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Abstract

The reconstruction of perceptual experiences from human brain activity has opened up
new possibilities for understanding neural representations of sensory experiences. Despite
substantial advancements, sound decoding studies have often shied away from reconstructing
arbitrary sounds under unrestricted conditions, due to the complexity of temporal sequences
in sounds, as well as the limited temporal resolution of neuroimaging tools. Nevertheless,
leveraging the insights into the hierarchical nature of brain auditory processing offers a
promising direction for reconstructing sounds from brain activity. In essence, the hierarchical
processing of auditory features, a characteristic attribute of the human auditory system,
paves the way for a more efficient and effective sound reconstruction. Furthermore, the
advancements in audio-generative machine learning models offer unprecedented capabilities
to translate compressed representations back into high-resolution sounds. In this light,
this thesis introduces a novel method for reconstructing sound from functional magnetic
resonance imaging (fMRI) responses. The approach combines the decoding of hierarchical
auditory features from a DNN model with an audio-generative model. In Chapter 1, the
thesis starts with a comprehensive introduction to human auditory processing and a review
of the current state of reconstructing perceptual experiences in both vision and audition.
Chapter 2 describes the compact representation designed to bridge the gap between sound
and neuroimaging. Chapter 3 provides a detailed description of the experimental protocols
used throughout this thesis to measure fMRI responses to natural sounds. Chapter 4 involves
a feature decoding analysis using various auditory features from the auditory cortex. Chapter
5 presents the application of the proposed method for sound reconstruction from fMRI
responses, demonstrating its capability to reconstruct complex spectral-temporal patterns
that broadly maintain content and quality similar to the actual sound stimulus. In Chapter
6, a training dataset ablation analysis is conducted to investigate the generalizability of the
proposed model. Chapter 7 explores the role of hierarchical auditory areas and DNN features
in sound reconstruction. In Chapter 8, the study extends to "cocktail party conditions",
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illustrating the potential of the proposed model to reconstruct the subjective content of top-
down auditory attention. Finally, Chapter 9 discusses the implications of the proposed model
and includes a preliminary analysis of potential applications for reconstructing auditory
perceptual experiences.
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Chapter 1

Introduction

Sound perception is a vital sense, allowing us to decipher and engage with our acoustic
surroundings. The convergence of advancements in neuroimaging and machine learning
technologies has opened new vistas of understanding sensory neural representations. This
has enabled the reconstruction of perceptual experiences from human brain activity, offering
deeper insights into our sensory world. Despite significant progress in neuroscience, most
sound reconstruction studies have typically shied away from reconstructing sounds under
unrestricted conditions for arbitrary sounds. This is mainly due to the wide diversity and
complex temporal sequencing of sounds, as well as the relatively low resolution of neu-
roimaging modalities. Furthermore, our understanding of how the human auditory system
extracts auditory information from perceived sounds remains largely confined within the
sphere of peripheral sound processing. In the following section, I will introduce how the
human auditory system processes auditory information. The second section will introduce
brain decoding methods for the reconstruction of perceptual experiences, with a particular
focus on visual and sound reconstruction, a cornerstone of this field. Following this, I will
introduce how Deep Neural Networks (DNNs) serve as potent tools for sound decoding and
reconstruction. Lastly, in the final section, I will outline the organization of this thesis.



2 Introduction

1.1 Human auditory system

1.1.1 From the ear to brain

Auditory perception is a critical function not only for animals but also for humans. It allows
us to deduce vital information such as the location of an object, its identity, who is speaking,
and what they’re saying. Auditory perception kicks off when sound enters the ear, converting
air vibration into electrical action potentials, which are then transmitted to the brain cortex
via the auditory nerve. Figure 1.1A illustrates the key processes of the ear involved in
auditory perception. Initially, sound reaches the eardrum in the form of air vibrations. The
sound then triggers the eardrum to vibrate and these vibrations are transmitted via the ossicles
(the tiny bones in the middle ear) to the cochlea. Located in the inner ear, the cochlea is
a spiral structure filled with a fluid. Integral to the cochlea is the organ of Corti, which is
connected to the basilar membrane. The organ of Corti detects the fluid’s vibrations in the
cochlea, converts these vibrations into electrical signals, and transmits them to the brain via
the auditory nerves. After the cochlea converts the vibrations into neural signals, several
brain regions, including the midbrain, thalamus, and primary auditory cortex, process and
convert the raw acoustic input into neural representations.

1.1.2 Auditory cortex

Brain anatomy and connectivity studies have helped researchers categorize the human
auditory cortex into three distinct regions: a core region that receives input from the cochlea
via the auditory nerves and thalamus; a belt region that surrounds the core area; and a parabelt
region that surrounds the belt area (Kaas and Hackett, 2000; Sweet et al., 2005). Also referred
to as the primary auditory cortex (PAC), the core region resides in Heschl’s gyrus, nestled
within the brain’s lateral sulcus. The PAC receives electrical signals from the thalamus’s
auditory nucleus. Researchers have studied the function and structure of the PAC more
extensively than other auditory regions, leading to the proposal of several computational
models that explain the PAC’s auditory processing.

1.1.3 Primary auditory cortex

Neurons in the PAC have a frequency preference and are particularly sensitive to complex
spectra as opposed to pure tones (Moshitch et al., 2006). This frequency preference led
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Fig. 1.1 Encoding of sound frequencies in the human ear and brain. (A) Sound waves arrive
at the cochlea after passing through the eardrum, causing the basilar membrane and the hair
cells situated on it to vibrate. This vibration is converted into electrical potentials by the
hair cells, which in turn initiate neural activity. This electric signal is then conveyed to the
primary auditory cortex via auditory nerve fibers. (B) The primary auditory cortex comprises
a topographic map representing the frequency spectrum of the cochlea, denoted in kilohertz.
Figure adapted from (Chittka and Brockmann, 2005), licensed under CC BY.



4 Introduction

researchers to discover a tonotopic architecture in the PAC, an organization where neurons
are spatially sorted according to their frequency preference (Figure 1.1B). Researchers have
detected tonotopic maps from single-unit to fMRI studies in humans (Formisano et al., 2003;
Humphries et al., 2010; Moerel et al., 2014) and monkeys (Petkov et al., 2006).

1.1.4 The dual stream

The dual stream hypothesis, a prevalent model for brain processing in both the auditory
and visual domains, proposes that sensory input is processed via two distinct pathways.
The dorsal pathway, often referred to as the "where pathway," is implicated in recognizing
the location of objects or sounds. This pathway spans from the primary sensory areas to
the posterior parietal cortex. On the other hand, the ventral pathway, known as the "what
pathway," is responsible for recognizing objects or environmental sounds, and it extends from
the primary sensory areas to the anterior temporal cortex (Rauschecker and Scott, 2009).

Anatomical research on monkey brains has revealed distinct streams in the anterior and
posterior regions of the auditory cortex (Munoz-Lopez et al., 2010). These studies have
uncovered an extensive anatomical tract stretching from the anterior belts to the ventrolateral
prefrontal cortex (PFC), as well as another from the caudal belt to the dorsolateral PFC.
In addition to anatomical studies, single-unit investigations have lent credence to the dual
pathway hypothesis. For instance, studies by Tian (2001) revealed that neurons in the caudal
belt have a more active response to the spatial location of sound sources compared to the
core and anterior belt regions. Furthermore, research by Recanzone and colleagues showed a
strong correlation between neural response and sound source localization in the caudal belt,
bolstering the validity of the "where" pathway (Recanzone et al., 2000).

The functional specialization of the ventral areas has also been observed in single-unit
studies (Lewis and Van Essen, 2000). These studies found that the ventral pathway processes
visual, auditory, and somatomotor representations. These findings collectively provide robust
support for the dual pathway hypothesis in the auditory domain and highlight the diverse
roles of different brain regions in auditory processing.

1.1.5 Computational models of neuronal tuning

Understanding auditory processing has long been a key focus of neuroscience, and computa-
tional models have emerged as an essential tool in these endeavors. These models are crucial
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because they can simulate and predict how neural behavior responds to complex sound inputs,
providing insights into the intricate processes of the auditory system. In particular, computa-
tional models of neuronal tuning often center around spectral and temporal modulations, key
factors processed by neurons in the auditory cortex.

Spectral modulation, or power variation across the frequency axis, is a fundamental part
of auditory perception. Given that sounds such as speech, music, or natural sounds each
have distinct frequency representations, neural tuning to spectral modulation is integral to
cortical responses (Barbour and Wang, 2003). Typically, computational models for auditory
processing aim to convert sound features into these temporal and spectral modulations. These
conversions result in representations similar to spectrograms or cochleagrams, facilitated by
a filter bank (Chi et al., 2005).

While early studies of human auditory systems have primarily concentrated on initial
auditory processes like sound transduction, many of the more complex aspects of auditory
perception remain largely uncharted. Recently, there has been a shift toward examining mid-
level and high-level representations beyond the auditory core using computational models
(McDermott, 2018).

One such study used a natural sounds dataset to measure the hierarchical cortical pro-
cesses in the auditory area (Norman-Haignere et al., 2015). The researchers recorded fMRI
responses from subjects listening to natural sounds and trained a model to predict voxel
responses from natural sound stimuli. They introduced "voxel decomposition analysis,"
revealing the primary components of natural sound and identifying distinct components for
the music and speech categories. Interestingly, they found that other components were more
responsive to frequency and modulation representations, rather than sound categories. This
result supports the concept of hierarchical processing in auditory perception, particularly in
music and speech categories.

These explorations into hierarchical auditory processing and understanding neural tuning
at different levels underpin further advancements in auditory perception research, highlighting
the pivotal role of computational modeling in auditory neuroscience.
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1.2 Externalization of perceptual experience

Brain decoding, a prevalent method in neuroscience, stands at the intersection of neuroimag-
ing and machine learning advancements. This technique allows us to interpret information
from sensory input reflected in specific brain regions, providing vital insights into the neural
representation of mental content. Over the years, numerous studies in the field of vision
have successfully leveraged decoding methods to interpret what individuals see (Haxby et al.,
2001; Horikawa and Kamitani, 2017a; Kamitani and Tong, 2005), imagine (Andersson et al.,
2019; Hassabis et al., 2014; Horikawa and Kamitani, 2017a), and dream (Horikawa and
Kamitani, 2017b; Horikawa et al., 2013). Similarly, auditory research has decoded acoustic
features (Sankaran et al., 2018), sound category recognition (Zhang et al., 2018), speech
recognition (Heelan et al., 2019), and even inner speech (Martin et al., 2018) from brain
responses. The rise of deep learning, particularly in the realm of computer vision, has further
advanced our understanding of mental content. Deep neural networks (DNNs) have led to the
development of increasingly sophisticated decoding models, allowing for the reconstruction
of subjective visual experiences (Shen et al., 2019b).

Despite these significant advancements, reconstructing arbitrary sounds from brain activ-
ity remains a considerable challenge. This difficulty arises due to the complexity of temporal
sequences in sounds and the relatively low resolution offered by neuroimaging modalities.
Such hurdles necessitate innovative solutions and careful refinement of our methodologies as
I continue to advance in the field of neuroscience. The promise of externalizing perceptual
experiences offers exciting opportunities, such as exploring the neural basis of auditory
hallucinations or developing more advanced communication methods for individuals with
speech impairments. These possibilities underscore the importance and urgency of further
research in this area.

1.2.1 Visual reconstruction

Image reconstruction of subjective visual experiences offers substantial insights for under-
standing the processing of neural representations. Although the reconstruction of sensory
stimuli theoretically demands an infinite stimulus set, it is impractical to gather brain activity
data for all possible visual stimuli. In an early study, Miyawaki et al. (2008) proposed a
visual image reconstruction method that combined multi-scale image patches to predict
binary contrasts from fMRI activity (Figure 1.2). The researchers trained a brain decoder
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to predict local image contrasts at multiple scales from the fMRI responses in the primary
visual cortex. By integrating these locally predicted contrasts, they facilitated unconstrained
visual image reconstruction and successfully managed to reconstruct geometric shapes and
alphabets. This advancement serves as a testament to the potential of brain decoders and
their role in arbitrary sensory stimuli reconstruction.

The advancement of deep learning in the domain of computer vision has significantly
augmented the sophistication of decoding models, enabling the reconstruction of subjective
mental content. Researchers have increasingly turned their focus towards features processed
hierarchically, akin to the functioning of the human brain. This focus stems from the
demonstrated parallels in hierarchical processing structures between the human sensory
system and deep neural network (DNN) models.

Taking inspiration from this hierarchical representation homology between the brain and
DNNs, Shen et al. (2019b) proposed an image reconstruction method. They utilized decoded
DNN features from multiple layers of fMRI responses to build a reconstruction algorithm.
This algorithm optimized the pixel values of an image to align its DNN features with those
decoded from human brain activity across multiple layers (Figure 1.3). Their proposed
method demonstrated a reliable capacity to produce reconstructions that resembled a range
of viewed natural images. Furthermore, when applied to mental imagery, the same analysis
yielded basic reconstructions of the subjective content. These results suggest that integrating
hierarchical neural representations provides a novel lens into reconstruction of perceptual
visual experiences.

Generative models offer a new avenue for reconstructing visual experiences from human
brain activity. In particular, Generative Adversarial Networks (GANs) effectively lend
semantically meaningful details to the reconstructions (Goodfellow et al., 2016). A GAN
is structured with two neural networks: a generator and a discriminator. The generator
learns to transform the input (latent space) to create images resembling the training images.
Conversely, the discriminator learns to differentiate between real images from the training set
and fabricated images from the generator. The power of GAN lies in its ability to transform
random latent features into meaningful images across multiple scales.

Seeliger et al. (2018) implemented a linear model to predict the latent features of the
generative model from brain responses. Initially, they trained a GAN model to understand
the latent space using an unsupervised method on a large image dataset. After completing
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Fig. 1.2 Visual image reconstruction using a combination of multiscale local image decoders.
(A) Several brain decoders were trained to predict four local image contrasts at various
scales using the fMRI responses from the primary visual cortex. (B) By integrating these
locally predicted contrasts, geometric shapes and alphabets were succesfully reconstructed
from fMRI responses. Figure adapted from (Miyawaki et al., 2008). Copyright 2008 with
permission from Elsevier.
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Fig. 1.3 Visual image reconstruction using a hierarchical DNN features. Decoded DNN
features across multiple layers of fMRI responses were used to create a reconstruction
algorithm. This algorithm was designed to optimize an image’s pixel values to make its
DNN features coincide with those decoded from multi-layered human brain activity. The
demonstrated capability of their method was its consistent ability to produce reconstructions
resembling a diverse array of viewed natural images.. Figure adapted from (Shen et al.,
2019b), licensed under CC BY.
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Fig. 1.4 Visual image reconstruction using generative DNN model. Initially, a generator
model was trained in an unsupervised manner using a large image dataset, thereby facilitating
the understanding of the latent space. Following this, linear models were trained to predict
latent features from fMRI responses, aiming to minimize the disparity between the original
and reconstructed images. Figure adapted from (Seeliger et al., 2018). Copyright 2018 with
permission from Elsevier.

this training, they trained linear models to predict latent features from fMRI responses
by minimizing the discrepancy between the true and reconstructed images (Figure 1.4).
Applying this approach enabled us to reconstruct both structural and certain semantic features
of a subset of the natural images. Moreover, Shen et al. (2019a) introduced a modified GAN
model that employed fMRI responses as a direct input and trained the GAN model from
scratch. This approach was innovative, as most reconstruction models avoid using fMRI
responses as direct inputs due to the limited data size of fMRI studies. To address this
issue, they utilized a modified GAN strategy, incorporating a generator, a discriminator,
and a comparator. The comparator used in the reconstruction was a pre-trained DNN for
image object recognition, and its weight remained fixed during the generator’s training. The
success achieved in visual reconstruction highlights the potential of DNNs in interpreting
and translating complex neural activities.

1.2.2 Sound reconstruction

In parallel, researchers have sought to apply similar principles to the auditory system to
unravel the complex neural mechanisms underpinning our auditory experiences . However,
unlike visual reconstruction, sound decoding studies typically avoid reconstruction under
unconstrained conditions for arbitrary sounds. This is primarily due to the broad diversity
and complex temporal sequencing of sounds, coupled with the relatively low resolution of
neuroimaging modalities. Traditionally, neuroimaging modalities such as electroencephalog-
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Fig. 1.5 Sound reconstruction using invasive recording for predicting spectrogram. Pasley
et al. (2012) collected ECoG signals from the nonprimary auditory cortex of participants
who were listening to isolated words. A model was then trained using these signals, with
the aim of directly predicting the modulation or spectrogram of the auditory stimuli being
perceived. Figure adapted from Pasley et al. (2012), licensed under CC BY.

raphy (EEG) and magnetoencephalography (MEG) have been favored for auditory decoding
due to their superior temporal resolution, as they capture real-time electrical activity from
the scalp or sensors placed on the head. Pasley et al. (2012) conducted a study where they
measured ECoG signals from the nonprimary auditory cortex of subjects as they listened to
isolated words. They trained a model to directly predict the modulation or spectrogram of
the speech heard from these signals (Figure 1.5. Their findings highlighted the capability
of a linear model, based on the auditory spectrogram, to accurately reconstruct slow and
intermediate temporal fluctuations. Nevertheless, to reconstruct fast temporal fluctuations, a
nonlinear approach to sound representation was required, relying on temporal modulation
energy. This decoded representation of speech allowed the identification of individual words
from brain activity during single trial record.

As advancements in Deep Neural Networks (DNNs) have significantly enhanced visual
reconstruction, they have also greatly improved the sophistication of sound reconstruction.
One common technique involves the reconstruction of spectrograms from neural responses.
Akbari et al. (2019) employed DNN models with ECoG signals to predict spectrograms or
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Fig. 1.6 Sound reconstruction based on DNN model for predicting spectrogram from invasive
recording. While participants listened to brief, isolated words, such as digits, ECoG signals
were collected. Initially, an autoencoder model was trained to extract latent representations
from the audio signal. Subsequently, DNN models were trained to predict these latent
representations using the collected ECoG signals. Figure adapted from (Akbari et al., 2019),
licensed under CC BY.

vocoder features. These could then be transformed back into sound. The team gathered
ECoG signals while participants listened to brief, isolated words, such as digits. They first
trained an autoencoder model, which learned to internalize the acoustic features of stimuli
and subsequently regenerate those features from the latent representations. They then trained
DNN models to anticipate these latent representations from the ECoG signals (as depicted
in Figure 1.6). In a related study, Wang et al. (2018) proposed a model that modified the
architecture of WaveNet—a generative model used for sound synthesis. This adapted model
was able to create spectrograms using ECoG time series as inputs (see Figure 1.7). These
methods demonstrated intelligible recognition results in both a quantitative and qualitative
sense. However, due to the invasive nature of the data collection process and the subsequent
limitations on dataset sizes, their utilization has been confined to classifying predefined
speech (Chakrabarti et al., 2015; Martin et al., 2018; Moses et al., 2019; Pei et al., 2011)
and reconstructing constrained examples such as digits (Akbari et al., 2019) and words
(Wang et al., 2018). Furthermore, the intrinsic temporal resolution limitations of fMRI have
primarily confined its use to classification approaches (Correia et al., 2015; Formisano et al.,
2008).

Contrary to this common practice, recent studies propose that reconstructing uncon-
strained sounds may be possible without the need for exact temporal alignment between
neural recordings and auditory stimuli. This involves leveraging the spatial patterns in fMRI
data to compensate for its limited temporal resolution, allowing for the prediction of intricate
temporal information. Santoro et al. (2017) developed a computational model that decoded



1.3 Deep Neural Network for sound reconstruction 13

Fig. 1.7 Sound reconstruction based on audio generative model. Wang et al. (2018) proposed
a reconstruction model that modified the structure of WaveNet, a audio generative model.
This model was capable of generating spectrograms using time series ECoG data as inputs.
Figure adapted from (Wang et al., 2018), Copyright 2020 IEEE.

the physical features of natural sounds from high spatial resolution 7T fMRI responses. This
model utilized several multivariate decoders to predict spectral-temporal modulation features
from fMRI activation patterns. Impressively, these trained decoders were able to predict
subtle modulation changes even from fMRI’s coarse temporal sampling (2.6 seconds). To
facilitate interpretation of the decoded results, the study converted the decoded features
back into sounds. Despite the encouraging results, the reconstructed sounds lacked complex
spectro-temporal patterns. This resulted in temporally smoothed reconstructions, which were
challenging for human listeners to recognize.

1.3 Deep Neural Network for sound reconstruction

Deep Neural Networks (DNN) are a category of machine learning models that mimic the
structure and function of the human brain. They consist of multiple layers of interconnected
nodes, or "neurons," which allow these models to learn complex patterns and relationships
in data. In the field of sound reconstruction, DNNs are particularly potent, as they can be
employed to decode brain activity by mirroring the processing features of the human auditory
system. DNNs are notable for their exceptional ability to handle large-scale time-series data
like sounds, as they can efficiently extract concise representations and reconstruct sound back.
These capabilities significantly contribute to the field of neural sound reconstruction, marking
an intriguing intersection between neuroscience and artificial intelligence. This crossover
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Fig. 1.8 Sound reconstruction using spatial patterns in fMRI voxel responses. (A) Sound
waves arrive at the human ear as a waveform. (B) The cochlea breaks down this sound
waveform into its component frequencies. (C) The auditory cortex processes the modulations
of these spectral-temporal components. Santoro et al. (2017) used a brain decoder to predict
these spectro-temporal modulation features from fMRI responses, which were then converted
back into a spectrogram and sound waveform, respectively. Figure adapted from (Santoro
et al., 2017). Copyright 2018 by the National Academy of Sciences.
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holds vast potential to not only enhance our comprehension of how the brain processes sound
but also to pave the way for novel applications.

1.3.1 Sound recognition

In this section, I explore the extraordinary role of DNN in sound recognition. The aptitude of
DNNs in processing intricate time-series data such as sound, coupled with their capability
to form precise representations of this data, significantly fosters advancements in the field
of neural sound reconstruction. Early models employed in this field often mirrored the
architecture of Convolutional Neural Networks (CNNs), extensively utilized in image object
classification (Hershey et al., 2017). Using a nearly identical structure and training tasks,
these models were successfully applied to acoustic scene classification, predict and identify a
wide array of sounds, thereby significantly outperforming traditional methods (Han et al.,
2017; Salamon and Bello, 2017; Stowell et al., 2015). Speech recognition, a significant and
widely researched area within sound recognition, is particularly challenging. Human speech
is highly variable due to differences in speakers, speaking attributes, and environmental noise.
This necessitates mapping variable-length speech signals into words or speech representations
(Deng et al., 2013). To handle the sequential nature of these temporal processes, sequential
DNN models like Recurrent Neural Networks (RNNs) or Long Short-Term Memory networks
(LSTMs) are commonly employed in sound recognition tasks (Graves et al., 2013; Hannun
et al., 2014).

Analogous to the human auditory system’s approach to processing and interpreting
various sounds, DNNs can be tailored to simulate these functions. The network layers can
be fine-tuned to mimic the hierarchical processing structure of the human auditory system,
which spans from the initial detection of basic sound features to the higher-level interpretation
of complex auditory scenes. This capability of DNNs to mimic the processing features of the
human auditory system is extremely beneficial when applied to decode brain activity. It not
only enhances the performance of the DNN models, but also provides valuable insights into
the functioning of the human auditory system.

1.3.2 Audio generation

Audio-generative models, which leverage the capabilities of DNN to create novel sound
sequences, are at the forefront of current research. These generative models discern the
underlying distribution of training data, enabling them to craft new data instances that



16 Introduction

resemble the original. In the realm of sound, these models can generate new sound sequences
that preserve the statistical properties of the training sounds. There are various types of
generative models employed in the domain of sound, including Variational Autoencoders
(VAEs), Generative Adversarial Networks (GANs), and autoregressive models such as
WaveNet. Each of these models possesses unique characteristics, making them suited to
different sound generation tasks.

VAEs, for instance, are capable of learning a compressed, or "latent," representation
of sound data. This latent representation can be sampled to generate new sounds. VAEs
construct a probabilistic mapping of input data into a lower-dimensional latent space, where
the complexity of the data distribution is tamed. New data points (sounds) can then be
generated by sampling from this simpler, learned distribution and mapping it back to the data
space. Recently, a variant of VAEs known as Vector Quantization-VAEs (VQ-VAEs) has
been developed, which uses discrete rather than continuous latent representations (Oord et al.,
2018). This approach has shown promise in mitigating the problem of “posterior collapse” —
a situation where the latent variables are ignored when paired with a powerful autoregressive
decoder, such as a WaveNet. This issue often occurs when the decoder can model the data
well without the need for information from the latent variables, leading to an underutilization
of the latent space. By using discrete representations, VQ-VAEs encourage the model to use
the latent space more effectively, thereby enhancing the quality of the generated sounds.

On the other hand, GANs involve a ’game’ between two networks—a generator that
creates new sounds and a discriminator that attempts to differentiate the generated sounds
from real ones. The interplay between these two networks eventually leads to the generation
of highly realistic sounds. Donahue et al. (2019) introduced WaveGAN, a model that applies
GANs to the unsupervised synthesis of raw-waveform audio. In WaveGAN, a flattened
version of the DCGAN architecture is employed to generate one-dimensional samples as
audio waveforms (Radford et al., 2016). Similarly, Kumar et al. (2019) proposed MelGAN, a
model designed to generate raw waveforms of high temporal resolution. MelGAN utilizes
a non-autoregressive, feed-forward convolutional architecture to capture high-frequency
representations of an audio signal. This approach promises a significant avenue for generating
complex sounds from spectrogram, highlighting the potential of DNNs in audio generation
tasks.

Finally, autoregressive models like WaveNet generate sounds by predicting the next
sample in a sound sequence based on the previous samples. WaveNet, in particular, has
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shown remarkable results in generating realistic and high-quality speech sounds (Oord et al.,
2016). It operates by taking a sequence of audio samples and predict the next sample in the
sequence. Over time, this allows WaveNet to generate a complete sound sequence that is
typically much more realistic and natural-sounding than sounds generated by other types
of models. Each of these models offers unique capabilities that can be harnessed for sound
generation, making this a rich and exciting area of research.

1.3.3 Neural coding and sound DNN

Neural coding refers to how the nervous system translates sensory information. When it
comes to sound, neural coding encapsulates the intricate series of transformations that convert
auditory stimuli into patterns of neural activity. Decoding these transformations is critical
for understanding the neural code of sound perception, and this is an area where DNN can
offer invaluable insights. Sound recognition models, engineered to emulate the hierarchical
processing of the human auditory system, can learn to discern patterns in complex sound
data, predict, and categorize various sounds. This capability makes them an excellent tool
for studying and modeling the neural coding of sound. DNNs can decipher the complex
relationship between a sound and its neural representation by training on extensive datasets
of sound stimuli and corresponding neural responses. This learned relationship can then
be used to predict the neural responses to new sounds, offering a quantitative model of the
neural coding process.

An approach referred to as encoding modeling has successfully predicted neural responses
to sounds in various auditory brain regions using this principle. Evidence of a similar
hierarchical processing structure in both the human auditory system and DNN models
supports this. A comprehensive brain encoding analysis conducted by Kell et al. (2018)
predicts human auditory responses from DNN model responses, highlighting the hierarchical
homology between the DNN model and fMRI data. They developed a DNN architecture
for sound recognition, mirroring the hierarchical processing integral to the human auditory
system. The structure of this DNN segregates common layers, responsible for low-level
processing akin to early auditory stages, from branching layers that handle task-specific
processing, such as speech recognition or music genre classification. Using this trained DNN
model and fMRI data for natural sounds, their encoding analysis revealed a clear hierarchical
correspondence between the brain and DNN models. It was observed that the responses from
the early auditory cortex of the brain were more accurately predicted using DNN features
derived from the common layer. Conversely, the responses from non-primary brain regions
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Fig. 1.9 The architecture of the DNN model emulates the hierarchical processing of the human
auditory system. (A) An example of a DNN architecture designed for sound recognition
mirrors the hierarchical processing integral to the human auditory system. The structure of
this DNN segregates common layers, which are responsible for low-level processing akin
to early auditory stages, from branching layers that handle task-specific processing, such
as speech recognition or music genre classification. (B) The encoding analysis using this
hierarchical DNN model alongside fMRI responses revealed a distinct hierarchical correlation
between brain and DNN models. The responses from the early auditory cortex in the brain
were more accurately predicted using the DNN features derived from the common layer of
the model. In contrast, the responses from non-primary brain regions were more accurately
predicted using DNN features from the branched layers. The figure is adapted from (Kell
et al., 2018). Copyright 2018 with permission from Elsevier.



1.3 Deep Neural Network for sound reconstruction 19

Fig. 1.10 Encoding performance of various sound DNN models compared to a baseline of
spectro-temporal modulation features (represented by the grey line). While most models
show higher encoding performance and correspondence than the baseline, certain state-of-
the-art models, including generative models such as VQVAE and MelGAN, perform below
the baseline, indicating a potential need for further refinement and research. Figure adapted
from (Tuckute et al., 2023), licensed under CC BY-NC-ND.

were better predicted using DNN features obtained from the branched layer. This suggests a
clear hierarchical correspondence between neural auditory processing and the structure of
hierarchical DNN models.

However, a subsequent study observed that not all DNNs exhibit homology with the
human brain as their encoding performance and hierarchical correspondence can significantly
vary depending on the structure and optimization tasks of the DNNs (Tuckute et al., 2023).
Especially, most models showed higher encoding performance and correspondence than
spectro-temporal modulation, but the latest state-of-the-art models, especially generative
models such as VQVAE and MelGAN, showed lower performance than modulation features.

The inverse process, known as decoding approach, can also be performed using DNNs.
In this scenario, the models are trained to infer the sound stimulus from the observed neural
responses, effectively ’decoding’ the neural code. This approach can yield insights into how
different sound features are represented in the brain and can also be utilized for neural sound
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reconstruction. However, due to limitations in neuroimaging, research on brain decoding
using sound DNNs has been relatively scarce.

1.4 Thesis organization

In this dissertation, I demonstrate the potential for sound reconstruction from human brain
activity utilizing DNN models that are architected to mimic the human auditory system,
alongside state-of-the-art sound generative models. In Chapter 4, I conduct a feature decoding
analysis using fMRI responses and a variety of auditory features. Among the auditory
features, those that were processed through hierarchical means displayed superior decoding
performance, aligning with previous encoding analyses. In Chapter 5, I exploit these DNN
features to reconstruct sound. The methodology synergistically combines the decoding of
auditory features with an audio-generative model, enabling the disentanglement of temporally
compressed information within DNN features. Chapter 6 showcases the generalizability
of the approach by reconstructing sound categories not included in the training dataset. In
this section, I also introduce how intermediate representations can be interpreted. In Chapter
7, I explore the hierarchical combinations of DNN layers and individual ROIs (Regions
of Interest) that contribute to sound reconstruction. Chapter 8 comprises an experiment
involving selective auditory attention to one of the overlapping sounds to determine if the
reconstructions indeed mirror actual subjective perceptual experiences. Finally, Chapter 9
will summarize and discuss our results, contributions, and potential future applications.



Chapter 2

Bridging temporal gaps in sound domain

2.1 Introduction

The endeavor to decode and reconstruct sound from brain activity requires innovative methods
to address the temporal intricacies within the sound domain. Despite previous progress in
using spatial patterns from neuroimaging and hierarchically processed auditory features
for sound reconstruction, the limited temporal resolution of neuroimaging data remains a
considerable obstacle to achieving high-quality sound reconstructions. A key challenge in
the realm of sound processing and analysis is transforming high-dimensional audio data into
a more manageable, lower-dimensional form. This chapter delves into the approaches and
techniques used to perform this crucial dimensionality reduction for effective sound data
management.

Various contemporary studies have utilized an array of methods, from traditional tech-
niques like principal component analysis (PCA) to more advanced deep learning architec-
tures. PCA, a widely-used technique, reduces the complexity of high-dimensional data
by transforming it into a new coordinate system with orthogonal axes, known as principal
components.

Yet, as artificial intelligence and machine learning evolve, more sophisticated techniques
have emerged. Autoencoders, a type of artificial neural network, have been used for efficient
encoding of input data, aiding in reducing dimensionality in sound data (Hinton and Salakhut-
dinov, 2006; Vincent et al., 2008). Further advancements, such as Variational Autoencoders
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(VAE) and Generative Adversarial Networks (GANs), have also been employed to create
lower-dimensional audio data representations (Donahue et al., 2019).

Despite the effectiveness of these techniques, they may still struggle to bridge the
significant temporal gap between sound data and neuroimaging. In response to this challenge,
Iashin and Rahtu (2021) introduced SpecVQGAN, a method aiming to overcome the temporal
limitations of conventional approaches. This method combines the power of GANs in
capturing complex data distributions with the efficiency of vector quantization (VQ) in
compressing high-dimensional data into a lower-dimensional discrete space.

With SpecVQGAN, we can transform high-dimensional spectrograms into a compact
codebook representation, effectively bridging the gap between high-dimensional spectro-
grams and the limited temporal resolution of neuroimaging data. The implementation and
effectiveness of SpecVQGAN in our sound reconstruction framework will be examined
in-depth in this chapter, laying the groundwork for a more comprehensive understanding of
how the human auditory system hierarchically processes auditory features.

In this chapter, we will highlight the effectiveness of SpecVQGAN and provide insights
into the interpretation of codebook representations. The codebook representation used in this
chapter was also employed for sound reconstruction in chapter 5.

2.2 Methods

In this chapter, we incorporated the SpecVQGAN model initially established in the work of
Iashin and Rahtu (Iashin and Rahtu, 2021). The pre-trained models and corresponding scripts
can be accessed at https://iashin.ai/SpecVQGAN. Specifically, we leveraged their pre-trained
models for VGGish-ish. Additionally, we trained models for SpecVQGAN with the objective
of generating 4-second sound segments. This utilization of established and trained models
contributed to the efficiency and effectiveness of our sound reconstruction methodology.

2.2.1 Data processing

For training, test and validation of DNN models, I used the VGGsound dataset (Chen et al.,
2020). This public audio-visual databaset, comprising of 200,000 videos extracted from
YouTube, offers reliably annotated labels across 309 categories. I omitted any videos with
missing or invalid links to ensure data integrity. This resulted in balanced validation and test
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datasets, each containing an equal distribution of audio clips across the 309 categories. The
training dataset housed 157,000 audio clips, while the validation and test datasets held 19,000
and 15,000 audio clips respectively. All audio clips were trimmed to a uniform duration of 4
seconds for consistency.

All the sound stimuli were processed by involving resampling audio clips at a frequency
of 22050 Hz. I then generated log-Mel-spectrograms using a Short-Term Fourier Transform
(STFT) with 1024 bins, 256 hop lengths, and 80 Mel band scales, centered on frequencies
between 125 and 7600 Hz. The Mel-spectrograms were further processed by cropping them
in the time domain from 80x345 to 80x336, thereby ensuring compatibility with subsequent
downscaling operations during the training phase.

2.2.2 VGGish-ish classifier

We utilized the VGGish-ish model, a convolutional neural network (CNN) comprising 13
convolutional layers and three fully connected layers. This model was specifically trained
for sound recognition tasks using the VGGSound training dataset. Crucially, this model
was employed to compute the perceptual loss of SpecVQGAN. The SpecVQGAN model
relies on a pretrained classifier model to extract perceptually-rich features (Iashin and Rahtu,
2021). This design choice ensures that the generated representations from SpecVQGAN are
perceptually meaningful and align with the characteristics of human auditory perception.

2.2.3 SpecVQGAN

I adopted a SpecVQGAN to achieve two objectives: to extract compact discrete codebook
representations and to ensure the reconstruction of high-quality sound from these representa-
tions. SpecVQGAN is a variant of the Vector Quantized Variational Autoencoder (Walker
et al., 2021) model, which uses vector quantization techniques to convert latent features into
discrete units. This approach is instrumental in bypassing the ’posterior collapse’ problem, a
challenge often encountered when the model’s complexity is high or when there are insuffi-
cient constraints in the generative model’s latent space. The SpecVQGAN model includes an
encoder, which is a standard 2D-Conv stack augmented with self-attention layers that operate
on an encoded representation. The decoder, on the other hand, mirrors the architecture of
the encoder, by upsampling layer that doubles the spatial resolution previous the convolu-
tional kernel with nearest-neighbor interpolation. Following the default parameters from
the referenced paper (Iashin and Rahtu, 2021), a 4-second Mel-spectrogram with the shape
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Fig. 2.1 Architecture of SpecVQGAN. A schematic of SpecVQGAN model for training
codebook representations from Mel-spectrogram. The SpecVQGAN utilized the Vector
Quantization (VQ) operation to extact a compact codebook representation from the Mel-
spectrogram through training encoder and decoder. The model was trained to minimize the
reconstruction loss as well as reducing the codebook loss, adversarial loss, and perceptual
loss (LPAPS). Reprinted from Iashin, V. and Rahtu, E. (2021). Taming visually guided sound
generation, licensed under CC BY 4.0.

of (nspectral × ntemporal = 80 × 336) produced concise codebook indices in the shape of
(nspectral × ntemporal = 5 × 21).

2.3 Results

2.3.1 Spectrogram codebook representations

As suggested in the original paper, our application of SpecVQGAN, newly trained with
4-second stimuli, effectively reduces the dimension of Mel-spectrograms while maintaining
high fidelity sound upon reconstruction. In the upper panel of Figure 2.4, we compare the
reconstructions of various sounds from the VGGSound’s test dataset. The results show that
not only are detailed spectral patterns superbly reconstructed, but temporal information is
also accurately replicated, resulting in sounds highly relevant to the originals.

Specifically, bottom pannel explores the reconstruction of artificial sounds. Even though
artificial sounds like pure tones introduced harmonic noise and precisely reconstructed
frequency range, the model’s ability to accurately reconstruct silence demonstrates the gener-
alizability of the SpecVQGAN model. In spite of the harmonic noise introduced in the recon-
struction of artificial sounds like pure tones, the SpecVQGAN model shows its versatility
in accurately reconstructing silence. These findings indicate that codebook representations
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Fig. 2.2 Examples of reconstructed sound using SpecVQGAN. (A) Illustrates reconstructed
sound examples obtained from true codebook indices of the VGGSound test dataset. (B)
Showcases examples of reconstructed sound derived from artificial sounds.

effectively offer a concise representation of Mel-spectrograms, further underscoring the
model’s adaptability and effectiveness in sound reconstruction.

I examined the distribution of the codebook indices used in sound generation. Despite
setting number of codes (1024) for the training of the SpecVQGAN following the parameters
from previous studies, I discovered that only a portion of them (187) are utilized by the
trained SpecVQGAN model for the creation of a 4-second sound. This phenomenon, known
as index collapse, can occur as the input gets shorter, enabling sound representation with
fewer codes and potentially inhibiting the reconstruction of more complex patterns. To
investigate this, I examined the histograms of codebook indices using our sound dataset from
the experiment.
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Fig. 2.3 Histogram of the codebook indices used for representing the VGGsound test dataset.
Figure depicts a histogram of codebook indices utilized when mapping all the stimuli in the
VGGSound test dataset. The codebook indices are sorted based on their relative frequency.
The histogram provides insight into the distribution of codebook indices usage, which could
help in identifying potential index collapse issues.

Figure 2.3 depicts a histogram of codebook indices used for representing the VGGSound
test dataset. Notably, despite the phenomenon of index collapse, the code usage appears
to be broadly distributed and relatively balanced. This suggests that the SpecVQGAN
model does not over-rely on a specific subset of codes, thus allowing for a diverse range
of sound reconstructions. However, given that only 187 out of the 1024 available codes
are utilized, future work could explore techniques to enhance the efficiency of code usage,
thereby potentially improving the complexity and diversity of the reconstructed sounds.

2.3.2 Interpretation of codebook representations

I utilized the codebook representation as a concise representation of the Mel-spectrogram,
which can be transformed back into a Mel-spectrogram. Each codes is calculated from a
patch in the Mel-spectrogram and represents a portion of the spectrogram. To explore the
patterns that each codes carries within Mel-spectrogram patches, I inputted a 5x21 codebook
indices, consisting entirely of the same codebook index, into the codebook decoder 2.4A.
Given that I downsample a Mel-spectrogram of size 80x336 into a 5x21 codebook indices,
reducing the size by a factor of 16, I examined patterns within patch sizes of 16x16. The
resulting Mel-spectrogram was segmented into several patches based on the sampling size.
The average of these patches provided a crude pattern, visualized in Figure 2.4B. This figure
shows examples of patch patterns for each code in the Mel-spectrogram.

Despite many codes displaying uniform patterns along the temporal dimension, I found
that each code possesses diverse spectral and temporal patterns within patches. It is worth
noting that in actual sound generation, the patches employed for each codes are larger than
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Fig. 2.4 Examples of patch patterns for each code in the Mel-spectrogram. (A) To visualize
the patch patterns corresponding to each code within the Mel-spectrogram, I generated a
spectrogram using only a single code for sound generation. The resulting spectrogram was
then segmented into distinct patches, which were subsequently averaged to match the size of
the patch. (B) Examples of patch for each code in Mel-spectrogram by the visualization of
its distinct pattern.

the sampling size of 16x16. Each pixel within the Mel-spectrogram is determined by complex
operations involving multiple codes.

2.4 Discussion

In this chapter, we utilized SpecVQGAN, an approach outlined in prior studies, which
efficiently reduces dimensionality from audio waveforms (Iashin and Rahtu, 2021). This
novel technique generates a codebook representation, effectively bridging the chasm between
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high-dimensional spectrograms and the limited temporal resolution of neuroimaging data.
Not only does the SpecVQGAN perform the task of dimensionality reduction, but it also
serves as a perceptually rich prior, significantly aiding in sound reconstruction (Dhariwal
et al., 2020; Liu et al., 2021; Zhao et al., 2020). Visualizing patch patterns corresponding
to each code highlights the SpecVQGAN’s capacity to capture a wide array of spectral
and temporal sound characteristics. This diverse repertoire allows our model flexibility in
reconstructing a multitude of sounds from concise codebook representations.

However, our trained model is not without potential areas for improvement. The issue
of index collapse, wherein a model excessively relies on a small subset of codes, ignoring
others and diminishing the diversity of sound generation, presents a challenge. Despite
our model’s promising capability in reconstructing arbitrary sounds, index collapse could
limit the complexity and variety of the produced sounds. Several strategies to counter index
collapse could be employed. Using different VQ-VAE architectures or applying methods such
as the Exponential Moving Average (EMA) update used in VQ-VAE (Oord et al., 2018) could
ensure a more uniform codebook usage, yielding a broader range of sound reconstructions.
Additionally, exploration of a larger or dynamic codebook might be beneficial. A dynamic
codebook, adaptable to the specific requirements of the sound being reconstructed, could
provide more flexibility and effectively address the diverse and intricate nature of sounds.



Chapter 3

Auditory neuroimaging with fMRI

3.1 Introduction

The pursuit of understanding the human brain has been significantly propelled by the advent
of neuroimaging techniques. These techniques offer a remarkable opportunity to peer into
the human brain and observe how it reacts to different stimuli. These techniques give us a
window into the brain, allowing us to visualize how it responds to different stimuli. This
chapter delves into the use of neuroimaging techniques in understanding human brain activity,
specifically focusing on auditory processing and the neuroimaging experiments of natural
sound listening conditions for our reconstruction analysis. Neuroimaging techniques allow
us to visualize the intricate patterns of brain activity triggered by diverse sounds, thereby
offering novel insights into the complexity of the human auditory system.

Research into auditory processing extensively employs a spectrum of functional neu-
roimaging techniques, including Electroencephalography (EEG), Electrocorticography (ECoG),
Magnetoencephalography (MEG), and functional MRI (fMRI). These techniques grant us
dynamic images of brain activity, revealing how the brain responds to sound stimuli. By
using these techniques, I can identify specific brain regions engaged in the perception and
interpretation of auditory signals. Nevertheless, each technique presents its own set of unique
challenges. For instance, while fMRI excels in providing high spatial resolution, it is not as
proficient in temporal resolution. Conversely, techniques like EEG offer excellent temporal
resolution but fall short in terms of spatial precision. The choice of technique often relies on
the specific requirements and aims of the research question.
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Traditionally, neuroimaging tools such as EEG, ECoG, and MEG have been favored for
decoding auditory information due to their high temporal resolution, which allows for the
capture of real-time electrical activity from the scalp or sensors placed on the head. These
techniques have delivered impressive results in terms of both quantitative and qualitative
recognition. However, the invasive nature of data collection and the subsequent restrictions
on dataset sizes have meant that their use has largely been confined to classifying predefined
speech (Chakrabarti et al., 2015; Martin et al., 2018; Moses et al., 2019; Pei et al., 2011)
and reconstructing limited examples such as digits (Akbari et al., 2019) and words (Wang
et al., 2018). The inherent limitations of fMRI in temporal resolution have, for the most part,
restricted its usage to classification approaches (Correia et al., 2015; Formisano et al., 2008).

Interestingly, recent studies have started to challenge this conventional practice, sug-
gesting that it might be possible to reconstruct unrestricted sound without requiring an
exact alignment in temporal resolution between neural recordings and auditory stimuli. One
method to address this involves leveraging the spatial patterns in fMRI to compensate for
its limited temporal resolution, which in turn allows for the prediction of detailed temporal
information. In this regard, Santoro et al. (2017) developed a computational model to decode
the physical features of natural sounds using high spatial resolution 7T fMRI responses.
This model used multiple multivariate decoders to predict spectral-temporal modulation
features from fMRI activation patterns. Impressively, these trained decoders were capable
of predicting subtle modulation changes from the relatively coarse temporal sampling of
fMRI (2.6 seconds). To make the decoded results easier to interpret, they were converted
back into sounds. Despite these promising results, the reconstructed sounds lacked complex
spectro-temporal patterns, which resulted in temporally smoothed reconstructions and posed
challenges for human listeners.

In the upcoming section, I will delve into the principles of fMRI to understand the brain’s
response. I will focus on how these responses are captured and interpreted using fMRI.
Following this, I will introduce MRI experiments conducted under natural sound listening
conditions that were utilized for our reconstruction analysis. The contents of this chapter is
based on the section Materials and methods: Subjects, stimuli, MRI acquisition, MRI data

preprocessing, and Regions of interest of (Park et al., 2023).
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3.2 Basics of fMRI

In this section, I delve into the principles and technology behind functional Magnetic
Resonance Imaging (fMRI), a non-invasive neuroimaging technique that has proven to
be invaluable in cognitive neuroscience. Magnetic Resonance Imaging (MRI) came into
the medical imaging scene in the early 1970s, providing a new approach to visualize the
body’s internal structures. Nearly two decades later, fMRI was introduced, adding a new
dimension to the capabilities of MRI. While traditional MRI offers detailed visualizations of
the anatomical structures within the brain, fMRI extends this by identifying areas of brain
activation linked with specific cognitive or sensory tasks. By combining high-resolution
anatomical data with functional information, fMRI has proven to be a potent tool, bridging
the gap between neurophysiology and cognitive neuroscience.

The fundamental workings of fMRI rely on the interactions between biological tissues
and magnetic fields. In particular, it uses the Blood Oxygen Level Dependent (BOLD)
contrast. The BOLD signal leverages the magnetic properties of deoxyhemoglobin, a
substance with paramagnetic properties. This feature allows researchers to infer neural
activity from observed changes in blood flow and oxygenation (Ogawa et al., 1990). When a
region in the brain is active, it triggers a localized response which involves increased blood
flow and oxygen consumption. These changes affect the BOLD signal, which can then be
detected by the fMRI scanner. The entire process involves subjecting the individual to strong
magnetic fields generated by a superconducting magnet. These fields polarize the subject,
causing hydrogen protons to align along the direction of the magnetic field. Short bursts
of radiofrequency (RF) pulses disturb this alignment, and as the protons relax back to their
equilibrium state, they emit signals that can be detected. These signals are transformed
into digital data, which are then processed to create images of the brain. Underpinning the
BOLD signal is the hemodynamic response, which is a complex interplay between neural
activity, metabolism, blood flow, volume, and oxygenation. As neurons fire, the demand
for oxygen increases, leading to local vasodilation, increased blood flow, and a decrease in
deoxyhemoglobin concentration. This sequence of events leads to a local increase in the
BOLD signal, providing an indirect measure of neural activation.
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3.3 Experimental settings

In my experiments involving natural sound listening, I collected fMRI responses while
sound stimuli were played through fMRI-compatible headphones (Kiyohara, KAS-3000HK).
These headphones ensured a sound pressure level (SPL) within the range of roughly 68-75
dB. The stimuli were continuously delivered, adopting a method that enabled simultaneous
presentation of the stimuli and recording of the fMRI responses, without the need for
intervening silent periods. Before the scanning process, subjects were allowed to adjust the
sound level to their comfort.

3.3.1 Subjects

Our study involved five non-native English-speaking subjects with normal hearing abilities,
including one female participant. The average age of the subjects was 27.6 years. One subject
(S1) was utilized for exploratory analysis to establish the reconstruction model, while the
remaining four subjects served to independently validate the results. Prior to the scanning
sessions, all subjects provided their informed consent. The study protocol was approved by
the Ethics Committee of the Advanced Telecommunications Research Institute International
(approval no: 106) and adhered to the principles outlined in the Declaration of Helsinki.

3.3.2 Sound stimuli

The natural sound fMRI experiments employed a total of 1,250 audio clips, sourced from the
VGGsound test dataset (Chen et al., 2020). All stimuli underwent meticulous assessment
by human listeners for sound quality. For the subject S1, each audio clip was of 10-second
duration, however, only 8 seconds of data was used in the experiment to maintain consistency
with other subjects. The training dataset consisted of 1,200 indiscriminately selected audio
clips, disregarding category label information in an effort to emulate natural auditory scenes.
Each audio clip in the training set potentially encompassed multiple sound categories. In
the pilot study, 162 stimuli that created categorization difficulties were replaced with fresh
stimuli in the subsequent experiments involving the four subjects. The test dataset was
carefully curated, including four representative sound categories as per criteria defined in
earlier studies (Norman-Haignere et al., 2015): Human speech (including English), animal
sounds, musical instruments, and environmental sounds. Categories unsuitable for longer
sound stimuli, such as non-speech vocalizations, were excluded. This led to a compilation
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Fig. 3.1 Schematic of the experimental design for the natural sound listening condition.
Participants were continuously presented with 8-second sound stimuli without any intervening
silent periods. To ensure participants’ attention was uniformly distributed across all stimuli,
they were instructed to perform a one-back repetition detection task. Participants were
required to press a button whenever they detected consecutive trials featuring the same sound.

of 50 audio clips for the test dataset, each distinctly representing a single sound category.
All audio clips included in the fMRI dataset were resampled to a frequency of 22050 Hz,
center-cropped to an 8-s duration (10-s for S1 but only 8-s of data was used for the analysis),
and normalized to ensure equivalent energy levels.

3.3.3 Experimental design

In the natural sound presentation experiment, subjects passively listened to a variety of audio
clips of natural sounds. I recorded whole-brain fMRI responses while subjects listened to
1,200 stimuli designated for training and 50 for the test dataset. Each subject underwent
a series of scanning sessions spread over approximately three months, with 12-16 training
sessions followed by a separate single test session. Every session included 4-8 functional
runs, each not exceeding 90 minutes. Each run started with a rest period of 30-s, followed
by 55 stimulus presentation blocks of 8-s each (comprising 50 unique sound stimuli and
five randomly interspersed behavioral task blocks), and ended with a 10-s rest period. This
sequence resulted in a total run duration of 8 minutes. To maintain subject concentration,
I incorporated a one-back repetition detection task, where subjects were required to press
a button if the subsequent stimulus presented was identical to the previous one. These
repetition blocks (five per run) were not included in the analysis. Experiments for training
sets were repeated four times and experiments for test sets were repeated eight times.
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3.3.4 MRI acquisition

Functional MRI data were collected using a 3.0-Tesla Siemens MAGNETOM Verio scanner at
the Kyoto University Institute for the Future of Human Society. An interleaved T2*-weighted
gradient-echo echo planar imaging (EPI) sequence was used to collect functional images
covering the entire brain (TR = 2000 ms, TE = 44.8 ms, flip angle = 70 degrees, FOV=192 ×
192 mm, voxel size=2 × 2 × 2 mm, slice gap = 0 mm, number of slices = 76, multiband factor
= 4). Additionally, T1-weighted magnetization-prepared rapid acquisition gradient-echo
(MP-RAGE) images of the entire head were obtained to provide high-resolution structural
information (TR = 2250 ms, TE = 3.06 ms, TI = 900 ms, flip angle = 9 degrees, FOV = 256
× 256 mm, voxel size=1.0 × 1.0 × 1.0 mm, number of slices = 208).

3.3.5 MRI data preprocessing

The preprocessing of the MRI data was carried out using the pipeline provided by fMRIPrep
(Esteban et al., 2019). First, a BOLD reference image was first generated from acquired
functional data of eac run using fMRIPrep. The next step was motion correction using
mcflirt from FSL (Jenkinson et al., 2012). After motion correction, slice time correction was
applied to the data using 3dTshift from AFNI (Cox, 1996). The data were then co-registered
to the corresponding T1-weighted image using the boundary-based registration approach
implemented by bbregister from FreeSurfer (Fischl, 2012). Finally, the co-registered BOLD
time-series were resampled onto their original space using antsApplyTransforms from ANTs
(Avants et al., 2008), utilizing Lanczos interpolation for this process.

I adjusted the preprocessed functional data by shifting them forward by 2 seconds to
account for the hemodynamic delay. To augment the number of available data samples, I slid
a 4-second time window across the original 8-second stimulus at 2-second intervals. For each
4-second sound stimulus, an fMRI sample was created by averaging the three consecutive
functional volumes post the stimulus onset (Figure 3.2A). This procedure resulted in three
data samples from each original 8-second trial. As a result, a total of 14,400 training samples
were obtained (1,200 stimuli × 4 repetitions × 3 samples = 14,400 samples. For the test
datasets, I enhanced the Signal-to-Noise Ratio (SNR) by averaging the fMRI responses to
identical sound stimuli across multiple repetitions. This approach yielded a total of 150 test
samples (50 stimuli × 3 samples = 150 samples) (Figure 3.2B).
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Fig. 3.2 Schematic of calculating fMRI samples from preprocessed data. (A) This panel
represents the calculation of fMRI samples for the training set. In the fMRI experiments,
each 8-second stimulus was divided into three samples, each with a 4-second time window.
The training samples were computed by averaging the three consecutive functional volumes
for each 4-second stimulus onset, after adjusting for a 2-second volume shift to account for
hemodynamic delay. Since I conducted four fMRI experiments for training, I obtained four
training samples for each 4-second stimulus. (B) This panel illustrates the calculation of
fMRI samples for the test set. Similar to the training set, I extracted a 4-second stimulus
from the 8-second stimuli. To enhance the HNR in the test set, I computed the test samples
by averaging all the samples calculated from eight repeated fMRI experiments. Therefore, I
obtained a single test sample for each 4-second stimulus.
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3.3.6 Region of interest (ROI)

I utilized a multi-modal cortical parcellation developed by the Human Connectome Project
(HCP) (Glasser et al., 2016) to delineate Regions of Interest (ROI) within the auditory cortex.
I identified thirteen anatomical ROIs in both hemispheres, spanning the early auditory cortex
(which included A1, LBelt, MBelt, PBelt, RI), and the auditory association cortex (which
included A4, A5, TA2, STGa, STSd anterior, STSv anterior, STSd posterior, and STSv
posterior). The combined set of voxels from both the early auditory cortex and the auditory
association cortex was collectively referred to as the Auditory Cortex (AC).

3.4 Statistics

All statistical tests were carried out individually, with each subject’s results treated as within-
subject replications of an experiment (Ince et al., 2022). A 95% confidence interval was used
to determine if the mean identification accuracy of the reconstructed sounds across test stimuli
exceeded the chance level of 50%. The sample size for the natural sound test experiment
(N = 50) was predetermined before the experiment was conducted. This is greater than the
sample size required to detect an effect size of Cohen’s d = 0.5 at a significance level of 0.05
(N = 27). Although data samples from a 4-s time window were used for decoder training and
reconstruction, statistical evaluations were carried out on data points corresponding to 8-s
stimulus blocks. This approach was adopted to handle the lack of independence among the
three samples derived from an 8-s stimulus block. For the single sound test sample analyses,
the identification accuracies of the three samples were averaged to define a single data point
for statistical analysis, resulting in 50 data points for each condition and subject.
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Fig. 3.3 Sound stimuli for fMRI experiments consisted of a diverse range of real-world audio
clips. The training dataset comprised of 1,200 clips (left panel), each containing a mixture
of different sound categories that represent a wide array of natural auditory scenes. On the
other hand, the test dataset consisted of 50 audio clips (right panel), each of which contained
only one specific sound category. These test categories included human speech, animal
sounds, musical instruments, and environmental sounds. This categorization is in line with
the divisions used in previous auditory perception studies.





Chapter 4

Brain decoding of auditory features

4.1 Introduction

The intersection of progress in neuroimaging and machine learning has given rise to the
concept of ’brain decoding.’ Brain decoding utilizes machine learning algorithms to interpret
or decode information derived from observed patterns of brain activity. The focus of these
decodings can be on a variety of auditory features, determined by the design of the experiment
or the hypothesis under investigation.

A spectrogram is one of the commonly used auditory features, because it mirrors the
processes carried out in the cochlea. The spectrogram delivers a representation of the
spectrum of frequencies present in a sound as they change over time. Created by mapping
the frequency content of the signal across time, the spectrogram offers a time-frequency
analysis of the sound. Spectrograms find extensive use in auditory neuroscience, as the
cochlea, the auditory segment of the inner ear, performs a kind of real-time spectrogram
analysis on incoming sounds. The cochlea filters sound into diverse frequency bands and
encodes the intensity of each frequency, effectively crafting a ’live spectrogram’ that is then
forwarded to the brain for further processing. Consequently, the spectrogram serves as a
model of the primary stage of auditory processing in the brain and has found widespread use
in Electroencephalography (EEG) and other neuroimaging studies (O’Sullivan et al., 2017;
Pasley et al., 2012).
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In addition, modulation features serve as hand-engineered models of the auditory system,
capturing changes in sound over time and frequency. These features reflect the dynamic
nature of auditory perception, where the information carried by a sound varies not only across
frequency bands but also changes over time. In the human auditory system, various stages of
the auditory pathway are known to process and encode these spectro-temporal modulations
(Chi et al., 2005). For instance, the auditory cortex has neurons that respond selectively
to specific spectro-temporal modulations, thereby acting as a spectro-temporal filter. This
suggests that these modulations are vital to our understanding and interpretation of complex
sounds. Previous fMRI-based decoding studies have employed modulation features as brain
modeling features (Santoro et al., 2017),

Furthermore, Deep Neural Network (DNN) feature spaces can act as proxies for hier-
archical representation. DNN features refer to the abstracted representations learned by
DNNs trained to perform various tasks related to sound, such as speech recognition, sound
classification, and music genre classification. These features are the activation patterns of the
neurons in the network, with each layer in the network encoding different levels of abstraction
of the original input sound. At the lower levels, these features might correspond to basic
auditory elements, such as spectral and temporal modulations, akin to the early processing
stages in the human auditory system. As I move up the network layers, the features become
more abstract and task-specific, encoding higher-level perceptual qualities of the sounds,
such as phonetic or semantic information. These can be akin to the later stages of auditory
processing in the brain, where the initially processed sound signals are interpreted and made
sense of. What makes DNN features particularly interesting for auditory neuroscience is their
potential to provide a model of hierarchical sound processing in the brain. Just as the brain
processes sounds in a hierarchical manner, from simple to complex, so does a DNN, learning
to represent sounds at various levels of abstraction. Recent studies have suggested that there
might be parallels between the hierarchies in DNNs and those in the brain’s auditory system.
For instance, a study by Kell et al. (2018) found that the responses of the early auditory
cortex in the brain were best predicted by the features from the lower layers of the DNN,
while the responses of non-primary auditory regions were best predicted by features from
the higher layers of the DNN. This suggests a certain degree of "brain-likeness" in the DNN
features, providing further support to the idea of using DNN features for decoding brain
activity related to sound perception.

In this chapter, I will elucidate the fMRI-based decoding approach, with a special focus
on the decoding of auditory features. I employed mel-spectrogram features. Then, to
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capture temporal and spectral changes in sound, I employed spectro-temporal modulation
features. Finally, I resorted to the DNN feature space to encapsulate the hierarchical auditory
processing. To map brain activity into each of these auditory features, I adopted a feature
decoding method proposed by Horikawa and Kamitani (2017a). Post this, I made use of a
variety of evaluation metrics to compare decoding performances, and the auditory feature that
exhibited the highest decoding performance was identified as the ’brain-like’ feature. This
feature was then used in subsequent reconstruction analyses. The contents of this chapter is
based on the section Materials and methods: Feature decoding analysis and Results: Brain

decoding of auditory features of (Park et al., 2023).

4.2 Methods

4.2.1 Data processing

In this study, I utilized the VGGsound dataset (Chen et al., 2020), a publicly available
audio-visual database encompassing 200,000 YouTube video clips, annotated reliably across
309 categories. To maintain the integrity of the data, I discarded any videos with missing
or invalid links. I adhered strictly to the data split criteria from prior research that used the
VGGsound dataset for training the Deep Neural Network (DNN) model. The audio clips
used in my fMRI experiments for natural sounds came from the test set, which was not
used in the training of the DNN model to be utilized in the subsequent sound reconstruction
chapter. In total, the fMRI experiments incorporated 1,250 audio clips, each lasting 8 seconds.
Every stimulus was rigorously evaluated for sound quality by human listeners. During the
data preprocessing stage, the audio clips were resampled at a frequency of 22050 Hz. To
augment the number of available data samples, I applied a 4-second time window to the
original 8-second stimulus and moved it at 2-second intervals. This strategy created three
data samples from each original 8-second trial, yielding a grand total of 14,400 training
samples (1,200 stimuli × 4 repetitions × 3 samples). For the test datasets, the Signal-to-Noise
Ratio (SNR) was enhanced by averaging the fMRI responses to identical sound stimuli
across multiple repetitions. As a result, I obtained a total of 150 test samples (50 stimuli × 3
samples) and 144 attention samples (48 stimuli × 3 samples).
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4.2.2 Auditory features

Mel-spectrogram

In order to generate the Mel-spectrograms from our audio stimuli, I first resampled the audio
clips at a frequency of 22050 Hz. I then used a short-term Fourier transform (STFT) with
1024 bins and a hop length of 256 to produce log-Mel-spectrograms, utilizing 80 Mel band
scales that were centered on frequencies ranging from 125 Hz to 7600 Hz. Following this, I
carried out additional processing on the generated Mel-spectrograms. This involved center-
cropping in the time domain to transform the shape from (nspectral × ntemporal = 80 × 445)
to (nspectral × ntemporal = 80 × 336). This adjustment was necessary to ensure compatibility
with the subsequent downscaling processes during the training phase. Consequently, each
stimulus resulted in a Mel-spectrogram with a shape of (nspectral × ntemporal = 80 × 336).

Spectro-temporal modulation features

As another crucial auditory feature for our decoding analysis, I calculated spectrotemporal
modulation features. The method I employed closely followed the steps outlined in the work
of Santoro et al. (2017). Initially, I generated audio spectrograms by using a bank of 128
overlapping bandpass filters that were evenly spaced along a logarithmic frequency axis.
The output from this filter bank was subjected to several processing stages, which included
bandpass filtering, frequency axis differentiation, half-wave rectification, and short-term
temporal integration.

Following this, I computed the modulation content of the auditory spectrogram. This
computation was done using a bank of 2D modulation-selective filters and performing a
complex wavelet decomposition. Consequently, I achieved a representation composed of ×
20 temporal modulation frequencies × 40 time bins × 128 frequencies, totaling 614,400
features.

It is worth noting that while the audio spectrogram used for modulation calculation is a
time-frequency representation akin to the Mel-spectrogram, it is not identical to it. I made
the decision to use the audio spectrogram rather than the Mel-spectrogram to facilitate a
more direct comparison with earlier fMRI-based reconstructions.
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DNN features

The third type of auditory feature I utilized were DNN features derived from the Mel-
spectrogram. To acquire these, I passed the previously computed Mel-spectrograms through
a pretrained convolutional neural network (CNN) model known as VGGishish. This model,
consisting of 13 convolution layers and three fully connected layers, had been specifically
trained for sound recognition tasks using the VGGsound training dataset. I focused on the
unit responses from the highest convolution layer, conv5_3, in the VGGishish model, treating
these as DNN features. Thus, the Mel-spectrograms were transformed into a set of DNN
features with dimensions of (nchannels × nspectral × ntemporal). I then reshaped these features
to the format (nchannels∗spectral × ntemporal), maintaining the temporal dimension, in order to
utilize them as conditioning input in the audio transformer model. Out of all the layers within
the VGGishish model, I singled out six representative ones, one from each convolutional and
fully-connected layer block, that demonstrated superior decoding performance. As a result,
the DNN features I obtained had a shape of (nchannels × nspectral × ntemporal = 512 × 5 × 21).

Latent features from SpecVQGAN encoder

Additionally, another type of DNN feature I utilized for our analysis was the codebook
representation. This type of representation was computed using SpecVQGAN, a variant of
an autoencoder, which was specifically trained to produce concise representations, distinct
from the sound recognition model, VGGishish. The architecture of SpecVQGAN comprises
an encoder and a decoder. The encoder is a standard 2D-Convolutional stack with added self-
attention layers that operate on the encoded representation. Conversely, the decoder mirrors
the encoder’s architecture, except for the presence of an upsampling layer. This upsampling
layer doubles the spatial resolution before the convolutional kernel with nearest-neighbor
interpolation.

By adhering to the default parameters from the referenced paper, I converted the 4-second
Mel-spectrogram in the shape of (nspectral × ntemporal = 80 × 336) into a set of concise
codebook indices in the shape of (nspectral × ntemporal × ndimensiono f codebook = 5 × 21 x 256)).
These latent representations calculated from SpecVQGAN encoder, providing a compact and
efficient representation of the original Mel-spectrogram, were then used as auditory features
in the subsequent stages of our analysis.
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4.2.3 Feature decoding analysis

I established a brain decoding framework, inspired by previous works (Horikawa and Kami-
tani, 2017a, 2022), that enables prediction of auditory features from multi-voxel fMRI
responses. In our study, I utilized 14,400 samples from the training dataset for each combina-
tion of auditory features and brain areas.

The training phase started with voxel selection, wherein I chose the voxels based on
their correlation coefficient with the target features. I selected 500 voxels from the auditory
cortex (AC) and 200 from each individual region of interest (ROI). The responses from these
selected voxels were normalized using the mean and standard deviation calculated from
the training samples. Subsequently, I applied z-score normalization to the stimulus feature
values, which utilized the mean and standard deviations derived from the training data. An
L2-regularized linear regression model was then used to predict the normalized feature values
from the multi-voxel patterns of the normalized fMRI responses.

During the testing phase, each fMRI sample from the test dataset was first normalized
using the mean and standard deviation derived from the training dataset. The trained decoders
were then applied to these normalized samples to predict the auditory features from 150 fMRI
samples. Post-prediction, the decoded features underwent denormalization using the mean
and standard deviation of each feature from the training dataset. I acknowledged potential
discrepancies between the distribution of actual and decoded features and thus incorporated
a posthoc normalization process. This step involved normalization of the decoded feature
values by the square root of the number of repetitions. During this process, I ensured that
the mean of the posthoc normalized decoded features remained consistent with that of the
decoded features calculated from the brain decoder.

To evaluate decoding performance, I employed two metrics: 1) The Pearson correlation
coefficient between the actual and decoded auditory features across the test stimuli in each
pixel or unit (Figure 4.1), and 2) An identification analysis that assessed the ability of the
decoded auditory features to identify the actual stimuli from a set of candidate stimuli.
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Pair-wise identification analysis

I examined the identification performance of the decoded features to assess their potential
to discern perceived sounds from a set of all test sounds. Specifically, the identification
accuracy was determined by evaluating the correlation coefficients between the decoded
features and the actual auditory features across all test stimuli. This comparison involved
contrasting the correlation between the decoded features and each candidate stimulus with
the correlation between the decoded features and the actual stimuli that were presented during
the test phase. If the correlation between the decoded and actual stimulus was higher than the
correlations between the decoded features and all other candidate stimuli, the identification
was considered correct. The cumulative identification accuracy for each decoded feature was
then computed as the ratio of the number of correctly identified pairs to the total number of
stimuli presented. This provided a metric for how well the decoded features could accurately
represent and identify the original auditory stimuli.

4.3 Results

4.3.1 Feature decoding performance

I employed L2-regularized linear regression to predict auditory features from the responses
of thirteen anatomically defined ROIs within the early auditory cortex and the auditory
association cortex, as delineated from the Human Connectome Project (HCP) Glasser et al.
(2016). Our primary focus were A1, LBelt, and PBelt in the early auditory cortex, and A4
and A5 in the auditory association cortex, which follow the ventral pathway. Furthermore,
I incorporated the responses from all thirteen ROIs within early auditory and auditory
association cortices to delineate an auditory cortex (AC) (Figure 4.1A). I trained the decoder
to predict auditory features such as 1) pixel values of the Mel-spectrogram, 2) spectro-
temporal modulation features, and 3) DNN features from the sound recognition model,
VGGish-ish, using training fMRI samples of natural sound (Figure 4.1B). Post training, I
employed the brain decoder to predict the decoded feature values from the fMRI responses
in the test dataset.

To assess the decoding performance, I computed the correlation coefficients between the
actual and decoded auditory features (Figure 4.1C). Positive correlations were found across
all combinations of feature types and ROIs from all subjects, including our pilot study subject
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S1 (Figure 4.1D). Delving deeper, most auditory ROIs demonstrated a correlation higher
than 0.5 for the Mel-spectrogram and DNN features, and above 0.4 for modulation features.
Intriguingly, the decoding performance for the Mel-spectrogram and modulation features
gradually decreased as I moved from the A1 to the nonprimary cortex. In contrast, the DNN
features retained correlations above 0.5 up to A5, without a substantial drop in decoding
performance. This suggests that while spectro-temporal features like spectrograms and
modulation features are effectively decoded from the early auditory cortex, their performance
begins to wane as I move toward peripheral regions. Conversely, DNN features, while
displaying decoding performance similar to spectro-temporal features in the early auditory
cortex, contain higher-level information via hierarchical processing akin to the human
auditory system. This feature enables DNN features to be decoded even in the nonprimary
auditory cortex.

To further assess the capability of our decoded features, I measured their ability to identify
specific sounds from all test sounds. I computed identification accuracy by comparing
correlation coefficients between decoded and actual auditory features across all test stimuli.
This involved measuring the correlation between decoded features and each candidate
stimulus, then contrasting it with the correlation between decoded features and the actual
stimuli presented. I quantified the identification accuracy of each decoded feature by the
number of correctly identified pairs.

As shown in Figure 4.2, the identification accuracy using decoded Mel-spectrograms
slightly exceeded chance levels across all auditory ROIs for all subjects. Intriguingly, all
subjects could accurately identify sounds using decoded modulation features and decoded
DNN features, both in the AC and individual ROIs. Remarkably, DNN features consistently
showed superior performance compared to other auditory features across all ROIs, achieving
over 80% identification accuracy for each subject. This suggests that the DNN features,
derived from a hierarchical sound recognition model, outshine traditional Mel-spectrogram
or modulation features in predictive performance, earning them the title of "most brain-like"
features due to their impressive decoding capabilities.

4.3.2 Hierarchical correspondence between brain and DNN model

To investigate accordance with previous encoding analysis that utilized hierarchical auditory
areas and features, I conducted a comparative assessment of the decoding performance
between the individual layers of the DNN and auditory regions. As illustrated in Figure 4.3,
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Fig. 4.1 Feature decoding analysis. (A) Region of Interest (ROI) selection. The auditory cor-
tex (AC) is defined as a combination of the early auditory cortex and the auditory association
cortex, following the classification system of the Human Connectome Project (HCP). I fo-
cused on A1, LBelt, and PBelt regions from the early auditory cortex, and A4 and A5 regions
from the auditory association cortex, aligning with the ventral pathway. (B) Structure of the
Sound Recognition Model. The general-purpose sound recognition model, VGGish-ish, is
used in our analysis. The features derived from its highest convolutional layer (conv5) served
as our Deep Neural Network (DNN) features. (C) Comparison between true and decoded
DNN features. This illustration shows a comparison of the original DNN features and the
features decoded from the AC for a set of 50 test sound stimuli. These features originated
from the conv5 layer of the VGGish-ish model. (D) Evaluation of decoding performance
for different auditory features. This bar chart displays the decoding performance of three
auditory feature types: Mel-spectrogram, modulation features, and DNN features. Each bar
corresponds to the average decoding accuracy of a subject, calculated across all feature units
for each type.
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Fig. 4.2 Comparison of identification accuracy across three auditory feature types. Due to
overlap among the samples, the identification accuracies from the 150 test samples were
averaged and transformed into 50 separate data points. This was achieved by considering the
results from the three fMRI samples corresponding to each stimulus. Each bar in the graph
stands for the mean identification accuracy drawn from these 50 data points, and error bars
denote the 95% confidence interval (CI). Different colors are used to distinguish individual
subjects.

the early auditory cortical areas, such as A1, consistently demonstrated superior decoding
accuracy across most DNN layers compared to other auditory regions. On the other hand,
areas within the auditory association cortex, such as A4 and A5, showed slightly subdued
performance for lower DNN layers compared to A1. However, their performance became
on par with A1 for higher DNN layers. This pattern suggests that the different auditory
cortical regions engage in a more distributed form of processing, rather than embodying a
strict hierarchical structure that mirrors the architecture of the sound model.

In particular, I further examined the decoding performance of conv5 among five regions
in the early auditory cortex (EAC: A1, LBelt, MBelt, PBelt, RI) and eight regions in the
auditory association cortex (AAC: A4, A5, STSdp, STSda, STSvp, STSva, STGa, TA2) as
defined in the HCP parcellation, considering both the left and right hemispheres (Figure 4.4).
The results revealed that there wasn’t a significant discrepancy between the hemispheres.
The five regions of EAC exhibited a profile correlation of around 0.4, while in the AAC, the
regions A4, A5, and TA2 demonstrated similar decoding performance around 0.4. However,
in the STS and STG regions, performance was below 0.3, with some variation observed
between participants.

Additionally, when I compared the decoding performance of DNN features trained
on tasks other than sound recognition (Figure 4.5), the results showed lower decoding
performance of the latent features from SpecVQGAN in not only the AC but also other
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Fig. 4.3 Decoding performance of different layers in the VGGish-ish model. The bars
represent the decoding accuracy of DNN features across six representative layers of the
sound recognition model for each individual subject. Accuracy is calculated as the average
across all units within each respective layer.
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Fig. 4.4 Decoding accuracy of DNN features for individual ROI. This figure shows the
decoding performance of DNN features derived from the conv5 layer of the VGGish-ish
model across various regions of interest (ROIs) within the brain. The upper panel displays
the decoding accuracy for individual ROIs in the left hemisphere, while the lower panel
depicts the same for the right hemisphere. Each bar within the chart represents the average
decoding accuracy for each subject, which was calculated across all units.

Fig. 4.5 Decoding accuracy of latent features from SpecVQGAN. This figure presents the
decoding performance of latent features from SpecVQGAN from various brain regions. Each
bar within the graph represents the average decoding accuracy for each individual subject,
which was computed by averaging the results across all units.

regions, with decoding performance falling below 0.2. This performance was inferior to that
of the DNN features calculated from the sound recognition model VGGish-ish.

4.4 Discussion

In this chapter, I performed a comprehensive investigation into the decoding of various
auditory features from fMRI data, leveraging advancements in machine learning and neu-
roimaging. Our analysis employed several auditory features, including Mel-spectrograms,
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modulation features, and Deep Neural Network (DNN) features. By utilizing a feature
decoding method proposed by Horikawa and Kamitani (2017a), I were able to map brain
activity to each of these auditory features.

Our feature decoding analysis highlighted the superior predictive performance of features
originating from the hierarchical sound recognition model, as compared to Mel-spectrogram
or modulation features. Consequently, the DNN features were identified as the most "brain-
like," owing to their enhanced decoding capabilities. Significantly, features from sound
recognition DNNs, which emulate the hierarchical processing inherent in the human auditory
system, consistently outperformed other auditory features in terms of decoding performance.
These findings align with prior encoding analyses illustrating systematic model-brain corre-
spondence (Kell et al., 2018).

However, our decoding performance did not exhibit a clear hierarchical correlation be-
tween individual auditory ROIs and the layers within the DNN model, which stands in
contrast to what prior encoding analyses with DNN have suggested (Kell et al., 2018; Li
et al., 2022). Recent studies utilizing intracranial recordings propose a distributed functional
organization within the human auditory cortex, suggesting the potential for parallel informa-
tion processing across the auditory cortex (Hamilton et al., 2021; Nourski et al., 2014). These
studies imply that auditory cortical ROIs participate in both distributed and hierarchical
processing. In our decoding analysis, I utilized anatomically defined ROIs. Future studies,
however, could benefit from employing voxels defined by tonotopic or encoding analysis,
potentially offering deeper insights into the auditory hierarchy and its representations.

Especially when comparing the decoding performance of VGGish-ish and latent features
from SpecVQGAN, I observed that even DNN models with the same hierarchical processing
structure yielded varying results. Specifically, DNN features trained for sound recognition
tasks outperformed the latent features from SpecVQGAN, which was trained to compute
concise representations of Mel-spectrograms. This outcome is consistent with previous
studies that observed not all DNNs exhibit homology with the human brain; their encoding
performance can vary substantially depending on the DNN’s structure and the tasks they’re
optimized for (Tuckute et al., 2023). Our results, which align with these findings from
decoding analysis, further suggest that the similarity between DNN features and the brain
can be task-dependent.
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I noted a peculiar discrepancy in the case of Mel-spectrograms. Despite the consistently
high correlation coefficients of individual pixels across various stimuli, the identification
accuracy between the actual and predicted Mel-spectrograms was surprisingly low. This
discrepancy could be explained by the tendency of decoded Mel-spectrograms to capture
common variations across pixels, rather than accurately decoding each pixel’s actual values.
This observation is in line with prior studies using direct regression for spectrogram features
from neuroimaging techniques, where decoded Mel-spectrograms were reported to be dom-
inated by an indistinguishable broadband component, yielding a smoothed pattern across
pixels (Défossez et al., 2022).



Chapter 5

Sound reconstruction from brain activity

5.1 Introduction

Sound reconstruction from brain activity is an emerging field that seeks to convert our
brain’s neural signals into audible sounds. This field essentially enables us to "hear" auditory
experiences such as melodies, and unspoken words that reside solely in our brain signal,
converting them into sounds others can perceive audibly.

Despite the enormous potential, this endeavor of reconstructing sound from brain activity
presents significant challenges due to the complex temporal sequences inherent in sounds
and the limited resolution of neuroimaging techniques. Traditional neuroimaging methods,
such as electroencephalography (EEG) and magnetoencephalography (MEG), offer superior
temporal resolution but can only record real-time electrical activity from scalp sensors or
head-mounted devices. As a result, their application has largely been restricted to classifying
predefined speech and reconstructing limited samples, like digits and select words (Akbari
et al., 2019; Martin et al., 2018; Moses et al., 2019; Pei et al., 2011; Wang et al., 2018).
Furthermore, functional Magnetic Resonance Imaging (fMRI), despite its inherent temporal
resolution constraints, has mainly been utilized for classification approaches (Correia et al.,
2015; Formisano et al., 2008).

Nonetheless, an encouraging solution to these challenges could lie in harnessing the
hierarchical nature of auditory brain processing. Recent research has highlighted the parallels
between the hierarchical structure of the human auditory system and deep neural network
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(DNN) models (Kell et al., 2018). Additionally, advances in audio-generative models now
allow compact representations to be converted back into high-resolution sounds (Iashin and
Rahtu, 2021).

In this chapter, I introduce a new method for sound reconstruction that combines the
decoding of auditory features from fMRI responses with an audio-generative model. Using
fMRI responses to natural sounds, I discovered that the hierarchical sound features of a DNN
model were decoded with greater accuracy than spectrotemporal features. Subsequently, I
used an audio transformer to disentangle the compact temporal information in the decoded
DNN features, enabling sound reconstruction. The proposed method has proven capable of
reconstructing arbitrary sounds, capturing both the perceptual content and quality of these
sounds. These findings suggest that our model offers a means of expressing and articulating
auditory experiences derived from human brain activity. The contents of this chapter is based
on the section Materials and methods: Model components and reconstruction methods, and

model components and Results: Sound reconstruction and model components of (Park et al.,
2023).

5.2 Methods

5.2.1 DNN model

For the sound reconstruction from fMRI response, I incorporated multiple DNN models that
were initially established in prior studies by Iashin and Rahtu (Iashin and Rahtu, 2021). The
pre-trained models and associated scripts are accessible at https://iashin.ai/SpecVQGAN. I
specifically utilized the pre-trained models for VGGish-ish, Melception classifier, and the
spectrogram vocoder due to their ability to function irrespective of sound length. In alignment
with our fMRI experiments, I also trained models for the Spectrogram Vector Quantized
Generative Adversarial Network (SpecVQGAN) and the audio transformer to generate 4-s
sound segments.

VGGish-ish classifier

The VGGish-ish model, a convolutional neural network (CNN) composed of 13 convolution
layers and three fully connected layers, was specifically trained for sound recognition tasks
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using the VGGsound training dataset. This model was utilized to extract DNN features
from the generated Mel-spectrograms. The unit responses from each layer within the Mel-
spectrograms were calculated as DNN features, with dimensions represented as (nspectral

× ntemporal × nchannels). These extracted DNN features were then reshaped to the format
(nspectralchannel × ntemporal) while retaining the temporal dimension, thus preparing them to
serve as the conditioning input for the audio transformer model. I identified six layers that
exhibited outstanding decoding performance within each convolutional and fully-connected
layer block. These are: conv1_1 with dimensions of (5120 × 336), conv2_1 with dimensions
of (5120 × 168), conv3_1 with dimensions of (5120 × 84), conv4_1 with dimensions of
(5120 × 42), conv5_3 with dimensions of (2560 × 21), and fc3 with dimensions of (309).
These representative layers were selected for further processing.

Audio transformer

I employed a transformer model to translate the compact temporal information present
within the DNN features into codebook representations. Leveraging the success seen in
autoregressive generative applications (Esser et al., 2021; Iashin and Rahtu, 2021; Vaswani
et al., 2017), I trained an audio transformer to predict codebook representations for every
temporal point across each spectral direction in an autoregressive manner. I utilized a GPT-2-
medium, consisting of 24 layers, 1024 hidden units, and 16 attention heads. The input to
this model comprised DNN features shaped as (nspectral × channels × ntemporal). The
transformer processed the DNN features at each temporal point, translating them into a
probability distribution for the subsequent codebook index via a 1024-way softmax classifier.
The training objective of the transformer was to minimize the cross-entropy loss between the
predicted and actual codebook representations. Ultimately, the audio-transformer translates
the sequence of DNN features into a sequence of codebook representations, with dimensions
of (nspectral × ntemporal = 5 × 21).

Spectrogram vocoder

I utilized MelGAN (Kumar et al., 2019), a fully convolutional feed-forward model that thakes
a Mel-spectrograms as an input and produces a waveform as an output. The model employs
four upsampling layer with a residual block to ultimately upscale the time-series information
from the Mel-spectrogram by a factor of 256 to create a waveform. Differing from the
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Griffin-Lim procedure (Griffin and Lim, 1984), MelGAN synthesizes audio waveforms in
a non-autoregressive fashion. This technique enables audio reconstruction that is not only
faster but also of higher fidelity.

Sound reconstruction from fMRI responses

Our sound reconstruction model, which synergizes the trained model components with the
brain decoder, operates in a sequential manner. In chapter 4, we trained a brain decoder to
predict the auditory features of the presented sound stimuli from fMRI response patterns
(Figure 5.1A). These auditory features encompassed the pixels of a Mel-spectrogram, the
modulation features, and the features extracted from a sound recognition DNN model. Rein-
forcing previous findings, we recognized the hierarchical features from the sound recognition
DNN model as the most "brain-like", given their superior decoding performance from brain
activity compared to other auditory features. Subsequently, we trained an audio-generative
transformer, a sequence-to-sequence model, to predict the codebook representation (a con-
cise depiction of a Mel-spectrogram) conditioned on the DNN features in an autoregressive
fashion (Figure 5.1B). During the testing phase, we obtained decoded DNN features from
fMRI responses using the feature decoders and then transformed them into codebook repre-
sentations using the audio-generative transformer (Figure 5.1C). This process starts with the
brain decoder, which decodes DNN features from fMRI responses in the test dataset. The
decoded DNN features are subsequently transformed into codebook representations with
the aid of the audio transformer. These codebook representations are then converted back
into Mel-spectrograms using a codebook decoder. Finally, a spectrogram vocoder transforms
these spectrograms into audio waveforms.

5.2.2 Evaluation of fidelity

To assess the accuracy and quality of our sound reconstructions, I implemented a pairwise
identification analysis. This procedure involved extracting auditory features from both the
original and the reconstructed sounds, then assessing the ability of the reconstructed sounds
to correctly identify the original stimulus from a pair consisting of the true stimulus and each
of the remaining test stimuli. I calculated the correlation coefficient between the auditory
features of the reconstructed sounds and those of a pair of candidate stimuli: one of the
candidates was the actual stimulus presented, while the other was one of the other test stimuli
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Fig. 5.1 Schematic overview of the sound reconstruction model from fMRI responses. (A)
Training the brain decoder. Subjects are presented with real-world natural sounds during
fMRI scans to record brain activity. Concurrently, identical sounds are processed through
a sound recognition model to extract DNN features. This combined data is then utilized to
train a brain decoder with the aim of predicting the corresponding auditory features from
the fMRI signals. (B) Training the audio transformer. A codebook encoder is employed to
generate codebook indices, which offer a succinct representation of the Mel-spectrogram.
Following this, an audio transformer is trained to predict sequences of these codebook
indices conditioned on the DNN features, employing an autoregressive approach. (C) Sound
reconstruction from fMRI responses. The reconstruction process begins by computing
decoded DNN features from the fMRI responses using the trained feature decoders. These
decoded DNN features are subsequently transformed into codebook indices via the audio
transformer. In the final stages, the codebook decoder and spectrogram vocoder convert these
codebook indices into Mel-spectrograms, and eventually, into audible sound waves.
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(out of 149 stimuli). I executed pairwise identification for all 149 pairs, defining identification
accuracy as the proportion of instances where the presented stimulus had a higher correlation
coefficient.

Pixels of Mel-spectrogram

The fidelity of the reconstructions was assessed using both Mel-spectrogram pixels and
hierarchical representations. Initially, I evaluated fidelity using the pixels from the Mel-
spectrogram, which are considered low-level or raw features.

Hierarchical representation

After evaluating the raw-level features, I used a pre-trained Melception classifier (Iashin and
Rahtu, 2021) to analyze the fidelity of hierarchical representations. The Melception classifier,
which is an audio classifier developed specifically for sound recognition tasks, was used to
extract DNN features from both the reconstructed sounds and the original stimuli. These
DNN features served as stand-ins for hierarchical sound representations. For this process, I
selected six layers from the Melception classifier that demonstrated superior performance in
sound classification tasks. These layers were conv1, conv5, mix5_d, mix6_d, mix7_c, and
fc1.

5.2.3 Evaluation of quality

Despite basing proposed reconstructions on higher-level DNN features, it was vital to
ascertain that reconstructed sounds encapsulated the perceptual and qualitative aspects of
the original sounds. To verify this, I evaluated the reconstructed sounds using three acoustic
metrics: Fundamental frequency (F0) - this measures perceived pitch and tonality, helping
to differentiate between various sounds and voices. Spectral Centroid (SC) - this metric
quantifies the ’brightness’ of a sound, with a higher spectral centroid typically indicating a
sound that is brighter or sharper. Harmonics-to-Noise Ratio (HNR) - this helps distinguish
between tonal sounds and noise-like sounds (Alías et al., 2016).
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Fundamental frequency

The fundamental frequency, often referred to as F0, is a crucial aspect of sound perception.
Essentially, it denotes the lowest frequency of a periodic waveform and signifies the perceived
pitch of the sound. For instance, in speech, the fundamental frequency can denote the
intonation of a spoken sentence, its stress pattern, and even the mood of the speaker. For this
study, the YIN algorithm (Mauch and Dixon, 2014) was employed to compute the F0 for both
the original and reconstructed sounds using the Librosa toolbox (https://librosa.org). The F0
values were averaged across the time series, generating a representative F0 for each sound.
The identification accuracy of reconstructed sounds was then evaluated through a comparison
of these representative F0 values. However, there were circumstances where F0 could not be
calculated from each segment or the entire stimulus of both the original and reconstructed
sounds, especially in the case of non-harmonic sounds without a distinguishable pitch. In
such scenarios, these stimuli were omitted from the analysis.

Spectral centroid

The spectral centroid (SC) is another essential feature of audio signals. It represents the
center of mass of the spectrum and is used to quantify the brightness or sharpness of a sound.
Typically, a higher spectral centroid value indicates a brighter or sharper sound. To evaluate
how well our model preserved the spectral content of the original sounds, I computed the
spectral centroid for both the original and reconstructed sounds using the Librosa toolbox
(https://librosa.org). In this process, I chose the median of the SC across the time series,
thereby generating a single representative SC value for each sound. The assessment of the
reconstructed sounds’ accuracy was then carried out by comparing these representative SC
values.

Harmonics-to-Noise Ratio

The Harmonics-to-Noise Ratio (HNR) is an important metric that is used to distinguish
between tonal or harmonic sounds and aperiodic or noise-like sounds. Sounds that have
a high HNR are more tonal in nature, whereas those with a low HNR are more noise-
like. In this study, I computed the HNR for both the original and reconstructed sounds
using a Python package (https://github.com/brookemosby/Speech_Analysis). The HNR
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was computed in a similar fashion to the F0; I averaged the HNR across the time series to
generate a representative HNR for each sound. However, there were circumstances where it
wasn’t feasible to calculate the HNR for each segment or the entire stimulus, both for the
original and reconstructed sounds. This was particularly the case when the sound contained a
non-harmonic structure that did not have a discernible pitch. In such situations, these stimuli
were not included in the analysis.

5.2.4 Comparison with other auditory features

Through our brain decoding analysis, I found that among various auditory features, the
DNN features showed the highest decoding performance. Therefore, I utilized these for our
reconstruction analysis. In order to provide a comparative perspective with previous research,
I juxtaposed the sounds reconstructed by our proposed model with those derived from other
reconstruction methodologies that use different auditory features.

Reconstruction from decoded Mel-spectrogram

For the Mel-spectrogram features, I trained the brain decoder for predicting the pixels of the
Mel-spectrogram based on fMRI responses, with dimensions of (nspectral × ntemporal = 80
× 336). In the test phase, decoded Mel-spectrograms were subsequently transformed into
audible sound waves with the aid of a pre-trained spectrogram vocoder.

Reconstruction from spectro-temporal modulation features

For the spectro-temporal modulation features, I trained the brain decoder to predict each
feature of the modulation representations, which have a dimension of (nspectral× ntemporal ×
nspectralmodulation × ntemporalmodulation = 60 × 10 × 6 × 10). To reconstruct sounds from the
decoded modulation features, I followed the methodology outlined in a previous study by
(Santoro et al., 2017). This reconstruction process involves two key steps: transforming from
the modulation domain to the spectrogram, and subsequently from the spectrogram to the
waveform. The model estimates the missing phase information part of the complex-valued
modulation representation, and an iterative procedure is utilized to reconstruct spectrogram
and waveform subsequently. The reconstruction process, from the modulation domain to the
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spectrogram and then to the waveform, was implemented using the "NSL Tools" package in
MATLAB, available at www.isr.umd.edu/Labs/NSL/Software.htm.

5.2.5 Comparison with other reconstruction methods

Given that our model generates various intermediate representations, it raised questions about
which components significantly influence the reconstructed sounds to the reconstruction pro-
cess. I utilized an ablation study to inspect how each component influences the reconstruction
process. The method, brain-to-codebook reconstruction, avoids utilizing brain-like features.
Instead, it directly predicts the codebook representations derived from brain responses. On
the other hand, pixel optimization reconstruction bypasses the audio transformer, which is
typically employed to unravel temporal information in decoded brain-like features. Instead,
this method directly optimizes the Mel-spectrogram derived from decoded DNN features.

Brain-to-codebook reconstructon

Our reconstruction process began with training a decoder to directly predict latent features of
SpecVQGAN encoder from fMRI responses, followed by computing decoded latent features
for the test dataset. The next stage entailed transforming these decoded representations into
quantized codebook representations. This was achieved by identifying the nearest representa-
tions in the pre-trained codebook dictionary. These quantized codebook representations were
subsequently converted into Mel-spectrograms using the codebook decoder. In the final stage,
these Mel-spectrograms were converted into audio waveforms utilizing the spectrogram
model. This end-to-end process allowed us to capture the complex spectral-temporal patterns
from fMRI responses and recreate them into high-quality audio signals.

Pixel optimization reconstruction

I employed an image feature-based optimization technique for our study (Shen et al., 2019b).
This method optimized pixel values in 2D Mel-spectrogram images using a VGGish-ish
mode. The reconstruction algorithm commenced with an initially noisy image, and iteratively
optimized pixel values to align the DNN features extracted from the VGGish-ish model
with those decoded from brain activity, across all DNN layers. Importantly, I encountered a
challenge previously noted in the referenced paper: the absence of loss convergence when
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attempting reconstruction using only features from a single layer, in this case, the conv5_3
layer of our proposed model. To address this, I optimized the loss across all features from the
layers of the VGGish-ish model, compared to the decoded features, thereby circumventing
the issue of non-convergence. All other parameters were kept at their default values, ensuring
the consistency of our approach.

5.3 Results

In this section, I present the results of sound reconstruction from fMRI responses, along
with an evaluation of the fidelity and quality of the reconstructed sounds. Our feature
decoding analysis identified "brain-like" features extracted through a DNN model. This
model mirrors the hierarchical structure of the auditory system, and these DNN features
encapsulate compressed temporal information. To convert these features back into their
original high-dimensional sound form, it’s necessary to disentangle the compressed temporal
information within the DNN features. For this task, I utilized a transformer model, known
for its exceptional performance in sequential processing. I trained this audio transformer
to convert the sequence of DNN features into a sequence of codebook representations in
an autoregressive manner. Using the trained transformer, I transformed the decoded DNN
features from fMRI responses into codebook representations. These codebook representations
were then converted into Mel-spectrograms using a codebook decoder, and finally into audio
waveforms with the aid of a spectrogram vocoder.

5.3.1 Reconstructed sounds

Following figures present examples of Mel-spectrograms reconstructed using proposed model.
The figure demonstrates our capability to generate auditory experiences from fMRI responses.
The reconstructed spectral and temporal patterns bear a striking resemblance to the original
stimuli, suggesting that our model can effectively recreate auditory experiences from fMRI
data. Remarkably, these reconstructed sounds exhibit consistent quality across different
participants, underscoring the robust reproducibility of our approach.

Upon closer examination of the results, distinctive characteristics emerge across different
categories. For instance, Figure 5.2 represents the animal category, revealing unique spectral
patterns that make the reconstructed sounds easily recognizable compared to the original
stimuli. The three fMRI samples computed from the same stimuli exhibit significant similarity.
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Fig. 5.2 Reconstructed Mel-spectrogram of ’Animal’ category. The top row displays the
original Mel-spectrogram of the presented sound. The following five rows show the Mel-
spectrograms reconstructed from each subject using the AC and the conv5 layer. The three
consecutive samples originate from a single stimulus.
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Fig. 5.3 Reconstructed Mel-spectrogram of ’Speech (English)’ category. The top row displays
the original Mel-spectrogram of the presented sound. The following five rows show the
Mel-spectrograms reconstructed from each subject using the AC and the conv5 layer. The
three consecutive samples originate from a single stimulus.
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Fig. 5.4 Reconstructed Mel-spectrogram of ’Speech’ category. The top row displays the
original Mel-spectrogram of the presented sound. The following five rows show the Mel-
spectrograms reconstructed from each subject using the AC and the conv5 layer. The three
consecutive samples originate from a single stimulus.
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Stimulus
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Fig. 5.5 Reconstructed Mel-spectrogram of ’Music’ category. The top row displays the
original Mel-spectrogram of the presented sound. The following five rows show the Mel-
spectrograms reconstructed from each subject using the AC and the conv5 layer. The three
consecutive samples originate from a single stimulus.
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Fig. 5.6 Reconstructed Mel-spectrogram of ’Environmental’ category. The top row displays
the original Mel-spectrogram of the presented sound. The following five rows show the
Mel-spectrograms reconstructed from each subject using the AC and the conv5 layer. The
three consecutive samples originate from a single stimulus.
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However, the model falls short of accurately reconstructing the details in cases with short
temporal sequence variations, such as in animal sounds 2,4,7. The model also struggles with
sounds that occur only in the first or second half of a 4-second stimulus, such as animal sound
5, failing to accurately reconstruct the sound onset and instead distributing it evenly across the
4-second duration. Figures 5.3 and 5.4, representing the speech category in English and non-
English/non-native languages, respectively, exhibit clear harmonic patterns akin to human
speech. These patterns distinguish them from other categories. Notably, examples where F0
and its harmonic structure appear across a wide range (e.g., female speaker in English2, 6, 7,
10) also show a harmonious structure in the reconstructed sounds at the high range. Figure
5.5, dedicated to the music category, illustrates complex patterns that span a wide frequency
range. However, the model’s reconstruction results are less sensitive to very short temporal
sequence changes, such as in music6. Figure 5.6, allocated to the environmental category,
depicts simpler but distinctive spectral patterns. Nevertheless, the reconstruction results for
very short sequences, like Env. 7, generally show a smoothed pattern. Importantly, our model
succeeds in reconstructing these complex spectro-temporal patterns while preserving the
general content of each sound stimulus. This is a noteworthy improvement over previous
fMRI-based reconstructions, which typically exhibited temporally smoothed patterns.

5.3.2 Evaluation of reconstructed sounds

To evaluate the quality and accuracy of our reconstructed sounds, I conducted a pairwise
identification analysis. The process involved examining how accurately the reconstructed
sounds could identify the original stimulus amongst pairs of stimuli. Auditory features
were calculated from both the original stimuli and the reconstructed sounds, encompassing
elements such as Mel-spectrogram pixels, hierarchical auditory representation, and acoustic
features like Fundamental Frequency (F0), Spectral Centroid (SC), and Harmonic to Noise
Ratio (HNR). An illustration of this evaluation is demonstrated in Figure 5.7A.

I calculated the correlation coefficient between the auditory features of the reconstructed
sounds and those of the test stimuli. Identification accuracy was then determined by counting
instances where the actual stimulus was correctly identified from the set of test stimuli.
Initial evaluations, based on the pixel values of the Mel-spectrogram, yielded an average
identification accuracy of about 70% across all subjects, suggesting that the reconstructions
preserve a substantial amount of raw-feature information (Figure 5.7B).



5.3 Results 69

Melception layer
LowPixels of

Mel-spectrogram
High F0 SC HNR

Id
en

tifi
ca

tio
n 

ac
cu

ra
cy

 (%
)

100

90

80

70

60

50

40

A

Median of
spectral

centroid (SC)

Harmonic-to-noise ratio (HNR)

Harmonic

Noise
Frequency

A
m

pl
itu

de

Mean of
fundamental

frequency (F0)
Time (sec)

Fr
eq

ue
nc

y 
(H

z)

B

Fig. 5.7 Evaluation of reconstructed sound. (A) Acoustic properties. This panel showcases a
sample Mel-spectrogram used in the evaluation of reconstructed sounds. I appraised three
key acoustic properties: Fundamental Frequency (F0), Spectral Centroid (SC), and Harmonic
to Noise Ratio (HNR). (B) Evaluating reconstructed sounds. The sound fidelity and quality
of the reconstructions were assessed through an identification analysis involving the Mel-
spectrogram pixels, hierarchical representation, and acoustic features. Each bar indicates
the mean identification accuracy, while the error bar represents the 95% confidence interval,
estimated using 50 data points. Different colors signify different subjects.
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To assess the fidelity of the reconstructed sounds in terms of hierarchical auditory features,
I employed the Melception classifier, a separate DNN model distinct from the one used in our
decoding analysis. Our findings revealed that the identification accuracy of the reconstructed
sounds surpassed the accuracy achieved with pixel-based analysis of the Mel-spectrogram,
particularly with higher-level representations. In these instances, the average identification
accuracy across all test stimuli exceeded 85% for each subject.

Although our reconstructions stem from high-level DNN features, it was paramount to
ensure they also encapsulate the perceptual and qualitative facets of the original sounds. To
validate this, I evaluated the reconstructed sounds based on three critical acoustic properties.
Evaluations based on these acoustic features yielded mean identification accuracies com-
parable to those obtained using the pixels of the Mel-spectrogram. Specifically, I observed
average identification accuracies of approximately 70% for both F0 and SC features, and
about 65% for HNR across all subjects.

By-category identification analysis

I further analyzed the performance of sound reconstruction on a category-by-category basis,
focusing on identification accuracy. Initially, I compared the identification accuracy of
each category of reconstructed sound against all 150 test set candidates, as illustrated in
Figure 5.8A. For the Animal category, there was no significant difference in identification
accuracy between pixel and hierarchical representations when compared to the full test
dataset. However, regarding acoustic quality, particularly F0, the performance was high,
achieving 80% identification accuracy. HNR, on the other hand, resulted in a performance
lower than 60%. The Environmental category results closely matched those of the full test
dataset, showcasing an identification accuracy in the range of 70-80%. In contrast, the Speech
category demonstrated a slightly lower performance in pixel and lower representations, under
70%, but still maintained high accuracy, around 85%, in higher representations. The music
category exhibited a broad range of identification accuracies, from 70-90%, in pixel and
hierarchical representations. However, performance declined somewhat in the intermediate
layer and significantly dropped below 60% for F0.

Next, I evaluated the identification performance within the same category candidates,
as shown in Figure 5.8B. In this scenario, both the animal and environmental categories
demonstrated approximately 70% identification accuracy in pixel and hierarchical represen-
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Fig. 5.8 Evaluation of reconstructed sound with by category analysis. (A) Identification accu-
racies with each test category set. Three different factors were evaluated: Mel-spectrogram
pixels, hierarchical features of the Melception classifier, and acoustic features. Each bar
shows the mean identification accuracy, averaged over 10 test stimuli for Environment,
Animal, and Music categories, and 20 test stimuli for the Speech category. The error bars
represent the 95% confidence interval. Each participant is symbolized by a unique color. (B)
Identification accuracies with each test category set within category identification analysis.
The results are displayed in a manner comparable to chart B, providing a comparative analysis
of the same test data within each category.
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tations, while performance was at chance levels for HNR. The speech and music categories
showed performance levels around 60% for pixel and hierarchical representations, with both
categories performing below 60% in terms of acoustic quality. These results indicate that
while high-level content information was well reconstructed, improvements are needed for
the reconstruction of detailed information.

5.3.3 Sound reconstruction from single trial fMRI sample

In our experiments, we primarily utilized multiple trial averages to enhance the signal-to-
noise ratio (SNR) of the data, recognizing that this approach has inherent limitations for
real-time or single-trial applications. The term ’single trial’ refers to one instance or repetition
of an experiment, for instance, presenting a specific auditory stimulus and recording the
consequent brain activity. While most sound reconstruction studies have adopted the method
of multiple trial averages, our research also delves into sound reconstruction from single trial
fMRI samples.

Figure 5.9 presents examples of Mel-spectrograms reconstructed from a single trial fMRI
sample. While inherently noisier compared to results derived from averaged fMRI samples,
the reconstructed spectral and temporal patterns display similarities to the original stimuli.
This suggests that our model effectively recreates auditory experiences even from single trial
fMRI data.

Figure 5.9 also provides a quantitative evaluation of the sound reconstructed from a
single trial fMRI sample. The results display an identification performance of around
60% when evaluated with Mel-spectrogram and low-level representations. However, as we
ascend to higher hierarchical layers, there is a gradual increase in performance, showing an
identification efficacy of 70-80%. For acoustic features, the model displays an identification
performance of approximately 60%. These results, albeit showing a 10% performance
drop compared to the sound reconstructed from eight-sample averaged fMRI samples, still
demonstrate that our proposed model can achieve a reasonable reconstruction from single
trial fMRI samples.

5.3.4 Sound reconstruction from actual features

In the next phase of the investigation, I assessed the boundaries of our model’s capability for
reconstructing sound with fidelity. To do this, I supplied the model with actual features at
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Fig. 5.9 Reconstructed sounds from single trial fMRI samples. The top row displays the
original Mel-spectrogram of the presented sound. The following five rows show the Mel-
spectrograms reconstructed from each subject using the AC and the conv5 layer.
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Fig. 5.10 Evaluation of reconstructed sound from single trial fMRI samples. The sound
fidelity and quality of the reconstructions were assessed through an identification analysis
involving the Mel-spectrogram pixels, hierarchical representation, and acoustic features.
Each bar indicates the mean identification accuracy, while the error bar represents the 95%
confidence interval, estimated using 50 data points. Different colors signify different subjects.
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each stage of the process. When provided with actual codebook representations or actual
DNN features, the performance of our model was outstanding, producing reconstructions of
the original sound that were nearly perfect, as depicted in Figure 5.11A. The identification
accuracies of these reconstructions were extremely high, reaching 99% and 95% respectively,
as displayed in Figure 5.11B. These results underline that the fidelity of the reconstructed
sounds is primarily determined by the decoding performance of the brain decoding analysis.
In essence, the quality of our model’s reconstructions depends on the decoding performance
of the brain decoding analysis.

5.3.5 Auditory features

In order to delve deeper into the analysis, I performed additional reconstruction investigations
using decoded Mel-spectrogram features and modulation features. In the case of Mel-
spectrogram features, I extracted pixel values directly from the fMRI responses and converted
them into an audible sound wave using a spectrogram vocoder. In contrast, for the modulation
features, I implemented a two-step iterative reconstruction approach. This method initially
transitions from modulation features to a spectrogram and then from the spectrogram to an
audible sound wave. This technique is based on methodologies used in previous studies,
particularly the work by Santoro et al. (2017). The resultant sounds from the reconstructed
Mel-spectrogram and modulation features exhibited temporally smoothed patterns of the
original spectrogram, as illustrated in Figure 5.12A. Upon a more quantitative evaluation (as
depicted in Figure 5.12B), it became apparent that while the sounds reconstructed from Mel-
spectrogram and modulation features were capable of identifying the actual stimuli above
chance level, their effectiveness was particularly pronounced in the mid-level hierarchical
layers. However, the model proposed in this study, which uses DNN features, surpassed
the other auditory features in terms of performance across all evaluated metrics, clearly
indicating the superiority of our methodology.

5.3.6 Model components

In order to better understand the impact of different components within our proposed model,
I conducted a comparative analysis of reconstructions using two alternative methods Figure
5.13. The first, referred to as brain-to-codebook reconstruction, used a linear regression
model to predict the codebook representation based on fMRI responses. The second method,
known as pixel optimization reconstruction, iteratively optimized the pixel values of the
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Fig. 5.11 Reconstructed sounds using true features. (A) Reconstructed Mel-spectrogram
using true codebook and DNN features. The first row displays the Mel-spectrogram of the
original sound. The second row showcases Mel-spectrograms reconstructed from authentic
codebook representations. In contrast, the third row exhibits Mel-spectrograms reconstructed
using authentic DNN features. (B) Evaluation of reconstructed sounds using true features.
Each category of features used in the reconstruction is represented by a unique color.
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Fig. 5.12 Comparison of sound reconstruction using different auditory features. (A) Recon-
structed Mel-spectrograms: The first row illustrates the Mel-spectrogram of the original
sound, while rows two to four showcase the reconstructed Mel-spectrograms. These re-
constructions use different auditory features and were obtained from the auditory cortex
(AC) data of subject S3. (B) Evaluation of Sound Reconstruction Using Different Auditory
Features: Each unique color represents a different auditory feature used in the reconstruction.
Each dot indicates the mean identification accuracy for each subject, with the error bar
denoting the 95% CI estimated using 50 data points.
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Fig. 5.13 Schematic of sound reconstruction with ablated model components. The diagram
presents two different approaches to sound reconstruction. The first, termed ’brain-to-
codebook reconstruction’, is shown by the brown line. This method predicts codebook
representations directly from fMRI responses. The second approach, known as ’pixel opti-
mization reconstruction’, is indicated by the orange line. It involves the iterative optimization
of pixel values in Mel-spectrograms to align with the decoded DNN features, which are
inferred from fMRI responses.

Mel-spectrogram by aligning them with the decoded DNN features derived from brain
responses.

Our exploration into the relative effectiveness of different components within our model
involved analyzing and comparing sound reconstructions via two alternative methods: the
brain-to-codebook reconstruction and the pixel optimization reconstruction. The brain-to-
codebook reconstruction involves predicting codebook representations from fMRI responses
using a trained brain decoder. These predicted representations are then converted into a Mel-
spectrogram via a codebook decoder and transformed into sound waves with a spectrogram
vocoder. The Mel-spectrogram resulting from this process closely mirrored a temporally
smoothed version of the original spectrogram, a phenomenon previously observed with
direct regression on modulation or physical features (Figure 5.14A). The pixel optimization
reconstruction, meanwhile, uses all decoded DNN features drawn from the VGGish-ish
model to optimize the spectrogram pixels for sound reconstruction. This method successfully
reproduces distinct spectral patterns but struggles to capture the detailed temporal patterns
inherent in the original spectrogram.

In our quantitative evaluation (Figure 5.14B), the brain-to-codebook reconstruction
yielded identification accuracies of approximately 70%, based on the pixel values of the
Mel-spectrogram, which are comparable to the results from our proposed model. However,
identification performance fell as I ascended the hierarchical layers of sound representation,
dipping below 60% for all subjects at the highest layer of the Melception model. Evalu-
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ations using acoustic features revealed similar patterns. Spectral Centroid (SC) displayed
identification accuracy akin to that of Mel-spectrogram pixels, but all subjects recorded
identification accuracies below 60% for both Fundamental Frequency (F0) and Harmonic
to Noise Ratio (HNR) metrics. The pixel optimization reconstruction demonstrated iden-
tification performance, based on the pixels of the Mel-spectrogram, comparable to other
reconstruction methods. However, when evaluated based on hierarchical representations,
this method surpassed the brain-to-codebook reconstruction but lagged behind our proposed
method, especially in higher layers. Additionally, evaluations based on acoustic features
saw identification accuracy for F0 and HNR metrics barely exceed chance levels, with the
exception of SC.

These findings indicate that while all three reconstruction methods were able to approx-
imate spectral patterns to some degree, only our proposed model’s reconstructed sound
retained perceptual qualities closely resembling the actual stimuli. In conclusion, our pro-
posed model outperformed other reconstruction methods in producing sound reconstructions
that were both more perceptible and perceptually similar to the original sounds. These find-
ings highlight the value of integrating brain-like features and separating temporal information
from DNN features in our sound reconstruction approach.

5.4 Discussion

In this chapter, I introduced a novel approach to unrestricted neural sound reconstruction
from fMRI activity, leveraging DNN features and an audio-generative model. This pro-
cess effectively transformed decoded DNN features into high-quality audio signals, thanks
to an audio-generative transformer. This device predicted a simplified version of a Mel-
spectrogram (a codebook representation) based on the decoded DNN features. Our model
successfully managed to reconstruct complex spectral-temporal patterns that approximated
the content and quality of the original sound stimulus, as confirmed by both qualitative
and quantitative evaluations. However, I acknowledged room for improvement, especially
concerning the fine details in speech or music sequences. Crucially, our sound reconstruction
demonstrated resilience even when specific categories were not included in the training
phase.

While our model adeptly reconstructed sounds using true features (Figure 5.11), recon-
struction from decoded features fell short on detail for complex sequences such as speech and
music. Bearing these limitations in mind, future research could investigate more advanced
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Fig. 5.14 Effect of model components. (A) This panel displays the reconstructed Mel-
spectrograms. The first row shows the original Mel-spectrogram of the sound presented. The
subsequent rows, from two to four, present Mel-spectrograms reconstructed through different
methods, using the AC from subject S3. (B) Evaluation of the sounds reconstructed from
different methods. Each method is represented by a distinct color. Each method is represented
by a distinct color. Every dot illustrates the mean identification accuracy computed for each
subject, with the associated error bar denoting the 95% confidence interval, estimated using
50 data points.
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decoding methods incorporating sequential processing. Techniques like Long Short-Term
Memory networks (LSTM), Recurrent Neural Networks (RNN), and other recursive models
have been widely used in auditory decoding tasks across different neuroimaging modalities
(Daly, 2023; Szabó and Barthó, 2022; Yoo et al., 2021). Moreover, efforts have been made to
utilize the inherent temporal information within fMRI (Loula et al., 2018; Wang et al., 2019).
Given our success with the transformer model in untangling compressed features, applying a
transformer to decode temporal information in fMRI signals could be a promising approach
to enhance the quality and detail of reconstructed sounds.

Upon comparing the sound reconstructed using different auditory features, it became
clear that DNN features outshined both the Mel-spectrogram and modulation features in
terms of decoding and reconstruction. Interestingly, an attempt to replicate reconstruction
using modulation features, as illustrated in a previous study (Santoro et al., 2017), failed to
produce satisfactory results. This is noteworthy, despite the previous study’s objective to
reconstruct short stimuli durations of 1 second using high spatial resolution 7T fMRI. The
standout decoding performance of DNN features, calculated through hierarchical processing,
aligns with findings from previous encoding analyses (Kell et al., 2018; Tuckute et al., 2023).
This not only highlights the merit of using brain-like features in sound reconstruction but
also suggests that DNN features, characterized by their brain-like properties and hierarchical
processing capabilities, are a promising prospect for improving the quality and accuracy of
sound reconstruction from fMRI data.

When comparing sound reconstructions achieved by removing different model compo-
nents, it was clear that both DNN features—with their brain-like hierarchical properties—and
the process of translating these features back into sound through codebook representation
substantially enhanced reconstruction performance, both quantitatively and qualitatively. Yet,
this raises the question of what precisely the role of the codebook representation is in the
reconstructed results.

In the forthcoming chapter, I will dive into a comprehensive analysis that explores the
model’s ability to reconstruct sounds from categories not included in the training set. This
exercise will serve as a rigorous test of the model’s generalization capability. A key feature
of this analysis will be an in-depth interpretation of the codebook representation, a crucial
component of our sound reconstruction model. I will demonstrate how our model pieces
together these elemental features to synthesize sound. Through this examination, I aim to
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garner deeper insights into the mechanisms underpinning our model’s performance, especially
its capacity for generating high-fidelity sound reconstructions.





Chapter 6

Generalization beyond trained categories

6.1 Introduction

Most previous studies on sound reconstruction often avoided the task of reconstructing
arbitrary sounds from brain responses due to the vast diversity of sounds and their complex
sequences, not to mention the limited resolution of brain imaging techniques. As a result,
these studies were mainly focused on classifying specific types of speech (Chakrabarti et al.,
2015; Martin et al., 2018; Moses et al., 2019; Pei et al., 2011) or reconstructing a limited set
of examples such as digits (Akbari et al., 2019) and words (Wang et al., 2018). However, as
I showcased in the previous chapter, it is indeed possible to reconstruct a wider variety of
sounds by using the spatial patterns of fMRI responses, thereby capturing both the content
and quality of sounds.

In this chapter, I will dig deeper into the abilities of our model to reconstruct sounds
that fall outside the categories used in the training data. I conducted an experiment where
I trained the decoder by excluding one category at a time from the training data. I then
evaluated how well the model could reconstruct sounds from the omitted category using only
the test data. The fact that our model could generalize to categories not present in the training
data indicates that it isn’t simply matching brain data to the training examples.

Further, I performed an in-depth analysis of the "codebook" representations used by our
model, demonstrating that the reconstructed sounds are synthesized from a combination
of basic sound features, defined by a sequence of codebook entries. This finding provides
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valuable insights into how our model works and its potential to recreate a wide variety of
sounds. The contents of this chapter is based on the Results: Generalization beyond trained

categories of (Park et al., 2023).

6.2 Methods

To begin with, I labeled all the stimuli in the training dataset, categorizing them into one
of four categories: animal, environments, human speech, or music. There were cases
where each training stimulus could belong to multiple categories or not fit into any of these
four. Subsequently, for the brain decoder training, I excluded the category in question
and calculated the decoded DNN features and reconstructed sound using the test set of the
excluded category. In this scenario, when the animal category was ablated, the training for the
decoder utilized 12,036 fMRI samples computed from 1,003 stimuli. For the environments
category, 9,552 fMRI samples were used, calculated from 796 stimuli. For human speech,
8,844 samples were derived from 737 stimuli, and for music, 9,516 fMRI samples were
drawn from 793 stimuli. Following the computation of the reconstructed sound, I conducted
an identification analysis using test stimuli from all categories. Then, I compared the results
of the ablated training category set with those from the complete training category set. Finally,
I conducted a within-category analysis, considering only the evaluation candidates from the
same category. The results of this analysis were also compared with those obtained using all
the categories in the training set.

6.3 Results

6.3.1 Sound reconstruction with ablated category training sets

First, an analysis was conducted where the decoder was trained by excluding one category
at a time from the training data. I then evaluated the reconstruction results for the excluded
category from the test dataset. As depicted in Figure 6.1A, the results indicate that our model
can still reconstruct spectral and temporal patterns similar to the actual stimuli, even without
training on a specific category. Particularly for animal and environmental sound categories,
the model effectively maintained the reconstruction performance even when these categories
were not part of the training set. Although the reconstructed speech sounds were somewhat
noisy, the model managed to extract and emphasize distinct characteristics of human voices.
However, a significant drop in performance was observed when the music category was
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Ablated and tested category
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(S2)
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Fig. 6.1 Reconstructed sounds with ablated training category sets. The image presents
examples of reconstructed Mel-spectrograms for four categories (Environment, Animal,
Speech, and Music) obtained from decoders trained on a dataset where data from the
corresponding category was excluded. The top row displays the Mel-spectrograms of
the original presented sounds. The second and third rows show the reconstructed Mel-
spectrograms from two different subjects, using the AC and conv5 layer respectively.

excluded from the training set, resulting in the reconstructed sounds resembling rhythmic
environmental noise rather than actual music.

For quantitative evaluation, I compared the identification accuracies derived from the
ablated training category set with those from the complete training category set. Despite a
slight dip in performance, the overall identification accuracies from the ablated training set re-
mained comparable to those from the full training set for each category. In a category-specific
analysis, the animal and environmental sound categories demonstrated identification accura-
cies above 70% for most metrics in the ablated training set. The music and speech categories
showed performances around or below 60% when using pixels of Mel-spectrograms, F0,
and HNR, but achieved approximately 70% accuracy at higher hierarchical representations.
These findings mirror the trends observed in the full training set.

6.3.2 Interpretation of codebook representations

In previous sections, I demonstrated that proposed model can reconstruct arbitrary sounds,
not used in the training dataset, from fMRI patterns. These reconstructions are translated
from DNN features to a sequence or combination of codebook representations through an
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Fig. 6.2 Evaluation of reconstructed sounds with ablated training category sets. (A) Identifi-
cation accuracies with the ablated training set. This depicts the mean identification accuracy
for each category using Mel-spectrogram pixels, hierarchical features of the Melception clas-
sifier, and acoustic features. Each bar represents the mean identification accuracy, averaged
across 10 test stimuli for the Environment, Animal, and Music categories, and 20 test stimuli
for Speech. The error bars denote the 95% confidence interval. Different colors represent
different subjects. (B) Identification accuracies with the full training set. This shows the
results of the same test data for each category, presented for comparison in the same format
as in (A).
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Fig. 6.3 Histogram of the codebook indices used for representing the training dataset and
test set. The upper panel displays the histogram of codebook indices when mapping the
4800 stimuli used for training the brain decoder. The lower panel exhibits the histogram
of codebook indices when mapping the 150 stimuli used for the test set, using the same
codebook.

audio transformer, and then converted back into a Mel-spectrogram. This process revealed
that each code serves as elements of auditory features. In this chapter, I conducted an
interpretation analysis to understand how each code is used in actual training and testing, and
what patterns they represent in patches cropped from the Mel-spectrogram.

I examined the distribution of the codebook indices used in sound generation. Figure
6.3 displays the histogram of codebook indices for the true stimuli of the training and test
datasets used in the experiment. This illustration demonstrates that the codebook indices are
broadly distributed. It also confirms that the test dataset has a distribution fairly similar to
the training dataset. Figure 6.4 presents the histogram of codebook indices from the sound
generated from the brain response. The top panel is the histogram of all test samples and five
subjects, showing that like the histograms of the train/test dataset, all codebook indices are
generally distributed.

On analyzing by category, it was evident that the codebook indices were widely distributed
in the animal, speech, and music categories as well. Although a few codebook indices were
frequently used in environmental sounds due to their monotonous nature, overall other
codebook indices were also fairly distributed. These results show that the codebook indices
used in our sound generation are not specifically used in any category, but generate sound
through a combination of various codes. Each code represents these elements of acoustic
features.
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Fig. 6.4 Histogram of the codebook indices used for representing the reconstructed sounds.
Each panel displays the histograms of codebook indices used to represent the sounds recon-
structed for each category, derived from five test subjects.
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6.4 Discussion

In this chapter, I addressed the reconstruction of arbitrary sounds from brain activity using a
model trained on a multitude of sound categories. The ability of the model to reconstruct
sounds even when one category was systematically excluded from the training set is indicative
of a generalizable approach that does not merely memorize the training examples. This
capacity for sound reconstruction seems to hinge on the codebook representations learned
by the model, which seemingly act as elemental features for the reconstruction of a diverse
array of sounds.

The different performance levels of the model in reconstructing sounds from various
categories, despite excluding those categories from the training set, provide an intriguing
perspective on the nature of the learned codebook representations. It appears that some
categories, such as animals and environmental sounds, are more robustly represented, or
more easily inferred from the remaining categories during training. This could be due to
these categories having more shared features or patterns with the other categories included
in the training set. Conversely, the significant performance drop in music reconstruction
when this category was excluded from the training set suggests that music possesses unique
characteristics that are not as easily extrapolated from the other sound categories.





Chapter 7

Hierarchical auditory areas and features

7.1 Introduction

In Chapter 5, I demonstrated how our proposed approach effectively reconstructs sounds,
capturing both their perceptual content and quality. A fundamental tenet of our hypothesis was
that auditory features are processed hierarchically, mirroring the functional organization of
the human brain. The human auditory system and DNN models exhibit analogous hierarchical
structures, as evidenced by research conducted by Kell et al. (2018). They implemented
an exhaustive brain encoding analysis, predicting human auditory responses from DNN
model responses, which revealed a striking hierarchical parallel between the DNN model
and fMRI data. They designed a DNN architecture for sound recognition, crafted to reflect
the human auditory system’s hierarchical processing. Their DNN structure distinguished
between common layers, responsible for low-level processing akin to early auditory stages,
and branching layers, handling task-specific processing like speech recognition or music
genre classification. By leveraging this trained DNN model and fMRI data for natural sounds,
their encoding analysis signified a hierarchical correspondence between brain and DNN
models. Early auditory cortex responses were better predicted from the DNN features derived
from common layers, whereas responses from nonprimary regions were better aligned with
DNN features from the branched layer. Despite these findings, a subsequent study noted
that not all DNNs emulate the human brain’s organization. Encoding performance could
differ substantially depending on the DNNs’ structure and optimization tasks (Tuckute et al.,
2023). Moreover, in chapter 4, I were unable to discern a clear hierarchical correspondence
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between DNN layers and auditory ROIs based on feature decoding performance. In this
chapter, I delve into the impact of individual ROIs and hierarchical auditory features on the
sound reconstruction process. I present the results of a meticulous investigation into how
these individual ROIs and DNN layers, under various conditions, influence the generation
of sounds from fMRI responses. The sounds produced under these diverse conditions were
assessed using an array of metrics. This comprehensive examination seeks to shine a light
on the influence of individual ROIs and hierarchical auditory features on the reconstruction
process, thereby fostering a more profound understanding of our reconstruction model’s
outcomes. The contents of this chapter is based on the Results: Auditory ROIs and DNN

layers of (Park et al., 2023).

7.2 Methods

7.2.1 Sound reconstruction from individual ROIs

To examine the variation in sound reconstruction across individual auditory regions, I
conditioned the brain decoder’s training solely on individual ROIs to predict DNN feature
units. For this purpose, I employed regions following the ventral pathway from the A1, LBelt,
PBelt, A4, and A5, using each hemisphere independently and in a combined fashion. Prior to
the training of each decoder, I computed the correlation between voxel responses and DNN
features, selecting the top 200 voxels to train the L2-regularized linear regression model.
In the test phase, the decoded features calculated were employed as inputs to the audio
transformer, codebook decoder, and spectrogram vocoder, trained as detailed in Chapter 5.
This process allowed us to generate the reconstructed sound from each individual ROI.

7.2.2 Sound reconstruction from DNN layers

To investigate the variance in sound reconstruction stemming from different DNN layers,
I conditioned the brain decoder’s training on the AC to predict DNN feature units from
selected layers within the VGGish-ish model. Drawing upon the feature decoding results
from our pilot study with subject S1, I chose six representative layers (conv1_1, conv2_1,
conv3_1, conv4_1, conv5_3, fc1) that demonstrated the highest decoding performance
from the convolutional blocks of VGGish-ish. Additionally, I trained individual audio
transformers to translate DNN features into codebook representations, with the translation
adapted according to each layer. For the convolutional layers, the temporal dimension of the
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given input was resampled to 21 points to align with the output temporal dimension across
all DNN features. Employing the codebook decoder and spectrogram vocoder, as detailed in
Chapter 5, I reconstructed the sound from each layer.

7.3 Results

7.3.1 Auditory ROIs

Figure 7.2A summarizes the reconstructed Mel-spectrogram from individual ROIs (refer
to Supplementary Figure 7.4 for hemisphere separation). Our investigation found that
the reconstructed sounds bore a resemblance to the original sounds, irrespective of the
auditory ROI from which they were derived. The first set of stimuli, representing the category
of animal sounds, show unique spectral patterns, making the reconstructed sounds easily
distinguishable when compared to the original stimuli. Following this, the speech category
stimuli reveal clear harmonic patterns, distinctive of human speech, setting them apart
from other sound categories. The next set of stimuli, designated to the music category,
depict complex patterns spanning a wide frequency range. Finally, the environmental sound
stimuli present simpler but characteristic spectral patterns. Notably, our model manages to
reconstruct these intricate spectro-temporal patterns, preserving the general content of each
sound stimulus. This fidelity is a marked improvement over prior fMRI-based reconstructions,
which often displayed temporally smoothed patterns. Moreover, the reconstructed sounds
generated from each ROI exhibit a high degree of consistency.

Figure 7.2B offers a quantitative evaluation of the reconstruction performance across
different ROIs. Our analysis confirmed that both the Mel-spectrogram and the low-level
features within the hierarchical representation were reconstructed more accurately when the
decoder was trained on the early auditory cortex, specifically region A1. On the other hand,
the decoder performed better on the reconstruction of intermediate or high-level features
within the hierarchical representation when it was trained on the auditory association cortex,
such as region A4. Furthermore, when comparing the performance of the decoder on the
early auditory cortex and the auditory association cortex, the decoder demonstrated higher
accuracy in identifying acoustic features when trained on the early auditory cortex. These
findings suggest that our proposed reconstruction model successfully leverages the distributed
neural responses across the auditory region to generate accurate reconstructions.
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Fig. 7.1 Sound reconstruction from individual ROIs. The first row illustrates the original
Mel-spectrogram of the presented sound. Rows two to seven sequentially display the Mel-
spectrograms that have been reconstructed from each separate ROI using the conv5 layer.
These reconstructions are based on the data from subject S3.
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Fig. 7.2 Evaluation of reconstructed sounds from individual ROIs. Each ROI is represented by
a unique color for easy distinction. Each dot on the graph denotes the average identification
accuracy obtained from individual subjects. The associated error bars indicate the 95%
confidence interval, which has been estimated using a sample of 50 data points.

7.3.2 DNN layers

Figure 7.6A presents an overview of our investigation into the influence of hierarchical
representations within the DNN model on sound reconstruction. Our study showed that
sounds reconstructed from lower layers of the DNN, such as Conv1 and Conv2, resulted
in reconstructions of lower perceptual quality, tainted by significant noise. Conversely,
the intermediate layers, namely Conv3 and Conv4, yielded reconstructions with spectral
patterns resembling those of the original stimuli. Remarkably, sounds reconstructed from
the higher layers, especially Conv5, accurately reflected the spectral patterns of the actual
stimuli. Interestingly, even without a temporal dimension, the FC3 layer managed to replicate
distinct spectral patterns of the original stimuli within the reconstructed Mel-spectrogram. I
found that sounds reconstructed from the higher layers preserved perceptual content more
effectively than those reconstructed from the lower layers.

Figure 7.6B provides a quantitative evaluation of the influence of different DNN layers
on the sound reconstruction. Our analysis revealed that sound reconstructions from higher
layers demonstrated superior identification accuracy across all evaluation metrics compared
to those from lower layers. The top convolution layer (Conv5) notably achieved the highest
performance. On the other hand, the FC3 layer’s sound reconstructions displayed comparable
performance to Conv5 in replicating high-level hierarchical representations. However, it
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Fig. 7.3 Hemispheric comparison of reconstructed sounds using individual ROIs. The left
panel illustrates the spectrograms reconstructed from the left hemisphere, whereas the right
panel represents those from the right hemisphere. The top row shows the Mel-spectrogram
of the original sound presented to the subject. Subsequent rows, from two to six, display the
Mel-spectrograms reconstructed from each individual ROI, leveraging the conv5 layer from
subject S3.
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Fig. 7.4 Comparative evaluation of reconstructed sounds using individual ROIs from separate
hemispheres. Panel A illustrates the evaluation of reconstructed sounds from individual ROIs
in the left hemisphere. Each ROI is represented by a unique color, and each dot signifies the
mean identification accuracy across 150 test stimuli for each subject. The error bar indicates
the 95% confidence interval. Panel B showcases the evaluation of reconstructed sounds from
individual ROIs in the right hemisphere, following the same methodology as in Panel A.
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failed to match Conv5’s performance in terms of Mel-spectrogram and lower-level represen-
tations. These findings suggest that incorporating DNN features with a temporal dimension
significantly enhances the accuracy of lower-level features in the sound reconstruction
process.

7.4 Discussion

This chapter delved into the roles of hierarchical auditory areas and DNN features in our sound
reconstruction process. In contrast to the indistinguishable feature decoding performance
across individual ROIs discussed in Chapter 4, our sound reconstruction exhibited clear
differences amongst individual ROIs. More specifically, the core region outperformed
peripheral areas in terms of low-level representations and acoustic features’ identification
performance. Yet, this performance dwindled as I moved towards the peripheral regions.
Conversely, the high-level representations demonstrated a slight improvement in the PBelt
and A4 compared to A1. These findings align with prior encoding studies, such as the one by
Kell et al. (2018), which posits that neurons in the primary auditory cortex’s vicinity are more
focused on local integration, reflecting a preference for generic acoustic representations. In
contrast, neurons near nonprimary regions participate in longer-time integration and are more
inclined towards category selectivity. These results highlight the potential of our proposed
model to reconstruct the information encoded in individual ROIs.

In examining the reconstruction results from the different DNN layers, I found that
the higher layers generally exhibited superior reconstruction performance. This trend was
broadly consistent with decoding performance. However, despite showing similar decoding
performance, the Conv5 and FC3 layers produced slightly different reconstructed sounds.
Both layers achieved comparable reconstruction performance in the intermediate and high
layers of the hierarchical representation, but when it came to lower layers or pixels of
Mel-spectrogram and acoustic features, Conv5 outperformed FC3. These observations
suggest that incorporating DNN features with a temporal dimension significantly enhances
the reconstruction accuracy of lower-level features in the sound reconstruction process.

In summary, this chapter underscores the pivotal role that hierarchical auditory areas and
DNN features play in the sound reconstruction process. I elucidate the importance of the
parallel hierarchical structures that are present both in the human auditory system and DNNs.
These structures can be harnessed to improve sound reconstruction efficiency, demonstrating
the potential of our proposed model to reconstruct the information encoded in individual ROI.
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Fig. 7.5 Effect of DNN layers on sound reconstruction. The figure showcases reconstructed
Mel-spectrograms resulting from different layers within the VGGish model. The topmost
row displays the original Mel-spectrogram of the presented sound. Subsequent rows, two
through seven, feature Mel-spectrograms reconstructed from various layers of the VGGish
model, employing the AC data from subject S3.
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Fig. 7.6 Evaluation of reconstructed sound using different DNN layers. Each layer of the
DNN is denoted by a unique color. Each dot in the plot symbolizes the mean identification
accuracy derived from each subject, while the error bars denote the 95% confidence interval,
estimated using 50 data points.

This finding contributes to our understanding of auditory processing and could pave the way
for more advanced reconstruction models. Further investigations into these interrelations
may uncover additional insights that can help to enhance this understanding and to refine
our model further. Building on these findings, the chapter 8 will explore the versatility of
our proposed model. Specifically, I will investigate whether our model can reflect subjective
perceptual experiences in the reconstructed sounds.



Chapter 8

Auditory attention

8.1 Introduction

In a world filled with complex and overlapping sounds, our brains have the impressive
capability of distinguishing individual sounds from a composite auditory input and selectively
attend to specific stimuli. This phenomenon is often referred to as the "cocktail party
problem"—a term that encapsulates our ability to concentrate on a single conversation
amidst a cacophony of ambient noise. To address this problem, researchers have suggested
two main solutions (McDermott, 2009). The first is a bottom-up approach that involves
segregating auditory information from the mixed sounds. There is compelling psychological
evidence supporting this mechanism. For instance, studies such as Bregman’s Auditory
Scene Analysis (Bregman, 1990), propose that our auditory system can segregate individual
auditory ’objects’ from the superimposed sound mixture based on physical characteristics
such as pitch, location, and timbre. On the other hand, top-down modulation is a strategy
where attention is directed towards familiar or important information while ignoring the
surrounding noise. This mechanism has also been widely explored and demonstrated in
research. For example, studies have found that meaningful content, such as one’s own name,
can capture attention even when unattended, suggesting the role of higher cognitive processes
in auditory attention (Cherry, 1953). However, while both processes, bottom-up segregation
and top-down modulation, are well-documented in isolation, the interaction between these
two processes remains relatively unexplored. This raises questions about how our brains
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integrate bottom-up and top-down information to efficiently process complex auditory scenes
in real-world environments.

Recent advancements in neuroimaging techniques promise significant potential for tack-
ling these challenges. For instance, Ding and Simon (2012b) utilized magnetoencephalogra-
phy (MEG) and applied a multivariate analysis technique to decipher the neural encoding
of attended and unattended speech. Their findings showed that cortical representations of
the attended speech were notably enhanced compared to the unattended speech. In parallel,
Degerman et al. (2006) used functional magnetic resonance imaging (fMRI) to delve into
the neural mechanisms of selective auditory attention. In their study, participants listened
to two concurrent auditory narratives and were instructed to focus on one. Analysis of
cortical responses during these tasks revealed that selective attention modulated responses
predominantly in the secondary auditory cortex, rather than the primary auditory cortex.

Simultaneously, the advent of machine learning has offered a novel perspective to this
domain. Through these models, it’s now possible to decode the attended speaker from a
listener’s brain activity, a stride that unlocks deeper understanding of the computational
mechanisms of the cocktail party problem. O’Sullivan et al. (2015) conducted a study to
determine if attentional selection in a cocktail party environment can be decoded from single-
trial electroencephalography (EEG). They developed a novel decoding approach based on
neural data and showed that attentional selection can indeed be decoded from single-trial EEG
data. They discovered that there was a remarkable degree of trial-by-trial correspondence
between the listener’s attentional state and the pattern of neural responses. Their work
provides evidence that EEG could be used as a non-invasive readout of a listener’s focus of
attention. In a follow-up study, O’Sullivan et al. (2017) examined how the brain could decode
attentional selection in multi-speaker environments even without access to clean sources.
They used a closed-loop experimental setup that tracked the EEG responses to two competing
speech signals and demonstrated that EEG responses track the attended speaker and not
the ignored one. This study established that our brains could segregate and select attention
in complex acoustic environments even without clear, separate sources. Bednar and Lalor
(2020) conducted a study to determine the brain’s ability to locate different sound sources in
a dynamic auditory scene. They utilized EEG data from participants who were tasked with
tracking multiple moving sound sources. The researchers decoded the location of attended
and unattended sound sources in real-time from the EEG data. Their study suggested that our
brain contains detailed spatial information about multiple sound sources and can flexibly shift
attention between these sources in complex auditory scenes. These studies highlight how
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integrative use of advanced technologies could potentially revolutionize our understanding
of selective auditory attention,

Despite these advancements, previous research primarily focused on classifying attended
from unattended sounds using decoded auditory features, due to limitations in neuroimaging
temporal resolution. Few studies have explored the direct reconstruction of sounds from
neural activity under auditory attention task. In this chapter, I utilize a novel framework
for sound reconstruction based on fMRI responses under selective auditory attention task.
The objective is to verify whether these reconstructed sounds mirror subjective perceptual
experiences. The study of auditory attention is pivotal to understanding how the brain
navigates our intricate acoustic environment. The contents of this chapter is based on the
Materials and methods: Experimental design and Results: Attention of (Park et al., 2023).

8.2 Methods

8.2.1 Subjects

Five non-native English-speaking subjects with normal hearing abilities, including one female
subject, participated in our study. The average age of the subjects was 27.6 years. One subject
(S1) was used for the exploratory analysis to establish the reconstruction model, while the
other four subjects were used to validate the results independently. All subjects provided
informed consent prior to the scanning sessions. The study protocol received approval from
the Ethics Committee of the Advanced Telecommunications Research Institute International
(approval no: 106) and was conducted following the principles of the Declaration of Helsinki.

8.2.2 Sound stimuli

During our auditory selective attention experiment, I simultaneously presented pairs of
sounds from distinct categories. In the pilot study, I used 10-second stimuli from various
categories: animal sounds, environmental sounds, music, and male and female speech. I
randomly selected two representative stimuli from each category, totaling 26 pairs. However,
during our analysis, I decided to exclude any pairs that included environmental sounds due
to the inherent difficulty in focusing on these sounds when they overlapped with others.
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In the subsequent experiments conducted with four other subjects, I stuck to the four
remaining categories: male speech, female speech, animal sounds, and music. From each
category, I selected two exemplars that showed the highest reconstruction performance during
the pilot study with subject S1. I then created all possible pairs of these sounds, excluding
pairs from the same category, to form a set of 24 stimuli.

During each attention trial, subjects were instructed to focus on one of the two simul-
taneously presented sounds, yielding 48 unique attention trials for the dataset. To ensure
consistency, the energy levels of these superimposed sounds were normalized to match each
other.

For the attention experiment, our aim was to conduct a binomial test to ascertain whether
the proportion of correct identification surpassed the chance level of 50%. The sample
size, decided prior to the experiment, was set at N = 48, larger than the required sample
size to detect an effect size of g = 0.2 (correct rate = 0.7) at a significance level of 0.05
(N = 37). Despite using data samples from a 4-second time window for decoder training
and reconstruction, statistical evaluations were conducted on data points corresponding to
8-second stimulus blocks. This decision was to accommodate the lack of independence
among the three samples derived from an 8-second stimulus block. In the analysis of the
attention test samples, the binary outputs from the three samples of the same stimulus and
attention condition were pooled by majority voting to define a single binary data point. This
resulted in 48 data points in each condition per subject.

8.2.3 Experimental design

In the selective auditory attention experiment, subjects were asked to focus on one out of two
overlapping sound stimuli played simultaneously, under diotic listening conditions. Each
participant took part in a single session which comprised eight functional runs, and each run
included 48 attention trials.

In each trial, a pair of sound categories played simultaneously for a duration of 8
seconds. I presented visual cues that represented both the target (attended) and the non-target
(unattended) sound categories. The word that corresponded to the target sound category was
distinctly marked with a dash ("-"), signaling it as the sound to be focused on.
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Fig. 8.1 Schematic of the experimental design for the selective auditory attention experiment.
The diagram presents an 8-second period during which two different sound categories play
concurrently. To assist the participant, visual cues corresponding to both the target (attended)
and the non-target (unattended) sound categories are displayed. A dash ("-") distinctly marks
the cue associated with the target sound category, indicating the sound the participant should
concentrate on.

To ensure the participant’s active involvement, I interspersed a behavioral task randomly
four times in each run. In this task, subjects were asked to identify the sound category they
were instructed to focus on in the immediate preceding trial.

8.3 Results

8.3.1 Feature decoding under attention task

To ascertain whether the reconstructed sounds encapsulate subjective listening experiences,
fMRI responses were collected under a selective auditory attention task, colloquially referred
to as "cocktail party conditions." This scenario mimics our auditory system’s complex ability
to separate a single sound from an array of sounds within a noisy environment. The goal
was to determine if the decoded DNN features and the resulting reconstructed sounds could
reflect this selective attention process.

To that end, decoded DNN features were derived from the fMRI responses collected
during a selective auditory attention task. This process used a brain decoder that was trained
under natural sound listening conditions. These decoded features were then utilized to create
sound reconstructions under auditory attention tasks.
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Fig. 8.2 Identification analysis of attended stimuli based on decoded DNN features. (A)
Schematic of feature decoding and evaluation of selective auditory attention. Decoded
features from the brain response during the selective auditory attention task was computed by
decoder trained on passive listening conditions. Subsequently, decoded features was assessed
by identification performance by comparing correlation coefficients with DNN features of
attended and unattended stimuli. (B) Identification accuracy of attended stimuli from the
unattended. Each bar represents the mean identification accuracy with an error bar indicating
the 95% confidence interval estimated with 48 data points. Each subject is represented by a
different color.

The decoding performance under the selective auditory attention task was evaluated via an
identification analysis. This analysis differentiated the attended stimuli from the unattended
stimuli based on their correlation with decoded DNN features (Figure 8.2A). As shown in
Figure 8.2B, decoded features from the AC successfully identified the attended stimuli from
the unattended stimuli with approximately 60% identification accuracy. When examining
the results for individual ROIs, most subjects showed a mean identification accuracy of less
than 60% in the A1 region. However, three subjects exhibited a mean identification accuracy
of more than 60% in the A5 region. These results highlight individual variability, but the
overall trend indicates significant sound identification capability from decoded DNN features,
particularly in the higher auditory regions.
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8.3.2 Sound reconstruction under attention

To generate the reconstructed sounds under auditory attention tasks, the decoded features
were employed. Figure 8.3 encapsulates the resultant sounds when the subjects attended
to one of the two superimposed sounds, presented as identical stimuli. Generally, the
reconstructed sounds and Mel-spectrograms show a stronger resemblance to the attended
stimulus than to the unattended one, even though they largely mirror the actual combined
stimuli. Notably, when attention is directed towards speech, the resulting reconstructed
sounds manifest a harmonic structure akin to the spectral pattern of speech.

An identification analysis based on the audio features extracted from the reconstructed
sounds was conducted to evaluate the capability of these sounds to distinguish the attended
stimulus from the unattended one (Figure 8.4). This process involved comparing the
correlation of attended and unattended stimuli with the auditory features extracted from the
reconstructed sounds. A sound was correctly identified if it exhibited a higher correlation
with the attended stimulus than the unattended one. From three samples of the same stimulus
and attention task, binary results were collected and analyzed by majority voting to compute
a single binary data point, culminating in 48 binary data points. The mean identification
accuracy was then computed from these 48 data points for each condition and subject, and
this was compared with the level of significance derived from a binomial test.

Performance was evaluated using three types of extracted features, mirroring the analysis
process used for single sound samples. As displayed in Figure 8.4, when employing Mel-
spectrogram and low-layer features, the reconstructed sounds of most subjects showcased an
identification accuracy below 60%. Nevertheless, a performance improvement was noted
with the intermediate and high-layer features in the hierarchical representation, raising
identification accuracy to around 60% for the majority of subjects. In the intermediate
and higher layers, a few subjects even displayed performance surpassing the significance
threshold. However, when evaluating the reconstructed sounds based on acoustic features,
the identification accuracy for most subjects fell below 60%, thus not reaching the level of
statistical significance.

8.3.3 Sound reconstruction from individual ROIs

Further in our analysis, a reconstruction examination was carried out using individual
auditory regions of interest (ROIs). Figure 8.5 captures the summarized reconstructed
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Fig. 8.3 Reconstructed Mel-spectrograms under selective auditory attention tasks. The upper
panel showcases the original Mel-spectrogram of the sound that was presented to the subjects
during the task, wherein they were tasked with focusing on one specific sound within an
array of superimposed auditory stimuli. The lower panel, conversely, demonstrates the
reconstructed Mel-spectrograms from two distinct subjects (S4 and S5), generated using the
AC and onv5 responses.
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Fig. 8.4 Evaluation of sound reconstruction under selective attention tasks. (A) Schematic
representation of the process for reconstruction and evaluation during selective auditory atten-
tion. The process involved comparing the fidelity and quality of the attended and unattended
stimulus reconstructions, to evaluate how accurately attention was represented. (B) Results
of the evaluation of sound reconstruction under selective attention tasks. Identification results
from three samples of the same stimulus and attention task were collated through majority
voting, generating 48 data points for each condition and subject. Each bar corresponds to the
mean identification accuracy from these 48 data points. The dashed line illustrates the level
of accuracy deemed significant (p < 0.05) in the binomial test (N = 48). Please note, stimuli
that were not applicable in the calculation of F0 and HNR were excluded from the statistics.
In such instances, a higher level of significant accuracy is necessitated, which is not depicted
here.



110 Auditory attention

sounds from each ROI during the selective attention task. While the derived sounds from
different auditory ROIs displayed general similarity, the spectral patterns echoing the attended
stimuli, especially the harmonic spectral pattern of speech, were more pronounced in the
reconstructed sounds from boundary regions, notably A4 and A5, compared to those from
the core regions.

Figure 8.6 provides a quantitative assessment of the reconstructed sounds during the
selective attention task across various ROIs. Evaluations based on Mel-spectrograms and
low hierarchical representations revealed no noticeable variation in identification accuracy
among auditory ROIs. However, a consistent incremental trend in identification performance
from A1 to A5 was observed when evaluations were conducted using intermediate and high
hierarchical representations in the reconstructed sounds from three subjects. In contrast,
evaluations founded on acoustic features did not reveal significant differences between ROIs.

These observations hint that subjects might have given more weight to the categorical
features of the attended stimuli. Moreover, the higher auditory regions seemed to be more
intimately tied to attentional modulation.

8.4 Discussion

This chapter explores the ability of reconstructed sounds to encapsulate subjective listening
experiences by collecting fMRI responses under cocktail party conditions, which showcase
our auditory system’s remarkable capacity to isolate specific sounds amidst numerous sound
sources. The aim is to investigate if decoded DNN features and reconstructed sounds can
accurately reflect the process of selective auditory attention. Our results suggest that sounds
reconstructed from the auditory cortex mirror the attended sound more than the unattended
one, but overall, they tend to resemble the perceived superimposed sounds. This implies that
while bottom-up processing is predominant in the auditory cortex, the ability to distinguish
attended sounds from unattended ones improves at higher levels of the auditory hierarchy,
suggests that subjects were more attentive to the category-specific elements of the stimuli
they were asked to focus on.

Decoded DNN features are extracted from fMRI responses during a selective auditory
attention task, using a brain decoder trained under natural sound listening conditions. These
decoded features are then utilized to generate sound reconstructions during auditory attention
tasks. The results reveal that reconstructions derived from auditory cortical activity during
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Fig. 8.5 Reconstructed sound from Individual ROIs under selective auditory attention tasks.
The top panel displays the Mel-spectrogram of the sound stimulus used during the task,
where subjects were instructed to concentrate on a specific sound within a superimposed
soundscape. The bottom panel showcases the Mel-spectrograms reconstructed from each
individual ROI from subject S4, using the conv5 layer.
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Fig. 8.6 Evaluation of the reconstructed sounds from individual ROIs. Each ROI is repre-
sented by a unique color. Each dot corresponds to the mean identification accuracy derived
from each subject, calculated from 48 data points. The dashed line indicates the accuracy
level deemed significant (p < 0.05) by the binomial test.

top-down, selective attention are closer to the attended sound than the unattended one.
Moreover, when differentiating attended from unattended stimuli based on the reconstructed
sound, the identification accuracy was higher in the boundary area compared to the core
area. This difference was significant for three out of four participants, demonstrating the
robustness of our proposed framework for reconstructing subjective auditory content.

To validate whether our reconstruction accurately reflects subjective listening experiences,
I expanded our model to simulate cocktail party conditions. The results indicated a tendency
for the reconstructed sounds to resemble the attended sound more than the unattended one,
in line with previous studies suggesting that decoded auditory features, such as envelope,
spectrogram, and trajectory, derived from brain responses during attention tasks, better reflect
the attended sound (Bednar and Lalor, 2020; Ding and Simon, 2012a; O’Sullivan et al.,
2015; O’Sullivan et al., 2017). Despite the limited temporal resolution inherent to fMRI, our
study illustrates the possibility of reconstructing sound during attention-demanding tasks.
Furthermore, our reconstructed sounds were more similar to the attended sound than the
unattended one, providing evidence that our reconstruction method echoed the perceptual
content of subjective listening experiences under complex soundscapes.

However, the results also highlight the role of individual differences in personal ex-
perience and task ability in decoding performance and reconstruction quality of selective
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attention. For instance, one participant displayed chance-level performance across all au-
ditory ROIs, while another participant with musical experience showed relatively higher
identification performance. This implies that factors such as individual expertise may influ-
ence the decoding accuracy of auditory attention. These findings underscore the necessity to
consider individual differences in future research ventures exploring the psychological and
neural correlates of attentional modulation. This approach will deepen our understanding of
the neural mechanisms underlying selective auditory attention.





Chapter 9

General discussion

9.1 Summary

In this study, I introduce a novel approach for unconstrained neural sound reconstruction
from fMRI activity, utilizing "brain-like" auditory features and an audio-generative model. In
chapter 4, I conducted a decoding analysis using various auditory features from anatomically
defined regions of interest (ROIs) in the auditory cortex. This analysis led us to identify "brain-
like" features derived from the sound recognition DNN model that mirror the hierarchical
structure of the auditory system.

In chapter 5, I employed an audio-generative transformer to convert these decoded
DNN features into high-fidelity audio signals. This approach enabled us to predict a concise
representation of a Mel-spectrogram, a codebook representation, based on the decoded DNN
features. Our model was capable of reconstructing complex spectral-temporal patterns,
broadly maintaining content and quality similar to the actual sound stimulus. This finding
was validated through both qualitative and quantitative evaluations. However, I acknowledge
room for improvement, specifically in detailing the content within speech or music sequences.

In chapter 6, I found that our sound reconstruction remained robust even when certain
categories were not present during the training phase. This finding suggests that our proposed
model does not merely match brain data to training examples. Instead, it appears to synthesize
sounds using a combination of elemental features.
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Chapter 7 underscores the critical role that hierarchical auditory areas and DNN features
play in the sound reconstruction process. I elucidate the importance of parallel hierarchical
structures present in both the human auditory system and DNNs. These structures can be
harnessed to improve the efficiency of sound reconstruction, demonstrating the potential of
our proposed model to reconstruct the information encoded in individual ROIs.

In chapter 8, I extended our study to "cocktail party conditions", illustrating the potential
of our model to reconstruct the subjective content of top-down auditory attention. The recon-
structed sounds were more likely to reflect the attended stimulus rather than the unattended
one. These findings provide evidence that our reconstruction method mirrored the perceptual
contents of subjective listening experiences under complex soundscapes.

9.2 Hierarchical nature of brain auditory processing

The reconstruction model proposed in this research makes use of only the spatial patterns
of voxels, without time information, to reconstruct sound. This approach builds upon the
findings of several previous studies. For instance, research has indicated that the brain is
capable of processing temporal information in a compact form and that fMRI is able to
capture this compact information. In addition, the detailed patterns of these voxels could
potentially facilitate the decoding or reconstruction of more nuanced temporal information.
For instance, the study by Hasson et al. (2008) demonstrated that the hierarchical processing
in visual system to compactly process temporal information from early visual area to higher
area when subject see the silent movies. Moreover, the research conducted by Nishimoto
et al. (2011) showed that the temporal information of natural scenes a person was observing
could be decoded from voxel patterns in fMRI data. Furthermore, Santoro et al. (2017)
developed a computational model that decoded the physical features of natural sounds from
high spatial resolution 7T fMRI responses. These findings suggest that it might be possible
to reconstruct unconstrained sounds without needing an exact temporal alignment between
neural recordings and auditory stimuli.

In our analysis, we identified "brain-like" features from sound recognition deep neural
networks (DNNs) that exhibit hierarchical processing analogous to the human auditory
system. These features consistently outperformed other auditory features in decoding perfor-
mance, aligning with previous encoding analyses of systematic model-brain correspondence
(Tuckute et al., 2023). Interestingly, we did not observe a clear hierarchical correspondence
between individual auditory regions of interest (ROIs) and the layers within the DNN model
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in our decoding performance. This contradicts what previous encoding analyses with DNNs
have suggested (Kell et al., 2018). Recent studies using intracranial recordings have pointed
towards a distributed functional organization within the human auditory cortex, suggesting a
potential parallel information processing across the auditory cortex (Hamilton et al., 2021;
Nourski et al., 2014). This aligns with our results, which indicate that auditory cortical ROIs
participate in both distributed and hierarchical processing. While our decoding analysis
utilized anatomically defined ROIs, future studies could benefit from employing voxels spec-
ified by tonotopic or encoding analyses, providing further insight into the auditory hierarchy
and its representations.

Despite no discernable difference in feature decoding performance across individual ROIs,
we observed variations among individual ROIs concerning the quality of the reconstructed
sound. We found that the core region showed superior identification performance in low-level
representations and acoustic features, while this performance declined when moving towards
the peripheral areas. In contrast, high-level representations performed slightly better in the
PBelt and A4 compared to A1. This pattern is consistent with previous encoding studies
(Norman-Haignere et al., 2022), which propose that neurons near the primary auditory cortex
engage in local integration and show selectivity towards generic acoustic representations.
Simultaneously, neurons near non-primary regions partake in longer-time integration and
exhibit a preference for category selectivity. These findings suggest the potential of our
proposed model to reconstruct the information encoded in individual ROIs.

However, in our pursuit to improve the signal-to-noise ratio (SNR) of fMRI samples, we
computed each fMRI sample by averaging three consecutive functional volumes from the
onset of the stimuli and taking the trial average of the same test sound stimuli. These methods
enhanced both the decoding performance of features and the quality of sound reconstruction.
Interestingly, it was observed that sounds generated from non-averaged fMRI samples still
retained perceptual content and quality. This observation suggests that the application
of advanced decoding methods could provide possible avenues for improving single-trial
reconstructions. These advancements could have far-reaching implications, particularly for
real-time sound reconstruction and applications in the domain of brain-machine interfaces
(BMIs).
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9.3 Externalization of auditory perceptual experiences

In chapter 8, we delved further into the capability of reconstructed sounds to encapsulate
subjective listening experiences. Our model was expanded to cover "cocktail party" condi-
tions to examine whether our reconstructions mirrored subjective listening experiences. We
discovered that the reconstructed sounds tended to reflect the attended sound more than the
unattended one. This outcome aligns with previous studies that proposed decoded auditory
features, such as envelope (Ding and Simon, 2012a; O’Sullivan et al., 2015), spectrogram
(O’Sullivan et al., 2017), and trajectory (Bednar and Lalor, 2020), derived from brain re-
sponses during attention tasks, are more akin to the attended sound rather than the unattended
one. Despite the limited temporal resolution inherent to fMRI, our study demonstrated the
feasibility of sound reconstruction during attention-demanding tasks. Furthermore, our recon-
structed sounds were more reflective of the attended sound than the unattended one. These
findings provide evidence that our reconstruction method accurately mirrored the perceptual
contents of subjective listening experiences under complex auditory environments.

Notably, in our auditory attention analysis, we observed individual differences in recon-
struction performance. Subject S4, for instance, substantially outperformed other subjects
in feature decoding and sound reconstruction. This subject, who has an extensive musical
background, reported ease in focusing on a specific sound in a multi-speaker environment.
This finding suggests that personal experiences and task strategies could potentially influence
the decoding performance of selective attention. Hence, it is beneficial to consider individual
differences and task strategies in future research that seeks to explore the psychological and
neural correlates of attention modulation.

9.4 Bridging the gap between sound and neuroimaging
using DNN

A notable finding in our research is the effectiveness of codebook representation and audio
transformer in bridging the gap between high-dimensional spectrograms and the low temporal
resolution of neuroimaging data. The SpecVQGAN effectively performed dimensionality
reduction and served as a perceptually rich prior, facilitating sound reconstruction (Dhariwal
et al., 2020; Iashin and Rahtu, 2021; Liu et al., 2021; Zhao et al., 2020). Visualization of
patch patterns associated with each code revealed that the SpecVQGAN captures a broad
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range of spectral and temporal characteristics of sounds. This finding supports the model’s
versatility in reconstructing a variety of sounds from brain responses.

However, as the performance of reconstruction using only the codebook representations
was suboptimal, it is clear that identifying brain-like features is critical. The decoding of
these features from the audio transformer significantly enhanced the temporal resolution of
the reconstructed sound by adapting to the time-varying spectral characteristics captured by
the codebook. Especially, the audio transformer, with its inherent self-attention mechanism,
allows it to effectively model the dependencies between different parts of the sound signal,
regardless of their position in time. This characteristic endows the transformer with the
capability to understand the intricate, time-varying spectral patterns in the sound data, which
is instrumental in successfully decoding the temporal dynamics from fMRI data. This
suggests that the audio transformer not only aids in the sound reconstruction process but
also facilitates the temporal decoding of brain activity, providing a closer approximation
to real-time auditory experience. The key here is the transformer’s ability to adapt and
reconstruct the temporal dynamics encoded in the brain’s response, which is an aspect not
captured by the codebook alone. This underscores the complementary roles played by the
codebook and the audio transformer in achieving high-quality sound reconstruction.

Looking forward, the effectiveness and generalizability of our model open up potential
avenues for future research. One such direction could be the exploration of our model’s
ability to reconstruct pure tones. Furthermore, the unique insight provided by the codebook
could be exploited to understand better and model the neural processes underlying auditory
perception.

9.5 Future applications

This thesis has demonstrated our model’s capability in reconstructing arbitrary sounds,
effectively capturing both their perceptual content and quality from human brain activity.
As I move forward, I extend our investigations into two key potential areas: the domain of
musical experiences and the intriguing interplay between vision and audition.

Firstly, I will explore the application of these methods in the reconstruction of musical
experiences. By leveraging diverse auditory stimuli, specifically focusing on drum beats
and rhythm parts, I will engage a broad range of musical experiences across various genres
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and instruments. This will serve to further test our model’s capabilities and expand our
understanding of how complex musical sounds are processed and represented in the brain.

Secondly, I will delve into the fascinating crossmodal interactions between vision and
audition, particularly the phenomenon of sound-induced visual reconstruction. By employing
state-of-the-art deep neural network models, I aim to investigate how auditory stimuli can
influence the reconstruction of visual experiences, thus shedding light on the depth and extent
of intermodal perceptual interactions within the human brain.

Through these explorations, I hope to not only showcase the potential versatility and
applicability of our proposed sound reconstruction model but also to further our understanding
of the brain’s processing and representation of complex sensory information. This will pave
the way for future developments in neuroscience, psychology, artificial intelligence, and
multimedia arts, demonstrating how our model can serve as a powerful tool in these fields.
I invite readers to join us as I venture into these exciting new territories in the following
sections.

9.5.1 Music loop

One promising application of our sound reconstruction model lies in the arena of music
synthesis from brain activity. This exciting intersection of neuroscience and music technology
presents a unique opportunity to decode and recreate the intricate neural processes that
underpin our musical experiences.

In the past, numerous studies have made significant strides in exploring the neural basis
of music perception and production. For example, Alluri et al. (Alluri et al., 2012) conducted
an investigation into the neural underpinnings of timbral, tonal, and rhythmic features of a
naturalistic musical stimulus. Their findings suggest a broad brain network involved in the
processing of individual acoustical features during the listening experience, encompassing
cognitive, motor and limbic brain circuitry. This work provides a comprehensive insight
into the neural representation of different musical features, emphasizing the importance
of considering music as a multi-faceted, holistic experience. Furthermore, (Sturm et al.,
2015) explored the neural correlates for the differential perception of chord progressions
and note onsets in music, and the effects of these on perceived musical tension. multivariate
regression-based method successfully extracted onset-related brain responses from ongoing
EEG data, highlighting the dynamic relationship between the stimulus’s sharpness, spectral
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centroid, rhythmic complexity, and the listeners’ EEG response. These findings not only
underline the utility of individual EEG responses in assessing musical feature perception but
also contribute to our understanding of the factors that influence musical tension. However,
the task of reconstructing musical experiences from human brain activity itself has historically
been viewed as a challenging endeavor due to the intricate nature of these experiences.

By applying our sound reconstruction model to music, I aim to delve deeper into these
complex auditory experiences. From perceived melodies to rhythm patterns, I aim to decode
these experiences from fMRI responses and transform them into high-quality musical sounds.
This approach promises to extend our understanding of the neural underpinnings of music and
open up exciting prospects in a variety of fields, including music technology, neuroscience,
neurorehabilitation, and assistive technologies.

Methods

Subject For this preliminary analysis, I engaged the participation of a subject (S1) who had
previously been involved in the exploratory stage of establishing our sound reconstruction
model. This participant agreed to further contribute to this new phase of research. Before the
scanning sessions began, the participant was fully informed about the purpose and procedures
of the study, and they provided their informed consent. Our study protocol was approved by
the Ethics Committee of the Advanced Telecommunications Research Institute International
(approval no: 106), ensuring our adherence to the ethical guidelines and principles established
in the Declaration of Helsinki.

Stimuli I selected rhythmically music pieces from the Apple Loop dataset (all royalty-free
musical loops copyright © 2011, Apple Inc). These stimuli underwent meticulous assessment
by human listeners to ensure sound quality. For the training set, I chose 200 unique rhythmic
patterns, and for the test set, I selected 50. All audio clips incorporated into the fMRI dataset
were resampled to a frequency of 22050 Hz, center-cropped to a duration of 8 seconds, and
normalized to ensure equivalent energy levels.

fMRI experiments In the fMRI experiments, subjects passively listened to various audio
clips of natural sounds. I recorded whole-brain fMRI responses while subjects listened to 200
stimuli for the training dataset and 50 for the test dataset. Each subject underwent a training
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session followed by a separate test session. Each session included eight functional runs, none
exceeding 90 minutes. Each run started with a 30-second rest period, followed by 55 blocks
of 8-second stimulus presentations (consisting of 50 unique sound stimuli and five randomly
interspersed behavioral task blocks), and ended with a 10-second rest period. This resulted
in a total run duration of 8 minutes. To maintain subject concentration, I incorporated a
one-back repetition detection task in which subjects were required to press a button if the
subsequent stimulus was identical to the previous one. These repetition blocks (five per run)
were excluded from the analysis. Experiments for all training and test sets were repeated
four times.

Similar to the sound reconstruction experiments, I adjusted the preprocessed functional
data by shifting them forward by 2 seconds to account for the hemodynamic delay. To
augment the number of available data samples, I slid a 4-second time window across the
original 8-second stimulus at 2-second intervals. For each 4-second sound stimulus, an fMRI
sample was created by averaging the three consecutive functional volumes after the stimulus
onset. This procedure resulted in three data samples from each original 8-second trial,
yielding a total of 800 training samples. For the test datasets, I improved the Signal-to-Noise
Ratio (SNR) by averaging the fMRI responses to identical sound stimuli across multiple
repetitions. This method resulted in a total of 150 test samples (50 stimuli × 3 samples per
stimulus = 150 samples).

DNN models While our natural sound reconstruction model could generate sound that
contains some perceptual contents belonging to the music category, it was missing details
crucial for the reconstruction of music loops. To resolve this, I retrained our Deep Neural
Networks (DNN) model using datasets from different rhythmic music pieces.

In this study, I employed the Expanded Groove Midi Dataset (EGMD) (Callender et al.,
2020). The EGMD is an augmented version of the Groove Midi Dataset, containing approx-
imately 45000 drum sound stimuli. I used this dataset to train our SpecVQGAN for the
codebook and the Audio Transformer. For the Audio Transformer, I utilized the conv5_1
layer of a VGGish-ish model.

Following this, I used the fMRI dataset to train a decoder that predicts conv5_1 from the
VGGish-ish, calculated from the fMRI data. For the reconstruction of sounds, the process
starts with the brain decoder, which decodes DNN features from the fMRI responses in the
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test dataset. The decoded DNN features are then transformed into codebook representations
with the aid of the Audio Transformer. These codebook representations are subsequently
converted back into Mel-spectrograms using a codebook decoder. Lastly, a spectrogram
vocoder converts these Mel-spectrograms into audio waveforms.

Results and discussion

Our research involved conducting a sound reconstruction analysis of a music loop (Figure
9.1). The results indicate that the reconstructed spectral and temporal patterns exhibit a
resemblance to the original stimuli, particularly the spectral patterns. However, the model
was unable to capture precise beats, rhythms, and subtle variations in timbre. Quantita-
tive evaluations demonstrated fidelity performances below 60% and quality evaluations,
particularly when using acoustic features, were around chance level, at approximately 50%.

Despite these modest performance results, this application could still serve as a useful
tool for unveiling how rhythmic patterns and temporal information are encoded within the
brain. Even though the outcomes were not optimal in both quantitative and qualitative terms,
this endeavor paves the way for further exploration into the neural mechanisms underlying
our interactions with music. This application not only contributes to our understanding of the
neural encoding of music but could also serve as the foundation for innovative applications in
music technology and neurorehabilitation. The potential for these advances extends beyond
the scope of scientific understanding, paving the way for novel musical compositions drawn
directly from our neural responses to music.

9.5.2 Reconstruction of crossmodal interaction

Crossmodal interaction, a key concept in neuroscience and cognitive science, presents the
idea that our perception isn’t simply an amalgamation of independent sensory responses.
Instead, it is an integrated process where information from diverse sensory modalities can
reciprocally influence each other. This dynamic interaction between our sensory systems
disrupts the traditional concept of independent sensory pathways, offering a more nuanced
understanding of human perception.

This integrative sensory processing has been investigated in several studies. For instance,
Meyer et al. (Meyer et al., 2010) employed multivariate pattern analysis of fMRI data to
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Fig. 9.1 Sound reconstruction of music loops. (A) Reconstructed Mel-spectrogram of music
loops. The top row showcases the original Mel-spectrogram of the presented sound. The
subsequent five rows display the Mel-spectrograms reconstructed from the AC and the
conv5_1 layer. The three consecutive samples seen in the diagram originate from a single
stimulus. (B) Evaluating reconstructed sounds. The fidelity and quality of the reconstructions
were gauged through an identification analysis which incorporated Mel-spectrogram pixels,
hierarchical representation, and acoustic features. Each bar in the diagram signifies the mean
identification accuracy, while the error bar denotes the 95% confidence interval, which was
estimated using 50 data points.
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demonstrate that even in the absence of auditory stimulation, early auditory cortices’ activity
in humans was linked to the subjective experience of sound. Subjects were exposed to silent
visual stimuli that suggested sound, and the resulting activity in the auditory cortex varied,
reflecting sounds related to distinct categories such as different animals, musical instruments,
and objects. This study underlined that early sensory cortex activity is more representative of
perceptual experience than just sensory stimulation.

In a similar vein, Vetter et al. (Vetter et al., 2014) explored the impact of auditory
perception and imagery on brain activity patterns in the early visual cortex without any
feedforward visual stimulation. Their work showed that category-specific information from
both complex natural sounds and imagery could be inferred from early visual cortex activity
in blindfolded participants. Importantly, this coding of non-retinal information was common
across actual auditory perception and imagery and could potentially be mediated by higher-
level multisensory areas. The coding process was found to be resilient to minor shifts in
attention and working memory, but it was susceptible to cognitively demanding visuospatial
processing. Significantly, the information fed back to the early visual cortex was category-
specific and could be generalized to sound exemplars of the same category. This suggested
the presence of abstract information feedback rather than precise pictorial feedback. The
study provides compelling evidence that the early visual cortex receives non-retinal input
from other brain areas generated by auditory perception and/or imagery, bearing common
abstract information.

These research findings highlight the intricate relationship between our sensory systems
and the role of crossmodal interactions in shaping our perceptions. In the next section, I
endeavor to extend these insights, applying the latest Deep Neural Network techniques to
experiment with the generation of images from brain responses during auditory perception.
The exploration of such crossmodal interactions holds substantial implications for under-
standing sensory processing disorders, advancing the development of sensory prosthetics,
and enhancing human-computer interfaces.

Methods

Stimuli I utilized the same sound dataset for this study as used in the previous brain
encoding analysis (Norman-Haignere et al., 2015). This dataset comprises 165 stimuli that
are frequently encountered in everyday life, each with a stimulus duration of 2 seconds.
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fMRI experiments In our fMRI experiments, I engaged a single participant (S1) who
passively listened to various audio clips of natural sounds. I recorded whole-brain fMRI
responses while the subject listened to a set of 165 unique sound clips. I utilized a sparse
sampling technique in our fMRI experiments. This method ensured that no scans were
conducted during the audio playback, creating an environment for the participant to listen to
the sound stimuli without any scanner noise interference. The Repetition Time (TR) was set
at 4.4 seconds, during which 2 seconds were allocated for scanning and 2.2 seconds for the
stimulus playback while the scanner was inactive.

The experiment was conducted over eight sessions involving a single participant. Each
session was composed of eight functional runs, with none exceeding a duration of 90 minutes.
Every functional run began with a pre-rest period of 30.8 seconds, followed by a stimulus
period that was repeated five times. Each repetition of the stimulus period consisted of a
2-second stimulus, a 0.2-second silence gap, and 2 seconds of scanner time, making up a
total of 4.4 seconds per repetition. After the conclusion of the stimulus repetitions, the run
ended with a post-rest period of 13.2 seconds. The experiments for all the training and test
sets were performed four times. In the preprocessing stage of the functional data, I made
adjustments by shifting the preprocessed functional data forward by 4.4 seconds (1 functional
volume), to account for the hemodynamic delay.

DNN models The DNN model used in this study is rooted in the framework of the Con-
trastive Language–Image Pre-training (CLIP) model (Radford et al., 2021). The original
CLIP model is designed to capture the relationships between image and text data by training
on a vast number of text-image pairs. The model uses noise-contrastive estimation where
text-image pairs from the same sample are used as positive examples, and all other pairs
in the same batch are treated as negatives. This creates a shared embedding space where
both image and text representations are projected, enabling the model to map the continuous
conceptual space of images to the discrete symbolic space of text. This has resulted in a
successful application in tasks such as zero-shot classification and cross-modal retrieval, and
has also been extended to cross-modal generation.

The unique feature of Wav2CLIP is that it extends the CLIP’s capabilities to include
the audio modality (Wu et al., 2021). The central principle here is the creation of shared
representations across different modalities - audio, image, and text - by mapping them to
a common latent space. This multi-modal capability is realized by training the model on
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a variety of tasks across different modalities using a vast dataset derived from the internet,
with a contrastive loss function being used to distill image embeddings from CLIP into
audio encoders. The result is a powerful model that is adept at handling tasks involving
the interaction and integration of multiple sensory modalities, making it an ideal tool for
exploring cross-modal interactions.

The architecture of Wav2CLIP includes additional multi-layer perceptron (MLP) projec-
tion layers, adding flexibility to the distillation process. Notably, the weights of the original
CLIP model are kept frozen throughout distillation. The image encoder is then traused as a
frozen feature extractor, allowing audio encoder to be trained to have The shared embedding
representations. These in this model are not only versatile and rich but also resilient against
minor shifts in attention and working memory, making it well-suited for demanding cognitive
tasks such as those investigated in our study.

Upon training the audio encoder, I computed the shared embedding representations using
the sound stimuli from our fMRI experiments. I then used the fMRI dataset to train a decoder
that could predict the shared representations from the Wav2CLIP audio encoder based on the
fMRI data. Following this, I used a pre-trained Vector-Quantized Variational AutoEncoder
Generative Adversarial Network (VQGAN) model, a method capable of generating images
from the CLIP embedding space (Esser et al., 2021). By using this model, I were able to
generate images based on the decoded features predicted from the fMRI data. In essence, our
approach transformed neural activity, recorded during the presentation of auditory stimuli,
into shared representations, and finally into visual images. This process illustrates the power
of these multimodal models and showcases the potential of using deep neural networks in
understanding cross-modal cognitive processing.

Results and discussion

In this study, I used fMRI data acquired while the subject was exposed to natural sounds
to train a brain decoder aimed at predicting multimodal embedding representations. The
decoding performance from both the auditory cortex (AC) and the visual cortex (VC) is
displayed in Figure 9.3. The results showed a modest correlation of 0.2 from the AC, whereas
the VC presented a nearly negligible correlation. This indicates a rather restrained response
from the sensory cortex when predicting multimodal shared representations, aligning with
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Fig. 9.2 Training strategy for multimodal shared embedding representation using Contrastive
Language-Image Pre-training (CLIP). This figure illustrates the process of training the cross-
modal embedding representation, which makes use of image, text, and sound. The approach
entails freezing the previously trained CLIP image encoder, obtained from text and image
datasets. This frozen image encoder then functions as a feature extractor, enabling the
training of the audio encoder to generate shared embedding representations. This strategy
fosters an interconnected network of cross-modal representations, enhancing the overall
depth and versatility of the model. The figure was adapted from Wu et al. (2021), with
copyright held by IEEE in 2021.
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earlier findings that suggest limited crossmodal interaction from sensory regions in category
classifications (Vetter et al., 2014).

Following this, I proceeded to synthesize images from the decoded features. As shown in
Figure 9.2, the examples of images synthesized from crossmodal brain responses seem to
possess meaningful semantic properties. This implies that the Wav2CLIP audio embeddings
project into a significant shared space where individual components from the mixture can be
distinguished. Through this crossmodal application exploration, I can visually interpret the
brain’s responses to various auditory stimuli.

Our perceptual experiences involve interactions across multiple modalities. The methods
proposed in this research are particularly relevant in this context. As shown in previous
research (Iashin and Rahtu, 2021), using machine learning to train a transformer can create
a new spectrogram from a pre-trained spectrogram codebook given a set of video features.
This could allow the generation of sounds from images that are perceptually related, expand-
ing the possibilities beyond sound-induced visual reconstruction to visual sound-induced
reconstruction.

In the framework I propose for sound reconstruction, training an audio transformer using
this multimodal shared representation could indeed make such reconstructions possible. This
process could translate our complex perceptual experiences into an audible format that can be
shared, heard, and interpreted by others. This could pave the way for a more comprehensive
understanding of our perceptual experiences and contribute to the field of neurorehabilitation,
music technology, and beyond.

9.6 Concluding remarks

In this thesis, I explored the potential for reconstructing sounds from human brain activity.
The challenge lay in the intricate nature of temporal sequences in sounds and the constraints
posed by neuroimaging modalities. This research contributes to overcoming these hurdles
by harnessing the hierarchical structure of brain auditory processing, finding parallels with
DNN models, and leveraging recent advancements in audio-generative models. The proposed
method combines brain decoding of auditory features with an audio-generative model,
offering a promising approach to sound reconstruction.
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Fig. 9.3 Decoding performance of multimodal embedding representations derived from
natural sounds. This bar chart depicts the decoding performance drawn from the auditory
cortex (AC) and visual cortex (VC). Each bar represents the mean decoding performance for
subject S1, calculated across all feature units of the embedding representations. This visual
representation showcases the efficacy of our model in deciphering the complex interplay of
features within natural sound stimuli across different brain regions.

From orchestra sounds From sports announcer

Fig. 9.4 Examples of synthesized images derived from decoded embedding representations
in the auditory cortex (AC) when a subject hears natural sounds. The left figure presents
samples generated when the subject is exposed to orchestra sounds, while the right figure
showcases results when the subject hears sports announcers.
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My research first showcased that our model could reconstruct complex spectral-temporal
patterns closely mirroring the original sound stimulus’s content and quality. It was resilient
in synthesizing sounds, even when specific categories were not part of the training phase,
suggesting that the model is not merely fitting the brain data to training examples. However,
there is room for enhancing the reproduction of finer details, particularly in speech or music
sequences.

Next, I analyzed the variations in sound reconstruction across individual ROIs. The core
region was superior in identifying low-level representations and acoustic features, although
its performance decreased towards peripheral regions. High-level representations, on the
other hand, showed some improvement in certain peripheral regions. This highlighted
the importance of hierarchical auditory areas and DNN features in sound reconstruction,
suggesting that parallel structures in the human auditory system and DNNs can enhance
sound reconstruction efficiency.

I also explored how reconstructed sounds encapsulate subjective listening experiences
under cocktail party conditions. The sounds reconstructed from the auditory cortex tended to
reflect the attended sound more than the unattended one, suggesting a more nuanced process
of selective auditory attention that emphasizes category-specific elements of focused stimuli.

The ability to externalize subjective auditory experiences has far-reaching potential. It
bridges the internal cognitive processes with their external manifestations, creating oppor-
tunities for advancements in diverse areas like communication through imagined sounds,
diagnostics for auditory hallucinations in mental health, artistic creation, and basic neuro-
science research. This research contributes to a deeper understanding of the neural basis
of auditory perception, providing a valuable tool to study the human mind and fostering
collaborative efforts in the field of neuroscience.
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