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Abstract

Optical fiber communication systems require digital signal processing for effi-
cient and precise impairment compensation. Imperfection in transmitter and re-
ceiver devices is becoming one of the limiting factors as the symbol rate increases
and complicated advanced modulation formats with high spectral efficiency are
adopted. The characteristics of impairments due to device imperfection are
usually unknown, and an adaptive filter, in which the filter coefficients are con-
trolled on the basis of the filter output so that it approaches the desired feature,
is commonly used to compensate for such unknown impairments. Meanwhile,
conventional digital signal processing consists of multiple filter blocks to com-
pensate for various impairments that occur in an optical fiber communication
system in a block-wise manner. In this architecture, an adaptive filter can be
applied to the last filter block since the outputs, except for the one of the last
block, include signal distortion due to impairments that should be compensated
in other blocks, and thus the objective function to be minimized for an adaptive
filter is hard to construct. This fact makes efficient compensation of transmitter
and receiver imperfection difficult.

In this thesis, we investigate an adaptive multi-layer filter approach, in which
the filter structures in layers are determined by physical models of impairments
that occur in an optical fiber communication system by considering the mu-
tual non-commutativity of impairments. By applying the data-driven approach
found in the learning of deep neural networks to these unfolded multi-layer fil-
ters, the filter coefficients in all the layers can be controlled by gradient descent
and back propagation from the last layer’s outputs. This data-driven control
of the model-based multi-layer filters provides efficient and precise impairment
compensation even for transmitter and receiver imperfection.

This thesis is organized as follows. Chapter 2 reviews the fundamentals of
finite impulse response filters and the mathematical models of impairments in
optical fiber communication systems.

Chapter 3 investigates an adaptive multi-layer filter architecture to efficiently
compensate for linear IQ impairments that occur in a transmitter and receiver,
considering the order of impairments and their mutual non-commutativity. The
adaptive filter coefficient control for multiple cascaded filters with stochastic
gradient descent and back propagation is addressed. The performance of im-
pairment compensation for IQ skew in a transmitter and receiver by the adap-
tive multi-layer filters is evaluated in a numerical simulation and a transmission
experiment.

The filter coefficients in each layer in the adaptive multi-layer filter architec-
ture after the convergence of the adaptive control should include information on
compensated impairments that are unknown before compensation if the adap-
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tive multi-layer filter architecture works appropriately. In Chapter 4, the filter
coefficients of the adaptive multi-layer filters are utilized for simultaneous and
individual monitoring of transmitter and receiver impairments. The model re-
lating IQ impairments to the widely linear filter response to compensate for
them by considering the order in which IQ skew, IQ imbalance, and IQ phase
deviation occur for the transmitter and receiver is derived.

Linear IQ impairments that occur in a transmitter and receiver are treated
in Chapters 3 and 4, while imperfection in transmitter and receiver devices can
also cause nonlinear impairments. Chapter 5 extends the adaptive multi-layer
filter architecture to compensate for Tx and Rx nonlinearity by incorporating
Volterra filter layers.

Although the adaptive multi-layer filter architecture can compensate for
impairments that occur in an optical fiber communication system, including
transmitter and receiver impairments, efficiently and precisely, in other words,
forward propagation is efficient compared to corresponding one large adaptive
filter, the computational complexity for back propagation is still large, as the one
for deep neural networks. It can be problematic, especially when the adaptive
multi-layer filter architecture is applied to an ultra-long-haul transmission since
the temporal spread due to chromatic dispersion becomes large. In Chapter 6,
the mutual non-commutativity of SL and WL filters is revisited, and an adap-
tive multi-layer filter architecture to mitigate the computational complexity of
back propagation for applying it to an ultra-long-haul optical fiber transmission
is proposed.

Back propagation control of model-based multi-layer filters can be widely
applicable if the filter models to be considered are differentiable. In Chapter
7, optimization by SGD and back propagation of multiple layers is applied
to a filter that includes an internal sampling rate conversion. A frequency-
domain adaptive filter with fractional oversampling controlled by SGD and back
propagation is investigated for efficient adaptive MIMO equalization with a large
temporal spread.

Chapter 8 gives the conclusion and outlook of this work.



Acknowledgment

I would like to express my respect and sincere gratitude to Prof. Kazunori
Hayashi for his guidance throughout this work. His deep insight into the problem
has improved this research. His constructive comments have been a source of
my inspiration.

A part of this work has been done in my workplace. I would like to express my
sincere appreciation to Emmanuel Le Taillandier de Gabory for his support and
permission to commit to this doctoral work while my working. His discussion
and expertise in optical communication systems helped me. I am grateful to
Kohei Hosokawa for his support in working.

I would like to thank Masaki Sato for his experimental support of high-
frequency electrical components.

I would like to thank Prof. Tadashi Wadayama for his fruitful presenta-
tion on the application of deep learning to communication systems, which has
inspired the idea of this work.

I am grateful to Dr. Norifumi Kamiya for his advice on FEC schemes and
discussion on learning models.

I would also like to acknowledge many others who have supported this work.

Finally, I would like to express my gratitude to my parents and family for
the support they gave me throughout my life.

iii





Contents

1 Introduction 3

2 Fundamentals of filters and optical fiber communication sys-
tems 7

2.1 FIR filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 SL filters . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 WL filters and their equivalent IQ representations . . . . 9

2.1.3 Adaptive filters . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Impairments in optical fiber communication systems . . . . . . . 13

2.2.1 Linear impairments in optical domain . . . . . . . . . . . 15

2.2.2 Linear impairments in electrical domain . . . . . . . . . . 18

3 Adaptive multi-layer strictly linear and widely linear filters for
compensation of transmitter and receiver impairments 21

3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Mutual commutativity of multiple impairments . . . . . . 25

3.2 Adaptive multi-layer strictly linear and widely linear filters . . . 25

3.2.1 Forward propagation . . . . . . . . . . . . . . . . . . . . . 28

3.2.2 Loss function . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.3 Back propagation . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.4 Approximate calculation . . . . . . . . . . . . . . . . . . . 33

3.2.5 Computational complexity . . . . . . . . . . . . . . . . . . 35

3.3 Evaluation in simulation . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Evaluation in transmission experiment . . . . . . . . . . . . . . . 40

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Simultaneous and individual impairment monitoring using coef-
ficients of adaptive multi-layer strictly linear and widely linear
filters 49

4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Individual IQ impairment monitoring from WL filter coefficients 50

4.2.1 Models of Tx or Rx impairments . . . . . . . . . . . . . . 51

4.2.2 Relation between impairments and WL filter coefficients . 52

4.3 Evaluation in simulation . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Evaluation in transmission experiment . . . . . . . . . . . . . . . 58

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

v



vi

5 Adaptive multi-layer filters incorporated with Volterra filters
for impairment compensation of transmitter and receiver non-
linearity 65
5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2 Adaptive multi-layer filters incorporated with Volterra filters . . 67

5.2.1 Forward and back propagation of Volterra filter . . . . . . 69
5.3 Evaluation in simulation . . . . . . . . . . . . . . . . . . . . . . . 72
5.4 Evaluation in transmission experiment . . . . . . . . . . . . . . . 79
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6 Tx and Rx impairment compensation for ultra-long-haul single-
mode fiber transmission by adaptive multi-layer filters with
augmented inputs 91
6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.2 Adaptive multi-layer filters with augmented inputs and augmented

CD compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2.1 Equivalent architecture for cascaded WL and SL filters . 93
6.2.2 Adaptive multi-layer filter architecture for efficient back

propagation . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.3 Evaluation in simulation . . . . . . . . . . . . . . . . . . . . . . . 97
6.4 Evaluation in transmission experiment . . . . . . . . . . . . . . . 107
6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7 Frequency-domain adaptive MIMO filter with fractional over-
sampling using stochastic gradient descent and back propaga-
tion 115
7.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.2 Fractional oversampling frequency-domain adaptive MIMO filter

controlled by SGD . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.2.1 Frequency-domain adaptive filter from viewpoint of back

propagation . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.2.2 Fractional oversampling frequency-domain adaptive MIMO

filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.2.3 Computational complexity . . . . . . . . . . . . . . . . . . 126

7.3 Evaluation in transmission experiment over coupled 4-core fibers 128
7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8 Conclusion and outlook 139



Chapter 1

Introduction

Introducing coherent detection and digital signal processing (DSP), referred to
as digital coherent [1–3], into optical fiber communication systems has opened
the way to flexible compensation of various impairments that occur in optical
fiber communication systems including carrier phase and frequency offset [4],
chromatic dispersion (CD) [5], polarization mode dispersion [6], and nonlinearity
through fiber propagation [7]. Not just effects that occur in optical fiber propa-
gation, impairments due to the imperfection of optical or electrical components
in a transmitter and receiver are also dealt with DSP [8, 9]. As the adoption
of advanced modulation formats with a high spectral efficiency [10–12] as well
as a higher symbol rate [13–15] have proceeded, precise compensation of these
various effects in optical fiber communication systems is becoming crucial. Since
optical fiber communication systems are usually for large-capacity transmission,
DSP for them consequently is required to operates at high throughput. There-
fore, high efficiency in terms of computational complexity, as well as precise
compensation, is necessary for DSP.

DSP for impairment compensation of optical fiber communication systems
is regarded as a filter in a broad sense. Filters for impairment compensation can
be categorized as deterministic and adaptive, ones in which the model and pa-
rameters of impairments to be compensated are fully known; and ones in which
the filter response is adjusted by using filter inputs and outputs. Chromatic
dispersion compensation is usually performed by using an all-pass filter with
the inverse response of accumulated CD in a transmission line on the bases of
its theoretical model [5,16], and it is an example of the former. Compensation of
nonlinear impairment that occurs in optical fiber propagation of a signal with a
conventional split-step back propagation method is also deterministic [7,17–19].
A well-known example of a later adaptive filter in optical fiber communication
systems is one for compensation of polarization state variation and polarization
mode dispersion in optical fiber propagation [5,6,20,21]. Compensation of phase
and frequency offset between a carrier and a local oscillator, also referred to as
carrier recovery [4,22–24], is broadly adaptive since it exploits information from
input signals.

Impairments that occur in an optical communication system have different
features, such as linear or nonlinear, single-input single-output process or multi-
input or multi-output (MIMO), fully known or unknown. Conventional DSP for
optical fiber communication systems deals with these multiple impairments in

1



2

a block-wise manner; that is, multiple impairments are compensated individu-
ally in different ways by deterministic or nondeterministic filters according to
the characteristics of each impairment. One reason to adopt this block-wise
architecture is efficiency in terms of computational complexity. A filter that
can compensate for all the relevant impairments in a lump must be redundantly
large, with full cross-terms and nonlinear terms having a large temporal spread.

When we look to other communities, machine learning approaches, in which
the whole process is learned by exploiting intrinsic relations of given data, have
widely been used and succeeded. Deep learning based on neural networks op-
timized by gradient descent with back propagation has been a major trend.
It has greatly succeeded in pattern recognition and natural language process-
ing [25]. Machine learning approaches are regarded as versatile since they do
not rely on elaborate designs of factorized individual functions that comprise
the interested process. In optical fiber communication communities, machine
learning-based approaches have also been investigated, for example, for optical
performance monitoring from received waveforms [26], design of optical Raman
amplifiers [27], end-to-end optimization of a signal format and receiver-side pro-
cessing [28–30], and compensation of nonlinearity that occurs in optical fiber
propagation and transmitter (Tx) and receiver (Rx) devices [31–33]. The appli-
cation of machine learning in optical fiber communication systems has attracted
more attention.

The great success of machine learning approaches in a broad range of fields
is based on two features. The one is that a neural network, or multi-layer per-
ceptron, can provide a precise approximated representation for any complicated
function to solve a problem [34]. The other is that the desired process can be
acquired by learning a parametrized function with given data without explicitly
designing the function. The latter is relied on the optimization of parameters
by gradient descent and gradient calculation based on the chain rule of deriva-
tives, which is referred to as back propagation [35]. However, machine learning
approaches, especially with neural networks and back propagation, have not
widely and practically succeeded in impairment compensation for optical fiber
communication systems. One of the reasons for that is the computational com-
plexity. Although a neural network has provided satisfactory performance for
problems in a wide range, its computational complexity can be problematic for
optical fiber communication systems in which a high throughput DSP is usu-
ally required. In contrast, it has been pointed out that the approach of back
propagation can be applied not only to neural networks but also to any dif-
ferentiable parametrized function, which is utilized in today’s machine learning
platforms as automatic differentiation [36]. An example of optimization with
back propagation in communication systems can be seen in the optimization of
an iterative process by unfolding it and embedding trainable parameters, re-
ferred to as deep unfolding [37–39]. In this thesis, we focus on the application
of back-propagation-based and data-driven approaches in impairment compen-
sation for optical fiber communication systems.

A conventional adaptive filter for impairment compensation can already be
categorized in data-driven approaches. Several algorithms for adaptive control
of the filter coefficient are known [5, 40], which are based on gradient descent,
though a conventional adaptive filter uses its direct inputs and outputs of the
filter. Meanwhile, in conventional DSP of multiple filter blocks for optical fiber
communication systems, an adaptive filter can be applied to the last filter block
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since the outputs, except for the one of the last block, include signal distortion
due to impairments that should be compensated in other blocks, and thus the
objective function to be minimized for an adaptive filter is hard to construct.
Thus, the adaptive control of a conventional adaptive filter is an optimization
within a block. Whereas, when outputs of each block are described as a differen-
tiable function in terms of its internal parameters and inputs, optimization with
back propagation can be applied over multiple blocks, and it opens a way to
the optimization of an entire impairment compensation. Given the above back-
ground, we take advantage of back propagation in impairment compensation
for optical fiber communication systems to expand and improve a conventional
block-wise architecture for impairment compensation with reasonable computa-
tional complexity. A filter to compensate for all the relevant impairments that
occur in an optical fiber communication system is divided into blocks, i.e., multi-
layers, that have different features, such as linear or nonlinear and single-input
single-output or MIMO, to compensate for each of the interested impairments.
The filter coefficients of all layers are adaptively controlled by using gradient
descent and back propagation to minimize the loss function that is constructed
from the last layer outputs. This approach is a kind of unfolding of an adaptive
filter. This can also be regarded as the use of domain knowledge in applying a
machine learning-based approach in optical fiber communication systems. We
can introduce several constraints to blocks in layers by considering a physi-
cal model of an optical fiber communication system. In addition, reexamining
impairment compensation DSP in optical fiber communication systems from
the viewpoint of machine learning, which has wide-range applications, should
provide further extensibility in incorporating technologies in other fields in the
future.





Chapter 2

Fundamentals of filters and
optical fiber communication
systems

Most impairments that occur in optical fiber communication systems and are
also practically subject to compensation are characterized by their impulse re-
sponse in the time domain or the transfer function in the frequency domain,
which stems from the theory of linear time-invariant systems. This chapter re-
views the fundamentals of finite impulse response (FIR) filters. Then, we also
review the mathematical models of impairments in optical fiber communication
systems. In DSP for communication systems, impairments and filters for com-
pensation of them are usually described by models with a discrete-time, though
we deal with models with a continuous time here. Signals and impairments have
their physical entities in real communication systems.

In this thesis, we use the following notations; R: the set of real numbers,
C: the set of complex numbers, ∗: complex conjugate, i: the imaginary unit,
T: transpose, †: Hermitian conjugate, ◦: Hadamard product, I: an identity
matrix with an appropriate size, F : Fourier transform1, F−1: inverse Fourier
transform, ⋆: convolution.

2.1 FIR filters

In communication systems, we often deal with signals that have narrow spectral
components around a specific frequency [41]. These signals are referred to as
band-pass signals and the frequency is referred to as a carrier frequency. A
band-pass signal xb(t) ∈ R at a carrier frequency ω0/(2π) is represented as

xb(t) = Re[x(t)eiω0t], (2.1)

where x(t) ∈ C is the complex envelope of the band-pass signal. t is the con-
tinuous time. The band-pass signal xb(t) has its spectral component around
the angular frequencies of ω0 and −ω0, whereas the complex envelop x(t) has a

1F [x](ω) = X(ω) = 1√
2π

∫∞
−∞ x(t) exp(iωt)dt

5
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spectral component around the zero frequency. Thus, the complex envelope x(t)
is also called the low-pass equivalent. The real and imaginary parts of x(t) are
referred to as in-phase (I) and quadrature (Q) components, which are denoted
by xI(t), xQ(t) ∈ R. Thus,

x(t) = xI(t) + ixQ(t). (2.2)

We refer to a low-pass equivalent signal just as a signal here.
An effect on a signal or its compensation is modeled by a filter. Since we deal

with complex-valued signals, a filter is usually modeled with a complex-valued
response and complex-valued input and output. However, this filter model im-
poses a non-negligible restriction to a response. That is, a complex-valued
filter with a complex-valued input and output cannot handle IQ components
independently [42]. Some impairments that occur in optical communication
systems, especially in Tx and Rx devices, for example, the timing misalign-
ment between IQ components (IQ skew), the difference of average amplitudes
of IQ components (IQ imbalance), and the orthogonal phase deviation between
IQ components from π/2 (IQ phase deviation), have different responses for IQ
components though they are linear. They cannot be modeled by a complex-
valued filter with a complex-valued input and output signal. In this literature,
these filters are referred to as strictly linear (SL). A real-valued MIMO filter
with real-valued inputs and outputs of IQ components is required to model a
linear process with different responses for IQ components. As we will see later,
a real-valued MIMO filter with real-valued inputs and outputs is equivalent to
a complex-valued response filter whose inputs are a complex-valued signal and
its complex conjugate, which is referred to as widely linear.

2.1.1 SL filters

We first deal with SL filters. The input and output of an SL filter with single
input and single output x(t), y(t) ∈ C are related with convolution as

y(t) =

∫ ∞

−∞
h(τ)x(t− τ)dτ, (2.3)

where h(t) ∈ C is an impulse response of the filter. In the case of a SL filter
with K inputs and K outputs, the inputs x1(t), . . . , xK(t) ∈ C and the outputs
y1(t), . . . , yK(t) ∈ C are related as

yi(t) =

K∑
j=1

∫ ∞

−∞
hij(τ)xj(t− τ)dτ. (2.4)

The frequency-domain representation of Eq. (2.4) is given as

Yi(ω) =

K∑
j=1

Hij(ω)Xj(ω). (2.5)

When we consider the input and output vectors of the SL filter with K inputs
and K outputs, they are related asY1(ω)

...
YK(ω)

 =

H11(ω) · · · H1K(ω)
...

. . .
...

HK1(ω) · · · HKK(ω)


X1(ω)

...
XK(ω)

 , (2.6)
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and the matrix

HC(ω) =

H11(ω) · · · H1K(ω)
...

. . .
...

HK1(ω) · · · HKK(ω)

 (2.7)

includes all the information of the response of this SL filter.
On the other hand, the complex-valued signal x(t) can be represented by

its IQ components xI(t), xQ(t) ∈ R, as x(t) = xI(t) + ixQ(t). When the filter
response h(t) is represented by its real and imaginary parts as h(t) = hI(t) +
ihQ(t), the input-output relation of a SL filter of Eq. (2.3) is rewritten as(

yI(t)
yQ(t)

)
=

∫ ∞

−∞

(
hI(τ) −hQ(τ)
hQ(τ) hI(τ)

)(
xI(t− τ)
xQ(t− τ)

)
dτ, (2.8)

which implies that SL filters cannot handle the IQ components independently.
We refer to a representation of Eqs. (2.3) or (2.4) as a complex-valued phasor
representation and a representation of Eq. (2.8) as a real-valued IQ representa-
tion.

2.1.2 WL filters and their equivalent IQ representations

Equation (2.8) corresponds to a real-valued 2×2 MIMO filter, though a strict
constraint is imposed on the real-valued response matrix to be an SL filter. In
contrast, a general real-valued 2×2 MIMO filter is written as(

yI(t)
yQ(t)

)
=

∫ ∞

−∞

(
hII(τ) hIQ(τ)
hQI(τ) hQQ(τ)

)(
xI(t− τ)
xQ(t− τ)

)
dτ. (2.9)

The representation of Eq. (2.9) can handle the different responses independent
of IQ components, such as IQ skew and IQ crosstalk. The frequency-domain
representation of Eq. (2.9) is(

YI(ω)
YQ(ω)

)
=

(
HII(ω) HIQ(ω)
HQI(ω) HQQ(ω)

)(
XI(ω)
XQ(ω)

)
, (2.10)

where

HR(ω) =

(
HII(ω) HIQ(ω)
HQI(ω) HQQ(ω)

)
(2.11)

is the frequency-domain response of a real-valued 2×2 MIMO filter.
A WL filter corresponds to a complex-valued phasor representation of Eq.

(2.9). A 2 × 1 WL filter2, in which the complex-valued inputs are x(t) and its
complex conjugate x∗(t), is represented by

y(t) =

∫ ∞

−∞
h(τ)x(t− τ)dτ +

∫ ∞

−∞
h∗(τ)x

∗(t− τ)dτ, (2.12)

where h(t), h∗(t) ∈ C are complex-valued filter impulse responses. Equation
(2.12) can be rewritten as

y(t) =

∫ ∞

−∞
(h(τ)h∗(τ))

(
x(t− τ)
x∗(t− τ)

)
dτ. (2.13)

2We denote the size of a filter by the size of the response matrix.



8

Furthermore, it can be written when we use the signal vector (y(t), y∗(t))T

augmented with the complex conjugate as(
y(t)
y∗(t)

)
=

∫ (
h(τ) h∗(τ)
h∗
∗(τ) h∗(τ)

)(
x(t− τ)
x∗(t− τ)

)
dτ. (2.14)

The augmented signal vector (y(t), y∗(t))T with the complex conjugate is related
to the signal vector in the real-valued IQ representation (yI(t), yQ(t))

T as(
y(t)
y∗(t)

)
= T

(
yI(t)
yQ(t)

)
, (2.15)

where

T =

(
1 i
1 −i

)
, (2.16)

and T satisfies
T †T = TT † = 2I. (2.17)

Multiplying T from the left of Eq. (2.9), we obtain(
h(τ) h∗(τ)
h∗
∗(τ) h∗(τ)

)
=

1

2
T

(
hII(τ) hIQ(τ)
hQI(τ) hQQ(τ)

)
T †, (2.18)

or (
hII(τ) hIQ(τ)
hQI(τ) hQQ(τ)

)
=

1

2
T †
(
h(τ) h∗(τ)
h∗
∗(τ) h∗(τ)

)
T. (2.19)

Therefore, a 2×1 WL filter and a real-valued 2×2 MIMO filter with the IQ
representation are equivalent. In the frequency domain, Eq. (2.19) corresponds
to (

HII(ω) HIQ(ω)
HQI(ω) HQQ(ω)

)
=

1

2
T †
(

H(ω) H∗(ω)
H∗

∗ (−ω) H∗(−ω)

)
T. (2.20)

In the case of a 2K×K MIMO WL filter, the input-output relation is

yi(t) =

K∑
j=1

(∫ ∞

−∞
hij(τ)xj(t− τ)dτ +

∫ ∞

−∞
h∗ij(τ)x

∗
j (t− τ)dτ

)
. (2.21)

When we consider a augmented signal z with the complex conjugate for z = x
or y as

zi =

{
zi (i = 1, . . . ,K)

z∗i−K (i = K + 1, . . . , 2K)
(2.22)

whose length is 2K, and also consider ĥij as

ĥij =

{
hij (i, j = 1, . . . ,K)

h∗i(j−K) (i = 1, . . . ,K, j = K + 1, . . . , 2K)
(2.23)

whose size is K×2K, Eq. (2.21) becomes

yi(t) =

2K∑
j=1

∫ ∞

−∞
ĥij(τ)xj(t− τ)dτ. (2.24)
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Moreover, considering

hij =


hij (i, j = 1, . . . ,K)

h∗i(j−K) (i = 1, . . . ,K, j = K + 1, . . . , 2K)

h∗
∗(i−K)j (i = K + 1, . . . , 2K, j = 1, . . . ,K)

h∗
(i−K)(j−K) (i, j = K + 1, . . . 2K)

(2.25)

whose size is 2K×2K, the augmented output y is given by

y
i
(t) =

2K∑
j=1

∫ ∞

−∞
hij(τ)xj(t− τ)dτ, (2.26)

which results in y
1
(t)
...

y
2K

(t)

 =

∫ ∞

−∞

 h11(τ) · · · h1(2K)(τ)
...

. . .
...

h(2K)1(τ) · · · h(2K)(2K)(τ)


 x1(t− τ)

...
x2K(t− τ)

 dτ. (2.27)

2.1.3 Adaptive filters

A filter whose response is autonomously controlled by using its input and out-
put with a certain criterion is referred to as an adaptive filter. Adaptive filters
are widely used in systems including unknown responses for inverse modeling
and interference cancellation [40]. In optical fiber communication systems, an
adaptive filter is used to compensate for polarization state variation and polar-
ization mode dispersion, which are stochastic processes and time-varying, over
an optical fiber transmission line [5, 6].

An adaptive filter for impairment compensation in optical fiber communi-
cation systems is usually implemented in the digital domain3. An adaptive
linear filter is modeled as shown in Fig. 2.1. The input signal x of the adap-
tive filter suffers some impairments to be compensated, and the objective of
the adaptive filter is to obtain the output signal y in the sense of minimizing
a certain error from a desired property by adjusting the filter response h. We
consider a SISO FIR filter4 with a complex-valued response with a length of M ,
as h = (h[0], . . . , h[M −1])T. The input and output signals x, y ∈ C at a timing
integer k are related with a convolution, as

y[k] =

M−1∑
m=0

h[m]x[k −m] = hTx, (2.28)

where x = (x[k], . . . , x[k − M + 1])T. The filter coefficients h are updated by
an algorithm to minimize the loss function consisting of an error of the output
from a desired property. Constant modulus algorithm (CMA) and data-aided or
decision-directed LMS are widely used in optical fiber communication systems.
These algorithms are based on gradient descent. Since a generalized loss is hard
to treat, as in the case of learning neural networks, stochastic gradient descent
is adopted.

3Analog systems can be implemented in the digital domain with a sufficiently high sampling
rate [43].

4An extension to a MIMO filter is straightforward.
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error

desired property

Figure 2.1. Model of adaptive filter for impairment compensation

Wirtinger derivatives

In communication systems, complex-valued signals and filter coefficients are
treated. A loss function should be real-valued to be minimized. Gradient descent
of filter coefficients in terms of the loss function is regarded as a simultaneous
update of real and imaginary parts of filter coefficients with partial derivatives.
In this case, Wirtinger derivatives give a good perspective.

When f is a function of independent real-valued variables u and v via a
complex-valued variable z = u + iv, the total derivative df is given by using
partial derivatives ∂f/∂u, ∂f/∂v, as

df =
∂f

∂u
du+

∂f

∂v
dv. (2.29)

Small amounts of du, dv are related to dz and dz∗ as

dz = du+ idv, (2.30)

dz∗ = du− idv. (2.31)

The total derivative of Eq. (2.29) can be rewritten as

df =
∂f

∂z
dz +

∂f

∂z
dz∗, (2.32)

where
∂f

∂z
=

1

2

(
∂f

∂u
− i

∂f

∂v

)
, (2.33)

∂f

∂z∗
=

1

2

(
∂f

∂u
+ i

∂f

∂v

)
(2.34)

are Wirtinger derivatives5.
We consider the update of the real-valued variables u and v with gradient

descent regarding f . When u, v are updated by

u → u− α
∂f

∂u
, (2.35)

5The Cauchy–Riemann equations, which are necessary and sufficient conditions for complex
differentiable, or holomorphic, corresponds to ∂f/∂z∗ = 0.
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v → v − α
∂f

∂v
, (2.36)

where α is the step size, z is updated by

z → z − 2α
∂f

∂z∗
, (2.37)

according to Eqs. (2.33) and (2.34). The above corresponds to the update rule
of a complex-valued variable by gradient descent.

Constant modulus algorithm

CMA is an algorithm for the adaptive control of coefficients of an adaptive filter.
The loss function of CMA is the squared magnitude of the error of the output
from a constant amplitude, which is especially suitable for modulation formats
having a constant amplitude, such as QPSK. The instantaneous loss function ϕ
is

ϕ = (r2 − |y[k]|2)2, (2.38)

where r is the desired amplitude. According to the update rule by gradient
descent of Eq. (2.37), the filter coefficients are updated by

h → h+ 4αex∗y[k], (2.39)

where e = r2 − |y[k]|2.

Least mean square algorithm

The LMS algorithm uses an error of the output of the filter from the desired out-
put symbol to consist of a loss function. The data-aided LMS utilizes pre-known
desired symbols, which are transmitted as a training pattern. The decision-
directed LMS uses the feature that the transmitted symbols are the elements
of the set of the modulation format, and the symbols after decision are used as
desired symbols. The instantaneous loss function of the LMS algorithm is

ϕ = |d[k]− y[k]|2, (2.40)

where d[k] is a known training symbols in the case of the data-aided LMS or
a decision output of y[k] in the case of the decision-directed LMS. The filter
coefficients are updated by

h → h+ 2αex∗, (2.41)

where e = d[k]− y[k].

2.2 Impairments in optical fiber communication
systems

In this study, we consider an optical fiber communication system with coherent
detection whose schematic diagram is shown in Fig. 2.2. Digital data is con-
verted to continuous electric signals with a digital-to-analog converter (DAC)
with a certain encoding. They are mapped to IQ components of an optical
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signal having two orthogonal polarization modes, i.e., PDM, by modulating a
continuous-wave (CW) source from a laser diode (LD). An optical signal is mul-
tiplexed to WDM signals and transmitted through optical fiber spans consisting
of an SMF and optical repeater amplifier that compensates for propagation loss
of a span. An optical signal after optical fiber transmission is demultiplexed
to a single WDM channel, and IQ components of two polarization modes are
received with coherent detection. In optical fiber communication systems with
coherent detection, received signals of IQ components are usually sampled by
an analog-to-digital converter, and demodulation and decoding including im-
pairment compensation are performed in the digital domain.
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Figure 2.2. Schematic diagram of a optical fiber communication system with
WDM and coherent detection. ENC: encoding, DAC: digital-to-analog con-
verter, MOD: modulation, LD: laser diode, SMF: single-mode fiber, EDFA:
erbium-doped fiber amplifier, CRx: coherent receiver, ADC: analog-to-digital
converter, DEM: demodulation, DEC: decoding

Several impairments occur in the optical fiber communication system. Some
impairments occur in the optical domain, that is, in optical fiber propagation.
Others occur in the electrical domain, that is, in the Tx or Rx electric devices.
Although some impairments are nonlinear, most dominant effects are modeled
as linear since the systems operate around the linear region to obtain a good
performance. A response of a linear impairment in the optical fiber communi-
cation systems is represented by an SL or WL filter. We refer to impairment
and a filter that compensates for it together as a process.

Linear impairments that occur in the optical domain, including CD, PMD,
polarization state variation, and the carrier phase/frequency offset due to the
frequency difference of the signal carrier and the LO source in the Rx67, are
modeled by SL processes since an optical signal is modeled by its complex-
valued phasor representation, or lowpass equivalent.

In contrast, linear impairments that occur in the electrical domain8, includ-
ing the timing misalignment of IQ components (IQ skew), the mismatch of av-

6In optical fiber propagation, nonlinear distortion due to the optical Kerr effect is non-
negligible. A polarization dependent loss is another impairment in the optical domain, though
it is usually tiny in an SMF transmission.

7In long-haul SMF transmission systems, amplified spontaneous emission (ASE) from op-
tical repeater amplifiers to compensate for span losses is a dominant limiting factor for the
transmission performance. ASE noise is a non-deterministic process and it is modeled by an
additive white Gaussian (AWGN) noise. We concern here deterministic effects that can be
compensated. The performance of a WDM transmission system over SMF spans, including
nonlinear distortion, is well estimated by the GN model [44].

8More precisely, linear impairments that occur when IQ components are treated indepen-
dently.
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eraged amplitudes of IQ components (IQ imbalance), and the orthogonalization
error of IQ components (IQ phase deviation), affects IQ components differently.
Thus, they are modeled by WL processes. We review the physical and mathe-
matical model of each dominant impairment in the optical fiber communication
system.

2.2.1 Linear impairments in optical domain

A conventional SMF supports two propagation modes of orthogonal polariza-
tions. Thus, propagation effects over an SMF are generally modeled by a 2×2
process. In the cases of a linear effect, the frequency response becomes a 2×2
matrix9. Optical propagation over an SMF towards the z axis with random
polarization coupling is modeled by a nonlinear Schrödinger equation, up to the
second order, as [46,47]

∂

∂z
u(z, t) = −Au+ iB(0)u−B(1) ∂

∂t
u− i

2
B(2) ∂

2

∂t2
u+ i

8

9
γ||u||22u, (2.42)

where u = (uX, uY) is the optical signal (complex envelop) of two polarizations10

in the complex-valued phasor representation. A,B(0), B(1), B(2) are 2×2 matri-
ces. A corresponds to the propagation loss of the fiber. In the case without PDL,
it reduces to (α/2)I, where α is the loss coefficient of the electric field, which
relates to the conventional fiber propagation loss coefficient αdB in the unit of
dB/km as αdB = 20α log10 e. B(0) accounts for coupling between polarization
modes. B(1) relates to the inverses of the group velocities of two polarization
modes, which especially accounts for PMD. B(2) accounts for CD. The last term
of the right-hand side of Eq. (2.42) corresponds to the nonlinear term. || · ||2
denotes the L2 norm. γ relates to the fiber nonlinear refractive index n2 and
the effective area of the core Aeff as γ = n2ω0/(cAeff) where c and ω0 are the
speed of light in vacuum and the angular reference frequency, respectively. The
nonlinear term accounts for various nonlinear effects such as self-phase mod-
ulation, cross-phase modulation, and four-wave mixing [46], when the optical
signal consists of multiple WDM channels.

Optical signal propagation according to Eq. (2.42) can be calculated in a
split-step manner [46]. Namely, we consider a small distance ∆z where the
linear and nonlinear effects are mutually negligible. Equation (2.42) with only
the linear terms without the nonlinear term has an analytical solution in the
frequency domain. On the contrary, Eq. (2.42) with only the nonlinear term
without the linear terms has an analytical solution in the time domain. In the
split-step method, the linear and nonlinear propagation effects in a small step
are executed alternatively. This procedure corresponds to ignoring the mutual
non-commutativity of the linear and nonlinear effects in a small step.

Although the influence of the nonlinear term on the conventional optical
communication systems with WDM is not negligible, the primary sources to
(deterministically) change the signal waveform profile are linear terms, especially
CD and PMD including the variation of the polarization state. Moreover, these
effects can be fully compensated by linear filters in the digital domain at the

9It corresponds to a Jones matrix [45].
10That is, Jones vector.
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Rx side11. We focus on these linear impairments that occur in optical fiber
propagation.

Chromatic dispersion

An optical fiber made of silica is a slightly dispersive media. CD corresponds
to the term of ∂2u/∂t2 of Eq. (2.42). In an SMF transmission, the dependence
of CD on two polarizations is small and usually neglected. In this case, the
matrix B(2) is regarded as B(2) = β2I. The frequency response of CD with the
propagation distance z is

HC
CD(ω) =

(
HCD(ω) 0

0 HCD(ω)

)
= HCD(ω)I, (2.43)

and

HCD(ω) = exp

(
−i

DCDλ0z

4πc
ω2

)
, (2.44)

where DCD is the dispersion coefficient of the fiber, which is usually designated
by the unit of ps/nm/km and is related to β2 as DCD = −2πcβ2/λ

2
0. λ0 is the

reference wavelength. CD leads to temporal signal spreading, which can be very
large in a long-haul SMF transmission.

Polarization state variation

The two propagation modes of orthogonal polarizations that an SMF support
are quasi-degenerate. Coupling between two polarization modes occurs through
optical fiber propagation, leading to the variation of the polarization state. Since
dissipation of the optical signal including PDL is attributed to the matrix A,
the response of the polarization state variation is usually modeled by a unitary
matrix R as [50]

HC
PS(ω) = R. (2.45)

Polarization mode dispersion

Although the two polarization modes of an SMF are quasi-degenerate, an SMF
shows slight birefringence due to core distortion in the fiber manufacturing pro-
cess and mechanical bending/pressure in operation. This leads to the difference
in the group delays of two polarization modes, more precisely two principal
states of polarization. When an optical signal does not align with the principal
states of polarization, these different group delays cause temporal signal spread-
ing, referred to as PMD. PMD corresponds to the term of ∂u/∂t of Eq. (2.42).
The degree of birefringence of a fiber depends on its local distortion. We focus
on a small fragment ∆zk of a fiber in which B(1) can be regarded as constant.
B(1) can be diagonalized by a unitary matrix R as

B(1) = R−1ΛR, (2.46)

11Many efforts have also been provided to compensation of nonlinear effects in optical fiber
propagation [7, 17, 18, 48]. Compensation for nonlinear impairments in the digital domain
usually requires a high computational complexity, and its practical implementation is still
open. Since linear deterministic impairments can be fully compensated, the fundamental limit
in optical fiber communication systems is determined by ASE noise and nonlinear impairments,
which results in the well-known nonlinear Shannon limit [49].
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and Λ = diag(β1+, β1−). β1± correspond to the first-order propagation constant
of two principal states of polarization. Ru corresponds the principal states of
polarization. For optical fiber communication systems, we usually concern only
the difference ∆β1 = β1+ − β1− and Λ = diag(+∆β1/2,−∆β1/2) since the
mean value of β1± does not contribute to the signal distortion. In this case, the
frequency response of PMD of a small segment ∆zk is

HC
PMD,k(ω) = R−1

k

(
exp(iωτDGD,k/2) 0

0 exp(−iωτDGD,k/2)

)
Rk, (2.47)

where τDGD,k = ∆β1∆zk is the differential group delay. The overall PMD of a
fiber is a multiplication of all small K segments as

HC
PMD(ω) = HC

PMD,1(ω)H
C
PMD,2(ω) · · ·HC

PMD,K(ω). (2.48)

The temperature and mechanical stress affect a fiber’s local distortions, and
thus PMD usually temporally varies in an optical fiber communication environ-
ment. The typical speed of variation of PMD in long-haul SMF transmissions
is the order of kHz [51]12.

Phase/frequency offset

An optical signal wave is converted to a base-band low-pass equivalent signal
by interfering with LO in coherent reception. A CW laser source with a near
frequency with a signal laser source operating in free-running, that is, having a
slightly different frequency, is used for an LO. This configuration is referred to
as intradyne reception [4]. Since modulation of a signal is performed on a signal
laser source, the relative phase and frequency offset between the signal and LO
laser sources appear as a phase rotation of the low-pass equivalent signal. A
phase rotation, especially due to a frequency offset, is modeled by the time-
domain multiplication of a time-varying phase factor rather than convolution in
the time domain. In conventional coherent optical communication systems with
PDM, the two orthogonal polarizations have a common phase and frequency
offset since the same laser source is supplied for two polarizations in an optical
modulator and a polarization-diversity coherent receiver. Given that the phase
and (angular) frequency offset at a time t are θLO and ωLO

13, the optical signal
yj(t), (j = X,Y ) after the phase/frequency offset is written by the signal before
the offset xj(t) as

yj(t) = exp(i(θLO + ωLOt))xj(t), (2.49)

which indicates the temporal response

hLOj(τ, t) = δ(τ) exp(i(θLO + ωLO(t− τ))). (2.50)

When we can assume the phase temporal variation is small in a certain
duration, or we only consider the phase offset θLO, the frequency response can
be regarded as

HC
LO(ω) = eiθLOI. (2.51)

12It is observed that the variation can be the order of 100 kHz due to lightning [52].
13An instantaneous frequency offset is related to the variation of the phase offset as ωLO(t) =

∂θLO(t)/∂t.
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2.2.2 Linear impairments in electrical domain

Not only in optical fiber propagation, but impairments also occur in electri-
cal/optical devices in a Tx and Rx. Figure 2.3 shows the configuration of a Tx
and Rx for a coherent optical fiber communication system. Schematic diagrams
for one polarization are shown14. In these configurations of a Tx and Rx, I and
Q components have independent physical substances, that is, physical (electri-
cal) paths. Thus, impairments on IQ components are modeled by a WL process.
Since two polarization modes can be treated independently in a Tx and Rx for
PDM, we consider the model of a 2×1 WL process for one polarization mode
here15.

�/2
LD

DAC

�/2
LD

BP
D

BP
D AD

C

(a) (b)

Figure 2.3. Schematic diagram of configuration of (a) Tx and (b) Rx for an
optical fiber communication system for one polarization. BPD: balanced photo
detector.

IQ skew

IQ skew corresponds to the timing misalignment between the I and Q compo-
nents. This usually occurs due to the difference in the lengths of electrical paths
of IQ components. When the timing delay of the IQ components is τ(ω), the
frequency response of IQ skew in the IQ representation is

HR
skew(ω) =

(
exp(iωτ(ω)/2) 0

0 exp(−iωτ(ω)/2)

)
, (2.52)

which results in the identity matrix when τ(ω) = 0.

IQ imbalance

IQ imbalance corresponds to the mismatch of the averaged amplitude of the I
and Q components, which is usually caused by the non-uniformity of the gain
of electrical amplifiers for the I and Q components. The frequency response of

14We will discuss this configuration of a Tx and Rx in detail in the later chapter.
15If we have to treat IQ impairments over two polarization modes, we should consider a

4×2 WL process. This extension is straightforward.
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IQ imbalance in the IQ representation is

HR
imb(ω) =

(
1 + a(ω) 0

0 1− a(ω)

)
, (2.53)

where a(ω) is an indicator of the degree of imbalance16.

IQ phase deviation

The I and Q components ideally have the phase deviation of π/2 in the IQ
plane, though the imperfection of the devices of an IQ modulator or an optical
90◦ hybrid causes the phase deviation of the IQ components from π/2. When the
phase deviation from π/2 is ϕ(ω), the frequency response of IQ phase deviation
in the IQ representation is

HR
phase(ω) =

(
1 sinφ(ω)
0 cosφ(ω)

)
. (2.54)

16For the formalization of the degree of imbalance, there are slightly different styles [53].





Chapter 3

Adaptive multi-layer
strictly linear and widely
linear filters for
compensation of
transmitter and receiver
impairments

Digital coherent technology in optical fiber communications enables optical fields
to be accessed in the digital domain. It providing a flexible way to compensate
for various signal distortion. It also opens up possibilities to use advanced
modulation formats with high spectral efficiency such as higher order QAM.
For example, probabilistic constellation shaping (PCS) based on higher-order
QAM formats has attracted much attention because it can provide both fine
rate adaptability and high sensitivity approaching the Shannon limit for optical
communication systems.

Advanced modulation signals are generally susceptible to various impair-
ments. As a high symbol rate is pursued in optical fiber communication systems
up until now, impairments stemming from imperfections of high-speed devices
in the Tx and Rx come to have larger impact on the performance. Since the
characteristics of these impairments from device imperfections vary slightly due
to changes of environment, automatically compensating them with adaptive
equalization is desirable. In this chapter, we propose and evaluate an adap-
tive multi-layer SL&WL filter architecture to efficiently compensate for linear
IQ impairments that occur in a Tx and Rx. We first describe the concept of
the adaptive multi-layer SL&WL filter architecture and the input-output rela-
tions of layers, i.e., forward calculation. We then configure the loss function
to be minimized and derive gradient calculation over layers with back propa-
gation. The performance is evaluated in simplified numerical simulation with
a 32-Gbaud PDM-QPSK signal and in a transmission experiment of 32-Gbaud

19
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PDM-64QAM. The results show that they can compensate for IQ skew in both
Tx and Rx in the presence of CD, polarization rotation, and a frequency offset.

3.1 Background

We consider impairments in optical fiber communication systems and compen-
sation for them in the Rx-side DSP. When we consider a system with coherent
detection and PDM, deterministic impairments occur, as shown in Fig. 3.1. On
the Tx side, IQ impairments, such as IQ skew and IQ phase deviation in an
optical modulator and IQ imbalance in electric driver amplifiers, occur, referred
to as Tx impairments. In optical fiber propagation, CD and PMD with polar-
ization state variation occur. As described in the previous chapter, nonlinear
distortion due to the optical Kerr effects also occurs together in optical fiber
propagation, though we ignore it for simplicity here since linear impairments are
more dominant for signal distortion. On the Rx side, the phase and frequency
offset occurs in intradyne coherent detection. IQ impairments, such as IQ skew
and IQ phase deviation in a coherent receiver and IQ imbalance in electric trans-
impedance amplifiers, also occur on the Rx side, which are referred to as Rx
impairments.
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Figure 3.1. Impairments in coherent optical fiber communication system. CD:
chromatic dispersion, PMD: polarization mode dispersion.

Except for nonlinearity in optical fiber propagation1, these impairments de-
scribed above are all linear processes. Tx and Rx impairments affect IQ com-
ponents differently, and thus they are modeled as WL processes. In contrast,
CD and PMD with polarization state variation in optical fiber propagation are
SL (MIMO) processes. The phase/frequency offset is also an SL process. Since
WL processes include SL processes as specific cases, the total impairment that
includes all the relevant linear impairments shown in Fig. 3.1 is also modeled as
a WL (MIMO) process. Therefore, a WL filter can compensate all the relevant

1Nonlinear distortion can occur in Tx and Rx devices, which are discussed in a later
chapter.
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linear impairments. However, this WL filter becomes redundantly large to have
all the cross terms of IQ components of X/Y polarizations and cover the total
temporal spread.

A conventional DSP for impairment compensation in optical fiber commu-
nication systems compensates for impairments in a block-wise manner [5]. This
architecture enables efficient impairment compensation since the impairments
have different characteristics. For example, CD in an optical fiber communica-
tion system can be regarded as static2 and common for two polarizations, i.e.,
modeled with two single-input single-output processes for two polarizations.
The temporal spread caused by CD can be huge in long-haul SMF transmis-
sion. Whereas, PMD with polarization state variation is a MIMO process of
two polarizations and time-varying, which requires an adaptive filter to be com-
pensated. The temporal spread caused by PMD is relatively small compared to
that by CD.

Figure 3.2 shows a conventional DSP architecture for impairment compen-
sation. It does not include Tx and Rx impairment compensation. CD compen-
sation is performed first by static SL filters for couplex-valued received signals
of two polarizations. Compensation for PMD and polarization state variation,
which is referred to as polarization demultiplexing, is then performed by an
adaptive MIMO SL filter. Carrier recovery is performed to compensate for
the phase/frequency offset after or at the inner of polarization demultiplexing.
Polarization demultiplexing and carrier recovery is usually based on an error
of output symbols from the desired symbols in the IQ constellation. The ap-
propriate error is not accessible when large CD is accumulated on the signal.
Thus, polarization demultiplexing and carrier recovery are placed after static
CD compensation.
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Figure 3.2. Conventional DSP architecture for impairment compensation.

A conventional DSP architecture shown in Fig. 3.2 consists of SL filters
only. Therefore, it cannot compensate for Tx or Rx impairments which are WL
processes. A WL filter or its equivalent real-valued MIMO filter of IQ compo-
nents is required to compensate for Tx or Rx impairments [42]. Moreover, since
Tx and Rx impairments depend on the device imperfection, the response are
usually unknown and can be varied, for example, by the environment temper-

2If an optical path is fixed.
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ature. The situation becomes further complicated since SL impairments occur
in optical fiber propagation between the Tx and Rx, as shown in Fig. 3.1.

For these reasons, various approaches have been investigated to compensate
for Tx or Rx impairments in optical fiber transmission. In order to compensate
for Tx impairments, a real-valued MIMO filter for IQ components is placed af-
ter carrier recovery for each polarization [54]. The filter coefficient is adaptively
controlled on the basis of the error of the filter output. In order to compensate
for Rx impairments, CD compensation is performed independently on I and
Q components of two polarizations to avoid IQ mixing, and a complex-valued
adaptive 4×2 MIMO filter with the inputs of IQ components after independent
CD compensation is used [9]. An adaptive WL filter is also used to compensate
for Rx impairments together with CD [42]. In these approaches, either Tx im-
pairments or Rx impairments are compensated adaptively. For compensation
of both Tx and Rx impairments individually, ellipse correction and a k-means
clustering with a blind phase search [55] are used for compensation of Rx im-
pairments and Tx impairments, respectively, based on the features of signals
with IQ impairments in the IQ constellation plane [56]. In [57], IQ phase devia-
tion and IQ imbalance in the Rx are compensated by Gram-Schmidt orthogonal
procedure [8], IQ skew in the Rx is compensated by a complex-valued adaptive
4×2 filter with independent CD compensation for IQ components. Tx impair-
ments are compensated by two cascaded real-valued adaptive 4×4 MIMO filters
for IQ components of two polarizations. In a similar approach, two adaptive
4×2 WL filters are used for compensation of Tx and Rx impairments [58].

In these previous approaches, Tx impairment compensation and Rx im-
pairment compensation are performed in independent blocks3 in a block-wise
manner. When Tx and Rx impairments simultaneously occur in an optical fiber
communication system, which is a normal situation, it is inevitable for at least
one compensation block to work under the remaining impairments. In addition,
CD compensation is required first before an adaptive filter to compensate for
Rx impairments4 because adaptive control of filter coefficients is based on the
features of a transmitted signal5 and it does not work under signal distortion
due to large CD accumulation. Independent CD compensation for the IQ com-
ponents of the received signal is adopted to avoid IQ mixing caused by CD
compensation. It doubles the computational complexity of CD compensation.
Temporal spread due to CD can be very large in long-haul SMF transmission
compared to other impairments, and thus CD compensation requires a filter
with a large temporal spread.

Another approach to compensate for Tx and Rx impairments simultaneously,
an adaptive complex-valued 8×2 filter with independent CD compensation on
IQ components and augmented phase/frequency offset compensation is used
[59,60]. This approach can compensate for Tx and Rx impairments adaptively
and precisely, though it requires an enlarged adaptive MIMO filter resulting in
higher computational complexity.

3Filter coefficients of Tx and Rx impairment compensation are controlled within individual
blocks.

4Otherwise, CD is compensated together with Rx impairments by an adaptive WL filter.
5That is, a known transmitted symbol set like QAM or a constant amplitude of transmitted

symbols.
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3.1.1 Mutual commutativity of multiple impairments

Tx and Rx impairment compensation requires complicated filter structures de-
scribed above because of the mutual non-commutativity of impairments and
their compensation. As we have reviewed, primal linear impairments in optical
fiber communication systems can be modeled by the multiplication of a transfer
matrix in the frequency domain6. Impairments in the optical domain are MIMO
processes since an SMF supports two polarization modes. Those in the electri-
cal domain are also intrinsically MIMO processes of IQ components. Therefore,
multiple impairments are not mutually commutative in general, as the multipli-
cation of two matrices is not mutually commutative in general, which indicates
that we should consider the order of impairments carefully.

Some impairment is commutative with other impairments. For example,
the frequency response of CD, which is SL, represented by Eq. (2.43) in the
complex-valued phasor representation is diagonal, and thus it is commutative
with PMD whose frequency response is represented by Eq. (2.47). This fact
justifies the conventional block-wise DSP for impairment compensation in which
accumulated CD is compensated first and then PMD and the polarization state
variation are compensated [5,61,62]. In contrast, if we focus on one polarization
and consider the frequency response of CD in the IQ representation according
to Eq. (2.11), it becomes as

HR
CD(ω) =

1

2
T †
(
HCD(ω) 0

0 H∗
CD(ω)

)
T =

(
Re[HCD(ω)] −Im[HCD(ω)]
Im[HCD(ω)] Re[HCD(ω)]

)
,

(3.1)
where we use H∗CD(ω) = 0 and HCD(−ω) = HCD(ω). This frequency response
of CD in the IQ representation is no longer diagonal. The input IQ components
are complicatedly mixed after CD accumulation, which is referred to as IQ
mixing [9]. In consequence, CD cannot generally be commutative with another
WL process such as IQ skew. For example, when IQ impairments that occur in a
Tx and Rx, which are WL, are compensated in an Rx-side DSP in an optical fiber
communication system with large accumulated CD, the compensation order is
essential. The conventional DSP configuration shown in Fig. 3.2 is justified
because CD is commutative with PMD and polarization state variation7. The
mutual non-commutativity of impairments and compensation of them provides
a critical role in this thesis.

3.2 Adaptive multi-layer strictly linear and widely
linear filters

Since there are multiple impairments that are not mutually commutative in an
optical fiber communication system, impairment compensation should be ex-
ecuted in the reverse order in which the impairments occur. Considering the
mutual commutativity of impairments, an ideal DSP configuration to compen-
sate for impairments in the reverse order in which they occur when any of the
two are not mutually commutative is shown in Fig. 3.3. In this configuration,

6This is a consequence of the linear time-invariant system.
7When nonlinearity in optical fiber propagation cannot be ignored, this is no longer valid.

A clear example is found in fiber nonlinearity compensation by a split-step method [7].
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Rx impairment compensation is placed before CD compensation, which makes
it difficult to adaptively optimize the coefficients within the Rx impairment
compensation block locally since CD is accumulated on the signal.
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Figure 3.3. Ideal DSP configuration to compensate for impairments in the re-
verse order in which they occur when any of two are not mutually commutative.

In order to resolve this problem, gradient descent and gradient calculation
with back propagation from the output through multiple cascaded blocks, i.e.,
layers, are adopted in this study. Gradient calculation with back propagation
is widely used in machine learning literature with neural networks [63], while it
can be applied to a computational graph in which elements are connected with
differentiable input-output relations [37]. From this point of view, the output
of an SL or WL filter is differentiable in terms of its input and filter coefficients.
By applying gradient calculation with back propagation to multi-layered filters
like Fig. 3.3, we can optimize the filter coefficients in all the layers to mini-
mize the loss function consisting of the final output, in which all the relevant
impairments should be compensated, without relying on local optimization of
each middle layer. Precise compensation of multiple impairments is achieved by
non-local optimization. Moreover, filters in multiple layers can be designed to
compensate for the specific impairment(s) by considering the characteristics of
the impairment(s) such as SL or WL, and no cross terms or MIMO8, which en-
ables efficient Tx and Rx impairment compensation in terms of computational
complexity while using conventional SL CD compensation and polarization de-
multiplexing.

Figure 3.4 shows the multi-layer SL and WL MIMO filters corresponding
to impairment compensation shown in Fig. 3.3 to compensate for all the lin-
ear impairments including Tx and Rx impairments. The multi-layer filters are
composed of five layers for Rx impairment compensation, CD compensation, po-
larization demultiplexing, carrier recovery, and Tx impairment compensation,
in this order. We regard all the filters as half-symbol spaced FIR filters for
simplicity.

The first layer consists of two 2×1 WL filters for two polarizations9 to com-

8Arrangement and design of filters can be regarded as an example of taking domain-specific
knowledge of optical fiber communication systems into account for impairment compensation.

9We can regard them as a WL MIMO filter with no polarization cross-terms.
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LossStochastic gradient descent

2×1 WL ×2 2×1 WL ×2
1×1 SL ×2

1×1 SL ×2

2×2 SL

CD comp.

Pol. demux
CR

Tx comp.Rx comp.

Forward propagation

Backward propagation

Figure 3.4. Adaptive multi-layer SL&WL filter architecture for compensation
of Tx and Rx impairments. The filter coefficients in all layers are controlled by
stochastic gradient descent with back propagation.
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pensate for IQ impairments in Rx whose coefficients are controlled adaptively.
The second layer consists of two 1×1 SL filters for CD compensation whose co-
efficients are static. The third layer consists of a 2×2 SL MIMO filter for polar-
ization demultiplexing whose coefficients are adaptively controlled fast enough
to track the polarization state variation in fiber propagation. The fourth layer
consists of two 1×1 1-tap SL filters to compensate for the phase and frequency
offset. The fifth layer consists of two adaptive 2×1 WL filters for compensation
of IQ impairments in Tx. In this multi-layer FIR filter architecture, the input
samples of longer duration are related to the final outputs in one symbol time
slot, going back over the filter layer.

The filter coefficients of the second layer h
[2]
i (i = 1, 2, or X,Y for two

polarizations) for CD compensation are set on the basis of the physical model
of CD as10

h
[2]
i = F−1[HCDC[ω]], (3.2)

HCDC[ω] = exp

(
i
cDCDz

4πν2
ω2

)
, (3.3)

where c, DCD, z, and ν are the speed of light, the dispersion coefficient, the
transmission distance, and the carrier frequency of the signal, respectively. The

fourth layer h
[4]
i executes the phase rotation for carrier recovery as

h
[4]
i [k] = exp(−iθi[k]), (3.4)

where k is the sample timing integer. The compensated phases θi[k] are de-
termined by the digital phase-locked loop (PLL) based on the data-aided or
decision-directed phase error of the output symbols of the last layer outside
SGD11.

The filter coefficients of the first, third, and fifth layers are adaptively con-
trolled by SGD and gradient calculation with back propagation. The conven-
tional SGD approach for one adaptive filter is extended here to multi-layer
SL&WL filters. In the following, we describe the input-output relation, or for-
ward propagation, of the SL and WL (MIMO) filters in each layer. Then we
derive back propagation for the gradient calculation.

3.2.1 Forward propagation

We consider the filter of the l-th layer. In the multi-layer FIR filter architecture,
the samples of longer duration are related to the outputs of the last layer in one
time slot. The related output and input signals of the l-th layer to obtain the
last layer’s output samples at timing integer k are given by

u
[l]
i [k] = (u

[l]
i [k; k], u

[l]
i [k − 1; k], . . . , u

[l]
i [k −Ml + 1; k])T, (3.5)

and

u
[l−1]
i [k] = (u

[l−1]
i [k; k], u

[l−1]
i [k − 1; k], . . . , u

[l−1]
i [k −Ml−1 + 1; k])T, (3.6)

10In the DSP, the discrete-time and frequency are treated. We use the notation [x] for a
discrete variable x.

11It is reported that carrier recovery can be included in control with SGD [64].
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where Ml and Ml−1 are the length of the output and input signal vectors.
The input of the l-th layer corresponds to the output of the (l − 1)-th layer.

u
[l]
i [k −m; k] denotes the m-th component of the signal vector obtained by the

filter coefficients at timing integer k. The length of the l-th layer’s output signals
Ml, the length of its input signals Ml−1, and the filter tap length M [l] satisfy
the following relation:

M [l] = Ml−1 −Ml + 1, (3.7)

because of convolution. By this relation, the input signal length progressively
increases toward the beginning layers.

Strictly linear MIMO FIR filter

When the filter of the l-th layer is an SL MIMO filter, its output samples are
described as

u
[l]
i [k] =

K∑
j=1

h
[l]T
ij [k]ū

[l−1]
j [k], (3.8)

where ū
[l−1]
j [k] = (u

[l−1]
j [k], u

[l−1]
j [k − 1], . . . , u

[l−1]
j [k − M [l] + 1])T. K = 2

corresponding to two polarizations. This includes the case of two 1×1 filters if
removing the summation over j. The filter coefficients at the timing integer k
are

h
[l]
ij [k] = (h

[l]
ij [0; k], h

[l]
ij [1; k], . . . , h

[l]
ij [M

[l] − 1; k])T. (3.9)

Using these descriptions, the output signal vectors of the l-th layer filter are
described as

u
[l]
i [k] =

K∑
j=1

H
[l]
ij [k]u

[l−1]
j [k], (3.10)

where

H
[l]
ij [k] =


h
[l]
ij [0; k] h

[l]
ij [1; k] · · · h

[l]
ij [M

[l] − 1; k] 0 · · · 0

0
. . .

. . .
. . .

. . .
...

... 0

0 · · · 0 h
[l]
ij [0; k] h

[l]
ij [1; k] · · · h

[l]
ij [M

[l] − 1; k]


(3.11)

is a matrix of the size Ml ×Ml−1. Equation (3.10) is rewritten as

u
[l]
i [k] =

K∑
j=1

U
[l−1]
j [k]h

[l]
ij [k], (3.12)

where

U
[l−1]
j [k] =


u
[l−1]
j [k; k] u

[l−1]
j [k − 1; k] · · · u

[l−1]
j [k −M [l] + 1; k]

u
[l−1]
j [k − 1; k] u

[l−1]
j [k − 2; k] · · · u

[l−1]
j [k −M [l]; k]

...
...

u
[l−1]
j [k −Ml + 1; k] u

[l−1]
j [k −Ml; k] · · · u

[l−1]
j [k −Ml−1 + 1; k]

 ,

(3.13)
is a matrix of the size Ml ×M [l].
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When the l-th layer is for carrier recovery, the carrier phase and frequency
offset are described via multiplication in the time domain rather than convo-
lution. The filters for carrier recovery in the adaptive multi-layer filters are
1-tap SL filters. When the compensation values at timing integers ranging from
k −Ml + 1 to k are

h
[l]
i [k : k −Ml + 1] = (h

[l]
i [0; k], h

[l]
i [0; k − 1], . . . , h

[l]
i [0; k −Ml + 1])T, (3.14)

the output signals of the l-th layer are given by

u
[l]
i [k] = h

[l]
i [k : k −Ml + 1] ◦ u[l−1]

i [k]. (3.15)

Consequently, the carrier phase and frequency offset or their compensation
are not mutually commutative with other SL processes such as CD, strictly
speaking, when the phase offset varies over time, which results in equalization-
enhanced phase noise [65,66]. On the other hand, suppose that the phase offset
can be assumed to be static and common to the two polarizations, which roughly
holds for the carrier recovery filters in the adaptive multi-layer filters because
they do not deal with a large temporal spread. In this case, the phase offset
or its compensation is commutative with CD, but not commutative with WL
processes such as Tx and Rx impairments.

Widely linear MIMO FIR filter

When the filter of the l-th layer is a WL MIMO filter, its output samples are
described as

u
[l]
i [k] =

K∑
j=1

h
[l]T
ij [k]ū

[l−1]
j [k] +

K∑
j=1

h
[l]T
∗ij [k]ū

[l−1]∗
j [k]. (3.16)

In the case of the WL MIMO filter, the filter coefficients are h
[l]
ij [k] and

12

h
[l]
∗ij [k] = (h

[l]
∗ij [0; k], h

[l]
∗ij [1; k], . . . , h

[l]
∗ij [M

[l] − 1; k])T. (3.17)

The output signal vectors are described as

u
[l]
i [k] =

K∑
j=1

H
[l]
ij [k]u

[l−1]
j [k] +

K∑
j=1

H
[l]
∗ij [k]u

[l−1]∗
j [k], (3.18)

where

H
[l]
∗ij [k] =


h
[l]
∗ij [0; k] h

[l]
∗ij [1; k] · · · h

[l]
∗ij [M

[l] − 1; k] 0 · · · 0

0
. . .

. . .
. . .

. . .
...

... 0

0 · · · 0 h
[l]
∗ij [0; k] h

[l]
∗ij [1; k] · · · h

[l]
∗ij [M

[l] − 1; k]

 .

(3.19)

12If we denote h∗ij as hij∗, the subscript can be a bit constructive. Namely, hij∗ corre-
sponds to the response from the conjugate of the j-th input signal (j∗) to the i-th output
signal.
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It can be rewritten as

u
[l]
i [k] =

K∑
j=1

U
[l−1]
j [k]h

[l]
ij [k] +

K∑
j=1

U
[l−1]∗
j [k]h

[l]
∗ij [k]. (3.20)

By applying the above forward propagation from the first layer to the last (L-

th) layer, we obtain the outputs u
[L]
i [k] of the adaptive filters at timing integer

k. The length of the last layer’s outputs is ML = 1.

3.2.2 Loss function

We consider here the case when the timing integer k denotes the symbol timing.

The loss function ϕ to be minimized is constructed by the outputs u
[L]
i [k] of the

last L-th layer of the adaptive multi-layer SL&WL filters. The coefficient ξ ∈ C
in any filter is controlled with SGD. Since we are dealing with complex-valued
signals and filter coefficients, we utilize Wirtinger derivatives. Gradient descent
becomes

ξ → ξ − 2α
∂ϕ

∂ξ∗
, (3.21)

where α is the step size. Since the loss function to be minimized should be
real-valued,

∂ϕ

∂ξ∗
=

(
∂ϕ

∂ξ

)∗

, (3.22)

which also holds for the gradient in terms of the signal u
[l]
i [k].

There are several criteria for the loss function for adaptive filters. The CMA
exploits the feature of the constant amplitude of the transmitted symbols13

[5, 68]. In this case, the instantaneous loss function14 is the squared magnitude
of the error of the outputs from the constant amplitude r, as

ϕ[k] =

K∑
i=1

(r2 − |u[L]
i [k]|2)2. (3.23)

The gradients in terms of the last outputs u
[L]
i [k] are calculated as

∂ϕ

∂u
[L]
i [k]

= −2ei[k]u
[L]∗
i [k], (3.24)

where ei[k] = r2 − |u[L]
i [k]|2.

Data-aided or decision-directed least mean square (LMS) algorithm uses the
feature that the transmitted symbols are the elements of the set determined by

13It is strictly true for some modulation formats, i.e., QPSK. CMA is usually used for
them. Several extended versions exist for non-constant modulation formats, such as the
multi-modulus algorithm for QAM [67].

14A mean squared error averaged over infinite or very long symbol periods should be a target
to truly minimize, though it is hard to access for DSP. SGD minimizes the instantaneous error
at one symbol period instead of the true mean error. This corresponds to mini-batch learning
in a neural network literature with one batch size.
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the modulation format itself [5]. The instantaneous loss function is the squared
error of the outputs from the symbol candidates d as

ϕ[k] =

K∑
i=1

|di[k]− u
[L]
i [k]|2, (3.25)

where di are given by the pre-known pilot patterns in the data-aided15 LMS al-

gorithm, or by results of decision operation to the outputs u
[L]
i [k]. The gradients

in terms of the last outputs are

∂ϕ

∂u
[L]
i [k]

= −ei[k]
∗, (3.26)

where ei[k] = di[k]− u
[L]
i [k].

3.2.3 Back propagation

Given the gradients in terms of the outputs of the filter of the l-th layer, we can
use back propagation to calculate the gradients in terms of its inputs, or the
outputs of the (l − 1)-th layer. The gradients in terms of its filter coefficients
can also be calculated with back propagation. We derive back propagation for
the SL and WL MIMO FIR filters.

Strictly linear MIMO FIR filter

After calculating differentials and arranging them, the gradients of the loss
function ϕ in terms of the inputs and filter coefficients of an SL MIMO filter are

∂ϕ

∂u
[l−1]
j [k]

=

K∑
i=1

H
[l]T
ij [k]

∂ϕ

∂u
[l]
i [k]

, (3.27)

∂ϕ

∂h
[l]
ij [k]

= U
[l−1]T
j [k]

∂ϕ

∂u
[l]
i [k]

. (3.28)

As for the case when the l-th layer consists of 1-tap SL filters for carrier
recovery, the gradients in terms of the inputs are

∂ϕ

∂u
[l−1]
i [k]

= h
[l]
i [k : k −Ml + 1] ◦ ∂ϕ

∂u
[l]
i [k]

. (3.29)

Here, note that the filter coefficients for carrier recovery are not controlled by
gradient descent in the adaptive multi-layer filters in this study.

15An adaptive control of the filter coefficients based on pre-known symbols for the Rx is
referred to as data-aided. It requires the insertion of pilot symbols to the transmitted symbols
in the Tx, which cannot carry the data to be communicated. Antonym is blind, which
works without knowing what symbols are transmitted. CMA and decision-directed LMS are
categorized as blind.
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Widely linear MIMO FIR filter

Similarly, the gradients of the loss function ϕ in terms of the inputs and filter
coefficients of a WL MIMO filter are

∂ϕ

∂u
[l−1]
j [k]

=

K∑
i=1

(
H

[l]T
ij [k]

∂ϕ

∂u
[l]
i [k]

+H
[l]†
∗ij [k]

∂ϕ

∂u
[l]∗
i [k]

)
, (3.30)

∂ϕ

∂h
[l]
ij [k]

= U
[l−1]T
j [k]

∂ϕ

∂u
[l]
i [k]

, (3.31)

∂ϕ

∂h
[l]
∗ij [k]

= U
[l−1]†
j [k]

∂ϕ

∂u
[l]
i [k]

. (3.32)

Now, we have an adaptive filter coefficient update algorithm for all the filters.
The gradients of the loss function in terms of the filter coefficients back to the
first layer can be calculated from the last l-the layer with these back propagation
equations successively.

3.2.4 Approximate calculation

We give an approximated calculation for adaptive multi-layer filters. Because
the adaptive multi-layer filters deal with time-series signals and a coefficient
update is usually small in one update of SGD, a portion of the intermediate
outputs of layers other than the last layer can be approximately reused after
a coefficient update. In contradistinction to this approximate calculation, we
refer to the calculation of forward and back propagation described so far as
full calculation. This approximation reduces the computational complexity for
forward propagation of the layers to that of a conventional FIR filter.

Let us consider forward propagation of the multi-layer filters at timing inte-
ger k+1 after a coefficient update at timing integer k. From the full calculation
above, the output signals of the l-th layer at timing integer k + 1 are given by

u
[l]
i [k+ 1] = (u

[l]
i [k+ 1; k+ 1], u

[l]
i [k; k+ 1], . . . , u

[l]
i [k−Ml + 2; k+ 1])T, (3.33)

except when the l-th layer is for carrier recovery. Here, u
[l]
i [k + 1] does not

share any elements with u
[l]
i [k]. However, because the input signals are time

series and the step sizes for coefficient updates are usually small for stochastic
gradient descent, we can assume that

u
[l]
i [k −m; k + 1] ∼ u

[l]
i [k −m; k −m], (3.34)

for an integer m. By this approximation, the output signals of the l-th layer
become

u
[l]
i [k+1] = (u

[l]
i [k+1; k+1], u

[l]
i [k; k], . . . , u

[l]
i [k−Ml+2; k−Ml+2])T, (3.35)

in which case they shares elements other than the first element with u
[l]
i [k]. As

a result, we only need to calculate u
[l]
i [k + 1; k + 1] in forward propagation of

the l-th layer at timing integer k + 1.
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Forward propagation

We consider forward and back propagation with the approximation of Eq. (3.35)
in the case in which the l-th layer consists of a WL MIMO filter. Other type
of filters correspond to a limited case of the WL MIMO filter. We separately
examine the case for carrier recovery later. Under the approximation, the for-
ward propagation in the case when the l-th layer consists of a WL MIMO filter
is given by

u
[l]
i [k] =

K∑
j=1

H
[l]
ij [k : k −Ml + 1]u

[l−1]
j [k] +

K∑
j=1

H
[l]
∗ij [k : k −Ml + 1]u

[l−1]∗
j [k],

(3.36)
where

H
[l]
ij [k : k −Ml + 1] =
h
[l]
ij [0; k] · · · h

[l]
ij [M

[l] − 1; k] 0 · · · 0

0
. . .

. . .
. . .

...
...

. . . 0

0 · · · 0 h
[l]
ij [0; k −Ml + 1] · · · h

[l]
ij [M

[l] − 1; k −Ml + 1]

 ,

(3.37)

H
[l]
∗ij [k : k −Ml + 1] =
h
[l]
∗ij [0; k] · · · h

[l]
∗ij [M

[l] − 1; k] 0 · · · 0

0
. . .

. . .
. . .

...
...

. . . 0

0 · · · 0 h
[l]
∗ij [0; k −Ml + 1] · · · h

[l]
∗ij [M

[l] − 1; k −Ml + 1]

 .

(3.38)

As described above, most elements can be reused from the results at timing
integer k−1, which greatly mitigates the computational complexity for forward
propagation of the l-th layer. The same discussion also holds when the l-th
layer consists of SL filters or is without MIMO. Equation (3.36) also handles

the case when the l-th layer consists of filters for carrier recovery, because H
[l]
ij [k :

k −Ml + 1] = diag(h
[l]
i [k : k −Ml + 1]) in this case.

Back propagation

Next the back propagation in the case when the l-th layer consists of a WL
MIMO filter is calculated as follows. The gradients of the loss in terms of the
inputs are given by

∂ϕ

∂u
[l−1]
j [k]

=

K∑
i=1

(
H

[l]T
ij [k : k −Ml + 1]

∂ϕ

∂u
[l]
i [k]

+H
[l]†
∗ij [k : k −Ml + 1]

∂ϕ

∂u
[l]∗
i [k]

)
.

(3.39)
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For the gradients in terms of the filter coefficients, although we can calculate

∂ϕ/∂h
[l]∗
ij [k] and ∂ϕ/∂h

[l]∗
∗ij [k] for the coefficients at timing integer k, these ex-

pressions do not work for gradient descent. They include ∂ϕ/∂u
[l]∗
i [k], but this

term can be near zero because the magnitude of the first coefficient h
[l]
ij [0; k] or

h
[l]
∗ij [0; k] for a conventional causal FIR filter can be very small in Eqs. (3.37)

and (3.38). Accordingly, instead of obtaining the gradients in terms of the co-
efficients at timing integer k, we modify the coefficient update by using the
gradients in terms of the filter coefficients that are related in calculating all the
output signals of the l-th layer, as follows:

h
[l]
ij [k] → h

[l]
ij [k]− 2α

Ml−1∑
m=0

∂ϕ

∂h
[l]∗
ij [k −m]

, (3.40)

h
[l]
∗ij [k] → h

[l]
∗ij [k]− 2α

Ml−1∑
m=0

∂ϕ

∂h
[l]∗
∗ij [k −m]

. (3.41)

In this case, the summations of the gradients are written as

Ml−1∑
m=0

∂ϕ

∂h
[l]∗
ij [k −m]

= U
[l−1]†
j [k : k −Ml−1 + 1]

∂ϕ

∂u
[l]∗
i [k]

, (3.42)

Ml−1∑
m=0

∂ϕ

∂h
[l]∗
∗ij [k −m]

= U
[l−1]T
j [k : k −Ml−1 + 1]

∂ϕ

∂u
[l]∗
i [k]

, (3.43)

where

U
[l−1]
j [k : k −Ml−1 + 1] =

u
[l−1]
j [k; k] · · · u

[l−1]
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[l−1]
j [k −Ml−1 + 1; k −Ml−1 + 1]

 .

(3.44)

In this way, we can obtain the back propagation for gradient descent to control
the filter coefficients of the multi-layer filters in the case of the approximation.

3.2.5 Computational complexity

The indicator of the computational complexity of the DSP for communication
systems is usually the required number of (complex-valued) multiplications. We
first estimated the computational complexities of forward propagation and back
propagation for the full and approximated calculations in the case when the l-
th layer consists of a WL MIMO filter. The number of complex multiplications
required in the l-th layer for the last layer’s outputs at one timing integer was
estimated.

The results are listed in Table 3.1. The full calculation requires 2K2M [l]Ml

complex multiplications for forward propagation, whereas the approximated cal-
culation requires 2K2M [l] complex multiplications, which corresponds to the



34

convolution for the M [l]-tap WL MIMO filter itself. As for back propagation,
the full and approximated calculations require the same number of complex
multiplications: 2K2M [l]Ml for the inputs and 2K2M [l]Ml for the coefficients,
giving a total of 4K2M [l]Ml. Forward propagation of the multi-layer filters is
necessary for every symbol integer, whereas back propagation can be performed
intermittently if the temporal variation of the impairments in question is slow.
Therefore, the approximation’s mitigation of the computational complexity for
forward propagation of the multi-layer filters is significant.

Table 3.1: Number of the complex multiplications required in l-th layer for the
last layer’s outputs at one timing integer when the l-th layer consists of a WL
MIMO filter.

Forward Back (signal) Back (coefficient)
Full 2K2M [l]Ml 2K2M [l]Ml 2K2M [l]Ml

Approx. 2K2M [l] 2K2M [l]Ml 2K2M [l]Ml

The required complex multiplications in the l-th layer for the last layer’s
outputs at one timing integer with approximate calculation for respective filters
are listed in Table 3.2. In the later evaluation in this chapter, we use the
adaptive multi-layer filters consisting of five layers shown in 3.4 in the case
with the filter lengths of M [1] = 5, M [2] = 61, M [3] = 21, M [4] = 1, M [5] =
5. In this case, M0 = 89, M1 = 85, M2 = 25, M3 = 5, M4 = 5, M5 =
1. Using the corresponding cases for layers in Table 3.2, forward propagation
for the adaptive multi-layer SL&WL filter architecture requires 248 complex-
valued multiplications. It requires 7340 complex-valued multiplications for back
propagation straightforwardly, though it can be largely mitigated. Although
Tx and Rx impairments vary in time, the speed is much slower than that of
PMD and polarization state variation in an optical fiber since it depends on the
environment temperature or aging of devices. Adaptive coefficient control is not
necessarily required in an embedded real-time processor for all the layers. Only
the gradient calculation for the third layer is required in real-time16. In this case,
the gradient calculation for signals is required for the fourth and fifth layers,
and the gradient calculation for coefficients is required for the third layers. It
results in 450 complex-valued multiplications.

Table 3.2: Number of the complex multiplications required in l-th layer for
the last layer’s outputs at one timing integer with approximate calculation for
respective filters.

Forward Back (signal) Back (coefficient)
SL KM [l] KM [l]Ml KM [l]Ml

SL MIMO K2 K2M [l]Ml K2M [l]Ml

WL 2KM [l] 2KM [l]Ml 2KM [l]Ml

WL MIMO 2K2M [l] 2K2M [l]Ml 2K2M [l]Ml

16The coefficients of other layers can be determined by using computational resources outside
of the embedded processor in the same way. Forward propagation is always necessary in real-
time to obtain output signals.
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For comparison, we examine the case of an adaptive 4×2 WL MIMO filter
with the length corresponding to the total length of the adaptive multi-layer
SL&WL filters described above17. When the adaptive 4×2 WL MIMO filter
has a temporal length of 89 taps, it requires 712 complex-valued multiplications
for forward propagation. It also requires 712 complex-valued multiplications
for back propagation. Consequently, these results show that the multi-layer
SL&WL filter architecture is more effective in compensating for all the relevant
impairments than one large WL MIMO filter.

3.3 Evaluation in simulation

We evaluated the multi-layer SL&WL filters with SGD to compensate for all
the relevant impairments by numerical simulation using a simple model. The
reception of a 32-Gbaud PDM-QPSK signal with coherent detection was sim-
ulated. In Tx and Rx, IQ skew was imposed in the X polarization where the
Q component was delayed. We assumed no polarization rotation, PMD, laser
phase noise, or a frequency offset. After coherent reception, DSP was applied
to the two-fold oversampled signals. We focused on IQ skew as Tx and Rx
impairments.

We evaluated three types of DSP architecture shown in Fig. 3.5 for com-
parison. The first one shown in Fig. Fig. 3.5(a) corresponds to a conventional
DSP for impairment compensation in optical fiber communications, as shown
in Fig. 3.2, which is hereinafter referred to as 2×2 SL after the adaptive MIMO
filter. CD compensation is performed on two polarization signals with SL fil-
ters. Polarization demultiplexing together with carrier recovery is performed by
a 2×2 SL MIMO filter18. The second one shown in Fig. 3.5(b) corresponds to a
conventional method with IQ skew compensation capability, which helps clarify
the results. With this one, a 4×2 WL MIMO filter was used for the polarization
demultiplexing block instead of a 2×2 SL MIMO filter (corresponding to the
real-valued 4×4 filter for IQ components [9]), which is referred to as 4×2 WL.
The third one shown in Fig. 3.5(c) was the multi-layer SL&WL filters with
SGD, which we call Multi-layer SL&WL. CD compensation was performed by a
61-tap FIR filter enabling compensation of accumulated CD over 100-km SMF
in all cases. The polarization demultiplexing block had the tap length of 21. In
the case of Multi-layer SL&WL, Rx/Tx device compensation was performed by
two 2×1 WL filters with five taps for two polarizations. The filter coefficients at
the center of the main diagonal position of the MIMO FIR filters were initialized
to one and the rest were zero. The loss function was decision-directed LMS.

17This configuration can compensate only for Rx impairments when a frequency offset
exists. In order to compensate for Tx and Rx impairments simultaneously with an adaptive
filter block, an 8×2 WL MIMO filter with augmented CD compensation and phase/frequency
offset compensation is required.

18Since a phase/frequency offset causes the phase rotation of the signal, carrier recovery
is placed after the adaptive MIMO filter to use the appropriate decision-directed error after
it [69]. From the point of view of adaptive multi-layer filters, it can be regarded as a simple
of SGD control through multiple blocks.
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Figure 3.5. DSP architectures for evaluation: (a) conventional DSP for impair-
ment compensation with static SL filters for CD compensation and an adaptive
SL MIMO filter for polarization demultiplexing (2×2 SL), (b) DSP with static
SL filters for CD compensation and an adaptive WL MIMO filter (4×2 WL),
(c) adaptive multi-layer SL&WL filter architecture (Multi-layer SL&WL).

Back-to-back condition

The received constellations of the X and Y polarizations after DSP for impair-
ment compensation under the back-to-back condition are shown in Fig. 3.6.
The optical signal-to-noise ratio (OSNR) before the EDFA was set to 30 dB/0.1
nm. Figure 3.6(a) shows the simulation results under the condition with the
X-IQ skew of 5 ps in Tx and the DSP architecture of 2×2 SL. Figure 3.6(b)
shows that with the X-IQ skew of 5 ps in Rx and the DSP of 2×2 SL. Since the
SL MIMO filter does not have the capability of IQ skew compensation, signal
distortion occurred when there was IQ skew in either Tx or Rx. Figures 3.6(c)
and (d) show the results with 4×2 WL with the X-IQ skew of 5 ps in Tx and
Rx, respectively. In contrast to the case of 2×2 SL, IQ skew was compensated
and good constellations were obtained. Figures 3.6(e) and (f) show the results
with Multi-layer SL&WL with the X-IQ of 5 ps skew in Tx and Rx. IQ skew
was fully compensated here as well.

100-km SMF transmission

The received constellations of the X and Y polarizations after impairment com-
pensation DSP in 100-km SMF transmission, i.e., CD accumulation of the
amount corresponding to 100 km of SMF between Tx and Rx, are shown in
Fig. 3.7. The upper images (Figs. 3.7(a), (c), and (e)) are the results with the
X-IQ skew of 5 ps in Tx, and the lower ones (Figs. 3.7(b), (d), and (f)) are
those with the X-IQ skew of 5 ps in Rx. In the case of 2×2 SL (Figs 3.7(a)
and (b)), the IQ skew was not compensated at all, the same as under the back-
to-back condition. In the case of 4×2 WL (Figs. 3.7(c) and (d)), the IQ skew
in Rx was not compensated, in contrast to the results under the back-to-back
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2×2 SL 4×2 WL Multi-layer SL&WL

(a)

(b)
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(d)

(e)

(f)

Figure 3.6. Simulation results for compensation of transmitter and receiver
IQ skew under the back-to-back condition. Received constellations of PDM-
QPSK by ((a) and (b)) 2×2 SL, by ((c) and (d)) 4×2 WL, and by ((e) and (f))
Multi-layer SL&WL. IQ skew of the X polarization signal was introduced at the
transmitter side in (a), (c), and (e), and at the receiver side in (b), (d), and (f).
The left side shows X polarization and the right side shows Y polarization.

condition shown in Fig. 3.7(d). This is because the 4×2 WL MIMO filter is
not commutative to the CD compensation block (as can be seen in Fig. 3.1),
which causes IQ mixing to occur in the CD compensation19. In contrast, in the
case of Multi-layer SL&WL (shown in Figs 3.7(e) and (f)), good constellations
were obtained even when the IQ skew in both Tx and Rx was imposed. This
result demonstrates that the proposed multi-layer SL&WL filters with SGD can
effectively compensate for IQ skew in both Tx and Rx under the accumulation
of CD.

Compensation of simultaneous random Tx and Rx impairments

Whether the loss function of decision-directed LMS or data-aided LMS in terms
of the adaptive filter coefficients is down-convex is not well known (or hard
to guarantee to be down-convex), though polarization demultiplexing with an
adaptive filter has been succeeded in optical fiber communications. Thus, to
show that the multi-layer SL&WL filters with SGD works not only in a specific
condition, we evaluated the performance in the case where IQ skew exists in
all Tx/Rx and X/Y. The simulation model is the same as the previous one of
100-km transmission except that the received OSNR was set to 15 dB/0.1 nm.
Each of Tx/Rx X/Y IQ skew was a random value from a zero-mean Gaussian
distribution with a standard deviation equal to 5 ps. The averaged error vector
magnitude (EVM) of the received signals over two polarizations was evaluated
100 times. Figure 3.8 shows the results of the histogram of the averaged EVM.

19If the CD compensation was applied to both I and Q independently to avoid IQ mixing
through the CD compensation, the IQ skew in Rx can be compensated, while it requires
additional large circuit resources.
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Figure 3.7. Simulation results for compensation of transmitter and receiver IQ
skew after 100-km SMF transmission. Received constellations of PDM-QPSK by
((a) and (b)) 2×2 SL, by ((c) and (d)) 4×2 WL, and by ((e) and (f)) Multi-layer
SL&WL. IQ skew of the X polarization signal was introduced at the transmitter
side in (a), (c), and (e), and at the receiver side in (b), (d), and (f). The left
side shows X polarization and the right side shows Y polarization.

Since 2×2 SL cannot compensate for IQ skew in both Tx and Rx and 4×2 WL
cannot compensate for IQ skew in Rx in this condition, the averaged EVM with
these two was spread and 4×2 WL provided slightly better results. In contrast,
Multi-layer SL&WL provided good and almost constant averaged EVM, since it
can compensate for IQ skew in both Tx and Rx. This result demonstrates that
the Multi-layer SL&WL architecture works even in the complicated condition
where IQ skew exists in all Tx/Rx and X/Y.

Convergence of loss

The convergence speed is one of the important characteristics of an adaptive
filter. We compared the convergence speed in the cases of 2×2 SL, 4×2 WL,
and Multi-layer SL&WL. The simulation model is the same as the one of 100-
km SMF transmission of 32-Gbaud PDM-QPSK. The received OSNR was set
to 15 dB/0.1 nm. Figure 3.9 shows the results of the time development of the
loss function under the condition with the X-IQ skew of 5 ps in Rx. The loss
was moving-averaged over 10 symbols. The convergence speed of Multi-layer
SL&WL was similar to that of 2×2 SL and 4×2 WL in this case.

3.4 Evaluation in transmission experiment

Next, we experimentally evaluated the effectiveness of the proposed technique
with 32-Gbaud PDM-64QAM. We focused on the capability of the IQ skew
compensation in Tx and Rx, the same as in the simulation.
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Figure 3.8. Simulation results of histogram of EVM with random IQ skew in
all Tx/Rx and X/Y polarizations.

Figure 3.9. Simulation results of convergence of loss.
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Experimental setup

A schematic diagram of the experimental setup is shown in Fig. 3.10. On
the Tx side, a laser source at the frequency of 193.3 THz having a linewidth
of about 100 kHz was modulated to 32-Gbaud PDM-64QAM by waveforms
generated with a four-channel DAC at the sampling rate of 64 GS/s with a
vertical resolution of eight bits. Forward error correction (FEC) of low-density
parity-check code (LDPC) for DVB-S2 with a frame length of 64,800 and a code
rate of 0.8 was used. Eight FEC frames were generated for each polarization by
loading random bits to their payload and were then mapped to PDM-64QAM
with gray mapping. In this experiment, a pilot sequence was inserted for each
polarization to perform a pilot-based DSP in Rx [70, 71]. One pilot symbol of
QPSK was inserted every 25 symbols. In addition, due to the restriction of the
DAC used in the experiment, an overhead of QPSK symbols was also inserted
to ensure the periodicity of the waveforms generated by DAC. QPSK symbols
in the pilot and the overhead, which were about 7% in total, were set to the
outer symbol points of 64QAM for simplicity of the decision processing in DSP,
which yields 0.7 dB of the power penalty. The data generated in this way were
upsampled to two-fold oversampling and the root raised cosine filter with a roll-
off factor of 0.1 was performed. Frequency characteristics in the Tx devices were
pre-compensated.

AWG

MODLD OBPF Coherent RxPS
EDFA

ASE

SMF 100 km LD

ADC

Tx IQ skew Rx IQ skew

Offline

Figure 3.10. Experimental setup for compensation of transmitter and receiver
IQ skew. PS: polarization scrambler, ASE: amplified spontaneous emission,
OBPF: optical bandpass filter.

The modulated optical signal was transmitted to a 100-km SMF span after
slow polarization scrambling at a rate of 10×2π rad/s. The span input optical
power was set to 0 dBm. After transmission, amplified spontaneous emission
was added to the signal to set an OSNR value. The optical signal was amplified
by an EDFA and filtered by an optical bandpass filter having a 3-dB bandwidth
of 50 GHz, and then received by a polarization diversity coherent receiver with
a laser source used as an LO having a linewidth of about 100 kHz. The laser
sources of the signal and the LO were free-running and had frequency differences
fluctuated within about ±100 MHz. The four outputs of the coherent receiver
were sampled with a digital oscilloscope at a sampling rate of 80 GS/s with a
vertical resolution of eight bits. IQ skew in Tx and Rx was emulated digitally
as a delay of the Q components of the X polarization.

DSP was performed offline. The received signals were normalized and re-
sampled to two-fold oversampling. After matched root raised cosine filtering,
detection of the pilot position and alignment was performed before the main
DSP. This procedure was done in the following manner. First, CD compen-
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sation was applied to the received signals and the pilot position was detected
according to the difference of the averaged powers between the 64QAM signal
and the QPSK pilot. Then, polarization demultipexing was performed by CMA
for the pilot. After frequency offset compensation based on the fourth power
of the signal [72], timing alignment was done by using correlation to the known
pilot sequence. The main DSP for impairment compensation, for which we eval-
uated the same three methods as in the previous simulation (2×2 SL, 4×2 WL,
and Multi-layer SL&WL) was applied to the received signal after the matched
filter with timing alignment before performing CD compensation again. In the
experiment with PDM-64QAM, the filter coefficient update was carried out us-
ing the symbols of the QPSK pilot with data-aided LMS, with no updates by
the 64QAM signal. The tap lengths of the filters were the same as in the sim-
ulation: 61 taps for CD compensation, 21 taps for polarization demultiplexing,
and five taps for compensation of Tx/Rx device impairments. Carrier recovery
was performed using both the signal and the pilot symbols with PLL based on
a data-aided or decision-directed phase error and a second-order loop filter [73].
After the main DSP for impairment compensation and removal of the pilot and
the overhead, the normalized generalized mutual information (NGMI) as a per-
formance indicator was calculated [74], and the post FEC bit error rate (BER)
was calculated with FEC decoding. The received waveforms were acquired three
times under each condition and about 0.8 Mbits were evaluated for the post-
FEC BER in each acquisition. The averaged NGMI was also evaluated. As the
post-FEC BER largely fluctuated around the FEC cliff, we based our evaluation
on its median.

Back-to-back condition

We first evaluated the capability of IQ skew compensation under the back-to-
back condition. The received OSNR was set to 30 dB/0.1 nm. The results of the
post-FEC BER while changing X-IQ skew from −10 ps to +10 ps in Tx and Rx
are shown in Fig. 3.11(a) and (b), respectively. The error-free results are plotted
at 10−5 for visibility. In the case of the IQ skew in Tx shown in Fig. 3.11(a), the
proposed Multi-layer SL&WL could compensate for it, while 2×2 SL and 4×2
WL could not. In the case of the IQ skew in Rx shown in Fig. 3.11(b), 4×2 WL
and Multi-layer SL&WL could compensate for it. In contrast to the simulation
results (Fig. 3.6(c) and (d)), the IQ skew in Tx was not compensated by 4×2
WL, while IQ skew in Rx was. This is because a frequency offset existed in the
experiment, rather than being set to zero as in the simulation, which renders
the carrier recovery block and the Rx device compensation non-commutative, as
shown in Fig. 3.1. Figures 3.12(a) and (b) show the corresponding evaluation
results of the NGMI. The proposed Multi-layer SL&WL could compensate for
IQ skew in both Tx and Rx. Figure 3.13 shows the received constellations after
impairment compensation with Multi-layer SL&WL for several IQ skew values
in Rx.

Figure 3.14 shows the dependence of the NGMI on IQ skew in Tx and Rx
when they were added simultaneously. The 2×2 SL in Fig. 3.14(a) had no
tolerance to IQ skew in either Tx or Rx. The 4×2 WL in Fig. 3.14(b) had
tolerance to IQ skew in Tx but not in Rx. In contrast, Multi-layer SL&WL
had tolerance to IQ skew in both Tx and Rx, and was able to deliver a stable
performance.
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(a) (b)

Figure 3.11. Experimental results for post-FEC BER under back-to-back con-
dition with (a) Tx X-IQ skew and (b) Rx X-IQ skew.

(a) (b)

Figure 3.12. Experimental results for NGMI under back-to-back condition with
(a) Tx X-IQ skew and (b) Rx X-IQ skew.
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(a) (b) (c)

Rx X-IQ skew -5 ps 0 ps +5 ps

Figure 3.13. Received constellations after impairment compensation DSP with
Multi-layer SL&WL under back-to-back condition with Rx X-IQ skew of (a) -5
ps, (b) 0 ps, and (c) +5 ps. The left side shows X polarization and the right
side shows Y polarization.

(a) (b) (c)

Figure 3.14. Dependence of NGMI on Tx X-IQ skew and Rx X-IQ skew in the
cases of (a) 2×2 SL, (b) 4×2 WL, and (c) Multi-layer SL&WL under back-to-
back condition.
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100-km SMF transmission

Finally, we evaluated the capability of IQ skew compensation after transmission
over a 100-km SMF span. The received OSNR was set to 30 dB/0.1 nm. The
results of the post-FEC BER while changing X-IQ skew from −10 ps to +10
ps in Tx and Rx are shown in Figs. 3.15(a) and (b), respectively. The corre-
sponding results of the NGMI are shown in Fig. 3.16. Both 2×2 SL and 4×2
WL were unable to compensate for IQ skew in both Tx and Rx, in contrast to
the results for the back-to-back condition, due to the existence of accumulated
CD and frequency offset. Multi-layer SL&WL was able to compensate for them
both, the same as in the back-to-back condition. Figure 3.17 shows the received
constellations after impairment compensation with Multi-layer SL&WL for sev-
eral IQ skew values in Rx. Figure 3.18 shows the dependence of the NGMI on
IQ skew in Tx and Rx after 100-km SMF transmission. These results show that
the proposed Multi-layer SL&WL could compensate for IQ skew in both Tx
and Rx even in the presence of CD accumulation, polarization rotation, and a
frequency offset.

(a) (b)

Figure 3.15. Experimental results for post-FEC BER after 100-km SMF trans-
mission with (a) Tx X-IQ skew and (b) Rx X-IQ skew.

3.5 Summary

We developed a multi-layer filter architecture consisting of SL and WL MIMO
filters to compensate for relevant impairments including Tx/Rx impairments
and adaptive control of their filter coefficients. Taking inspiration from the idea
of gradient calculation with back propagation in machine learning with neural
networks, we derived an adaptive filter coefficient control algorithm for multi-
layer SL and WL FIR filters with SGD based on a loss function composed of
the outputs of the last layer. We evaluated the compensation capability of the
multi-layer SL&WL filters with adaptive SGD control for IQ skew in both Tx
and Rx through simulations with 32-Gbaud PDM-QPSK and an experiment on
32-Gbaud PDM-64QAM transmission over a 100-km SMF span. The results



45

(a) (b)

Figure 3.16. Experimental results for NGMI after 100-km SMF transmission
with (a) Tx X-IQ skew and (b) Rx X-IQ skew.

(a) (b) (c)

Rx X-IQ skew -5 ps 0 ps +5 ps

Figure 3.17. Received constellations after impairment compensation DSP with
Multi-layer SL&WL after 100-km SMF transmission with Rx X-IQ skew of (a)
-5 ps, (b) 0 ps, and (c) +5 ps. The left side shows X polarization and the right
side shows Y polarization.
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(a) (b) (c)

Figure 3.18. Dependence of NGMI on Tx X-IQ skew and Rx X-IQ skew in the
cases of (a) 2×2 SL, (b) 4×2 WL, and (c) Multi-layer SL&WL after 100-km
SMF transmission.

showed that they could compensate for IQ skew in both Tx and Rx in the
presence of CD, polarization rotation, and a frequency offset.



Chapter 4

Simultaneous and
individual impairment
monitoring using
coefficients of adaptive
multi-layer strictly linear
and widely linear filters

We have confirmed that the multi-layer Sl&WL filter architecture controlled
with SGD and back propagation can compensate for Tx and Rx impairments
precisely and simultaneously under accumulation CD and a frequency offset in
an optical fiber communication system in the previous chapter. This fact implies
that the filters in the first and fifth layers in the multi-layer SL&WL filters
appropriately serve their expected roles for Rx and Tx impairment compensation
while CD or a frequency offset decouples Tx and Rx impairments, although they
are controlled simultaneously with SGD rather than independently. The filter
coefficients of each filter after the convergence of adaptive control should include
information on impairments that are compensated in it. It enables simultaneous
and individual monitoring for Tx and Rx impairments.

This chapter investigates simultaneous and individual monitoring for Tx
and Rx impairments from the coefficients of corresponding layers in the adap-
tive multi-layer SL&WL filters. We derive the model relating IQ impairments
to the WL filter to compensate for them by considering the order in which IQ
skew, IQ imbalance, and IQ phase deviation occur for the Tx and Rx, as we have
considered the order of impairments in an optical fiber communication system
in the previous chapter. We evaluate the impairment monitor through simula-
tions using 32-Gbaud PDM-QPSK and a 100-km SMF transmission experiment
of 32-Gbaud PDM-64QAM. The result that both Tx and Rx impairments can
be individually monitored using the WL filter coefficients precisely and simul-
taneously when multiple impairments exist supports the principle and design

47
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of the multi-layer SL&WL filter architecture for impairment compensation in a
different perspective.

.

4.1 Background

Optical performance monitoring gives information on the physical layer of an
optical communication system about what kind of signal distortion occurs in
a system [75]. It provides diagnostics of a system to deal with distortion and
valuable information for upper layers of communication systems for network
control. As the development of advanced modulation formats and high sym-
bol rate progresses, impairments from imperfections in Tx and Rx devices are
becoming a limiting factor [12, 59, 76]. Therefore, compensation for and mon-
itoring Tx and Rx impairments are crucial for future high-speed optical fiber
communication systems. For extracting information about impairments that
occur in an optical fiber communication system, i.e., for impairment monitor-
ing, several approaches have been investigated depending on the features of
the interested impairment [77–81]. In a coherent optical communication sys-
tem, impairment monitoring from adaptive filter coefficients in the Rx has been
investigated [50, 82]. When an adaptive filter works, the filter response conse-
quently reflects the characteristics of the impairment that the filter compensates
for, and thus, we can extract information about the impairment from the filter
coefficients. This approach is beneficial because dedicated optical and electrical
devices for monitoring are not required at all.

Impairment monitoring from adaptive filter coefficients can also be applied
to Tx and Rx impairments [9, 54, 57, 58, 83]. However, Tx and Rx impairments
are addressed individually in these approaches1, resulting in deterioration of
monitoring accuracy as in the case of impairment compensation discussed in
the previous chapter due to imperfect compensation2.

4.2 Individual IQ impairment monitoring from
WL filter coefficients

As well as simultaneous and precise impairment compensation, the adaptive
multi-layer SL&WL filter architecture we developed can provide a reasonable
solution to this problem. The adaptive multi-layer SL&WL filter can compen-
sate for both Tx and Rx impairments simultaneously and precisely under CD
accumulation and a phase/frequency offset. Tx and Rx impairment monitoring
from the filter coefficients in the multi-layer SL&WL filters can work if cor-
responding layers appropriately serve as Tx and Rx impairment compensation
individually, though it is not so obvious compared to the case with an individual
adaptive filter for Tx or Rx impairment compensation in the previous approach

1Adaptive filters for Tx and Rx impairment compensation were controlled locally by using
their direct inputs and outputs.

2Characterizing of individual IQ impairments from coefficients of a one large complex-
valued adaptive 8×2 MIMO filter with augmented CD compensation and phase/frequency
offset compensation has been investigated recently [84].
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since all the filter coefficients in the adaptive multi-layer SL&WL filters are
controlled simultaneously with SGD rather than independently.

We first review the models of Tx or Rx impairments including IQ skew, IQ
imbalance, and IQ phase deviation by focusing on the order in which they occur
in a Tx or Rx. We then derive the relations between IQ impairments and the
WL filter responses that compensate for them. We consider the case with IQ
modulation and coherent detection.

4.2.1 Models of Tx or Rx impairments

To consider the model of Tx or Rx impairments, it is beneficial to use the IQ
component basis. The model for one polarization is enough for our purpose
since two orthogonal polarizations are generally handled independently in a Tx
and Rx. Considering an input x(t) = xI(t) + ixQ(t), where xI(t) and xQ(t)
are the real-valued I and Q components, and an output y(t) = yI(t) + iyQ(t),
an arbitrary linear response of a real-valued 2×2 MIMO filter, or an equivalent
2×1 WL filter, is represented in the IQ component basis as Eq. (2.9) in the
time-domain or Eq. (2.10) in the frequency-domain.

Tx impairments

We first consider the model of Tx impairments. Figure 4.1(a) shows the config-
uration of a conventional optical Tx with a nested Mach-Zehnder IQ modulator
for coherent optical fiber communication systems [1,56]. The outputs of a DAC
modulate a LD source. After mixing with π/2 phase shift of one side, they con-
struct IQ components. In this configuration, IQ skew and IQ imbalance occur
first, then IQ phase deviation occurs. Considering an arbitrary phase rotation
of the generated optical signal3, the frequency response of this model in the IQ
component basis is described as(

YI(ω)
YQ(ω)

)
= HTx

(
XI(ω)
XQ(ω)

)
= HθHphaseHimbHskew

(
XI(ω)
XQ(ω)

)
, (4.1)

where Hskew, Himb, and Hphase are the frequency response in the IQ repre-
sentation with the frequency-domain of IQ skew, IQ imbalance, and IQ phase
deviation as shown in Eqs. (2.52), (2.53), and (2.54), respectively. Hθ is the
frequency response of a phase rotation of an optical signal in the IQ representa-
tion. τ, a, and φ in Eqs. (2.52), (2.53), and (2.54) are the amounts of IQ skew,
IQ imbalance, IQ phase deviation. θ is the amount of the global phase shift.
They can be dependent on frequency, but we omit the frequency dependence for
simplicity. Hskew and Himb are mutually commutative4 but not commutative
with Hphase. We can choose an arbitrary global phase shift as θ + φ/2. Then,
the frequency response of Tx impairments becomes

HTx =

(
cos(φ/2 + θ)(1 + a) exp(iωτ/2) sin(φ/2− θ)(1− a) exp(−iωτ/2)
sin(φ/2 + θ)(1 + a) exp(iωτ/2) cos(φ/2− θ)(1− a) exp(−iωτ/2)

)
.

(4.2)

3For example, an optical fiber pigtail at the end of the IQ modulator easily adds this phase
and usually uncontrollable.

4We can understand this based on Fig. 4.1(a). Difference of the lengths of electrical paths
of IQ components should provide the same results when it occurs before or after electrical
amplification.
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Figure 4.1. Configurations of (a) optical Tx and (b) Rx with coherent detection
for one polarization.

Rx impairments

Figure 4.2(b) shows the configuration of a conventional optical Rx with coherent
detection [1,56]. The optical signal is mixed with an LO by a 90◦ optical hybrid,
and IQ components are detected with balanced photo-detectors. These signals
are then converted into the digital domain by using an ADC for impairment
compensation DSP. In contrast to the Tx impairments shown in Fig. 4.2(a),
IQ phase deviation comes first, then IQ skew and IQ imbalance occur in this
Rx configuration. Based on the model of a 90◦ optical hybrid [85], IQ phase
deviation affects IQ components as HT

phase. Since an arbitrary phase shift to
the optical signal is before IQ phase deviation, the frequency response of the Rx
model in the IQ component basis is described as(

YI(ω)
YQ(ω)

)
= HRx

(
XI(ω)
XQ(ω)

)
= HimbHskewH

T
phaseHθ

(
XI(ω)
XQ(ω)

)
. (4.3)

With an appropriate choice of an arbitrary phase shift, the frequency response
of Rx impairments results in

HRx =

(
cos(φ/2− θ)(1 + a) exp(iωτ/2) sin(φ/2− θ)(1 + a) exp(iωτ/2)
sin(φ/2 + θ)(1− a) exp(−iωτ/2) cos(φ/2 + θ)(1− a) exp(−iωτ/2)

)
,

(4.4)
which does not fall in the same response of Tx impairments, though they are
similar, because of the order in which IQ impairments occur.

4.2.2 Relation between impairments and WL filter coeffi-
cients

We consider again the mutli-layer SL&WL filter architecture for impairment
compensation including Tx and Rx impairments consisting of five layers as
shown in Fig. 4.2. The five layers are composed of Rx impairment compen-
sation, CD compensation, polarization demultiplexing, carrier recovery, and Tx
impairment compensation. All the filters are assumed FIR filters with half-
symbol spaced. Coefficients of all the filters can be controlled by SGD with
back propagation on the basis of the loss function consisting of the last outputs



51

since all the layers are differentiable in terms of their inputs and their filter
coefficients. The first layer consists of two 2×1 WL filters for two polariza-
tions to compensate for Rx impairments. The second layer consists of two 1×1
SL filters for CD compensation, the coefficients of which are treated as static.
The third layer consists of a 2×2 SL MIMO filter for polarization demultiplex-
ing. The fourth layer consists of two 1×1 1-tap SL filters to compensate for
the phase offset and frequency offset. The fifth layer consists of two 2×1 WL
filters to compensate for Tx impairments. The coefficients of the fourth layer
are controlled by a phase-locked loop using the last outputs. The coefficients
of the first, third, and fifth layers are adaptively controlled by SGD with back
propagation.

2×1 WL

2×1 WL

1×1 SL

1×1 SL
2×2 SL

1×1 SL

1×1 SL

2×1 WL

2×1 WL

Stochastic gradient descent Loss

PLL

Rx comp.

Rx impairment monitor

CD comp.
Pol. demux

CR
Tx comp.

Tx impairment monitor

Figure 4.2. Multi-layer SL&WL filters to compensate for all relevant linear im-
pairments including Tx and Rx impairments where coefficients are adaptively
controlled by stochastic gradient descent with back propagation from last out-
puts.

The first and fifth WL filter layers are expected to serve as Rx and Tx
impairment compensation in this multi-layer filters. Thus, their filter coefficients
after adaptive control should contain information about Rx and Tx impairments
if the adaptive filters work well. We now derive the relations between Tx and
Rx impairments and the WL filter responses that compensate for them. For
considering IQ impairments including IQ skew, IQ imbalance, and IQ phase
deviation, using the IQ basis representation is advantageous. The complex-
valued linear response functions of a 2×1 WL filter of h and h∗, with which
the input-output relation is described as Eq. (2.12), are related to the 2×2
real-valued linear response functions of hij (i, j = I,Q) as Eq. (2.19). Using
this relation, we can obtain the linear responses of a WL filter in the IQ basis
representation and their corresponding frequency responses.

We represent the frequency response of a 2×1 WL filter in the IQ represen-
tation as

W =

(
WII WIQ

WQI WQQ

)
. (4.5)

Ignoring noise contribution, the frequency responses of the first WL filter af-
ter the convergence of adaptive control in the IQ basis representation W [1] are
expected to satisfy W [1] = gH−1

Rx with a certain complex-valued gain g5. Assum-
ing this relation, extracting IQ skew τ , IQ imbalance a, and IQ phase deviation

5This cannot exactly be satisfied since adaptive control is executed on the basis of a certain
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φ occurring in an Rx from the coefficients of the first WL filter comes down
to nonlinear simultaneous equations. The solutions are provided in a heuristic
manner as follows. We consider these four values, which are independent of the
global phase shift of θ, as

A[1] = W
[1]
II W

[1]
QQ −W

[1]
QIW

[1]
IQ , (4.6)

B[1] = W
[1]
II W

[1]∗
QQ −W

[1]
QIW

[1]∗
IQ , (4.7)

C [1] = W
[1]
QIW

[1]
QQ +W

[1]
II W

[1]
IQ , (4.8)

D[1] =

√√√√ |W [1]
II |2 + |W [1]

QI |2

|W [1]
IQ |2 + |W [1]

QQ|2
. (4.9)

By using these values, we can obtain

aRx =
1−D[1]

1 +D[1]
, (4.10)

and

φRx = tan−1

(
−C [1]

A[1]

)
. (4.11)

If IQ phase deviation φ is small and the variation of IQ skew τ over frequency
is slow,

τRx = − d

dω
arg(B[1]). (4.12)

Similarly, assuming W [5] = gH−1
Tx for Tx impairments, we obtain

A[5] = W
[5]
II W

[5]
QQ −W

[5]
IQW

[5]
QI , (4.13)

B[5] = W
[5]
II W

[5]∗
QQ −W

[5]
IQW

[5]∗
QI , (4.14)

C [5] = W
[5]
IQW

[5]
QQ +W

[5]
II W

[5]
QI , (4.15)

D[5] =

√√√√ |W [5]
II |2 + |W [5]

IQ |2

|W [5]
QI |2 + |W [5]

QQ|2
, (4.16)

and

aTx =
1−D[5]

1 +D[5]
, (4.17)

φTx = tan−1

(
−C [5]

A[5]

)
, (4.18)

τTx = − d

dω
arg(B[5]). (4.19)

Using there relations, we can monitor each of Tx and Rx impairments simulta-
neously and individually from the coefficients of the WL filters in the multi-layer
SL&WL filters if the adaptive control by SGD with back propagation goes well.

criterion e.g., mean squared error under noise. We assume it is satisfied approximately since
the SNR of the received signal should be high enough to accomplish communication at least.
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4.3 Evaluation in simulation

We first evaluated the monitoring method for individual Tx and Rx impairments
from the coefficients of the multi-layer SL&WL filters through numerical simu-
lations. We used a 32-Gbaud PDM-QPSK signal with a root raised cosine filter,
where a roll off factor of 0.1, was transmitted over a 100-km SMF and received
with coherent detection. On the basis of the above impairment model described
in the previous section, IQ skew, IQ imbalance, and IQ phase deviation were
imposed in the Tx and/or Rx. Only CD was given in SMF transmission. We
assumed no laser phase noise and frequency offset at first. The received op-
tical signal-to-noise ratio (OSNR) was set to 30 dB/0.1 nm by adding white
Gaussian noise. DSP was applied to the received signals sampled by two-fold
oversampling after coherent detection.

In DSP, the received signals were first normalized as complex-valued signals
for two orthogonal polarizations then resampled to two-fold oversampling based
of the timing error [86]6. After matched filtering, the above-mentioned five-
layer adaptive multi-layer SL&WL filters were applied. The tap lengths of
the filters were 61 taps for CD compensation (the second layer), 21 taps for
polarization demultiplexing (the third layer), and five taps to compensate for
Tx/Rx impairments (the first and fifth layers). The filter coefficients of the
second layer were set to compensate for CD and did not updated. The filter
coefficients at the center tap of the main diagonal position in the first, third,
and fifth layers were initialized as one and the rest were set to zero. To monitor
IQ impairments in a Tx and Rx, the transmitted IQ components should be
identified. Therefore, the constant modulus algorithm (CMA) and decision
directed LMS are not suitable since they include a certain phase ambiguity that
results in the exchange of IQ components. The loss function based on data-aided
LMS was thus used for adaptive control with SGD to avoid the uncertainty of
the IQ components. In this simulation, the transmitted pattern was regarded
as a training sequence for simplicity. The step sizes of the update were 10−4 for
the first and fifth layers and 10−3 for the third layer.

After convergence of the adaptive filter control, the WL filter coefficients of
the first layer were converted to the IQ basis representation then converted in
the frequency domain by the fast Fourier transform (FFT). The amounts of IQ
skew, IQ imbalance, and IQ phase deviation in the Rx were estimated using the
equations described in the previous section. The values of the frequency com-
ponents of 0 Hz were evaluated for IQ imbalance and IQ phase deviation. For
IQ skew estimation, derivative was replaced with the finite difference between
the components of 0 Hz and ∆ω/(2π) = 12.8 GHz. IQ skew, IQ imbalance, and
IQ phase deviation in the Tx were estimated in a similar manner with the WL
filter coefficients of the fifth layer.

Individual IQ impairment

We first evaluated the performance of compensation and impairment monitoring
under the condition where only one of the impairments in the Tx and Rx was
imposed. IQ skew, IQ imbalance, and IQ phase deviation of X polarization in the
Tx or Rx were swept from -5 to +5 ps, -0.5 to 0.5, -10◦ to +10◦, respectively.

6The timing error was calculated with CD compensation on the resampled output signals
and the timing offset in resampling of the input signals before CD compensation was optimized.
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Figure 4.3 shows the results of the averaged error vector magnitude (EVM)
over two polarizations after the multi-layer SL&WL filters. As a reference, two
other DSP architectures compared in the previous chapter were also evaluated.
The results where only CD compensation, polarization demultiplexing by a 2×2
MIMO filter, and carrier recovery were carried out are shown in this figure
(referred to as 2×2 SL). In addition, the results where a 4×2 WL MIMO filter
was used instead of a 2×2 MIMO filter of 2×2 SL are shown (referred to as 4×2
WL). Regarding IQ skew and IQ phase deviation in the Tx or Rx, an almost
constant EVM was obtained after using the multi-layer SL&WL filters while
EVM degraded in the case of 2×2 SL as the impairment increased. EVM after
the multi-layer SL&WL filters became worse with IQ imbalance in the Tx since
it distorted added Gaussian noise, though compensation still worked. These
results indicate that the multi-layer SL&WL filters could compensate for each
of Tx and Rx impairments. In the case of 4×2 WL, only Tx impairments could
be compensated since CD was included and a frequency offset and phase noise
were not included.

(a) (b) (c)

(d) (e) (f)

Multi-layer SL&WL

2×2 SL
4×2 WL

Figure 4.3. Simulation results of EVM with (a) Tx IQ skew, (b) Tx IQ imbal-
ance, (c) Tx IQ phase deviation, (d) Rx IQ skew, (e) Rx IQ imbalance, and (f)
Rx IQ phase deviation.

The results of the impairment estimation for IQ skew, IQ imbalance, and IQ
phase deviation in the Tx and Rx by using the converged WL filter coefficients
of the multi-layer SL&WL filters are shown in Fig. 4.4. We can confirm that
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the imposed impairments and estimated ones agreed well.

(a) (b) (c)

(d) (e) (f)

Figure 4.4. Simulation results of impairment monitoring for (a) Tx IQ skew,
(b) Tx IQ imbalance, (c) Tx IQ phase deviation, (d) Rx IQ skew, (e) Rx IQ
imbalance, and (f) Rx IQ phase deviation.

Simultaneous random IQ impairments

We then evaluated the impairment monitoring with our method under the con-
dition where multiple impairments were imposed simultaneously. IQ skew, IQ
imbalance, and IQ phase deviation of X and Y polarization in the Tx and Rx
were random values of a zero-mean Gaussian distribution with a standard devi-
ation of 3 ps (10% of the symbol duration), 0.1, and 5◦, respectively. Random
rotation of the polarization state was also added in SMF transmission in ad-
dition to CD. The LO phase noise of the linewidth of 100 kHz was included.
Figure 4.5 shows the results for monitoring the impairments of X polarization
with 1000 random realizations of multiple impairments. The monitored values
are plotted on the left axis, and the monitored errors from the imposed amounts
are plotted on the right axis. Similar results were obtained for Y polarization as
shown in Fig. 4.6. Similar to the results where only one of the impairments was
imposed, as shown in Fig. 4.4, the imposed impairments and estimated values
agreed well in this case where multiple impairments were imposed simultane-
ously. In accordance with the monitored error, the monitored values were biased
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due to the nonlinear relations to the WL filter coefficients, while they were small
within about ±0.2 ps, ±0.02, and ±1◦ for IQ skew, IQ imbalance, and IQ phase
deviation, respectively. The results indicate that the impairments in both Tx
and Rx could be individually monitored from the WL filter coefficients precisely
and simultaneously when multiple impairments existed.

(d) (e) (f)

(a) (b) (c)

Figure 4.5. Simulation results of impairment monitoring under simultaneous
random multiple impairment conditions for (a) Tx IQ skew, (b) Tx IQ imbal-
ance, (c) Tx IQ phase deviation, (d) Rx IQ skew, (e) Rx IQ imbalance, and (f)
Rx IQ phase deviation of X polarization. Results for 1000 random realizations
of multiple impairments are plotted in each figure.

4.4 Evaluation in transmission experiment

We evaluated the monitoring method for individual impairments in a Tx and
Rx from the coefficients of the multi-layer SL&WL filters in a transmission
experiment of 32-Gbaud PDM-64QAM over a 100-km SMF span.

Experimental setup

A schematic diagram of the experimental setup is shown in Fig. 4.7, which is
a similar configuration to that in the previous chapter. The 32-Gbaud PDM-
64QAM was generated by modulating a laser source at the frequency of 193.3
THz having a linewidth of about 100 kHz with waveforms from a four-channel



57

(d) (e) (f)

(a) (b) (c)

Figure 4.6. Simulation results of impairment monitoring under simultaneous
random multiple impairment conditions for (a) Tx IQ skew, (b) Tx IQ imbal-
ance, (c) Tx IQ phase deviation, (d) Rx IQ skew, (e) Rx IQ imbalance, and (f)
Rx IQ phase deviation of Y polarization. Results for 1000 random realizations
of multiple impairments are plotted in each figure.
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DAC at the sampling rate of 92 GS/s with a vertical resolution of eight bits.
Transmitted data were 16 frames of low-density parity-check code for DVB-S2
with a frame length of 64,800 and code rate of 0.8 while random bits were
loaded to their payload. These data were mapped to PDM-64QAM with Gray
mapping. Pilot symbols of QPSK were inserted every 15 symbols to execute a
pilot-based data-aided LMS. Due to the restriction of the data length that can
be handled with the DAC used in the experiment, an overhead of QPSK symbols
was inserted, which resulted in about 8% overhead in total with the pilot. The
inserted QPSK symbols were set to any of the outer symbol points of 64QAM.
The data were upsampled to two-fold oversampling, and a root-raised cosine
filter with a roll-off factor of 0.1 was used. After using a pre-compensation filter
to calibrate the frequency characteristic in Tx devices, the data for the IQ of
each polarization were resampled to 92 GS/s to be generated with the DAC.

DAC

MODLD OBPF Coherent RxPS
EDFA

ASE

SMF 100 km LD

ADC

Tx X-IQ skew
Rx X-IQ skew

Offline

Rx X-IQ phase dev.
Tx X-IQ phase dev.

Figure 4.7. Experimental setup of 32-Gbaud PDM-64QAM transmission over
100-km SMF span.

A 32-Gbaud PDM-64QAM signal was transmitted to a 100-km SMF after
low-speed polarization scrambling with a speed of 10×2π rad/s. The span in-
put optical power was set to 0 dBm. After 100-km SMF transmission, amplified
spontaneous emission was added to set the OSNR to 30 dB/0.1 nm. The re-
ceived optical signal was amplified using an EDFA and filtered using an optical
bandpass filter having a 3-dB bandwidth of 50 GHz. The optical signal was re-
ceived using a polarization-diversity coherent receiver with a LO source having
a linewidth of about 100 kHz. The laser sources for the signal and LO were free
running. The FO was about 60 MHz on average, and its standard deviation was
about 90 MHz. The four outputs of the coherent receiver were sampled using
an oscilloscope as the ADC at the sampling rate of 80 GS/s with a vertical
resolution of eight bits.

The Tx and Rx impairments were emulated digitally as arbitrary impair-
ments were difficult to impose in the analog domain. In this experiment, we
mainly focused on IQ skew in the Tx and Rx. IQ skew of X polarization from
-10 to +10 ps in steps of 1 ps were imposed to the signal generated from the
DAC and to those obtained with the ADC. For the condition of multiple im-
pairments, we also evaluated the cases in which the IQ phase deviation of X
polarization of 0◦ and ±10◦ was digitally emulated in the Tx and Rx. Strictly
speaking, the IQ phase deviation imposed in this manner did not fully match
the impairment model described in the previous section if there remained IQ
skew in the Tx and Rx devices, though they were calibrated as much as possible.
Since the average amplitudes of IQ components are relatively easy to access in
current Tx/Rx transceivers, we did not include IQ imbalance explicitly in this
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experiment. For each combination of impairments, the received waveforms were
acquired three times.

DSP was carried out offline. The impairment compensation DSP was almost
the same as that used in the above simulation, though pilot-based data-aided
LMS was applied in this experiment. Pilot-based DSP was achieved as follows.
After CD compensation, the pilot position was detected in accordance with the
difference in the averaged powers between the 64QAM signal and QPSK pilot.
Polarization demultipexing was then carried out using CMA for the pilot. Tim-
ing alignment of the received signal and pilot sequence was achieved using their
correlation. With the timing alignment, the main DSP with the multi-layer
SL&WL filters was applied to the signal before CD compensation again. The
configuration of the multi-layer SL&WL filters were the same as in the simula-
tion. The filter coefficients of the first, third, and fifth layers were adaptively
updated using the QPSK pilot with data-aided LMS. The step sizes of the up-
date were 10−3 for the first and fifth layers, and 10−2 for the third layer. After
the adaptive multi-layer SL&WL filters, the Gram-Schmidt orthogonalization
procedure was carried out, then the pilot and overhead were removed to eval-
uate the NGMI as a performance indicator [74]. The amounts of IQ skew, IQ
imbalance, and IQ phase deviation in the Tx and Rx were estimated using the
WL filter coefficients of the first and the fifth layers as well.

Transmission performance

Figure 4.8 shows the results of NGMI for all the 212×32 combinations of IQ skew
and IQ phase deviation in the Tx and Rx and 3 acquisitions, simultaneously.
The results are arranged as the function of IQ skew in the Tx in Fig. 4.8(a) and
as that in the Rx in Fig. 4.8(b). The results with 2×2 SL are also plotted as
a reference. With the multi-layer SL&WL filters, a stable NGMI of about 0.9
was obtained regardless of the impairments.

(a) (b)

Multi-layer SL&WL
2×2 SL

Figure 4.8. Experimental results of NGMI with (a) Tx IQ skew and (b) Rx IQ
skew. At each Tx (Rx) IQ skew, results of Rx (Tx) IQ skew from － 10 to +10
ps and Tx/Rx IQ phase deviation of 0◦ and ±10◦ are plotted.
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We compared the convergence speed of the adaptive multi-layer SL&WL
filters when multiple impairments existed. A learning curve of the loss of data-
aided LMS at the pilot symbols, that is, the training loss is the indicator of the
convergence performance. Figure 4.9 shows the time development of the training
losses obtained in the 100-km SMF transmission experiment of 32-Gbaud PDM-
64QAM. Even when multiple impairments existed, the convergence speed was
little affected and the losses are almost converged after 2000 symbols.

(0 ps, 0°, 0 ps, 0°)
(+10 ps, +10°, +10 ps, +10°)
(-10 ps, -10°, -10 ps, -10°)

Figure 4.9. Experimental results of time development of loss function. (Tx IQ
skew, Tx IQ phase deviation, Rx IQ skew, Rx IQ phase deviation) are (0 ps,
0◦, 0 ps, 0◦), (+10 ps, +10◦, +10 ps, +10◦), and (－ 10 ps, － 10◦, － 10 ps, －
10◦).

Impairment monitoring

Figure 4.10 shows the results of the impairment monitoring for IQ skew of X
polarization in the Tx and Rx. Similarly, the results for all combinations of
IQ skew and IQ phase deviation in the Tx and Rx are plotted simultaneously,
arranged as a function of IQ skew in Tx (Fig. 4.10(a)) and Rx (Fig. 4.10(b)),
respectively. The monitored values are plotted on the left axis and the moni-
tored errors from the emulated values are plotted on the right axis. For IQ skew
emulated in both the Tx and Rx, the estimated values corresponded to the emu-
lated ones. The monitored errors were within ±0.5 ps. The results confirm that
the impairments in both Tx and Rx could be individually monitored precisely
and simultaneously from the WL filter coefficients in the multi-layer SL&WL
filters adaptively controlled by SGD with back propagation. Since this moni-
toring scheme relies on pilot-based adaptive equalization, it can be used with
other modulation formats including probabilistic constellation shaping straight-
forwardly if pilot-based signal processing is adopted.

4.5 Summary

We proposed a monitoring method for individual impairments in a Tx and Rx
including IQ skew, IQ imbalance, and IQ phase deviation on the basis of the fil-
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(a) (b)

Figure 4.10. Experimental results of impairment monitoring for (a) Tx IQ skew
and (b) Rx IQ skew. At each Tx (Rx) IQ skew, results of Rx (Tx) IQ skew from
－ 10 to +10 ps and Tx/Rx IQ phase deviation of 0◦ and ±10◦ are plotted.

ter coefficients of our adaptive multi-layer SL&WL filter architecture controlled
by SGD with back propagation. Considering the order in which IQ impair-
ments occur in a Tx or Rx, the model relating IQ skew, IQ imbalance, and IQ
phase deviation to the corresponding WL filter responses in the multi-layer fil-
ter architecture were obtained. The method was evaluated through simulations
using 32-Gbaud PDM-QPSK and a 100-km SMF transmission experiment of
32-Gbaud PDM-64QAM. The results indicate that IQ skew, IQ imbalance, and
IQ phase deviation in both Tx and Rx could be individually monitored from the
WL filter coefficients precisely and simultaneously when multiple impairments
existed.





Chapter 5

Adaptive multi-layer filters
incorporated with Volterra
filters for impairment
compensation of
transmitter and receiver
nonlinearity

Advanced modulation formats with high spectral efficiency are susceptible to
not only linear impairments but also nonlinear characteristics due to device im-
perfection in a Tx and Rx. Since nonlinear processes are not mutually commu-
tative with any linear and nonlinear processes in general, we have to consider
the order in which impairments occur and they are compensated as we con-
sider it for linear MIMO processes in the previous chapters. The multi-layer
filter structure gives a reasonable approach to dealing with it. In this chapter,
we extend the adaptive multi-layer filter architecture by incorporating differen-
tiable nonlinear layers to compensate for Tx and Rx nonlinearity in optical fiber
communication systems. We introduce Volterra filters as nonlinear layers in the
adaptive multi-layer filters. The coefficients of the Volterra filters are adaptively
controlled by SGD and gradient calculation with back propagation. We evalu-
ated the performance of the adaptive multi-layer filters including Volterra filter
layers through simulations with a simple model and experiments where more
realistic Tx and Rx nonlinearity was induced by tuning the output amplitude
of electronic amplifiers. The adaptive multi-layer filters are used in receiver-side
signal processing for the transmission of a 23 Gbaud PDM-64QAM signal over
one span of a 100-km SMF. The results demonstrate that the architecture can
compensate for the nonlinearity that occurs in both Tx and Rx simultaneously
and effectively under the accumulation of other impairments such as CD.

63



64

5.1 Background

Nonlinear impairments in a Tx and Rx in optical fiber communication systems
are mainly caused by DACs, electronic driver amplifiers, and a Mach-Zehnder
modulator in the Tx, as well as electronic TIAs and ADCs in the Rx. These
impairments are becoming non-negligible, especially for signals with a high sym-
bol rate where high frequency devices are used [13, 87–89]. Characteristics of
nonlinear impairments depend on the components used in a Tx and Rx, which
are usually unknown beforehand. Thus, an adaptive approach or learning is
required to deal with Tx and Rx impairments.

To compensate for nonlinear impairments that occur mainly in a Tx, digi-
tal pre-distortion in the Tx side has been investigated on the basis of Volterra
filters [90–93] and neural networks [94–96]. These pre-distortion approaches
enable adaptive equalization by using a signal with a high SNR without the
effect from other impairments that occur in a fiber transmission; however, they
can only resolve Tx nonlinearity. Different approaches are required to compen-
sate for nonlinear impairments that occur in an Rx. Moreover, other effects
such as CD accumulate in a signal though fiber propagation. Nonlinear im-
pairments are not mutually commutative with other effects, so compensating
for fiber nonlinearity uses a split-step back propagation based on the nonlinear
Schrödinger equation [97]. Therefore, to compensate for nonlinear impairments
together with other impairments, the order in which all the relevant impair-
ments occur should be considered unless one lumped adaptive nonlinear filter
is used. However, a conventional DSP uses a block-wise compensation to effec-
tively deal with various impairments that have different causes and models [5]1.
From this point of view, mutual non-commutativity of nonlinear impairments
that occur in a Tx and Rx with other impairments has not been resolved in
these previous approaches, preventing compensation of both Tx and Rx non-
linearity at the same time. Recently, combination of pre-distortion at the Tx
side and adaptive nonlinear equalization at the Rx side has been reported [98],
where a nonlinear equalizer for Rx nonlinearity compensation is positioned at
the first of impairment compensation blocks and a nonlinear equalizer for Tx
nonlinearity compensation is positioned at the last. Four real-valued nonlinear
filters were used for both the Rx and Tx nonlinear equalizers and no impairment
compensation blocks that have IQ cross terms were included in this DSP. It is
reasonable to use four real-valued nonlinear filters since Tx and Rx nonlinearity
usually affects IQ components independently in coherent optical transmission
systems. Whereas, the absence of IQ cross terms prevents compensation of IQ
phase deviation. If nonlinear equalizers that have IQ cross terms are used, this
problem will be resolved, though this straightforward approach increases the
number of parameters of nonlinear equalizers greatly, resulting in high com-
putational complexity. Consequently, the features of Tx and Rx nonlinearity
in optical fiber communication systems, including mutual non-commutativity,
were not treated sufficiently in these previous approaches.

1It is computationally inefficient to compensate for all these linear and nonlinear impair-
ments that occur in an optical fiber communication system with one large nonlinear filter,
since it should have a large degree of freedom, i.e. tremendous cross terms and nonlinear
terms with long memory.
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5.2 Adaptive multi-layer filters incorporated with
Volterra filters

We extended the adaptive multi-layer filter architecture by incorporating non-
linear filters to compensate for both Tx and Rx nonlinearity when other impair-
ments such as CD coexist. Volterra filters and neural networks are both non-
linear functions and back propagation can be applied to both of them. A deep
neural network (DNN) slightly outperforms in compensating nonlinearity with
memory effects when nonlinear compensation is performed after conventional
linear impairment compensation [33]. From the view point of commutativity of
impairments, this previous work is regarded as a nonlinearity compensation in
a Tx. Although DNNs have the ability to approximate a complicated nonlinear
function, random initialization of parameters is usually required before learn-
ing [63], resulting completely random outputs at an initial phase. Regarding
impairment compensation in optical fiber communications, dominant sources to
prevent demodulation are linear effects that occur in fiber propagation such as
CD, though Tx and Rx nonlinearity cannot be ignored. Therefore, initializing
nonlinear filters that compensate for Tx and Rx nonlinearity as a certain linear
or even an identity function instead of a random function can help convergence
at the beginning of adaptive control. In the case of the Volterra filter, which
is easily initialized as a linear filter, an optimum nonlinear function can be
smoothly and steadily obtained by adaptive control from the initial state. Here,
we introduced Volterra filters into the adaptive multi-layer filters. Considering
the order in which all the relevant impairments occur, the multi-layer filters con-
sist of SL and WL filter layers to compensate for relevant linear impairments,
and the two Volterra filter layers, each of which works as to compensate for non-
linearity that occurs in an Rx and Tx, respectively, are appropriately positioned
in the multi-layer filters. The coefficients including the Volterra filter layers were
adaptively controlled by a gradient calculation with back propagation and SGD.
In this multi-layer filter architecture including Volterra filter layers, a Volterra
filter itself compensates only for Rx or Tx nonlinearity and is not required to
compensate for any other effects and their interaction with nonlinearity, which
expands a temporal spread. Thus, the Volterra filter layers in the multi-layer
filters can be implemented with short memory taps, though the number of co-
efficients and computational complexity of a Volterra filter increase drastically
with the increase in length of the memory taps [99].

We first review the nonlinear impairments that occur in optical fiber com-
munication systems with coherent detection. We then introduce the multi-layer
filter architecture including Volterra filter layers in an appropriate order and its
adaptive control. The coefficients are updated by a gradient calculation with
back propagation and SGD to minimize a loss function that is composed of the
last layer outputs. Although an adaptive Volterra filter is well-known [100],
adaptive control of the filter coefficients with its direct input and output is in-
sufficient when incorporating it into the adaptive multi-layer filters. We derive
the back propagation of the Volterra filter layers in the multi-layer filters, in
other words, calculating the gradients of a loss in terms of filter coefficients
and inputs, when gradients in terms of filter outputs are given, to update the
coefficients in all the layers including the Volterra filter ones.

We consider a schematic diagram of a coherent WDM transmission system
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and Tx and Rx as previously shown in Figs. 2.2 and 2.3. On the Tx side shown
in Fig. 2.2(a), some nonlinearity occurs in the DAC and electric driver ampli-
fiers for IQ components [101]. A Mach-Zehnder modulator also has nonlinear
sinusoidal characteristics [85]. On the Rx side, TIAs in a coherent receiver for
IQ components and ADC induce nonlinearity. As we discussed in the previous
chapters, linear IQ impairments such as IQ skew, IQ imbalance, and IQ phase
deviation also occur in the Tx and Rx. In a fiber propagation between the
Tx and Rx, CD and PMD accumulate in the signal. We ignore the fiber Kerr
nonlinearity for simplicity2. Linear processes including Tx and Rx linear im-
pairments, CD, and PMD can obviously change the intensity profile of a signal,
and thus nonlinear processes are not commutative with them.

Figure 5.1 shows the adaptive multi-layer filter architecture where two Volterra
filter layers are positioned to compensate for Rx and Tx nonlinearity considering
the order of impairments. It is composed of eight layers comprising FIR filters
and Volterra filters. We consider here that both FIR and Volterra filters operate
at half-symbol-spaced. The first layer has Volterra filters to compensate for Rx
nonlinearity. Although complex-valued Volterra filters exist [104], a nonlinear
filter does not have to compensate for any interaction between nonlinear impair-
ment and other effects in this multi-layer filter architecture. Considering the
architecture of transmission systems with coherent detection as shown in Fig.
2.3, it is valid to assume that Rx nonlinearity imposed to I and Q components
in terms of the Rx output independently by Rx electronic amplifiers. Nonlin-
earity imposed by ADCs also affects IQ components in terms of the Rx output
independently. Thus, there are no nonlinear mixing between IQ components in
terms of the Rx output at the input of the first layer, and the first layer requires
no IQ cross terms to compensate for Rx nonlinearity in this case. Therefore,
four Volterra filters with real-valued input and real-valued coefficients are used
for the corresponding IQ components. The second layer has two 2×1 WL filters
for two polarizations to compensate for Rx linear impairments. Focusing on IQ
mixing that occurs in an Rx, which cannot be compensated by the first layer
having four real-valued Volterra filters, it occurs at a coherent receiver as a phase
deviation, which is followed by Rx electronic amplifiers. Thus, Rx nonlinearity
compensation is followed by Rx linear impairment compensation. This Rx non-
linear and linear compensation chain can mitigate complexity of nonlinear filters
since no IQ cross terms are required for nonlinear filters, whereas IQ mixing can
be compensated by linear filters. The third layer has two 1×1 SL filters to com-
pensate for CD, whose coefficients are static and determined by the amount of
accumulated CD. The fourth layer has a 2×2 SL MIMO filter to perform polar-
ization demultiplexing and PMD compensation, The fifth layer has two 1×1 SL
1-tap filter to perform carrier recovery, whose coefficients, or amounts of phase
compensation, are controlled by a digital PLL with the last layer outputs. The
sixth layer has two 2×1 WL filters to compensate for Tx linear impairments.
The seventh layer has Volterra filters to compensate for Tx nonlinearity. Similar
to Rx nonlinearity, it is valid to assume that Tx nonlinearity imposed to I and
Q components in terms of the Tx input independently by Tx electronic am-
plifiers. Nonlinear characteristics of a Mach-Zehnder modular, which affect IQ
components in terms of the Tx input independently, follow it and then a phase

2Actually. much effort has been towards to compensation of fiber nonlinearity [7,17,48,102,
103], rather than Tx and Rx nonlinearity in the research filed of optical fiber communication.
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deviation, which causes IQ mixing, follows. Therefore, as with the first layer,
four real-valued Volterra filters are used for the seventh layer and they follow
Tx linear impairment compensation. At the input of the seventh layer, all mix-
ing between IQ components in terms of the Tx input is compensated through
previous six layers. The eighth layer has four real-valued linear filters for the
IQ components that work as a matched filter. Narrow bandwidth filtering like
a matched filter can change a signal intensity profile, and is not commutative
with nonlinear effects. The matched filter is thus incorporated into the last of
the multi-layer filters. The coefficients of the first, second, fourth, sixth, and
seventh layers are adaptively updated to minimize a loss that is composed of the
last layer outputs by a gradient calculation with back propagation from the last
layer and SGD. By this adaptive control, the coefficients of the Volterra filters
are converged without involving matrix inversion as a least squares solver, which
can be deteriorate accuracy as the size of the Volterra filter increases [33].
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Figure 5.1. Architecture of adaptive ML filters including two Volterra layers
to compensate for nonlinearity that occurs in Rx and Tx. Coefficients are
adaptively controlled with back propagation and SGD to minimize loss. C/R:
complex-to-real conversion, R/C: real-to-complex conversion.

5.2.1 Forward and back propagation of Volterra filter

We already have the forward and back propagation in the cases where the l-th
layer in the adaptive multi-layer filter architecture shown in Fig. 5.1 consists of
SL (MIMO) and WL (MIMO) filters. The remaining to obtain the last outputs
of the multi-layer filters and the gradient calculation is the forward and back
propagation in the case where the l-th layer has four real-valued Volterra filters
for the IQ components.

Forward propagation

The output and input signal vectors of the l-th layer that relate to the last L = 8

layer outputs at the timing integer k are represented as u
[l]
i [k] and u

[l−1]
i [k],
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respectively, in the complex-valued phasor representation, as

u
[l]
i [k] = (u

[l]
i [k], u

[l]
i [k − 1], . . . , u

[l]
i [k −Ml + 1])T, (5.1)

u
[l−1]
i [k] = (u

[l−1]
i [k], u

[l−1]
i [k − 1], . . . , u

[l−1]
i [k −Ml−1 + 1])T, (5.2)

where i = 1, 2 for the two polarizations, and Ml and Ml−1 are the lengths of
the output and input signal vectors, respectively. Given that the tap length of
the FIR filters of the l-th layer is M [l], it satisfies

M [l] = Ml−1 −Ml + 1, (5.3)

due to the relation of convolution, and it can also holds to Volterra filters.
The l-th layer inputs are the (l − 1)-th layer outputs in the multi-layer filter

architecture. The last L-th layer outputs are u
[L]
i [k] = u

[L]
i [k] and ML = 1. We

obtain them by applying the forward propagation relation of each layer from
the first l = 1 layer successively.

First, we require the relation between the signals in the complex-valued
phasor representation and those in the real-valued IQ basis representation. The

outputs of the l-th layer in the phasor representation u
[l]
i ∈ C are related to those

in the IQ basis representation u
[l]
iI , u

[l]
iQ ∈ R, by using the augmented signals with

complex conjugates of u[l] = (u
[l]
1 , u

[l]
2 , u

[l]∗
1 , u

[l]∗
2 )T, as [42]
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1Q
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u
[l]
1I

u
[l]
2I

u
[l]
1Q

u
[l]
2Q

 , (5.4)

where

T2 =

(
I2 iI2
I2 −iI2

)
(5.5)

satisfies T †
2T2 = T2T

†
2 = 2I4. In is an identity matrix with a corresponding size.

We denote the signals in the IQ basis representation as (u
[l]
1I, u

[l]
2I, u

[l]
1Q, u

[l]
2Q)

T =

(x
[l]
1 , x

[l]
2 , x

[l]
3 , x

[l]
4 )T = x[l]. x

[l]
q ∈ R, where q = 1, . . . , 4, are corresponding IQ

components of the two polarizations. According to Eq. (5.4),

u[l] = T2x
[l], (5.6)

and

x[l] =
1

2
T †
2u

[l]. (5.7)

These relations hold for inputs.
When the l-th layer has four real-valued Volterra filters corresponding to

q = 1, . . . , 4, the output and input signal vectors are

x[l]
q [k] = (x[l]

q [k], x[l]
q [k − 1], . . . , x[l]

q [k −Ml + 1])T, (5.8)

x[l−1]
q [k] = (x[l−1]

q [k], x[l−1]
q [k − 1], . . . , x[l−1]

q [k −Ml−1 + 1])T. (5.9)
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If a Volterra filter includes up to the P -th order terms, the output is

x[l]
q [k] =

P∑
p=1

M [l]−1∑
m1=0

M [l]−1∑
m2=m1

. . .

M [l]−1∑
mp=mp−1

h[l]
q,p[m1, . . . ,mp]

p∏
r=1

x[l−1]
q [k −mr],

(5.10)

where h
[l]
q,p[m1, . . . ,mp] ∈ R are the coefficients of the p-th order. Reflecting the

symmetry of the product of x
[l−1]
q , a Volterra filter has coefficients of the num-

ber of
∑P

p=1

∑M [l]−1
m1=0

∑M [l]−1
m2=m1

. . .
∑M [l]−1

mp=mp−1
1. We can carry out the forward

propagation in the cases where the l-th layer has Volterra filters by using Eq.
(5.10).

Back propagation

By using Wirtinger derivatives, the complex-valued coefficients ξ of SL or WL
filters are updated with gradient descent to minimize ϕ as

ξ → ξ − 2α
∂ϕ

∂ξ∗
, (5.11)

where α is a step size. When the l-th layer has real-valued Volterra filters, the
update of a real-valued coefficient ξ with SGD is

ξ → ξ − α
∂ϕ

∂ξ
, (5.12)

instead of Eq. (5.11).
We require the relation between gradients in terms of the complex-valued

phasor representation and those of the real-valued IQ basis representation as
with the case of the forward propagation. According to Wirtinger derivatives,
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and thus
∂ϕ

∂x[l]
= TT

2

∂ϕ

∂u[l]
, (5.14)

∂ϕ
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1

2
T ∗
2

∂ϕ

∂x[l]
. (5.15)

This gives us the gradients of the loss in terms of the real-valued outputs of a
Volterra filter. These relations also hold for the gradients in terms of the inputs.

When the gradients of the loss ϕ in terms of the output x
[l]
q [k] of a Volterra

filter, represented as

∂ϕ

∂x
[l]
q [k]

=

(
∂ϕ

∂x
[l]
q [k]

,
∂ϕ

∂x
[l]
q [k − 1]

, . . . ,
∂ϕ

∂x
[l]
q [k −Ml + 1]

)T

, (5.16)
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are given, the gradients in terms of the coefficients of the Volterra filter are

∂ϕ

∂h
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q [k −mr −mp], (5.18)

and the gradients in terms of the input of the Volterra filter are
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Now we obtain the back propagation of the real-valued Volterra filters. This
includes the case of the linear filter (as is in the case of the eighth layer for
matched filtering in Fig. 5.1) if we restrict P = 1. Therefore, we now have
all the forward and the back propagation of the adaptive multi-layer filters
including the Volterra filter layers.

5.3 Evaluation in simulation

We evaluated the performance of compensation of Tx and Rx nonlinearity by
the adaptive multi-layer filters including Volterra filter layers shown in Fig. 5.1
through simple numerical simulations.

Simulation model

The simulation model corresponds to a transmission system with coherent detec-
tion as shown in Fig. 2.2, though we consider a case without WDM to focus on
Tx and Rx nonlinearity. The transmitted signal was a 23 Gbaud3 PDM-64QAM.

3This symbol rate was chosen to mitigate the impact of linear Tx and Rx impairments
remaining in the experimental setup described later to focus on the Tx and Rx nonlinearity.



71

Three FEC frames of low-density parity-check code for DVB-S2 with a frame
length of 64,800 and code rate of 0.8 with loading random bits to its payload
were generated for each IQ component of the two polarizations, and they were
mapped into the PDM-64QAM. To conduct a coefficient update with pilot-based
data-aided LMS, a pilot symbol of the 64QAM was inserted in every 15 sym-
bols. In addition, a preamble of 64 successive symbols was inserted in each FEC
frame to detect the head of the frame to carry out pilot-based signal processing.
The preamble was quadrature phase-shift keying (QPSK) corresponding to the
corner states of the 64QAM to distinguish it in a simple manner by using power
difference. This results in about 6.5% overhead in total in terms of the pilot
and preamble symbols. Learning of large nonlinear filters can fall into overfit-
ting, especially when using a pseudo random sequence [105,106]. In this study,
a long random pattern was used for pilot and preamble symbols compared to
the tap length of the Volterra filters and the performance was evaluated by a
sufficient long random data load. The PDM-64QAM signal inserted with the
pilot and preamble symbols was then upsampled to 32-fold oversampling, and
a root raised cosine filter with a roll-off of 0.1 was performed. Real-valued IQ
components of the two polarizations of this signal correspond to the electrical
signals generated by the ideal DAC. An optical modulator driven by these sig-
nals modulated a CW light source at a frequency of 193.3 THz and linewidth of
0 to generate optical signals. At this time, Tx nonlinearity that was sinusoidal,
i.e. sin(βx)/β with the degree of nonlinearity β, which emulated a characteris-
tic of a Mach-Zehnder modulator, was imposed to the IQ components. No IQ
linear impairments were imposed in the Tx to focus on the nonlinearity.

After adding CD corresponding to the 100-km SMF and setting an OSNR
to 30 dB/0.1 nm by adding an additive white Gaussian noise, the signal was
coherently received. A LO first had a linewidth of zero and no frequency offset
to the signal carrier so that only CD was mutually non-commutative linear im-
pairment with Tx or Rx nonlinearity 4. A low-pass filter with a 3-dB bandwidth
of 0.8 times of the symbol rate was used to filter the electrical signals after co-
herent detection. Rx nonlinearity, which is like a saturation characteristic of
an electronic amplifier, i.e. tanh(βx)/β, was imposed to the IQ components.
No IQ linear impairments were imposed in the Rx again. After that, the sig-
nals were sampled with two-fold oversampling. Then, DSP was performed after
normalizing IQ components individually.

In this simulation, two kind of architectures were evaluated. The first one is
a conventional one used in optical fiber communication systems with coherent
detection as a reference. This is referred to as Linear after only linear filters
were used for impairment compensation5. In this case, the received signals
were resampled to two-fold oversampling on the basis of a timing error [86]
with low-pass filtering that uses 3-dB bandwidth of the symbol rate (which was
not necessary in this simulation and worked in the experiment described later).
Then, CD compensation and matched filtering were performed in the frequency
domain. The head of the preamble symbols was detected by the moving av-
erage of the signal power, and the signals were aligned to perform pilot-based
data-aided LMS for polarization demultiplexing and PMD compensation with
a half-symbol spaced 21-tap FIR 2×2 MIMO filter. Carrier recovery was also

4The simulation results when a LO having a linewidth of 100 kHz was also included for
reference.

5This configuration is the same as 2×2 SL in the previous chapters.
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performed by a digital PLL within the MIMO filter.

The second architecture was the adaptive multi-layer filters including Volterra
filter layers. Since CD compensation and matched filtering were performed in
the multi-layer filter in this case, the timing alignment was performed after
resampling. Here, the head of the preamble symbols was detected after CD
compensation and the timing alignment was performed on the signal before CD
compensation. Impairment compensation by the multi-layer filters was executed
on the signal before CD compensation with the timing alignment again. The
tap lengths of the second and sixth layers to compensate for linear impairment
in the Rx and Tx were set to five. The length of the third layer to compensate
for CD was 41, which was sufficient to compensate for the CD amount over a
100-km SMF. The length of the fourth layer to perform polarization demulti-
plexing and PMD compensation was 21. The length of the eighth layer was
nine, though it was a bit insufficient to represent a root raised cosine filter with
a roll-off of 0.1 precisely, since the increase of the tap length of later layers in
the multi-layer filters results in high computational complexity. The lengths
of the first and seventh layers of Volterra filters to compensate for Rx and Tx
nonlinearity were one in this simulation, considering that the imposed nonlin-
earity in the Tx and Rx does not have any temporal spread in this simulation.
The Volterra filters had the terms up to the fifth order. The coefficients of
the first, second, fourth, sixth, and seventh layers were adaptively controlled to
minimize the loss of the data-aided LMS with back propagation and SGD. They
were updated at both the pilot and preamble symbols. The coefficients were
initialized as one at the center of the main diagonal filters with the remaining
set to zero. The fifth layer for carrier recovery was updated by a PLL at all the
symbols. A PLL with a data-aided or decision-directed phase error with ideal
one symbol delay was used to focus on the performance of adaptive control of
the filter coefficients with SGD. A pilot-based digital PLL can be implemented
with low penalty [107] and sophisticated parallelization techniques have been
investigated to reduce loop delay [108], though further consideration is needed
for practical implementation of a digital PLL. The step sizes were 10−3 for the
second, fourth, and sixth layers, and 10−2 for the first and seventh Volterra
filter layers. The same step size was used for all orders of Volterra filter coeffi-
cients. We evaluated three cases in the adaptive ML filter architecture; only the
first layer to compensate for Rx nonlinearity was activated (ML Rx Volterra);
only the seventh layer to compensate for Tx nonlinearity was activated (ML
Tx Volterra); and both the first and seventh layers were activated (ML both
Volterra). The four cases, which includes Linear, were compared.

After impairment compensation and removing pilot and preamble symbols,
the EVM was evaluated in this simulation. The error vector was defined as the
difference between a signal to a decision result, and the reference of the EVM
was the averaged amplitude of QAM.

Figure 5.2 shows the results of the EVM after the Linear processing while
changing the degree of nonlinearity β in the Tx and Rx. Two cases with a
back-to-back condition (b2b) and a CD accumulation of 100-km SMF (100 km)
were evaluated. In the case with Tx nonlinearity, no difference was observed for
the b2b and 100 km conditions. In contrast, in the case with Rx nonlinearity,
the EVM got worse when it imposed in the 100 km condition6. This is because

6The difference between the cases of Tx and Rx nonlinearity is the consequence of the
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Rx nonlinearity more severely affects for a signal with a large amplitude distri-
bution, i.e., a large peak-to-average ratio (PAPR), after CD accumulation than
for one with a small PAPR before CD accumulation. This phenomenon does
not occur for Tx nonlinearity as we can see in the order of impairments. Tx
and Rx nonlinearity differently when other impairments exist. In the following
evaluations, the degree of nonlinearity was set to β = 0.83 for Tx nonlinearity
and to 0.67 for Rx nonlinearity to provide similar EVM degradation in the b2b
condition.

(a) (b)

Figure 5.2. Emulation of (a) Tx and (b) Rx nonlinearity in the cases with back-
to-back (b2b) and 100-km SMF transmission (100 km). The results of EVM
averaged over two polarizations after impairment compensation by the Linear
processing are plotted.

Back-to-back condition

We evaluated the performance of the four compensation cases (Linear, ML Tx
Volterra, ML Rx Volterra, and ML both Volterra) under four conditions: with-
out nonlinearity in the Tx and Rx (no NL), with Tx nonlinearity (Tx NL), with
Rx nonlinearity (Rx NL), and with both Tx and Rx nonlinearity (both NL).
Figure 5.3 shows the constellation results in the b2b condition obtained by the
four compensation cases. Only the constellations of one polarization are shown
in Fig. 5.3 for simplicity, while a similar result was obtained for the orthogo-
nal polarization. The results by Linear processing show that the constellation
of 64QAM was distorted, where spacing between the symbol points became
narrower at the outer symbol points, when Tx nonlinearity or Rx nonlinearity
was imposed. In the case with both Tx and Rx nonlinearity, the constella-
tion was distorted more severely in the same way. In contrast, the results by
ML Tx Volterra, ML Rx Volterra, and ML both Volterra processing provided
constellations of almost equally-spaced symbol points, as was the case without
nonlinearity, when Tx and Rx nonlinearity were imposed. This indicates that
three kinds of ML Volterra processing could compensate for both Tx and Rx

difference of the nonlinear function we adopted.
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nonlinearity, though nonlinear compensation did not perfectly work to cancel
Tx nonlinearity. In other words, each of the first and seventh Volterra filter
layers of the ML filters could compensate for both Tx and Rx nonlinearity in
the b2b condition. It should be noted that this was achieved only if no other ef-
fects, such as CD, polarization rotation, phase noise from a LO, and a frequency
offset, coexist as shown later.
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Figure 5.3. Simulation results of constellations in the b2b condition obtained
by Linear, ML Tx Volterra, ML Rx Volterra, and ML both Volterra processing,
in the cases with no nonlinearity (no NL), Tx nonlinearity (Tx NL), Rx nonlin-
earity (Rx NL), and both Tx and Rx nonlinearity (both NL).

100-km SMF transmission

Figure 5.4 shows the constellation results obtained by the four compensation
cases in a 100-km transmission. The results by Linear processing show that the
constellation under Tx nonlinearity was similar to that in the b2b condition
shown in Fig. 5.3. Whereas, the constellation under Rx nonlinearity was not
similar to that in the b2b condition, and it had equally-spaced symbol points
but with increased errors around the symbol points. This is because Rx non-
linearity was imposed under CD accumulation and compensation for CD was
performed after that. In the constellation with both Tx and Rx nonlinearity,
both effects of distortion of unequally-spaced symbol points and increased er-
rors around symbol points were superimposed. In the case by ML Tx Volterra
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processing, it compensated for Tx nonlinearity, whereas it did not compensate
for Rx nonlinearity. In the case by ML Rx Volterra processing, it compen-
sated for Rx nonlinearity, whereas it did not compensate for Tx nonlinearity.
The results showed that Tx and Rx nonlinearity differed in their behaviors and
that compensation of Tx or Rx nonlinearity could not work well unless the
nonlinear compensation was positioned in an appropriate order in impairment
compensation when other effects, which is CD in this case, coexist due to mu-
tual non-commutativity of the effects. Since two nonlinear compensations of Rx
and Tx nonlinearity were included in the case by ML both Volterra processing,
it compensated for both Tx and Rx nonlinearity as shown in Fig. 5.4.
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Figure 5.4. Simulation results of constellations in 100-km SMF transmission
obtained by Linear, ML Tx Volterra, ML Rx Volterra, and ML both Volterra
processing, in the cases with no nonlinearity (no NL), Tx nonlinearity (Tx NL),
Rx nonlinearity (Rx NL), and both Tx and Rx nonlinearity (both NL).

Comparison of various conditions

Figure 5.5 summarizes the EVM results of the constellations shown in Figs.
5.3 and 5.4. In the b2b condition shown in Fig. 5.5(a), the EVMs obtained
by four compensation cases with no Tx or Rx nonlinearity were similar and
it indicated that a small number of taps for the eighth layer provided a small
penalty in the cases with multi-layer filters. The EVMs obtained by ML Tx
Volterra, ML Rx Volterra, and ML both Volterra processing were similar and
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improved from those by Linear processing when Tx and Rx nonlinearity were
imposed. In the case with both Tx and Rx nonlinearity, the EVM by Linear
processing was 9.3% and that by ML both Volterra was 5.4%. The performance
by ML both Volterra did not reach the performance without nonlinearity by
Linear processing of 4.4%. Possible causes of this are the limitations of non-
linear processing with two-fold oversampling, low-pass filtering at the Rx, and
restrictions of Volterra filters up to the fifth order. In the 100-km transmission
shown in Fig. 5.5(b), ML Tx Volterra and ML both Volterra processing pro-
vided good performances of 5.3% under Tx nonlinearity, and ML Rx Volterra
and ML both Volterra processing provided good ones of 4.7% under Rx non-
linearity. The EVM by ML both Volterra processing under both Tx and Rx
nonlinearity was 5.5%. These results demonstrated that the proposed adap-
tive ML filters including Volterra filter layers could work for compensating for
both Tx and Rx nonlinearity simultaneously and effectively even when other
impairments coexist.
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Figure 5.5. Simulation results of EVM obtained by Linear, ML Tx Volterra,
ML Rx Volterra, and ML both Volterra processing, where no nonlinearity (no
NL), Tx nonlinearity (Tx NL), Rx nonlinearity (Rx NL), and both Tx and Rx
nonlinearity (both NL) were imposed, in the cases of (a) b2b and (b) 100-km
transmission.

In the previous simulations, a laser phase noise was ignored so that only CD
was mutually non-commutative linear impairment with Tx or Rx nonlinearity.
There were no mutually non-commutative linear impairments with Tx or Rx
nonlinearity in the b2b condition, in comparison to the case when CD coexisted.
Figure 5.6 shows the simulation results of EVM when an LO linewidth was 100
kHz. In contrast to the case without a phase noise shown in Fig. 5.5(a), the
EVMs obtained by ML Tx Volterra, ML Rx Volterra, and ML both Volterra
processing were different in the b2b condition as shown in Fig. 5.6(a) when Tx
or Rx nonlinearity was imposed. Tx nonlinearity was compensated by ML Tx
Volterra and ML both Volterra processing. Rx nonlinearity was compensated
by ML Rx Volterra and ML both Volterra processing. The EVM results in
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the 100-km transmission shown in Fig. 5.6(b) show similar behaviors. Thus,
not only CD but also other linear effects that are not commutative with Tx or
Rx nonlinearity prevent one nonlinear filter positioned at the first or the last
of compensation blocks from compensating for both Tx and Rx nonlinearity.
Nevertheless, ML both Volterra processing could compensate for all the relevant
impairments including Tx and Rx nonlinearity.
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Figure 5.6. Simulation results of EVM with LO phase noise of 100 kHz obtained
by Linear, ML Tx Volterra, ML Rx Volterra, and ML both Volterra processing,
where no nonlinearity (no NL), Tx nonlinearity (Tx NL), Rx nonlinearity (Rx
NL), and both Tx and Rx nonlinearity (both NL) were imposed, in the cases of
(a) b2b and (b) 100-km transmission.

Convergence of loss

We also evaluated the convergence property of the adaptive coefficient control.
Figure 5.7 shows the time development of a training loss, that is, the loss at pilot
and preamble symbols, in the 100-km transmission. In all cases of Tx and Rx
nonlinearity, convergence was achieved by updating with about 2×104 symbols.
There were multiple peaks observed in the loss when Tx or Rx nonlinearity was
imposed. These peaks were caused by preamble symbols. The four corner states
of the 64QAM were used in preamble symbols for timing alignment. Preamble
symbols had higher averaged power compared to the other symbols and thus
induced more severe degradation when nonlinearity was imposed.

5.4 Evaluation in transmission experiment

Finally, we evaluated the performance of the compensation of Tx and Rx non-
linearity by the adaptive multi-layer filters including Volterra filter layers in
a transmission experiment of a 23 Gbaud PDM-64QAM signal over a 100-km
SMF span. In this experiment, Tx and Rx nonlinearity were induced by tuning
an output amplitude of electronic amplifiers in a Tx and Rx.



78

Figure 5.7. Simulation results of time development of training loss by ML both
Volterra processing moving-averaged over 100 symbols.

Experimental setup

The experimental setup is shown in Fig. 5.8. At the transmitter side, as
was the case with the previous simulation, three FEC frames were generated
for each IQ component of the two polarizations, and they were mapped into
the PDM-64QAM with the inserted pilot and preamble symbols. Real-valued
IQ components of the two polarizations of the signal were then upsampled to
two-fold oversampling, and a raised cosine filter with a roll-off of 0.1 and pre-
compensation of frequency characteristics of Tx components were performed.
These signals were upsampled again to four-fold oversampling to be generated
by a DAC at a sampling rate of 92 GS/s and a vertical resolution of eight bits.
An optical modulator driven by the outputs of the DAC with an LD source at
a frequency of 193.3 THz having a linewidth of about 100 kHz generated a 23
Gbaud PDM-QPSK signal. Tx nonlinearity was induced by tuning the output
amplitude of electronic driver amplifiers operating on the DAC outputs.

DAC

MODLD OBPF Coherent RxPS
EDFA ASE

SMF 100 km

LD

ADC Offline

Rx electronic amp.

Tx electronic amp.

Figure 5.8. Experimental setup for transmission of a 23 Gbaud PDM-64QAM
signal over the span of a 100-km SMF. Tx(Rx) nonlinearity was induced by
tuning an output amplitude of electronic amplifiers in Tx(Rx).

The generated signal was then transmitted over a span of a 100-km SMF
after low speed (10× 2π rad/s) polarization scrambling. The span input power
was set to 0 dBm, providing some fiber nonlinearity of self-phase modulation.
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After the 100-km SMF transmission, the OSNR was set by adding ASE. In the
case when no ASE was added, the received OSNR was 34.9 dB/0.1 nm. The
signal then passed through an optical band-pass filter with a 3-dB bandwidth
of 50 GHz and was detected with an integrated polarization-diversity coherent
Rx including gain controlled electronic amplifiers. Its 3-dB bandwidth was 40
GHz. An LO with a linewidth of about 100 kHz and the signal source were
free-running, and the frequency offset was within about ± 100 MHz. Since a
frequency offset can be estimated and compensated after CD compensation [72],
this small frequency offset is a reasonable start point of the adaptive control of
filters. The electrical signals of the coherent Rx outputs were sampled by a
digital oscilloscope as an ADC at a sampling rate of 80 GS/s, vertical resolution
of eight bits, and bandwidth of 25 GHz. Three acquisitions were obtained for
each condition. Rx nonlinearity was induced by tuning the output amplitude of
the TIA in the coherent Rx.

DSP was performed offline. In this experiment, we also evaluated the per-
formance of four compensation cases (Linear, ML Tx Volterra, ML Rx Volterra,
and ML both Volterra). The configuration of DSP was the same as that in the
previous simulation, except that the tap length of the fourth layer to perform
polarization demultiplexing and PMD compensation (and also that in Linear)
was 41. The tap lengths and the maximum orders of Volterra filters of the first
and seventh layers to compensate for Rx and Tx nonlinearity were optimized
since the temporal spread of nonlinearity was unknown in this experiment, as
discussed later. The step sizes including the Volterra filter layers were 10−3. Af-
ter convergence of the adaptive control of the filter coefficients by using about
3× 106 samples, which includes about 6× 104 pilot and preamble symbols, the
pre-/post-FEC bit error rate (BER) and EVM were evaluated with the removal
of the pilot and preamble symbols. The median of the results of the three
acquisitions was adopted.

Figure 5.9 shows the experimental results of the EVM obtained by Linear
processing when the output amplitude of electronic driver amplifiers in the Tx
or that of the TIA in the Rx was tuned. The output amplitude was normalized
by its optimum value. In the cases when the electronic output amplitudes were
tuned in both the Tx and Rx, the EVM degraded as the output amplitude
exceeded its optimum, which suggested that some nonlinearity was induced in
the Tx and Rx. The optical spectra when the output amplitude of the Tx
electronic amplifiers was tuned are shown in Fig. 5.10. The powers of the four
cases were normalized. As the output amplitude of the Tx electronic amplifiers
increased, the optical spectrum became slightly broader due to nonlinearity. We
hereinafter evaluated the performance in the four conditions similar to that in
the simulation: the output amplitudes were both optimum and no nonlinearity
was induced in the Tx and Rx (no NL); the output amplitude in the Tx was
two and Tx nonlinearity was induced (Tx NL); the output amplitude in the Rx
was two and Rx nonlinearity was induced (Rx NL); the output amplitudes in
the Tx and Rx were two and both Tx and Rx nonlinearity were induced (both
NL).

Dependence of performance on order and length of Volterra filters

We evaluated the EVM while changing the tap lengths and maximum orders
of the Volterra filters to optimize them. No ASE was added after transmission.
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(a) (b)

Figure 5.9. Experimental results of EVM obtained by Linear processing when
the output amplitude of the (a) Tx or (b) Rx electronic amplifiers was tuned.
The output amplitude was normalized by its optimum value.

Figure 5.10. Optical spectra when the output amplitude of the Tx electronic
amplifiers was tuned from 0.5 to 2.0. The powers of the four cases were normal-
ized. The resolution bandwidth was 0.02 nm.
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Figure 5.11(a) shows the results of the EVM by ML Tx Volterra processing
where Tx nonlinearity was induced, as a function of the total number of coeffi-
cients of the Volterra filters of the seventh layer. The tap length M [7] and the
maximum order P of the seventh layer Volterra filters were changed. The step
size was roughly optimized for each size. Focusing on the results with the cases
where the tap length of the Volterra filters M [7] = 1, the performance with
P = 5 outperformed that with P = 3, and little improvement was observed
with P = 7. Then, focusing on the results when the maximum order P = 3,
they indicated that a tap length of five was a good choice. Figure 5.11(b) shows
the results of EVM by ML Rx Volterra processing where Rx nonlinearity was
induced. The tap length and maximum order of the first layer Volterra filters
were changed. In accordance with these results, we set the tap lengths of the
two Volterra filter layers to M [7] = M [1] = 5, and the maximum orders P = 5.

(a) (b)

Linear Linear

Figure 5.11. Experimental results of dependence of EVM on Volterra filter size,
(a) obtained by ML Tx Volterra processing where Tx nonlinearity was induced,
and (b) by ML Rx Volterra processing where Rx nonlinearity was induced.

Figure 5.12 shows the histograms of the square amplitudes of converged
coefficients of the four Volterra filters at the first and seventh layers obtained
by ML both Volterra processing in the 100 km transmission experiment with
Tx and Rx nonlinearity induced (both NL) when no ASE was added. The tap
lengths of the two Volterra filter layers were M [7] = M [1] = 5, and the maximum
orders were P = 5. It is noted that the inputs of the multi-layer filters were
normalized so that the corner states of 64QAM corresponded to the square
amplitude of one. The histograms of the coefficients in the order of p = 1 to
5 are individually shown. Clear discrimination to choose important coefficients
could not be extracted regarding both the Volterra filters of the seventh layer for
Tx nonlinearity compensation and the ones of the first layer for Rx nonlinearity
compensation with the LMS algorithm. Regularization techniques such as L1

regularization can induce sparse coefficients and pruning of them may help to
reduce the computational complexity of the Volterra filters.
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(a) (b)

Figure 5.12. Histogram of the square amplitude of converged coefficients of the
Volterra filters of (a) the seventh layer for Tx nonlinearity compensation and
(b) the first layer for Rx nonlinearity compensation when ML both Volterra
processing was used in the 100 km transmission experiment with Tx and Rx
nonlinearity (both NL).

Tx and Rx nonlinearity compensation by adaptive multi-layer filters
including Volterra filters

Figure 5.13 shows the results of constellations obtained after the 100-km trans-
mission by the four compensation cases when Tx or Rx nonlinearity was induced.
As was the case in the simulation, ML Tx Volterra processing compensated for
Tx nonlinearity and ML Rx Volterra processing compensated for Rx nonlinear-
ity. In the case of ML both Volterra processing, compensation of both Tx and
Rx nonlinearity was accomplished. Moreover, ML Tx Volterra and ML both
Volterra processing provided better constellations in the case without nonlin-
earity induced compared with that by Linear processing. This suggests that
some Tx nonlinearity remained when the electronic output amplitude in the Tx
was at its optimum in this experiment.

We evaluated the performance of the four compensation cases while chang-
ing the received OSNR to assess the robustness of the adaptive control of the
multi-layer filter coefficients including Volterra filter layers with back propaga-
tion and SGD. Figures 5.14 and 5.15 show the results of pre-/post-FEC BER,
respectively, obtained by the four compensation cases in the four conditions of
Tx and Rx nonlinearity. The error-free results are plotted at 10−6 for visibil-
ity. In the condition without Tx and Rx nonlinearity induced (Figs. 5.14(a)
and 5.15(a)), ML both Volterra and ML Tx Volterra processing provided bet-
ter pre-FEC BER than the others, especially at a high OSNR region, since Tx
nonlinearity remained in this case. The post-FEC error-free was achieved above
22 dB/0.1 nm with all four compensation cases. In the condition with Tx non-
linearity (Figs. 5.14(b) and 5.15(b)), the results of the pre-FEC BER showed
similar behaviors in the case with no nonlinearity induced, except that they
were all degraded. The post-FEC error-free was achieved down to 29 dB/0.1
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Figure 5.13. Experimental results of constellations in 100-km transmission ob-
tained by Linear, ML Tx Volterra, ML Rx Volterra, and ML both Volterra
processing in the conditions with no nonlinearity induced (no NL), Tx nonlin-
earity induced (Tx NL), Rx nonlinearity induced (Rx NL), and both Tx and
Rx nonlinearity induced (both NL).
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nm by ML Rx Volterra processing, 25 dB/0.1 nm by Linear, and 23 dB/0.1 nm
by ML Tx Volterra and ML both Volterra processing. When no nonlinearity
or Tx nonlinearity was induced, the performance of ML Rx Volterra process-
ing was slightly worse than that of Linear processing. The possible cause of
this might be excess errors in the adaptive coefficient control [41]. Since ML
Rx Volterra has more coefficients than Linear processing, the degradation due
to excess errors was more severe. In the condition with Rx nonlinearity (Figs.
5.14(c) and 5.15(c)), ML both Volterra processing provided the best pre-FEC
BER, followed by ML Rx Volterra processing since it worked to compensated
for Rx nonlinearity. The post-FEC error-free was achieved down to 25 dB/0.1
nm by Linear and ML Tx Volterra, 24 dB/0.1 nm by ML Rx Volterra, and 22
dB/0.1 nm by ML both Volterra processing. In the condition with both Tx and
Rx nonlinearity (Figs. 5.14(d) and 5.15(d)), the post-FEC error-free was not
achieved by Linear processing, and it was achieved down to 30 dB/0.1 nm by
ML Rx Volterra, 26 dB/0.1 nm by ML Tx Volterra, and 23 dB/0.1 nm by ML
both Volterra processing. ML both Volterra processing could provide the better
robust performance compared with the others regardless of Tx or Rx nonlinear-
ity induced. Therefore, the results demonstrated that the adaptive ML filters
including Volterra filter layers could compensate for the nonlinearity that oc-
curs in both Tx and Rx simultaneously and effectively under the accumulation
of CD and other effects including a frequency offset and polarization rotation,
which are non-commutative impairments with Tx and Rx nonlinearity.

Robustness of learning of Volterra filters to OSNR condition

The qualities of the adaptive control of the Volterra filter coefficients in different
OSNR conditions were assessed. Figure 5.16 shows the experimental results of
the pre-/post-FEC BER in 100-km transmission obtained by ML both Volterra
processing in the conditions with both Tx and Rx nonlinearity induced (both
NL). We compared the performances in three adaptive control procedures when
changing the OSNR; the coefficients of the Volterra filters at the first and seventh
layers were converged at each corresponding received OSNR individually, which
was the same as the case in obtaining the previous experimental results; the
converged coefficients obtained at the highest OSNR (without ASE) were used
for the Volterra filters and they were fixed without update at each OSNR; and
the coefficients were initialized as the converged coefficients obtained at the
highest OSNR and they were also updated at each OSNR. According to Fig.
5.16, these three cases provided similar pre- and post-BERs down to low OSNR.
Thus, adaptive control of the Volterra filter coefficients was robust and gave little
penalty at low OSNR in this evaluation.

5.5 Summary

We proposed an multi-layer filter architecture in which two Volterra filter layers
were positioned to compensate for nonlinearity that occurs in Tx and Rx com-
ponents under other impairments such as CD. The coefficients of the multi-layer
filters including Volterra filter layers are adaptively controlled by using a gradi-
ent calculation with back propagation and SGD to minimize the loss function
that is composed of the last layer outputs. We evaluated the performance of
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Figure 5.14. Experimental results of dependence of pre-FEC BER on OSNR
obtained by Linear, ML Tx Volterra, ML Rx Volterra, and ML both Volterra
processing in the conditions with (a) no nonlinearity induced (no NL), (b) Tx
nonlinearity induced (Tx NL), (c) Rx nonlinearity induced (Rx NL), and (d)
both Tx and Rx nonlinearity induced (both NL).
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Figure 5.15. Experimental results of dependence of post-FEC BER on OSNR
obtained by Linear, ML Tx Volterra, ML Rx Volterra, and ML both Volterra
processing in the conditions with (a) no nonlinearity induced (no NL), (b) Tx
nonlinearity induced (Tx NL), (c) Rx nonlinearity induced (Rx NL), and (d)
both Tx and Rx nonlinearity induced (both NL).
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(a) (b)

Figure 5.16. Experimental results of dependence of (a) pre- and (b) post-FEC
BER on OSNR in 100-km transmission obtained ML both Volterra processing
in the conditions with both Tx and Rx nonlinearity induced (both NL), where
three different cases for adaptive control of the coefficients of the Volterra filters
at the first and seventh layers were evaluated.

the adaptive multi-layer filters including Volterra filter layers numerically and
experimentally in the transmission of a 23 Gbaud PDM-64QAM signal over one
span of a 100-km SMF. The results demonstrated that the adaptive multi-layer
filters including Volterra filter layers could compensate for the nonlinearity that
occurs in both Tx and Rx simultaneously and effectively when other impair-
ments coexisted.





Chapter 6

Tx and Rx impairment
compensation for
ultra-long-haul single-mode
fiber transmission by
adaptive multi-layer filters
with augmented inputs

The adaptive multi-layer filter architecture we investigated in the previous chap-
ters enables efficient compensation of Tx and Rx impairments when other im-
pairments such as CD exist. The filters in each layer can be designed to have
minimum cross-terms and a filter length to compensate for the corresponding
impairments, resulting in an efficient calculation of forward propagation. In
terms of back propagation, the adaptive multi-layer filter architecture requires
high computational resources, though it can be much mitigated for an embedded
real-time DSP circuit by using offloaded external resources since back propaga-
tion or adaptive control for all the layers is not necessarily required to operate
in real-time, as we discussed in Chapter 3.

However, the computational complexity of back propagation for the adaptive
multi-layer architecture can be problematic even for external computational re-
sources if applied to an ultra-long-haul SMF transmission. The adaptive multi-
layer filters we investigated includes the layer for CD compensation, whose filter
length can be very large in an ultra-long-haul SMF transmission since large CD
is accumulated to the optical signal. In the back propagation of multi-layer
filters, the temporal spread of the gradients progressively increases when going
back through the layers because of the temporal spread of the filter response in
each layer. It entails a large computational complexity for gradient calculation
with back propagation through the layer for CD compensation with a large filter
length.

In this chapter, we revisit the mutual non-commutativity of SL and WL

89
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filters and propose an adaptive multi-layer filter architecture to solve the above-
mentioned problem. In this architecture, CD compensation is performed on
the received signal and its complex conjugate, and the two augmented signals
are the inputs of 2×1 multi-input single-output (MISO) SL filters in the first
layer, for Rx linear impairment compensation, of the adaptive multi-layer fil-
ters. In this multi-layer architecture, the CD compensation filters, whose coef-
ficients can be static, are swept before the multi-layer filters, while the mutual
non-commutativity of Rx impairment compensation and CD compensation is
solved.

We evaluate the proposed adaptive multi-layer filters with augmented inputs
through both numerical simulation and WDM transmission experiments of 16
channels of 32-Gbaud PDM-PCS-64QAM signals with an information rate (IR)
of 2.4 b/sbl/pol in a 50-GHz grid over 10,200 km of SMF in which Tx and Rx
IQ skews were digitally emulated. The results show that Tx IQ skew and Rx
skew can be compensated by this adaptive multi-layer filter architecture with
augmented inputs under a large CD accumulation over 10,000 km of SMF.

6.1 Background

As we discussed in the previous chapters, several approaches have been investi-
gated to compensate for Rx linear impairments in optical fiber communication
with CD accumulation. Independent CD compensation on I and Q signals can
avoid mixing of IQ components in terms of Rx and a subsequent adaptive 4×2
MIMO filter enables Rx impairment compensation [9, 57, 58]. Alternatively, a
large adaptive WL MIMO filter can compensate for Rx impairments, CD, and
PMD/polarization state variation simultaneously [9]. As for Tx IQ impairments,
they can be compensated by adaptive WL filters after most other impairments
including CD, polarization effects, and carrier phase/frequency offset are com-
pensated [54, 57, 58]. These previous works rely on individual adaptive filter
blocks in which residual impairments degrade the performance.

In order to simultaneously compensate for Rx and Tx IQ impairments as well
as polarization effects after independent CD compensation on I and Q signals,
an adaptive 8×2 MIMO filter with phase offset compensation has been pro-
posed [59,60]. It uses an aggregated large adaptive filter that cannot efficiently
compensate for multiple impairments having different characteristics.

In Chapter 3, we investigated an adaptive multi-layer SL&WL filter archi-
tecture whose filter coefficients in all layers can be controlled by gradient cal-
culation with back propagation from the last layer and SGD. It enables precise
compensation of Tx and Rx impairments and reasonable computational com-
plexity. However, the computational complexity of back propagation can be
problematic if applied to an ultra-long-haul SMF transmission since we have to
calculate the gradients through the CD compensation filters with a large tempo-
ral spread in back propagation. To date, simultaneous compensation of Tx and
Rx impairments in optical fiber communication systems has been demonstrated
over a relatively short reach from 100 to 1500 km of SMF [57–60].
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6.2 Adaptive multi-layer filters with augmented
inputs and augmented CD compensation

To extend the adaptive multi-layer filter approach for simultaneous compensa-
tion of Tx and Rx impairments to ultra-long-haul optical fiber transmission, over
a range such as 10,000 km of SMF in which the accumulated CD becomes large,
we revisited the mutual non-commutativity of SL and WL filters in the adaptive
multi-layer filters shown in Fig. 6.1. In this multi-layer filter architecture, any
two impairments that are not mutually commutative are compensated in the
reverse order of their occurrence. A WL filter and an SL filter are generally not
mutually commutative.

1×1 SL

1×1 SL
2×2 SL

1×1 SL

1×1 SL

2×1 WL

2×1 WL

Stochastic gradient descent Loss

PLL

Rx comp. CD comp. Pol. demux CR Tx comp.

2×1 WL

2×1 WL

X Pol. X Pol.

Y Pol. Y Pol.

Figure 6.1. Adaptive multi-layer SL&WL filters to compensate for Tx and Rx
impairments.

6.2.1 Equivalent architecture for cascaded WL and SL fil-
ters

We first examine the first and second layers of the adaptive SL&WL filters. The
first layer consists of two 2×1 WL filters to compensate for Rx impairments. A
2×1 WL filter performs convolution of two filter responses to the input signal
and its complex conjugate, and the output is a sum of the two signals after
convolution. The term 2×1 indicates the structure of the filter coefficients. The
second layer consists of two 1×1 SL filters with two polarizations to compensate
for CD. Because both layers are independent in terms of two polarizations, we
theoretically analyze one polarization here, without loss of generality. When a
2×1 WL filter and then a 1×1 SL filter for CD compensation operate on an
input signal x(t) ∈ C, the output of the 2×1 WL filter, y(t) ∈ C, is given by

y(t) =

∫ ∞

−∞
h1(τ)x(t− τ)dτ +

∫ ∞

−∞
h∗1(τ)x

∗(t− τ)dτ, (6.1)

and the output of the 1×1 SL filter, z(t) ∈ C, is given by

z(t) =

∫ ∞

−∞
hCD(τ)y(t− τ)dτ. (6.2)
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Here, h1, h∗1 represent the complex-valued impulse response of the 2×1 WL
filter, and hCD is the complex-valued impulse response of the 1×1 SL filter for
CD compensation, which has a large temporal spread in ultra-long-haul SMF
transmission. In addition, the superscript ∗ indicates the complex conjugate.
By the distributive property, Eq. (6.2) can be rewritten as

z(t) =

∫ ∞

−∞
hCD(τ)h1(τ

′)x(t−τ−τ ′)dτdτ ′+

∫ ∞

−∞
hCD(τ)h∗1(τ

′)x∗(t−τ−τ ′)dτdτ ′,

(6.3)
and then as

z(t) =

∫ ∞

−∞
h1(τ

′)

(∫ ∞

−∞
hCD(τ)x(t− τ ′ − τ)dτ

)
dτ ′+

∫ ∞

−∞
h∗1(τ

′)

(∫
hCD(τ)x

∗(t− τ ′ − τ)dτ

)
dτ ′.

(6.4)
Consequently, the operation of a 2×1 WL filter and a 1×1 SL CD compensation
filter on the input of x in this order is equivalent to the operation of a 2×1 SL
MISO filter with a response of h1, h∗1 after CD compensation with a response
of hCD on x and x∗.

This behavior can also be understood from the block diagram shown in Fig.
6.2. Because of the mutual non-commutativity, simply changing the order of the
2×1 WL filter and the 1×1 SL filter, shown in Fig. 6.2(a), results in a different
operation and does not work for simultaneous Rx IQ impairment and CD com-
pensation. Instead, if the 1×1 SL filter for CD compensation is moved before
summation via the distributive property, then the filters with complex-valued
impulse responses h1, h∗1 and the one with hCD are both 1×1 SL processes,
accordingly they are mutually commutative and provide the equivalent config-
uration shown in Fig. 6.2(b)1. In optical fiber transmission systems, CD can
be treated as static except in the case of optical path switching [3], and it is
unnecessary to adaptively control the coefficients of CD compensation filters.
Thus, by using the configuration shown in Fig. 6.2(b), Rx IQ impairment com-
pensation can be achieved under CD, while CD compensation is swept before
the adaptive filters and operated independently.

2×1 WL 1×1 SL 1×1 SL 2×1 SL

1×1 SL

(a) (b)

Figure 6.2. DSP architecture for Rx impairment and CD compensation (a) by
a 2×1 WL filter and a 1×1 SL filter, and (b) by an equivalent configuration.

1This exchange is possible since these processes are linear and 1×1. The exchange cannot
be applied to nonlinear processes.
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We can apply a similar approach to the fourth and fifth layers of the adaptive
SL&WL filters. The operation of a 1×1 SL filter to compensate for carrier
phase and frequency offset and then a 2×1 WL filter to compensate for Tx IQ
impairments, as shown in Fig. 6.3(a), is equivalent to the configuration shown
in Fig. 6.3(b). This explains the embedded carrier phase offset compensation
in an 8×2 WL MIMO filter [59].

2×1 WL1×1 SL

(a) (b)

Figure 6.3. DSP architecture for carrier phase offset and Tx impairment com-
pensation (a) by a 1×1 SL filter and a 2×1 WL filter, and (b) by an equivalent
configuration.

6.2.2 Adaptive multi-layer filter architecture for efficient
back propagation

Figure 6.4 shows the adaptive multi-layer filter architecture, based on the above
analysis, with augmented inputs consisting of the received signal and its com-
plex conjugate for CD compensation. In this architecture, the CD compensation
operates on the signal and its complex conjugate before the multi-layer filters.
Then, with the augmented inputs consisting of the signal and its complex con-
jugate after CD compensation, the adaptive multi-layer filters compensate for
Rx impairment, PMD/polarization state variation, carrier phase/frequency off-
set, and Tx impairment. The first layer of the multi-layer filters consists of two
2×1 SL MISO filters with two polarizations to compensate for Rx impairment.
The subsequent layers are the same as in our previous adaptive multi-layer
SL&WL filters: the second layer consists of a 2×2 SL MIMO filter for polariza-
tion demultiplexing; the third layer consists of two 1-tap 1×1 SL filters with two
polarizations for carrier recovery; and the fourth layer consists of two 2×1 WL
filters with two polarizations to compensate for Tx impairment. In this investi-
gation, these filters are half-symbol-spaced FIR filters. The filter coefficients in
the first, second, and fourth layers are all adaptively controlled by gradient cal-
culation with back propagation and SGD to minimize the loss function, which
is composed of the last layer’s outputs. The coefficients in the third layer for
carrier recovery are controlled by a PLL.

As mentioned above, in the architecture shown in Fig. 6.4, the CD com-
pensation operates independently before the adaptive multi-layer filters. CD
compensation filters require about 5600 half-symbol-spaced taps for transmis-
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CDC
2×1 SL

2×1 SL
2×2 SL

1×1 SL

1×1 SL

2×1 WL

2×1 WL

Stochastic gradient descent Loss

PLL

Rx comp.CD comp. Pol. demux CR Tx comp.

CDC
CDC
CDC

Figure 6.4. Architecture of the adaptive multi-layer filters with augmented
inputs of the signal and its complex conjugate with CD compensation to com-
pensate for Tx and Rx impairments under a large CD accumulation.

sion over 10,000 km of conventional SMF having a dispersion coefficient of 17
ps/nm/km with a 32 Gbaud signal [5]. Here, we mitigate the computational
complexity of gradient calculation by avoiding back propagation through the
CD compensation filters, which have a large temporal spread. In the experi-
ments described later, the tap lengths of the filters for Rx/Tx IQ impairment
compensation and for polarization demultiplexing were 5 and 21, respectively.
With these tap lengths, the required number of complex multiplications for back
propagation of the adaptive multi-layer filters with augmented inputs is reduced
to 0.2% of that required by our previous adaptive ML SL&WL filters includ-
ing CD compensation. As for forward propagation, although this architecture
doubles the number of CD compensation filters2, they can be implemented in
the frequency domain to the reduce the computational complexity [61], which
is very effective, especially for filters with a large temporal spread.

It is worth mentioning that applying CD compensation to both the signal
and its complex conjugate is not equivalent to applying CD compensation to
the signal and then obtaining its complex conjugate. Rather, inputting the aug-
mented signal and its complex conjugate with CD compensation to the adaptive
filters is equivalent to inputting independently CD-compensated IQ signals [9].
The augmented signals y(t), yc(t) ∈ C after the operation of CD compensation
on the received signal x(t) and its complex conjugate are represented as(

y(t)
yc(t)

)
=

∫ ∞

−∞
hCD(τ)

(
x(t− τ)
x∗(t− τ)

)
dτ. (6.5)

Meanwhile, consider the case of CD compensation operating independently on
the IQ components xI(t), xQ(t) ∈ R of the received signal x(t) = xI(t) + ixQ(t).
In this case, the obtained signals yi(t), yq(t) ∈ C are represented as(

yi(t)
yq(t)

)
=

∫ ∞

−∞
hCD(τ)

(
xI(t− τ)
xQ(t− τ)

)
dτ. (6.6)

2The multi-layer filter architecture investigated in Chapter 2 is more efficient in terms of
the computational complexity for forward propagation.
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Here, the following relation holds [42]:(
x(t)
x∗(t)

)
= T

(
xI(t)
xQ(t)

)
, (6.7)

with

T =

(
1 i
1 −i

)
. (6.8)

Here, T satisfies TT † = T †T = 2I, where I is the identity matrix and † denotes
the Hermitian conjugate. As a result, the following relation also holds:(

y(t)
yc(t)

)
= T

(
yi(t)
yq(t)

)
. (6.9)

In consequence, the input of y(t) and yc(t) to the adaptive filters can yield the
same results as the input of yi(t) and yq(t), with only an additional transfor-
mation T .

As shown in Fig. 6.2, the coefficients of the 2×1 SL MISO filter in the first
layer of the adaptive multi-layer filters straightforwardly correspond to those of
the 2×1 WL filter for Rx impairment compensation. Moreover, the 2×1 WL
filter for Tx IQ impairment compensation in the fourth layer is the same as in the
previous multi-layer SL&WL filters. Thus, the IQ impairment monitoring via
the obtained adaptive filter coefficients in the corresponding layers investigated
Chapter 4 is immediately applicable.

6.3 Evaluation in simulation

We first evaluated the adaptive multi-layer filter architecture described above
in simulations using a simple model. We adopted PCS3, which is regarded
as a promising technique because it enables high sensitivity and precise rate
adaptability for the received SNR from short-reach to long-haul transmission
[11,112,113] in this simulation. We used a 32-Gbaud PDM-PCS-64QAM signal
with an IR of 1.6 b/sbl/pol, which corresponds to the IR of QPSK when FEC
is applied with the same code rate. CD corresponding to that of 10,000 km of
SMF was added to the signal. We focused on IQ skew as the source of Tx and
Rx impairments.

Simulation model

On the Tx side, a 32-Gbaud PDM-PCS-64QAM signal with an IR of 1.6 b/sbl/pol
was generated. Three frames of low-density parity check FEC for DVB-S2 with
a frame length of 64,800 and a code rate of 0.8, obtained by loading random bits
in the payload, were generated as the transmitted data for the IQ components
and two polarizations, which resulted in a total of 12 frames. A distribution
matcher with the probabilistic amplitude shaping architecture [112] and con-
stant composition distribution matching (CCDM) [114] mapped the data to

3PCS often uses high-order QAM as a base format and optimizes the probability of occur-
rence of symbol points for a transmission channel, usually according to a Maxwell-Boltzmann
distribution for an additive white Gaussian noise channel. Remarkable long-haul transmission
capability has been achieved with PCS [109–111].



96

the PDM-PCS-64QAM signal. The probability distribution was an Maxwell-
Boltzmann distribution, and the IR was set to 1.6 b/sbl/pol. To enable use
of the pilot-based [70, 71] data-aided LMS algorithm for coefficient control of
the adaptive filters, one pilot symbol was inserted every 15 symbols. The pilot
symbols were randomly sampled from the generated PDM-PCS-64QAM signal
in the same manner so as to match the statistical characteristics of the pilot
symbols and the transmitted signal. To enable the Rx DSP to detect the tim-
ing of the pilot symbol sequence’s head, a preamble of 64 symbols was inserted
in every FEC frame. The preamble symbols consisted of a random sequence
from the inner four symbol points of the 64QAM, which enabled the Rx DSP
to detect the preamble on the basis of the signal power. In addition, to match
the limitation of an instrument that was used in the experiment described later,
dummy data consisting of 448 symbols that were randomly sampled from the
PDM-PCS-64QAM signal was added after each preamble.

The resulting signal with the pilot and preamble symbols was oversampled
to 32-fold oversampling and shaped with a root-raised cosine filter having a roll-
off factor of 0.1. The four IQ components with two polarizations corresponded
to the electrical signals that a DAC would output. Tx IQ skew was emulated
for these signals. Lastly, a laser source with a frequency of 193.3 THz and a
linewidth of 100 kHz was modulated by these signals, and a 32 Gbaud PDM-
PCS-64QAM signal was thus generated.

Next, CD of 170 ns/nm, which corresponds to 10,000 km of SMF, was added
to the generated signal. After adding random polarization rotation, the signal’s
OSNR was set to 15 dB/0.1 nm. The optical signal was received through coher-
ent detection with an LO source having a linewidth of 100 kHz, no frequency
offset, and low-pass filters whose 3-dB bandwidth was 0.8 times the symbol rate.
Rx IQ skew was then emulated for the four IQ components with two polariza-
tions, which corresponded to the electrical signals that would be input to an
ADC. The ADC sampled these signals with two-fold oversampling.

Next, DSP was performed. Specifically, low-pass filtering with a 3-dB band-
width equal to the symbol rate was performed on the four received signals for
resampling, and power normalization was performed individually on the IQ
components with two polarizations. The signals were resampled to two-fold
oversampling on the basis of the timing error [86], and matched filtering with
the root-raised cosine filter was applied. Then, the adaptive multi-layer filters
shown in Fig. 6.4 were applied. The CD compensation on the signal and its
complex conjugate operated in the frequency domain.

The adaptive multi-layer filters, with augmented inputs of the received signal
and its complex conjugate with CD compensation, consisted of four layers as
described in the previous section. This DSP configuration is referred to as ML.
The tap length of the 2×1 SL MISO filters in the first layer, for Rx impairment
compensation, was set to five. The tap lengths of the 2×2 SL MIMO filter in
the second layer, for polarization demultiplexing, and the 2×1 WL filters in the
fourth layer, for Tx impairment compensation, were set to 21 and 5, respectively.
The coefficients for these filters were initialized as one at the center of the main
diagonal, with the remaining values set to zero. The filter coefficients in the
first, second, and fourth layers were adaptively updated with back propagation
and SGD by the data-aided LMS algorithm at the timings of the preamble,
dummy, and pilot symbols, with no update at the data symbol timings. The
step sizes were 10−2 for the first and fourth layers and 5 × 10−2 for the second
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layer. The coefficients of the third layer, for carrier phase and frequency offset
compensation, were controlled by a PLL from the last layer’s outputs. Here,
the phase error was detected from data symbols at the timings of the preamble,
dummy, and pilot symbols and from decision-directed symbols at other timings.

For timing alignment with the known pilot sequence, the following procedure
was carried out before applying the adaptive multi-layer filters. The preamble
timing was roughly detected from the received signal after CD compensation
on the basis of a moving average of the sample power. Then, for about ± 10
symbols around the detected timing, adaptive control of the multi-layer filters
were attempted over a duration of about 10,000 symbols. For this adaptive
control, the tap length of the 2×2 SL MIMO filter was set to one, and the precise
timing of the pilot sequence’s head was detected on the basis of the magnitude of
the loss after adaptive control. After the precise timing alignment, the received
signal and its complex conjugate with CD compensation were input to the multi-
layer filters, and the pilot-based adaptive control was performed again. From
the symbol-spaced outputs of the adaptive multi-layer filters after convergence
of the filter coefficients, the preamble, dummy, and pilot symbols were removed,
and FEC and CCDM decoding were then performed. A sum-product algorithm
with maximum 50 iterations was used for FEC decoding. The post-decoding
BER and the NGMI [74] averaged over two polarizations were evaluated.

To provide a reference for conventional DSP, we also evaluated a config-
uration in which a 2×2 SL MIMO filter embedding carrier recovery [115] for
polarization demultiplexing and carrier phase and frequency offset compensa-
tion was applied after CD compensation. This is referred to hereafter as the
2×2 SL configuration4. The coefficients of the 2×2 SL MIMO filter were con-
trolled by the pilot-based data-aided LMS algorithm, and carrier recovery was
controlled by a PLL. The step size was 5 × 10−2.

Dependence of IQ skew impact on IR of PCS-QAM

In an ultra-long-haul transmission, the received OSNR tends to be low, and thus,
PCS-QAMwith a higher IR is not applicable. Before evaluating the performance
of Tx and Rx impairment compensation in an ultra-long-haul SMF transmission
with the adaptive multi-layer filters with the augmented inputs, we evaluate
the dependence of the impact of IQ skew on the IR of PCS-64QAM through
simulation by using the reference 2×2 SL configuration. In this simulation, the
accumulated CD was set to 17 ns/nm, which corresponds to 1000 km of SMF
transmission, and different received OSNR values was used. Tx or Rx IQ skew
was again emulated in the X polarization.

Figure 6.5 shows the NGMI results for reception of a 32-Gbaud PDM-
64QAM signal with several different IRs by the 2×2 SL configuration while the
Tx or Rx IQ skew was varied from -31 ps to +31 ps. The received OSNR was 30
dB/0.1 nm. The optimum step size for stochastic gradient descent depended on
the PCS-QAM IR, and it was roughly optimized. In the case of PCS-64QAM
with an IR of 4.8 b/sbl/pol, which corresponds to the IR of 64QAM when FEC
is applied with the same code rate, an NGMI above 0.85 was achieved within
±4 ps of Tx IQ skew, whereas the range expanded to about ±22 ps with an IR
of 1.6 b/sbl/pol. As for Rx IQ skew, an NGMI above 0.85 was achieved within

4This configuration is the same as used in the previous chapters as a reference.
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±4 ps with an IR of 4.8 b/sbl/pol, and within about ±26 ps with an IR of 1.6
b/sbl/pol. These results show that the tolerance to IQ skew increases as the
PCS-QAM IR decreases, even in the same base QAM format.

(a) (b)

Figure 6.5. Simulated NGMI results for reception of a 32-Gbaud PDM-64QAM
signal with several IRs by the 2×2 SL configuration when (a) the Tx X-IQ skew
or (b) the Rx X-IQ skew was varied.

Next, Fig. 6.6 shows the NGMI results for reception of a 32-Gbaud PDM-
64QAM signal with an IR of 1.6 b/sbl/pol and several differenct received OSNRs
by the 2×2 SL configuration while the Tx or Rx IQ skew was varied. For several
of the received OSNRs, the NGMI degradation due to IQ skew showed a similar
behavior. However, regardless of the IQ skew, the NGMI deteriorated as the
received OSNR decreased. This caused the region in which the NGMI was above
a certain threshold to become narrow when the received OSNR was low after
all, which indicates that precise Tx and Rx IQ impairment compensation is still
important for ultra-long-haul transmission.

Tx and Rx IQ skew compensation

Figure 6.7 shows the resulting constellations after the ML configuration or the
2×2 SL configuration under several conditions: without both Tx and Rx IQ
skew, with Tx IQ skew of 16 ps, with Rx IQ skew of 16 ps, and with both Tx
and Rx IQ skews of 16 ps. In this evaluation, the Tx or Rx IQ skew was emulated
as the delay of the Q component in the X polarization. The constellations for
the X polarization are shown in the figure. When Tx or Rx IQ skew of 16 ps was
emulated, a clear PCS-64QAM constellation like in the case without both Tx
and Rx IQ skew could not be obtained by the 2×2 SL configuration. In contrast,
with Tx or Rx IQ skew, the ML configuration obtained similar constellations
to the case without both Tx and Rx IQ skew. Moreover, even in the case with
both Tx and Rx skews of 16 ps, the adaptive multi-layer filters still obtained a
similar constellation.

Figure 6.8 shows the NGMI after the 2×2 SL configuration or the ML config-
uration when the Tx or Rx IQ skew in the X polarization was swept from -31 to
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(a) (b)

Figure 6.6. Simulated NGMI results for reception of a 32-Gbaud PDM-64QAM
signal with an IR of 1.6 b/sbl/pol and several received OSNRs by the 2×2 SL
configuration when (a) the Tx X-IQ skew or (b) the Rx X-IQ skew was varied.

Tx X-IQ skew, 16 ps Rx X-IQ skew, 16 psw/o Tx/Rx IQ skew

Tx X-IQ skew, 16 ps
&

Rx X-IQ skew, 16 ps

2×2 SL

ML

Figure 6.7. Constellations of the X polarization for reception of a 32-Gbaud
PDM-64QAM signal with an IR of 1.6 b/sbl/pol by the 2×2 SL configuration
or the ML configuration, under several Tx/Rx IQ skew conditions.
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+31 ps, and Fig. 6.9 shows the post-decoding BER under the same conditions.
The error-free BER results are plotted at a level of 10−5 for readability. In the
case of the 2×2 SL configuration, which could not compensate for Tx or Tx IQ
impairments, both the Tx and Rx IQ skews degraded the NGMI. Moreover, the
post-decoding BER was not error-free when the Tx IQ skew was beyond ±14 ps,
and when the Rx IQ skew was beyond ± 20 ps. In contrast, with the adaptive
multi-layer filters, NGMI results similar to those in the case without IQ skew
and error-free post-decoding BER results were achieved with up to ±23 ps of
Tx IQ skew, and with over ±31 ps of Rx IQ skew. Both figures also show the
results obtained by the adaptive multi-layer filters when the tap lengths of the
filters for Rx and Tx IQ impairment compensation in the first and fourth layers
were nine. These results show that the ML configuration’ tolerance to Tx IQ
skew did not increase when the tap length of the filters for Tx IQ impairment
compensation increased to nine. After several evaluations, the PLL that deter-
mined the filter coefficients of the third layer became unstable when the Tx IQ
impairment was large. This behavior will be a future issue for us to resolve,
although Tx IQ skew compensation over ±10 ps will still be useful in practice
for current optical fiber communication systems.

(a) (b)

Figure 6.8. NGMI for reception of a 32-Gbaud PDM-64QAM signal with an IR
of 1.6 b/sbl/pol by the 2×2 SL configuration or the ML configuration, with a
tap length of five or nine taps for Tx and Rx impairment compensation. The
results are shown for variation of (a) the Tx IQ skew in the X polarization and
(b) the Rx IQ skew in the X polarization.

We also evaluated the capability for simultaneous compensation of Tx and
Rx IQ skews. Random Tx and Rx skews in two polarizations from a uniform
distribution within ±16 ps were emulated simultaneously, with a total of 1000
random realizations for evaluation. A histogram of the NGMI in the cases with
the 2×2 SL configuration and the ML configuration is shown in Fig. 6.10. In
the 2×2 SL case, the NGMI distribution was spread to lower values by the Tx
and Rx IQ skews. In contrast, the ML configuration achieved a stable NGMI
of around one. These results confirm that the adaptive multi-layer filters with
augmented inputs could sufficiently and simultaneously compensate for Tx and
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(a) (b)

Figure 6.9. Post-decoding BER for reception of a 32-Gbaud PDM-64QAM
signal with an IR of 1.6 b/sbl/pol by the 2×2 SL configuration or the ML
configuration, with a tap length of five or nine taps for Tx and Rx IQ impairment
compensation, when (a) the Tx X-IQ skew and (b) the Rx X-IQ skew was varied.

Rx IQ skews under a large CD accumulation corresponding to 10,000 km of
SMF.

Convergence of loss

Figure 6.11 shows examples of the time evolution of the loss with the ML con-
figuration under 10 random realizations of Tx and Rx IQ skew. The loss at the
timings of the preamble, dummy, and pilot symbols was taken with a moving
average over 10 symbols. The results show that the adaptive control converged
within a few thousand symbols.

Tx and Rx impairment monitoring

We also monitored the Tx and Rx IQ skews from the filter coefficients of the
fourth and first layers in the ML configuration after convergence. Fig. 6.12
shows the monitored values from the corresponding layers for 1000 random
realizations in which the Tx and Rx IQ skews were simultaneously emulated in
two polarizations. For all of the Tx and Rx IQ skews in two polarizations, the
monitored values agreed well with the emulated skews, as the error was within
±1 ps. Thus, we confirmed that impairment monitoring via the adaptive filter
coefficients works for the adaptive multi-layer filters with augmented inputs
under a large CD accumulation.

Influence of residual CD

In the ML configuration shown in Fig. 6.4, CD compensation is applied before
the adaptive multi-layer filters. In practical optical fiber transmission systems,
the accumulated CD in the received signal is estimated on the Rx side [3]. When
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Figure 6.10. Histogram of the NGMI for reception of a 32-Gbaud PDM-64QAM
signal with an IR of 1.6 b/sbl/pol by the 2×2 SL configuration or the ML
configuration under 1000 random realizations of simultaneous Tx and Rx IQ
skew in two polarizations.

Figure 6.11. Convergence of the loss at the pilot symbol timings with the ML
configuration. Examples of the time evolution are plotted for 10 random real-
izations of simultaneous Tx and Rx IQ skew.
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(a) (b)

(c) (d)

Figure 6.12. Impairment monitoring via the coefficients of the ML configuration
for (a) Tx IQ skew in the X polarization, (b) Tx IQ skew in the Y polarization,
(c) Rx IQ skew in the X polarization, and (d) Rx IQ skew in the Y polarization,
under 1000 random realizations of simultaneous Tx and Rx IQ skew.
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such CD estimation is not fully accurate, the residual CD after CD compensa-
tion can also be compensated in a subsequent adaptive 2×2 SL MIMO filter
for polarization demultiplexing in a conventional DSP configuration. Here, we
evaluated the influence of such residual CD on the ML configuration with aug-
mented inputs consisting of the received signal and its complex conjugate with
CD compensation. In this simulation, the compensated CD value for the sig-
nal and its complex conjugate before the adaptive multi-layer filters did not
precisely match the true value.

Figure 6.13 shows the NGMI when the Tx or Rx IQ skew in the X polar-
ization was swept. The compensated CD value for the signal and its complex
conjugate before the adaptive multi-layer filters was set to ±500 ps/nm and zero,
which can be compensated by the 2×2 SL MIMO filter in the second layer, from
the true value of 170 ns/nm. When the residual CD was ±500 ps/nm, an NGMI
similar to that in the case without residual CD was obtained, regardless of the
existence of Tx and Rx IQ skew. Thus, the Tx and Rx IQ impairment compen-
sation by the adaptive multi-layer filters with augmented inputs can work if the
residual CD after CD compensation and before the multi-layer filters is within
the effective compensation range of the second layer in the multi-layer filters.

(a) (b)

Figure 6.13. Simulated NGMI results for reception of a 32-Gbaud PDM-64QAM
signal with an IR of 1.6 b/sbl/pol by the ML configuration when the compen-
sated CD value before the adaptive multi-layer filters did not precisely match
the true value, while varying (a) the Tx X-IQ skew or (b) the Rx X-IQ skew.

Compensation of IQ imbalance and phase deviation in Tx and Rx

We focused on IQ skew as the source of Tx and Rx IQ impairments in the
previous evaluations. A WL filter can compensate for other linear impairments
that occur in Tx and Rx, such as IQ imbalance and phase deviation, as we
discussed in Chapter 4. Here, we evaluated compensation of IQ imbalance and
phase deviation by the adaptive multi-layer filters with augmented inputs con-
sisting of the received signal and its complex conjugate with CD compensation.
The simulation model was the same as before, except that IQ imbalance and
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IQ phase deviation were emulated in Tx and Rx. In DSP, power normalization
was performed on the complex-valued received signal, rather than performed
individually on the IQ components, to evaluate compensation of IQ imbalance.

Figure 6.14 shows the results of constellations by the 2×2 SL configuration
or the ML configuration under Tx/Rx IQ imbalance and phase deviation. IQ
imbalance of 30% and phase deviation of 10◦ were emulated in X polarization in
Tx/Rx. The constellations for the X polarization are shown in the figure. In the
case of the 2×2 SL configuration, all Tx/Rx IQ imbalance and phase deviation
distorted the constellation, though a little effect of Rx phase deviation of 10◦ in
X polarization was observed. In contrast, the ML configuration obtained similar
constellations to the case without IQ impairments shown in Fig. 6.14. Since Tx
IQ imbalance distorted added Gaussian noise, the observed constellation looked
slightly different. However, the ML configuration could compensate for Tx IQ
imbalance, compared to the case of the 2×2 SL configuration. Therefore, we
confirmed that the adaptive multi-layer filters with augmented inputs can also
compensate for IQ imbalance and phase deviation in Tx/Rx.

Tx X-IQ imbalance, 
30%

Rx X-IQ imbalance, 
30%

Tx X-IQ phase dev., 
10°

Rx X-IQ phase dev., 
10°

2×2 SL

ML

Figure 6.14. Simulated results of constellations of the X polarization for recep-
tion of a 32-Gbaud PDM-64QAM signal with an IR of 1.6 b/sbl/pol by the 2×2
SL configuration or the ML configuration under Tx/Rx IQ imbalance and phase
deviation.

6.4 Evaluation in transmission experiment

We evaluated the adaptive multi-layer filter architecture with augmented in-
puts of the received signal and its complex conjugate with CD compensation
in a transmission experiment over 10,000 km of SMF. In this experiment, we
transmitted 16-channel WDM signals of 32-Gbaud PDM-PCS-64QAM with an
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IR of 2.4 b/sbl/pol, which corresponds to the IR of 8QAM when FEC is applied
with the same code rate. The signals were transmitted over a recirculating loop
configuration consisting of five spans of 60-km pure-silica-core (PSC) SMF. As
in the simulation described above, we focused on IQ skew as the source of Tx
and Rx impairments.

Experimental setup

Figure 6.15 shows a schematic diagram of the experimental setup. On the
Tx side, 32-Gbaud PDM-PCS-64QAM signals were generated, with frequencies
ranging from 192.90 to 193.65 THz in a 50-GHz grid. The signal at a frequency
of 193.3 THz, which was received and evaluated, was generated by modulating
a laser source having a linewidth of about 100 kHz with the outputs of a four-
channel DAC at a sampling rate of 92 GS/s and a vertical resolution of eight
bits. The transmitted data were generated by the same procedure that was
described above for the simulation. The IR of the PDM-PCS-64QAM signal
was set to 2.4 b/sbl/pol. The signal, with pilot and preamble symbols included,
was oversampled to two-fold oversampling and shaped with a root-raised cosine
filter having a roll-off factor of 0.1. Tx IQ skew was digitally emulated in
the X polarization as a delay of the Q component. A DAC outputted the
four IQ components with two polarizations after resampling to 92 GS/s. The
15 remaining channels were generated by using 15 channels of laser sources
combined with a polarization-maintaining AWG and a four-channel DAC at a
sampling rate of 64 GS/s without IQ skew. The signal under evaluation and
the other 15 channels were then combined after power equalization by a WSS,
and low-speed polarization scrambling (10×2π rad/s) was performed.

DAC

DAC

MOD

MOD
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LD
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AOM LD
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ADC

SMF, 60 km

Offline

EDFA
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Figure 6.15. Experimental setup for WDM transmission of 32-Gbaud PDM-
PCS-64QAM signals with an IR of 2.4 b/sbl/pol over a loop configuration con-
sisting of five spans of 60-km SMF. AWG: arrayed waveguide grating, WSS:
wavelength selective switch, AOM: acousto-optic modulator.

The generatedWDM signals were transmitted to the transmission line through
an acousto-optic loop switch. As mentioned above, the transmission line had
a loop configuration composed of five spans of 60-km PSC SMF, with EDFAs.
The dispersion coefficient and effective core area of the SMF were about 21
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ps/nm/km and 153 µm2, respectively. The span input power was -1 dBm/ch,
which was an optimized value in a preliminary experiment. After five spans,
the nonuniform loss and gain in the loop for the WDM channels were equalized
by the WSS. After 34 loops, or 10,200 km, the OSNR was 18.7 dB/0.1 nm.

After transmission over the loop configuration, the evaluated signal was de-
multiplexed by an optical band-pass filter with a 3-dB bandwidth of 50 GHz,
and then received by a polarization-diversity coherent receiver. A laser source
with a linewidth of about 100 kHz was used as an LO, which was free-running
with the Tx laser source and had an average frequency offset of about 70 MHz.
The four outputs of the coherent receiver were sampled by a four-channel oscil-
loscope, which was used as an ADC, at a sampling rate of 80 GS/s and a vertical
resolution of eight bits. A received signal consisting of 2 MS of successive data
was obtained three times under each condition. Rx IQ skew was digitally emu-
lated in the X polarization after sampling as a delay of the Q component. The
initial Tx and Rx IQ skews in the experimental setup when IQ skew was not
emulated were calibrated as closely to zero as possible. After emulating the Rx
IQ skew, DSP was performed offline. We evaluated the same configurations that
were described above for the simulation, namely, the adaptive ML filters with
the augmented inputs (ML) and the reference (2×2 SL).

Tx and Rx IQ skew compensation

Under the condition of transmission over 34 loops, or 10,200 km, the Tx or Rx
IQ skew was varied from -20 to +20 ps. Figure 6.16 shows the NGMI after the
2×2 SL configuration or the adaptive ML filters, and Fig. 6.17 shows the post-
decoding BER. The results were averaged over the three received waveforms
that were obtained. With the 2×2 SL configuration, the post-decoding BER
was error-free only within ±4 ps of Tx IQ skew and within ±8 ps of Rx IQ skew,
whereas post-decoding errors occurred outside those ranges. In contrast, with
the ML configuration, error-free post-decoding BER results and NGMI results
similar to those in the case without IQ skew were achieved with up to ±12 ps
of Tx IQ skew, and with over ±20 ps of Rx IQ skew. As was observed in the
simulation, when the Tx IQ skew was around ±20 ps, the NGMI and post-
decoding BER deteriorated with the adaptive ML filters. Except for that case,
however, these results experimentally confirm that the ML configuration could
compensate for both Tx and Rx IQ skews under a large CD in ultra-long-haul
transmission.

Next, we evaluated simultaneous compensation of the Tx and Rx IQ skews
for transmission over 10,200 km. Figure 6.18 shows the NGMI after the 2×2
SL configuration and the ML configuration when Tx and Rx IQ skews in the
X polarization were simultaneously emulated. With the 2×2 SL configuration,
as shown in Fig. 6.18(a), both the Tx and Rx IQ skews degraded the NGMI,
although the degradation was not smooth when the Tx and Rx skews became
large. The reason was that the adaptive 2×2 SL MIMO filter could not converge
stably in this region. The NGMI variation was relatively smaller when the
Rx IQ skew was varied than when the Tx IQ skew was varied in this region,
because the Rx IQ skew was emulated for the same three received waveforms
that were obtained for a certain emulated Tx IQ skew. In contrast, except in
the region around a Tx IQ skew of ±20 ps, a similar NGMI was achieved with
the ML configurations even when the Tx and Rx IQ skews were simultaneously
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(a) (b)

Figure 6.16. NGMI for reception of a 32-Gbaud PDM-64QAM signal with an
IR of 2.4 b/sbl/pol by the 2×2 SL configuration or the ML configuration after
10,200 km of SMF transmission. The results were obtained while emulating (a)
Tx IQ skew in the X polarization or (b) Rx IQ skew in the X polarization.

(a) (b)

Figure 6.17. Post-decoding BER for reception of a 32-Gbaud PDM-64QAM
signal with an IR of 2.4 b/sbl/pol by the 2×2 SL configuration or the ML
configuration after 10,200 km of SMF transmission, with emulation of (a) Tx
IQ skew in the X polarization or (b) Rx IQ skew in the X polarization.
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emulated.

(a) (b)

Figure 6.18. NGMI for reception of a 32-Gbaud PDM-64QAM signal with an
IR of 2.4 b/sbl/pol by (a) the 2×2 SL configuration or (b) the ML configura-
tion, after 10,200 km of SMF transmission when Tx and Rx IQ skew in the X
polarization were simultaneously emulated.

Tx and Rx impairment monitoring

We also evaluated impairment monitoring via the adaptive multi-layer filter
coefficients in the corresponding layers. For 13 conditions each of Tx and Rx IQ
skews of 0, ±1, . . . , ±4, ±8, ±12 ps, giving a total of 169 conditions, we obtained
three results under each condition. Figure 6.19 shows the monitoring results for
Tx and Rx IQ skews in the X polarization, which show that the monitored
values agreed well with the emulated skews. The monitored values for the Rx
IQ skew showed a relatively large error, though the maximum error was 1.1
ps. Consequently, these results experimentally confirm that IQ impairment in
both Tx and Rx could be monitored in ultra-long-haul transmission via the
coefficients of the adaptive multi-layer filters with augmented inputs.

Transmission performance of PCS with adaptive multi-layer filters
with augmented inputs

Finally, we evaluated the optimization of the PCS-QAM signal’s IR with fixed
FEC, for transmission over 10,200 km, by the adaptive ML filters. The IR was
varied from 1.6 to 3.2 b/sbl/pol in steps of 0.1 b/sbl/pol. Figure 6.20 shows
the NGMI and the post-decoding BER after 10,200 km of transmission. Post-
decoding error-free transmission was achieved up to 2.8 b/sbl/pol. In addition,
Fig. 6.21 shows constellations of the signal after the adaptive ML filters for
several IRs up to 2.8 b/sbl/pol.
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(a) (b)

Figure 6.19. Impairment monitoring via the coefficients of the ML configuration
after 10,200 km of SMF transmission for (a) Tx and (b) Rx IQ skew in the X
polarization.

(a) (b)

Figure 6.20. (a) NGMI and (b) post-decoding BER for reception of a 32-Gbaud
PDM-64QAM signal by the ML configuration after 10,200 km of SMF trans-
mission while varying the IR with fixed FEC.
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(a) (b) (c) (d)

X Pol.

Y Pol.

Figure 6.21. Constellations of a 32-Gbaud PDM-64QAM signal with IRs of (a)
1.6, (b) 2.0, (c) 2.4, and (d) 2.8 b/sbl/pol, as received by the ML configuration
after 10,200 km of SMF transmission.

6.5 Summary

We have proposed an adaptive multi-layer filter architecture for Tx and Rx
impairment compensation in ultra-long-haul transmission. In this architecture,
CD compensation is performed on a received signal and its complex conjugate.
The two signals are then given as augmented inputs to 2×1 SL MISO filters in
the first layer of the proposed multi-layer filters, which is for Rx impairment
compensation. The coefficients of the multi-layer filters are controlled by gra-
dient calculation with back propagation from the last layer and SGD. The CD
compensation filters are swept before the multi-layer filters, while the mutual
non-commutativity of Rx IQ impairments and CD compensation is solved. This
considerably mitigates the computational complexity of the back propagation in
the case with the large CD accumulation. The proposed architecture leverages
the features of adaptive multi-layer filters: namely, the filters in each layer can
be individually designed, and impairments can be individually and simultane-
ously monitored from the converged coefficients.

We evaluated the proposed adaptive multi-layer filters with augmented in-
puts through both numerical simulation and in WDM transmission experiments.
The experimental evaluation used 16 channels of 32-Gbaud PDM-PCS-64QAM
signal with an IR of 2.4 b/sbl/pol in a 50-GHz grid over 10,200 km of SMF
transmission, in which Tx and Rx IQ skews were digitally emulated. The re-
sults showed that the adaptive mult-layer filter architecture could compensate
Tx IQ skew up to ±12 ps and Rx IQ skew over ± 20 ps under a large CD
accumulation over the 10,000 km of SMF. Furthermore, emulated Tx and Rx
IQ skews up to ±12 ps could be monitored individually from the adaptive filter
coefficients of the corresponding layers with a maximum error of 1.1 ps.





Chapter 7

Frequency-domain adaptive
MIMO filter with fractional
oversampling using
stochastic gradient descent
and back propagation

Optimization by gradient descent and back propagation is widely applicable to
embedded parameters in differentiable cascaded multiple layers, not only multi-
layer FIR filters. In this chapter, we investigate a frequency-domain adaptive
filter with fractional oversampling controlled by SGD and back propagation.
This is an example of adaptive control of a filter that includes an internal sam-
pling rate conversion. The sampling rate conversion can be treated as a layer in
a multi-layer structure, and we can derive forward and back propagation for it.

We apply the fractional oversampling frequency-domain adaptive filter to
mode demultiplexing in space-division multiplexed (SDM) transmission systems
with coupled spatial channels to mitigate computational complexity. We eval-
uate the fractional oversampling frequency-domain adaptive MIMO filter in a
long-haul transmission experiment over coupled 4-core fibers (C4CFs) with 16-
channel WDM and 4-core SDM 32-Gbaud PDM-QPSK signals. Our findings
show that the fractional oversampling frequency-domain adaptive 8×8 filter with
9/8× oversampling utilized for mode demultiplexing provided little performance
penalty after 6240-km transmission compared to the conventional 2× oversam-
pling frequency-domain adaptive 8×8 filter. The computational complexity in
terms of the required number of complex-valued multiplications was reduced by
40.7%. This approach provides an efficient implementation of a MIMO filter
for coupled SDM systems and also extends the application of adaptive filters to
cases including a rate conversion.
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7.1 Background

Capacity expansion of long-haul transmission over a conventional SMF is rapidly
approaching a limitation [116, 117]. The use of SDM transmissions that utilize
a spatial degree of freedom in an optical fiber for signal multiplexing is one
potential approach to overcoming this capacity crunch with SMFs [118,119]. In
particular, SDM transmission systems with coupled spatial channels in which
spatial coupling is allowed in a transmission line and compensated by MIMO
DSP enable a high spatial density of channels within a limited cross-section of an
optical fiber [115,120–122]. Coupled multi-core fibers (MCFs) are prime candi-
dates for the transmission fibers of coupled SDM systems and exhibit favorable
features for long-haul transmission, including low propagation loss and low spa-
tial mode dispersion (SMD) thanks to the core design and arrangement [123].
Long-haul transmissions over coupled MCFs have been experimentally demon-
strated along with mitigation of impairments over nonlinear fiber propagation
by spatial coupling [124–126] and with real-time MIMO DSP implemented in
field-programmable gate arrays [127].

In coupled SDM systems, the signal coupling among spatial modes and the
temporal spread due to SMD that occur in a transmission line do not bind the
transmission performance if a sufficiently long MIMO filter is used to compen-
sate for them, though the number of spatial modes and SMD determine the
scale of the MIMO filter and the required temporal length, respectively. The
condition of spatial coupling over a coupled MCF temporally varies, as in the
case of the polarization state in an SMF [128], and the SMD of current cou-
pled MCFs is relatively large compared to polarization mode dispersion [123].
Therefore, a MIMO filter for a coupled SDM system is usually a large-scale
adaptive filter with a large temporal spread, which requires high computational
complexity. For this reason, an efficient MIMO filter implementation is crucial
for the practical implementation of coupled SDM systems.

Regarding the scale of the MIMO filter, MIMO filter partitioning has been
utilized to reduce complexity when a physical channel has low coupling between
particular spatial modes [129,130], though it cannot be straightforwardly applied
to a coupled MCF case with fully random coupling among all spatial modes.
Thus, efficient implementation of a large temporal spread for the MIMO filter is
a primary focus for SDM systems with fully random coupling. One approach is
to use sub-carrier multiplexing [131], which was adopted in a real-time MIMO
DSP demonstration [127]. Since the low symbol rate of one sub-carrier makes
the symbol duration longer, designing the MIMO filter for one sub-carrier can
have fewer taps to compensate for the same SMD without sub-carrier multiplex-
ing. However, this approach does not directly reduce the total computational
complexity for all the sub-carriers. Another approach is the use of a frequency-
domain implementation with FFT and IFFT [132], which enables efficient im-
plementation of a filter with a large temporal spread. Frequency-domain filters
are often utilized for CD compensation that has a large temporal spread in
long-haul SMF transmissions [16]. Adaptive frequency-domain filters have also
been investigated for polarization demultiplexing in SMF transmission [133],
as well as for compensation of the spatial coupling and SMD in coupled SDM
systems [69,131,134].

Regardless of the time-domain or frequency-domain implementation, adap-
tive MIMO filters for coupled SDM systems have usually been operated with
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the signals at two-fold (2×) oversampling to obtain a fine equalization perfor-
mance [127, 135]. In contrast, in SMF transmission systems, adaptive MIMO
filters with input signals at a lower sampling rate with a non-integer oversam-
pling factor of less than two (e.g., 1.5× oversampling, which is referred to as
fractional oversampling here) have been investigated [136–140], as the symbol
rate increases and a signal having a flat spectrum with a small roll-off factor
is adopted. As in the case of sub-carrier multiplexing, decreasing the sampling
rate of input signals to a filter lengthens the temporal duration per sample and
enables a lower computational complexity. Fractionally spaced time-domain
adaptive MIMO filters for SMF transmission systems have been implemented
by using a polyphase filter to convert sampling rates before an adaptive fil-
ter [136,137] or implemented as a polyphase adaptive filter [138]. For frequency-
domain implementation, a fractional oversampling filter has been investigated
with channel estimation and sampling rate conversion [139]. For fully adap-
tive control of a fractional oversampling frequency-domain MIMO filter, the
configuration in which the fractional oversampling frequency-domain inputs are
expanded to those corresponding to 2× oversampling and the adaptive control of
the filter coefficients is operated in the 2× oversampling domain [140]. However,
these fractional oversampling adaptive MIMO filters have been investigated for
transmission systems with an SMF, in which modal coupling and dispersion
are relatively simple compared to the case with a coupled MCF. Moreover, the
fractional oversampling adaptive MIMO filter in the frequency domain is based
on the filter coefficient control in the 2× oversampling domain, not in the low
fractional oversampling domain of the input signals, which leads to inefficiency
in terms of the computational complexity.

7.2 Fractional oversampling frequency-domain adap-
tive MIMO filter controlled by SGD

In light of the above background, we investigate a fractional oversampling
frequency-domain adaptive MIMO filter architecture in which the input signals
are at fractional oversampling below 2× oversampling for long-haul transmission
over a coupled MCF. Since we can usually have a criterion of error only for sig-
nals at the symbol rate, i.e., 1× sampling, it is difficult to use the direct output
signals of the frequency-domain adaptive MIMO filter at fractional oversampling
for adaptive coefficient control. Therefore, the frequency-domain sampling rate
conversion to 1× sampling is placed after the fractional oversampling frequency-
domain MIMO filter. The adaptive control of the filter coefficients is performed
by SGD to minimize the loss function constructed with the output signals at 1×
sampling in the time domain. Gradients are calculated with back propagation
from the output signals, similar to the previous chapters regarding multi-layer
filters. We derive the back propagation of the frequency-domain sampling rate
conversion and show that it requires no complex-valued multiplications, which
is an indicator of the computational complexity of DSP.
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7.2.1 Frequency-domain adaptive filter from viewpoint of
back propagation

We first review a conventional 2× oversampling frequency domain adaptive filter
using the overlap-save method from the viewpoint of back propagation. Adap-
tive filter coefficient control of the conventional frequency domain adaptive fil-
ter [40,132] can be comprehended by gradient descent and back propagation by
decomposing the frequency domain adaptive filter to multiple functional blocks.
Forward and back propagation of the functional blocks appears in those of the
fractional oversampling frequency-domain adaptive MIMO filter.

A schematic diagram of the conventional 2× oversampling frequency-domain
adaptive filter with the overlap-save method is shown in Fig. 7.1. This dia-
gram includes carrier recovery after down-sampling of the time-domain output
signal to 1× sampling in order to adopt a symbol-error-based algorithm such
as the LMS algorithm for the coefficient control [115]. The conventional 2×
oversampling frequency-domain adaptive filter can also be implemented by uti-
lizing an extended MIMO filter and divided input signals with even and odd
indices [69,133]1, as shown in Fig. 7.2. We review here the model of the conven-
tional 2× oversampling frequency-domain adaptive filter with the overlap-save
method from the viewpoint of back propagation. We focus on the conven-
tional architecture shown in Fig. 7.1 and consider the case with a single-input
single-output filter for simplicity. The extension to a MIMO filter including the
extended MIMO filter with the even-odd type shown in Fig. 7.2 is straightfor-
ward.

error

CRIFFT

desired 
data

FFT

FFTto block 
with overlap

to serial 
with save

0 paddingFFT

0 repl.

IFFT

constraint

Figure 7.1. Schematic diagram of conventional 2× oversampling frequency-
domain adaptive filter with overlap-save method. The bold line across H indi-
cates a MIMO process.

Forward propagation

We consider the input and output signal blocks of the conventional 2× over-
sampling frequency-domain adaptive filter at a timing integer l given as

x = (x[l], x[l − 1], . . . , x[l −Nx + 1])T, (7.1)

1This architecture is based on the noble identity of multi-rate systems [141].
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Figure 7.2. Schematic diagram of even-odd 2× oversampling frequency-domain
adaptive filter with overlap-save method. The bold lines across He and Ho

indicate MIMO processes.

y = (y[l], y[l − 1], . . . , y[l −Ny + 1])T, (7.2)

where Nx and Ny are the lengths of the input and output signal blocks. The
time-domain finite impulse response of the filter is given as

h = (h[0], h[1], . . . , h[M − 1])T, (7.3)

where M is the length of the finite impulse response. The input and output
signal blocks are related by convolution as

 y[l]
...

y[l −Ny + 1]

 =


h[0] · · · h[M − 1] 0 · · · 0

0
. . .

. . .
. . .

...
... 0
0 · · · 0 h[0] · · · h[M − 1]


 x[l]

...
x[l −Nx + 1]

 ,

(7.4)
where Ny = Nx −M + 1 as a result of convolution. Equation (7.4) is rewritten
as

y = H−x, (7.5)

with a non-square matrix H−. Expanding Eq. (7.4) so that the matrix become
circulant, we obtain



y[l]
...

y[l −Ny + 1]
ỹ[l −Ny]

...
ỹ[l −Nx + 1]


=



h[0] · · · h[M − 1] 0 · · · 0

0
. . .

. . .
. . .

...
... 0
0 · · · 0 h[0] · · · h[M − 1]

h[M − 1] 0 · · · 0 h[0] · · · h[M − 2]
...

. . .
. . .

. . .
. . .

...
h[1] · · · h[M − 1] 0 · · · 0 h[0]


x,

(7.6)
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which can be rewritten by using a circulant matrix H+ as

y+ =

(
y
ỹ

)
= H+x. (7.7)

Since H+ is circulant, it can be diagonalized with the discrete Fourier transform
(DFT) matrix D as

H+ = D†ΛD, (7.8)

where † is a Hermitian conjugate. Λ has diagonal elements ofH = (H[0], . . . , H [Nx−
1])T, which are related to the time-domain finite impulse response of the filler
as

H = Dh+, (7.9)

h+ =

(
h
0

)
= (h[0], . . . , h[M − 1], 0, . . . , 0)T, (7.10)

whose length is Nx. Thus, we obtain

y+ = D†ΛDx, (7.11)

and then
Dy+ = ΛDx, (7.12)

where D−1 = D†. Multiplexing the DFT matrix D to a signal block corresponds
to the conversion to the frequency-domain. We denote the frequency-domain
representations of y+ and x as Y+ and X. Finally, we obtain the model of the
frequency-domain filter of the finite impulse response of h as

Y+ = ΛX = H ◦X, (7.13)

where H is the frequency-domain representation of h+ = (h 0)T. The output of
the frequency-domain filter Y+ is converted to y+ by IFFT, or by multiplexing
D−1. However, a portion of y+, ỹ, was added artificially to obtain Eq. (7.6),
and it includes distortion due to wraparound from both ends of the input signal
block. Thus, only y is saved from y+, and ỹ is discarded. As a consequence, the
time-domain output signal block after discard becomes shorter than that of the
input signal block, and thus the input signal block is constructed with overlap
between two successive blocks. These operations correspond to the overlap-save
procedure [40]. According to the above model, the temporal spread of the time-
domain response that can be represented with a frequency-domain filter without
distortion due to wraparound corresponds to that of ỹ, that is, the overlap size
of input signal blocks [40].

The time-domain output signal y after discard is at 2× oversampling. For
symbol decision and calculating the symbol error for the adaptive coefficient
update, 2× down-sampling is performed on y and we obtain the 1× sampling
time-domain signal y↓2. The phase rotation of θ is performed to y↓2 for CR,
and the final output signal block of the conventional 2× oversampling frequency-
domain adaptive filter with the overlap-save method is obtained as

z = y↓2 ◦ exp(iθ). (7.14)

The computational graph of the process described above is shown in Fig. 7.3.
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CRIFFT discard

FFTcombine

FFT

Figure 7.3. Computational graph of conventional 2× oversampling frequency-
domain adaptive filter with overlap-save method for calculation of filter coeffi-
cients update with gradient descent and back propagation.

Back propagation

We then consider the adaptive control of the frequency-domain filter coefficients
H. Since H is the frequency-domain representation of h+ and a portion of h+

is restricted to zero, we consider the update of the time-domain finite impulse
response h by SGD and gradient calculation with back propagation according to
the graph shown in Fig. 7.3, followed by the update of the frequency-domain fil-
ter coefficients H. Using SGD and Wirtinger derivatives as a basis, a coefficient
ξ is updated to minimize the instantaneous loss function ϕ, as

ξ → ξ − 2α
∂ϕ

∂ξ∗
, (7.15)

where α is a step size. The superscript ∗ is complex conjugate. The loss function
to be minimized should be real-valued, and thus the relation

∂ϕ

∂ξ∗
=

(
∂ϕ

∂ξ

)∗

, (7.16)

holds. The loss function consists of the final time-domain output signal block z.
When we use the LMS algorithm, the loss function is a norm of the difference
of the signals and the desired symbols d, as

ϕ = ||d− z||2, (7.17)

where || || is the l2 norm. The gradients of the loss function ϕ in terms of the
final output signals z are calculated as

∂ϕ

∂z
= −e∗, (7.18)

where e = d − z. According to the computational graph shown in Fig. 7.3,
the gradients in terms of each variable are calculated with back propagation
successively. The gradients in terms of y↓2 are

∂ϕ

∂y↓2
=

∂ϕ

∂z
◦ exp(iθ). (7.19)

The gradients in terms of y are obtained by 2× up-sampling with inserting zero,
as

∂ϕ

∂y
=

(
∂ϕ

∂y↓2

)
↑2

. (7.20)
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The gradients in terms of y+ are obtained by inserting a zero vector that has
the same size as the discarded ỹ, as

∂ϕ

∂y+
=

( ∂ϕ
∂y

0

)
. (7.21)

The gradients in terms of the output signal block of the frequency-domain filter
Y+ are calculated by using the DFT matrix D, as

∂ϕ

∂Y+
= D−1 ∂ϕ

∂y+
. (7.22)

The gradients in terms of the frequency-domain filter H are

∂ϕ

∂H
=

∂ϕ

∂Y+
◦X, (7.23)

and those in terms of the time-domain representation h+ are

∂ϕ

∂h+
= D

∂ϕ

∂H
. (7.24)

Since h+ = (h 0)T, the gradients in terms of the time-domain finite impulse
response h are included in ∂ϕ/∂h+, as

∂ϕ

∂h+
=

(
∂ϕ
∂h
∂ϕ

∂h̃

)
. (7.25)

When the gradients of the loss function ϕ in terms of the time-domain finite
impulse response h are given, h is updated by SGD to minimize the instanta-
neous loss function as

h → h− 2α
∂ϕ

∂h∗ . (7.26)

Since h is related to the frequency-domain filter coefficients H as Eq. (7.9), Eq.
(7.26) leads the update of the frequency-domain filter coefficients as

H → H − 2αD

(
∂ϕ
∂h∗

0

)
. (7.27)

This equation is rewritten by using the gradients in terms of H, as

H → H − 2αD

(
c ◦
(
D−1 ∂ϕ

∂H∗

))
, (7.28)

where the elements of c are c[i] = 1 (i ∈ [0, . . . ,M − 1]), c[i] = 0 (i ∈
[M, . . . , Nx − 1]). The operation carried out on ∂ϕ/∂H∗ in the above equation
corresponds to the constraint operation in the adaptive update of the frequency-
domain filter coefficient [40,69].

The above descriptions are how the model of the conventional 2× oversam-
pling frequency-domain adaptive filter with the overlap-save method is con-
structed from the viewpoint of back propagation.
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7.2.2 Fractional oversampling frequency-domain adaptive
MIMO filter

A fractional oversampling frequency-domain adaptive MIMO filter architecture
consists of a frequency-domain MIMO filter in which the input signals are pro-
cessed at fractional oversampling rate and a frequency-domain sampling rate
conversion to 1× sampling. The coefficients of the frequency-domain MIMO
filter are controlled by SGD to minimize the loss function calculated from the
time-domain outputs after the sampling rate conversion to 1× sampling. The
gradients of the loss function in terms of the filter coefficients are calculated
with back propagation from the outputs successively through the sampling rate
conversion.

Figure 7.4 shows a schematic diagram of the fractional oversampling frequency-
domain adaptive MIMO filter architecture. Here, the input signal’s sampling
rate is M/L× oversampling, where M and L are integers and we assume that
M/L ≤ 2. The fractional oversampling frequency-domain adaptive MIMO fil-
ter operates in the M/L× oversampling domain. The overlap-save method is
used for frequency-domain implementation of a filter [40]. We describe here the
case with a single-input single-output filter for simplicity, though the extension
to a MIMO filter is straightforward. After the fractional M/L× oversampling
frequency-domain MIMO filter, the sampling rate conversion to the 1× sam-
pling domain is performed. The frequency-domain signal in the 1× sampling
domain is converted to the time-domain with the overlap-save and then carrier
recovery is executed.

gradient calculation with back propagation error

CRIFFT discard

FFTcombine

FFTS to B

Figure 7.4. Schematic diagram of fractional oversampling frequency-domain
adaptive filter with overlap-save method. The input signal x is at M/L× over-
sampling and the output signal z is at 1× sampling. The bold line across H
indicates a MIMO process. The sizes of each signal block in the process are
shown beneath, in which L = 2, M = 3, and the overlap is 50%. S to B: serial
to block, FFT: fast Fourier transform, IFFT: inverse FFT.
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Forward propagation

We first describe the forward propagation of this fractional oversampling frequency-
domain adaptive MIMO filter architecture including the frequency-domain rate
conversion to the 1× sampling domain. A frequency-domain filter deals with
signals divided into blocks by the overlap-save method. We focus an input sig-
nal block at a timing integer l and treat complex-valued signals assuming DSP
after coherent reception. The input signal block x at M/L× oversampling, that
is, at the sampling rate of M/LRs, is described as

x = (x(lTx), x((l − 1)Tx), . . . , x((l −Nx + 1)Tx))
T, (7.29)

where the superscript T denotes the transpose. Rs is the symbol rate. The
sampling interval is Tx = LT/M , where T = 1/Rs is the symbol interval. The
length of the input block Nx = 2MN/L if the length of the output block at 1×
sampling with 50% overlap/discard is N . The input signal block x is converted
to its frequency-domain representation X by FFT. The length of X is the same
as that of x. The frequency-domain representation

X = (X(0), X(F0), . . . , X((Nx − 1)F0))
T, (7.30)

where F0 = MRs/L/Nx = Rs/(2N), and the time-domain representation x are
related by the Fourier transform as

X(kF0) =

Nx−1∑
n=0

x ((l − n)Tx) exp

(
−i

2πkn

Nx

)
, (7.31)

with an integer k, which can be rewritten as

X = Dx, (7.32)

by using the DFT matrix D. The coefficients of the frequency-domain filter
operating in the M/L× oversampling domain are represented by

H = (H(0),H(F0), . . . , H((Nx − 1)F0))
T, (7.33)

whose length is the same as Nx. H is the frequency-domain representation
of h+ = (h 0)T. The direct output block YF of the frequency-domain filter
operating in the M/L× oversampling domain is

YF = H ◦X. (7.34)

The sampling rate conversion from the M/L× oversampling to 1× sampling
domain is performed on YF . The sampling rate conversion consists of L-times
up-sampling in the frequency-domain (F ↑L), a decimation filter (HI), and M -
times down-sampling (F ↓M ). YF is first L-times up-sampled in the frequency-
domain to YL. The time-domain representations of YF and YL are

yF = (yF (lTx), yF ((l − 1)Tx), . . . , yF ((l −Nx + 1)Tx))
T, (7.35)

yL = (yL(lLTx/L), yL((lL− 1)Tx/L), . . . , yL((lL− LNx + 1)Tx/L))
T, (7.36)



123

respectively. The lengths of YL and yL are both LNx. According to L-times
up-sampling by zero insertion, yF and yL are related as

yL

(
(lL− n)

Tx

L

)
=

{
yF ((l −m)Tx) (n = mL)

0 (otherwise)
, (7.37)

where n,m are integers. Thus, the frequency-domain representations YF and
YL are related as [141]

YL(kF0) = YF (kF0), (7.38)

which is rewritten as

YL(kF0) = YF (mod(k,Nx)F0), (7.39)

considering the periodicity of YF . The L-times up-sampled signal block YL is
then filtered by the decimation filter HI , as

YI(kF0) = YL(kF0)HI(kF0), (7.40)

where the filter coefficients of the decimation filter are

HI(kF0) =

{
L

(
|kF0| < M

2LRs

)
0 (otherwise)

, (7.41)

to preserve the bandwidth of the input signal block at M/L× oversampling.
The output signal block of the decimation filter YI is M -times down-sampled in
the frequency domain to obtain the signal block in the 1× sampling frequency-
domain YM . According to M -times down-sampling, the following relation holds
[141]:

YM (kF0) =
1

M

M−1∑
m=0

YI((k −mNy)F0), (7.42)

where Ny = LNx/M = 2N is the length of YM .
The output signal block in the 1× sampling frequency-domain YM is con-

verted to the time-domain signal y+ by IFFT. A portion of y+ = (y ỹ)T includes
distortion due to wraparound from both ends of the input signal block via the
frequency-domain filter, and thus the distorted portion ỹ is discarded. Only
y is saved based on the overlap-save method. The length of y is N with 50%
overlap. To adopt a LMS-based loss function for adaptive control of the filter
coefficient in this study, carrier recovery is performed on y. The final output
block of the fractional oversampling frequency-domain adaptive filter in the 1×
sampling time-domain is

z = y ◦ exp(iθ), (7.43)

where θ is the phases of carrier recovery and exp represents the element-wise
exponential function here.

Back propagation of frequency-domain sampling rate conversion

The coefficients of the fractional M/L× oversampling frequency-domain fil-
ter H are controlled by SGD to minimize the loss function constructed from
the 1× sampling time-domain output z. The gradients of the loss function in
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terms of the filter coefficients are calculated back propagation from the output
block through the sampling rate conversion. We derive back propagation of the
frequency-domain sampling rate conversion through YF to YM . We can find
back propagation of the other elements (such as FFT/IFFT) in the adaptive
control of a conventional 2× oversampling frequency-domain filter. Hereinafter,
a frequency component is described as X(kF0) = X[k] for readability.

When the gradients of the loss function of ϕ in terms of the 1× sampling
frequency-domain signal YM are given as ∂ϕ/∂YM , the gradients of ϕ in terms
of YI can be calculated as

∂ϕ

∂YI [k]
=

1

M

M−1∑
m=0

∂ϕ

∂YM [k +mN ]
, (7.44)

according to the chain rule of the derivatives by using Eq. (7.42). Similarly,
from ∂ϕ/∂YI , the gradients of ϕ in terms of YL are calculated as

∂ϕ

∂YL[k]
=

∂ϕ

∂YI [k]
HI [k], (7.45)

by using Eq. (7.40). From ∂ϕ/∂YL, the gradients of ϕ in terms of YF are
calculated as

∂ϕ

∂YF [k]
=

L−1∑
l=0

∂ϕ

∂YL[k + lN ]
, (7.46)

with Eq. (7.39). These are back propagations of the frequency-domain sam-
pling rate conversion from the M/L× to 1× oversampling domain. Since we
can calculate ∂ϕ/∂YM from z and ∂ϕ/∂H or ∂ϕ/∂h from ∂ϕ/∂YF with back
propagation, we now obtain an adaptive update for the filter coefficients H of
the fractional M/L× oversampling frequency-domain filter by SGD.

7.2.3 Computational complexity

We evaluated the computational complexity of the fractional M/L× oversam-
pling frequency-domain adaptive MIMO filter and compared it with that of the
conventional 2× oversampling frequency-domain adaptive MIMO filter. The
number of complex-valued multiplications is used as an indicator of the com-
putational complexity of DSP. The temporal spread of a frequency-domain
filter response with the overlap-save method without any distortion due to
wraparound corresponds to the spread of the overlap region of the input signal
blocks [40, 142], which is confirmed in the experimental evaluation described
later. We compared the two filters under the same temporal spread, or filter
length N , in units of symbol periods, which results in different filter lengths
in units of sample periods when we compare filters in different oversampling
domains.

In conventional frequency-domain filters, the input block length is usually
set to a power of two, and the overlap ratio is set to 50% [16] so that the
required FFT/IFFT sizes become powers of two, which enables the use of effi-
cient FFT/IFFT algorithms such as Radix-2 [143]. In contrast, as described in
the previous section, the fractional M/L× oversampling frequency-domain fil-
ter requires FFT/IFFT whose sizes are Nx = 2MN/L and Ny = 2N under the
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overlap ratio of 50%. These sizes are not restricted to powers of two with general
M and L. By using appropriate algorithms such as the prime-factor FFT, we
can perform FFT/IFFT efficiently even when n is not a power of two [143,144].
We consider the case with N of a power of two and also L of a small power of
two. In this case, Nx becomes the multiplication of a power of two and a few
small factors, which is suitable for applying the prime-factor FFT. We assume
here that the required number of complex-valued multiplications per FFT/IFFT
is given as µ(n) = n log2(n)/2 [145], for any integer n.

The computational complexities of the conventional 2× oversampling frequency-
domain adaptive MIMO filter, the even-odd 2× oversampling frequency-domain
adaptive MIMO filter [69,133], and the fractionalM/L× oversampling frequency-
domain adaptive MIMO filter are estimated when the filter length is N symbols,
the overlap ratio is 50%, and the scale of the MIMO filter is K×K. As described
previously, in the frequency-domain sampling rate conversion and its back prop-
agation in the fractionalM/L× oversampling frequency-domain adaptive MIMO
filter, only multiplication by HI appears, which corresponds to multiplication
by a fixed value L or zero. Considering that multiplication by L in forward
and back propagation can be accommodated in normalization of signals or step
size adjustment, the frequency-domain sampling rate conversion and its back
propagation do not contribute to the required complex-valued multiplications,
while it requires more memory for the larger intermediate signals. Table 7.1 lists
the required number of complex-valued multiplications per output symbol for
forward propagation, back propagation for the coefficient update, and the con-
straint operation for the frequency-domain filter [40,69] for the three compared
architectures by using µ(n). Forward propagation is always required for every
input signal block to obtain output signals. Back propagation can be carried out
intermittently if we regard the channel variation as slow. It has been reported
that the constraint operation can be omitted for less complexity in some cases
for an SDM transmission [69], but we assume here that back propagation and
the constraint operation are carried out for every block.

Table 7.1: Required complex-valued multiplications per output symbol.

conventional 2× even-odd 2× fractional M/L×
Forward 4K + 2µ(4N)

N + 1 4K + 3µ(2N)
N + 1 2KM

L + µ(2MN/L)
N + µ(2N)

N + 1

Back 4K + µ(4N)
N + 1 4K + µ(2N)

N + 1 2KM
L + µ(2N)

N + 1

Constraint 2K µ(4N)
N 4K µ(2N)

N 2K µ(2MN/L)
N

Figure 7.5(a) shows the required number of complex-valued multiplications
per output symbol while changing the filter length N for the conventional 2×
oversampling frequency-domain adaptive MIMO filter, the even-odd 2× over-
sampling frequency-domain adaptive MIMO filter, the fractional M/L× over-
sampling frequency-domain adaptive MIMO filter, and the conventional 1×
sampling frequency-domain adaptive MIMO filter. The two cases with M = 3,
L = 2 and with M = 9, L = 8 are shown for the fractional M/L× oversampling
frequency-domain adaptive MIMO filter. The number of spatial modes K was
set to eight considering four-core and two-polarization transmission over C4CFs.
We can see here that the fractional oversampling frequency-domain adaptive
MIMO filter reduces the computational complexity as the oversampling ratio
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M/L decreases. The fractional 3/2× and 9/8× oversampling frequency-domain
adaptive MIMO filters show a lower computational complexity compared to the
conventional and even-odd 2× oversampling frequency-domain adaptive MIMO
filters. At N = 256, which was used in the long-haul transmission experiment
over C4CFs described later, the fractional 9/8× oversampling frequency-domain
adaptive MIMO filter reduces the required complex-valued multiplications by
48.1% compared to the conventional 2× oversampling frequency-domain adap-
tive MIMO filter and by 40.7% compared to the even-odd 2× oversampling
frequency-domain adaptive MIMO filter. Figure 7.5(b) shows the required
number of complex-valued multiplications per output symbol for the fractional
M/L× oversampling frequency-domain adaptive MIMO filter when the filter
length N is 256 symbols while changing the oversampling factor.

(a) (b)

Figure 7.5. (a) Required number of complex-valued multiplications per out-
put symbol of conventional 2× oversampling frequency-domain adaptive MIMO
filter, even-odd 2× oversampling frequency-domain adaptive MIMO filter, frac-
tional oversampling frequency-domain adaptive filter with M/L = 3/2 and
M/L = 9/8, and conventional 1× sampling frequency-domain adaptive MIMO
filter. The overlap ratio and the number of modes K are 50% and 8, respec-
tively. (b) Dependence of number of complex-valued multiplications per output
symbol of the fractional oversampling frequency-domain adaptive filter on the
oversampling factor with the filter length N of 256 symbols.

7.3 Evaluation in transmission experiment over
coupled 4-core fibers

We evaluated the performance of the fractional oversampling frequency-domain
adaptive MIMO filter to determine whether a low oversampling ratio with neg-
ligible degradation is feasible. In this evaluation, we applied the fractional over-
sampling frequency-domain adaptive MIMO filter for compensation of modal
coupling and SMD in a long-haul transmission of 16-channel WDM and 4-core
SDM 32-Gbaud PDM-QPSK signals over C4CFs.



127

Experimental setup

The experimental setup is shown in Fig. 7.6, where 16-channel WDM and 4-
core SDM 32-Gbaud PDM-QPSK signals were transmitted over C4CFs in a
recirculating loop configuration. The fractional oversampling frequency-domain
adaptive MIMO filter was applied for mode demultiplexing, that is, compensa-
tion of modal coupling and dispersion, in the receiver-side DSP.
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Figure 7.6. Experimental setup for WDM/SDM transmission of 32-Gbaud
PDM-QPSK signals over a loop configuration of two spans of 52-km C4CF.
ATT: optical attenuator, ODL: optical delay line, FO: fan-out.

On the transmitter side, 16-channel WDM signals of 32-Gbaud PDM-QPSK
on a 50-GHz grid at frequencies of 192.90 to 193.65 THz were prepared. The
signal at 193.3 THz was generated with a laser source having a linewidth of
about 100 kHz modulated by electrical signals from a four-channel DAC at a
sampling rate of 64 GS/s and vertical resolution of eight bits. The transmitted
data consisted of a FEC frame of the low-density parity-check code for DVB-S2
with a frame length of 64,800 and a code rate of 0.8 for each IQ component and
two polarizations, i.e., four frames in total. The data were mapped to PDM-
QPSK and up-sampled to 2× oversampling so that they could be generated
using the DAC. Root-raised cosine filtering with a roll-off factor of 0.1 and
pre-compensation of the frequency characteristics of the transmitter devices
were carried out on the signals. The remaining 15 channels were generated
in a similar manner by using another modulator and 4-channel DAC with 15
channels of laser sources multiplexed by an arrayed waveguide grating. Different
random bits were loaded in the FEC payload. The optical signal at 193.3 THz
and the remaining 15 signals were amplified using EDFAs and combined after
channel power equalization by a WSS. After low-speed polarization scrambling
at 10×2π rad/s, the WDM signals were split into four and each was sufficiently
decorrelated (by 5 m of an SMF each) to emulate four-core SDM signals.

We evaluated the four-core SDM 32-Gbaud PDM-QPSK signals at 193.3
THz. Figure 7.7 shows the optical spectrum of the transmitted 32-Gbaud PDM-



128

QPSK signal measured with a high-resolution coherent optical spectrum ana-
lyzer. As we can see, the spectrum has an almost flat-top profile with the edges
at ±16 GHz, reflecting the fact that a root-raised cosine filter with a roll-off
factor of 0.1 was executed. The 1× and 2× oversampling for 32-Gbaud signals
correspond to 32 and 64 GS/s, whose Nyquist frequencies are 16 and 32 GHz,
respectively. The flat-top spectrum shown in Fig. 7.7 indicates that sampling
near 1× is sufficient to reconstruct the signal from the sampled waveform.

Figure 7.7. Optical spectrum of signal under evaluation measured by coherent
optical spectrum analyzer with resolution of 150 MHz.

The transmission line in a recirculating loop configuration consists of switches
with AOMs, two spans of 52-km C4CF with optical amplification by parallel
EDFAs, and WSSs to compensate for gain/loss over WDM signals in a loop.
The C4CFs had four cores arranged in a square with a core pitch of 20 µm. The
clad diameter, averaged propagation loss, effective area of cores, and SMD were
125 µm, 0.165 dB/km, 112 µm2, and 6.9 ps/

√
km, respectively. A 52-km C4CF

was connected to SMF-based devices such as EDFA via fan-out (FO) devices
that were fusion-spliced at both ends of the C4CF span. The relative delays in
SMF-based parts in the loop were adjusted to be as small as possible by utilizing
optical delay lines (ODLs). The span input optical power was set at the input
of the FO at one end of a C4CF by using optical attenuators (ATTs). On the
basis of a preliminary experiment with eight WDM channels, we set the span
input optical power to 0 dBm/ch/core, which was slightly adjusted in consid-
eration of the four cores to reduce the mode-dependent loss on the basis of the
transmission performance. The averaged optical signal-to-noise ratio after two
spans was 36.3 dB/0.1 nm.

The optical signals after transmission in the recirculating loop of the C4CFs
were amplified by EDFAs, and the signals at 193.3 THz were demultiplexed by
OBPFs having a 3-dB bandwidth of 50 GHz. The signals were then received by
four polarization-diversity coherent receivers. A laser source having a linewidth
of about 4 kHz was divided into four and supplied to coherent receivers as a
local oscillator. The four-channel outputs of the four coherent receivers were
sampled by a 16-channel oscilloscope used as an ADC at 50 GS/s and a vertical
resolution of eight bits. Successive waveforms of 1MS were acquired five times
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for each transmission condition and processed by offline DSP.
A schematic diagram of the offline DSP is shown in Fig. 7.8. The received

waveforms were first normalized and resampled to 2× oversampling on the basis
of the timing error signal [86] after CD compensation for every core. CD com-
pensation and matched filtering were carried out individually for eight signals
of four cores and two polarizations. Frame synchronization was then performed
to use the data-aided LMS algorithm for the adaptive coefficient update of a
MIMO filter to avoid degenerated outputs [146] and ensure fine convergence.
Because of the restriction in this experiment in which SDM signals were emu-
lated by dividing a signal and decorrelation, we assume the transmitted data
frames are a known training pattern at this stage. Frame header detection was
carried out in a correlation-based manner after resampling to 1× sampling with
a training pattern, though it does not work under a frequency offset between a
carrier frequency and an LO [147]. Thus, a maximum peak of the correlation
was searched for while the frequency offset compensation was performed and
the amount of the frequency offset was swept in a step of 1 MHz. After detect-
ing the frame header, frame synchronization and frequency offset compensation
were carried out on the waveforms in the 2× oversampling domain.
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Figure 7.8. Offline DSP including proposed fractional oversampling frequency-
domain adaptive 8×8 MIMO filter for mode demultiplexing.

The 2× oversampling waveforms after frame synchronization and frequency
offset compensation were then resampled to M/L× oversampling for the frac-
tional oversampling frequency-domain adaptive 8×8 MIMO filter shown in Fig.
7.4 for mode demultiplexing. Several oversampling ratios M/L below two were
evaluated. The overlap ratio for the frequency-domain filter was set to 50%.
The adaptive control of the filter coefficients was first carried out by the loss
function based on the data-aided LMS algorithm. After convergence, the adap-
tive control was switched to that based on the decision-directed LMS. The step
size was optimized for each oversampling ratio M/L2. Carrier recovery in the
fractional oversampling frequency-domain adaptive filter was carried out us-

2We found that the optimal step sizes were similar when we set HI [k] = 1 in Eq. (7.45),
regardless of M/L.
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ing a phase-locked loop with data-aided or decision-directed phase errors for
eight spatial modes individually. After convergence with the decision-directed
LMS algorithm, the Gram-Schmidt orthogonalization procedure was carried out
on the time-domain 1× sampling output signals of the fractional oversampling
frequency-domain adaptive 8×8 MIMO filter for compensation of a phase devi-
ation between in-phase and quadrature components due to the imperfection of
the bias control of the modulator in the transmitter [8]. Finally, the pre- and
post-FEC BERs were evaluated. As a baseline, we also evaluated the DSP archi-
tecture with the conventional 2× oversampling frequency-domain adaptive 8×8
MIMO filter. In this case, the 2× oversampling waveforms after frame synchro-
nization and frequency offset compensation were fed into the frequency-domain
adaptive 8×8 filter.

Note that we resampled the signals to M/L× oversampling just before the
fractional oversampling frequency-domain adaptive 8×8 MIMO filter (as shown
in Fig. 7.8) in order to focus specifically on its performance. This DSP architec-
ture is indeed implementable, though the computational complexity of DSP can
be further reduced if CD compensation and the matched filtering are carried
out at M/L oversampling below 2× oversampling when the sampling rate of the
ADC itself is M/L oversampling.

Dependence on oversampling ratio M/L

We first evaluated the performance of the fractionalM/L× oversampling frequency-
domain adaptive 8×8 MIMO filter while changing M and L at the transmission
distance of 6240 km, or 60 loops. The filter length was set to 256 in units of
symbol periods for any oversampling ratio M/L, which was optimal and suf-
ficient to compensate for modal dispersion in this experiment, as shown later.
L was set to a small power of two. Figure 7.9 shows the pre-FEC BERs av-
eraged over eight spatial and polarization modes for five waveform acquisitions
as a function of the oversampling ratio. The results with the conventional 2×
oversampling frequency-domain adaptive 8×8 MIMO filter are plotted at the
point of the oversampling ratio of two in Fig. 7.9. We can see here that little
performance penalty occurs down to the oversampling ratio of 9/8, or 1.125.
According to Fig. 7.9, a slight degradation occurs at 17/16× oversampling,
and the performance degradation increases drastically as the oversampling ratio
decreases below one. As described in the previous section, the fractional 9/8×
oversampling frequency-domain adaptive filter requires FFT and IFFT whose
sizes are 32 · 2−2N and 2N under the overlap ratio of 50%. When N is a power
of two, they consist of the multiplication of a power of two and small prime
factors, resulting in a reasonable computational complexity, as shown in Fig.
7.5. At N = 256, the fractional 9/8× oversampling frequency-domain adap-
tive MIMO filter provides negligible degradation compared to the conventional
2× oversampling frequency-domain adaptive MIMO filter, with a 48.1% reduc-
tion of the complex-valued multiplications. In the following evaluations, we use
M = 9 and L = 8 for the fractional oversampling frequency-domain adaptive
8×8 MIMO filter.

Figures 7.10 and 7.11 show the constellations of eight spatial modes after de-
modulation with the conventional 2× oversampling frequency-domain adaptive
8×8 MIMO filter and after the fractional 9/8× oversampling frequency-domain
adaptive 8×8 MIMO filter, respectively. No significant difference between them



131

conventional

fractional

15/16
7/8

1/1

17/16
9/8 3/2

31/32

33/32

Figure 7.9. Dependence of pre-FEC BER with fractional oversampling
frequency-domain adaptive 8×8 MIMO filter for reception at 6240 km on over-
sampling ratio of input signal. Pre-FEC BERs averaged over eight spatial modes
for five waveform acquisitions are plotted at each oversampling ratio.

can be observed.

Figure 7.10. Constellations of eight spatial modes after demodulation with
conventional 2× oversampling frequency-domain adaptive 8×8 MIMO filter for
reception at 6240 km.

Dependence on filter length

We next evaluated the performance of the fractional 9/8× oversampling frequency-
domain adaptive 8×8 MIMO filter and the conventional 2× oversampling frequency-
domain adaptive 8×8 MIMO filter while changing the filter length N at the
same transmission distance of 6240 km. Figure 7.12(a) shows the dependence
of the pre-FEC BERs on the filter length in units of symbol periods. The pre-
FEC BERs averaged over eight spatial modes for five waveform acquisitions are
shown. The results with the fractional 9/8× oversampling frequency-domain
adaptive 8×8 MIMO filter and the conventional 2× oversampling frequency-
domain adaptive 8×8 MIMO filter show similar behavior. When the filter length
was smaller than the temporal spread to be compensated due to modal disper-
sion in the transmission line, the performance was degraded due to inadequate
compensation. In contrast, when the filter length was much larger than the
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Figure 7.11. Constellations of eight spatial modes after demodulation with
fractional-spaced 9/8× oversampling frequency-domain adaptive 8×8 MIMO
filter for reception at 6240 km.

temporal spread to be compensated, it caused excess errors of the filter coef-
ficient due to the adaptive control by SGD with a finite step size [41]. The
optimal filter length was 256 symbols for both filters in this experiment. Since
the fractional 9/8× oversampling frequency-domain adaptive 8×8 MIMO filter
operated in the lower oversampling domain, the FFT size for the input signals
decreased for the same filter length compared to the conventional 2× oversam-
pling frequency-domain adaptive 8×8 MIMO filter. Figure 7.12(b) shows the
same results as a function of the input FFT size in units of sample periods.
The fractional oversampling frequency-domain adaptive filter requires a smaller
FFT size in units of sample periods.

(a) (b)

Figure 7.12. Dependence of pre-FEC BER on (a) the filter length in units of
symbol period and (b) the input FFT size in number of samples. The results
with the conventional 2× oversampling frequency-domain adaptive 8×8 MIMO
filter and with the fractional-spaced 9/8× oversampling frequency-domain adap-
tive 8×8 MIMO filter for reception at 6240 km are plotted.

Convergence of loss

We compared the convergence of the fractional 9/8× oversampling frequency-
domain adaptive 8×8 MIMO filter and the conventional 2× oversampling frequency-
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domain adaptive 8×8 MIMO filter at the transmission distance of 6240 km.
Figure 7.13 shows an example of the convergence of the loss function by the
data-aided LMS algorithm with both filters as a function of time in units of the
symbol period. The filter length was set to 256 symbols. The adaptive filter
coefficient was updated every output signal block, and thus both filters were
updated every 256 symbols. The convergence behaviors of the filters were simi-
lar in terms of the time in units of symbol periods. Therefore, we can conclude
that the two filters have comparable convergence properties.

Figure 7.13. Convergence of loss with conventional 2× oversampling frequency-
domain adaptive 8×8 MIMO filter and with fractional-spaced 9/8× oversam-
pling frequency-domain adaptive 8×8 MIMO filter for reception at 6240 km.
The loss variations were moving-averaged over 100 symbols.

Transmission performance

Finally, we evaluated the transmission performances over C4CFs with the frac-
tional 9/8× oversampling frequency-domain adaptive 8×8 MIMO filter and the
conventional 2× oversampling frequency-domain adaptive 8×8 MIMO filter.
The filter length was again set to 256 symbols. Figure 7.14 shows the pre- and
post-FEC BERs averaged over eight spatial modes for five waveform acquisitions
as a function of the transmission distance in the case with the conventional fil-
ter. The results with no bit errors are plotted at the level of 10−6 for visibility.
Figure 7.15 shows the pre- and post-FEC BERs in the case with the fractional
9/8× oversampling frequency-domain adaptive 8×8 MIMO filter. In the both
cases, all error-free transmissions after FEC for five acquisitions were achieved
up to 7280 km. The transmission performances of the two were similar. There-
fore, we can confirm that the fractional 9/8× oversampling frequency-domain
adaptive 8×8 MIMO filter is feasible for long-haul transmission over C4CFs.

7.4 Summary

We proposed a fractional oversampling frequency-domain adaptive MIMO filter
architecture in which the input signals are at fractional oversampling below 2×
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Figure 7.14. Pre- and post-FEC BER after long-haul transmission over C4CFs
with conventional 2× oversampling frequency-domain adaptive 8×8 MIMO fil-
ter.

Figure 7.15. Pre- and post-FEC BER after long-haul transmission over
C4CFs with fractional-spaced 9/8× oversampling frequency-domain adaptive
8×8 MIMO filter.
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oversampling for long-haul transmission over a coupled MCF. The frequency-
domain sampling rate conversion to 1× sampling is placed after the fractionally
spaced frequency-domain MIMO filter. Stochastic gradient descent and gradient
calculation with back propagation through the sampling rate conversion from
the output signals are used for adaptive control of the filter coefficients to min-
imize the loss function constructed with the output signals at 1× sampling in
the time domain. We evaluated the proposed filter in a long-haul transmission
experiment over a C4CF with 16-channel WDM and 4-core SDM 32-Gbaud
PDM-QPSK signals. The fractional oversampling frequency-domain adaptive
8×8 filter with 9/8× oversampling used for mode demultiplexing provided little
performance penalty after 6240-km transmission compared to the conventional
2× oversampling frequency-domain adaptive 8×8 filter, and the computational
complexity in terms of the required number of complex-valued multiplications
was reduced by 40.7% compared to the even-odd 2× oversampling frequency-
domain adaptive MIMO filter.





Chapter 8

Conclusion and outlook

Efficient and precise impairment compensation for optical fiber communication
systems was investigated. By considering the mutual non-commutativity of
impairments and compensation of them, the adaptive multi-layer filter archi-
tecture, whose filter coefficients were controlled by SGD and back propagation
to minimize the loss function consisting of the last layer outputs, was proposed
and evaluated.

The multi-layer filter architecture consisting of SL and WL filters to com-
pensate for relevant impairments that occur in an optical fiber communication
system including Tx and Rx impairments was proposed in Chapter 3. The
adaptive filter coefficient control algorithm for multi-layer SL and WL FIR fil-
ters with SGD and back propagation was derived. The compensation capability
of the adaptive multi-layer SL&WL filters for IQ skew in both Tx and Rx was
evaluated through simulations with 32-Gbaud PDM-QPSK and an experiment
on 32-Gbaud PDM-64QAM transmission over a 100-km SMF span. The re-
sults showed that they could compensate for IQ skew in both Tx and Rx in the
presence of CD, polarization rotation, and a frequency offset.

The adaptive multi-layer filters compensate the relevant impairments in the
corresponding layers. The monitoring method for individual impairments in a
Tx and Rx including IQ skew, IQ imbalance, and IQ phase deviation on the
basis of the filter coefficients of our adaptive multi-layer SL&WL filter archi-
tecture was proposed in Chapter 4. The impairment monitoring was evaluated
through simulations using 32-Gbaud PDM-QPSK and a 100-km SMF trans-
mission experiment of 32-Gbaud PDM-64QAM. The results indicated that IQ
skew, IQ imbalance, and IQ phase deviation in both Tx and Rx could be indi-
vidually monitored from the corresponding WL filter coefficients precisely and
simultaneously when multiple impairments existed.

The adaptive multi-layer filter architecture was extended by incorporating
nonlinear Volterra filters positioned to compensate for nonlinearity that occurs
in Tx and Rx components under other impairments such as CD in Chapter
5. The performance of the adaptive multi-layer filters including Volterra filter
layers numerically and experimentally in the transmission of a 23 Gbaud PDM-
64QAM signal over one span of a 100-km SMF. The results demonstrated that
the adaptive multi-layer filters including Volterra filter layers could compensate
for the nonlinearity that occurs in both Tx and Rx simultaneously and effectively
when other impairments coexisted.
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In order to mitigate the computational complexity for back propagation of
the multi-layer filters, the configuration, in which the CD compensation filters
are swept before the multi-layer filters and the signal and its complex conjugate
after CD compensation are the augmented inputs of the multi-layer filters, was
proposed. The proposed adaptive ML filters with augmented inputs through
both numerical simulation and inWDM transmission experiments. The results
showed that this adaptive mult-layer filter architecture could compensate Tx
and Rx IQ skew in the ultra-long-haul transmission over the 10,000 km of SMF.
Furthermore, simultaneous and individual Tx and Rx IQ skew monitoring was
also confirmed.

The frequency-domain adaptive filter with fractional oversampling based on
SGD and back propagation of multiple functional layers was proposed for effi-
cient mode demultiplexing in SDM transmission systems with coupled spatial
channels in Chapter 7. Back propagation for the frequency-domain sampling
rate conversion was derived. The fractional oversampling frequency-domain
adaptive filter was evaluated in a long-haul transmission experiment over a
C4CF with 16-channel WDM and 4-core SDM 32-Gbaud PDM-QPSK sig-
nals. The fractional oversampling frequency-domain adaptive 8×8 filter with
9/8× oversampling used for mode demultiplexing provided little performance
penalty after 6240-km transmission compared to the conventional 2× oversam-
pling frequency-domain adaptive 8×8 filter, with the reduced computational
complexity.

In consequence, compensation of impairments for optical fiber communica-
tion systems, especially of Tx and Rx impairments, precisely and efficiently in
terms of the computational complexity was achieved by the adaptive multi-layer
filter architectures designed for a target. Tx and Rx impairments due to device
imperfection are becoming more and more critical for optical fiber communi-
cation systems as they adopt more advanced modulation formats and higher
symbol rates.

This study is also one example of the application of optimization with gradi-
ent descent and back propagation for cascaded multiple functional blocks, which
can be found recently in longitudinal monitoring of an optical fiber communi-
cation systems based on optimization of some cascaded multi-blocks in the Rx
DSP [148, 149], for example. It was shown that the adaptive control by SGD
and back propagation works well by designing each layer in multi-layer filters
by imposing several constraints based on the physical model of an optical fiber
communication system. This study paves a way between the field of optical
communication systems and that of machine learning.

We hope that this study contributes to future optical fiber communication
systems and information processing.



Publication List

Related Journal Papers

1. Manabu Arikawa and Kazunori Hayashi, “Adaptive equalization of trans-
mitter and receiver IQ skew by multi-layer linear and widely linear filters
with deep unfolding,” Opt. Express 28(16), 23478 (2020)1.

2. Manabu Arikawa and Kazunori Hayashi, “Transmitter and receiver im-
pairment monitoring using adaptive multi-layer linear and widely linear
filter coefficients controlled by stochastic gradient descent,” Opt. Express
29(8), 11548 (2021)2.

3. Manabu Arikawa and Kazunori Hayashi, “Adaptive multi-layer filters in-
corporated with Volterra filters for impairment compensation including
transmitter and receiver nonlinearity,” Opt. Express 29(18), 28366 (2021)3.

4. Manabu Arikawa, Masaki Sato, and Kazunori Hayashi, “Compensation
and monitoring of transmitter and receiver impairments in 10,000-km
single-mode fiber transmission by adaptive multi-layer filters with aug-
mented inputs,” Opt. Express 30(12), 20333 (2022)4.

5. Manabu Arikawa, Mingqi Wu, Keisuke Yasuhara, Daishi Masuda, Kazunori
Hayashi, Takanori Inoue, and Yoshihisa Inada, “Long-haul WDM/SDM
transmission over coupled 4-core fibers installed in submarine cable,” J.
Light. Technol. 41(6), 1649 (2023)5.

6. Manabu Arikawa and Kazunori Hayashi, “Frequency-domain adaptive
MIMO filter with fractional oversampling using stochastic gradient de-
scent for long-haul transmission over coupled 4-core fibers,” Opt. Express
31(8), 13104 (2023)6.

Related Peer-Reviewed Conference Proceedings

1. Manabu Arikawa and Kazunori Hayashi, “Adaptive multi-layer filters for
compensating for impairments in transmitters and receivers for SDM trans-

1Chapter 3.
2Chapter 4.
3Chapter 5.
4Chapter 6.
5The concept described in Chapter 6 was applied to SDM transmission in which more IQ

channels are used in the Tx and Rx.
6Chapter 7.

139



140

mission,” ECOC 2022, Tu5.25.

Other Journal Papers as First Author

1. Manabu Arikawa, Kazuhito Honda, Daisuke Akamatsu, Yoshihiko Yokoi,
Keiichirou Akiba, Satoshi Nagatsuka, Akira Furusawa, and Mikio Kozuma,
“Observation of electromagnetically induced transparency for a squeezed
vacuum with the time domain method,” Opt. Express 15(19), 11849
(2007).

2. Manabu Arikawa, Kazuhito Honda, Daisuke Akamatsu, Satoshi Nagat-
suka, Keiichirou Akiba, Akira Furusawa, and Mikio Kozuma, “Quantum
memory of a squeezed vacuum for arbitrary frequency sidebands,” Physi-
cal Review A 81, 021605(R) (2010).

3. Manabu Arikawa, Takeshi Okamoto, Mitsunori Muraki, Daisaku Ogasa-
hara, Emmanuel Le Taillandier de Gabory, Toshiharu Ito, and Kiyoshi
Fukuchi, “Transmission of a 127 Gb/s PM-QPSK signal over a 3350 km
SMF-only line with chromatic dispersion compensation using real-time
DSP,” J. Opt. Commun. Netw. 4(11), B161 (2012).

4. Manabu Arikawa, Toshiharu Ito, Emmanuel Le Taillandier de Gabory,
and Kiyoshi Fukuchi, “Crosstalk reduction with bidirectional signal as-
signment on square lattice structure 16-core fiber over WDM transmission
for gradual upgrade of SMF-based lines,” J. Light. Technol. 34(8), 1908
(2016).

5. Manabu Arikawa and Toshiharu Ito, “Performance of mode diversity re-
ception of a polarization-division-multiplexed signal for free-space opti-
cal communication under atmospheric turbulence,” Opt. Express 26(22),
28263 (2018).

6. Manabu Arikawa, Masaki Sato, and Kazunori Hayashi, “Wide range rate
adaptation of QAM-based probabilistic constellation shaping using a fixed
FEC with blind adaptive equalization,” Opt. Express 28(2), 1300 (2020).

7. Manabu Arikawa, Kohei Nakamura, Kohei Hosokawa, and Kazunori Hayashi,
“Long-haul WDM/SDM transmission over coupled 4-core fiber with cou-
pled 4-core EDFA and its mode dependent loss characteristics estimation,”
J. Light. Technol. 40(6), 1664 (2022).

Other Peer-Reviewed Conference Proceedings as
First Author

1. Manabu Arikawa, Takeshi Okamoto, Emmanuel Le Taillandier de Gabory,
Toshiharu Ito, and Kiyoshi Fukuchi, “WDM transmission of 127 Gb/s
PM-QPSK signal over 3,350 km SMF-only line with chromatic dispersion
compensation using real-time DSP-LSI,” OFC/NFOEC 2012, NTh1l.4.



141

2. Manabu Arikawa, Emmanuel Le Taillandier de Gabory, Toshiharu Ito, and
Kiyoshi Fukuchi, “Improvement of signal quality after long-haul transmis-
sion over multi-core fiber with adaptive MIMO-FDE using time-domain
coefficient selection,” OFC 2014, Th2A.38.

3. Manabu Arikawa, Toshiharu Ito, Emmanuel Le Taillandier de Gabory,
and Kiyoshi Fukuchi, “Crosstalk reduction using bidirectional signal as-
signment over square lattice structure 16-core fiber for gradual upgrade of
SSMF-based lines,” ECOC 2015, Th.1.2.3.

4. Manabu Arikawa, Takashi Ishikawa, Kohei Hosokawa, Seigo Takahashi,
Yoshimasa Ono, and Toshiharu Ito, “Demonstration of turbulence-tolerant
free-space optical communication receiver using few-mode-fiber coupling
and digital combining,” IEEE Photonics Society Summer Topicals Meet-
ing Series 2016, TuC3.4.

5. Manabu Arikawa, Takashi Ishikawa, Kohei Hosokawa, Seigo Takahashi,
Yoshimasa Ono, and Toshiharu Ito, “Mitigation of fading caused by at-
mospheric turbulence with FMF coupling and maximum ratio combining
used in 320-m free-space optical transmission of 10 Gb/s BPSK,” ECOC
2016, Th.2.P2.SC5.15.

6. Manabu Arikawa, Yoshimasa Ono, and Toshiharu Ito, “Evaluation of blind
diversity combining of severely faded signals for high-speed free-space opti-
cal communication under atmospheric turbulence,” ECOC 2017, Tu.2.E.5.

7. Manabu Arikawa, Yoshimasa Ono, and Toshiharu Ito, “Mode diversity
coherent receiver with few-mode fiber-coupling for high-speed free-space
optical communication under atmospheric turbulence,” Free-Space Laser
Communication and Atmospheric Propagation XXX (Photonics West 2018),
1052412.

8. Manabu Arikawa, “Application of optical fiber communication technolo-
gies to free-space optical communications under atmospheric turbulence,”
OSA Advanced Photonics Congress 2020 (Networks), NeM4B.2.

9. Manabu Arikawa and Hidemi Noguchi, “Fast convergence by machine
learning optimizer for adaptive MIMO equalizer used in SDM transmission
over coupled-core 4-core fiber and 4-core EDFA,” ECOC 2020, Mo2E-6.

10. Manabu Arikawa, Kohei Hosokawa, and Kazunori Hayashi, “Long-haul
WDM/SDM transmission over coupled 4-core fiber with coupled 4-core
EDFA and its MDL characteristics estimation,” OFC 2021, W7D.2.

11. Manabu Arikawa, “Long-haul transmission over coupled MCF with cou-
pled core EDFA,” OECC 2022, TuB2-4.





Bibliography

[1] K. Kikuchi, “Fundamentals of coherent optical fiber communications,” J.
Light. Technol. 34(1), 157 (2016).

[2] H. Sun et al., “Real-time measurements of a 40 Gb/s coherent system,”
Opt. Express 16(2), 873 (2008).

[3] E. Yamazaki et al., “Fast optical channel recovery in field demonstration
of 100-Gbit/s Ethernet over OTN using real-time DSP,” Opt. Express
19(14), 13179 (2011).

[4] F. Derr et al., “Coherent optical QPSK intradyne system: Concept and
digital receiver realization,” J. Light. Technol. 10(9), 1290 (1992).

[5] S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express
16(2), 804 (2008).

[6] Y. Han and G. Li, “Coherent optical communication using polarization
multiple-input-multiple-output,” Opt. Express 13(19), 7527 (2005).

[7] E. Ip and J. M. Kahn, “Compensation of dispersion and nonlinear im-
pairments using digital backpropagation,” J. Light. Technol. 26(20), 3416
(2008).

[8] I. Fatadin et al., “Compensation of quadrature imbalance in an opti-
calQPSK coherent receiver,” IEEE Photon. Technol. Lett. 20(20), 1733
(2008).

[9] R. Rios-Müller et al., “Blind receiver skew compensation and estimation
for long-haul non-dispersion managed systems using adaptive equalizer,”
J. Light. Technol. 33(7), 1315 (2015).

[10] H.-C. Chien et al., “Single-carrier 400G PM-256QAM generation at 34
GBaud trading off bandwidth constraints and coding overheads,” OFC
(2017). W1J.3.

[11] F. Buchali et al., “Rate adaptation and reach increase by probabilisti-
cally shaped 64-QAM: An experimental demonstration,” J. Light. Tech-
nol. 34(7), 1599 (2016).

[12] X. Chen et al., “16384-QAM transmission at 10 GBd over 25-km SSMF us-
ing polarization-multiplexed probabilistic constellation shaping,” ECOC
(2019). PD3.3.

143



144

[13] K. Schuh et al., “Single carrier 1.2 Tbit/s transmission over 300 km with
PM-64QAM at 100 Gbaud,” OFC (2017). Th5B.5.

[14] M. Nakamura et al., “Over 2-Tb/s net bitrate single-carrier transmission
based on >130-Ghz-bandwidth InP-DHBT baseband amplifier module,”
ECOC (2022). Th3C.1.

[15] H. Mardoyan et al., “First 260-GBd single-carrier coherent transmission
over 100 km distance based on novel arbitrary waveform generator and
thin-film lithium niobate I/Q modulator,” ECOC (2022). Th3C.2.

[16] K. Ishihara et al., “Frequency-domain equalisation without gurd interval
for optical transmission systems,” Electron. Lett. 44(25), 1480 (2008).

[17] L. B. Du and A. J. Lowery, “Improved single channel backpropagation for
intra-channel fiber nonlinearity compensation in long-haul optical com-
munication systems,” Opt. Express 18(16), 17075 (2010).

[18] L. Li et al., “Implementation efficient nonlinear equalizer based on corre-
lated digital backpropagation,” OFC (2011). OWW3.

[19] D. Rafique et al., “Compensation of intra-channel nonlinear fibre impair-
ments using simplified digital back-propagation algorithm,” Opt. Express
19(10), 9453 (2011).

[20] E. Ip and J. M. Kahn, “Digital equalization of chromatic dispersion and
polarization mode dispersion,” J. Light. Technol. 25(8), 2033 (2007).

[21] C. R. S. Fludger et al., “Coherent equalization and POLMUX-RZ-DQPSK
for robust 100-GE transmission,” J. Light. Technol. 26(1), 64 (2008).

[22] D. N. Godard, “Self-recovering equalization and carrier tracking in two-
dimensional data communication systems,” IEEE Trans. on Commun.
COM-28(11), 1867 (1980).

[23] D.-S. Ly-Gagnon et al., “Coherent detection of optical quadrature phase-
shift keying signals with carrier phase estimation,” J. Light. Technol.
24(1), 12 (2006).

[24] A. Leven et al., “Frequency estimation in intradyne reception,” IEEE
Photon. Technol. Lett. 19(6), 366 (2007).

[25] Y. LeCun et al., “Deep learning,” Nature 521, 436 (2015).

[26] T. Tanimura et al., “Convolutional neural network-based optical per-
formance monitoring for optical transport networks,” J. Opt. Commun.
Netw. 11(1), A52 (2019).

[27] D. Zibar et al., “Machine learning-based Raman amplifier design,” OFC
(2019). M1J.1.

[28] B. Karanov et al., “End-to-end deep learning of optical fiber communica-
tions,” J. Light. Technol. 36(20), 4843 (2018).



145

[29] S. Gaiarin et al., “End-to-end optimization of coherent optical communi-
cations over the split-step Fourier method guided by the nonlinear Fourier
transform theory,” J. Light. Technol. 39(2), 418 (2021).
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