., Hyperalignment: Modeling shared information encoded in idiosyncratic cortical
topographies, Page No. 6, licensed under CC BY 4.0

1.2.2 Neural code converter

The concept of neural code converter was introduced around the same time as hyperalignment
in 2011, as described by Yamada et al. (2011 & 2015). While both approaches share
the principle of functional alignment, they differ in terms of underlying assumptions and
model implementations. The neural code converter functions as a pairwise transformation
between two subjects, whereas hyperalignment estimates a common template and supports
bidirectional transitions between individual space and the common template. The neural
code converter is trained to predict fMRI activity patterns of a target subject from measured
fMRI activity patterns of a source subject, with both subjects presented to the same sequence
of stimuli (Figure 1.7). The converter is then tested with a test stimulus, such as a geometric
shape.

Furthermore, the original study primarily focused on the early visual area (V1) and assumed
that the activity of a voxel should exhibit similarity to a limited number of voxels in V1
from another subject. To address this assumption, the neural code converter method employs
sparse regression, utilizing automatic relevance determination (ARD) prior within Bayesian
estimation of the weights. This approach offers greater flexibility compared to the Procrustean
transformation employed in hyperalignment, which imposes orthogonality constraint. Despite
lacking orthogonality, the neural code converter’s flexibility has demonstrated enhanced

https://iiif.elifesciences.org/lax/56601%2Felife-56601-fig1-v1.tif/full/1500,/0/default.jpg
https://iiif.elifesciences.org/lax/56601%2Felife-56601-fig1-v1.tif/full/1500,/0/default.jpg
https://creativecommons.org/licenses/by/4.0/
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Figure 1.7: Illustration of neural code converter. Panel A indicates the training of converters
with a pair of subjects presented to a sequence of stimuli. Panel B shows the conversion of
a source subject’s fMRI activity pattern to a target subject’s brain space. Reprinted from
NeuroImage, 2015;113, Yamada et al., Inter-subject neural code converter for visual image
representation, Page No. 290, Copyright (2015), with permission from Elsevier.
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prediction accuracy (Yamada et al., 2011 & 2015). Additionally, the transformation matrix in
a neural code converter is generally non-invertible, in contrast to hyperalignment. Generally
speaking, a neural code converter need not be a sparse regression. Any regression model that
can establish a statistical relationship between subjects’ voxels can be termed a neural code
converter. In my study, I mainly used the Ridge-based neural code converter.

1.2.3 Others

The field of functional alignment has been developed for a decade, and various methods have
been proposed in order to improve the accuracy of alignment. Some methods generalize
hyperalignment algorithm, for example, deep hyperalignment (Yousefnezhad & Zhang, 2017)
and hybrid hyperalignment (Busch et al., 2021). Other methods, such as optimal transport,
canonical correlation analysis (Zhuang et al., 2020 for a review in neuroscience application),
and shared response model (Chen et al, 2015), use different approaches to transform or align
brain responses. For an evaluation of functional alignments, please refer to Yousefnezhad
et al. (2021) and Bazeille et al. (2021).

1.3 Previous studies on visual features shared across indi-
viduals

The human visual system operates as a complex mechanism that translates intricate visual
features into a holistic perception. These visual features span from basic elements such
as edges and image contrast, to more complex attributes like semantics and the identity
of objects. In addition to encoding these visual features, the human visual system also
arranges them into global organizations. An important instance of such an organization is the
retinotopic organization, which maintains a spatial map of visual information throughout the
processing pathway in the visual cortex. These features, organized in particular patterns, are
processed and interpreted to construct a detailed mental image of our surroundings.

In light of the individual differences outlined previously, the question of whether these visual
features are universally shared cannot be resolved without detailed scrutiny. Functional
alignment emerges as a potent tool in this regard, enabling the examination of whether
a particular visual feature or neural representation is common across individuals. The
fundamental concept involves training either an encoding or decoding model on a given
subject, and subsequently applying this model to a different subject whose brain activity
patterns have been aligned with the former. If the model successfully generalizes to the new
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subject, it indicates that the visual features learnt by the model are indeed shared among
individuals. In the following, I will present several research studies that further elucidate this
point.

1.3.1 Image contrast

The investigation of decoding visual perception in the human brain has consistently been an
engaging and active area of research (Kay et al., 2008; Miyawaki et al., 2008; Güçlütürk et al.,
2017; Shen et al., 2019a & 2019b; Han et al., 2019; Seeliger et al., 2018). One notable early
study in this field focused on visual image reconstruction of simple contrast patterns, wherein
the multi-scale contrast of an image was decoded using multi-voxel decoders (Miyawaki
et al., 2008; Figure 1.8). The stimulus images were 10 × 10 checkerboard patches comprising
random images, geometric shapes, and alphabet characters. The researchers employed four
scales of local image bases that covered the entire image. At each position within the image,
the multi-voxel decoders, trained with hundreds of random images, predicted the contrast
at each scale from fMRI signals of the primary visual cortex. By combining the locally
predicted contrasts, the visual image of geometric and alphabet shapes could be reconstructed.
This finding demonstrated that the primary visual cortex encodes information related to local
image contrast.

In further research by Yamada et al. (2011 & 2015), a neural code converter was trained
using fMRI responses to random patches. The neural code converter was then employed to
convert fMRI responses from a source subject space to a target subject space using structured
patches such as squares, square rings, plus signs, crosses, and large square rings (refer to
section 1.2.2: Neural code converter). The converted fMRI responses were subsequently
reconstructed into images using Miyawaki’s reconstruction algorithm. The reconstructed
images generated from the predicted or converted fMRI responses of a source subject closely
resembled those obtained from the measured fMRI responses of a target subject (Figure 1.9).
These findings indicated that the information pertaining to image contrasts is shared across
individuals.

1.3.2 Object identity

The human visual system could recognize objects in a variety of situations, in spite of the
variation in the physical stimulus. Mishkin and Ungerleider (1982) proposed the concept
of "what" and "where" pathways within the visual system that process different types of
information. The "what" pathway, also known as the ventral visual pathway, encompasses
the occipital lobes and several regions within the temporal lobe. Neurons within the posterior
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Figure 1.8: Visual image reconstruction by multiscale local image decoders. Panel A indicates
the prediction and combination of multiscale local image bases, and the reconstruction of
the contrast pattern. Four decoders corresponding to four local image bases (1×1, 1×2, 2×1,
2×2) are trained at each location of an image. Panel B shows the experiment design with
the stimuli flashed over the time. Reprinted from Neuron, 2008;60, Miyawaki et al., Visual
Image Reconstruction from Human Brain Activity using a Combination of Multiscale Local
Image Decoders, Pages No. 917, Copyright (2008), with permission from Elsevier.
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Figure 1.9: Reconstructed artificial images from the converted brain activity patterns of
V1 area. Reprinted from NeuroImage, 2015;113, Yamada et al., Inter-subject neural code
converter for visual image representation, Page No. 296, Copyright (2015), with permission
from Elsevier.

region of this pathway exhibit selectivity towards basic features such as edges and contrasts.
In contrast, neurons in the inferior temporal (IT) cortex demonstrate selectivity towards more
complex features, such as human body parts (Desimone et al., 1984). Thus, it is widely
accepted that neural representations within the IT cortex encode information pertaining to
object identity.

Within the ventral stream, certain regions exhibit selectivity towards specific visual features
that play a crucial role in object recognition. For instance, the lateral occipital complex
(LOC) is instrumental in shape recognition (Kourtzi & Kanwisher, 2000), while the fusiform
face area (FFA), located in the ventral part of the temporal lobe, is specifically involved in the
recognition of faces (Kanwisher et al., 1997). Additionally, the parahippocampal place area
(PPA), situated within the parahippocampal cortex, is crucial for scene perception (Epstein &
Kanwisher, 1998).

In the research conducted by Haxby et al. (2011), hyperalignment was employed on fMRI
response vectors derived from the visual area, which encompasses the FFA, PPA, and a
region of the inferior temporal cortex (IT) (refer to section 1.2.1: Hyperalignment). The
hyperalignment procedure used a training dataset consisting of fMRI responses collected
while subjects viewed a full-length movie. Subsequently, the additional fMRI datasets
of the subjects, acquired while they were exposed to face and simple object stimuli, were
transformed into the estimated common model space obtained through hyperalignment.

To investigate the shared neural representations of object identities, a linear support vector
machine (SVM) was trained using the transformed dataset of a particular subject, with
the aim of predicting the stimulus category, including male faces, female faces, monkey
faces, dog faces, shoes, chairs, and houses. The performance of the SVM was evaluated
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Figure 1.10: Retinotopic mapping from the visual field to the visual cortex. Panel A shows
the visual field defined by polar coordinate. Panel B shows the corresponding mapping from
the visual field to the visual areas V1 and V2. Reprinted from Cerebral Cortex, 1997;7(2),
Engel et al., Retinotopic organization in human visual cortex and the spatial precision of
functional MRI, Page No. 182, Copyright (1997), with permission from Oxford University
Press.

using two distinct scenarios: within-subject classification, where the SVM was tested on the
same subject’s dataset, and between-subject classification, where the SVM was tested on a
different subject’s dataset. Notably, between-subject classification yielded results comparable
to within-subject classification, indicating that the complex features underlying object identity
are indeed shared across individuals.

1.3.3 Retinotopic organization

Retinotopy is the systematic mapping of visual stimuli from the retina to the visual cortex,
as described by Engel et al. (1994 & 1997). This organization is distinctly seen in the
primate primary visual cortex, known as V1. The visual field is defined utilizing a polar
coordinate system, where the dimension extending from the center to the periphery is termed
eccentricity, while the dimension traversing from the upper vertical meridian (UVM) through
the horizontal meridian (HM) to the lower vertical meridian (LVM) is known as the polar
angle (see Figure 1.10).

Within V1, retinotopic mapping manifests in the following manner: as a visual stimulus
moves along the eccentricity dimension from the center, neural activity undergoes a spatial
shift from the posterior to the anterior cortex. Likewise, as the stimulus traverses the polar
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angle dimension, progressing from UVM to LVM, neural activity within the calcarine sulcus
undergoes a transition from the ventral to the dorsal part. Furthermore, retinotopic mapping
exhibits a contralateral organization, whereby stimuli presented in the left or right visual
field elicit corresponding neural activity in the right or left visual cortex, respectively. As a
result, the primary visual cortices of the two brain hemispheres jointly cover the entire visual
field.

The initial evidence for the preservation of retinotopic organization after functional alignment
was provided by Yamada et al. (2011 & 2015; see section 1.2.2: Neural code converter).
Specifically, they observed that the transformation matrix consistently assigned higher
weights to source subject voxels exhibiting similar eccentricity and polar angle as the target
voxel. This finding implies that when a stimulus traverses the visual field of the source
subject, it generates a "pseudo" neural activity that replicates the retinotopic pattern within
the corresponding location of the target subject’s visual cortex. However, their investigation
examined solely on the preservation of retinotopic organization in area V1. Subsequently,
Bilenko and Gallant (2016) and Guntupalli et al. (2016) extended these findings by a different
way and presented further evidence supporting the preservation of retinotopic organization
following functional alignment beyond area V1.

1.3.4 Semantic contents

Natural scenes present a rich and dynamic environment filled with a diverse array of objects,
actions, and interactions. The complexity of these scenes goes beyond the mere identification
of individual objects and requires a deeper understanding of the semantic relationships
and contextual information present. The semantic representations associated with natural
scenes are not confined to specific localized regions in the brain but rather distributed across
extensive neural networks (Huth et al., 2016).

The distributed nature of semantic representations in the brain can be attributed to the broad
range of underlying concepts involved. For example, when perceiving a natural scene, our
brain processes not only the objects present but also the actions being performed and the
relationships between objects. Consider a scene depicting a group of people having a picnic in
a park. Our understanding of the scene goes beyond recognizing the individuals and the picnic
items; it also involves comprehending the social interaction, the leisurely atmosphere, and
the spatial context of the park environment. All these interconnected semantic components
contribute to the holistic interpretation of the scene.
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In a study by Van Uden et al. (2018), the researchers measured fMRI brain responses from
18 subjects as they freely watched a naturalistic audiovisual movie (Figure 1.11). Each
imaging volume was assigned word embeddings (word2vec) related to agents, actions,
objects, and scenes to capture semantic information. The researchers performed searchlight
hyperalignment using the collected fMRI data to estimate a common model space. They
transformed data from 17 of 18 subjects to a left-out subject’s space through the common
model space, and trained a semantic encoding model to predict the left-out subject’s fMRI
responses. The researchers used a separate dataset not involved in the hyperalignment
process to compare the prediction accuracy with the actual fMRI responses from the left-out
subject, by evaluating the correlation between them. Remarkably, the between-subject model
exhibited similar accuracy to that of the within-subject model, in which the encoding model
was trained only with the fMRI responses of the left-out subject. This indicated that despite
individual life experience variations, the semantic space organizing semantic concepts in
certain patterns is universally shared.

1.4 Hierarchical visual processing in the ventral pathway

Human vision follows a hierarchical process that seamlessly translates light waves into vivid,
meaningful perception. The magic begins in the retina, where light stimulates photoreceptor
cells to convert this physical energy into electrical signals. These signals embark on a
complex journey through the visual system’s intricate layers, offering us a glimpse into our
surrounding world.

The visual system follows a hierarchical organization that progressively breaks down and
processes visual information in stages. Early stages involve processing basic visual elements
such as color, brightness, and edge orientation, primarily in the retina and primary visual
cortex (V1). Information then advances to higher visual areas, where more complex attributes
such as object recognition, motion perception, and spatial awareness are processed. This
stage-wise processing allows the system to construct a comprehensive visual understanding
from simple components, resembling a pyramid of cognition with intricate details at the base
and broader concepts at the peak.

This layered hierarchy, where higher levels integrate and interpret information from lower
ones, serves as the cornerstone of our visual perception. It allows us to navigate, interact with,
and make sense of our environment. The architecture of the hierarchical visual processing
system is not only a testament to the sophistication of human physiology but also provides
a blueprint for developing advanced artificial vision systems. In this section, I introduced
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Figure 1.11: Illustration for building between-subject semantics encoding models with
hyperalignment. Panel A illustrates the model training process: the training subjects’ data
are first mapped into the test subject’s space, and then a linear regression model is trained
to predict responses in the test subject’s space. Panel B depicts the model testing process,
where a left-out movie, viewed by the test subject, is used to predict fMRI responses within
the test subject’s space. Reproduced from Frontiers in Neuroscience, 2018;12: 437, Van
Uden CE et al., Modeling Semantic Encoding in a Common Neural Representational Space,
Page No. 5, licensed under CC BY 4.0 / Cropped from original.

https://www.frontiersin.org/files/Articles/378029/fnins-12-00437-HTML/image_m/fnins-12-00437-g001.jpg
https://creativecommons.org/licenses/by/4.0/
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Figure 1.12: Schematic of the center-surround receptive field.

several visual features in the ventral visual stream, with a focus on the hierarchical nature of
their processing.

1.4.1 Contrast

At the heart of visual interpretation lies the ability to distinguish objects from their back-
grounds and recognize the boundaries between different areas in our field of vision. This
fundamental ability, known as contrast perception, is crucial for detecting edges and delineat-
ing forms in our visual surroundings.

Contrast perception commences at the level of the retina, where specialized cells called
photoreceptors detect the light that reaches our eyes. These cells, comprising rods and cones,
convert light into neural signals, which are processed by subsequent layers of cells in the
retina. The retinal ganglion cells, particularly, play a key role in contrast perception due to
their unique receptive field structure.

Each ganglion cell possesses a receptive field that comprises two parts - a central region
(center) and a surrounding region (surround). Depending on the cell type, light stimula-
tion in the center could either excite or inhibit the cell’s firing, while stimulation in the
surround has the opposite effect (Figure 1.12). This center-surround organization enhances
the contrast at edges where light intensity changes significantly, facilitating the detection of
boundaries.

The neural signals, now contrast-enhanced, travel via the optic nerve to the lateral geniculate
nucleus (LGN) in the thalamus, where further processing occurs. The neurons in the LGN
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maintain the center-surround structure of their receptive fields, further enhancing the contrast
information received from the retina.

Following the LGN, this information is relayed to the primary visual cortex (V1), where
neurons known as simple and complex cells take over. These cells, particularly sensitive to
edges and orientation, combine the contrast information from multiple LGN inputs. Through
this integration, they can detect and enhance contrast along specific orientations, a critical
step for shape recognition and pattern detection.

In summary, contrast perception is an intricate and vital process, seamlessly coordinating
between different stages of the visual pathway. From the initial detection of light in the
retina to complex processing in the visual cortex, the collective effort results in our ability
to distinguish boundaries, recognize shapes, and perceive patterns. It is a testament to the
sophistication of our visual system and its ability to decode the nuanced tapestry of our visual
world.

1.4.2 Orientation

The primary visual cortex (V1), also known as the striate cortex, is the first cerebral cortex
region to receive visual input. Two main cell types within V1, simple and complex cells,
work together to interpret and respond to orientation.

Simple cells, first discovered by David Hubel and Torsten Wiesel (Hubel and Wiesel, 1959;
1962), respond most strongly to oriented edges and bars of specific orientations within their
receptive fields. Each simple cell possesses a distinct receptive field that is spatially organized
into “on” and “off” regions (Figure 1.13). The receptive field of simple cells is suggested to
be formed by overlapping multiple receptive fields of LGN cells. When light falls onto an
“on” region, it stimulates the cell, and when it falls onto an “off” region, it inhibits the cell.
This arrangement allows simple cells to respond maximally when a line or edge of a specific
orientation is present in their receptive field. Thus, they serve as the building blocks for edge
detection and orientation selectivity, critical aspects of visual perception.

On the other hand, complex cells, another discovery by Hubel and Wiesel, show a higher
degree of abstraction in their responses. Unlike simple cells, complex cells respond to
oriented edges and bars across a broad spatial area and are insensitive to the exact location of
the stimulus in the receptive field. Furthermore, they often exhibit a preference for motion in
a particular direction. This insensitivity to the specific position and sensitivity to the direction
of motion allows complex cells to process more global aspects of the visual scene, such as
object movements and broader shapes.
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Figure 1.13: Schematic of the formation of the receptive field of a simple cell.

Together, simple and complex cells in the visual cortex play complementary roles in visual
perception. Simple cells initiate the process by detecting edges and orientations, effectively
delineating objects’ boundaries in the visual field. Complex cells then take this processed
information a step further, integrating these boundaries over larger areas and tracking their
movement over time.

In conclusion, the discovery and study of simple and complex cells have significantly
contributed to our understanding of the visual system. They serve as prime examples of
how the brain processes information hierarchically, beginning with simple features and
progressively constructing a more comprehensive representation of the world. Their precise
functions in vision provide insights not only into the human visual system but also into
principles of neural computation and organization that can be extended to other sensory
systems and cognitive functions.

1.4.3 Depth

As inhabitants of a three-dimensional world, our ability to perceive depth is vital for interpret-
ing the spatial relationships between objects, estimating distances, and navigating through
our environment. The underlying biological mechanisms enabling depth perception are
complex, engaging multiple stages of visual processing, culminating in certain specialized
areas of the visual cortex.

Depth perception initiates with the reception of visual stimuli by the eyes. Due to their
horizontal separation on our faces, each eye views the world from a slightly different
angle, resulting in two slightly different images being projected onto each retina. This
discrepancy, known as binocular disparity, provides one of the most critical cues for depth
perception.

The process begins in the retina and is then transmitted via the optic nerve to the lateral
geniculate nucleus, and eventually to the primary visual cortex (V1). While V1 does have
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neurons that respond to binocular disparity (Poggio et al., 1985), the real depth computation
appears to occur beyond this initial stage of cortical processing.

This further processing of depth information takes place in specialized visual areas, including
V2, V3, and also in an area known as V5/MT (Parker, 2007). These areas contain neurons
that respond selectively to particular degrees of binocular disparity, effectively enabling them
to compute the relative depth of objects in our visual field.

In addition to binocular disparity, other cues such as perspective, shadows, relative size,
and occlusion, contribute to depth perception. While these cues are primarily monocular,
meaning they can be interpreted with just one eye, they still influence the processing in these
disparity-selective regions of the cortex, offering a more complete and robust perception of
depth.

In conclusion, depth perception is a multifaceted process that encompasses both binocular
and monocular cues and engages multiple regions of the visual cortex. The processing of
these depth cues, particularly binocular disparity, allow us to navigate effectively through
our three-dimensional world. This intricate interplay between the different stages of visual
processing underscores the complexity of our visual system and its remarkable ability to
create a rich, three-dimensional interpretation of our surroundings.

1.4.4 Color

Color perception is a fundamental component of our visual system. At the onset of color
perception are the photoreceptor cells in the retina known as cones. Humans typically
have three types of cone cells, each sensitive to different wavelength ranges that broadly
correspond to the colors blue, green, and red. The differential stimulation of these cones by
various wavelengths of light sets the stage for color perception.

Following the initial detection, the signals from the cones are processed further by the retinal
ganglion cells. These cells generate responses based on the differences in signals from the
various types of cones, encoding the color information into two dimensions: brightness
(black-white) and color (blue-yellow and red-green). This encoded information is then sent
via the optic nerve to the LGN in the thalamus for further processing.

From the LGN, the color-coded signals are relayed to the primary visual cortex (V1), where
they are interpreted by specialized cells. The neurons in V1, especially the double-opponent
cells, respond to color contrasts within their receptive fields, which allows them to identify
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color edges and small color patterns (Livingstone & Hubel, 1984). This processing of color
contrast is crucial for recognizing color boundaries and enhancing color perception.

Beyond V1, higher areas of the visual cortex, such as the V4 (Zeki, 1973) and the inferior
temporal cortex (Komatsu et al., 1992), also play a crucial role in color perception. Particu-
larly, area V4 has been linked to color constancy - our ability to perceive the consistent color
of an object despite changes in lighting conditions (Wild et al., 1985). These areas integrate
the color information with other visual attributes, contributing to our ability to recognize
objects and perceive a coherent visual scene.

In conclusion, color perception is a multifaceted process that spans several stages of the visual
pathway. From the initial detection by the cones in the retina to sophisticated processing
in the visual cortex, this color decoding capability endows us with a rich and nuanced
understanding of our environment. It adds depth to our visual experience, allows us to discern
objects, and even provides cues about the emotional state of our surroundings. This colorful
journey underlines the complexity and precision of our visual system in transforming light
into a visual feast of colors.

1.4.5 Contour integration

Contour integration begins in the primary visual cortex (V1) where the first stage of visual
processing occurs. Here, neurons known as simple and complex cells respond to specific
orientations of light and dark contrasts in their receptive fields. While these cells are adept at
detecting local features such as edges and bars, they lack the capacity to perceive how these
isolated elements relate to one another to form larger structures.

This is where the process of contour integration steps in. In areas beyond V1, such as the
secondary visual cortex (V2) and other associated areas (Anzai et al., 2007; Hegdé and
Van Essen, 2000; Ito and Komatsu, 2004), more complex cells respond to aligned edges and
can start to link these edges together to form perceived contours. This process is thought
to be aided by lateral connections between neurons that allow them to “communicate” and
establish relationships between their receptive fields (Yen & Finkel, 1998).

These neurons exhibit a property called “end-stopping” (Hubel & Wiesel, 1965), meaning
they prefer line segments of a specific length. End-stopped cells are critical for contour
integration as they help determine where a line or edge ends, enabling the visual system to
differentiate between separate contours in the visual field.
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The integration of contours is a critical intermediate step in the hierarchy of visual processing,
forming the bridge between low-level feature detection and high-level object recognition.
It aids in distinguishing objects from their backgrounds and recognizing the boundaries of
objects, ultimately contributing to our perception of shapes, scenes, and structures.

In conclusion, contour integration is a powerful tool that our visual system employs to make
sense of the complex visual world. By stitching together individual elements into larger
structures, contour integration allows us to perceive the outlines of objects and understand
their form. This process not only illustrates the complexity of our visual system but also
showcases its remarkable ability to transform fragments of visual information into coherent
and recognizable images.

1.4.6 Texture perception

The neural mechanisms driving texture perception function in a hierarchical manner within
the human visual system. The initial processing of visual information, including basic
texture features, occurs in V1. Cells in this region respond to simple attributes such as
edge orientation and spatial frequency, elements that are essential to texture perception.
However, the understanding of texture transcends these rudimentary characteristics; our
perception integrates these features into a more holistic understanding of surfaces and
materials. Subsequent stages of visual processing in areas such as V2 and V4 are believed to
play a crucial role in this integration (Kastner et al., 2000; Puce et al., 1996. Here, neurons
respond to more complex patterns and combinations of features, essentially “composing” the
textures we perceive from the simpler elements detected by V1.

Texture assists in segmenting a visual scene (Julesz, 1981), helping us differentiate between
objects and their surroundings, an essential aspect of successful object recognition. Further-
more, the consistency of a particular texture across the surface of an object provides crucial
information about the object’s shape and spatial orientation. It is through this intricate inter-
play between texture perception and object recognition that we can navigate and understand
our richly textured world.

On the other hand, the role of texture is also important in object recognition (Vaina, 1987).
Texture provides essential cues about an object’s identity and its spatial properties, contribut-
ing significantly to our perception of depth and three-dimensionality. By offering information
about surface characteristics and material composition, texture allows us to differentiate
between objects that may otherwise share similar shapes or colors. For instance, the visual
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system can distinguish between a marble statue and a wooden carving of identical form,
primarily through differences in their textures.

Nevertheless, texture, representative of mid-level visual features, remains more enigmatic
compared to low-level visual features. The primary reason for this knowledge gap is the
inherent complexity associated with formulating a mathematical model for texture, an
endeavor that is relatively more straightforward in the context of low-level visual features.
Thus, the systematic exploration and modeling of texture, as a mid-level visual feature,
presents a significant challenge in the realm of visual perception research.

1.4.7 Object recognition

Object recognition, lied on top of the ventral visual pathway, is a task that synthesizes
information from multiple sources and stages to generate coherent perceptions. This section
describe the specific roles of the lateral occipital complex (LOC), fusiform face area (FFA),
parahippocampal place area (PPA), and inferior temporal (IT) cortex in contributing to the
phenomenon of object recognition.

The LOC is a central player in the object recognition process, primarily involved in the
detection and perception of shapes (Kourtzi & Kanwisher, 2000). Situated in the occipito-
temporal region, this cortical area displays heightened activity in response to a variety
of objects, signifying its critical role in the recognition and interpretation of an array of
visual stimuli. By facilitating the discernment of distinct shapes, the LOC paves the way
for invariant object recognition, allowing us to identify objects regardless of alterations in
perspective or size.

In contrast, the FFA is renowned for its specialization in face perception (Kanwisher et al.,
1997). Positioned within the fusiform gyrus on the ventral surface of the brain, the FFA is
particularly activated during tasks involving facial recognition, demonstrating its crucial role
in discerning the complex and unique features that define individual faces. This specialization
underscores the evolutionary importance of face recognition in social communication and
interaction.

Adjacent to the FFA lies the PPA, a region within the medial temporal lobe known for
its predilection for scene recognition (Epstein & Kanwisher, 1998). The PPA exhibits
robust activity in response to landscapes, cityscapes, or rooms, suggesting its role in spatial
awareness and navigation. This area aids us in understanding the spatial layout or context of
an environment, contributing to the greater cognitive map of our surroundings.
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Figure 1.14: Schematic of deep neural network

Finally, the IT cortex, situated in the ventral stream of the brain, is involved in the final
stages of object recognition. The neurons in this region respond to complex, high-level visual
features, assembling the various elements processed in preceding regions into a cohesive and
detailed object representation.

In summary, object recognition emerges from the synergistic activity of these distinct yet
interconnected visual areas. The LOC, FFA, PPA, and IT cortex each perform specialized
functions, processing different aspects of visual stimuli. Yet, it is the consolidation of these
processed elements that culminates in the formation of an object’s identity. The brain’s
ability to synthesize this wealth of information into a coherent perception underscores the
intricate complexity of the visual processing system and its remarkable capacity for object
recognition.

1.5 Artificial deep neural network (DNN)

1.5.1 Basics of DNN

Deep Neural Networks (DNNs) have dramatically transformed the landscape of artificial
intelligence, rapidly becoming the cornerstone of numerous cutting-edge technological
advancements. Inspired by the sophisticated circuitry of the human brain, these complex
models employ layers of interconnected nodes or neurons to process, learn, and infer from
a vast array of information. These layers, stacked in a hierarchical structure, constitute
the “deep” in Deep Neural Networks (Figure 1.14), enabling them to model high-level
abstractions in data with a remarkable degree of accuracy.

At their heart, DNNs are an exemplification of machine learning’s core principle: learning
from data. They excel at identifying patterns and relationships within datasets, dynamically
adjusting their internal parameters based on the input they receive. This enables them to draw
connections that may be too subtle, complex, or multi-dimensional for traditional algorithms
to detect. Furthermore, DNNs are equipped with the powerful capability of automatic
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Figure 1.15: Examples of images preferred by four randomly selected units in each DNN
layer. Reproduced from Nature Communications, 2017;8: 15037, Horikawa and Kamitani,
Generic decoding of seen and imagined objects using hierarchical visual features, Page No.
5, licensed under CC BY 4.0 / Cropped from original.

feature extraction. The DNN units in the lower-layers always prefer simple features, such
as orientation, exhibiting a striking similarity with the simple cells in the primary visual
cortex, while the DNN units in the higher layers prefer complex attributes, such as object
identity (Figure 1.15). Unlike their more conventional counterparts that rely on explicitly
programmed features, DNNs can independently discover and learn the significant features
needed to make accurate predictions.

In recent years, one of the most potent applications of DNNs has been in the realm of
computer vision, particularly object recognition (Krizhevsky et al., 2012; Simonyan and
Zisserman, 2014). Tasked with the detection and classification of objects within digital
images or videos, object recognition is a significant step towards creating machines that
perceive the world as humans do. DNNs, with their ability to understand complex patterns,
have significantly amplified the accuracy of object recognition. The layers of a DNN
gradually distill raw input into meaningful abstract representations, enabling the system to
discern objects and patterns that are often invisible to the human eye.

https://www.nature.com/articles/ncomms15037/figures/4
https://creativecommons.org/licenses/by/4.0/
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1.5.2 Brain and DNN

Previous sections has illuminated a number of similarities between the human visual system
and Deep Neural Networks (DNNs). Notably, both of these systems interpret and process
data in a hierarchical fashion, assembling features from preceding inputs. This suggests that
DNNs hold considerable promise as effective models for emulating the neural representations
present in the visual cortex.

In order to investigate whether the visual system operates in a manner analogous to DNNs,
Yamins et al. (2014) trained a hierarchical DNN to achieve human-level performance in
recognition tasks involving the classification of animals, boats, cars, and other objects.
Despite not being directly constrained by neural data, the features extracted from the output
layer of the DNN were found to be predictive of neural responses in the inferior temporal
(IT) cortex, while features from the middle layer were predictive of neural responses in area
V4. This outcome suggests that DNNs, optimized for object recognition, have the potential
to serve as predictive models for neural processing.

Furthering this notion, Güçlü and van Gerven (2015) extended the analysis to the ventral
visual pathway by predicting fMRI responses using activations from deep neural networks,
specifically the AlexNet and VGG models. The voxel responses in lower and higher visual
areas exhibited a favorable correlation with features extracted from corresponding lower
and higher layers of the CNN. This investigation was further substantiated from a decoding
perspective, where the DNN layer features were predicted based on the fMRI responses
(Horikawa & Kamitani, 2017). This suggests that the lower and higher visual areas encode
visual features that are either correlated or share similarities with the features extracted from
corresponding lower and higher layers of the CNN.

Subsequent research conducted by Güçlü and van Gerven (2017) expanded upon their earlier
investigations to include the dorsal visual pathway, which includes areas V1, V2, V3, V3A,
V3B, and MT. They demonstrated that deep neural network (DNN) features derived from
videos could effectively predict the hyperaligned responses of the dorsal visual pathway
within a common model space. This finding hints at a degree of shared representation
across individuals within the dorsal visual pathway. However, it is important to note that
the hierarchical organization along the dorsal visual pathway was assumed in the region-
of-interest (ROI) hyperalignment, thereby making it difficult to definitively claim that this
“hierarchy” is universally shared. Consequently, the question of whether visual features along
the visual pathway and their associated "hierarchy" are shared across individuals remains
unresolved.
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Figure 1.16: Deep image reconstruction. DNN features of a seen image is predicted from the
subject’s fMRI activity by feature decoders. A reconstructed image is generated by iteratively
minimizing the error between the image features and the decoded features. Through this
iterative process, the hierarchical visual information retained in the decoded features is
incorporated into the reconstructed image. Reprinted from PLoS Computational Biology,
2019;15: 1006633, Shen et al., Deep image reconstruction from human brain activity, Page
No. 3, licensed under CC BY 4.0.

Building upon the work of Horikawa and Kamitani (2017), the decoded hierarchical DNN
features can be further reconstructed as visual images (Figure 1.16; Shen et al., 2019a).
The successful reconstruction of natural images implies that the decoded DNN features
encompass a rich set of intricate hierarchical visual features. Subsequently, visual image
reconstruction has emerged as a prominent research area, with several alternative methods
proposed (Güçlütürk et al., 2017; Shen et al., 2019b; Han et al., 2019; Seeliger et al., 2018;
see Rakhimberdina et al., 2021 for a survey). However, it remains an open question as
to whether the hierarchical and fine-grained visual representation enabling visual image
reconstruction are universally shared across individuals (Figure 1.17).

1.5.3 Why are DNNs good for modeling the visual system?

The section 1.4 presents an exploration of visual features, from those elementary in nature
(low-level) to those imbued with complexity (high-level). While this introduction does not

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006633
https://creativecommons.org/licenses/by/4.0/
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Figure 1.17: Illustration of preservation of the hierarchical and fine-grained visual features.

purport to present a comprehensive review of hierarchical visual representation, it offers an
illustration of the progressive process by which our brain constructs our perception. A notable
ambiguity within this spectrum of visual representations lies in the domain of middle-level
visual representation, a realm that remains relatively underexplored (Peirce, 2015).

For low-level features, mathematical models have been devised, offering insights into the
mechanisms through which these features derive representations from earlier inputs (Hubel
and Wiesel, 1962; Adelson and Bergen, 1985). High-level visual features, conversely, lack a
physiological-based model, yet humans are undeniably capable of articulating the semantic
elements within a scene, such as identifying if there is tea in a cup.

There is an ongoing debate regarding the existence of mid-level visual representation. Many
researchers maintain the view that these features pose significant challenges to modeling
efforts or representation through conventional human intuition and language. The absence
of a robust model for mid-level visual features further complicates the task of ascertain-
ing whether a hierarchical visual representation is a universal phenomenon shared among
individuals.

Deep Neural Networks (DNNs), designed with the objective of object recognition, process
images in a hierarchical fashion akin to the workings of the human brain. In addition,
DNNs exhibit layer-specific preferences for distinct types of images, which range from
basic oriented edges to complex attributes such as faces, culminating in object identification.
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The features of the lower and upper layers of a DNN echo the attributes of low-level and
high-level visual features, respectively. The characteristics of a DNN’s middle layers may
potentially serve as viable models for approximating mid-level visual features. While it
remains uncertain whether the features of DNN’s middle layers are an exact match for
mid-level visual features, existing studies indicate that these DNN features can predict neural
activity in the mid-visual areas, such as V4 (Yamins et al., 2014; Güçlü and van Gerven,
2015; Horikawa and Kamitani, 2017). This points to the potential of middle-layer DNN
features serving as a credible model.

In summary, the utilization of DNNs for modeling visual features provides a distinct advan-
tage, particularly in the context of mid-level visual features, which are notoriously difficult to
model using traditional mathematical models or semantic-based approaches. Leveraging the
capabilities of DNNs could help demystify the complexities of mid-level visual features and
contribute towards a more profound understanding of hierarchical visual representation.

1.6 Thesis organization

The thesis is organized as follows to investigate whether fine-grained hierarchical visual in-
formation that enables visual image reconstruction can be retained after functional alignment.
Chapter 2 introduces the human brain activity data and the experiment details. In Chapter 3,
neural code conversions are performed between individuals, followed by an examination of
the automatically detected cortical hierarchy. In Chapter 4, the converted fMRI brain activity
patterns are then translated into hierarchical DNN features, evaluating the extent of hierarchy
using brain hierarchy scores. The preservation of rich visual information is demonstrated
through the reconstruction of decoded DNN features into visual images. Chapter 5 explic-
itly compares neural code conversions trained without imposing visual hierarchy to those
respecting the visual hierarchy, highlighting the ability of data-driven approaches to detect
the cortical hierarchy effectively. In Chapter 6, data from multiple subjects are pooled into
a target subject’s space, leading to slightly improved decoders as observed through visual
image reconstruction evaluation. Lastly, Chapter 7 discusses the implication of neural code
converters, future directions concerning inter-individual visual image reconstructions and
explores other visual features possibly shared across individuals.





Chapter 2

Human brain activity data

2.1 Introduction

The human brain activities can be measured by a diversity of neuroimaging modalities,
comprising non-invasive methods such as functional magnetic resonance imaging (fMRI),
electroencephalogram (EEG), magnetoencephalography, and invasive approaches, such as
electrocorticography (ECoG). Each of these methodologies offers unique advantages and
limitations in relation to spatial and temporal resolution. The emphasis of my research
investigation is placed on the fMRI modality.

Functional magnetic resonance imaging (fMRI) is a specialized variant of MRI designed
to measure brain activities. Unlike conventional MRI, which yields a static illustration of
brain anatomy, fMRI generates dynamic representations, elucidating the interaction and
functionality of diverse brain regions over a given time span. This capacity to measure brain
activity renders fMRI a potent instrument for cognitive studies. fMRI facilitates the capture
of brain activities during task performance, such as watching a movie, or during periods
of rest. This feature presents an opportunity to evaluate how the brain reacts to various
stimuli.

Shen et al. (2019a) conducted an experiment wherein participants were exposed to thousands
of natural images while their brain activities were monitored using fMRI. This procedure
enabled the researchers to collect a wide range of brain responses to a variety of natural
scenes. Employing machine learning and artificial intelligence algorithms, the researchers
were successful in reconstructing visual images from the brain activities in the visual cortex.
This research design served as the basis for my thesis.
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This chapter aims to provide a fundamental understanding of fMRI, an examination of
preceding studies closely related to the experimental design in this thesis, an in-depth
explanation of the experimental procedure, and the processes used in the pre-processing and
preparation of the fMRI data for subsequent analyses.

2.2 Basics of fMRI

Magnetic Resonance Imaging (MRI) operates based on the principles of nuclear magnetic
resonance. At its core, the technology leverages the inherent property of atomic nuclei to
absorb and emit radio frequency energy when placed in an external magnetic field. In the
context of an MRI scanner, the magnetic field causes the hydrogen atoms in the body’s water
and fat molecules to align in one direction. Upon application of a radio frequency pulse,
these atoms are excited and tipped out of alignment. As they return to their equilibrium
state, they emit signals that can be picked up by a receiver. The timing and intensity of
these signals depend on the type of tissue and its environment, providing a nuanced map of
the body’s internal structures. This non-invasive, radiation-free technique thus allows for
detailed visualization of the body’s anatomy and tissues, making it an indispensable tool in
modern diagnostics and research.

fMRI is an extension of the traditional MRI technology, providing a dynamic map of brain
activity rather than a static image of anatomy. The evolution of fMRI traces its roots to
groundbreaking work by pioneering scientists in the early 1990s. During the early 1990s,
John Belliveau led groundbreaking research which demonstrated that MRI could be used to
detect regional changes in cerebral blood flow in response to visual stimulation (Belliveau
et al., 1991). Around the same time, another significant discovery was made by Seiji Ogawa.
Ogawa’s research revealed that oxygenated and deoxygenated blood exhibit distinct magnetic
properties, a finding that laid the foundation for Blood Oxygen Level Dependent (BOLD)
contrast (Ogawa et al., 1990).

BOLD contrast is a key principle underlying fMRI. This technique is predicated on the
observation that oxygenated and deoxygenated hemoglobin - the molecule responsible for
carrying oxygen in blood - have differing magnetic properties. When a particular region of
the brain becomes active, the demand for oxygen in that area increases, leading to a rise
in blood flow. As more oxygenated blood arrives, the balance between oxygenated and
deoxygenated hemoglobin shifts, resulting in a change in the local magnetic field. It is this
change that fMRI measures, thereby allowing it to provide real-time maps of brain activity.
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The discovery of BOLD contrast has revolutionized neuroscience, making it possible to
non-invasively explore the workings of the brain in unprecedented detail.

The 3T MRI scanner, widely utilized in both clinical and research settings, offers superior
image quality and shorter scan times compared to its predecessors. It provides highly
detailed images, which are particularly beneficial for examining minute structures of the
brain. The advent of the 7T MRI scanner has elevated this capability further. Its high-
field strength dramatically improves signal-to-noise ratio and image resolution, enabling
detailed visualization of minute brain structures and networks, and subtle pathological
changes that might be overlooked at lower field strengths. It also improves the sensitivity
and specificity of functional MRI studies by enhancing the blood oxygen level-dependent
(BOLD) contrast. However, the widespread use of 7T scanners is currently limited due to
factors such as cost, availability, and the specific technical expertise required for operation
and data interpretation.

Despite its numerous benefits, fMRI has faced criticism. Key among the concerns is the
fact that fMRI measures hemodynamic responses (blood flow changes) as a proxy for neural
activity, which is an indirect method that does not capture the precise cellular and molecular
dynamics of neuronal communication. Furthermore, the BOLD contrast imaging has inherent
limitations, including susceptibility to physiological noise and uncertainty in the exact spatial
localization of the source of the signal. Issues of statistical methodology in fMRI studies
have also been raised (Monti, 2011), with some studies reported to have inadequate statistical
power or improper multiple comparison correction, leading to potential false positives.
Lastly, there is the challenge of interpreting the meaning of the observed activations, which
is often confounded by complex brain processes and networks, leading to oversimplified or
overgeneralized interpretations of fMRI results.

2.3 Review of related fMRI studies on visual decoding

In the present thesis, the main concentration lies on the analysis of fMRI brain activity
during participation in a visual task viewing sequences of images. The experimental design
is grounded heavily on preceding fMRI research, particularly those by Shen et al. (2019a)
and Horikawa and Kamitani (2022), whose datasets partially constitute the data used in this
thesis.

Shen et al. (2019a) collected data from three subjects engaged in viewing sequences of
natural images sourced from the ImageNet database (Deng et al., 2009). These three subjects
correspond to Subjects 1-3 in the present study. The participants were exposed to three
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Figure 2.1: Schematic of image presentation experiment. Each image display lasted for 8
seconds in a stimulus block.

Figure 2.2: Visual images reconstructed from the fMRI brain activities. The top row is the
presented images and the bottom row is the reconstructed images. Reproduced from PLoS
Computational Biology, 2019;15: 1006633, Shen et al., Deep image reconstruction from
human brain activity, Page No. 4, licensed under CC BY 4.0 / Cropped from original.

sessions of image presentation experiments encompassing the train natural-image session,
the test natural-image session, and the test artificial-shape session. Each visual image featured
a central fixation point and was flashed at a rate of 1 Hz. Each image display lasted for 8
seconds in a stimulus block with four volume scans (Repetition time [TR] = 2 s, Figure 2.1).
Participants were directed to maintain fixation on the central point and click a button when
two sequential blocks presented identical images. By employing a machine-learning model
trained on the fMRI data from the train natural-image session, visual images in the test
natural-image session and test artificial-shape session were reconstructed with discernible
features (Figure 2.2).

Horikawa and Kamitani (2022) addressed the challenge of reconstructing visual images
under the influence of attentional modulation. This investigation adopted the experimental
design of Shen et al. (2019a) and collected fMRI data from seven subjects. Subjects 1-5
in their research were exactly Subjects 1-5 in the present thesis. They gathered test data
from all seven subjects. Participants were asked to focus on one of the two superimposed
images. The training data used for the reconstruction model mirrored the fMRI data in the

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006633
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006633
https://creativecommons.org/licenses/by/4.0/
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Figure 2.3: Reconstruction with participant’s attention directed towards one of two super-
imposed images. Reproduced from Communications Biology, 2022;5: 34, Horikawa and
Kamitani, Attention modulates neural representation to render reconstructions according to
subjective appearance, Page No. 4, licensed under CC BY 4.0 / Cropped from original.

train natural-image session in Shen et al. (2019a). Notably, only the images the subjects
attended to were reconstructed, a finding that highlighted the potent influence of attention in
human vision (Figure 2.3).

The aforementioned studies illustrate the viability of converting the complexity of visual
information encoded in fMRI brain activity into visual images. Notably, in contrast to some
conventional neuroscience analytical tools, Horikawa and Kamitani (2022) employed the
visual image reconstruction technique as a means to explicitly probe attentional modulation
in human vision. In a similar vein, I used the fMRI data collected in the image presentation
experiment and adopted the visual image reconstruction technique as a tool to assess whether
fine-grained hierarchical visual information is shared across individuals.

2.4 Experiments

This section describes the details of the image presentation experiment and the fMRI data
used in this thesis. The content of this section is based on the section 4.1: fMRI datasets and
the section 4.2: Regions of interest (ROIs) of Ho et al. (2023).

https://www.nature.com/articles/s42003-021-02975-5/figures/2
https://www.nature.com/articles/s42003-021-02975-5/figures/2
https://creativecommons.org/licenses/by/4.0/
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2.4.1 Subjects

In this study, Subject 1–3 correspond to the three subjects in Shen et al. (2019a) and the
dataset was reused. Subject 4 (male, age 22) and Subject 5 (male, age 27) participated in the
additional experiments for the test natural-image and artificial-image sessions. The dataset
of the training natural-image session of Subject 4 and 5 was reused from Horikawa and
Kamitani (2022). All subjects provided written informed consent for participation in the
experiments, in accordance with the Declaration of Helsinki, and the study protocol was
approved by the Ethics Committee of Advanced Telecommunications Research Institute
International (ATR).

2.4.2 Visual stimuli

The natural image stimuli are identical to those used in Horikawa and Kamitani (2017). The
images were selected from 200 representative categories in the ImageNet dataset (2011, fall
release; Deng et al., 2009). The natural training images were 1,200 images taken from 150
object categories, and the natural test images were 50 images taken from the remaining 50
object categories. The artificial image stimuli used in Shen et al. (2019a) consisted of 40
combinations of five shapes (square, small frame, large frame, plus sign, and cross sign) and
eight colors (red, green, blue, cyan, magenta, yellow, white, and black).

2.4.3 Experimental design

Following Horikawa and Kamitani (2017), and Shen et al. (2019a), fMRI signals were
measured while subjects viewed a sequence of visual images. The visual images had a central
fixation spot and were flashed at a frequency of 1 Hz. Each presentation of an image lasted
for 8 s in a stimulus block with four volume scans (Repetition time [TR] = 2 s). The subjects
were instructed to maintain fixation on the central fixation spot and click a button when two
sequential blocks presented the same image.

The test natural-image session and test artificial-shape session consisted of 24 and 20 runs,
respectively. Each run consisted of 55 and 44 stimulus blocks comprising 50 and 40 blocks of
different images, and 5 and 4 randomly interspersed repetition blocks, along with additional
32-s and 6-s rest periods at the beginning and the end. The 50 natural images and 40 artificial
images were presented in random order in each run.



2.4 Experiments 41

2.4.4 fMRI acquisition

Functional MRI data were obtained at the Kokoro Research Center of Kyoto University
using a 3.0-Tesla Siemens MAGNETOM Verio scanner. An interleaved T2*-weighted
gradient-echo echo-planar imaging (EPI) scan was performed to acquire functional images
of the entire brain. The imaging parameters were as follows: TR=2000 ms, TE=43 ms, flip
angle=80 deg, FOV=192 × 192 mm, voxel size=2 × 2 × 2 mm, slice gap=0 mm, number
of slices=76, and multiband factor=4. Additionally, T1-weighted magnetization-prepared
rapid acquisition gradient-echo fine-structural images of the entire head were also obtained
using the following parameters: TR=2250 ms, TE=3.06 ms, TI=900 ms, flip angle=9 deg,
FOV=256 × 256 mm, and voxel size=1 × 1 × 1 mm.

2.4.5 fMRI data preprocessing

The following description is provided by fMRIPrep (https://fmriprep.org/en/1.2.1/citing.html).
The results included in this thesis are based on the data preprocessed using fMRIPrep version
1.2.1 (Esteban et al., 2019) and a Nipype-based tool (Gorgolewski et al., 2011 & 2017).
Each T1w (T1-weighted) volume was corrected for INU (intensity non-uniformity) using
N4BiasFieldCorrection v2.2.0 (Tustison et al., 2010) and skull-stripped using antsBrainEx-
traction.sh v2.2.0 (using the OASIS template). Brain surfaces were reconstructed using
recon-all from FreeSurfer v6.0.1 (Dale et al., 1999), and the brain mask estimated previously
was refined with a custom variation of the method to reconcile ANTs-derived and FreeSurfer-
derived segmentations of the cortical gray-matter of Mindboggle (Klein et al., 2017). Spatial
normalization to the ICBM 152 Nonlinear Asymmetrical template version 2009c (Fonov
et al., 2009) was performed through nonlinear registration with the antsRegistration tool of
ANTs v2.2.0 (Avants et al., 2008), using brain-extracted versions of both T1w volume and
template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and
gray-matter (GM) was performed on the brain-extracted T1w using fast (Zhang et al., 2001;
FSL v5.0.9).

Functional data were slice time corrected using 3dTshift from AFNI v16.2.07 (Cox, 1996)
and motion corrected using mcflirt (FSL v5.0.9; Jenkinson et al., 2002). This was followed by
co-registration to the corresponding T1w using boundary-based registration (Greve & Fischl,
2009) with 9 degrees of freedom, using bbregister (FreeSurfer v6.0.1). Motion correcting
transformations, BOLD-to-T1w transformation, and T1w-to-template (MNI) warp were
concatenated and applied in a single step using antsApplyTransforms (ANTs v2.2.0) using
Lanczos interpolation.

https://fmriprep.org/en/1.2.1/citing.html


42 Human brain activity data

Physiological noise regressors were extracted by applying CompCor (Behzadi et al., 2007).
Principal components were estimated for the two CompCor variants: temporal (tCompCor)
and anatomical (aCompCor). A mask to exclude signals with cortical origin was obtained by
eroding the brain mask, ensuring that it only contained subcortical structures. Six tCompCor
components were then calculated including only the top 5% variable voxels within that
subcortical mask. For aCompCor, six components were calculated within the intersection
of the subcortical mask and the union of CSF and WM masks calculated in T1w space,
after their projection to the native space of each functional run. Frame-wise displacement
(Power et al., 2014) was calculated for each functional run using the implementation of
Nipype.

Many internal operations of fMRIPrep use Nilearn (Abraham et al., 2014), principally within
the BOLD-processing workflow. For more details of the pipeline see
http://fmriprep.readthedocs.io/en/latest/workflows.html.

The coregistered data to the T1w space were then re-interpolated to 2 × 2 × 2 mm voxels.
The data samples were first shifted by 4-s (two volumes) to compensate for the hemodynamic
delay, followed by regression to remove nuisance parameters such as a constant baseline,
linear trend, and six head motion parameters from each voxel amplitude for each run. The
data samples were then despiked to reduce extreme values (beyond ±3 standard deviations
for each run) and were averaged within each 8-s trial (four volumes).

2.4.6 Region of interest (ROI)

The primary ROIs in this investigation include V1, V2, V3, V4 and higher visual cortex
(HVC). Regions V1, V2, V3, and V4 were delineated using the standard retinotopy experi-
ment (Engel et al., 1994; Sereno et al., 1995) in each subject’s naive brain space. The HVC
was defined as a contiguous region covering the lateral occipital complex (LOC), fusiform
face area (FFA), and parahippocampal place area (PPA), which were identified using conven-
tional functional localizers (Kourtzi and Kanwisher, 2000; Kanwisher et al., 1997; Epstein
and Kanwisher, 1998). The whole visual cortex (VC) was defined as the combined regions
of V1, V2, V3, V4, and HVC.

2.4.7 Data availability

The data that support the findings in this thesis is available from OpenNeuro repository:

http://fmriprep.readthedocs.io/en/latest/workflows.html
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• https://openneuro.org/datasets/ds001506/versions/1.3.1 for the dataset of the training
natural-image session, the test natural-image session, and the test artificia-image
session for Subject 1–3

• https://openneuro.org/datasets/ds003430/versions/1.2.0 for the dataset of the training
natural-image session for Subject 4 and 5

• https://openneuro.org/datasets/ds003993/versions/1.0.0 for the dataset of the test natural-
image and the artificial-image sessions for Subject 4 and 5

2.5 Data for analysis

The fMRI data from five subjects as reported in previously published studies (Shen et al.,
2019a; Horikawa and Kamitani, 2022) were subjected to analysis in the subsequent chapters.
Additional data was gathered for two out of the five subjects, the details of which are outlined
in section 2.4: Experiments. The content of this section is based on the section 2.1: fMRI
data of Ho et al. (2023).

To recapitulate, the train natural image session encompassed the repeated presentation
of 1,200 natural images, each occurring five times. As for the test data, the test natural
image session involved the repeated presentation of 50 natural images, each repeated 24
times. Furthermore, in the test artificial image session, a collection of 40 artificial images
(simple geometric shapes) was presented, with each image displayed 20 times. Artificial
images were introduced to evaluate the extent to which models trained on natural images
exhibit generalization capability towards dissimilar image types. The fMRI data were
averaged within each 8-s stimulus block (four fMRI volumes shifted by 4 s to account for
hemodynamic delays). Consequently, after preprocessing the data (see section 2.4.5: fMRI
data preprocessing), the dataset comprised of 6,000 (5 × 1,200) training samples, 1,200 (24 ×
50) test samples consisting of natural images, and an additional 800 (20 × 40) test samples
comprising artificial images.

In the decoding and reconstruction analyses, test samples were further averaged across
repetitions (blocks) for each image, unless stated otherwise. Although some of the training
data and the test data were collected at different times, separated by more than several months
or even a year, the trained model generalized well across the datasets, as demonstrated in
Shen et al. (2019a).

https://openneuro.org/datasets/ds001506/versions/1.3.1
https://openneuro.org/datasets/ds003430/versions/1.2.0
https://openneuro.org/datasets/ds003993/versions/1.0.0




Chapter 3

Hierarchical neural code conversion

3.1 Introduction

The brain activity patterns collected during the viewing of naturalistic visual stimuli encode
rich information about the presented stimuli, as described in section 1.1.4. These brain
activity patterns manifest additional systematic organization, the significance of which is
critical for proficient cognitive functions. The fMRI data introduced in Chapter 2 thus affords
an avenue for the comprehensive investigation of both the encoded informational content
and the underlying organizations. The content of this chapter is based on the section 1:
Introduction and the section 2.2: Neural code conversion of Ho et al. (2023).

Sensory information is generally thought to be processed through a hierarchical pathway
that detects topographically organized simple local features in the early stages and then
progressively complex global features in the later stages, leading to holistic perception. In the
ventral visual pathway, a stimulus is initially processed in the striate cortex (V1) to extract
simple features, such as edges (Hubel and Wiesel, 1962), and is then further processed in
the extrastriate cortices (V2–V4) and higher visual cortex (HVC) to detect more complex
visual features (Figure 3.1), such as shape and face attributes, eventually identifying objects
and scenes (Mishkin & Ungerleider, 1982). Whereas general principles such as topography
and hierarchy appear to govern the organization of the visual cortex (VC), individual brains
differ in both macroscopic anatomy and the fine-grained organization of feature representa-
tions. These individual differences make it challenging to relate visual cortical activity and
perceptual content by simple mapping rules common across individuals.
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Figure 3.1: Visual cortical hierarchy along the ventral pathway. This diagram illustrates
the simplified hierarchical sequence of visual processing in this study, beginning with the
primary visual cortex (V1), continuing through the V2, V3, and V4 visual areas, and ending
at the higher visual cortex (HVC) encompassing lateral occipital complex (LOC), fusiform
face area (FFA), and parahippocampal place area (PPA).

Methods for the anatomical and functional alignment of different individuals’ brains have
been developed in decades of functional magnetic resonance imaging (fMRI) studies to
account for individual differences. Human brain anatomy differs across individuals in terms
of shape, size, and local anatomical landmarks. Functional brain area parcellation that
clusters voxels/vertices with similar properties produces similar brain areas on the individual
level but still exhibit distinct topological features (Blumensath et al., 2013; Laumann et al.,
2015). The visual areas delineated by the retinotopy principle (Engel et al., 1994; Sereno
et al., 1995) are often similar but not the same across individuals. Anatomical alignment can
mitigate anatomical differences by matching anatomical features between brains (Fischl et al.,
2008; Van Essen, 2004 & 2005), but it still cannot perfectly align the functional topography
across individuals (Watson et al., 1993).

Functional alignment adopts an anatomy-free approach by learning statistical relationships
between subjects’ brain activity patterns (Haxby et al., 2011; Yamada et al., 2011 & 2015;
Chen et al., 2015; Bilenko and Gallant, 2016; Guntupalli et al., 2016). The basic idea of
functional alignment is that the subjects’ brain activity patterns for a specific stimulus can
be brought aligned such that the individual differences can be factored out (see section 1.2:
Functional alignment). Methodologies of functional alignment include pairwise alignments
between two subjects, such as a neural code converter (Yamada et al., 2011 & 2015), and
template-based alignments, in which a shared template among subjects is constructed, such
as hyperalignment (Haxby et al., 2011). Both the pairwise and template-based alignments
necessitate a dataset of brain data, wherein subjects view either a sequence of preset natural
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images or a natural movie in order to capture a variety of brain responses to a wide range of
natural scenes.

Functional alignment methods have revealed common neural representations across indi-
viduals that are concealed under substantial individual variations in brain responses (see
section: 1.3: Visual features). However, previous investigations have often focused on a
few specific features, such as object categories, image contrast, retinotopy, and semantics
(Haxby et al., 2011; Yamada et al., 2011 & 2015; Bilenko and Gallant, 2016; Van Uden
et al., 2018), leaving it unclear whether distinct levels of hierarchical fine-grained neural
representations can be converted across individuals while preserving the encoded perceptual
contents. Furthermore, previous studies have separately performed alignments on different
brain areas using rough anatomical correspondences across individuals (Güçlü & van Gerven,
2017). It remains unknown whether data-driven methods trained on fMRI data can automati-
cally detect hierarchical representations of distinct levels of visual features common across
individuals.

In this chapter, the primary objective is to investigate the conversion of the brain activity
patterns across individuals and the feasibility of detecting the hierarchical correspondence
of distinct levels of visual features between individuals. For this purpose, I employed a
functional alignment method known as neural code converter (Yamada et al., 2011 & 2015;
see also section 1.2.2: Neural code converter) to convert brain activities. A neural code
converter is trained with brain activity patterns in the whole visual cortex of a pair of source
and target subjects viewing a sequence of images (Figure 3.2). In particular, no explicit
information about visual hierarchy is imposed at the training stage. Careful evaluations
using pattern and profile correlations were undertaken to examine the performance of the
neural code conversions. Subsequently, an ablation study was conducted to investigate if
the neural code converters successfully learned the hierarchical correspondence of visual
subareas between individuals.

3.2 Methods

3.2.1 Anatomical alignment

Anatomical alignment was used as a benchmark for methods of functional alignment. The
content of this section describes the alignment details and is based on the section 4.3:
Anatomical alignment of Ho et al. (2023).
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Figure 3.2: Training of a neural code converter. A converter model was trained on a subset
of 6,000 samples of fMRI data responses to an identical stimulus sequence from both the
source and target subject. Brain activity patterns in the whole visual cortex was used as input
and no explicit information about cortical hierarchy is provided at the training stage.

The subjects’ structural and functional images were nonlinearly normalized to a standard
space: the ICBM 152 Nonlinear Asymmetrical template version 2009c (MNI152NLin2009cAsym
[MNI space]; see section 2.4.5: fMRI data preprocessing). The T1w reference image was
spatially normalized to MNI space by the ANTs (Avants et al., 2008) and the functional data
were coregistered to this normalized T1w reference image. The coregistered data were then
re-interpolated to 2 × 2 × 2 mm voxels. Furthermore, ANTs were used to normalize the ROI
masks of V1, V2, V3, V4, and HVC in their native space to the brain in MNI space. In the
inter-individual analysis, if a voxel of a source subject and a voxel of a target subject shared
the same coordinates, the fMRI activity of the source voxel was considered to be that of the
corresponding target voxel. Thus, the voxels of a source subject covered by a ROI mask of a
target subject were selected as the input to the model.

3.2.2 Neural code converter

The neural code converter (Yamada et al., 2011 & 2015) described in the section 1.2.2 was
adopted as the main method of functional alignment in this thesis. This section describes
the detailed algorithm and is based on the section 4.4.1: Neural code converter of Ho et al.
(2023).

The neural code converter model for each pair of subjects comprised a set of regularized linear
regression models (ridge regression), each trained to predict the activities of an individual
voxel of one subject (target) from the brain activity patterns of another subject (source)
given the same stimuli. A converter takes a source subject’s brain activity pattern xi ∈ Rm

consisting of m voxels’ values, and predicts the target brain activity pattern yi = Wxi +b,
where yi ∈Rn is the converted brain activity pattern consisting of n voxels’ values; W∈Rn×m

is the conversion matrix and b ∈ Rn is the bias vector. The converter is trained to minimize
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the objective function
N

∑
i
||yi − (Wxi +b)||2 +λ ||W||2, (3.1)

where yi is the measured target subject’s brain activity pattern for the i-th sample, N is
the number of training samples, λ is the regularization parameter, and || · || represents the
Frobenius norm.

To optimize the performance of visual image reconstruction, I conducted fine-tuning of the
regularization parameter via a 5-fold cross-validation approach on the training dataset. During
each fold, the brain activity within the validation set underwent conversion to the target
individual’s brain space, after which it was subsequently decoded into DNN features. The
decoded DNN features were used to calculate an identification accuracy that measured how
well a decoded DNN feature pattern can identify the true stimulus between two alternatives
(see section 4.2.5: Identification analysis). The regularization parameter was optimized
in a grid-search manner to maximize the identification accuracy, which is linked to the
performance of visual image reconstruction. For computational efficiency, a subset of 500
units was selected from each layer of the VGG19 model instead of using all units. The 500
units were randomly chosen due to the absence of prior knowledge regarding which specific
DNN units would yield superior visual image reconstruction outcomes.

3.2.3 Conversion accuracy

The trained neural code converters were evaluated using two evaluation methods as described
below. The content of this section is based on the section 2.2: Neural code conversion of Ho
et al. (2023).

Given a trained neural code converter, two evaluation methods were performed: (a) pattern
correlation, which calculates the spatial Pearson correlation coefficient between the converted
and measured voxel patterns for a test image, and (b) profile correlation, which is the
Pearson correlation coefficient between the sequences of converted and measured individual
voxel responses to the 50 natural test images (Figure 3.3). The pattern correlation for an
image was defined as the mean of 24 samples (converted) × 24 samples (measured) = 576
correlation coefficients. The profile correlation for each voxel was defined as the mean of
24 repetitions (converted) × 24 repetitions (measured) = 576 correlation coefficients. The
obtained correlation coefficients were normalized by their noise ceilings to account for the
noise in fMRI brain responses over repeated measurements with the same stimulus (Hsu
et al., 2004; Lescroart and Gallant, 2019 ; see section 3.2.4: Noise ceiling estimation). To
summarize the results, I further averaged the correlation coefficients across images and
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Figure 3.3: Evaluations of neural code converters. Two evaluations were performed by
computing the Pearson correlation coefficients: pattern and profile correlations.

voxels for the pattern and the profile correlations, respectively, in each individual pair and
each ROI.

3.2.4 Noise ceiling estimation

Repeated measures of the brain responses to an identical stimulus are subject to the measure-
ment noise in fMRI data, inevitably degrading the prediction accuracy. To account for the
noise, noise ceilings were estimated. This section describes the estimation procedure and is
based on the section 4.5: Noise ceiling estimation of Ho et al. (2023).

I adopted the noise ceiling estimation used by Lescroart and Gallant (2019; see also Hsu
et al., 2004). The noise ceiling was obtained by averaging the profile or pattern correlation
coefficients between repetitions of the same stimuli within a subject. This noise ceiling
estimation is based on the rationale that no model can predict better than the subject’s own
responses. Thus, the noise ceilings reflect the maximum performances of the converter
models and were used to normalize the raw prediction accuracies of the converter models by
dividing the raw accuracies by the noise ceilings.

Samples or voxels exhibiting noise ceilings falling below a threshold (defined as the 99th
percentile point within the distribution derived from random pairs) were omitted from the
assessment of conversion performance, as their measurement reliability was compromised.
However, all voxels were encompassed within the subsequent DNN feature decoding analysis
to ensure the prevention of any potential information leakage.
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Figure 3.4: Ablation analysis on neural code converters. The analysis was performed by
excluding one source visual area from the prediction of target voxel activities.

3.2.5 Ablation analysis on neural code converters

Ablation analysis on neural code converters were used to evaluate the degree of the influence
of an ROI to a given target voxel. The content of this section is based on the section 2.2:
Neural code conversion of Ho et al. (2023).

Given a trained neural code converter, excluding one of the source visual subareas (V1, V2,
V3, V4, or HVC) from the input to the trained converter model can examine how the source
visual areas influenced the conversion accuracy for each voxel in each target visual area
(Figure 3.4). I evaluated the drop in performance (normalized profile correlation difference)
relative to the performance when all source visual subareas were included (i.e., the whole
VC).

3.2.6 Statistics

Statistical analyses were primarily conducted on data samples from each pair of subjects to
assess the effect of individual conversions and their prevalence across pairs (Smith and Little,
2018; Ince et al., 2022). Furthermore, for summary purposes or instances where within-pair
analysis was unfeasible, I performed group-level analyses using the mean values derived
from 20 distinct pairs.

During the assessment of conversion within each subject pair, the mean conversion accuracy
(pattern) and its corresponding 95% confidence interval were determined using pattern
correlation coefficients for 50 visual stimuli. Similarly, the mean conversion accuracy
(profile) and its 95% confidence interval were computed using profile correlation coefficients
for all voxels. At the group level, the mean conversion accuracies (pattern/profile) from the
dataset of 20 individual pairs were employed to calculate the group mean and its associated
95% confidence interval.
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3.3 Results

This section presented the results of neural code conversion and the analysis of the hierarchical
correspondence between individuals. The content of this section is based on the section 2.2:
Neural code conversion of Ho et al. (2023).

3.3.1 Evaluation of neural code converters

A neural code converter model was established for each subject pair, with one subject as
the target and the other as the source. This process yielded a total of 20 distinct individual
conversions between five subjects. A converter model comprises a set of regularized linear
regression models (ridge regression), each trained to predict the activity of each voxel of
the target subject’s brain from the source subject’s brain activity pattern in a broad region of
interest (ROI) that covered the lower to higher visual cortex termed VC (see section 1.2.2:
Neural code converter). In this chapter, neural code converter models were trained using
2,400 training samples (two repetitions of 1,200 images) as a representative case.

VC consists of V1–V4 and ventral object-responsive areas (see section 2.4.6: Regions of
interest). The higher visual cortex (HVC) is defined the continuous region covering the
lateral occipital complex (LOC), fusiform face area (FFA), and parahippocampal place area
(PPA). In the analyses of this section, all VC voxels were used as inputs to the converter
without additional voxel selection. Conversion results were evaluated within individual ROIs
(subareas) in the target subject’s brain space.

Although the primary analyses focused on the samples within each conversion pair (Smith
and Little, 2018; Ince et al., 2022), group results, where each data point represents an
individual pair, are shown together for illustrative summary purposes. The normalized
pattern correlation coefficients in individual pairs are shown for different ROIs of the target
subject in Figure 3.5 (left), and their distributions across all conversion pairs are shown in
Figure 3.6 (left). The mean normalized pattern correlation for the whole VC was 0.56 ± 0.06
(mean with 95% confidence interval [C.I.]) over 20 individual pairs, with the visual subareas
showing comparable distributions. Examples of converted brain activity patterns are shown
together with the targets’ brain activity patterns in Figure 3.7. The mean normalized profile
correlation for VC was 0.53 ± 0.05 over 20 individual pairs (Figure 3.5 right for individual
pairs; Figure 3.6 right for group results). The subareas also yielded distributions similar to
those of the VC. The conversion accuracy was modest in both pattern and profile correlations
across all visual subareas but comparable to the findings in the previous study (Yamada et al.,
2011 & 2015).
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Figure 3.5: Conversion accuracies of individual pairs. The pattern correlation coefficients for
50 visual stimuli were used to calculate a mean conversion accuracy (pattern) and its 95%
confidence interval. The profile correlation coefficients for voxels were used to calculate a
mean conversion accuracy (profile) and its 95% confidence interval (error bars on left panel,
95% C.I. across visual images; error bars on the right panel, 95% C.I. across voxels).

Figure 3.6: Conversion accuracies of 20 individual pairs. Distributions of the normalized
pattern or profile correlation coefficients of 20 individual pairs are shown for the VC and
visual subareas. Each horizontal black dash indicates the mean value; each circle represents
the correlation coefficients of an individual pair.
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Figure 3.7: Single trial brain activity patterns responding to two test natural images. The left
panels show the brain activity pattern for the golden fish in Subject 2 and the brain activity
pattern for the butterfly in Subject 3 in their native brain space. The right panels show the
brain activity patterns converted from the source subjects (Subject 1 and 2) to the target
subjects. The activation values were normalized for ease of visualization.
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3.3.2 Detection of the hierarchical correspondence

In order to assess the impact of source visual areas on the conversion accuracy for individual
voxels within each respective target visual area, an ablation study was undertaken as described
in section 3.2.5. The largest drop in performance of a target voxel was often caused by the
exclusion of the corresponding source area (Figure 3.8). On average, the peak of performance
drop shifted progressively from lower to higher excluded source areas along the hierarchy
of the target areas (Figure 3.9 for results of some individual pairs; Figure 3.10 for group
results). The results indicate that the machine learning-based neural code converter models
automatically detect a “low-to-high” hierarchical correspondence between source and target
visual areas even without explicit anatomical information.

3.4 Discussion

This chapter aimed to investigate the conversion of the brain activity patterns across indi-
viduals and the feasibility of detecting the hierarchical correspondence of distinct levels of
visual features between individuals. The study started by showing that methods of pairwise
functional alignment can accurately convert a source subject’s brain activity into a target
subject’s brain space by evaluation using the pattern and profile correlations. The ablation
analysis on the converters with the exclusion of voxels from various source visual subareas
further showed that the converters automatically detected the hierarchical correspondences
of visual subareas between individuals. The content of this section is based on the section 3:
Discussion of Ho et al. (2023).

I have shown that the neural code converters automatically detected the hierarchical corre-
spondence of visual subareas between two individuals without explicitly labeling the visual
areas (Figures 3.8, 3.9, and 3.10). Previous studies of functional alignment have typically fo-
cused on a specific brain area, such as V1 or the inferior temporal cortex (Yamada et al., 2011
& 2015; Haxby et al., 2011). Other studies functionally aligned a large region of the cortex
(Bilenko and Gallant, 2016; Van Uden et al., 2018), but their subsequent analyses addressed
other research questions such as the retinotopic organization and the semantic information,
leaving the hierarchical correspondences of visual subareas remained undiscussed. The
results explicitly demonstrate that machine learning-based neural code converters can learn
the hierarchical correspondence of visual subareas between two individuals. Furthermore,
the observation that predictions can be made between different regions (for instance, source
V1 predicting voxel values in target V2, as shown in Figures 3.9, and 3.10), suggests some
level of shared information between neighboring areas. Nevertheless, it is noteworthy that
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Figure 3.8: Cortical map of the effects of source area exclusion. The cortical map is shown
for five target subjects. Each voxel on the target brain is colored by the index of the excluded
visual area that caused the largest performance drop when testing with the natural image
test dataset (performance drops were averaged across four source subjects for a single target
subject). Only voxels that generate reliable responses with noise ceilings above a threshold
are shown (see section 3.2.4: Noise ceiling estimation).
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Figure 3.9: Performance drop caused by source area exclusion for four representative
individual pairs. Each bar represents the mean performance drop averaged across voxels
in a target area when a source area was excluded during prediction (error bar, 95% C.I. of
performance drops across voxels).

Figure 3.10: Mean performance drop caused by source area exclusion across 20 individual
pairs. Each bar represents the mean performance drop averaged over 20 individual pairs
(error bars, 95% C.I. from 20 individual pairs).
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an increase in cortical distance between two areas correlates with a reduction in prediction
accuracy, indicating that shared information resides within spatially proximate areas.



Chapter 4

Inter-individual DNN feature decoding
and deep image reconstruction

4.1 Introduction

Chapter 3 demonstrated that the neural code converters can automatically detect the hier-
archical correspondence of visual subareas between two individuals via purely data-driven
approach. However, without a detailed analysis on the converted brain activity patterns,
it remains unanswered whether the hierarchical and fine-grained visual features along the
ventral pathway can be converted across individuals while preserving the encoded perceptual
contents. The content of this chapter is based on the section 1: Introduction, the section
2.3: DNN feature decoding, and the section 2.4: Visual image reconstruction of Ho et al.
(2023).

Recent progress in deep neural networks (DNNs) has facilitated comprehensive investigations
into hierarchical feature representations spanning different visual cortical regions (Yamins
et al., 2014; Güçlü and van Gerven, 2015 & 2017; Horikawa and Kamitani, 2017). Previous
encoding and decoding studies have shown that DNNs pre-trained on natural images exhibit
a correspondence between visual areas and DNN layers. These observations suggest a
parallel progression, where the visual cortex, akin to DNNs, processes progressively intricate
visual attributes along the ventral neural pathway. Additionally, the use of DNN-based
reconstruction algorithms has led to successful reconstruction of perceptual content encoded
in brain responses as images (Shen et al., 2019a & 2019b). The deep image reconstruction
(Shen et al., 2019a) commences by predicting the DNN features corresponding to an image,
leveraging the brain activity evoked by the image stimulus. Subsequently, an iterative
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Figure 4.1: Training of the DNN feature decoders. The DNN feature decoding models
were trained on the 6,000 samples of measured fMRI activities and the corresponding DNN
features.

optimization procedure is employed, wherein an initial image is refined to align its DNN
features with the predicted DNN features (Figure 1.16). The use of DNN feature decoding
enables comprehensive evaluations of hierarchical visual representations, and visual image
reconstruction affords a holistic evaluation of the precise encoding of perceptual content
within brain activity patterns.

DNN feature decoding translates the brain activity patterns into the hierarchical DNN
representation. This necessitates the training of DNN feature decoders, employing a dataset
comprising brain data and DNN features. In this thesis, I made use of the fMRI data,
collected during the image presentation experiment detailed in Chapter 2. This data was
employed to train the DNN feature decoders with the objective of predicting the images’
DNN features, extracted from the VGG19 DNN model (Simonyan and Zisserman, 2014;
Figure 4.1). The VGG19 DNN model’s 19 layers offer a holistic representation, enabling
us to model the neural representation within the brain. Specifically, the intermediary layers
provide a mechanism to represent the neural activity bridging the higher and lower visual
areas, a task notoriously challenging to accomplish via mathematical models or modeling by
semantics.

Brain activity encompass a wealth of information about the stimuli, which enables the
reconstruction of the visual image through the application of reconstruction algorithms.
Contemporary reconstruction algorithms frequently employ techniques derived from the
realm of deep learning. Initial attempts at visual image reconstruction from brain activity
patterns have been made through deep image reconstruction (Shen et al., 2019a; Figure 1.16),
an optimization-based approach. Without the use of DNN feature decoding, works by Shen
et al. (2019b) and Seeliger et al. (2018) employed generative adversarial networks (GANs;
Goodfellow et al., 2014) to generate visual images from brain activity. Meanwhile, Han
et al. (2019) leveraged a variational autoencoder for the purpose of reconstructing visual
images. For a more detailed review, refer to Rakhimberdina et al. (2021). In the context of
this thesis, I adopted the deep image reconstruction approach as it explicitly reconstructs
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images through multiple layers of hierarchical DNN features, a natural extension from the
DNN feature decoding. The reconstructed images enable us to further analyze the extent of
encoded stimulus information within brain activity patterns.

A model trained on one subject does not generalize to other subjects in general because of
individual differences in macroscopic brain structure and fine-grained neural representations.
Nevertheless, as Chapter 3 demonstrated, the neural code converter can convert brain activity
patterns across individuals with moderate conversion accuracy. This provides an opportunity
to analyze the converted brain activity patterns through the decoding of hierarchical DNN
features and the visual image reconstruction.

In this chapter, the primary objective is to investigate the feasibility of converting the hier-
archical and fine-grained visual features between individuals while preserving the encoded
perceptual content. To achieve this, I utilized neural code converters to convert brain activity,
and then used the decoding of hierarchical DNN features (Horikawa & Kamitani, 2017)
and reconstruction of perceived images (deep image reconstruction; Shen et al., 2019a) to
analyze the converted brain activity. I also trained DNN feature decoders with measured
fMRI responses of the target subject as shown in Figure 4.1. Then, given the source sub-
ject’s brain responses to novel stimuli, the converter transforms the brain activity into the
target brain space (Figure 4.2). The DNN feature decoders, which have been pre-trained
on the target subject, are employed to decode the converted brain activities. Subsequently,
the decoded features are harnessed within a reconstruction algorithm to generate images.
These reconstructed images are subsequently subjected to evaluation through identification
analysis..

At the end of this chapter, other methods of pairwise alignment were adopted, including
Procrustes transformation (Schönemann, 1966), optimal transport (Bazeille et al., 2019), and
a template-based pairwise alignment via hyperalignment (Haxby et al., 2011), to replace
the neural code converter in the inter-individual visual image reconstruction. The scope of
the study was specifically restricted to pairwise alignment methods. Further discussions
on shared templates were excluded due to the challenges associated with interpreting the
correspondences of visual subareas between subjects within a shared template. In addition,
the issue of optimal estimation of a template is distinct from the alignment methodologies
(Bazeille et al., 2021). Instead, I exclusively employed template-based alignment for the
creation of a pairwise transformation facilitated through the template, a methodology which
I refer to as template-based pairwise alignment. The aim is not to exhaustively evaluate all
available methods of pairwise alignment, but to show the robustness of the findings across
several methods.
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Figure 4.2: Inter-individual deep image reconstruction. The converter model converts the
source subject’s stimulus-induced fMRI pattern into the target subject’s brain space. The
converted fMRI pattern is then decoded (or translated) into a DNN feature pattern using the
feature decoders. Finally, the decoded features are fed into the reconstruction algorithm to
reconstruct the stimulus image perceived by the source subject.

4.2 Methods

4.2.1 Deep neural networks (DNN)

Two DNN models were used in this thesis for different purpose. The VGG19 DNN model
was used for DNN feature decoding whereas AlexNet DNN model was used to extract DNN
features for evaluation. This section describes the details of these two DNN models and is
based on the section 4.6: DNN model of Ho et al. (2023).

The VGG19 DNN model (Simonyan & Zisserman, 2014) implemented using the Caffe
library (Jia et al., 2014) was used for DNN feature decoding. This model is pre-trained for
the 1,000-class object recognition task using the images from ImageNet (Deng et al., 2009;
the pre-trained model is available from https://github.com/BVLC/caffe/wiki/Model-Zoo).
The model consists of 16 convolutional layers and three fully connected layers. All the
input images to the model were rescaled to 224 × 224 pixels. Following Shen et al. (2019a),
outputs from individual units before rectification were used as target variables in the DNN
feature decoding analysis. The number of units in each layer is as follows: conv1_1 and
conv1_2, 3,211,264; conv2_1 and conv2_2, 1,605,632; conv3_1, conv3_2, conv3_3, and
conv3_4, 802,816; conv4_1, conv4_2, conv4_3, and conv4_4, 401,408; conv5_1, conv5_2,
conv5_3, and conv5_4, 100,352; fc6 and fc7, 4,096; and fc8, 1,000.

https://github.com/BVLC/caffe/wiki/Model-Zoo
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The AlexNet DNN model (Krizhevsky et al., 2012) implemented using the Caffe library was
used to extract DNN features from the reconstructed images and the presented image. This
model is also pre-trained similarly (available from
https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet). The model consists of five
convolutional layers and three fully connected layers. The number of units in each layer is as
follows: conv1, 290,400; conv2, 186,624; conv3 and conv4, 64,896; conv5, 43,264; fc6 and
fc7, 4,096; and fc8, 1,000.

4.2.2 DNN feature decoding analysis

For each individual DNN unit, I conducted training of a ridge linear regression model,
herein referred to as the DNN feature decoder. This model was designed to ingest an
fMRI activity pattern induced by a given stimulus as its input, subsequently generating a
predictive feature value associated with the stimulus. The ridge regularization parameter was
deliberately established at a value of 100, while both the feature values and voxel values
underwent normalization before being employed in the training process. To enhance the
training procedure, a voxel selection procedure was conducted, resulting in the identification
of the uppermost 500 voxels characterized by the Pearson correlation coefficients between
the sequences of feature values and voxel responses.

The performance of the trained decoders was evaluated through their application to the
averaged fMRI pattern derived from repeated observations, a strategy that serves to amplify
the signal-to-noise ratio of the fMRI signal. For details of the feature decoding, please refer
to the works of Horikawa and Kamitani (2017 & 2022), Shen et al. (2019a), and Ho et al.
(2023).

4.2.3 Brain hierarchy (BH) score

The original intent of the BH score was to quantify the extent of hierarchical resemblance
between an artificial neural network and the human brain (Nonaka et al., 2021). This section
briefly describes the calculation procedure and is based on the section 4.8: Brain hierarchy
(BH) score of Ho et al. (2023).

The decoding-based BH score was used to investigate whether the hierarchical similarity is
preserved after neural code conversion. The DNN features of randomly selected 1,000 units
of each layer are decoded from the fMRI pattern of one of the five visual areas: V1–V4 and
the HVC. For each unit, the visual area showing the best decoding accuracy was identified
and was called the “top visual area.” The first layer, the last layer, and three randomly sampled

https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet
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intermediate layers were used to calculate a Spearman rank correlation coefficient between
the hierarchical levels of the five DNN layers (coded as 0 through 4) and the top visual
area (coded as V1: 0, V2: 1, V3: 2, V4: 3, and HVC: 4) across DNN units. This sampling
procedure was repeated 10,000 times, and the mean Spearman rank correlation coefficient
was taken as the BH score. See Nonaka et al. (2021) for more details.

4.2.4 Deep image reconstruction

An image reconstruction method (deep image reconstruction) proposed by Shen et al. (2019a)
was adopted in this study. This section describes the detailed algorithms and is based on the
section 4.9: Visual image reconstruction of Ho et al. (2023).

Deep image reconstruction optimizes pixel values of an input image based on a set of DNN
features given as a target. Given the decoded DNN features from multiple layers, an image
was reconstructed by solving the following optimization problem (Mahendran & Vedaldi,
2015):

v∗ = argmin
v

(1
2

L

∑
l

βl||φl(v)−uil||2
)
, (4.1)

where v ∈ R224×224×3 is a vector whose elements are the pixel values of an image (width
× height × RGB channels); L is the total number of layers; φl is the function that maps the
image to the DNN feature vector of the l-th layer; uil is the decoded DNN feature vector of
the l-th layer for the i-th sample; and βl is the parameter that weights the contribution of the
l-th layer, which was set to be 1/||uil||2.

A natural image prior is applied by introducing a generative adversarial network called the
deep generator network (DGN) to enhance the naturalness of the image (Nguyen et al., 2016).
The optimization problem becomes

z∗ = argmin
z

(1
2

L

∑
l

βl||φl
(
G(z)

)
−uil||2

)
, (4.2)

where G is the DGN and z is a latent vector. The reconstructed image is obtained by
v∗ = G(z∗). The DGN is a pre-trained generator provided by Dosovitskiy and Brox (2016;
available from https://github.com/dosovits/caffe-fr-chairs).

The solution to the above optimization problem is considered to be the reconstructed image
from the brain activity pattern. Following Shen et al. (2019a), the reconstruction of natural
images was executed utilizing the DGN framework. The optimization of the objective
function was accomplished through the utilization of a stochastic gradient descent with

https://github.com/dosovits/caffe-fr-chairs
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momentum technique spanning 200 iterations. In contrast, for the reconstruction of artificial
images, the DGN was not employed, and the optimization of the objective function was
achieved via a limited-memory BFGS algorithm spanning 200 iterations (Le et al., 2011; Liu
and Nocedal, 1989; Gatys et al., 2016).

4.2.5 Identification analysis

The process of identification analysis was employed as a methodology to assess and gauge
the quality of image reconstruction. This section describes the analysis procedure and is
based on the section 4.10: Identification analysis of Ho et al. (2023).

Presented images were identified using the similarity in either image pixels or DNN fea-
tures, which were reshaped into an one-dimensional feature vector. The feature vector of a
reconstructed image was used to compare the true feature vector of the presented image with
the false alternative of another image. The comparison was counted as correctly identified
if the feature vector of the reconstruction has a higher Pearson correlation coefficient with
the true feature vector than with the false alternative. The identification was repeated for
multiple false alternatives for each reconstruction. For the natural images, the identification
was repeated with 49 alternatives for each reconstruction, resulting in 50 images × 49 com-
parisons = 2450 comparisons in total. The identification accuracy for a reconstructed image
was defined as the proportion of correct identification.

During cross-validation to optimize the regularization parameters for the neural code convert-
ers, I used a set of decoded DNN features concatenated from multiple layers to calculate the
identification accuracies and evaluate the performance. The candidate images for compar-
isons were a subset of the 1200 images presented in the training image session.

4.2.6 Other methods of functional alignment

This section describes other methods of function alignment, which are employed to serve as
a robustness test for the finding in the chapter, and is based on the section 4.4: Methods of
function alignment of Ho et al. (2023).

Procrustes transformation

Procrustes transformation is a transformation that includes rotation and preserves the shape
of a geometric object (Schönemann, 1966). It was first applied to the functional alignment
by Haxby et al. (2011). Considering the source and target subjects’ brain activity patterns
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xi ∈ Rm and yi ∈ Rn, Procrustes transformation estimates an orthogonal transformation
matrix W ∈ Rn×m to minimize

N

∑
i
||yi − (Wxi)||2, (4.3)

with the constraint WT W = I, where N is the number of training samples. Please refer to
Bazeille et al. (2021) for more details.

Optimal transport

Optimal transport is pertinent to the inquiry of efficiently transitioning a probability distri-
bution into another probability distribution, while minimizing associated costs. It was first
applied to the functional alignment in Bazeille et al. (2019). Defining X = (a1,a2, · · · ,am)

and Y = (b1,b2, · · · ,bn) with ai,b j ∈ RN representing a sequence of a voxel response to N
stimuli, optimal transport tries to find a transformation matrix W∗ such that

W∗ = argmin
W

(
∑
i j

Wi j||bi −a j||2 − εh(W)
)

(4.4)

with the constraints ∑ j Wi j = 1/m and ∑i Wi j = 1/n.

The entropic term
h(W) =−∑

i j
Wi j

(
log(Wi j)−1

)
(4.5)

regularizes the optimal transport problem and ε controls the strength of regularization. The
regularization parameter was optimized as in the neural code converter. I used fmrialign
(https://parietal-inria.github.io/fmralign-docs/index.html) package for the analysis. Please
refer to Bazeille et al. (2019) for more mathematical details.

Template-based pairwise alignment via hyperalignment

The process of template-based pairwise alignment through hyperalignment initially involves
the estimation of a shared template across subjects using hyperalignment (Haxby et al.,
2011). Subsequently, a pairwise transformation is constructed by first mapping the brain
activity of a source subject onto the established template, and then proceeding with an inverse
mapping from the template to the brain space of the target subject, see Figure 4.3 for the
difference between pairwise alignment and template-based pairwise alignment. In the first
iteration, the hyperalignment algorithm first selects an initial target subject whose fMRI
responses are used as a template, then aligns the second subject’s fMRI responses to the
template using Procrustes transformation. The template is then updated as the mean of the

https://parietal-inria.github.io/fmralign-docs/index.html
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Figure 4.3: Illustration of pairwise alignment and template-based pairwise alignment. Ridge-
based neural code converter, Procrustes transformation and optimal transport are pairwise
alignment, and hyperalignment was used to construct a template to conduct template-based
pairwise alignment. Analyses for all methods were performed with 2,400 training samples
from a pair of source and target subjects. Pairwise alignment directly aligned the source
subject’s responses to the target subject brain space (left). Template-based pairwise alignment
first mapped a source subject’s responses into a template, followed by an inverse mapping
into the target subject’s brain space (right).

current template and the newly aligned fMRI responses. The same procedure is repeated for
additional subjects. In the second iteration, each subject’s original response is aligned to the
mean aligned responses of other subjects. The mean aligned response is recalculated and
treated as a template. In the last step, each subject’s response is aligned to the template, and
an orthogonal transformation matrix is obtained for each subject.

While the hyperalignment algorithm possesses the capability to estimate the shared space
encompassing more than two subjects, I exclusively applied it between pairs of subjects, akin
to the approach employed in the neural code converter analysis.

4.2.7 Statistics

Statistical analyses were primarily conducted on data samples from each pair of subjects to
assess the effect of individual conversions and their prevalence across pairs (Smith and Little,
2018; Ince et al., 2022). Furthermore, for summary purposes or instances where within-pair
analysis was unfeasible, I performed group-level analyses using the mean values derived
from 20 distinct pairs. Within certain analytical contexts, the results with converted brain
activity were compared with those without conversion (within-individual), in which the data
from five subjects were processed in a similar way.

In the DNN feature decoding analysis, performed for each individual conversion or within
each subject, the decoding accuracies (as quantified by profile correlations) of all units
were employed to compute both the mean decoding accuracy and its accompanying 95%
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confidence interval. At the group level, the mean decoding accuracies, emanating from either
20 individual pairs or five subjects, were harnessed to derive the group mean, accompanied
by its corresponding 95% confidence interval.

When assessing the hierarchical structure, the computation of a Brain Hierarchy (BH) score
was undertaken for each individual conversion or each subject (within-individual). The BH
scores derived from 20 individual pairs or five subjects (within-individual) were further
aggregated to obtain the group mean BH score.

During the identification analysis of reconstructed images for each specific conversion or
individual subject (within), the identification accuracies associated with individual recon-
structed images were harnessed to compute both the average identification accuracy and its
corresponding 95% confidence interval. At the group level, the averaged identification accu-
racies obtained from 20 individual pairs or five subjects (within-individual) were employed
to ascertain the group mean along with its accompanying 95% confidence interval.

4.3 Results

This section presented the results of DNN feature decoding and visual image reconstruction.
The content of this section is based on the section 2.3: DNN feature decoding and the section
2.4: Visual image reconstruction of Ho et al. (2023).

4.3.1 DNN feature decoding

Given the trained neural code converters as described in Chapter 3, I used DNN feature
decoding analysis to examine whether fine-grained representations of visual features were
preserved in the converted fMRI activity patterns. The feature decoders had been trained
to predict the DNN feature values of the stimuli using 6,000 training samples of a target
subject’s fMRI activity patterns in both the whole VC and individual visual subareas. The
feature decoders were applied to the converted brain activities to predict the DNN features
of the test images (“Across-functional” condition; see section 4.2.2: DNN feature decoding
analysis). Following the original paper (Shen et al., 2019a), the average fMRI data over
the repetitions for each test image was used as the input to feature decoders, unless stated
otherwise. The decoding accuracy of each DNN unit was calculated as the Pearson correlation
coefficient between the sequences of the decoded and true feature values for the test images.
Additionally, I computed the mean decoding accuracy over all DNN units in each layer.



4.3 Results 69

To provide a comparison, I performed the same analysis with anatomically aligned brain
activity. The source subject’s fMRI images were aligned to the target’s anatomical template
and then used for DNN feature decoding (“Across-anatomical”; see section 3.2.1: Anatomical
alignment). The results were compared to those obtained from the standard within-individual
decoding, where DNN features were predicted using the decoders trained on the same
subject’s data (“Within”).

I initiated the evaluation by assessing the feature decoding performance derived from the
converted fMRI activity encompassing the whole VC in the target space.The results of the
neural code converter (Across-functional) showed lower but comparable performance with
the within-individual results, with similar trends across layers for both in individual pairs
and at the group level (Figure 4.4 for results of individual pairs; Figure 4.5 for group results).
Among the three conditions, anatomical alignment (Across-anatomical) exhibited the least
favorable performance, characterized by accuracies mostly falling below 0.1 across layers,
both within individual pairs and at the group level. These outcomes underscore the advantage
held by neural code converters over anatomical alignment in the context of DNN feature
decoding.

Subsequently, I conducted decoding analyses on each DNN unit using voxels from individual
visual areas (V1–V4 and HVC in the target space) and identified the visual area that yielded
the highest decoding accuracy for each unit (“top visual area”), following Nonaka et al.
(2021). The distribution of the top visual area across DNN units in a given layer was then
computed. I observed a shift of the peak area, from lower to higher areas, along the DNN
hierarchy in all conditions (Figure 4.6 for results of individual pairs; Figure 4.7 for group
results). To quantify the degree of hierarchical correspondence between brain areas and
DNN layers, I adopted the decoding-based brain hierarchy (BH) score, which is based on
the rank correlation between the hierarchical levels of the DNN layer and the top brain area
across DNN units (Figure 4.8; see section 4.2.3: Brain hierarchy (BH) score). The results of
the within-individual condition replicated the previous findings with a BH score of around
0.5 (Horikawa and Kamitani, 2017; Nonaka et al., 2021). Despite the low accuracies in
feature decoding with anatomical alignment (Across-anatomical; Figure 4.5), the hierarchical
correspondence was largely preserved when quantified by the BH score (Figures 4.6 and
4.8). This is presumably because anatomical alignment maps a macroscopic organization
of hierarchical visual areas between subjects, and the relative amount of information about
hierarchy is preserved. The inter-individual conversion (Across-functional) showed a lower
but substantial degree of hierarchical correspondence even though the converter was blind to
cortical hierarchy information during training.
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Figure 4.4: DNN feature decoding accuracy from the whole visual cortex (VC) for four
representative individual pairs. Decoding accuracies for each layer of the VGG19 model are
shown for the Within, Across-anatomical, and Across-functional conditions. The decoding
accuracies for all DNN units in each layer were used to calculate a mean decoding accuracy
and its 95% confidence interval (error bar, 95% C.I. across voxels).

Figure 4.5: Mean DNN feature decoding accuracy from the whole visual cortex (VC) across
20 individual pairs. Decoding accuracies for each layer of the VGG19 model are shown for
the Within, Across-anatomical, and Across-functional conditions (error bars, 95% C.I. from
five subjects for the Within condition, and from 20 individual pairs for the Across-anatomical
and Across-functional conditions).
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Figure 4.6: Proportion of the “top visual area” (best decodable area for each DNN unit) across
DNN units in each layer for four representative individual pairs. Only five representative
layers are shown. Each bar indicates the proportion of DNN units. The numbers on the top
left indicate the BH scores.

Figure 4.7: Mean proportion of the “top visual area” (best decodable area for each DNN
unit) across DNN units in each layer over 20 individual pairs. Only five representative layers
are shown. Each bar indicates the mean proportion of DNN units over five subjects for the
Within condition or over 20 individual pairs for the Across-anatomical and Across-functional
conditions (error bars, 95% C.I. from five subjects or 20 pairs.).
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Figure 4.8: Brain hierarchy (BH) score. The horizontal black dashes indicate the mean BH
score over subjects or pairs; each circle represents the BH score for a subject or a pair.

4.3.2 Visual image reconstruction

Having established the successful decoding of multiple level of DNN feature representations
from converted brain activities, I next sought to investigate the feasibility of reconstructing
visual images through DNN features decoded from converted brain activities using the
technique of deep image reconstruction (Shen et al., 2019a; see section 4.2.4: Deep image
reconstruction). This reconstruction analysis was performed not only on natural images but
also extended to artificial images characterized by simple geometric shapes (see section 2.4.2:
Visual stimuli).

Examples of reconstructions from the visual cortex (VC) for the Within, Across-anatomical,
and Across-functional conditions are first demonstrated (Figure 4.9). The reconstructed
images derived from the Within and Across-functional conditions captured the main char-
acteristics of the presented images, including the shapes and colors of the objects, while
reconstructions with anatomical alignment (Across-anatomical) showed neither a recogniz-
able shape nor color of the objects in the presented images (see Figures 4.10 for several
examples of natural images and artificial images for all individual pairs). The presented
reconstructions thus far were derived from the average fMRI data over all the repetitions
(24 and 20 repetitions for natural and artificial images, respectively). Despite not being the
main focus of analysis, the results using the average of varying repetitions are available in
Figure 4.11. Notably, it is worth highlighting that even a single repetition of fMRI sample
was capable of yielding distinguishable reconstructions, wherein the visual quality exhibited
enhancement with an increase in the number of repetitions.

For a quantitative assessment of the reconstruction outcomes, I performed a pairwise iden-
tification analysis in which the pixel or DNN feature pattern of a reconstruction was used
to identify the true stimulus between two alternatives by choosing the one with a more
correlated pattern (see section 4.2.5: Identification analysis). DNN feature patterns were
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Figure 4.9: Within and across-individual reconstructions from the whole visual cortex (VC).
The reconstructions shown under the three analytical conditions for each stimulus image
were all from the same source subject. The results for different stimulus images are from
different source subjects.
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Figure 4.10: Reconstructed images across individual pairs. For each image, the diagonal
images in each block are the reconstructed images in the Within condition; the off-diagonal
images are the reconstructed images in the Across-functional condition with the converters
trained on 2,400 training samples. All images were reconstructed from the whole visual
cortex (VC).
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Figure 4.11: Reconstructed images using varying repetitions of samples. The converted
fMRI samples corresponding to a visual image were averaged over repetitions and were
reconstructed into an image. The reconstructed images were shown for three representative
individual pairs. All images were reconstructed from the whole visual cortex (VC).
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extracted using the AlexNet model (Krizhevsky et al., 2012), which is different from the
DNN used in the reconstruction method (VGG19 model). The identification was repeated
for multiple false alternatives to obtain the accuracy for each reconstruction. For group
analysis, the mean identification accuracy was calculated over all reconstructions in each
pair. While the within-individual condition (Within) showed overall superior performance
both for natural and artificial images, neural code conversion (Across-functional) greatly
outperformed anatomical alignment (Across-anatomical) both in individual pairs and at the
group level (Figure 4.12 for individual pairs; Figure 4.13 for group results).

4.3.3 Robustness across functional alignment methods

Sections 3.3.2, 4.3.1, and 4.3.2 confirmed the preservation of hierarchical visual information
during neural code conversion. To examine the robustness of this conclusion across different
functional alignment methods, similar pairwise alignment analyses were conducted using
Procrustes transformation, optimal transport, and template-based hyperalignment with 2,400
training samples. Subsequently, DNN feature decoding and visual image reconstruction were
performed. The content of this section is based on the section 2.2: Neural code conversion,
the section 2.3: DNN feature decoding, and the section 2.4: Visual image reconstruction of
Ho et al. (2023).

These functional alignment techniques displayed comparable conversion accuracies. The
mean normalized pattern correlations for the whole VC for Procrustes transformation, optimal
transport, and template-based pairwise alignment were 0.55 ± 0.09, 0.74 ± 0.11, and 0.55
± 0.09 (mean with 95% C.I.) across 20 individual pairs respectively. Similarly, the mean
normalized profile correlations were 0.52 ± 0.07, 0.58 ± 0.08, and 0.52 ± 0.07 across 20
individual pairs respectively (Figure 4.14). Among them, optimal transport demonstrated
superior conversion accuracy.

Other functional alignment methods demonstrated comparable DNN decoding accuracies.
Among these, ridge-based neural code converters achieved the highest DNN decoding ac-
curacies across the majority of layers, while optimal transport showed slightly diminished
accuracy (Figure 4.15). Despite these differences in decoding, all methods led to simi-
lar visual reconstructions, albeit with optimal transport falling a bit short in comparison
(Figure 4.16). This outcome substantiates the robustness of the finding, as all functional
alignment methods retained the hierarchical visual information crucial for visual image
reconstruction.
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Figure 4.12: Identification accuracies of representative individual pairs. The identification
accuracies for reconstructed images were used to calculate a mean identification accuracy
and its 95% confidence interval for the Within, Across-anatomical, and Across-functional
conditions (left, natural images; right, artificial images; error bar, 95% C.I. of identification
accuracies across reconstructed images; dotted lines, chance level = 50%).
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Figure 4.13: Mean identification accuracy across all individual pairs or all subjects. A mean
identification accuracy was calculated over all reconstructed images for each subject or
individual pair. DNN features of images were extracted from the eight layers of the AlexNet
model (left, natural images; right, artificial images; error bars, 95% C.I. from five subjects or
20 pairs; dotted lines, chance level = 50%).

Figure 4.14: Evaluation of different methods of functional alignment on visual areas. The
conversion accuracy was averaged across 20 individual pairs for Ridge-based neural code
converter, Procrustes transformation, optimal transport, and template-based pairwise align-
ment via hyperalignment (error bars, 95% C.I. from 20 individual pairs).
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Figure 4.15: Inter-individual DNN feature decoding accuracies via different methods of
functional alignment. The decoding accuracies were averaged across 20 individual pairs
for Ridge-based neural code converter, Procrustes transformation, optimal transport, and
template-based pairwise alignment via hyperalignment (error bars, 95% C.I. from 20 individ-
ual pairs).

4.4 Discussion

This chapter aimed to investigate whether and how hierarchical and fine-grained visual
information could be converted while preserving perceptual content across individuals
using methods of pairwise functional alignment. Decoding the converted brain activity into
DNN features unveiled a clear correspondence between distinct visual subareas and layers
within the DNN. The transformation of converted brain activity into visual images yielded
reconstructions characterized by discernible shapes and colors of the objects depicted within
the presented images. The analyses demonstrate that hierarchically organized fine-grained
visual features that enable visual image reconstruction are preserved in the converted brain
activity, allowing efficient reconstruction of visual images without training subject-specific
models. The content of this section is based on the section 3: Discussion of Ho et al.
(2023).

By decoding the converted fMRI activity patterns into DNN features and reconstructing them
as visual images via the decoded DNN features (Figures 4.4, 4.5, and 4.9), I showed that
hierarchically organized fine-grained visual features that enable visual image reconstruction
are preserved in the neural code conversion. Previous studies have mainly focused on some
specific features, such as object categories, image contrast, retinotopy, and semantics (Haxby
et al., 2011; Yamada et al., 2011 & 2015; Bilenko and Gallant, 2016; Van Uden et al., 2018),
but whether a set of hierarchical fine-grained features is preserved after functional alignment
remained unknown. The results of DNN feature decoding on multiple levels of DNN layers
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Figure 4.16: Reconstructed images obtained via different methods of functional alignment.
The images were reconstructed with Ridge-based neural code converter, Procrustes transfor-
mation, optimal transport (OT), and template-based pairwise alignment via hyperalignment.
All images were reconstructed from the whole visual cortex (VC). The reconstructions shown
under the four analytical conditions for each stimulus image were all from the same source
subject. The results for different stimulus images are from different source subjects.
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showed that the converted fMRI activity patterns held multiple levels of fine-grained visual
features (Figure 4.4 and 4.5). Moreover, successful visual image reconstruction further
confirmed that the converted fMRI activity patterns preserved sufficient perceptual content
for reconstructing visual images (Figures 4.9 and 4.10).

Furthermore, this finding is further confirmed with other methods of functional alignments
(Figure 4.14, 4.15, and 4.16), showing that the finding is not specific to neural code
converters but rather a general neuroscience finding. The differences in the conversion
accuracies, decoding accuracies, and the reconstruction qualities across methods of functional
alignments probably arises from the constraints imposed in the transformation matrices.
Optimal transport imposes stronger constraints than other methods, particularly, it maps all
source voxels to all target voxels exhaustively, with every voxel having an equal weight.
Although it is slightly relaxed by the regularization, this constraint is unnatural for visual
image reconstruction because not all voxels are equally important in the reconstruction.
i.e. only a subset of voxels is critical for the reconstruction. Therefore, optimal transport
using whole VC cannot guarantee those voxels are optimally converted across individuals
for the reconstruction (Ho et al., 2023). Nevertheless, the differences did not prevent the
conclusion that methods of functional alignment works well on preserving hierarchical visual
information, providing a robustness test for my findings.





Chapter 5

Effectiveness of data-driven hierarchical
neural code converter - A comparison

5.1 Introduction

In Chapter 3, neural code converters were trained using 2,400 samples and were purely
data-driven without knowing the visual cortical hierarchy. Remarkably, the results of Chapter
3 demonstrate that the converters are capable of automatically detecting the visual cortical
hierarchy. Furthermore, Chapter 4 demonstrate the neural code converters can preserve the
hierarchical and fine-grained visual features, enabling the visual image reconstruction. This
showcased the capability of data-driven approach to discover new findings in the neuroscience
research.

Data-driven approach undoubtedly is a powerful tool, but it requires sufficient data to be
useful. In recent years, there has been a growing trend to increase the volume of data collected
for neuroscience research. In functional magnetic resonance imaging (fMRI) studies, this
has been achieved either through an increase in the number of subjects (potentially up to a
few ten thousands) or an increase in the number of samples (up to hundreds of thousands/a
few ten hours of fMRI scan) collected per subject (Naselaris et al., 2021). Examples of large
scale projects include the Human Brain Project and the Human Connectome Project. This
surge in data availability has created new opportunities for data-driven studies.

In neuroscience, the data-driven approach offers a unique way to extract meaningful insights
from complex and large-scale datasets. Unlike the traditional hypothesis-driven framework,
which begins with a predefined theory or assumption, the data-driven approach allows
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researchers to discover novel patterns and relationships within the data without any prior
assumptions. This is typically achieved using advanced machine learning and artificial
intelligence algorithms capable of handling the immense complexity and high-dimensional
nature of neuroscientific data. For example, Craddock et al. (2012) employed a data-driven
clustering algorithm for brain parcellation to generate an fMRI atlas. This approach was
undertaken without reliance on predetermined brain partitions and labels, offering a new
perspective on brain organization.

A fundamental aspect of this thesis centers on the utilization of data-driven methodologies
for understanding the hierarchical visual system. It invites an interesting comparison with a
neural code conversion technique that explicitly incorporates established knowledge about
the visual cortical hierarchy. Could such an approach outperform the data-driven hierarchi-
cal neural code converter in preserving perceptual contents? Given that visual hierarchy
information augments the neural code converter, the hypothesis is that the performance of a
neural code converter that acknowledges visual hierarchy should be superior, particularly
when the data-driven approach shows limited effectiveness due to scarce data availability.
The 6,000 training samples available in this study provides a good opportunity to scrutinize
the effectiveness of data driven hierarchical neural code converters under different training
sample conditions. How many training examples are necessary for the data-driven hierar-
chical neural code converter to match the efficacy of a neural code converter that respects
visual hierarchy? The primary focus of this chapter, thus, is to ascertain which approach
demonstrates better performance in DNN feature decoding and visual image reconstruction,
and to scrutinize how the amount of training samples influences their performance.

5.2 Methods

5.2.1 Visual subarea-wise conversion

Chapter 3 introduced a method of neural code conversion that takes a whole Visual Cortex
(VC) brain activity pattern from the source subject as input and predicts the activity values
of voxels in the target subject. This method is referred to as “whole VC conversion.” This
chapter presents a different form of neural code conversion, respecting the cortical hierarchy,
where the predicted activity value of a voxel in the target area is derived solely from the
corresponding source area of the source subject (Figure 5.1). For instance, a voxel activity
in the target’s V1 is only predicted from the source subject’s V1 subarea. This approach
is hence termed “subarea-wise conversion.” The predicted voxel activities across the five
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Figure 5.1: Schematics of the subarea-wise conversion. A converter model was trained on a
set of fMRI responses to an identical stimulus sequence. The predicted activity values for
a voxel in a target area were predicted exclusively from the source subject’s brain activity
patterns within the corresponding source area.

subareas (V1-V4, HVC) are integrated into a whole VC brain activity pattern, which is
further decoded into DNN features and reconstructed into visual images.

5.2.2 Statistics

In comparing the subarea-wise conversion to the whole VC conversion, a comprehensive
analysis was conducted through ANOVA, wherein DNN feature decoding accuracies and
identification accuracies were subjected to scrutiny. In this analysis, the conversion type
assumed the role of a repeated measure factor, while the DNN layer functioned as a between-
subject factor. Because encompassing millions of DNN units and their corresponding
decoding accuracies (profile correlations) always lead to statistical significance, the focus
of group-level ANOVA was directed solely towards the DNN feature decoding accuracies,
culminating in the computation of F scores, p values, and effect sizes η2. This computation
was predicated on the mean DNN feature decoding accuracies sourced from 20 individual
pairs.

Regarding the identification accuracies, ANOVA analysis was conducted using accuracies of
individual reconstructed image as data points. This facilitated the computation of F scores, p
values, and effect sizes η2 within each individual pair. At the group level, mean identification
accuracies derived from the aggregation of images across 20 individual pairs were harnessed
as data points, further contributing to the computation of F scores, p values, and the effect
size η2.
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5.3 Results

This section presented the results of subarea-wise conversion and the analysis of changing
training data amount. The content of this section is based on the section 2.5: Visual subarea-
wise conversion and the section 2.6: Varying the number of training data of Ho et al.
(2023).

5.3.1 Subarea-wise conversion accuracy

In order to investigate the influence of neural code converters that adhere to the visual
hierarchy on the performance of reconstruction, I performed subarea-wise conversion that
predicted the activity values of a voxel in a target area only from the source subject’s
corresponding source area (see section 5.2.1: Visual subarea-wise conversion). As in
Chapter 3, the conversions were evaluated based on pattern and profile correlations (see
section 3.2.3: Conversion accuracy). All individual pairs showed comparable conversion
accuracies to the whole VC conversion, with the mean pattern correlation being 0.58 ± 0.07
and the mean profile correlation being 0.55 ± 0.06 for VC (Figure 5.2 for individual pairs;
Figure 5.3 for group results). Following this, I executed DNN feature decoding and visual
image reconstruction using the whole VC, and compared the results with the whole VC
conversions.

5.3.2 DNN feature decoding via subarea-wise conversion

In the DNN feature decoding of the natural images, the subarea-wise conversion showed
similar but slightly lower decoding accuracy than the whole VC conversion across layers
in all individual pairs (Figure 5.4 left) and at the group level (Figure 5.5 left; ANOVA on
the means of individual pairs, effect of conversion type with the DNN layer as a between-
subject factor, F(1, 361) = 1959, p < .001, η2 = 0.84; see section 5.2.2: Statistics). Similar
results were obtained for the artificial images in some individual pairs and at the group level
(Figure 5.4 right for individual pairs; Figure 5.5 right for group results; ANOVA on the
means of individual pairs, F(1, 361) = 260.6, p < .001, η2 = 0.42).

5.3.3 Visual image reconstruction via subarea-wise conversion

Reconstructed images resulting from the subarea-wise conversions demonstrated a similar
visual quality to those derived from the whole VC conversions. (Figure 5.6). In the identifi-
cation analysis of the natural images, only 2/20 pairs showed significantly higher accuracies
for the subarea-wise conversion; 6/20 pairs showed higher significant accuracies for the
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Figure 5.2: Subarea-wise conversion accuracies for individual pairs. The pattern correlation
coefficients for 50 visual stimuli were used to calculate a mean conversion accuracy (pattern)
and its 95% confidence interval. The profile correlation coefficients for voxels were used to
calculate a mean conversion accuracy (profile) and its 95% confidence interval (right; error
bars on left panel, 95% C.I. across visual images; error bars on the right panel, 95% C.I.
across voxels).

Figure 5.3: Mean and distribution of subarea-wise conversion accuracies across individual
pairs. Distributions of normalized pattern or profile correlation coefficients across 20 individ-
ual pairs are shown for VC and visual subareas. Each horizontal black dash indicates the
mean value over 20 individual pairs; each circle represents the correlation coefficients of an
individual pair.
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Figure 5.4: DNN feature decoding accuracy of natural images and artificial images for four
representative individual pairs. The decoding accuracies for all DNN units in each layer were
used to calculate a mean decoding accuracy and its 95% confidence interval (error bars, 95%
C.I. across DNN units).



5.3 Results 89

Figure 5.5: Mean DNN feature decoding accuracy across all individual pairs (error bars, 95%
C.I. from 20 individual pairs).

whole conversion (Figure 5.7 left; ANOVA in individual pairs; effect of conversion type with
the DNN layer feature as a between-subject factor). At the group level, the subarea-wise
conversion showed lower accuracies (Figure 5.8 left; ANOVA on the means of individual
pairs, F(1, 171) = 11.2, p < .001, η2 = 0.062). In the identification analysis of the artificial
images, 3/20 pairs showed higher significant accuracies for the subarea-wise conversion;
2/20 pairs showed higher significant accuracies for the whole VC conversion (Figure 5.7
right; ANOVA in individual pairs), while no statistical difference was found at the group level
(Figure 5.8 right; ANOVA on the means of individual pairs, F(1, 171) = 3.87, p =0.051, η2

= 0.022). These results indicate that constraining neural code conversion to respect cortical
hierarchy does not seem to contribute to the improvement of visual image reconstruction.
Rather, the flexibility of the mapping with the whole VC conversion could be beneficial as
indicated by the slightly superior performance with the natural images.

5.3.4 Varying the number of training data

The current inter-individual analysis outcomes have been derived from the utilization of
2,400 samples for converter training. In this section, my current investigation delved into an
exploration of the influence of the training sample quantity on image reconstruction quality.
This exploration entailed a systematic variation of the data employed for converter training,
spanning different sample sizes (300, 600, 900, 1,200, 2,400, 3,600, 4,800, and 6,000 training
samples), while concurrently utilizing the complete dataset of the target subject for decoder
training (6,000 samples). Particularly, a comparative analysis was executed between the
whole VC and the subarea-wise conversions. The content of this section is based on the
section 2.6: Varying the number of training data of Ho et al. (2023).
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Figure 5.6: Reconstructed natural and artificial images via whole VC conversions and
subarea-wise conversions. The reconstructions shown under the two analytical conditions for
each stimulus image were all from the same source subject. The results for different stimulus
images are from different source subjects.
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Figure 5.7: Identification accuracies with the reconstructed natural and artificial images
for four representative individual pairs. DNN features of images were extracted from the
eight layers of the AlexNet model. The identification accuracies for individual reconstructed
images were used to calculate a mean identification accuracy and its 95% confidence interval
(chance level = 50%).
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Figure 5.8: Mean identification accuracies across all individual pairs. DNN features of
images were extracted from the eight layers of the AlexNet model (left, natural images; right,
artificial images; error bars, 95% C.I. from 20 individual pairs; dotted lines, chance level =
50%).

The reconstructed images retained a discernible quality even with a reduction in the number
of training samples. Specifically, using converters trained on 300 samples still produced
recognizable images in both the whole VC and subarea-wise conversions (Figure 5.9). This
result indicates that image reconstruction using converters with a small number of training
data is feasible, without the need to collect a full set of fMRI data for each subject.

The reconstructed images were further evaluated using identification analysis (see section
4.2.5: Identification analysis). The identification accuracies increased with the number of
training samples, approaching the accuracy of the within-individual (Within) condition (see
Figure 5.10 left for individual pairs and Figure 5.11 top for group results). The subarea-wise
and whole VC conversions showed similar accuracies with more than 1,200 training samples,
but the subarea-wise conversion outperformed the whole VC conversion with 1,200 or fewer
training samples (ANOVA within individual pairs at each training sample number, effect of
conversion type, p < .05 in 18, 10, 4, 3, 2, 1, 4, and 1 out of 20 pairs for the eight training
sample numbers, respectively; group analysis on the mean accuracies of individual pairs,
p < .05 at 300, 600, and 900 samples; Bonferroni-corrected by eight). Similar results were
obtained for the artificial images (Figure 5.10 right for individual pairs; ANOVA within
individual pairs, effect of conversion type, p < .05 in 10, 8, 5, 2, 2, 1, 1, and 2 out of 20
pairs for the eight training sample numbers, respectively; Figure 5.11 bottom for group
results; group analysis on the mean accuracies of individual pairs, p < .05 at 300, 600, and
900 samples; Bonferroni-corrected by eight). Overall, incorporating the cortical hierarchy
constraint into neural code conversion does not yield enhanced reconstruction; however, it
proves advantageous in scenarios with limited training data.
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Figure 5.9: Reconstructed images via neural converters trained with a varying amount of data.
Reconstructed natural images and artificial images were produced from the same subject pair
respectively (natural image: from Subject 2 to Subject 3; artificial image: from Subject 3 to
Subject 1
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Figure 5.10: Identification accuracies of representative individual pairs with different numbers
of training samples for converters. Identification accuracies were calculated with the pixel
values and the extracted DNN feature values (AlexNet) from the reconstructed images. For
each feature and each training sample condition, the identification accuracies for 50/40
reconstructed images were used to calculate a mean identification accuracy and its 95%
confidence interval. The results are shown together with those from the within-individual
condition (Within) and the anatomical alignment (Across-anatomical) (dotted lines, chance
level = 50%).
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Figure 5.11: Mean identification accuracies across all individual pairs with varying numbers
of training data for the whole VC and subarea-wise conversions. Identification accuracies
were calculated with the pixel values and the extracted DNN feature values (AlexNet)
from the reconstructed images. The results are shown together with those from the within-
individual condition (Within) and the anatomical alignment (Across-anatomical) (error bars,
95% C.I. from 20 individual pairs for whole VC and subarea-wise conversions; dotted lines,
chance level = 50%).
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5.4 Discussions

This chapter is dedicated to comparing the effectiveness of two neural code conversion
methods: whole VC conversion and subarea-wise conversion. The subarea-wise conversion
marginally underperformed the whole VC conversion with sufficient training data in the
inter-individual visual image reconstruction (Figures 5.4, 5.5, 5.7, and 5.8), with the whole
VC conversions achieving slightly higher DNN feature decoding accuracy and marginally
higher identification accuracy in the reconstruction. However, the subarea-wise conversion
demonstrates better performance than the whole VC conversion when data is scarce (Figures
5.10 and 5.11). This result shows that when sufficient training data are available, the whole
VC conversion can implicitly learn the information about explicit labels of visual subareas,
without the need to explicitly impose the hierarchy constraint. The content of this section is
based on the section 3: Discussion of Ho et al. (2023).

Training a full visual image reconstruction model requires an fMRI dataset that is costly and
takes a long time to collect. In this study, the training of DNN feature decoders involved
a dataset comprising 6,000 data samples, corresponding to an approximate data collection
duration of 800 minutes. In fMRI studies, this long data collection time is impractical for
most people. Nevertheless, it is feasible to achieve a reduction in the number of required
data samples, such as employing 300 samples, for training a neural code converter and
conducting inter-individual visual image reconstruction, albeit at the cost of sacrificing a
certain degree of visual fidelity in the reconstructed images. In particular, the neural code
converter is engineered to capture the relationships between individuals’ voxels across a
diverse array of visual scenes and holds promise for combination with other decoding models.
The inter-individual decoding method with the neural code converter has the potential to
reduce the time and costs of fMRI data collection.

Despite the promising performance of inter-individual image reconstruction, it did not surpass
within-individual image reconstruction, regardless of the amount of converter training data
used (Figures 5.10 and 5.11). This discrepancy may be attributed to the linear constraint
applied during conversion, which might be too restrictive to capture complex statistical
relationships like nonlinearity in brain activity patterns. Additionally, a brain’s response to a
stimulus comprises a consistent stimulus-evoked response across individuals, an idiosyncratic
stimulus-evoked response and a noise component (Nastase et al., 2019). The brain decoders
might leverage the idiosyncratic responses that could not be converted across subjects, as
well as noise components. As a result, the inter-individual visual image reconstruction thus
underperformed the within-individual visual image reconstruction.



Chapter 6

Application of neural code converters to
pooling data analysis

6.1 Introduction

Brain decoding studies, which aim to understand and predict the complex processes within
our brains, are continuously faced with a significant challenge—limited availability of data.
This becomes especially problematic when the decoding model is unable to adequately
account for individual differences among subjects. Chapters 3 and 4 shed light on how
the application of neural code conversions could mitigate this issue. The process of neural
code conversion aims to preserve the complex, hierarchical structure of visual information,
thereby enabling the inter-individual reconstruction of visual images. This implies that even
if the brain’s workings are unique to each individual, there is still a level of commonality or
universal “code” that can be shared and applied across different individuals.

Chapter 5 further demonstrated the efficacy of this approach, revealing successful application
even with a relatively modest set of training samples—merely 300. The study underscored
the potential of neural code conversions in reconstructing discernible shapes and colors from
brain activity.

However, there’s a critical limitation to inter-individual visual image reconstruction between a
pair of subjects—the paucity of data that can be collected from each subject. Specifically, the
process of visual image reconstruction necessitates an extensive sampling for each individual,
aiming to capture a wide range of brain responses to diverse visual scenarios. However,
factors such as the financial cost of data collection, physical limitations of the subjects
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Figure 6.1: Basic idea of pooling data through neural code conversion. Multiple subjects’
data can be combined into one dataset through the neural code conversion. The pooled data
can be further used for other analyses.

(including time or comfort constraints during neuroimaging scans), typically restrict the total
hours of fMRI scanning time to just a few ten hours. This, in turn, translates into only a few
tens of thousands of training samples per subject.

Neural code conversion presents a potential solution to this challenge by pooling data
from different subjects (Figure 6.1). In this approach, brain data from several subjects is
consolidated into a single dataset, thereby substantially increasing the quantity of available
data. Following this, a new decoding model can be trained utilizing this pooled dataset,
which inherently incorporates a broader variety of brain activity.

Thus, the primary goal of this chapter is to delve deeper into the impact of data pooling on
the performance of inter-individual visual image reconstruction.

6.2 Methods

6.2.1 Pooling data into a target subject

In the context of a source and target subject pair, I pooled data from the remaining three
subjects, employing their respective converters (trained with 6,000 samples), and transformed
this collective data into the target brain space. This procedure resulted in an aggregate dataset
comprising a total of 24,000 samples (with each of the four subjects contributing 6,000
samples). This pooling process was facilitated through whole VC conversion, as depicted
in Figure 6.2. Following this, I proceeded to train decoders on the pooled dataset, referring
to these specific decoders as "multiple-subject feature decoders." This nomenclature serves
as a point of distinction from the "single-subject feature decoders," which were exclusively
trained on the target subject within its original brain space. In the process of training the
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Figure 6.2: Illustration of the pooling procedure. For a pair of a source (not shown) and
a target subject, the training data of the other three subjects were converted into the target
subject’s brain space. DNN feature decoders were then retrained using the converted data
from these three subjects in combination with the original data from the target subject (24,000
samples).

neural code converter between the source subject’s data and the combined dataset, each set
of 2,400 samples from the source subject was paired with an equivalent set of 2,400 samples
drawn from the pooled data of the four pooled subjects. The converted brain activity from the
source subject underwent DNN feature decoding with the multiple-subject feature decoders
and then visual image reconstruction. The results were compared with those generated from
the single-subject feature decoders.

6.2.2 Statistics

In comparing the “multiple-subject feature decoders” to the “single-subject feature decoders”,
a comprehensive analysis was conducted through ANOVA, wherein DNN feature decoding
accuracies and identification accuracies were subjected to scrutiny. In this analysis, the con-
version type assumed the role of a repeated measure factor, while the DNN layer functioned
as a between-subject factor. Because encompassing millions of DNN units and their corre-
sponding decoding accuracies (profile correlations) always lead to statistical significance,
the focus of group-level ANOVA was directed solely towards the DNN feature decoding
accuracies, culminating in the computation of F scores, p values, and effect sizes η2. This
computation was predicated on the mean DNN feature decoding accuracies sourced from 20
individual pairs.

Regarding the identification accuracies, ANOVA analysis was conducted using accuracies of
individual reconstructed image as data points. This facilitated the computation of F scores, p
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values, and effect sizes η2 within each individual pair. At the group level, mean identification
accuracies derived from the aggregation of images across 20 individual pairs were harnessed
as data points, further contributing to the computation of F scores, p values, and the effect
size η2.

6.3 Results

This section presents the results of pooling data analysis and is based on the section 2.7:
Pooling data from multiple subjects of Ho et al. (2023).

6.3.1 Pooling data into a target subject

Building upon the pooling procedure, the multiple-subject feature decoders were evaluated
against single-subject feature decoders via DNN feature decoding. Inter-individual DNN
feature decoding analysis on the natural images showed a small improvement in accuracy
across all layers in the multi-subject condition as compared with the single-subject condition.
The multiple-subject condition yielded better performance than the single-subject condition
both in individual pairs (Figure 6.3 left) and at the group level (Figure 6.4 left; ANOVA, effect
of decoder type, F(1, 361) = 1968, p < .001, η2= .85; see section 6.2.2: Statistics). Similar
results were obtained for artificial images, with the multiple-subject condition showing higher
accuracies (see Figure 6.3 right for individual pair results and Figure 6.4 right for group
results; ANOVA, effect of decoder type, F(1, 361) = 172, p < .001, η2= .32).

Reconstructed images derived from both the single- and multiple-subject decoders exhibited
distinguishable visual quality; however, notable distinctions in visual attributes between
the two conditions were not prominently evident (Figure 6.5). In the identification analysis
of the reconstructed natural images, the multiple-subject condition showed slightly higher
accuracies than the single-subject condition (Figure 6.6 left for individual pairs; ANOVA,
effect of decoder type, p < .05 in 10/20 individual pairs; Figure 6.7 left for group results;
effect of decoder type, F(1, 171) = 75.6, p < .001, η2= .31). Similar results were obtained for
artificial images, with the multiple-subject condition showing slightly higher identification
accuracies than the single-subject condition (Figure 6.6 right for individual pairs; ANOVA,
effect of decoder type, p < .05 in 6/20 individual pairs; Figure 6.7 right for group results;
effect of decoder type, F(1, 171) = 35.9, p < .001, η2= .17).
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Figure 6.3: Inter-individual DNN Feature decoding accuracies of representative individual
pairs with multiple- and single-subject feature decoders. The multiple-subject feature de-
coders were trained on pooled data, while the single-subject feature decoders were trained on
a single subject’s data. The decoding accuracies for all DNN units in each layer were used to
calculate a mean decoding accuracy and its 95% confidence interval (error bars; 95% C.I.
across DNN units).
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Figure 6.4: Mean DNN feature decoding accuracy obtained via multiple- and single-subject
feature decoders across all individual pairs. The multiple-subject feature decoders were
trained on pooled data, while the single-subject feature decoders were trained on a single
subject’s data. The accuracies were obtained from the source subjects’ test dataset (error
bars, 95% C.I. from 20 individual pairs).

6.3.2 Pooling data analysis with limited data availability

To examine the impact of limited data availability on the benefits of pooling multiple-subject
data, I conducted a similar analysis using only 300 training samples for the source subject,
reflecting situations where data collection is restricted due to cost constraints.

The DNN feature decoding analysis performed on natural images revealed a small enhance-
ment in accuracy across certain layers within the multi-subject condition, when contrasted
with the single-subject condition. The multiple-subject condition yielded better performance
than the single-subject condition both in individual pairs (Figure 6.8 left) and at the group
level (Figure 6.9 left; ANOVA, effect of decoder type, F(1, 361) = 1300, p < .001, η2=
.78). Similar results were obtained for artificial images, with the multiple-subject condition
showing higher accuracies (see Figure 6.8 right for individual pair results and Figure 6.9
right for group results; ANOVA, effect of decoder type, F(1, 361) = 30.2, p < .001, η2=
.33).

The reconstructed images derived via both single- and multiple-subject decoders under
restricted data availability yielded recognisable, albeit lower-quality visuals as anticipated,
compared to the images in Figure 6.5, but the visual qualities were not substantially different
between the two conditions (Figure 6.10). There was also a slight improvement for the
identification accuracies of the reconstructed natural images in some of the pairs and at the
group level when using the multiple-subject feature decoders (Figure 6.11 left for individual
pairs; ANOVA, effect of decoder type, p < .05 in 5/20 individual pairs; Figure 6.12 left
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Figure 6.5: Reconstructed natural images for the multiple- and single-subject conditions.
The reconstructions shown under the two analytical conditions for each stimulus image were
all from the same source subject. The results for different stimulus images are from different
source subjects.
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Figure 6.6: Identification analyses of representative individual pairs with multiple- and
single-subject feature decoders. The identification accuracies for reconstructed images
were used to calculate a mean identification accuracy and its 95% confidence interval. The
multiple-subject feature decoders outperformed the single-subject feature decoders (dotted
line, chance level = 50%).
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Figure 6.7: Mean identification accuracies obtained via multiple- and single-subject feature
decoders across all individual pairs. The identification analysis was performed using the pixel
values and the extracted DNN feature values of the reconstructions obtained via multiple-
and single-subject feature decoders (error bars, 95% C.I. from 20 individual pairs; dotted
lines, chance level = 50%).

for group results; effect of decoder type, F(1, 171) = 28.3, p < .001, η2= .14). Similar
observations were made with artificial images, with the multiple-subject condition showing
marginally higher identification accuracies than the single-subject condition (Figure 6.11
right for individual pairs; ANOVA, effect of decoder type, p < .05 in 4/20 individual pairs;
Figure 6.12 right for group results; effect of decoder type, F(1, 171) = 4.6, p < .05, η2= .03).
These results indicate that pooling multiple-subject data is somewhat beneficial for improving
the accuracy of inter-individual decoding and reconstruction, even when data availability
on the source subject is constrained. Nevertheless, it is noteworthy that this pooling did not
result in a substantial improvement in the visual quality of the reconstructed images.

6.4 Discussions

This chapter investigates the effect of data pooling on the performance of inter-individual
visual image reconstruction. The findings indicate that data pooling from multiple subjects
did not yield a substantial enhancement in visual image reconstruction performance. One
plausible explanation for this observation could be attributed to the inherent variability in
data quality, wherein data originating from certain subjects contributed to relatively poor
visual quality of the reconstructed images. Poor quality data limited the capability of the
decoders to leverage the pooled data and resulted in a limited improvement in visual image
reconstruction performance. Furthermore, it is noteworthy that linear regression models may
exhibit limitations in effectively addressing the inherent feature mismatch present in brain
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Figure 6.8: Inter-individual DNN Feature decoding accuracies of representative individual
pairs with multiple- and single-subject feature decoders under limited data availability. The
multiple-subject feature decoders were trained on pooled data, while the single-subject
feature decoders were trained on a single subject’s data. The decoding accuracies for all
DNN units in each layer were used to calculate a mean decoding accuracy and its 95%
confidence interval (error bars; 95% C.I. across DNN units).



6.4 Discussions 107

Figure 6.9: Mean DNN feature decoding accuracy obtained via multiple- and single-subject
feature decoders across all individual pairs under limited data availability. The multiple-
subject feature decoders were trained on pooled data, while the single-subject feature decoders
were trained on a single subject’s data. The accuracies were obtained from the source subjects’
test dataset (error bars, 95% C.I. from 20 individual pairs).

activity patterns across individuals. Consequently, the resolution of this challenge might
necessitate the application of more advanced methodologies (Li et al., 2021).

From a pragmatic standpoint, the pooling of additional training data from other subjects
expands the room for hyperparameter refinement. The number of voxels encompassed within
the visual cortex in this study generally varies between 10,000 and 15,000, a figure that
significantly surpasses the number of samples for decoder training. As a result, strategies
such as regularization or voxel selection become essential. Nonetheless, the inclusion of
a greater volume of data could eliminate this necessity, potentially leading to enhanced
performance outcomes.

Despite our findings indicating that pooling data by a linear method did not lead to great
improvements in visual image reconstruction quality, it is still a promising direction for
future fMRI research.
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Figure 6.10: Reconstructed natural images for the multiple- and single-subject conditions
under limited data availability. The reconstructions shown under the four analytical conditions
for each stimulus image were all from the same source subject. The results for different
stimulus images are from different source subjects.
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Figure 6.11: Identification analyses of representative individual pairs with multiple- and
single-subject feature decoders under limited data availability. The identification accuracies
for reconstructed images were used to calculate a mean identification accuracy and its 95%
confidence interval. The multiple-subject feature decoders outperformed the single-subject
feature decoders (dotted line, chance level = 50%).
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Figure 6.12: Mean identification accuracies obtained via multiple- and single-subject fea-
ture decoders across all individual pairs under limited data availability. The identification
analysis was performed using the pixel values and the extracted DNN feature values of the
reconstructions obtained via multiple- and single-subject feature decoders (error bars, 95%
C.I. from 20 individual pairs; dotted lines, chance level = 50%).



Chapter 7

General discussion

7.1 Summary of findings and contributions

In this study, I investigated the potential of neural code converters for inter-individual visual
image reconstruction. In Chapter 3, I used functional magnetic resonance imaging (fMRI)
data to train the neural code converters, which were then used to predict brain activity patterns
of a target subject from a source subject. The accuracy of the conversion was moderate, but
it was sufficient for inter-individual visual image reconstruction. One of the key findings
of the study was that the neural code converters learned the hierarchical correspondence
of visual areas without imposing the cortical hierarchy constraint. This allowed for the
preservation of fine-grained visual features, which are important for capturing the richness of
visual perception.

In Chapter 4, the converted brain activity patterns were then decoded into hierarchical
deep neural network (DNN) features to reconstruct visual images that showed recognizable
shapes and colors of the objects in the presented images. The results demonstrated that
the hierarchical and fine-grained DNN features can be converted across individuals while
retaining sufficient encoded perceptual content to reconstruct visual images.

In Chapter 5, I compared the performance of whole visual cortex (VC) conversion ver-
sus subarea-wise conversion in inter-individual visual image reconstruction. The results
showed that the whole VC conversion slightly outperformed the subarea-wise conversion
with sufficient training data. However, the subarea-wise conversion performed better with
minimal data. These findings suggest that the whole VC conversion, a purely data-driven
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approach, preserves the hierarchical structure that is explicitly assumed in the subarea-wise
conversion.

In Chapter 6, an interesting finding of the study was that pooling data from multiple subjects
just slightly enhanced visual image reconstruction performance. The reconstruction quality
was not greatly improved, probably because of the variability of data quality and the limitation
of the linear-based neural code converter model.

Overall, this study demonstrated the potential of neural code converters for inter-individual
visual image reconstruction. The converters can capture the hierarchical and fine-grained
visual features of the brain activity patterns and decode them into visual images.

7.2 Fine-scaled voxel mapping

The present research employed neural code converters that were trained on brain activity
patterns corresponding to natural images, which are hypothesized to emulate typical visual
experiences encountered in daily life. Naturalistic stimuli are presumed to encompass a
comprehensive range of visual experiences, thereby furnishing the neural code converters with
the capacity to transform a variety of visual representations across distinct individuals.

Indeed, the findings presented in this thesis underscore the efficacy of these neural code
converters in converting the hierarchical visual representation across individuals, which are
constituted by an array of visual features. However, it is noteworthy that some researchers
might exhibit a more pointed interest in the commonality of particular visual features. Chapter
1 has introduced several of them, including image contrast, object identity, retinotopic
organization, and semantic contents (Yamada et al., 2011 & 2015; Haxby et al., 2011;
Bilenko and Gallant, 2016 and Guntupalli et al., 2016; Van Uden et al., 2018). Yet there
are still many other unexplored visual features, such as visual illusion. Such features may
be overlooked by DNN representations, yet they might be effectively apprehended by the
neural code converters. The potential for these converters to capture such specific features
underlines their versatile functionality and indicates a promising avenue for future research
in visual perception studies.

Moreover, the transformation matrix of functional alignment encodes the fine-scaled mapping
rule of how voxels of a subject is mapped to another (Haxby et al., 2020). To see how it
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works, the neural code conversion can be expressed in the form of:
y1
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ym
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where W is a m×n converter matrix, and x and y are brain activity patterns of the source
and target subjects, with number of voxels n and m respectively. Here I omit the bias vector
for simplicity. This expression can be rewrote into the form of:
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or

y = x1w1 + x2w2 + · · ·+ xnwn.

The columns vector wi maps a voxel of the source subject to the target brain space, or in other
words, it represent the fine-scaled topography of the voxel in the target brain space.

With the fine-scaled mapping of voxels between subjects, neural code converters could
be employed to scrutinize the conservation of specific local visual representations, rather
than converting the entirety of the hierarchical visual representation. To illustrate, consider
a unique type of stimulus that incites activation within a localized region of the visual
cortex, identifiable by voxel activity. The neural code converter can be tactically utilized
to investigate whether analogous voxels within a similar region of the visual cortex of a
different subject are likewise activated. If such a parallel activation is observed, it serves as
an indication that the visual features encoded within this specific region of the visual cortex
may indeed be universally represented across different individuals. Such focused use of
neural code converters can therefore shed light on the inter-individual consistency of local
visual representation.

Moreover, the fine-scaled voxel mapping approach represents a valuable method for estimat-
ing known topographies (Haxby et al., 2020), such as the functional V1 visual area. This
technique is particularly advantageous in situations where fMRI data from a retinotopic
experiment is unavailable to delineate the functional visual area in the target subject. Instead,
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by leveraging the functional visual area data obtained from a source subject, it becomes
feasible to infer and estimate corresponding regions within the target brain space.

7.3 The Black-Box of DNN

The work presented in this thesis involves the utilization of DNNs for the analysis of
hierarchical visual representation. As underscored in Chapter 1, DNNs present a significant
advantage in terms of their capacity for automatic feature extraction, obviating the need for
hand-crafted features. However, it is noteworthy that the features discerned by a DNN are
considerably influenced by the training dataset and the specific architecture of the network.
Indeed, a bias towards particular features has been observed in DNNs, with ImageNet-trained
DNNs exhibiting a known tendency towards textures (Geirhos et al., 2022). Such biases
could potentially lead to an inadvertent neglect of other salient features.

In addition, it is important to acknowledge that the VGG19 DNN model, an integral part of
this study, is a purely feedforward network without any feedback connections. Contrastingly,
it is a well-established fact that the visual cortex harbors numerous feedback connections from
higher visual areas to lower visual areas, facilitating a top-down modulation. Consequently,
the VGG19 DNN model may fall short in effectively modeling such top-down modulation
effects, which may be fundamental to comprehending the visual system. However, an
increase in network complexity and superior performance in object recognition tasks does
not necessarily assure a more brain-like representation, as evidenced by Nonaka et al. (2021).
This finding introduces a level of uncertainty regarding the suitability of non-brain-like DNNs
in modeling the intricacies of the brain.

While the VGG19 DNN model undeniably encodes a wealth of information pertaining to
image features, it must be conceded that we lack total control over what DNNs will learn.
This thesis does not posit the superiority of any specific DNN; each network can serve as
an effective tool for brain modeling as long as its DNN features correlate with neural data.
The point of emphasis, rather, is that there may be certain features overlooked by DNNs,
which are nonetheless of interest to researchers. To build on the findings of the present study,
a promising future direction may involve the use of alternative DNNs that are capable of
learning a richer set of features compared to the VGG19 DNN model.
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7.4 Potential of neural code converters in visual restora-
tion

The research delineated in this thesis entails the implementation of functional alignment on
brain activity patterns within the visual cortex. This presented approach necessitates the
training data while subjects are involved in visual tasks. However, for visually impaired
individuals, this data acquired through visual tasks may not be viable. Nevertheless, evidence
indicates that visual cortical activity is observed when blind individuals engage in nonvisual
tasks such as hearing words or Braille reading (Burton, 2003). This suggests a potential
repurposing of the visual cortex for language functions, implying that its activity may signify
something distinct from that of sighted individuals.

However, the potential for residual visual functions in the visual cortex of late-blind in-
dividuals remains a compelling proposition. It raises the possibility of converting brain
activity patterns from visually impaired subjects to sighted subjects’ brain spaces. This
scenario invites a slight relaxation of the functional alignment assumption: that all subjects
are viewing a predetermined sequence of images or a movie. Instead, an experiment could
be designed where a sighted individual views images or a movie while a blind individual
performs Braille reading with content matching the visual stimuli. A neural code converter
could be trained on the brain data from both the blind (source) and sighted (target) subjects.
The brain activity patterns of the blind individual could then be converted into the target brain
space and analyzed through the decoding of DNN features and visual image reconstruction,
as delineated in this thesis.

While it is plausible to anticipate reduced performance or even failure from this conversion,
even a modestly successful conversion would hold considerable significance. Such a result
would imply the presence of shared visual features between sighted and blind individuals.
This finding could be particularly beneficial in the realm of visual prosthetics, which aim to
restore vision via brain stimulation (Lewis et al., 2015). The fine-scale voxel mapping rule,
as described in section 7.2, might offer an initial guide regarding the appropriate placement
of electrodes to optimally replicate normal vision through visual restoration.

In essence, this innovative approach may not only further our understanding of the human
visual system, but also pave the way for transformative solutions in the field of visual
restoration, thus creating a brighter future for those living with visual impairments.
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7.5 Saving data collection time

The process of training a decoding model necessitates extensive human brain data sampling to
encompass the comprehensive variation of stimuli. In the context of fMRI decoding research,
this amounts to several tens of hours of scanning time - a duration that is typically prohibitive
due to physical constraints and financial considerations. However, as inter-individual analyses
have demonstrated the feasibility of employing decoding models from other subjects when
brain activity patterns are functionally aligned, there emerges a compelling motivation to
explore inter-individual visual image reconstruction from a practical perspective.

As illustrated in Chapter 5, the neural code converter, trained with a modest 300 samples
(approximating one hour of data collection time), was capable of generating discernible
reconstructed images in the inter-individual visual image reconstruction analysis. This
implies that a minimal one or two hours of data collection can suffice to facilitate visual
image reconstruction, assuming the availability of a well trained decoding model from other
subjects.

This finding is of considerable practical significance. For instance, if artists desire to use
visual image reconstruction techniques to manifest their internal visions, the neural code
converter presents a valuable tool. Looking ahead, brain-machine interfaces may become
increasingly prevalent, and the calibration process for such interfaces with individual users
could be both time-consuming and impractical. A more viable approach may involve
calibrating the user’s brain activity patterns with those of other users who have undergone
extensive training with the brain-machine interface. Consequently, the progress in functional
alignment methods could potentially propel the adoption and effectiveness of brain-machine
interfaces.

7.6 Inter-individual neural code conversion without paired
stimuli

The technique of neural code conversion relies on an assumption - it requires training data
where all subjects are exposed to an identical sequence of stimuli. This requirement inevitably
imposes limitations on its generalizability and real-world applications. Earlier research has
proposed an approach using fMRI data with partially unpaired stimuli (Li et al., 2020), which
showed encouraging results when up to half of the data involved unpaired stimuli. However,
this method is not applicable when the data are completely unpaired.
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Figure 7.1: Schematic of the training process for the neural code converter the DNN feature
space. The optimization goal of the converter is to ensure the similarity between DNN features
decoded from the source brain activity patterns and those decoded from the converted brain
activity patterns. Image courtesy of Haibao Wang, used with permission.

In an ongoing collaborative work with my colleagues, we are developing an innovative neural
code conversion method that does not require paired stimuli, drawing upon the concept
of DNN feature decoding. In the training phase, a pair of source and target subjects is
identified, along with their respective DNN feature decoders. The brain activity patterns of
the source subject are decoded into DNN features using the source subject’s decoder, while
simultaneously being converted into the target brain space. These converted brain activity
patterns are subsequently decoded into DNN features using the target subject’s decoder. The
converter is trained to minimize the loss function between these two sets of decoded DNN
features (Figure 7.1). Notably, since the converter is trained in the DNN feature space rather
than voxel space, paired-stimuli fMRI data are not necessary. Additionally, the converter
employs a DNN rather than linear regression, thus leveraging the capacity of DNNs to handle
nonlinearity.

Preliminary results from this method are promising in the context of inter-individual visual
image reconstruction. However, perhaps the most significant aspect of this technique is that
it does not require paired-stimuli fMRI data. This feature has the potential to facilitate the
pooling of data from entirely different fMRI datasets, thereby enhancing its generalizability
and enabling the pooling of data from diverse sources.
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7.7 Other future directions

The present study provides significant insights into the hierarchical visual information
and their individual differences, but there are still several relevant directions that could
not be addressed within the scope of this thesis. I summarized them in the following
subsections.

7.7.1 Other visual features

This section enumerates two visual features that are potentially of significant interest in the
context of visual image reconstruction. The extent to which the neural representation of these
features is shared across individuals is a topic that has not yet been thoroughly explored in
the existing literature. Nonetheless, delving into this area of study may provide invaluable
insights that could enhance our understanding of the human visual system.

Color

The extent to which visual attributes, such as color, are universally represented in the
human brain is a compelling research question. Amongst the spectrum of visual features,
color information is particularly relevant to visual image reconstruction. In contemporary
approaches to visual image reconstruction, methodologies have evolved to a degree that
allows the generation of colored images from brain activity. However, these techniques appear
to demonstrate a biased proficiency towards the reconstruction of reddish hues, while other
colors in the spectrum are often less reliably reproduced. This raises intriguing questions
about the neural encoding and representation of different colors, and why certain color
information might be more easily reconstructed than others.

The successful implementation of inter-individual visual image reconstruction has been
demonstrated in this thesis, providing a promising avenue for further investigation into
shared and unique aspects of visual perception. Nevertheless, the question as to whether the
neural representations of color information are universally shared across individuals remains
open.

Visual illusion

Visual illusions, phenomena that elicit perceptual experiences differing from physical real-
ity, provide intriguing insights into the complex mechanisms of visual processing. While
our perception is often reliable, illusions illustrate how it can be systematically misled,
emphasizing the interpretative nature of vision. In essence, visual illusions manifest as a
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discrepancy between what we see and the objective attributes of the stimuli, demonstrating
the intricate interplay of sensory processing, cognitive interpretation, and prior experiences.
Illusions highlight the constructive nature of perception and illustrate how our brains make
educated guesses about the world based on limited sensory information. It is suggested that
these illusions result from the brain’s attempt to interpret ambiguous or incomplete sensory
information based on prior knowledge and expectations.

Investigating how these illusory percepts are represented in the brain can provide valuable
insights into the mechanisms of visual processing. It is unclear whether the underlying
representations of such illusions are shared across individuals. Cheng et al. (2023) success-
fully reconstructed visual illusions through visual image reconstruction techniques (Figure
7.2). It is compelling to consider applying the inter-individual framework presented in this
thesis to explore whether neural representations of visual illusions can be converted across
individuals, and even more fascinating, across individuals who lack the ability to perceive
visual illusions.

7.7.2 Decoding task optimized neural code converters

The neural code converters developed in this thesis have been designed to be task-independent,
aiming to produce brain activity patterns that accurately resemble those in the target brain
space. While these converters have wide applicability in multiple decoding models for
inter-individual brain decoding research, they may not be specifically fine-tuned for a given
decoding task, which could result in less-than-optimal performance.

In visual image reconstruction, not all voxels from the whole visual cortex are equally impor-
tant for DNN feature decoding and reconstruction. Careful voxel selection can potentially
address this issue. For instance, one approach is to identify a subset of voxels that have
higher weights in the decoding model for each DNN layer and train a neural code converter
specifically for that DNN layer.

The methodology presented in section 7.6 represents another technique intended to optimize
the performance of DNN feature decoding. It focuses on training the converter within
the DNN feature space, rather than the voxel space. Given that the decoders carry vital
information about the voxels crucial for DNN feature decoding, this strategy allows the
integration of such knowledge into the converter. Ultimately, these strategies underscore the
potential for task-specific enhancements to further refine the applicability and effectiveness
of the neural code converters.
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Figure 7.2: Reconstructions of illusory images from brain activity patterns. The figure
showed three kinds of illusory images, including line illusion, Ehrenstein illusion, and Varin
illusion. The reconstructions from two subjects S1 and S2 were shown together with the
reconstructions from the stimulus DNN features of the control images. Reprinted from
Biorxiv, 2023, Cheng et al., Reconstructing visual illusory experiences from human brain
activity, Page No. 3, licensed under CC BY 4.0.

https://www.biorxiv.org/content/10.1101/2023.06.15.545037v2
https://www.biorxiv.org/content/10.1101/2023.06.15.545037v2
https://creativecommons.org/licenses/by/4.0/
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7.7.3 Pooling open data from other laboratories

In Chapter 6, I explored the possibility of pooling data from other subjects to enhance visual
image reconstruction. The conclusion reached is that the potential for this approach to be
effective remains neutral, but it is still a promising direction for future research if the amount
of pooled data can be scaled up to several orders. Because of the cost of data collection,
the amount of data that one laboratory can collect can be limited. Pooling data from other
laboratories could potentially provide a solution to this problem by increasing the amount
of data available for analysis. However, this approach is not without its challenges. The
main challenge is that the data collected from different laboratories may not be directly
comparable due to differences in experimental design, machines used for data collection, and
data preprocessing techniques.

These differences in experimental design and data collection can make it difficult to achieve
functional alignment across datasets. Functional alignment is the process of ensuring that the
data collected from different sources is comparable and can be combined in a meaningful way.
Without functional alignment, combining data from different sources may lead to unreliable
or meaningless results.

Despite these challenges, pooling open data from other laboratories remains a promising
direction for future research. In order to achieve success with this approach, researchers
will need to develop new techniques for functional alignment (for example, the approach
introduced in section 7.6) and standardize experimental designs and data collection methods
across laboratories. This will require collaboration across different research groups and a
willingness to share data openly and transparently.

7.7.4 Geometric-based alignment

Although fMRI responses are measured in 3D volumes, it’s important to note that neural
activity actually takes place on the cortical surface. Consequently, two proximate voxels
within 3D space may not necessarily be adjacent on a flattened cortical surface. While many
functional alignment techniques adhere to the fundamental principles without accounting
for cortical structure, these methods often overlook the spatial organization of the cortical
surface, which could furnish additional data to improve alignment precision.

A promising approach to integrating information about the cortical surface structure is
through surface-based convolution networks, a component of geometric deep learning (for a
comprehensive introduction, see Bronstein et al., 2021). These networks can perform convo-
lution operations on vertices on a cortical surface, allowing the integration of information
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about the cortical surface across the stacked convolutional layers. Moreover, other types of
convolution could be employed with more intricate connectivity structures, such as those
observed in fMRI functional or structural connectivity. For example, Ribeiro et al. (2021)
used geometric CNN to predict functional retinotopic organization based on anatomical
attributes, including curvature, myelin values, and connectivity among vertices.

Geometric deep learning offers advantages because it integrates both anatomical structure
and connectivity data, with each vertex on the surface carrying multiple attributes. This
presents the potential to simultaneously perform anatomical and functional alignment.

7.7.5 Domain adaptation

Domain adaptation serves as a strategy within the broader framework of transfer learning,
enabling the application of a model trained within one source domain to a distinct target
domain, despite disparate statistics. This technique operates under the presumption that
despite variances in statistics, the source and target domains possess a degree of commonality
in their features. By capitalizing on this shared attribute, domain adaptation techniques
facilitate the transferability of models across domains.

A classic illustration of domain adaptation could be the application of a GAN trained on
real human faces to the domain of cartoon faces, given the shared features such as eyes
and noses. In this scenario, the aim is to leverage the knowledge acquired from the source
domain (realistic faces) and extend it to the target domain (cartoon faces), thereby obviating
the need to train an entirely new generator. This technique acquires particular relevance
when data availability is limited in the target domain (Noguchi and Harada, 2019; Ojha et al.,
2021).

Neuroscientific research has harnessed the potential of transfer learning and domain adap-
tation (Koyamada et al., 2015; Valverde et al., 2021). However, the application of these
techniques to inter-individual studies remains relatively uncharted territory and presents a
more practical perspective than traditional functional alignment. As discussed earlier, while
there are statistical differences in fMRI activity patterns across subjects, they also contain
common features. It is plausible, therefore, to adapt a model trained on one individual’s data
to the data of other individuals.

For instance, a generator-based visual image reconstruction model (Shen et al., 2019b) that
takes fMRI responses as inputs could potentially be adapted to the fMRI responses of other
subjects, requiring less data for the adaptation. In this scenario, the fMRI responses of subjects
might not necessarily be aligned; instead, the model is tailored for a specific subject. This
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application of domain adaptation could hold practical implications for the implementation of
brain-machine interfaces, offering a potentially efficient solution to individual differences in
neural activity.

7.8 Conclusions

The presented thesis makes a contribution to the field of neuroscience by demonstrating the
possibility of inter-individual visual image reconstruction through functional alignment of
fMRI data. The findings suggest that neural code converters can predict the brain activity
patterns of a target subject from a source subject with moderate conversion accuracies.
Additionally, the converted brain activity patterns can be decoded into hierarchical deep neural
network features to reconstruct visual images, preserving the information of hierarchical
fine-grained visual features.

This thesis underscores the potential of neural code converters to delve deeper into the shared
properties of localized visual features beyond just the hierarchical structure, as facilitated
by fine-scaled voxel mapping. When combined with DNNs, inter-individual analysis could
enable the investigation of lesser-understood visual features. Crucially, identifying potential
common visual features between sighted and visually impaired individuals can provide
pivotal insights for advancing visual restoration efforts for the blind.

The thesis also highlights the potential advantages of the functional alignment approach in
reducing the amount of data required for model training, making it an efficient and feasible
approach for reconstructing visual images without the need for subject-specific models. This
approach could have significant implications for the development of brain-machine interfaces
and computer interfaces that communicate with our internal world. The ability to visualize
the perceived stimulus through inter-individual visual image reconstruction could help to
bridge the gap between human cognition and artificial intelligence, paving the way for more
efficient and natural human-machine interactions.

In summary, the presented thesis opens up new avenues for future research in inter-individual
visual image reconstruction and functional alignment of fMRI data. The findings have the
potential to advance the development of brain-machine interfaces, ultimately leading to a
better understanding of the human brain and its intricate relationship with technology.
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Appendix A

Publications

The current work has yielded the following publications and presentation:

A.1 Manuscript

• Ho, J. K., Horikawa, T., Majima, K., Cheng, F., & Kamitani, Y. (2023). Inter-individual
deep image reconstruction via hierarchical neural code conversion. NeuroImage, 271,
120007. https://doi.org/10.1016/j.neuroimage.2023.120007

A.2 Presentation

• Ho, J. K., Horikawa, T., Majima, K., & Kamitani, Y. (2021). Inter-individual deep
image reconstruction. Flash talk presentation for Neuromatch Conference.
https://www.youtube.com/watch?v=z-6LcSEd9H8

• Wang, H., Ho, J. K., Cheng, F., Aoki S. C., & Kamitani, Y. (2023). Inter-individual
neural code conversion without paired stimuli. Poster presentation for Conference on
Cognitive Computational Neuroscience, Oxford, UK.

https://doi.org/10.1016/j.neuroimage.2023.120007
https://www.youtube.com/watch?v=z-6LcSEd9H8




Appendix B

Code availability

The experimental code that support the findings in this thesis is available from the reposi-
tory:

• Code for inter-individual deep image reconstruction including neural code converter,
Procrustes transformation, optimal transport and hyperalignment:
https://github.com/KamitaniLab/InterIndividualDeepImageReconstruction

• Code for feature decoding:
https://github.com/KamitaniLab/dnn-feature-decoding

• Code for image reconstruction:
https://github.com/KamitaniLab/DeepImageReconstruction

• Code for BH score calculation:
https://github.com/KamitaniLab/BHscore

https://github.com/KamitaniLab/InterIndividualDeepImageReconstruction
https://github.com/KamitaniLab/dnn-feature-decoding
https://github.com/KamitaniLab/DeepImageReconstruction
https://github.com/KamitaniLab/BHscore
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