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Preface

Traditional network functions (NFs) are coupled with dedicated hardware,
which is inflexible for scaling on demand and costly for updating. The idle re-
sources on each dedicated hardware in a traditional network cannot be shared
and increase the cost of deployment and maintenance, which is inconsistent
with achieving the sustainable development goals (SDGs). Network function
virtualization (NFV) introduced by the European telecommunications stan-
dards institute (ETSI) decouples the functions from specialized hardware. The
functions are virtualized to virtual network functions (VNFs) and can form a
service function chain (SFC) in a specific order to provide customized service.
End users avoid the expense of replacing a multitude of dedicated machines
in each room to update their systems. Computational resources provided by
universal hardware can be shared among different NFs flexibly.

With the increase in the amount and complexity of NFs, manual deploy-
ment and management is becoming overwhelming. Automated deployment
and management are imperative and can respond to user requirements in a
timely manner. A well-designed resource allocation model cooperated with
the NFV orchestration (NFVO) engine (e.g. Kubernetes) for VNFs can im-
prove the network performance in terms of different objectives. Among them,
ensuring fault-tolerance of the NFs and mitigating the impact of hardware and
software failures and unavailabilities on the quality of service (QoS) are the
issues to be explored in this thesis. This thesis studies five different alloca-
tion problems for different levels of known information about the failures with
different practices of their implementations on an NFVO platform.

Firstly, this thesis proposes an optimization model to derive the VNF allo-
cation of time slots in sequence aiming to maximize the continuous available
time of SFCs in a network, which suppresses service interruptions created by
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the node unavailability and the reallocation of VNFs. This work computes
VNF allocation in a series of time slots based on a node availability schedule,
which provides information on the availability of each node in each time slot.
This work formulates the proposed model as an integer linear programming
(ILP) problem with the goal of maximizing the minimum number of longest
continuous available time slots in each SFC. This work proves that the decision
version of the VNF allocation problem (VNFA) is NP-complete. As the size
of ILP problem increases, the problem is difficult to solve in a practical time.
This work develops a heuristic algorithm to solve the VNFA problem. Nu-
merical results show that the proposed model improves the continuous avail-
able time of SFCs compared with existing models, which partially consider
node unavailability or VNF reallocation. The proposed model together with a
consideration of routing reduces the path length of requests. The introduced
heuristic algorithm is faster than the ILP approach with a limited performance
penalty.

Secondly, this thesis proposes a primary and backup VNF placement model
to avoid service interruptions caused by node unavailability by using backup
functions. The considered backup functions have a period of startup time
for preparation before they can be used and the number of them is limited.
The proposed model is formulated as an ILP problem to place the primary
and backup VNFs based on the availability schedule at continuous time slots.
This work aims to maximize the minimum number of continuously available
time slots in all SFCs over the deterministic availability schedule. The pro-
posed model considering the limited number of backup functions outperforms
baseline models in terms of the minimum number of longest continuous avail-
able time slots in all SFCs. This work introduces an algorithm to estimate the
number of key unavailabilities at each time slot, which can find the unavailable
nodes which are the bottlenecks to increase the service continuous available
time at each time slot.

Thirdly, this thesis proposes a robust optimization model to allocate VNFs
in SFCs for time slots in sequence aiming to maximize the continuous available
time of SFCs in a network with uncertain availability schedules by suppressing
the interruptions caused by node unavailability marked in availability schedule
and function reallocation. This work formulates the model as an ILP problem
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over the given uncertainty set of the start time slot and period of unavail-
ability on each node in the availability schedule. For solving the model in a
practical time in a relative large size of network, this work develops a heuristic
algorithm. The numerical results show that the proposed model outperforms
the baseline models under different levels of robustness in terms of the worst-
case minimum number of the longest continuous available time slot in each
SFC. The heuristic algorithm reduces the computation time with limited per-
formance loss compared with the ILP approach. In the discussion, this work
introduces a constraint condition for the maintenance ability, which reduces
the size of uncertainty set, and an extension for supporting more than one
unavailability periods in the availability schedule on each node.

Fourthly, this thesis proposes an optimization model to derive a resilient
virtual network function allocation in service function chains aiming to reduce
the end-to-end (E2E) latency during the migrations from the primary func-
tions to backup functions. The model considers k-fault tolerance assurance and
the satisfactions of service requirements under different error patterns in this
model. The allocation provided by the proposed model ensures that the pro-
cessing ability satisfies the requirements even though there are k failed nodes
in the network. Diversity splits a single VNF into a pool of replicas with
different specifications. The diversity of both primary and backup functions
is considered. Redundancy is used for recovering the failed functions. This
work formulates the proposed model as a mixed integer linear programming
problem to select suitable replicas from the pools of replicas and decide the
allocations of these replicas for both primary and backup functions. The ob-
jective of the proposed model is to minimize the sum of the maximum E2E
latencies among functions under all possible failure patterns which have k node
failures. The numerical results show that the proposed model reduces the E2E
latency between the pair of primary and backup VNFs while ensuring the re-
siliency of the functions compared with baseline models in the examined cases.
Two approximate approaches are developed to reduce the computation time
of solving the proposed model with a limited performance penalty. This work
derives theorems to give the bounds of maximum resiliency in the proposed
model.

Fifthly, this thesis proposes VNF allocation aiming to maximize the num-
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ber of accepted requests with considering VNF diversity and ensuring the re-
quirements of node fault tolerances in a dynamic scenario, where the requests
have random requirements, arriving and releasing time. The model considers
fault tolerance assurance and satisfies the service requirements under different
error patterns. The allocation provided by the proposed model ensures the
required amount of processing ability in the situation that there are several
failed nodes. The node fault tolerance can be set variously for different re-
quirements of services. The proposed model selects and instantiates suitable
replicas from the pools of replicas, and then determines the locations of these
replicas instances. This work develops a reinforcement learning approach for
solving the proposed model including the design of the learning environment
and the reward shaping. The numerical results show that the proposed model
increases the number of accepted requests with ensuring the resiliency of the
functions compared with baseline models in the examined cases, where the
allocation of a request can be determined in tens of milliseconds.

Sixthly, this thesis demonstrates the implementations of resource alloca-
tion models in Kubernetes in two ways. Kubernetes is an open-source system
for automating deployment, scaling, and management of containerized appli-
cations and used in various companies. Firstly, this work implements function
scheduler plugins cooperating with multiple reliable function allocation mod-
els in Kubernetes. Demonstration validates that the plugins allocate functions
by using the allocation results obtained by the model automatically and run
service functions correctly. Secondly, this work designs and implements a cus-
tom resource and the corresponding controller in Kubernetes to manage the
resource allocation model which consider the VNF diversity and redundancy
jointly. The controller selects suitable replicas from a pool of replica templates
to satisfy the required processing ability with the minimum required number of
replicas and converts the backup functions to the primary functions when the
primary functions cannot provide the required ability. Demonstration validates
that the controller automatically manages the resources correctly, improves the
resource utilization, and increases the number of acceptable requests.

Seventhly, this thesis demonstrates the implementations of SFC cooperated
with SFC allocation models in two ways. Firstly, this work implements a
network service header based service function chain application which can
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be cooperated with the model. Demonstration validates that the application
allocates functions by using the allocation from the model automatically and
runs service function chains correctly. Secondly, this work implements an open
virtual network based SFC-compatible network plugin for Kubernetes. This
work implements two controllers for creating SFCs among existing functions
and SFC deployments without existing functions which can be cooperated with
allocation models. The plugin allocates the functions in chains according to
the given models and connects each function in chains by setting suitable flow
entries in Kubernetes.

This thesis is organized as follows. Chapter 1 introduces the background of
fault-resilient resource allocation in NFV. Chapter 2 investigates the related
works in literature. Chapter 3 presents the resource allocation model consid-
ering the deterministic available schedule. Chapter 4 presents the resource
allocation model for primary and backup VNFs under the deterministic avail-
able schedule. Chapter 5 presents the robust resource allocation model consid-
ering the uncertain available schedule. Chapter 6 presents the fault-tolerant
resource allocation model for static service requirements considering VNF di-
versity and redundancy jointly. Chapter 7 presents the fault-tolerant resource
allocation model for dynamic service requirements by using the reinforcement
learning approach. Chapter 8 presents the implementations of resource allo-
cation models and SFCs in Kuberenetes. Finally, Chapter 9 concludes this
thesis.
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Chapter 1

Introduction

1.1 Network function virtualization

1.1.1 Definition

Network functions are provided by specialized hardware devices in traditional
networks, which tend to make deploying new functions, services, and manag-
ing policies difficult and costly [1, 2]. In order to solve this problem, network
function virtualization (NFV) has been introduced [3], which decouples the
hardware from the functions. NFV enables virtual network functions (VNFs)
to run on virtual machines (VMs) or containers, which provides more flexible
services to users [4] and lowers the costs for Internet service providers. When a
user requests a service, a service function chain (SFC) is generated to connect
the user with the service provider (SP) servers that realize the desired func-
tions. An SFC consists of several VNFs in a specific order that constitutes a
service [5]. The flexible placement of VNFs is one of the advantages of NFV.
In addition to the ability to rapidly add new network functions, this flexibility
can improve network performance.

1.1.2 Function deployment

Modern Web services are implemented by the applications deployed in the
servers. There are mainly three deployment types as shown in Figure 1.1.
Traditionally, the function are directly deployed on physical servers, which en-
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Traditional deployment(a) Traditional deployment.
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Virtualized deployment(b) Virtualized deployment.
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Container
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APP
Bin/Lib

Container

Container deployment
(c) Container deployment.

Figure 1.1: Three function deployment types.

ables complete resource isolation at the hardware level and owns proprietary
resources to ensure quality of service (QoS). At the same time, the traditional
deployment method also brings some disadvantages. Network functions are
deeply bound to the equipment vendors, which bring high costs. The tra-
ditional network functions are executed in private operating systems, whose
configurations are not uniform and difficult to maintain. The network func-
tion processing ability cannot be increased flexibly with the increase of their
workloads. It is difficult to scale their capacities. The update cycles for ex-
isting functions and development period for new functions takes long. To
overcome the above disadvantages of the traditional deployment, virtualized
deployment is introduced. Multiple virtual machines (VMs) are run on a sin-
gle physical server. Each VM is a full machine running all the components.
Applications run in VMs. Virtualized deployment separates network functions
from dedicated hardware, saving potential operation expenses. Virtualized de-
ployment allows network operators to build and deploy customized SFCs from
sets of interconnected VNFs and supports automating the dynamic scaling of
network functions. Along with the above advantages, virtualized deployment
brings some challenges. The boot time of VM is long. There are additional
overheads caused by Hypervisor and Guest OS. The VNF is implemented as
a code monolith, whose development, testing, maintenance, deployment and
troubleshooting must treat the VNF as a single element. The state of the art
deployment evolves VMs to containers. Containers are similar to VMs, but
lightweight. Functions are partitioned into smaller units which are called mi-
croservices. A group of smaller, interconnected microservices replaces a single
function. Containers house microservices and managed by a platform unitedly.
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1.2 Network function management and orches-
tration

1.2.1 Definition

NFV brings a series of new concepts including VNF, virtual links, physical net-
work functions, NFV infrastructure (NFVI). For dealing with the relationships
among them, a new management and orchestration framework is required,
which is called network functions virtualization management and orchestra-
tion (NFV-MANO) architectural framework [6].

In terms of the MANO of VNFs, not only the traditional functionalities,
e.g., fault management, configuration management, accounting management,
performance management, and security management, but also some new func-
tionalities for lifecycle management are required. The MANO of VNFs need
to take responsibility for VNF initiation, scaling, updating, and terminating.
The MANO monitors and allocates the virtulized resources for VNFs.

1.2.2 Platforms

There are two common function orchestration platforms for managing network
functions and services.

OpenStack [7]:

OpenStack is an open source cloud computing management platform project,
which provides scalable and elastic cloud computing services for private and
public clouds. OpenStack covers all aspects of networking, virtualization, op-
erating systems, servers, etc.. The orchestration is provided by Heat [8], which
provides a collaborative deployment approach defined by templates to auto-
mate the deployment of cloud infrastructure software operating environments
including computing, storage, and network resources.

Kubernetes [9]:

Kubernetes is an open-source system for automating deployment, scaling, and
management of containerized applications and used in various companies. A
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Pod is the smallest deployable unit of computing that we can create and man-
age in Kubernetes. The allocations of Pods are decided by the schedulers in
Kubernetes, which are implemented by a set of plugin application program-
ming interfaces (APIs) belonging to a pluggable architecture called scheduling
framework.

1.3 Reliability issues caused by failures in NFV

Reliability is an aspect to evaluate the quality of service (QoS) in the network.
VNF is expected to fail more often compared to the traditional hardware net-
work middlebox which passes the sticky testing and validation process, while
the VNF is a softwarized function that is likely buggy [10]. The services in the
NFV environment are prone to the failures of not only the hardware of servers
but also the software of VNFs. The failures will interrupt the services and
influence reliability. It is necessary to enhance network reliability and improve
the recovery ability of services. In traditional networks, it is common to add
a group redundancy middleboxes for ensuring the recover ability of hardware
middleboxes. The redundancy hardware keeps standby mode while there is no
failure, which results in a considerable cost. In traditional networks, software
and hardware are integrated in network equipment. It has been fully tested
by the manufacturer. However, in NFV environments, generic hardware is
adapted to different software to implement different VNFs, which introduces
more complex errors. On the other hand, the compatibility of software and
hardware needs to be tested and ensured by SPs, which increases the possibili-
ties of errors compared with the specific hardware. In NFV environments, the
types of failures increase and the causes become diverse compared with tra-
ditional networks. SPs need a dedicated mechanism to ensure high reliability
with relatively low costs, such as resource consumption, overhead, and delay.

1.4 Problem statements

This thesis studies six specific problems about fault-resilience resource alloca-
tion in network virtualization.
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1.4.1 Resource allocation under deterministic failures

The unavailability of a node, which can be caused by maintenance or failures,
interrupts the SFCs that use the VNFs running on the node, so a VNF alloca-
tion model that prevents service interruptions is required. Conventional studies
presented several allocation models to offset the effect of unavailability. Ser-
vice providers (SPs) can use backup resources to protect network services [11],
or remap the failed VNFs to offset the effect [12].

Regular maintenance and system update are often performed by SPs. SPs
can mark specific nodes as being unavailable at a specific time for scheduled
maintenance. By using the maintenance schedule, SPs can suppress service
interruptions as well as know where and when service interruptions occur and
control the positions and time of service interruptions.

The maintenance schedules identify unavailable nodes at each time slot in
advance. This work refers to the information that presents the availability
of each node at each time slot in future as the availability schedule hereafter.
The duration of a time slot can be determined according to conditions of
network operation, such as the interval of data sampling for fault detection.
The number of uninterrupted time slots can be a metric that expresses the
service quality of SFCs.

An availability schedule has the position and time of each node availability.
Allocations based on the availability schedule can minimize service interrup-
tions. However, no study has addressed an allocation model that uses avail-
ability schedules of nodes to prevent network services from being interrupted.
This thesis studies this problem in Chapter 3.

1.4.2 Backup resource allocation under deterministic fail-
ures

Cold backup only marks each location of backup function at the beginning of
the system configuration [13]. A backup function becomes active and starts to
consume the computational resource when the corresponding primary function
becomes unavailable. The advantage of cold backup is that it does not consume
the computational resource of the backup function before it becomes active.
The disadvantage is that it needs time to startup and synchronize the state
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information for backup and generates an interruption. When a VM monitoring
function which checks the status of every VM periodically detects VM failures,
the latest snapshots of each VM are used to re-establish the failed VMs in the
corresponding backup resources in physical machines [14].

Hot backup keeps an online backup function which synchronizes with the
corresponding primary function. It can achieve faster recovery than cold
backup, but requires the extra computational and memory resources in the
system. Hot backup for service composition in a network is applied in [15].
According to the availability and current state of service composition before
the services are interrupted, it restores the service composition dynamically.
Hot backup can avoid service interruptions at the cost of extra resource con-
sumption for backup functions.

This work considers hot backup. A backup function needs to be prepared
for a period before it is implemented. This period is called recovery time. If
backup functions are placed and are activated within suitable time slots for
preparation instead of all the time slots from the beginning, the interruptions
can be suppressed. The extra resource consumption for backup functions can
be reduced since we do not need to backup functions from the beginning time
slot.

The models introduced in Chapter 3 provided VNF allocation models to
suppress the interruptions from the allocations on unavailable nodes and the
reallocations. However, it is a passive way to avoid assigning to unavailable
nodes and has a limitation decided by the availability schedules. If the model
also places backup functions in addition to placing primary functions, the
continuous available time slots of SFCs can be extended. This thesis studies
this problem in Chapter 4.

1.4.3 Resource allocation under uncertain failures

An availability schedule has the positions and time of node availability. Allo-
cations based on the availability schedule can minimize service interruptions.
The works in Chapter 3 and Chapter 4 introduce optimization models to ob-
tain the VNF allocation that maximizes the continuous available time of the
SFCs by avoiding service interruptions caused by different VNF allocations
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between adjacent time slots [16,17] and VNF allocations to unavailable nodes
under a given availability schedule.

However, in most cases, users cannot know an exact availability schedule
whose positions and time of unavailabilities are all deterministic. The actual
availability schedule may have some gaps with the maintenance schedule. The
starting time of maintenance may be delayed due to the delay of preamble
maintenance. The scheduled duration of maintenance may be longer than the
real one since conservative estimates are used. The scheduled duration of main-
tenance may be shorter than the real one since the occurrence of unexpected
failures. As a result, availability schedule may mark an availability as unavail-
ability, and vice versa, which influences the VNF allocation. When the results
of the maintenance schedule are not credible, we need a model to obtain the
VNF allocation with uncertain availability schedules. This work incorporates
the uncertainty in the model with deterministic availability schedules in order
to make it robust against uncertain availability schedules. This thesis studies
this problem in Chapter 5.

1.4.4 Fault-tolerant resource allocation considering func-
tion diversity and redundancy

Redundancy is a technique to improve reliability by allocating backup instances
that replace unavailable ones, which is naturally resource-consuming. The ex-
isting researches on VNF protection tend to provide excessive backup instances
for covering improbable scenarios [18]. The work in [10] overcame the above
shortcoming by introducing a joint selective VNF diversity and tailored VNF
redundancy mechanism to achieve resilient SFC. VNF diversity introduced in
[19] uses a group of thin VNF instances with weak processing ability and low
resource requirement to replace a single VNF instance, i.e., parallel processing
to achieve the same VNF and processing capabilities. We call a thin VNF in
the group a replica. Different replicas may have different properties and may
use different images with different settings for deployments. Lower resource
consumption is a feature of thin VNFs and achieved by modifying the func-
tions. Even the same function can have different images depending on their
internal parameter settings. VNF diversity can be used to completely prevent

7



Chapter 1

service interruptions to occur. Even some replicas in the group fail, the re-
maining replicas can perform the function at a lower processing ability. VNF
diversity consumes extra resources on load balancers and overheads.

However, the current researches on VNF allocation models consider the
VNF diversity and redundancy separately regardless of the end-to-end (E2E)
latency which is required to perform the migration from the failed primary
functions to backup functions. In case of failure of a stateful function, the
current state information of primary and the backup functions need to be syn-
chronized to ensure the sustainability of the service and avoid interruptions.
If the synchronization consumes too much time, it can lead to long service
interruptions. Reducing the end-to-end communication delay between the pri-
mary and backup functions is a key part of reducing the synchronization time
consumption. If the replicas in the groups are applied to the redundancy, the
protection becomes more flexible than that without using them. If the VNF
diversity and redundancy are not considered jointly with an objective to reduce
the E2E latency during migration, the users’ experience will be degraded due
to untimely fault recovery since the backup replicas are separately allocated.
A question arises: how can we determine the allocation of VNFs consider-
ing redundancy and diversity with E2E latency during migrations when node
failures occur? This thesis studies this problem in Chapter 6.

1.4.5 Fault-tolerant resource allocation for dynamic user
requirements

Resilience is a key performance indicator for SPs, which is the ability of the
network to provide and maintain an acceptable availability level of service in
the presence of failures and challenges to normal operation defined in [20].
Functions are decoupled from specialized hardware so that multiple network
functions can run on the same commodity server [3]; services are deployed with
a set of VNFs. The virtualization makes the services more prone to the failures
of not only the physical hardware but also the software of VNFs. The failures
interrupt the services and degrade the users’ experience.

VNF reliability against failures is widely concerned; fault tolerance pro-
vides a metric to evaluate the ability to withstand failures. The work in [21]
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introduced fault-tolerance level in the placement of virtual machines. If the
placement is set to :-fault-tolerance, the minimum configurations survive at
any : host server failures. Fault tolerance in software-based network functions
was also considered in [22] to ensure the scalability and availability of network
functions and function chains.

VNF instances (VNFIs) with the same function may have different proper-
ties against different requirements. The work in [19] introduced VNF diversity
which uses a group of VNF instances to replace a single VNF instance. Each
VNF instance is termed a replica in this paper. Replicas with different resource
requirements can utilize the computation resources more efficiently. Even any
replica in the group fails, the VNF can maintain a part of processing abil-
ity at the cost of performance degradation instead of totally crashing. The
application of VNF diversity can increase the feasibility and reliability of func-
tion allocation. The work in Chapter 6 introduced an allocation model with
considering VNF diversity in order to reduce the recovery time.

SPs provide network services to their users. A service can be a collection
of unordered VNFs or a service function chain. A request of service contains
several VNFs with each required processing ability. In the dynamic scenarios
of arrivals of requested functions and releases of existing functions, a real-time
VNF allocation is required to be considered with limited computation time.
However, Chapter 6 and the past researches [10] only considered the static
VNF diversity and fault tolerance without dynamically arriving requests. The
acceptance of dynamic requests should be considered; a request can be accepted
when each function in the request can be assigned with sufficient processing
ability. As well, the past researches aimed to achieve a fixed fault tolerance,
which may lead to no feasible solution due to limited capacity. A question
arises: how to perform VNF allocation with considering VNF diversity and
dynamic arrival requests, aiming to maximize the acceptance ratio of requests
with satisfying the requirements of corresponding resiliency levels?

Some VNF placement optimization problems are proved to be NP-hard [23].
The optimal solutions of the problems are usually obtained with the mixed inte-
ger linear programming approach, which leads to intolerably long computation
time for a practical larger-size problem. Heuristic algorithms have been intro-
duced to solve the problems in a practical time as the problem size increases
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[24–28]. Nonetheless, these heuristic algorithms for solving VNF allocation
problems still have some challenges. For example, it requires each indepen-
dent computation with each arrival request, which is hard to be realized for
dynamic requests. Further, it is difficult to capture and handle the charac-
teristics in dynamically arriving requests for these heuristic algorithms. The
arriving time, leaving time, arriving orders, required VNFs, and processing
abilities of requests are not known in advance, so the heuristic algorithms are
difficult to reserve enough resources for the future replica instances.

Reinforcement learning (RL) trains an intelligent agent to learn the policy
of choosing an action from the interaction between the agent and the environ-
ment based on the Markov decision process (MDP) and maximize the potential
rewards. General RL is not efficient in terms of dealing with a large size of
state space. Deep reinforcement learning (DRL) combines deep learning with
reinforcement learning to overcome the shortage by using deep neural networks
(DNNs). DRL has been used in solving the VNF placement problem [29–31],
which showed better results compared with those obtained by the greedy and
random approaches. Another question arises: how to apply RL to the problem
that considers specific aspects, including the dynamic requests, VNF diversity,
and :-fault-tolerance? This thesis studies these two problems in Chapter 7.

1.4.6 Implementations of SFCs and resource allocation
models

Service functions are widely deployed and used in many networks. Service
function chain (SFC) is an ordered set of service functions, which directs the
service traffic through these functions in order [5]. In network virtualization,
virtual network functions (VNFs) are deployed on physical machines to act as
these service functions.

A VNF allocation model is designed to obtain a possible allocation strategy
for VNFs in SFCs. Performances of allocation models in Chapters 3–7 need to
be evaluated in the network with different parameters of network elements in
addition to the mathematical results. It is not cost effective and convenient to
perform the evaluation with real network devices. One possible solution is to
simulate the whole process for testing the VNF allocation models by software

10
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Static requirement

Predictable failures/

scheduled maintenance
Unpredictable

/burst failure

Backup
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Implementation

Model Implementation

SFC Implementation
Chapter 8

Chapter 2: related works

Chapter 1: background and problem statement

Fault-resilient resource allocation in network function virtualization

Chapter 9: conclusions and future works

Figure 1.2: Chapter overview.

on a single computer. Computational capability required for such a software
should not be so high so that the simulation can run at a low-end computer,
such as a laptop. The result of the model is obtained by a mathematical
programming approach or a heuristic algorithm. Both of them can run by
writing a programming language such as Python. The functions in SFCs need
to be allocated according to the computed result in a single application. Two
questions arise: How to implement the SFCs in real network environments?
How to allocate the resources in real networks according to the results provided
by the allocation models? This thesis studies these two problems in Chapter 8.

1.5 Overview and contributions of this thesis

Figure 1.2 shows the chapter overview of this thesis. Chapter 1 introduces
the background and the problem statements of this thesis. Chapter 2 surveys
the related works in literature. Figure 1.3 shows the relationships among the
Chapters 3-8 in terms of the research topics. This thesis discusses the resource
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• The availability of each node at each time slot is 
completely known in advance.Deterministic

• The node unavailability occurs within a 
range of time slots, but the exact time slot 
is not given.

Uncertain

• Any information about 
availability is unknown.Unknown

Levels of known information about node availability

Maximize continuous 
service availability.

• Primary: Chapter 3

• Backup: Chapters 4

Maximize worst-case 
continuous service availability.

Chapter 5

K fault-tolerance
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• Minimize migration time for 
static requests: Chapter 6
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dynamic requests: Chapter 7
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SFC implementations in Chapter 8:

• Based on SDN and NSH (RFC8300) in Ryu controller 

• Based on OVN in Kubernetes
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• Controller based

• Scheduler based

Theory

Practice

Figure 1.3: Relationships among research topics in Chapters 3-8.
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allocation based on three different levels of the known information about the
node availability. A deterministic node availability in Fig. 1.3 indicates the
time and object of the node unavailable are completely known in advance,
e.g., predictable failures and scheduled maintenance in Fig. 1.2. An uncertain
node availability in Fig. 1.3 indicates the time and object of the node unavail-
able cannot be obtained in advance exactly and only the ranges of them are
given, e.g., partially predictable failures and maintenance in Fig. 1.2. An un-
known node availability in Fig. 1.3 indicates the time and object of the node
unavailable are completely unknown in advance, e.g., the unpredictable and
burst failures in Fig. 1.2. The commonness of the above three types increases
gradually. For solving the resource allocation problems under different levels
of node availability information, this thesis considers different aspects in mod-
elings and algorithm designs as well as the implementations of the proposed
models. The detail of each Chapter is described as follows.

Chapter 3 proposes an optimization model to obtain the VNF allocation
that maximizes the continuous available time of SFCs in a network by avoiding
service interruptions. This work assumes that service interruptions have two
causes: different VNF allocations between adjacent time slots [17] and VNF al-
locations to unavailable VMs. This work assumes that network VMs follow the
availability schedules precisely. Note that methods to create precise or efficient
availability schedules are out of the scope of this paper. For each SFC, this
work improves the quality of experience by providing a longer period of stable
service. This work defines service continuous available time (SCAT) as the
largest number of continuous uninterrupted available time slots for this SFC.
For a network containing several SFCs, this work uses the worst-performing
service to represent the performance of the network. This work takes the short-
est SCAT (SSCAT) among all SFCs in this network as the evaluation metric.
The larger SSCAT is, the longer is the available time of the network. This
work formulates the model as an integer linear programming (ILP) problem.
This work sets the objective function to maximize SSCAT in the network.
This work proves the decision version of the VNF allocation problem in the
proposed model is NP-complete. This work introduces a heuristic algorithm
to solve the proposed model in practical time. Numerical results show that
the proposed model provides larger SSCAT values than three existing models.
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The position and time of each VM availability in availability schedules influ-
ence SSCAT values. Determining routes and VNF allocation simultaneously
with the proposed model can identify paths with shorter lengths compared
with those determined by processing routes and allocating VNFs separately.
The developed heuristic algorithm reduces the computation time compared
with the ILP approach with a limited penalty on objective value compared
with the ILP-based approach.

Chapter 4 proposes an optimization model to place the primary and backup
VNFs in SFCs on nodes based on the model in Chapter 3, which aims to
maximize SSCAT in the network under a given availability schedule against
service interruptions. Linear SFCs are considered in this paper. This work
formulates the problem to maximize SSCAT over the given availability schedule
as an ILP problem. This work analyzes the proposed model and derive the
upper bound of SSCAT provided by the proposed model. This work provides a
heuristic algorithm; the problem becomes more difficult to solve in a practical
time as the size of the problem increases. Numerical results compare the
proposed model by using the ILP approach with four baseline models. This
work also compares the results obtained by the heuristic algorithm and the ILP
approach. This work gives an algorithm to estimate the number of bottlenecks
of unavailable nodes at different time slots. The proposed model using the
backup strategy introduced in this work improves SSCAT compared with the
model without using backup functions in examined cases.

Chapter 5 proposes a robust optimization model to obtain the VNF allo-
cation that maximizes SSCAT in the network under an uncertain availability
schedule based on the model in Chapter 3. This work considers the uncertain
start time slot and period of unavailability on each node in availability sched-
ules. The uncertainty set of availability schedule is given. The robustness of
the solution can be controlled. The proposed model obtains the solution by
traversing and comparing all possible choices in the uncertainty set limited by
the given robustness. This work formulates the problem to maximize SSCAT
over the given uncertainty set as an ILP problem, which provides different
levels of robustness against uncertain availability schedule. The model han-
dles the uncertainty set and provides an exact solution under the worst-case
condition. Numerical results compare the proposed model with three baseline
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models. In addition, this work provides a heuristic algorithm to speed up the
computation process and introduce an extension for supporting parallelization
acceleration. Compared with the existing researches [32–34], the proposed
model provides an exact solution of the problem under the uncertainty set.

Chapter 6 proposes a VNF allocation model, which minimizes the sum of
the maximum E2E latencies among functions under all possible failure pat-
terns; each failure pattern includes : node failures. The diversity of VNFs
is applied to both primary and backup functions. Each VNF has a pool of
replicas with different processing abilities and requirements of capacities. The
proposed model chooses suitable replicas of primary and backup VNFs from
the corresponding pools and allocates them to suitable locations. The allo-
cation provided by the proposed model ensures :-failure tolerance, which can
provide enough processing ability to satisfy the requirements even though :

failed nodes cannot hold any VNFs. Compared with the previous works, we
enable the VNF diversity on the basis of VNF redundancy, which makes re-
source allocation flexible and full use of resource. This work considers the
recovery time under :-resiliency, which can be adopted to different application
environments and provide customized service fault tolerances.

Chapter 7 proposes a VNF allocation model to maximize the number of
accepted requests which ensures the required resiliency levels. The proposed
model chooses suitable replicas of VNFs from the corresponding pools and
allocates them to suitable locations. This work uses MDP to formulate the
dynamically arriving requests and capture the network variation. This work
designs a training environment used for solving the proposed model in an
RL approach with dynamically arriving requests. This work compares the
proposed model with two baseline models. The results from the examined
cases show that the proposed model outperforms two baseline models. Suitable
extra input training data may increase the performance of the proposed model.

Chapter 8 consists of two parts on the practices of the introduced alloca-
tion models in the previous chapters in real network systems. The first part
of Chapter 8 presents the implementations of the allocation models in Kuber-
netes in two ways: scheduler and controller. Scheduler is a general way for
all allocation models. Controller is a method for a specific allocation model
which requires unique resource types or control loops. Firstly, this work de-
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signs and implements a scheduler to allocate VNFs according to calculation
results from multiple reliable function allocation models based on the sched-
uler framework in Kubernetes. The scheduler provides an intermediate layer
to convert the results from different calculators to the pairs of VNFs and nodes
in the network. New allocation models can be added to the scheduler with-
out restarting the scheduler. This work prepares two demonstrations of the
scheduler, one for multiple allocation models, and the other one for a specific
use case in a sensor network. Secondly, this work designs and implements a
custom resource controller in Kubernetes based on the processing ability. The
custom defined resource (CDR) jointly considers the diversity and redundancy
of VNFs, which is called diversity and redundancy Pod set (DRPS). This work
uses exact and approximate methods to select suitable replicas from a pool
of replica templates to satisfy the required processing ability with the mini-
mum required number of replicas. This work performs demonstrations of the
controller including the function allocation and the switching from primary
replicas to backups, to show the improvement of server utilization by adopting
DRPS.

The second part of Chapter 8 presents the implementations of VNFs in
SFCs with allocation models in two network environments: SDN and Kuber-
netes (container network). Firstly, this work reports an implementation of
the network service header (NSH) [121] based SFC application with the co-
operation of the allocation model. This work implements an NSH-based SFC
application on Ryu software-defined networking framework [35]. This work
implements the functions of classifier, service function forwarder, and SFC
proxy [5] on switches by the modification of flow tables which is conducted by
the application. This work uses the application to simulate the VNF alloca-
tion and the traffic through these functions. The network devices are simulated
in Mininet [36], which is connected to the application as a controller. It re-
ceives the registration message from allocated VNFs and instructs the actions
of switches when they are necessary. As a result, the application allocates
the VNFs to corresponding servers automatically and the path of each SFC is
configured correctly. Secondly, this work reports an implementation of SFCs
with the cooperation of the SFC allocation models in Kubernetes. This work
modifies the open virtual network (OVN) [37] so that it can support the rout-
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ing for SFC flow, e.g., classifier, service function forwarder, and load balancer
for multiple ports. This work applies the customized OVN to Kubernetes as
a container network interface (CNI) plugin based on Kube-OVN [38]. This
work adds the definition of the SFC resource and its controller in Kubernetes.
This work prepares a demonstration to show that the functions in SFCs are
allocated to corresponding nodes automatically and the path of each SFC is
configured correctly.

Finally, Chapter 9 concludes this thesis and discusses the future works to
extend this work.
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Related works

2.1 VNF allocation considering service inter-
ruptions

VNF placement needs to be determined in order to provide services to users
by using SFCs. Several works tackled the VNF placement problem for con-
figuring SFCs [39–41]. Different studies use different objectives in the VNF
placement problem: minimizing the latency of services [39], minimizing the
total cost for VNF placement and link utilization [40], and minimizing the re-
source consumption while ensuring the requested quality of services [41]. The
VNF placement models presented in the above works determine the placement
regardless of time slots or node unavailability. There are two possible scenar-
ios that the models face in tackling the VNF placement problem in a network
whose nodes can be unavailable in some time slots. The first scenario applies
the model to determine continuous VNF placement; the VNF allocation is
kept from the first time slot to the last time slot. In this scenario, service
interruptions can occur in some time slots due to node unavailability. The
second scenario applies the models to determine VNF placement in each time
slot independently. This scenario can avoid node unavailability in each time
slot, but service interruptions can occur due to VNF reallocation between adja-
cent time slots. The VNF placement model proposed in this paper determines
the VNF allocation in a given set of time slots, which suppresses the service
interruptions due to either node unavailability or VNF reallocation.
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Section 2.1

Node unavailability and the service interruptions caused by VNF and VM
migrations impact the performance of network and services. The impact has
been addressed previously in various contexts. The work in [42] concerns the
low reliability of softwarized networks caused by the service interruptions. In
[42], the authors introduced a model for VNF placement and service flow rout-
ing. To overcome the service interruptions and increase the network reliability,
the model uses VNF backups with sharing the backup resources. The work in
[43] introduced a model of the adaptive and dynamic VNF allocation problem
considering also VNF migration in a network where the traffic is changing over
time. The model presented in [44] addressed to minimize three different costs:
migration, server, and link costs. The cost of migration is evaluated by the
number of migrations. The model aims to reduce the number of migrations
and improve the quality of service. The work in [45] introduced a model for
dynamic VNF placement under changing traffic load. A static placement de-
creases the operation cost. Reconfiguration causes service interruption and the
operation cost increases. The model presented in [45] minimizes the new place-
ment cost, and the reconfiguration cost with given weights. We summarized
the comparison between the conventional models and the proposed model on
issues, migration objects, objectives, motivations, optimization problems, and
solutions in Table 2.1.

Compared with conventional models which also care about the interruption
of services, the objective of this work specializes in the continuous available
time, which is aware of the quality of experience for users. The objectives
of the conventional models are costs, which are abstract concepts for users.
Moreover, this work does not need extra server resource including storage and
computation resources compared with conventional models. This work consid-
ers a sequence of time slots so that the model only calculates the placement
at the very beginning of service deployments instead of at each time slot.

In this work, the contribution is to achieve the maximum continuous avail-
able time of services with the consideration of availability schedules. The
proposed model determines the VNF locations in a sequence of time slots.
Compared with the conventional researches, this work considers the interrup-
tions which influence the longest continuous available time of services. This
work does not need extra storage resources, such as duplicated functions. It
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is used for deploying disruption-sensitive functions in projects with limited
number of VMs.

2.2 VNF allocation considering primary and
backup resources jointly

Several studies considered the backups in SFC. The works in [46, 47] studied
the placement methods for active VNFs and backup VNFs with flow and SFC
parallelism. The models split a large flow into multiple parallel smaller sub-
flows and any SFC is replicated into multiple sub-SFCs. The models aimed to
increase service reliable probability while fewer backup resources are required.
The work in [48] designed a redundancy mechanism to protect the service
from interruptions by introducing a node-ranking algorithm. The mechanism
reduces the consumption of backup resources with respect to a higher accep-
tance ratio of SFC requests. The work in [49] introduced a backup model that
combines path backup and VNF backup in a joint way. The backup model
aimed to reduce resource consumption for backups. The work in [50] intro-
duced a method to allocate SFCs aiming to maximize the number of SFC
requests that can be served while meeting their heterogeneous availability re-
quirements, which includes an ILP model for one SFC and a heuristic algorithm
for mapping multiple SFC requests. The work also introduced a backup pool-
ing mechanism to further improve the efficiency of backup resource usage. The
work in [51] presented a framework to provide availability of SFC requests with
the objective of minimizing resource usage including an optimization problem
of SFC mapping and backup estimation. The work in [52] introduced a coor-
dinated protection mechanism that adopts both backup path protection in the
network and VNF replicas at nodes to guarantee an SFC’s availability aiming
to reduce the SFC blocking and the cost of computational resources.

Compared with the existing studies, the objective of this work is different.
The existing studies care about end-to-end reliability, which is evaluated by the
metrics such as an available probability or a mean time between failures. This
work cares about time sensitive services which are evaluated by the continuous
servable time. In addition, the existing models only consider one possible error
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pattern which may lead to service interruptions at one time. This work consid-
ers the error patterns in a sequence of time slots and the reallocations between
different allocations in the adjacent time slots. Moreover, this work gives an
initial allocation for VNFs in SFCs. It focuses on the optimal allocation at the
beginning of function deployment instead of after a disturbance.

2.3 Robust optimization and applications in
network

In the past researches, robust techniques were applied to deal with uncertainty
in the problems. To deal with data uncertainty in linear programming, Soys-
ter [53] introduced a linear optimization model to construct a solution that
is feasible for all data that belong to a convex set, which is too conserva-
tive and gives up much of the optimality for the problem. To overcome the
over-conservation, Ben-Tal et al. [54] introduced less conservative models by
considering uncertain linear problems with ellipsoidal uncertainties. However,
the above models are designed for convex uncertainty sets. In our model, the
uncertainty set is not a convex set, which is discrete. To deal with robust dis-
crete optimization problems, Bertsimas et al. [55] introduced an approach for
robust linear optimization problem based on [53]; it offers an ability to control
the degree of conservatism for each constraint.

Robust optimization techniques have been applied to different network de-
sign problems. The work in [55, 56] introduced a robust integer programming
problem with the data uncertainty in network flow problems and solved the
minimum cost flow problems. The work in [32] introduced a problem of backup
network design for general link loads, where the uncertainty is the number of
primary links that fail. The work in [57] applied the robust optimization to
primary and backup allocation problem, where the number of failing PMs
is given but which PM fails is uncertain. The work in [34] adopted the ro-
bust optimization technique on minimizing the required backup capacity with
probabilistic protection against multiple PM failures, where the uncertainty
of capacity was considered. The above researches consider the discrete uncer-
tainty sets and provide an approximate solution. This work provides an exact
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solution without gaps by taking advantage of the limited size of uncertainty
set in the proposed model.

2.4 VM/VNF allocations considering fault tol-
erance

In conventional researches, the protection of VMs has been studied. The work
in [21] presented a VM allocation model that establishes a redundant con-
figuration against host server failures with fewer host machines by achieving
k-resiliency for VMs. :-resiliency is defined as an availability property of a
VM, which can protect the VM against at most : physical machine failures.
When a VM is marked as :-resilient, as long as there are : host failures,
:-resilient guarantees that it can be relocated to a non-failed host without
affecting any other VMs. In other words, an allocation model that considers
:-resilient provides :-fault tolerance assurance. The work in [58] modelled
the :-resiliency with the objectives including achieving high availability and
constraints such as resource feasibility. The work in [59] introduced an online
redundant VM allocation model aiming to minimize the consumption of net-
work resources when primary VM failures need be recovered by backup VMs
under the :-fault tolerance constraint.

The resiliency protection for VMs is coarse-grained if SFCs are considered.
There are several ordered VNFs in SFCs instead of independent VMs. VNF
increases the flexibility of function deployments in the network. The protec-
tion for SFC is required to consider the inner connections between VNFs in
each SFC. The works in [60] and [61] focused on the SFC allocation model
to minimize the transmission delay for latency-sensitive services. Redundant
VNFs and links are considered to prevent the decline of QoS caused by node
and link failures. These works consider the routing of SFCs and the partly and
fully ordered VNFs in SFCs. The conventional researches on the resilient VNF
allocation model in the NFV environment [62, 63] focused on the availability
requirement regardless of the resource optimization.

SFC reconfiguration is a method to realize resilient SFC provisioning in
previous studies. The work in [64] introduced an ILP model for allocating SFCs
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dynamically and adaptively, whose allocations can be readjusted. It aimed
to make a trade-off between resource consumption and operation cost. The
resilient SFC allocation with considering SFC reconfiguration can bring extra
cost and may generate service interruptions [65]. Suitable initial allocations
which consider resiliency in advance can reduce the cost on readjustments
and improve the quality of user experience by reducing the potential service
interruptions.

The resilient VNF placement problems considered in existing researches
have different objectives. The work in [66] presented an approach to deter-
mine the allocations of VNFs in SFCs aiming to minimize the number of af-
fected SFCs upon a node failure. The work in [67] minimizes the cost of used
computing resources by sharing computing resources among multiple service
chains. The work in [52] considered VNF replication to improve the service
availability. It determines the number of replicas for each VNF and allocates
them to suitable locations aiming to reduce the SFC blocking and the cost of
computing resources.

The redundancy of VNF links and instances is a common way to guarantee
the resiliency of service function chains. The work in [68] studied reliable
service provisioning through redundant placement of instances of VNFs. The
model maximizes the number of requests admitted, while meeting the specified
reliability requirement of each admitted request. A randomized algorithm
was introduced to solve the problem in large-scale cases. The work in [69]
introduced a model to deploy both active and backup VNF instances while
guaranteeing the required VNF service resilience. The objective is to minimize
the total expected transmission delay of all flows.

VNF diversity uses a group of replicas to replace one replica, which is more
vulnerable to failures. Different replicas can have different properties, e.g.,
requirements of resources and providable processing abilities. The work in [10]
allocates the VNFs in SFCs while meeting the target SFC availability level with
considering the VNF diversity as well as the VNF redundancy. The model aims
to reduce the inherent cost from overheads and redundant resources. However,
it did not apply the diversity on redundant resources.

Fat-tree is a classic topology for data center networks, which typically con-
sists of trees with three levels of switches [70]. There are three levels of switches,
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core, aggregation, and edge, from the top to the bottom in each fat-tree net-
work topology. Physical servers are connected to the network through edge
switches. The upper-level switches are more likely to become congested than
the lower level switches since the upper switches transfer more data. The data
transferring between different domains or data centers may have additional
costs and increase the transmission delay. Therefore, it is a problem to reduce
the network resource consumption of the upper-level links [59]. VNFs need to
re-fetch the data from the databases on storage servers when it fails, which may
consume both edge level and aggregation level, or even the core level network
resources if the backup VNF and failed VNF are located in different domains.
If a node failure is caused by software, the failed node can store a copy of the
data so that the recovered VNF does not need to re-fetch the original data from
the databases. For an SFC, the recovered VNF does not need to re-fetch the
data from upstream VNFs and the data may avoid being recalculated by up-
stream VNFs. Distributing VNFs can provide operation diversity and reduce
the possibility of concurrent failures. However, the E2E latency is increased if
the VNFs are placed far from each other redundantly [71]; this influences the
quality of services with applying the diversity and redundancy VNFs in the
data center networks, if the allocation strategy has not been designed properly.

Compared with the existing studies, this work applies VNF diversity and
redundancy jointly, which provides more flexible function allocation and higher
resource utilization compared with considering diversity and redundancy sep-
arately. The diversity on both primary and backup resources can fully utilize
the resources by dividing a VNF instance into several thin replicas, which is
useful for resource-limited devices, e.g., edge servers. In terms of the objec-
tive functions, this work takes the E2E latency into consideration, which has
also been concerned by other studies. Table 2.2 summarizes the comparison
between the conventional models and the proposed model.

2.5 VNF allocation problem solved by RL
A VNF placement problem is proved to be an NP-hard problem, whose globally
optimal solution is difficult to be found in polynomial time [72]. RL provides
an approach to find the approximate solutions of the VNF allocation prob-
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lems within a practical time. DRL has been used in solving VNF allocation
problems, especially for dynamic cases. The work in [29] adapted an RL-
based allocation approach on jointly minimizing the operation cost of service
providers and maximizing the total throughput of dynamic requests. The work
in [30] presented an RL-based online method to place the active and standby
SFCs with handling the dynamic network state transitions in real-time. The
work in [31] studied an RL-based dynamic SFC allocation method with using
monitored resource information.

Compared with the existing studies, this work considers the number of ac-
cepted requests among a large amount of arriving requests while allocating
them to the nodes with limited resources ensuring the fault-tolerance perfor-
mance of the dynamic requests with random requirements. This work uses an
RL-based approach to handle real-time requests and efficiently and automat-
ically learns to allocate resources for arriving requests with different require-
ments on resiliency and processing abilities.
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Resource allocation model for
deterministic availability
schedules

This chapter proposes a VNF allocation to maximize the continuous available
time of SFCs in a network against service interruptions considering determin-
istic availability schedules [73,74].

The remainder of the chapter is organized as follows. Section 3.1 describes
the application scenario and the selection of metrics in the proposed model.
Section 3.2 describes the model. Section 3.3 introduces a heuristic algorithm
that solves the proposed model in realistic time. Section 3.4 presents nu-
merical results that show the performance of the proposed model in different
cases. Section 3.5 discusses how to deal with the incoming requests at a new
set of time slots and the applicability of the proposed model in the system.
Section 3.6 summarizes the key points of this chapter.

3.1 Motivation

Before the services, SPs need to deploy the VNFs on VMs. During the run-
ning of services, any failure of VNFs may break down an entire service chain,
interrupting the service [42]. Changing the resource allocation of VNFs, which
causes the reallocations of VNFs, interrupts network services [43, 75]. VNFs
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are service-chained, and migration of one VNF in a chain can interrupt the
entire service chain [44]. The interruption of network services influences the
quality of experience. If a sequence of continuous time slots is considered, the
interruptions divide the sequence into several small sequences. Each sequence
means a continuous available time of the service. This work takes the longest
one among these sequences, which means the longest continuous available time
of the service, as a main metric in this work, which is called SCAT. Improving
SCAT is useful for disturbance sensitive functions, such as file transferring or
video chatting, or the functions with a high cost of recovery. An allocation
model which can increase SCAT is necessary.

There are several services in a network. Because of the limitation of VM
capacity, the SCATs of all services cannot reach the highest value at the same
time. This work considers the service with the worst SCAT and considers
maximum SSCAT as the objective in the proposed model. The challenge is
how to design a model to maximize SSCAT by taking advantage of the given
availability schedule for the initial allocation of VNFs.

With the introduction of a certain availability schedule from maintenance
schedule, users can get the locations of unavailable VMs in the network during
a period of time [76] in advance. By taking advantage of the given availability
schedule, the allocation of VNFs before service running can suppress the inter-
ruptions caused by unavailabilities and reallocations during the given period
of time so that SSCAT can be increased.

3.2 Problem formulation

3.2.1 VNF allocation

Consider a virtual network, � (#, !), which is made up of a set of virtual
nodes, #, and a set of directed virtual links connecting these VMs, !. This
work considers a set of different types of resources ( for each node, such as
CPU, memory, and storage. Node = ∈ # at time slot C ∈ ) has 2B=C units
of available resources of resource B ∈ ( in total. Each virtual link (8, 9) ∈ !
corresponds to a connection between two VMs with transmission resource 18 9
and length ;8 9 .
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' is the set of SFCs, which represent SPs’ requirements. Each SFC con-
tains several VNFs. According to the SPs’ requirements, VNFs are allocated
to VMs and connected to each other in some specified order. Let  A be the
set of ordered VNFs in chain A ∈ ', each of which is allocated with an index
in the range of [1, | A |]. Instances of any VNF type can be deployed in a VM.
The VNF instance of the : ∈  Ath function of request A ∈ ' placed on a VM
occupies @A:B units of resource B ∈ (. Several different functions from differ-
ent requests can be assigned to the same node, each of which utilizes certain
computing and transmission resources. The transmission resource demanded
by request A is 3A .

This work divides continuous time into discrete time slots. A set of time
slots is represented by ) = [1, |) |]. The node availability at each time slot
C ∈ ) is given by the availability schedule. This work uses binary parameter 4=C
to express elements in the availability schedule: if node = ∈ # is unavailable
at time slot C, 4=C = 1, and otherwise 0.

The decision variables in the ILP problem are represented as follows. This
work uses binary decision variable GA:C= to represent the allocation. GA:C= is set to
1 if the :th function of request A is assigned to node = at time slot C, and 0
otherwise.

>AC ,∀A ∈ ', C ∈ ) , denotes a binary variable; if the allocation of at least one
function in request A is changed between time slot C − 1 and time slot C or any
VNF of request A at time slot C or C−1 is allocated to an unavailable node, >AC is
set to 0, and 1 otherwise. When C = 1, >AC = 0; otherwise, >AC can be calculated
by:

>AC =
∏
:∈ A

∏
=∈#
((GA:C= � GA:C−1,=) ∧ (1 − GA:C= 4=C ) ∧ (1 − GA:C−1,=4

=
C−1)),∀A ∈ ', C ∈ )

\{1}. (3.1)

� means exclusive NOR operation between two binary variables whose opera-
tions are: 1� 1 = 1, 0� 0 = 1, 1� 0 = 0, 0� 1 = 0. ∧ means the multiplication of
two binary variables whose operations are: 1∧1 = 1, 0∧0 = 0, 1∧0 = 0, 0∧1 = 0.

In the definition, GA:C= � GA:C−1,= = 1 means that the :th function in request A is
not allocated to node = at time slots C and C−1 or is allocated to node = at time
slots C and C−1; 0 otherwise. 1−GA:C= 4=C = 0 means that the :th function in request

31



Chapter 3

A is allocated to an unavailable node = at time slot C; 1 otherwise. 1−GA:
C−1,=4

=
C−1 =

0 means that the :th function in request A is allocated to an unavailable node
= at time slot C − 1; 1 otherwise. (GA:C= � GA:C−1,=) ∧ (1− GA:C= 4=C ) ∧ (1− GA:C−1,=4

=
C−1) = 1

means that all the three elements are true; otherwise 0. If it is true for all
= ∈ # or ∏

=∈# ((GA:C= � GA:C−1,=) ∧ (1 − GA:C= 4=C ) ∧ (1 − GA:C−1,=4
=
C−1)) = 1, the allocation

of :th function in request A is not changed between time slots C and C − 1 and
the function is not allocated to an unavailable node at time slots C and C − 1;
0 otherwise. If it is true for all : ∈  A , >AC = 1; otherwise 0. For example,
in Fig. 3.1, >3

2 = 0, because of the reallocation between time slots 1 and 2.
>2

4 = >
1
4 = 0, because of the functions in requests 1 and 2 are allocated to an

unavailable node at time slots 4.
I
9A

8
, 8 ∈ ), 9 ∈ )8, A ∈ ', denotes a binary variable; if allocations of request A

from 8 to 8+ 9−1 are consecutively unchanged, or 9 consecutive >AC are all 1 from
C = 8 to C = 8 + 9 − 1, I 9A

8
is set to 1, and otherwise 0. Let )8 = [1, |) | − 8 + 1] ⊆ )

be a set of time slots from 1 to |) | − 8 + 1. I 9A
8

is constrained as follows:

(
8+ 9−1∑
C=8

>AC ) − 9 + 1 ≤ I 9A
8
,∀8 ∈ ), 9 ∈ )8, A ∈ ', (3.2)

I
9A

8
≤

∑8+ 9−1
C=8

>AC

9
,∀8 ∈ ), 9 ∈ )8, A ∈ '. (3.3)

~A
9
, 9 ∈ ), A ∈ ', denotes a binary variable; if the allocations are consecu-

tively unchanged during 9 time slots existing in ) , ~A
9
is set to 1, and otherwise

0. ~A
9
is constrained as follows:

I
9A

8
≤ ~A9 ,∀8 ∈ ), 9 ∈ )8, A ∈ ', (3.4)

~A9 ≤
|) |− 9+1∑
C=1

I
9A
C ,∀ 9 ∈ ), A ∈ '. (3.5)

VA ∈ [1, |) |], A ∈ ' is an integer variable that represents the SCAT of request
A, i.e., the maximum number of continuous available time slots in request A.
VA is given by:

VA = max
9∈)
{ 9~A9 } + 1,∀A ∈ '. (3.6)
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_ is an integer variable that represents SSCAT, i.e., the minimum number of
longest continuous available time slots among all requests. _ can be expressed
by:

_ ≤ VA ,∀A ∈ '. (3.7)

The objective function of the proposed model is given by:

max _ + n1
∑
A∈'

VA . (3.8)

In this problem, the solution that maximizes the sum of continuous available
time slots for all requests, ∑A∈' VA , is chosen when there are multiple solutions
that maximize _. Therefore, the small number, n1, is multiplied to the second
term to prioritize the first term over the second term. n1 is given by 1

|' |·|) | .
This work uses an example shown in Fig. 3.1 to explain the meanings of

service interruptions, SCAT, and SSCAT. In Fig. 3.1, there are five nodes in
the network. There are three SFCs that contain three, two, and two functions,
respectively. 5

~
G represents the ~th function of chain G. If the functions are

allocated according to Fig. 1, service provided by chain 3 is interrupted at
time slot 2 due to the different VNF allocations triggered by the unavailability
of node 4 at time slot 2. VNF allocated to an unavailable node at time slots
4 and 5 interrupt chains 1 and 2. The SCAT of chains 1, 2, and 3 are three,
three, and five, respectively. SSCAT is the smallest number among them, i.e.,
three.

This work also considers several constraints as below.
The node capacity constraint is given by:∑

A∈'

∑
:∈ A

GA:C= · @A:B ≤ 2B=C ,∀= ∈ #, C ∈ ), B ∈ (. (3.9)

Each node, because of the computational resource limitation, can carry only
a limited number of functions. Equation (3.9) ensures that each node’s com-
putational resources must not be overused during allocation.

The assignment constraint is given by:∑
:∈ A

GA:C= ≤ 1, ∀A ∈ ', = ∈ #, C ∈ ), (3.10)
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Time slot 1

Time slot 2
Different 
Allocation

Node 1 Node 2 Node 3 Node 4

Time slot 3

Time slot 4
Node 

Unavailability

Time slot 5
Node 

Unavailability

Time slot 6
Recovery

Chain 2
SCAT=3

Chain 1
SCAT=3 

Chain 3
SCAT=5 

SSCAT=3 

X

X

Node 5

X

X : unavailable

Figure 3.1: Example of SSCAT.

and ∑
=∈#

GA:C= = 1, ∀A ∈ ', : ∈  A , C ∈ ). (3.11)

Equation (3.10) assumes that one service chain does not allocate multiple VNFs
in this chain on one VM in case of the influence of the reallocation of VMs
[44]. Equation (3.11) ensures that all functions are allocated in the network.

If it is necessary to avoid allocating functions to unavailable nodes, this
work adds the following constraint:

GA:C= 4
=
C = 0, ∀A ∈ ', C ∈ ), = ∈ #, : ∈  A . (3.12)

According to the linearization process in Appendix A, (3.6) is linearized
to (3.13)-(3.18), and (3.1) is linearized to (3.19)-(3.37) with some auxiliary
variables as follows:

VA − 1 ≤ 9~A9 +
(
1 − XA9

)
· �,∀ 9 ∈ ), A ∈ ', (3.13)

VA − 1 ≥ 9~A9 −
(
1 − XA9

)
· �,∀ 9 ∈ ), A ∈ ', (3.14)

9~A9 ≥ (XA9 − 1) · � + 9 ′~A9 ′,∀ 9 ∈ ), 9 ′ ∈ )\ { 9} , A ∈ ', (3.15)∑
9∈)

XA9 =1,∀A ∈ ', (3.16)
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VA − 1 ≥ 9~A9 ,∀ 9 ∈ ), A ∈ ', (3.17)
XA9 ∈ {0,1},∀ 9 ∈ ), A ∈ ', (3.18)
qA:C= = 1−GA:C= − GA:C−1,= + 2 · ℎA:C= ,∀A ∈ ', C ∈ )\{1}, : ∈  A , = ∈ #, (3.19)

ℎA:C= ≤GA:C= ,∀A ∈ ', C ∈ )\{1}, : ∈  A , = ∈ #, (3.20)
ℎA:C= ≤GA:C−1,=,∀A ∈ ', C ∈ )\{1}, : ∈  A , = ∈ #, (3.21)
ℎA:C= ≥GA:C= + GA:C−1,= − 1,∀A ∈ ', C ∈ )\{1}, : ∈  A , = ∈ #, (3.22)
\A:C= ≤qA:C= ,∀A ∈ ', C ∈ )\{1}, : ∈  A , = ∈ #, (3.23)
\A:C= ≤1 − GA:C= 4=C ,∀A ∈ ', C ∈ )\{1}, : ∈  A , = ∈ #, (3.24)
\A:C= ≥qA:C= − GA:C= 4=C ,∀A ∈ ', C ∈ )\{1}, : ∈  A , = ∈ #, (3.25)
cA:C= ≤\A:C= ,∀A ∈ ', C ∈ )\{1}, : ∈  A , = ∈ #, (3.26)
cA:C= ≤1 − GA:C−1,=4

=
C−1,∀A ∈ ', C ∈ )\{1}, : ∈  A , = ∈ #, (3.27)

cA:C= ≥\A:C= − GA:C−1,=4
=
C−1,∀A ∈ ', C ∈ )\{1}, : ∈  A , = ∈ #, (3.28)

|A:C ≤cA:C= ,∀A ∈ ', C ∈ )\{1}, : ∈  A , = ∈ #, (3.29)

|A:C ≥
∑
=∈#

cA:C= − |# | + 1,∀A ∈ ', C ∈ )\{1}, : ∈  A , (3.30)

>AC ≤|A:C ,∀A ∈ ', C ∈ )\{1}, : ∈  A , (3.31)

>AC ≥
∑
:∈ A

|A:C − | A | + 1,∀A ∈ ', C ∈ )\{1}, (3.32)

>A1 =0,∀A ∈ ', (3.33)
>AC ∈ {0,1} ,∀A ∈ ', C ∈ ), (3.34)
~A9 ∈ {0,1} ,∀A ∈ ', 9 ∈ ), (3.35)
|A:C ∈ {0,1} ,∀A ∈ ', : ∈  A , C ∈ )\{1}, (3.36)

qA:C= , G
A:
C= , ℎ

A:
C= , \

A:
C= , c

A:
C= ∈ {0,1} ,∀A ∈ ', : ∈  A , C ∈ )\{1}, = ∈ #. (3.37)

In (3.13)-(3.15), � is a given constant value that satisfies � > 9~A
9
,∀ 9 ∈ ), A ∈ ';

� can be taken to be |) | + 1.
If the users are more concerned about VNF allocation than the routes of

the SFCs, this work introduces the following model:

max _ + n1
∑
A∈'

VA (3.38a)

s.t. (3.2) − (3.5), (3.7), (3.9) − (3.11), (3.13) − (3.37) (3.38b)
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Node 1

Node 3

Node 4Node 5

Node 2

(a) Path determination after function deployment (b) Path determination while function deployment

Node 1

Node 3

Node 4Node 5

Node 2

(a) Path determination after func-
tion deployment

Node 1

Node 3

Node 4Node 5

Node 2

(a) Path determination after function deployment (b) Path determination while function deployment

Node 1

Node 3

Node 4Node 5

Node 2

(b) Path determination during
function deployment

Figure 3.2: Example of computing routes.

_ ∈ [1, |) |] (3.38c)
VA ∈ [1, |) |],∀A ∈ ', 8 ∈ ), 9 ∈ )8 (3.38d)
I
9A

8
∈ {0,1} ,∀A ∈ ', 8 ∈ ), 9 ∈ )8 . (3.38e)

3.2.2 Route determination

The model described above determines VNF allocation. Sometimes the route
of each SFC needs to be considered. There are two possible ways to determine
the route of each SFC. In the first way, the route of each SFC is computed
separately after VNF allocation is computed. In the second way, the VNF
allocation and the routes of all SFCs are determined at the same time. Fig. 3.2
shows examples of VNF allocation and SFC routes; each SFC has shorter route
length in Fig. 3.2(b) than in Fig. 3.2(a). By computing the VNF allocation and
the routes of all SFCs at the same time, shorter SFC routes can be obtained
with consideration of the demands placed on transmission resources.

This work presents the following constraints to compute the VNF allocation
and the routes of all SFCs.

The flow constraint is given by:

∑
(8, 9)∈!

0|,8 9 ?
:,8 9
AC =


−1, if GA:C| = 1
1, if GA,:+1C| = 1
0, if GA:C| = G

A,:+1
C| = 0.

(3.39)
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For each request, there are three types of nodes: source node (nodes al-
located the first function of a request), destination node (nodes allocated the
last function of a request) and others. This work defines indicator 0|,8 9 , | ∈
#, (8, 9) ∈ !, to represent the adjacency of nodes on directed graph �, where
0|,8 9 = 1 if node | is the tail of the directed link (8, 9), i.e., | = 9 ; 0|,8 9 = −1
if node | is the head of the directed link (8, 9), i.e., | = 8; 0|,8 9 = 0 otherwise.
This work uses binary variable ?:,8 9AC to express the route. If link (8, 9) is a
segment link between the :th node and : + 1th node of request A ∈ ' at time
slot C ∈ ) , ?:,8 9AC = 1, and 0 otherwise. The model has the following constraints,
∀: ∈  A\ {| A |} , A ∈ ', C ∈ ), | ∈ #. According to (3.10), GA:C| and GA,:+1C| cannot
be 1 at the same time. (3.39) can be simplified to:∑

(8, 9)∈!
0|,8 9 ?

:,8 9
AC = − GA:C| + GA,:+1C| ,∀: ∈  A\ {| A |} , A ∈ ', C ∈ ), | ∈ #.

(3.40)

The link capacity constraint is given by:∑
A∈'

∑
:∈ A

?
:,8 9
AC 3A ≤ 18 9 ,∀(8, 9) ∈ !, C ∈ ). (3.41)

Equation (3.41) ensures that each link’s transmission resource is not overused.
This work takes the routes of all SFCs into consideration. The solution that

minimizes the sum of lengths for all routes ∑
A∈'

∑
C∈)

∑
:∈ A

∑
(8, 9)∈! ;8 9 ?

:,8 9
AC is

chosen when there are multiple solutions that maximize _ + n1
∑
A∈' VA . There-

fore, the small number, n1, is multiplied to the second term of objective function
to prioritize the first term over the second term; n2 is multiplied to the third
term to prioritize the second term over the third term. To sum up, the model
is:

max _ + n1
∑
A∈'

VA − n2
∑
A∈'

∑
C∈)

∑
:∈ A

∑
(8, 9)∈!

;8 9 ?
:,8 9
AC (3.42a)

s.t. (3.2) − (3.5), (3.7), (3.9) − (3.11), (3.13) − (3.37), (3.39) − (3.41)
VA ∈ [1, |) |],∀A ∈ ', _ ∈ [1, |) |] (3.42b)
?
:,8 9
AC ∈ {0, 1},∀A ∈ ', C ∈ ), : ∈  A , (8, 9) ∈ ! (3.42c)
I
9A

8
∈ {0,1} ,∀A ∈ ', 8 ∈ ), 9 ∈ )8 . (3.42d)
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3.2.3 NP-completeness

This work defines the decision version of the VNF allocation problem (VNFA)
in the proposed model and prove that the VNFA problem is NP-complete [77,
78].

Definition 3.1 Given a set of nodes #, a set of SFCs ' and an availability
schedule �, can an allocation of each SFC to make SSCAT be at least : be
found?

Theorem 3.1 The VNFA problem is NP-complete.

Proof: The VNFA problem is NP, as this work can verify whether SS-
CAT of the allocation is at least : in polynomial time $ ( |) |∑A∈'  A + |) | |' |).∑
A∈'  A is the sum of the lengths of all SFCs. It takes $ ( |) |∑A∈'  A) to check

if the allocation of SFCs is feasible. It takes $ ( |) | |' |) to compute SCAT for
each SFC. SSCAT is obtained by completing the process to compute SCAT.

This work presents that the partition problem, which is a known NP-
complete problem [79], is polynomial time reducible to VNFA. The partition
problem is defined as: whether a given multi-set ( of positive integers can be
partitioned into two subsets �1 and �2 such that the sum of the numbers in
�1 equals that in �2.

First, an instance of VNFA from any instance of the partition problem is
conducted, which consists of a set of positive integers � = {�� : � ∈ [1, |� |]}.
The set � is divided into two sets �1 and �2 so that ∑

��∈�1 �� =
∑
��∈�2 ��. An

instance of VNFA is constructed with the following steps.

1. Consider a network with ∑
��∈� �� nodes. Each node is able to accom-

modate at most one function. � in the partition problem is the set of
requests in VNFA.

2. �� in the partition problem is the number of functions in request � ∈ �
in VNFA.

3. Consider the set of time slots ) , where |) | = 2:.
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Figure 3.3: Construction demonstration. If a time slot is marked “U”, it is
unavailable, and otherwise available.

4. Consider the availability schedule, from time slot 1 to time slot :, node
8 ∈ [1, 1

2
∑
��∈� ��] is available and node 8 ∈ [ 12

∑
��∈� �� + 1,∑��∈� ��] is

unavailable. From time slot : + 1 to time slot 2:, node 8 ∈ [1, 1
2
∑
��∈� ��]

is unavailable and node 8 ∈ [ 12
∑
��∈� �� + 1,∑��∈� ��] is available.

Fig. 3.3 shows the construction. The presented steps have a polynomial
complexity of $ ( |� |), which transforms any instance of the partition problem
into an instance of VNFA.

Consider that a partition problem instance is a Yes instance, which indi-
cates that there exist two subsets of �1 and �2 with ∑

��∈�1 �� =
∑
��∈�2 ��. By

using the above presented steps to define the corresponding VNFA instance
from any partition problem instance, each function is assigned to an available
node. The functions belonging to the requests corresponding to �1 are allo-
cated to the upper left part of the availability schedule from node 1 to node
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1
2
∑
��∈� ��. These functions are available during the first : time slots and un-

available during the next : time slots. The functions belonging to the requests
corresponding to �2 are allocated to the lower right part of the availability
schedule from node 1

2
∑
��∈� �� + 1 to node ∑

��∈� ��. These functions are un-
available at the first : time slots and available at the next : time slots. SSCAT
of this network is :, which means that the VNFA instance is a Yes instance.

Conversely, if a VNFA instance is a Yes instance, then the corresponding
partition problem instance is a Yes instance. When SSCAT of a VNFA instance
is at least :, the smallest SCAT among the requests is :. To make SSCAT
be : in the given network with the given availability schedule, the functions
in the set of requests must be allocated to the available nodes at the first :
time slots from node 1 to node 1

2
∑
��∈� ��, and the other functions must be

allocated to the other nodes which are available at the next : time slots from
node 1

2
∑
��∈� �� + 1 to node ∑

��∈� ��. The functions allocated to node 1 to
1
2
∑
��∈� �� belong to �1 and the functions allocated to node 1

2
∑
��∈� �� + 1 to∑

��∈� �� belong to �2. So, if SSCAT of the network is at least :, i.e., the VNFA
instance is a Yes instance, the corresponding partition problem instance is also
a Yes instance, i.e., ∑��∈�1 �� =

∑
��∈�2 ��.

This confirms that the partition problem, which is NP-complete, is poly-
nomial time reducible to VNFA. Since VNFA belongs to NP, VNFA is NP-
complete.

3.3 Heuristic algorithm

As the size of the ILP problem presented in Section 3.2 increases, the problem
becomes more difficult to solve in practical time. A feasible solution may not
be obtained within admissible computational time, which can be specified by
SPs. This work introduces a heuristic algorithm for the proposed problem.

3.3.1 Selection of heuristic algorithm

As a heuristic algorithm, there are several candidates, which include a greedy
algorithm, a simulated annealing (SA) algorithm [80], and a genetic algorithm
(GA) [81].
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A greedy algorithm is a simple heuristic algorithm which finds the best
decision at each step aiming to find a near-optimal solution. Once the deci-
sion is made at each step, it is not changed at the later steps. The greedy
algorithm traverses all the nodes for placing each function and find a suitable
location, where the deployment does not violate any constraints. The greedy
algorithm chooses the position for each function at each time slot, which has
the maximum objective value at this step. Finally, the algorithm gets a final
allocation for all functions at all time slots. However, the best decision in each
step chosen in the greedy algorithm does not mean that the final result is the
best solution. The worse choice which has a worse objective value in some
steps may be chosen.

SA can avoid trapping in a local-optimal solution with a higher probability
than the greedy algorithm. SA is a metaheuristic algorithm to obtain a near-
optimal solution in a large search space for an optimization problem. It allows
to accept a worse solution with a certain probability so that trapping into a
local-optimal solution can be avoided. SA does not always choose the solution
with a better objective value in each step so that a better final solution hidden
behind sub-optimal solutions can be found.

GA is also a metaheuristic algorithm to obtain a near-optimal solution.
Compared with SA, the solutions in GA are encoded in a special structure. GA
generates new feasible solutions based on the structure with the help of existing
solutions so that the new solutions can get close to the optimal solution. In
the proposed model, each solution has four dimensions: requests, functions,
time slots, and nodes. With GA, the solving procedure can be faster than
SA because of the structure in solutions. The greedy algorithm can be used
in generating a set of better initial solutions for GA compared with a set of
random initial solution, which reduces the searching time for better solutions.

3.3.2 Framework

The framework of this heuristic algorithm is shown in Algorithm 3.1. A set
of initial feasible solutions whose size is IPN is given by Algorithm 3.2 in
line 2. In lines 3–5, if Algorithm 3.2 cannot provide a feasible solutions, the
heuristic algorithm reports that no feasible solution is found. In lines 6–29,

41



Chapter 3

the heuristic algorithm enters a loop. The loop has MG cycles. In each cy-
cle, the heuristic algorithm explores new feasible solutions by performing in-
ternal crossover (see function 2A>BB_8= in Algorithm 3.3), external crossover
(see function 2A>BB_>DC in Algorithm 3.3), and mutation (see Algorithm 3.4)
according to three probabilities ICP, ECP and MP, respectively. Newly gen-
erated solutions at lines 10, 15, and 20 are stored in the new feasible solution
set (n. They are added to the feasible solution set at a time in line 23. The
heuristic algorithm calculates the fitness for each solution (see Algorithm 3.5).
The genetic algorithm finds the solution with the highest fitness score and
stores it. Finally, if the size of the feasible solution set exceeds ULPN, the
heuristic algorithm chooses ULPN feasible solutions as a new set of feasible
solutions according to roulette gambler (see Algorithm 3.6).
Algorithm 3.1 Framework
Input: #, ) , ', (,  A , 2B=C ∈ �, 4=C ∈ � , @A:B ∈ &, IPN, MG, ECP, ICP, MP,

ULPN
Output: allocation for all functions
1: Define � as the feasible solution set
2: � ←Generate set of initial feasible solutions by using function init_chromos

in Algorithm 3.2
3: if � = ∅ then
4: return No feasible solution is found
5: end if
6: for BC4? = 1→MG do
7: Define �n as the new feasible solution set
8: for each solution in � do
9: if a random number in [0, 1] > 1 − ��% then

10: �n ←Generate a non-redundant and mutant solution by using
function 2A>BB_8= in Algorithm 3.3 whose inputs are the selected solution
in � and random time slot C

11: end if
12: end for
13: for each solution in � except for the first one do
14: if a random number [0, 1] > 1 − ��% then
15: �n ←Generate a non-redundant and mutant solution by using
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function 2A>BB_>DC in Algorithm 3.3 whose inputs are the selected solution
and its previous solution in �

16: end if
17: end for
18: for each solution in � do
19: if a random number [0, 1] > 1 − "% then
20: �n ←Generate a non-redundant and mutant solution by using

function mutation in Algorithm 3.4 whose input is the selected solution in
�

21: end if
22: end for
23: Integrate �n into �
24: Calculate the fitness score of the solutions in � by using function calc_fin_ness

in Algorithm 3.5
25: Store the solution with the highest fitness score
26: if size of � >ULPN then
27: Reduce the size of the set toULPN by using function roulette_gambler

in Algorithm 3.6
28: end if
29: end for

3.3.3 Initial solution generation

The heuristic algorithm generates a set of initial feasible solutions by using
Algorithm 3.2. Based on this set, more feasible solutions can be generated by
Algorithms 3.3 and 3.4.

In the heuristic algorithm, each solution is a three-dimensional matrix. The
first dimension represents time slots, the second one represents requests and
the third one represents functions. The value of an element whose location is
(C, A, :) is the allocation of the :th function of request A at time slot C, which
belongs to #.

Algorithm 3.2 Initial solution
1: function init_chromos(#,), ',  A , �, �, &)
2: Set of initial solutions � ← ∅
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3: Sort requests in ' in a non-increasing order of  A
4: for each time slot in ) do
5: Sort nodes in # in a non-increasing order of time from time slot C

to a time slot in which a node becomes unavailable
6: for A = 1→ |' | do
7: for 5 = 1→  A do
8: for = = 1→ |# | do
9: if used capacity of = is less than 2B=C − @A:B ,∀B ∈ ( then

AND any other functions in A were not allocated to =
10: Allocate the 5 th function in SFC A to =
11: Break
12: else
13: if = = |# | then
14: return B← ∅
15: end if
16: Continue
17: end if
18: end for
19: end for
20: end for
21: Store the allocation to �
22: end for
23: Duplicate a solution iteratively until the number of solutions in � be-

comes IPN
24: return �

25: end function

Algorithm 3.2 reorders set ' in a non-increasing order of  A (line 3). Then,
it performs function allocation one by one (lines 4–22). At each time slot,
the heuristic algorithm reorders set # according to the occurrence of unavail-
abilities from late to early (line 5). Then the genetic algorithm allocates the
functions to nodes according to these new orders (lines 9–17). If the func-
tion cannot be assigned to a suitable node, no feasible solution is found in
Algorithm 3.2. The judgment is performed in lines 13–15. Finally, the heuris-
tic algorithm duplicates a solution iteratively until the number of solutions
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becomes IPN (line 23).

3.3.4 New solution generation

There are three methods for generating new solutions in the heuristic algo-
rithm.

The internal crossover, function cross_in in Algorithm 3.3, crosses adja-
cent time slots in the same solution. The aim of cross_in is to suppress the
reallocations of VNFs between adjacent time slots.

The external crossover, function cross_out in Algorithm 3.3, crosses the
same time slot between two solutions in the feasible solution set. A new
solution is generated by modifying the VNF allocation in a randomly selected
time slot of one solution based on that of another solution.
Algorithm 3.3 Crossover
1: function cross_in(8 ← the selected solution , C ← the random time)
2: 8[C] ← 8[C + 1]
3: return 8
4: end function
5: function cross_out(81, 82)
6: ;>20C8>=← a random integer in [1, |) |]
7: 82 ← 81

8: 82 [;>20C8>=] ← 82 [;>20C8>=]
9: return 82
10: end function

The other function for generating new solutions is function mutation in
Algorithm 3.4. init_chromos function in Algorithm 3.2 generates the initial
solution set based on the length of each SFC. On the other hand, mutation
function generates a new solution based on the SCAT of each SFC.

Algorithm 3.4 Mutation
1: function mutation(8 ← the selected solution, �)
2: Calculate the SCAT for all SFCs in solution i
3: Sort requests in ' in a non-decreasing order of SCAT
4: Sort nodes in # in a non-increasing order of time from the first time

slot to a time slot where a node becomes unavailable
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5: for A ∈ ' do
6: for 5 = 1→  A of request A do
7: for = ∈ # do
8: if used capacity of = is less than 2B=C − @A:B ,∀B ∈ ( then AND

any other functions in A were not allocated to =
9: Allocate the 5 th function in SFC A to =

10: Break
11: else
12: Continue
13: end if
14: end for
15: end for
16: end for
17: return new solution
18: end function

3.3.5 Calculation of fitness

The algorithm computes the fitness score for each solution by using (3.8).

Algorithm 3.5 Fitness calculation
1: function calc_fin_ness(8 ← the selected solution, �)
2: Calculate the SCAT for all SFCs in solution i
3: return min((��))+sum((��))/(|) | × |' |)
4: end function

3.3.6 Choice of solutions

The heuristic algorithm uses roulette wheel selection to create a new feasible
solution set by choosing *!%# solutions from the feasible solution set.

In the roulette_gambler and choice functions in Algorithm 3.6, input 2ℎA><B
is the set of solutions and 5 8C_?A>B is the set of the fitness scores of the cor-
responding solutions in 2ℎA><B.

Algorithm 3.6 Choice
1: function roulette_gambler( 5 8C_?A>B, 2ℎA><B)
2: ?82: ← a random number in [0, 1]
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3: for 9 = 1→ |2ℎA><B | do
4: ?82: ← ?82: − 5 8C_?A>B[ 9]/sum( 5 8C_?A>B)
5: if ?82: ≤ 0 then
6: return 9

7: end if
8: end for
9: return |2ℎA><B | − 1
10: end function
11: function choice(2ℎA><B, 5 8C_?A>B)
12: 2ℎ>824_�4=B← ∅
13: for 8 = 1→ min( |2ℎA><B |,ULPN) do
14: 9 ← roulette_gambler( 5 8C_?A>B, 2ℎA><B)
15: append 2ℎA><B[ 9] to 2ℎ>824_�4=B
16: end for
17: return 2ℎ>824_�4=B
18: end function

3.4 Evaluations

3.4.1 Comparison with other models

This work compares the proposed model with three other models. The first
model, which is called the persistence allocation model, does not consider the
service interruptions caused by node unavailability. The model maximizes
SSCAT by suppressing the interruptions caused by VNF reallocation. It de-
termines a node to which each VNF is allocated randomly and keeps this
allocation from the first time slot to the last one. To some extent, such a
model has no ability to avoid unavailable nodes. The second model, called
the single-slot allocation model, considers the service interruptions caused by
node unavailability at each time slot, regardless of VNF reallocation between
all adjacent time slots. The model minimizes the number of VNFs allocated
to unavailable nodes at each time slot. This model independently determines
VNF allocation of each time slot and tries to avoid allocating VNFs to un-
available nodes according to the availability schedule. However, this model
does not consider the relationship between VNF allocations at adjacent time
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slots; different allocations at adjacent time slots cause service interruptions.
For each C ∈ ) , the optimization problem of single-slot allocation model is
formulated as an ILP problem by:

min
∑
A∈'

∑
:∈ A

∑
=∈#

GA:C= 4
=
C (3.43a)

s.t. (3.9) − (3.11). (3.43b)

The third model, the double-slot allocation model, is improved variant of the
single-slot allocation model. This model computes the VNF allocation at time
slot C by considering that in the last time slot, GA:

C−1,=,∀= ∈ #, A ∈ ', : ∈  A .
The solution that minimizes the differences between time slots C and C − 1 is
chosen when there are multiple solutions that minimize ∑

A∈'
∑
:∈ A

∑
=∈# G

A:
C= 4

=
C .

For each C ∈ ) , the optimization problem of double-slot allocation model is
formulated by:

min
∑
A∈'

∑
:∈ A

∑
=∈#
(GA:C= 4=C + n3GA:C= � GA:C−1,=) (3.44a)

s.t. (3.9) − (3.11). (3.44b)

The small number, n3, is multiplied to the second term to prioritize the first
term over the second term. n3 is given by 1

|# | |' |maxA ∈'{ A } . This work compares
the SSCAT values yielded by the above three models with those of the proposed
model.

The ILP problems of the proposed model, the single-slot allocation model,
and the double-slot allocation model are solved by the IBM(R) ILOG(R)
CPLEX(R) Interactive Optimizer, version 12.7.1 [82], running on an Intel
Core i7-7700 3.60 GHz 4-core CPU, 32 GB memory. The persistence allo-
cation model is implemented by Python 3.7 and run on the same hardware.

Five cases are examined. The conditions of these cases are shown in Ta-
ble 3.1. All cases focus on VNF allocation regardless of route computation. All
resources requirements of functions are one. The capacities of all nodes in the
network are two for all types of resources. For the other conditions shown in
the Table 3.1, Nodes means the number of nodes; Requests means the number
of functions in each request; Functions means the number of functions in each
request; Time slots means the number of time slots; Maximum Unavailabil-
ities means the maximum number of unavailable nodes at a time slot. The
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Table 3.1: Evaluation conditions.

Case Nodes Capacity Request Functions Time
slots

Maximum
unavailabilities

1 8 2 4 3, 2, 2, 4 6 2
2 8 2 4 3, 2, 2, 4 6 6
3 16 2 8 6, 3, 2, 2, 4, 4, 3, 2 6 2
4 16 2 8 6, 3, 2, 2, 4, 4, 3, 2 6 12
5 5 2 3 2, 2, 3 24 1
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Figure 3.4: SSCAT values yielded by four models.

evaluation obtains the VNF allocation of the proposed model by solving the
ILP problem in Section 3.2 without flow or link capacity constraints. Cases
1, 2, 3 and 4 randomly generate ten different availability schedules. Case 5
randomly generates five different availability schedules. Each case computes
the VNF allocations in the same network. This yields the computed SSCAT
values which are then averaged.

Fig. 3.4 shows the SSCAT values yielded by the four models. We can
observe that the persistence allocation model performs better than single-slot
allocation only in case 5. Persistence allocation is sensitive to failures. Single-
slot allocation is sensitive to the changes in allocations between adjacent time
slots. Since case 5 only has at most one failure at each time slot, the persistence
allocation perform slightly better than the single-slot allocation because of the
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Table 3.2: Wp, Ws, and Wd for Table 3.1.

Case Wp Ws Wd

Case 1 2.18 1.76 1.32
Case 2 2.10 1.40 1.10
Case 3 2.50 1.73 1.50
Case 4 1.70 1.21 1.21
Case 5 2.34 2.57 1.59

fewer failures and the changing positions of the failures in different time slots.
Table 3.2 shows Wp, Ws, and Wd, which denote the ratios of SSCAT obtained
by the proposed model to that of the persistent, single-slot, and double-slot
allocations, respectively. The proposed model improves SSCAT compared with
the other models in all cases examined. From the comparison of the results
between cases 1 and 3 or cases 2 and 4, the proposed model yields larger
SSCAT values when the number of unavailable nodes in a time slot is small.

3.4.2 Demonstration using different availability sched-
ules

The distribution of unavailabilities in the availability schedules impacts on
the SSCAT values obtained by the proposed model. To demonstrate this
impact, this work creates five different availability schedules and calculates
the SSCAT values with these availability schedules under the same condition.
The availability schedules used in this demonstration are shown in Fig. 8.
From type 1 to 5, the positions of unavailabilities become more random and
scattered. In this demonstration, an eight-node network is considered, where
the capacity of each node is set to two. The evaluation considers four requests
with lengths of three, two, two, and four. Six time slots are considered in this
demonstration.

Table 3.4 shows the SSCAT values for the five availability schedules shown
in Table 3.3. The regular and compact error patterns, such as type 1, pro-
vide higher SSCAT values; random and sparse error patterns, such as type 5,
provide lower SSCAT values.
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Table 3.3: Five availability schedules. If “U” is marked in a time slot, it is
unavailable, and otherwise available.

(a) Availability schedule 1
            Node

Time slot
1 2 3 4 5 6 7 8

1 U U

2 U U

3 U U

4 U U

5 U U

6 U U

(b) Availability schedule 2
            Node

Time slot
1 2 3 4 5 6 7 8

1 U U

2 U U

3 U U

4 U U

5 U U

6 U U

(c) Availability schedule 3
            Node

Time slot
1 2 3 4 5 6 7 8

1 U U

2 U U

3 U U

4 U U

5 U U

6 U U

(d) Availability schedule 4
            Node

Time slot
1 2 3 4 5 6 7 8

1 U U

2 U U

3 U U

4 U U

5 U U

6 U U

(e) Availability schedule 5
            Node

Time slot
1 2 3 4 5 6 7 8

1 U U

2 U U

3 U U

4 U U

5 U U

6 U U

3.4.3 Effect of determining routes and VNF allocation
simultaneously

This work evaluates the effect of determining the SFC routes at the same time
as the VNF allocation in the proposed model. Two computation methods are
examined in this evaluation. The computation method that computes the VNF
allocation and routing by solving the ILP problem in 3.2.2 is called method 1.
On the other hand, the computation method that computes allocation by the
model in Section 3.2.1 and then determines the route between each adjacent
VNF pair based on the shortest path is called method 2.

The evaluation randomly generates five different availability schedules and
compute the allocations with these different availability schedules by using
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Table 3.4: Results of the demonstrations for different availability schedules in
Fig. 3.5.

Type SSCAT SCAT of
Chain 1

SCAT of
Chain 2

SCAT of
Chain 3

SCAT of
Chain 4

1 6 6 6 6 6
2 3 6 3 3 6
3 3 3 6 6 3
4 3 4 4 4 3
5 2 3 3 4 2

Figure 3.5: Network in case 5.

methods 1 and 2. This work compares the two methods in terms of the lengths
of obtained paths and the computation time. If a function in a request is allo-
cated to an unavailable node, the path length of request is calculated under the
assumption that the SFC of this request is active. SFC routes are determined
by computing the shortest paths between each adjacent VNF pair. This work
uses case 5 shown in Table 3.1 in this evaluation. The network in case 5 is
shown in Fig. 3.5. The transmission resource of each link is set to one, and the
transmission resource demand of each request is set to 0.1. The length of each
link is set to 1 unit. Fig. 3.6 shows the sum of path lengths of all three requests
with methods 1 and 2. The path length of a request is the sum of the lengths
of the links in its route. Note that the SSCAT and SCAT values computed by
the two methods are the same. Method 1 offers, on average, 14.71% shorter
path length than compared with method 2. Fig. 3.7 shows that the computa-
tion time of method 1 is, on average, 4.53 times greater than that of method
2. The proposed model, which determines routing, can provide smaller path
lengths than the model that selects the shortest path in all cases examined at
the cost of an increase in computation time.
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Figure 3.6: Comparison of path lengths in case 5.
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Figure 3.7: Comparison of solving time in case 5.

3.4.4 Effect of heuristic algorithm

This work evaluates the performance of the heuristic algorithm in terms of the
objective value in (3.8), SSCAT, and the computation time. This evaluation
uses cases 1, 3, and 5 in Table 3.1 in this evaluation. Each case randomly
generates ten different availability schedules for cases 1 and 3 and five different
availability schedules for case 5. The evaluation computes the allocations with
these different availability schedules by using the heuristic algorithm and the
ILP approach. Table 3.5 shows the parameter setting used in this evaluation.
The heuristic algorithm is implemented by C++ 15, compiled by Microsoft
Visual C++ 2017 v15.9.16, using Intel Core i7-7700 3.60 GHz 4-core CPU, 32
GB memory.
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Table 3.5: Parameter setting.

Parameter Setting

"� 100
�%# 12
*!%# 100
��% 0.8
��% 0.6
"% 0.8

Table 3.6 compares the results of each test obtained by using the heuristic
algorithm with those obtained by the ILP approach. In most randomly gen-
erated availability schedules, the heuristic algorithm obtains the same SSCAT
values as the ILP approach. In some test results, the heuristic algorithm yields
a smaller sum of the SCAT values of each request, ∑

A∈' VA . The heuristic al-
gorithm reduces the calculation time. However, it does not perform well in a
small number of tests, such as test 6 in case 3 and test 2 in case 5. As the
size of network gets larger or the number of unavailabilities gets larger, the
difference becomes large.

Table 3.7 shows the average computation time for the ILP approach and
the heuristic algorithm for each case. The heuristic algorithm reduces the
computation time by 97.71% compared with the ILP approach on average; the
larger the problem size is, the more the computation time of heuristic algo-
rithm is reduced below that of the ILP approach. Fig. 3.8 shows the differences
in objective and SSCAT values between the heuristic algorithm and the ILP
approach. The difference in objective value between the results calculated by
the ILP approach and the heuristic algorithm is 1.59% on average. Fig. 3.9
shows how the value of the objective in (3.8) changes with successive gener-
ations for test 2 case 1. Heuristic algorithm performance increases with each
generation, but more generations take longer time. The trade-off between the
solution time and result quality when setting the parameters of the heuristic
algorithm need to be considered.
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Table 3.6: Test result.

Case Test

ILP Heuristic algorithm
Obj. value

difference

SSCAT

difference

∑
A∈' VA

difference
SSCAT

(_)

∑
A∈' VA Obj. value Time (s)

SSCAT

(_)

∑
A∈' VA Obj. value Time (s)

Case 1

1 3 20 3.83 22.66 3 18 3.75 0.76 2.09% 0% 10%

2 4 19 4.79 16.77 4 18 4.75 0.76 0.84% 0% 5.3%

3 3 18 3.75 21.22 3 15 3.63 0.74 3.33% 0% 16.7%

4 4 20 4.83 14.57 4 18 4.75 0.76 1.66% 0% 10%

5 4 21 4.88 12.23 4 21 4.88 0.74 0.00% 0% 0%

6 5 23 5.96 2.48 5 23 5.96 0.80 0.00% 0% 0%

7 5 23 5.96 3.05 5 23 5.96 0.88 0.00% 0% 0%

8 3 15 3.63 17.31 3 12 3.5 0.81 3.45% 0% 20%

9 3 21 3.88 9.06 3 21 3.88 0.85 0.00% 0% 0%

10 3 19 3.79 34.04 3 18 3.75 0.87 1.06% 0% 5.3%

Case 3

1 6 48 7 7.64 6 48 7 1.37 0.00% 0% 0%

2 4 44 4.92 1034.54 4 44 4.92 1.56 0.00% 0% 0%

3 5 44 5.92 613.94 5 44 5.92 1.63 0.00% 0% 0%

4 5 47 5.98 195.73 5 46 5.96 1.81 0.35% 0% 2.1%

5 4 44 4.92 619.26 4 44 4.92 1.62 0.00% 0% 0%

6 5 44 5.92 787.32 4 42 4.88 1.02 17.61% 20% -

7 3 41 3.85 5947.47 3 38 3.79 1.90 1.62% 0% 7.3%

8 3 42 3.88 9292.16 3 42 3.88 1.63 0.00% 0% 0%

9 5 46 5.96 592.74 5 46 5.96 1.03 0.00% 0% 0%

10 5 46 5.96 299.59 5 44 5.92 1.05 0.71% 0% 4.3%

Case 5

1 11 42 11.58 194.86 11 42 11.58 1.83 0.00% 0% 0%

2 14 48 14.67 219.73 13 47 13.65 1.23 6.95% 7.14% -

3 10 36 10.50 78.50 10 35 10.49 1.20 0.01% 0% 2.78%

4 18 58 18.81 224.30 18 56 18.78 1.34 0.16% 0% 3.45%

5 11 38 11.53 68.60 11 38 11.53 1.28 0.00% 0% 0%

Table 3.7: Comparison of average computation time for case 5.

Case ILP (s) Heuristic Algorithm (s) Reduction (%)

Case 1 15.36 0.8 94.79%
Case 3 1939.04 1.46 99.92%
Case 5 156.2 1.38 99.12%

3.5 Discussions

3.5.1 Dealing with new requests at new time slots

If allocations at new time slots for new requests are needed, the proposed
model is applied with the following small changes. Assume that a new set of55
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Figure 3.9: Changes in objective value with each generation.

time slots )∗ and requests '∗ at time slot C= ∈ ) is given, the allocations at
time slot C= are known. In order not to affect the SSCAT values of '∗, this
work considers a set of virtual nodes #∗, |#∗ | = maxA∈'∗  A whose capacities
are unlimited. These nodes are available from time slot C= to time slot |) | and
unavailable in )∗.

For a new set of time slots )∗∗ = {[C=, |) |], )∗} and a new set of requests
'∗∗ = {', '∗}, this work allocates all of the functions in '∗ to #∗ at time slot
1 in )∗∗ and gets the values of GA:1,=,∀= ∈ #∗, A ∈ '∗, : ∈  A . The allocations
for '∗ in )∗ can be acquired by using the proposed model with the known
allocations at the first time slot in )∗.

3.5.2 Applicability of proposed model in real systems

The proposed model is applied for the initial allocation of VNFs in SFCs
before the running of services. The proposed model is suitable for deterministic
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availability schedule obtained in advance. The requests in the proposed model
are static and given in advance. The users of the proposed model emphasize the
optimization of the allocations. Failures frequently appear or the maintenances
are frequently performed.

In real systems, SPs need to store the information of availability schedules,
VNFs, services, and network devices in the database. The calculation of the
VNF allocation by using the proposed model is performed in a computation
node in the network with the necessary information from the database. The
computation node can be an independent node whose role is only the allocation
calculation or a node in # with a special function for allocation calculation.
Then the model calculates the allocation of VNFs. The allocation result is sent
to each corresponding node. The nodes run the corresponding functions or the
containers in the nodes by pulling the corresponding images from repositories.

3.6 Summary
This chapter proposed a VNF allocation model for improving the continu-
ous available time of service function chains assuming the existence of known
availability schedules. This work formulated the proposed model as an ILP
problem that maximizes the minimum number of the longest continuous avail-
able time slots in each SFC. This work proved that the decision version of
the VNF allocation problem (VNFA) in the proposed model is NP-complete.
Numerical results showed that the proposed model improves the continuous
available time of SFCs, compared with the persistent allocation model, the
single-slot allocation model, and the double-slot allocation model. This work
observed that the proposed model reduces the path lengths of SFCs as it com-
putes VNF allocation and SFC routes at the same time. This work developed
a heuristic algorithm to yield practical solution time. In the cases examined,
the developed heuristic algorithm reduces the average computation time with
some penalty in performance compared with the ILP approach.
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Primary and backup resource
allocation model for
deterministic availability
schedules

This chapter proposes a primary and backup VNFs allocation to maximize
the continuous available time of SFCs in a network against service interrup-
tions [83, 84].

In this chapter, a kind of hot backup is considered. A backup function
needs to be prepared for a period before it is implemented. The period is called
recovery time. If backup functions are placed and are activated within suitable
time slots for preparation instead of all the time slots from the beginning, the
interruptions can be suppressed. The extra resource consumption for backup
functions can be reduced since the users do not need to backup functions from
the beginning time slot.

Figure 4.1 shows the examples for calculating SSCAT and SCATs and the
differences between the allocations with and without considering backups un-
der a given availability schedule. The example places two function chains 1
and 2 with two and three VNFs to a set of five nodes among six time slots.
Nodes 1 and 2 are not available at time slots 2 and 6, and nodes 4 and 5
are not available at time slot 4. (G, ~) denotes the ~th function of chain G.
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If the example places the functions without considering backup as shown in
Fig. 4.1(a), chains 1 and 2 are interrupted between time slots 3 and 4 caused by
the sudden replacements of functions (1, 2) and (1, 3), and (2, 2), respectively,
and interrupted between time slots 5 and 6 caused by the sudden replacements
of functions (1, 2) and (1, 3), and (2, 2), respectively. SCAT of chain 1 is the
largest continuous available time, i.e., the largest one among three, two, and
one, i.e., three. SCAT of chain 2 is the largest continuous available time, i.e.,
the largest one among three, two, and one, i.e., three. SSCAT is the smallest
value among SCATs of all SFCs, i.e., three. The example assumes that the
recovery times of all functions are one. Functions (1,2), (1,3) and (2,2) at time
slots 3 and 5 are backed up to prevent the interruptions caused by function
replacement at time slots 4 and 6, as shown in Fig. 4.1(b). As a result, the
backup can increase SCATs of all the chains from three to six and SSCAT from
three to six.

The remainder of the chapter is organized as follows. Section 4.1 introduces
the motivation and several applicabilities of the proposed model. Section 4.2
presents the proposed model and gives the upper bound of SSACT provided
by the proposed model. Section 4.3 gives a heuristic algorithm for solving the
considered problem. Section 4.5 discusses some extensions of the proposed
model in different scenarios. Section 4.4 compares the performance of the
proposed model with those of baseline models in different cases. Section 4.6
summarizes the chapter.

4.1 Motivation and applicability
SPs perform maintenance and system updates regularly. Specific VMs waiting
for maintenance and updating are marked as being unavailable at a specific
time by SPs. SPs can reduce the number of service interruptions by know-
ing where and when service interruptions occur and controlling the positions
and time of service interruptions referring to the maintenance schedule known
forehead. In terms of the unscheduled and sudden failures, users can rely
on protection mechanisms [85–87] in the unavailable periods of nodes. This
work does not concern the details of the mechanisms of providing availability
schedules. This work assumes that the availability schedules are estimated and
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(a) Placement without backup.
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Figure 4.1: Examples of service continuous available time of a chain by com-
paring the allocations of all VNFs in a chain in different time slots with and
without backups.

provided by administrators. If a node is marked as available, it is considered
to be available. The availability is ensured by the other protection systems
and techniques, e.g., duplication.

If the exact period or the starting time that a physical machine becomes
unavailable is not considered, the availability and reliability are often evaluated
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by other metrics including probability, mean time to repair, and mean time
between failures in existing studies [61, 88]. The above evaluation is widely
used since the exact time of the unavailability is not usually obtainable. Once
the exact period of unavailability from the maintenance schedules is obtained,
the available period of a service which is evaluated by time, i.e., SSCAT in
this work, is more intuitionistic and applicable compared with the mean times
or probability. This work is based on the motivation that the available and
unavailable time of a physical node is given and the normal running time of
services is the metric to measure. The schedule is assumed to be obtained in
advance.

The models introduced in Chapter 3 provided VNF allocation models to
suppress the interruptions from the allocations on unavailable nodes and the
reallocations. However, it is a passive way to avoid assigning to unavailable
nodes and has a limitation decided by the availability schedules. The proposed
model actively uses backups to avoid the interruptions caused by the realloca-
tion for improving the SSCAT compared with the model without considering
backup VNFs.

4.2 Model design

4.2.1 Problem formulation

In addition to the notions in Section 3.2, this work introduces a new parameter.
�:A ∈ ), A ∈ ', : ∈  A is a given parameter which represents the recovery time
of the :th function of request A. This work assumes that 0 < �:A < |) |. If
the : ∈  Ath function of request A ∈ ' is backed up on node = ∈ # at time
slot C ∈ ) , DA:C= = 1; and otherwise 0. The backed up functions also consume
computing resources.

If = can be continuously occupied for backup from time slot C − �:A to time
slot C − 1, that is, DA:

C−�:A ,=
= DA:

C−�:A +1,=
= · · · = DA:

C−1,= = 1, and this function is
allocated to = at time slot C, that is, GA:C= = 1, this function can be prevented
from the interruption caused by unavailability 4=′C . If the : ∈  Ath function of
request A ∈ ' is prevented from the interruption caused by unavailability 4=′C ,
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UA:C= = 1; and otherwise 0. ∀A ∈ ', : ∈  A , = ∈ #, UA:C= is expressed by:

UA:C= =


((∨=′∈#\{=}4=

′
C G

A:
C−1,=′) ∧ ((

∏
C ′∈[C−�:A ,C−1] D

A:
C ′=) ∧ GA:C= )) ∨ ((4=C

GA:
C−1,=) ∧ (∨=′∈#\{=} (

∏
C ′∈[C−�:A ,C−1] D

A:
C ′=′) ∧ GA:C=′), C ∈ )\

[
1,�:A

]
0, C ∈

[
2,�:A

]
,

(4.1)

in which ∨=′∈#\{=}4=
′
C · GA:C−1,=′ = 1 means that there is an unavailability on node

=′ at time C, i.e. 4=′C , interrupts the allocation of the :th function of request A
on node =′ between time slot C and C−1; and 0 otherwise. To ensure the backup
of this interrupted function work, the maintenance of this backup needs to be
kept from C − �:A to C − 1, i.e., ∏

C ′∈[C−�:A ,C−1] D
A:
C ′= = 1. Finally, the backup is

activated, i.e., GA:C= = 1. The function cannot be backed up on an unavailable
node, which is expressed by:

4=C · DA:C= = 0,∀A ∈ ', : ∈  A , = ∈ #, C ∈ ). (4.2)

>AC is redefined in this chapter. If the allocation of request A is changed
between time slot C − 1 and time slot C or any VNF of request A at time slot
C or C − 1 is allocated to an unavailable node and the function is not backed
up, >AC is set to 0, and otherwise 1. When C = 1, >AC = 0; otherwise, >AC can be
expressed by:

>AC =
∏
:∈ A

∏
=∈#
((GA:C= � GA:C−1,= ∨ UA:C= ) ∧ (1 − GA:C= 4=C ) ∧ (1 − GA:C−1,=4

=
C−1)),

∀A ∈ ', C ∈ )\{1}. (4.3)

If the computational resources of backup functions are limited to a constant
value 'B, DA:C= is constrained by:∑

A∈'

∑
:∈ A

∑
C∈)

∑
=∈#

DA:C= ≤ 'B. (4.4)

'B has a range of 0 to ∑
A∈'

∑
:∈ A �

:
A .

The node capacity constraint is given by:∑
A∈'

∑
:∈ A
(GA:C= + DA:C= ) · @A:B ≤ 2B=C ,∀= ∈ #, C ∈ ), B ∈ (. (4.5)
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Each node, because of the computational resource limitation, can carry only
a limited number of functions. Equation (4.5) ensures that each node’s com-
putational resources must not exceed its capacity during allocation.

The assignment constraint is given by:∑
:∈ A
(DA:C= + GA:C= ) ≤ 1,∀A ∈ ', = ∈ #, C ∈ ), (4.6)∑

=∈#
GA:C= = 1, ∀A ∈ ', : ∈  A , C ∈ ). (4.7)∑

=∈#
DA:C= ≤ 1, ∀A ∈ ', : ∈  A , C ∈ ). (4.8)

Equation (4.6) assumes that one service chain does not allocate multiple VNFs
in this chain on one VM considering the influence of the reallocation of VMs [44]
and that the primary VNF and the backup VNF of the same function cannot
be allocated to the same nodes at one time slot. Equation (4.7) ensures that
all VNFs are placed once in the network. If any requested SFCs cannot be
accepted, there is no feasible solution. To discuss the case that too many SFC
are requested to accept, this work relaxes the constraint in (4.7) and give an
extension of the proposed model to maximize the number of accepted SFCs
as the objective in Section 4.5.3. Equation (4.8) assumes that each VNF has
at most one backup at one time slot. Equations (4.7) and (4.8) impose that
the proposed model only uses at most two replicas, one for primary VNF and
one for backup VNF. If the users of the proposed model want to prevent ser-
vice interruptions from the failures of functions and load balancing by using
VNF replicas in an SFC, a possible extension is introduced in Section 4.5.2 to
support multiple replicas for primary and backup VNFs.

According to the linearization process in Appendix A, (4.1) is linearized to
(4.9)-(4.27) and (4.3) is linearized to (5.5a)-(5.5d), (3.26)-(5.5w), and (4.28)-
(4.33) with some auxiliary variables as follows:

WA:C= ≤
∑

=′∈#\{=}
4=
′
C G

A:
C−1,=′,∀A ∈ ', : ∈  A , = ∈ #, C ∈ )\

[
1,�:A

]
, (4.9)

WA:C= ≥
1

|# | − 1
∑

=′∈#\{=}
4=
′
C G

A:
C−1,=′,∀A ∈ ', : ∈  A , = ∈ #, C ∈ )\

[
1,�:A

]
,

(4.10)
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[A:C= ≤DA:C ′=,∀A ∈ ', : ∈  A , = ∈ #, C ∈ )\
[
1,�:A

]
, C′ ∈ )\

[
C − �:A , C − 1

]
,

(4.11)

[A:C= ≥
∑

C ′∈)\[C−�:A ,C−1]
DA:C ′= − (|) | − �:A ) + 1,∀A ∈ ', : ∈  A , = ∈ #,

C ∈ )\
[
1,�:A

]
, (4.12)

`A:C= ≤[A:C= ,∀A ∈ ', : ∈  A , C ∈ )\
[
1,�:A

]
, = ∈ #, (4.13)

`A:C= ≤GA:C= ,∀A ∈ ', : ∈  A , C ∈ )\
[
1,�:A

]
, = ∈ #, (4.14)

`A:C= ≥[A:C= + GA:C= − 1,∀A ∈ ', : ∈  A , C ∈ )\
[
1,�:A

]
, = ∈ #, (4.15)

gA:C= ≤
∑

=′∈#\{=}
`A:C=′,∀A ∈ ', : ∈  A , C ∈ )\

[
1,�:A

]
, = ∈ #, (4.16)

gA:C= ≥
1

|# | − 1
∑

=′∈#\{=}
`A:C=′,∀A ∈ ', : ∈  A , = ∈ #, C ∈ )\

[
1,�:A

]
, (4.17)

bA:C= ≤4=C GA:C−1,=,∀A ∈ ', : ∈  A , C ∈ )\
[
1,�:A

]
, = ∈ #, (4.18)

bA:C= ≤gA:C= ,∀A ∈ ', : ∈  A , C ∈ )\
[
1,�:A

]
, = ∈ #, (4.19)

bA:C= ≥gA:C= + 4=C GA:C−1,= − 1,∀A ∈ ', : ∈  A , C ∈ )\
[
1,�:A

]
, = ∈ #, (4.20)

kA:C= ≤`A:C= ,∀A ∈ ', : ∈  A , C ∈ )\
[
1,�:A

]
, = ∈ #, (4.21)

kA:C= ≤WA:C= ,∀A ∈ ', : ∈  A , C ∈ )\
[
1,�:A

]
, = ∈ #, (4.22)

kA:C= ≥`A:C= + WA:C= − 1,∀A ∈ ', : ∈  A , C ∈ )\
[
1,�:A

]
, = ∈ #, (4.23)

UA:C= ≤kA:C= + bA:C= ,∀A ∈ ', : ∈  A , C ∈ )\
[
1,�:A

]
, = ∈ #, (4.24)

UA:C= ≥
1
2 (k

A:
C= + bA:C= ),∀A ∈ ', : ∈  A , C ∈ )\

[
1,�:A

]
, = ∈ #, (4.25)

UA:C= =0,∀A ∈ ', : ∈  A , C ∈
[
2,�:A

]
, = ∈ #, (4.26)

WA:C= , [
A:
C= , `

A:
C= , k

A:
C= , b

A:
C= , g

A:
C= ∈ {0, 1},∀A ∈ ', : ∈  A , C ∈ )\

[
1,�:A

]
, = ∈ #,

(4.27)

dA:C= ≤qA:C= + UA:C= ,∀A ∈ ', : ∈  A , C ∈ )\
[
1,�:A

]
, = ∈ #, (4.28)

dA:C= ≥1/2(qA:C= + UA:C= ),∀A ∈ ', : ∈  A , C ∈ )\
[
1,�:A

]
, = ∈ #, (4.29)

\A:C= ≤dA:C= ,∀A ∈ ', C ∈ )\{1}, : ∈  A , = ∈ #, (4.30)
\A:C= ≤1 − GA:C= 4=C ,∀A ∈ ', C ∈ )\{1}, : ∈  A , = ∈ #, (4.31)
\A:C= ≥dA:C= − GA:C,=4=C ,∀A ∈ ', C ∈ )\{1}, : ∈  A , = ∈ #, (4.32)
dA:C= ∈ {0,1} ,∀A ∈ ', : ∈  A , = ∈ #, C ∈ )\{1}. (4.33)
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In summary, this work gives the following model:

max _ + n1
∑
A∈'

VA (4.34)

s.t. (3.2) − (3.5), (3.7), (3.9) − (3.11), (3.13) − (3.22),
(3.26) − (3.37), (4.4) − (4.33),
VA , _ ∈ [1, |) |],∀A ∈ ', 8 ∈ ), 9 ∈ )8, (4.35)
I
9A

8
∈ {0,1} ,∀A ∈ ', 8 ∈ ), 9 ∈ )8 . (4.36)

When there are multiple solutions that maximize _+n1
∑
A∈' VA , the solution

with a small number of backup functions may be preferable. For this purpose,
the following objective function can be used:

max _ + n1
∑
A∈'

VA − n2
∑
A∈'

∑
:∈ A

∑
C∈)

∑
=∈#

DA:C= . (4.37)

The solution that minimizes the number of backup functions ∑
A∈'

∑
:∈ A

∑
C∈)∑

=∈# D
A:
C= is chosen when there are multiple solutions that maximize _+n1

∑
A∈' VA .

Therefore, a sufficiently small positive number, n2, is multiplied to the third
term to prioritize the second term over the third term. n2 is given by 1∑

A ∈'
∑
:∈ A �

:
A

.
There may be several requests sharing the same SFC with different requests

of package processing abilities. This work gives an extension of the proposed
model to separate the requests from the SFCs in Section 4.5.1.

4.2.2 Analysis of proposed model

This subsection derives the upper bound of SSCAT provided by the proposed
model.

Lemma 4.1 The <_CALCULATION function in Algorithm 4.1 gives the
minimum number of required nodes on which all functions in ' are placed
at time slot C ∈ ) , <C.

Proof: This work proves this lemma by contradiction. If the result pro-
vided by <_CALCULATION is not the minimum number of required nodes
at time slot C ∈ ) , <C , there is a set of <′C < <C nodes that can accommo-
date all functions limited by the constraints. To get <′C , all the functions
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Algorithm 4.1 Calculate the number of nodes on which functions are placed
at time slot C
Input: Set of nodes #, a time slot C ∈ ) , set of SFCs ', set of ordered VNFs in SFC A ∈ '

 A , set of the capacities of all nodes at time slot C �C
Output: Set of numbers of key unavailabilities at each time slot (
1: function <_calculation(#, C, ',  A , �C)
2: Sort requests in ' in non-increasing order of | A |, A ∈ '
3: Sort node in # in non-increasing order of 2=C ∈ �C
4: for A ∈ ' do
5: for : ∈  A do
6: for = ∈ # do
7: if used capacity of = is less than 2=C and any other functions in request A

were not placed on node = then
8: Place the :th function in SFC A on =
9: Break
10: else
11: Continue
12: end if
13: end for
14: end for
15: end for
16: return the number of nodes on which functions are placed.
17: end function

67



Chapter 4

placed on a node that belongs to a set of <C nodes obtained by function
<_CALCULATION to other nodes that have been assigned functions need
to be moved. However, the reallocation causes a situation that at least one
node accommodates more functions than it can accommodate, or two functions
from the same SFC are placed on the same node according to the placement
procedure at lines 35-40 of Algorithm 4.8. There is no valid <′C such that it is
less than <C .

Let �C be a set of unavailable nodes at time slot C ∈ ) . Let ΞC ′C , C ∈
)\{|) |}, C′ ∈ )\{1}, C′ > C, denote a binary variable, which is set to 1 if
|# | − |�C ∪ �C ′ | ≥ <C ′; 0 otherwise.

Lemma 4.2 The upper bound of SSCAT provided by the proposed model with-
out considering backup functions is Δ ≡ max

C∈)\{|) |},C ′∈)\{1},C ′>C:ΞC+1C =ΞC+2C =···=ΞC ′C =1{C′−
C}.

Proof: <C is the minimum number of required nodes at time slot C ∈ )
by using Lemma 1. If |# | − �C < <C , there are so many unavailable nodes
that no enough space to place all functions in ' at time slot C exists. If
|# | − |�C ∪ �C ′ | < <C ′, some functions migrate to avoid being placed in an
unavailable node or there is no enough space for function placement. The
longest consecutive duration for which all functions in ' can be placed is the
largest difference between C and C′, where ΞC ′′C = 1,∀C′′ ∈ [C + 1, C′].

Let � denote the smallest �:A ,∀A ∈ ', : ∈  A . Let �′ denote a set of (=, C), = ∈
#, C ∈ ) , where each (=, C) has 4=C = 1, 4=C ∈ � , and there is any node =′ ∈ #\{=}
that satisfies the following conditions: C > �, 4=′C = 4=

′
C−1 = · · · = 4=

′
C−� = 0, and

2=
′
C , 2

=′
C−1, · · · , 2=

′
C−� ≥ 1. This work chooses \ ∈ [1, |�′|] different elements and

store each possible combination as a set to set �′
\
. Let �′′ denote a set of

sets, �′′ = {∅ ∪ �′1 ∪ �′2 ∪ · · · ∪ �′|� ′ |}. Let �′′′0 , 0 ∈ [1, |�′′|], denote a set of
4=C , C ∈ ), = ∈ #, in which 4=C is set to 0 if (=, C) is in �′′0 and other 4=C has
the same value with the corresponding 4=C ∈ � . Lemma 1 obtains <C by using
� . This work calculates Δ0, 0 ∈ [1, |�′′|], with <C ,∀C ∈ ) , and �′′′0 , by using
Lemma 2.

Theorem 4.1 The upper bound of SSCAT provided by the proposed model
with considering backup functions is max0∈[1,|� ′′ |] Δ0.
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Proof: This proof assumes that the recovery time is the smallest one
among all recovery times � in this proof. This proof assumes that 'B is∑
A∈'

∑
:∈ A �

:
A . This proof relaxes the constraint on the required capacities

of backup functions. �′ stores the unavailable locations (=, C) that can be
avoided by using backup functions limited by recovery time �. By calculating
different combinations of elements in �′, all the possible backup plans and
store them into �′′ can be known. The proof forms new availability schedule
�′′′0 ∈ �′′ by assuming that the unavailable locations in �′′′0 are recovered.
The proof regards each modified availability schedule �′′′0 , 0 ∈ [1, |�′′|], as an
availability schedule in the VNF placement model. The proof calculates Δ0 by
using �′′′0 , 0 ∈ [1, |�′′|]. The largest Δ0 is the upper bound of SSCAT in the
proposed model.

4.2.3 Network-aware model

Section 4.2.1 does not consider the routing among VNFs in an SFC and the
recovery path between primary and backup VNFs. Some paths cannot be
chosen because of the limitation of the characteristic of links, such as the link
capacity. The consideration of networks while deciding the VNF allocations
can avoid problems such as the turn-back traffic and the long-distance traffic,
which lead to inefficient resource consumption and increased latencies [89].
This subsection gives an extension on how to handle the routing problems by
considering the networks.

This work uses 3A to express the required transmission resources of request
A ∈ '. For link (8, 9) ∈ !, this work uses 18 9 and ;8 9 to express the available
transmission resources and the end-to-end latency from node 8 to node 9 .
The end-to-end latency contains propagation delay, packetization delay, and
queueing delay. It represents the required time for data forwarding between
two nodes. This work assumes that the end-to-end latency can be estimated
[90], which is related to the network congestion and physical distance. For the
estimation of end-to-end latency, some network measurement tools, e.g., ping,
netperf, and TCPing for TCP transmission, are used. The flow constraint to
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compute the routes of all SFCs is given by:

∑
(8, 9)∈!

0|,8 9 ?
:,8 9
AC =


−1, if GA:C| = 1
1, if GA,:+1C| = 1
0, if GA:C| = G

A,:+1
C| = 0.

(4.38)

For each request, there are three types of nodes: source node (to which the
first function of a request is allocated), destination node (to which the last
function of a request is allocated) and others. This work defines indicator
0|,8 9 , | ∈ #, (8, 9) ∈ !, to represent the adjacency of nodes on directed graph
�, where 0|,8 9 = 1 if node | is the tail of the directed link (8, 9), i.e., | = 9 ;
0|,8 9 = −1 if node | is the head of the directed link (8, 9), i.e., | = 8; 0|,8 9 = 0
otherwise. This work uses binary variable ?:,8 9AC to express the routes in an SFC.
If link (8, 9) is a segment link between the :th node and the (: + 1)th node of
request A ∈ ' at time slot C ∈ ) , ?:,8 9AC = 1; otherwise, 0. According to (4.6), GA:C|
and GA,:+1C| cannot be 1 at the same time. Thus (4.38) can be simplified to:∑

(8, 9)∈!
0|,8 9 ?

:,8 9
AC = − GA:C| + GA,:+1C| ,∀: ∈  A\ {| A |} , A ∈ ',

C ∈ ), | ∈ #. (4.39)

The flow constraint to compute the routes for primary and backup syn-
chronizations is given by:

∑
(8, 9)∈!

0|,8 9@
:,8 9
AC =


−1, if GA:C| =

∑
|′∈# D

A:
C|′ = 1

1, if DA:C| =
∑
|′∈# G

A:
C|′ = 1

0, otherwise.

(4.40)

This work uses binary variable @:,8 9AC to express the routes between the primary
VNF and the backup VNF of a function if there exists any backup. If link
(8, 9) is a segment link between the loactions of the primary node and the
backup node of the :th VNF in request A ∈ ' at time slot C ∈ ) , @:,8 9AC = 1, and
otherwise 0. According to (4.6), GA:C| and DA:C| cannot be 1 at the same time.
Thus (4.40) can be simplified to:∑

(8, 9)∈!
0|,8 9@

:,8 9
AC = − GA:C|

∑
|′∈#

DA:C|′ + DA:C|
∑
|′∈#

GA:C|′,∀: ∈  A , A ∈ ', C ∈ ), | ∈ #,

(4.41)
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which is linearized to (4.42)-(4.49) with some auxiliary variables as follows:∑
(8, 9)∈!

0|,8 9@
:,8 9
AC = −Z A:C| + ]A:C|,∀: ∈  A , A ∈ ', C ∈ ), | ∈ #, (4.42)

Z A:C| ≤ GA:C| ,∀: ∈  A , A ∈ ', C ∈ ), | ∈ #, (4.43)

Z A:C| ≤
∑

|′∈#
DA:C|′,∀: ∈  A , A ∈ ', C ∈ ), | ∈ #, (4.44)

Z A:C| ≥ GA:C| +
∑

|′∈#
DA:C|′ − 1,∀: ∈  A , A ∈ ', C ∈ ), | ∈ #, (4.45)

]A:C| ≤ DA:C|,∀: ∈  A , A ∈ ', C ∈ ), | ∈ #, (4.46)

]A:C| ≤
∑

|′∈#
GA:C|′,∀: ∈  A , A ∈ ', C ∈ ), | ∈ #, (4.47)

]A:C| ≥ DA:C| +
∑

|′∈#
GA:C|′ − 1,∀: ∈  A , A ∈ ', C ∈ ), | ∈ #, (4.48)

Z A:C| ,]
A:
C| ∈ {0, 1},∀: ∈  A , A ∈ ', C ∈ ), | ∈ #. (4.49)

The link capacity constraint is given by:∑
A∈'

∑
:∈ A
(?:,8 9AC + @

:,8 9
AC )3A ≤ 18 9 ,∀(8, 9) ∈ !, C ∈ ). (4.50)

Equation (4.50) ensures that each link’s transmission resource is not overused.
This work takes the connections between nodes into consideration. The

network-aware model is given by:

max _ + n1
∑
A∈'

VA − n3
∑
A∈'

∑
C∈)

∑
:∈ A

∑
(8, 9)∈!

;8 9 ?
:,8 9
AC (4.51a)

s.t. (3.2) − (3.5), (3.7), (3.9) − (3.11), (3.13) − (3.22),
(3.26) − (3.37), (4.4) − (4.33), (4.39), (4.42) − (4.50) (4.51b)
I
9A

8
∈ {0,1} ,∀A ∈ ', 8 ∈ ), 9 ∈ )8 . (4.51c)

The solution that minimizes the sum of end-to-end latencies for all routes,∑
A∈'

∑
C∈)

∑
:∈ A

∑
(8, 9)∈! ;8 9 ?

:,8 9
AC , is chosen when there are multiple solutions

that maximize _ + n1
∑
A∈' VA . Therefore, a sufficiently small positive number,

n1, is multiplied to the second term of objective function to prioritize the first
term over the second term; a sufficiently small positive number, n3, is multiplied
to the third term to prioritize the second term over the third term. n3 is given
by 1
|' |·| A |·|) |·|! | .
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The model in Section 4.2.1 is a subset of the model in this subsection.
Routing is given and the minimum of end-to-end latencies is considered in this
subsection. If the SPs are only responsible for function allocations and not
for routing and forwarding between different VNFs in the SFCs, the model in
Section 4.2.1 is more suitable and faster than that in this subsection since the
model in Section 4.2.1 has less decision variables and items in the objective
function.

4.3 Heuristic algorithm

As the size of the ILP problem presented in Section 4.2.1 increases, the problem
becomes more difficult to solve in practical time. A feasible solution may not
be obtained within admissible computational time, which can be specified by
SPs. Genetic algorithms have been used for VNF resource allocation problems
in previous works, e.g., [91] and [92]. This work introduces a genetic-algorithm-
based heuristic algorithm in this section based on that introduced in Chapter 3.

4.3.1 Overall structure

The running parameters for the heuristic algorithm are the same with those
in 3.3, which are set before the running of the algorithm by experience. The
procedure of the heuristic algorithm is shown in Fig. 4.2. At first, the algo-
rithm generates a group of initial feasible solutions whose size is IPN by using
the approach in Section 4.3.2. For each solution in the group, the algorithm
uses three mutation approaches, internal crossover, external crossover, and
mutation, to generate new solutions based on the selected solution. Each ap-
proach has a probability which decides if the approach is used for generating
new solutions. The three approaches are introduced in Section 4.3.3. Newly
generated solutions are added to the group of solutions. The algorithm calcu-
lates the fitness score for each solution by using the method in Section 4.3.5
and updates the best solutions. If the number of solutions exceeds the limita-
tion ULPN, ULPN solutions are selected from the group for the next process
by using the roulette gambler approach. The unselected solutions are deleted.
The probability of a solution being selected is related to its fitness score; the
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Start

Generate initial 

solutions.

Current loop > 

MG ?

No

For each solution, generate new 

solutions by using different 

mutation approaches according to 

the corresponding probabilities.

Select UP solutions from the  

existing and new solutions by using 

roulette gambler approach.

Calculate and store the best solution 

among the current solutions

End

Output the solution

Yes

Figure 4.2: Procedure of heuristic algorithm.

higher the fitness score is, the higher the probability of the solution being se-
lected is. The above steps are repeated MG times, and then the algorithm
outputs the best solution explored in the procedures. The main function of
the heuristic algorithm is shown in Algorithm 4.2. The algorithm calculates
the allocations of primary and backup VNFs in given requests.

In line 1, Algorithm 4.3 introduced in Section 4.3.2 gives a set of initial
feasible solutions for primary function allocation whose size is the initial pop-
ulation (IPN). In lines 2-4, if Algorithm 4.3 cannot provide a feasible solution,
the heuristic algorithm reports that no feasible solution is found. In lines
5–28, the heuristic algorithm enters a loop with maximum generation (MG)
cycles. In each cycle, the heuristic algorithm generates new feasible solutions
by performing internal crossover (see function CROSS IN in Algorithm 4.5 of
Section 4.3.3), external crossover (see function CROSS OUT in Algorithm 4.5
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of Section 4.3.3), and mutation (see Algorithm 4.4 of Section 4.3.3) according
to three probabilities: internal crossover probability (ICP); external crossover
probability (ECP); and mutation probability (MP), respectively. Newly gen-
erated solutions in lines 9, 14, and 19 are stored in the new feasible solution
set. They are added to the feasible solution set at a time in line 22. In line 23,
the heuristic algorithm calculates the fitness for each solution and the backup
function allocations for each function, and then returns the fitness score and
the backup allocations (see Algorithm 4.7 in Section 4.3.5). In line 24, the
genetic algorithm finds the solution with the highest fitness score and stores
the primary and backup function allocation. In lines 25–27, if the size of
the feasible solution set exceeds the upper limitation of population (ULPN),
the heuristic algorithm chooses UP feasible solutions as a new set of feasible
solutions according to roulette gambler (see Algorithm 3.6 in Section 4.3.4).

Algorithm 4.2 Main function
Input: #, ) , ',  A , 2B=C ∈ �, IPN, MG, ECP, ICP, MP, ULPN
Output: primary and backup function allocations
1: � ← Generate set of initial feasible solutions by using function init_chromos in Algo-

rithm 4.3
2: if � = ∅ then
3: return No feasible solution
4: end if
5: for BC4? = 1→MG do
6: Define �n as the new feasible solution set
7: for each solution in � do
8: if a random number in [0, 1] > 1 − ��# then
9: �n ←Generate a non-redundant and mutant solution by using function 2A>BB_8=

in Algorithm 4.5 whose inputs are the selected solution in � and random time slot C
10: end if
11: end for
12: for each solution in � except for the first one do
13: if a random number [0, 1] > 1 − ��% then
14: �n ←Generate a non-redundant and mutant solution by using function 2A>BB_>DC

in Algorithm 4.5 whose inputs are the selected solution and its previous solution in �
15: end if
16: end for
17: for each solution in � do
18: if a random number [0, 1] > 1 − "% then
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19: �n ←Generate a non-redundant and mutant solution by using function muta-
tion in Algorithm 4.4 whose input is the selected solution in �

20: end if
21: end for
22: Integrate �n into �
23: Calculate the fitness score of the solutions in � by using function calc_fin_ness in

Algorithm 4.7
24: Store the solution with the highest fitness score
25: if size of � >ULPN then
26: Reduce the size of the set to ULPN by using function roulette_gambler in Algo-

rithm 4.6
27: end if
28: end for

4.3.2 Initial solution generation

The heuristic algorithm generates a group of initial feasible solutions for pri-
mary VNF allocations by using the function described in this subsection.
Based on this group, more feasible solutions can be generated by the mutation
approaches in Section 4.3.3.

In the heuristic algorithm, each solution is a three-dimensional matrix. The
first dimension represents time slots, the second one represents requests, and
the third one represents functions. The value of an element whose location is
(C, A, :) is the allocation of the :th function of request A at time slot C, which
belongs to #.

This algorithm reorders the set of chains in non-increasing order of the
number of VNFs in this chain. The algorithm tries to allocate each function
to each node and ensure that the capacity of the node does not exceed. If
all the functions of all chains among all time slots can be allocated, an initial
solution is generated and stored. Since one initial solution is not enough for
providing variations of the solutions, the algorithm duplicates the generated
initial solution to a given parameter, initial population (IPN). A relatively
large population can speed up the convergence of the algorithm and provide
more variations of the solutions.
Algorithm 4.3 Initial solution
1: function init_chromos(�)
2: Set of initial solutions B← q
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3: Sort requests in ' in non-increasing order of  A
4: for each time slot in ) do
5: Sort nodes in # in non-increasing order of time from time slot C to a

time slot in which a node becomes unavailable. If the above values are the
same for some =, sort them in non-increasing order of time from time slot C
to a time slot in which a node becomes unavailable secondly. If the above
values are the same for some =, sort them in non-increasing order of time
from time slot C to the last time slot in which a node becomes unavailable.

6: for A ∈ ' do
7: for 5 = 1→  A do
8: for = ∈ # do
9: if used capacity of = is less than 2C= AND any other func-

tions in A were not allocated to = then
10: Allocate the 5 th function in SFC A to =
11: Break
12: else
13: Continue
14: end if
15: end for
16: end for
17: end for
18: Store the allocation to B
19: end for
20: Duplicate a solution iteratively until the number of solutions in B be-

comes IPN
21: return B

22: end function

Algorithm 4.3 reorders set ' according to the corresponding  A from long
to short first (line 3). Then, it performs function allocation one by one (lines
4-19). At each time slot, the heuristic algorithm reorders set # according
to the occurrence of unavailabilities from late to early (line 5). Then the
heuristic algorithm allocates the functions to physical nodes according to these
new orders (lines 9-13). Finally, the heuristic algorithm duplicates a solution
iteratively until the number of solutions becomes initial population (IPN) (line
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20).

4.3.3 Mutation

The heuristic algorithm provides three approaches for generating new solutions
based on the current solutions so that better solutions may appear. One of
the approaches for generating new solutions for primary VNF allocations is
mutation based on an existing solution. The other two approaches are internal
crossover and external crossover, which generate the solutions based on the
length of each SFC. On the other hand, mutation generates a new solution
based on the SCAT of each SFC.

The algorithm calculates the SCAT for all SFCs in the input solution. The
algorithm sorts chains and nodes in weighted randomized order: the larger the
SCAT is, the higher the order of the corresponding chain is; the larger the
time from the first time slot to a time slot where a node becomes unavailable
is, the higher the order of the corresponding node is. The algorithm generates
a new solution with the above orders and the same method as the generation
of the initial solution.

Algorithm 4.4 Mutation
1: function mutation(B← the selected solution, �)
2: Calculate the SCAT for all SFCs in solution s
3: Sort requests in ' in a weighted randomized order. The larger the

SCAT, the higher the order of the corresponding A.
4: Sort nodes in # in a weighted randomized order. The larger the time

from the first time slot to a time slot where a node becomes unavailable,
the higher the order of the corresponding =.

5: for A ∈ ' do
6: for 5 = 1→  A of request A do
7: for = ∈ # do
8: if used capacity of = is less than 2C= AND any other functions

in A were not allocated to = then
9: Allocate the 5 th function in SFC A to =
10: Break
11: else
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12: Continue
13: end if
14: end for
15: end for
16: end for
17: return new solution
18: end function

The internal crossover, function cross_in in Algorithm 4.5, crosses adja-
cent time slots in the same solution. The aim of cross_in is to suppress the
reallocations of VNFs between adjacent time slots.

The external crossover, function cross_out in Algorithm 4.5, crosses the
same time slot between two solutions in the feasible solution set. A new
solution is generated by modifying the VNF allocation in a randomly selected
time slot of one solution based on that of another solution.

Algorithm 4.5 Crossover
1: function cross_in(B← the selected solution , C ← the random time)
2: B[C] ← B[C + 1]
3: return B

4: end function
5: function cross_out(B1, B2)
6: ;>20C8>=← a random integer in [1, |) |]
7: B2 ← B1

8: B2 [;>20C8>=] ← B2 [;>20C8>=]
9: return B2

10: end function

4.3.4 Choice of solutions

The heuristic algorithm uses roulette wheel selection to create a new feasible
solution set by choosing *% solutions from the feasible solution set.

In the roulette_gambler and choice functions in Algorithm 3.6, input 2ℎA><B
is the set of solutions and 5 8C_?A>B is the set of the fitness scores of the cor-
responding solutions in 2ℎA><B.

Algorithm 4.6 Choice
1: function roulette_gambler( 5 8C_?A>B, 2ℎA><B)
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2: ?82: ← a random number in [0, 1]
3: for 9 = 1→ |2ℎA><B | do
4: ?82: ← ?82: − 5 8C_?A>B[ 9]/sum( 5 8C_?A>B)
5: if ?82: ≤ 0 then
6: return 9

7: end if
8: end for
9: return |2ℎA><B | − 1
10: end function
11: function choice(2ℎA><B, 5 8C_?A>B)
12: 2ℎ>824_�4=B← q

13: for 8 = 1→ min( |2ℎA><B |,UP) do
14: 9 ← roulette_gambler( 5 8C_?A>B, 2ℎA><B)
15: append 2ℎA><B[ 9] to 2ℎ>824_�4=B
16: end for
17: return 2ℎ>824_�4=B
18: end function

4.3.5 Calculation of fitness

The algorithm computes the fitness score for each solution by using (3.8) and
the possible backup function allocations. The algorithm finds the noncon-
tinuous allocation of each chain. The algorithm calculates possible backup
function allocations to extend the SCAT of each chain. There is a probability
of applying the backup strategy (BP). Finally, the algorithm returns the calcu-
lated fitness score defined in (4.1), (3.7)-(3.6), and (3.8), and the corresponding
backup function allocations.

Algorithm 4.7 Fitness calculation
1: function calc_fin_ness(B← the selected solution, �)
2: Calculate the available resources of each node in solution s at each time slot
3: for A ∈ ' do
4: for C ∈ )\{1} do
5: if Allocation of functions in request A at time slot C is different from that at

time slot C − 1 then
6: for 5 = 1→  A of request A do
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7: if the allocations of the :th function in request A at time slot C and
C − 1 are different AND C is larger than �:A then

8: =← the allocation of the :th function in request A at time slot C
9: for C2← C − �:A 1, ..., C − 1 do
10: if = has no enough resources at time slot C2 OR any other

function of request A is not allocated to = at time slot C2 then
11: Request A is not continuous between time slots C − 1 and C
12: Break
13: end if
14: diff ← (C, A, :, =)
15: end for
16: end if
17: end for
18: if Continuity of request A between time slots C − 1 and C has not been

decided AND diff is not empty AND there are enough resources for allocations stored
in diff AND a random number [0, 1] >1- BP then

19: Request A is continuous between time slots C − 1 and C
20: Merge set diff to backup function allocations and update the available

resources of each node
21: else
22: Request A is not continuous between time slots C − 1 and C
23: end if
24: else if Allocate any function in request A on an unavailable node at time slot

C or C − 1 then
25: Request A is not continuous between time slots C − 1 and C
26: else
27: Request A is continuous between time slots C − 1 and C
28: end if
29: end for
30: end for
31: Calculate the SCAT for all SFCs in solution s
32: return min((��))+sum((��))/(|) | × |' |), backup allocations
33: end function

4.4 Evaluations

This work compares the proposed model with the allocation model in Sec-
tion 3.2.1, three baseline models are introduced in Section 3.4: a persistence
allocation model, a single-slot allocation model, and a double-slot allocation
model. This work compares the SSCATs provided by the above five models.
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Table 4.1: Evaluation conditions.

Case Nodes Cap. Req. Func. Time
slots Max. unavailabilities

1 8 2 4 3, 2, 2, 4 6 2
2 8 2 4 3, 2, 2, 4 6 6
3 16 2 8 6, 3, 2, 2, 4, 4, 3, 2 6 2
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Backup allocation Mode in Chapter 3 Double-slot allocation

Single-slot allocation Persistence allocation

Figure 4.3: SSCAT values yielded by four models.

The persistence allocation model is implemented by Python 3.7, using Intel
Core i7-7700 3.60 GHz 4-core CPU, 32 GB memory. The ILP problems of
the other models are solved by the IBM(R) ILOG(R) CPLEX(R) Interactive
Optimizer with version 12.7.1 [82] and run on the same hardware.

There are two tests for the comparison. In the first test, this work sets
'B =

∑
A∈'

∑
:∈ A �

:
A in the proposed model and compares the result with other

models. Three cases are examined in the first test. The conditions of these
cases are shown in Table 4.1. In this table, Nodes means the number of nodes;
Capacity means the capacity of each node at each time slot; Requests means
the number of functions in each request; Functions means the number of func-
tions in each request; Time slots means the number of time slots; Maximum
Unavailabilities means the maximum number of unavailable nodes at a time
slot. In all cases, this work obtains the VNF allocation of the proposed model
by solving the ILP problem in Section 4.2. In cases 1, 2 and 3, this work
randomly generates ten different availability schedules. In each case, this work
computes the VNF allocations in the same network. This yields the computed
SSCAT values which are then averaged. Fig. 4.3 shows the SSCAT values
yielded by the four models.
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Figure 4.4: Dependency of objective value on 'B.

In the second test, this work compares the results with different values of
'B. There are three cases in the second test. In case 1, four SFCs are needed
to be allocated to an eight-node network in six time slots. The lengths of
these SFCs are four, three, two, and two, respectively. The unavailabilities
are: 41

2, 4
2
2, 4

7
4, 4

8
4, 4

1
6, 4

2
6 are 1, and other 4=C are 0. The recovery time is one. In

case 2, the number of SFCs is reduced from four to three compared with case
1. The lengths of these SFCs are four, three, and two, respectively. In case 3,
the length of the third SFC in case 1 is increased from two to three.

Figure 4.4 shows the dependency of objective value on 'B. With increase
of '�, there are three obvious increments of objective values in Figs. 4.4 (a),
(b), and (c). There is a set of unavailabilities in availability schedule that are
bottlenecks to reach higher SSCAT, which causes an obvious increment if '�
increases. This work calls these unavailabilities key unavailabilities. This work
develops Algorithm 4.8 to estimate the number of key unavailabilities in each
time slot. With this estimate, SPs can find the unavailable nodes which are
the bottlenecks to increase SSCAT at each time slot. These unavailabilities
are required to be eliminated priorly so that SPs can increase the service
continuous available time with the least cost on failure recovery.

4.4.1 Impact of different types of availability schedules

The distributions of unavailabilities in the availability schedules impact the
SSCAT values obtained by the proposed model. In addition, the effect of
backup functions may be different in different types of availability schedules.

To demonstrate this impact, the evaluation randomly generates five differ-
ent types of availability schedules with different positions of the unavailable
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Algorithm 4.8 Calculate the number of key unavailabilities
Input: Set of nodes #, set of time slots ) , set of SFCs ', set of ordered VNFs in SFC

A ∈ '  A , set of the capacities of all nodes at all time slots �, availability schedule �
Output: Set of numbers of key unavailabilities at each time slot (
1: Set * ← ∅
2: Define DC for storing the number of key unavailabilities at time slot C ∈ ) and set DC ← 0.
3: for C = 1→ |) | do
4: < ← <_calculation(#, ) , ',  A , �C).
5: if < > |# | then
6: return No solutions.
7: end if
8: Check the nearest time slot C ′ < C, which has a different set of unavailabilities from

those in C.
9: if C ′ exists then
10: Define # ′ as a set of = ∈ # where 4C= = 1 or 4C′= = 1.
11: if |# | − |# ′ | < < then
12: DC ← < − |# | + |# ′ |. Add DC to *.
13: end if
14: else
15: if |# | −∑

=∈# 4
C
= < < then

16: DC ← < − |# | +∑
=∈# 4

C
=. Add DC to *.

17: end if
18: end if
19: end for
20: �: is a set of all combinations of : ∈ [1, |* |] elements in *, �0

:
is the 0th element of

�: , or �0: ∈ �: , 0 ∈ [1, |�: |].
21: ( ← ∅, B← 0
22: for : = 1→ |* | do
23: for 0 = 1→ |�: | do
24: { ← the objective value computed by assuming that DC ∈ �0: unavailable nodes

become available at time slot C. DC unavailable nodes are chosen in the following sets
of unavailable nodes at time slot C in order they are found: new unavailable nodes at C;
unavailable nodes chosen before C. In each set, any nodes are chosen.

25: if { >= B then
26: if { = B and |�0

:
| > |( | then

27: Continue
28: end if
29: ( ← �0

:
, B← {

30: end if
31: end for
32: end for
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Table 4.2: Comparison between proposed model and model in Chapter 3 with
different availability schedules.

Model Type SSCAT Sum of SCATs

Chapter 3

1 6.0 24.0
2 3.0 18.9
3 3.0 18.0
4 2.9 15.8
5 2.8 15.4

This work

1 6.0 24.0
2 3.0 19.3
3 3.0 18.3
4 3.0 18.0
5 3.0 18.1

nodes in each time slot and calculate the SSCAT values with these availability
schedules under the same condition. The evaluation considers an eight-node
network, where the capacity of each node is set to two. The evaluation consid-
ers four requests with lengths of three, two, two, and four, respectively. The
evaluation considers six time slots in this demonstration. In each time slot,
there are two node unavailabilities. From types 1 to 5, the positions of unavail-
abilities become more random and scattered. The unavailabilities in the five
types of schedules appear on two, three, four, five, and six nodes, respectively.
The evaluation randomly generates ten availability schedules for each type and
calculate the SSCATs and the sums of SCATs under all availability schedules.
The average values of ten schedules belonging to the same type are shown in
Table 4.2.

Table 4.2 shows the SSCAT values for the five types of availability schedules
given by the proposed model and the model in Chapter 3. The proposed model
provides a lower improvement on SSCATs if the positions of unavailabilities are
more compact, such as type 1, and provides a higher improvement on SSCATs
if the positions of unavailabilities are more sparse, such as type 5.
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4.4.2 Analysis of network-aware allocation model

This subsection evaluates the performance of the proposed network-aware
model in Section 4.2.3 compared with the model in Section 4.2.1 which does
not consider routing and the model in Chapter 3, which considers routing
without backup VNFs,

This evaluation uses four types of networks in this analysis: single data
center of fat tree topology, multiple data centers dispersed geographically of
fat tree topology [89], BCube topology [93], and visible light communication
(VLC) networking topology [94]. The networks are shown in Fig. 4.5. � repre-
sents the network devices, e.g., switches and routers. © represents the nodes
to which the VNFs can be allocated. Both two types of elements are consid-
ered as nodes in the model proposed in section III.C. To distinguish different
nodes, the evaluation sets different capacities for them since VNFs cannot be
allocated to switches and routers. The capacities of � and © are set to 0
and 2, respectively. The allocations among six time slots are considered. In
Figs. 4.5(a) and (b), the available transmission resources of links between lay-
ers 0 and 1, 1 and 2, 2 and 3, and 3 and 4 are set to 16, 8, 4, and 2 units,
respectively. The end-to-end latencies of links between layers 0 and 1, 1 and 2,
2 and 3, and 3 and 4 are set to 8, 4, 2, and 1 units, respectively. In Fig. 4.5(c),
the available transmission resources of links in layer 0 and those between layers
0 and 1 are set to 8 and 4 units, respectively. The end-to-end latencies of links
in layer 0 and those between layers 0 and 1 are set to 1 and 4 units, respec-
tively. In Fig. 4.5(d), the available transmission resources of links between the
router and access points, and those between access points and terminals are
set to 8 and 4 units, respectively. The end-to-end latencies of links between
the router and access points, and those between access points and terminals
are set to 1 and 8 units, respectively. In Figs. 4.5(a) and (d), there are three
requests with lengths of three, two, and two, respectively. The availability
schedule used in these graphs is shown in Fig. 4.6(a). In Figs. 4.5(b) and (c),
this evaluation considers four requests with lengths of four, three, two, and
two. The availability schedules used in these graphs are shown in Figs. 4.6(b)
and (c), respectively.

Observed from Table 4.3, the network-aware proposed model reduces the
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Table 4.3: Comparison among proposed model with and without network-
aware allocation and model in Chapter 3.

Model Type† SSCAT Sum of
SCATs

Sum of
latencies

Chapter 3

S 3 9 84
D 4 16 244
B 3 17 198
V 3 9 402

Network-aware
proposed model

S 4 15 96
D 5 23 176
B 5 22 216
V 4 15 402

Non-network-aware
proposed model

S 4 15 156
D 5 23 1640
B 5 22 580
V 4 15 410

†Type S: fat tree, single database network. Type D: fat tree, double database network.
Type B: BCube network. Type V: VLC network.

latencies of services with keeping the same values of SCATs of services com-
pared with the non-network-aware proposed model. Compared with the model
in Chapter 3, the network-aware proposed model improves the value of SSCAT
but the latencies of services also increase.

4.4.3 Analysis of heuristic algorithm

This subsection evaluates the performance of the proposed model with the
heuristic algorithm introduced in Section 4.3. This evaluation compare the
performances between the ILP approach and the heuristic algorithm in a 16-
node network as the first test. The evaluation compares the performances
among the proposed model with the heuristic algorithm and the five baseline
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Layer 1

Layer 2

Layer 4

Layer 3

(a) Fat tree, single data center.

Layer 1

Layer 2

Layer 4

Layer 3

Layer 0

(b) Fat tree, two data centers.

Layer 1

Layer 0

Router

Access points

Terminals

(c) BCube.

Layer 1

Layer 0

Router

Access points

Terminals

(d) VLC.

Note: �: switch or router. ©: node to which the VNFs can be allocated.

Figure 4.5: Two graphs for tests of network-aware allocation model.

models in a 100-node network during 365 time slots based on the Microsoft
Azure maintenance records in [95].

The heuristic algorithm is designed to reduce the computation time within
an acceptable performance degradation. The evaluation evaluates the perfor-
mance of the proposed model with the heuristic algorithm in terms of the
objective value calculated by (4.34), SSCAT, the sum of SCATs, and the com-
putation time. The evaluation considers a 16-node network, where the capacity
of each node is set to five. The evaluation considers seven requests with lengths
of three, two, two, three, two, two, and four, respectively. The recovery time
of each function is set to one time slot. The evaluation considers six time
slots in this analysis. In each time slot, there are five node unavailabilities.
The evaluation randomly generates ten different availability schedules with
different positions of the unavailable nodes in each time slot and calculate the
values with these availability schedules under the same condition. The evalu-
ation compares the results obtained by the proposed model with the heuristic
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               Node

Time slot
1 2 3 4 5 6

1 U U

2 U
3 U
4 U
5 U U

6 U

(a) Availability schedules for the tests us-
ing single data center and VLC networks.

               Node

Time slot
1 2 3 4 5 6 7 8 9 10 11 12

1 U U U

2 U U

3 U U
4 U U
5 U U U

6 U U

(b) Availability schedules for the tests using double data
center network.

               Node

Time slot
1 2 3 4 5 6 7 8 9

1 U U U
2 U U

3 U

4 U

5 U U

6 U U

(c) Availability schedules for the tests using BCube net-
work.

Figure 4.6: Availability schedules for tests of network-aware allocation model.

algorithm, the ILP approach of the proposed model, and the ILP approach of
the model in Chapter 3.

The heuristic algorithm is implemented by C++, compiled by Microsoft
Visual Studio Community 2019 with version 16.8.3, using Intel Core i7-7700
3.60 GHz 4-core CPU, 32 GB memory.

Table 4.4 shows the parameter settings used in this evaluation. Table 4.5
shows the results in ten tests and Table 4.6 shows the average differences be-
tween the ILP approach and the heuristic algorithm in terms of objective val-
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Table 4.4: Parameter setting in heuristic algorithm.

Parameter Setting

"� 100
�%# 12
*!%# 60
��% 0.6
��% 0.4
"% 0.3
�% 0.9

ues and computation times among ten tests. The heuristic algorithm reduces
66.75% computation time with a 1.57% performance degradation in terms of
the objective value on average in the examined test cases. In test 10, the al-
location result obtained by the heuristic algorithm has a lower objective value
than that obtained by the ILP approach, but the objective value of the alloca-
tion obtained by the heuristic algorithm is still larger than that of Chapter 3.

The evaluation needs to decide the allocations on a 100-node network dur-
ing 365 time slots in the second test. The evaluation considers 40 requests.
The lengths of three requests are seven. The lengths of 10 requests are five.
The lengths of 20 requests are four. The lengths of five requests are three. The
lengths of two requests are two. The recovery time of each function is set to one
time slot. The capacity of each node is two. The heuristic algorithms of the
proposed model, the model in Chapter 3 and the persistent placement model
are implemented by C++, compiled by Microsoft Visual Studio Community
2019 with version 16.8.3, using Intel Core i7-7700 3.60 GHz 4-core CPU, 32
GB memory. The other baseline models are solved by the IBM(R) ILOG(R)
CPLEX(R) Interactive Optimizer with version 12.10.0 and run on the same
hardware.

Table 4.7 shows the comparison results. The proposed model provides the
maximum objective value and has the longest computation time among the
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Table 4.6: Comparison of average computation times and objective values
obtained by ILP approach and heuristic algorithm.

Method Computation times [s] Objective values

ILP approach 3.97 7.00
Heuristic algorithm 1.32 6.89

Difference (%) 66.75 1.57

Table 4.7: Comparison of average computation times and objective values
obtained by proposed model with heuristic algorithm and four baseline models.

Method Computation times [s] Objective values

Proposed model 22248.00 14.05
Model in Chapter 3 22076.40 13.06

Double-slot placement 2298.609 9.034
Single-slot placement 517.6713 2.010
Persistent placement 1.345946 6.032

five examined models in this case. The single-slot placement outperforms the
persistent placement since the unavailabilities in the given availability schedule
are loose. The effect of the unavailable nodes on the persistent placement
is weaker than that of the reallocations between different time slots on the
single-slot placement. If both effects by using the double-slot placement are
considered, the double-slot placement outperforms both of them in terms of
the objective value with the cost of longer computation time. The proposed
model outperforms the model in Chapter 3 with less cost on computation
time. It is valuable to take backup measures by using the proposed model in
the examined case compared with the model in Chapter 3.
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4.5 Discussions

4.5.1 Separate SFCs from requests

This work assumes that one request corresponds to one SFC in Section 4.2.
There may be several requests sharing the same SFC with different requests
of package processing abilities. This work gives an extension of the pro-
posed model to separate the requests from the SFCs. This work redefines
the requests, SFCs, VNFs, and recovery time to replace the definitions in Sec-
tion 4.2.1. The definitions of decision variables GA:C= and DA:C= are changed as
follows.

' represents the set of requests from the users. � represents the set of
SFCs waiting for provisions. Each SFC is an ordered set of VNFs. � is the set
of functions. �2 ⊆ � is the ordered set of VNFs used in SFC 2 ∈ �. Binary
given parameter k 5 2 is set to 1 if function 5 ∈ � is used in SFC 2 ∈ �; 0
otherwise. Binary given parameter W2A , A ∈ ', 2 ∈ �, is set to 1 if request A
requests SFC 2; 0 otherwise. Given parameter @ 5B represents the amount of
resource B ∈ ( which function 5 ∈ � requires. � 5 is a given parameter which
represents the recovery time of function 5 ∈ �.

This work uses binary decision variable G 5C= to represent the allocation of
primary VNF; G 5C= is set to 1 if function 5 ∈ � is assigned to node = ∈ # at
time slot C ∈ ) ; 0 otherwise. This work uses binary decision variable D 5C= to
represent the allocation of backup VNF; D 5C= is set to 1 if function 5 ∈ � is
assigned to node = ∈ # at time slot C ∈ ) ; 0 otherwise.

UA:C= in Section 4.2.1 is redefined to U 5C=, which denotes a binary variable
which is set to 1 if function 5 ∈ � is prevented from the interruption happening
on node = ∈ # at time slot C ∈ ) ; 0 otherwise, ∀ 5 ∈ �, = ∈ #, U 5C= is expressed
by:

UA:C= =



{
(∨=′∈#\{=}4=

′
C G

5

C−1,=′) ∧
(
(∏C ′∈[C−� 5 , C−1]

D
5

C ′=) ∧ G
5
C=

)}
∨

{
(4=C G

5

C−1,=) ∧
(
∨=′∈#\{=} (∏

C ′∈[C−� 5 , C−1] D
5

C ′=′) ∧ G
5

C=′
)}
, C ∈ )\

[
1, � 5

]
0, C ∈

[
2, � 5

]
,

(4.52)

According to the above redefinitions, this work gives a new version of the
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related parameters and constraints as follows:

>AC =
∏
=∈#

{(∏
2∈�

∏
5 ∈�2

k 5 2W2A (G 5C= � G
5

C−1,=)
)
∧
(
1 − (

∏
2∈�

∏
5 ∈�2

k 5 2W2AG
5
C=) ∧ 4=C

)
∧
(
1 − (

∏
2∈�

∏
5 ∈�2

k 5 2W2AG
5

C−1,=) ∧ 4
=
C−1

)}
,

∀A ∈ ', C ∈ )\{1}, (4.53a)∑
5 ∈�
(G 5C= + D

5
C=)@

5
B ≤ 2=C ,∀= ∈ #, C ∈ ), (4.53b)∑

5 ∈�2
(G 5C= + D

5
C=) ≤ 1, ∀2 ∈ �, = ∈ #, C ∈ ), (4.53c)∑

=∈#
G
5
C= = 1, ∀ 5 ∈ �, C ∈ ), (4.53d)∑

=∈#
D
5
C= ≤ 1, ∀ 5 ∈ �, C ∈ ). (4.53e)

Equation (4.53a) replaces GA:C= in (3.1) with ∏
2∈�

∏
5 ∈�2 k 5 2 W2AG

5
C=. Equa-

tion (4.53b) replaces (3.9) and ensures that each node’s computational re-
sources must not exceed its capacity during allocation. Equation (4.53c) re-
places (3.10) and assumes that one service chain does not allocate multiple
VNFs in this chain on one VM to avoid the influence of the reallocation of
VMs [44]. Equation (4.53d) replaces (3.11) and ensures that all functions are
allocated in the network. Equation (4.53e) replaces (4.8) and assumes that
each VNF has at most one backup at one time slot.

4.5.2 Replicas for primary and backup VNFs

VNF replicas in an SFC are used to prevent service interruptions from the
failures of functions and load balancing. In Section 4.2, the proposed model
only uses at most two replicas, one for primary VNF and one for backup VNF,
which are limited by (3.11) and (4.8). A possible extension for the proposed
model is to support multiple replicas for primary and backup VNFs to provide
distributed backups and load balancing.

Let dA:C be an non-negative integer given parameter, which represents that
dA:C active replicas are necessary at time slot C ∈ ) for the : ∈  Ath function
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in SFC A ∈ '. Equations (3.11) and (4.8) are replaced by:∑
=∈#

GA:C= = d
A:
C ∀A ∈ ', : ∈  A , C ∈ ). (4.54)

4.5.3 Considering numbers of accepted SFCs

The models in Section 4.2 do not consider maximizing the acceptance ratio.
There is no feasible solution if any requested SFCs are not accepted. Sometimes
the system may receive too many SFCs and not all of them can be accepted
and allocated. This work can consider maximizing the number of accepted
SFCs as the objective of the proposed model. This work gives the following
model:

max
∑
A∈'

∏
C∈)

∏
:∈ A

∑
=∈#

GA:C= (4.55a)

s.t. (4.2) − (3.7), (3.2) − (3.5), (4.4), (3.9) − (3.10), (4.8), (4.9) − (4.33),
_ ≥ _min, (4.55b)∑
=∈#

GA:C= ≤ 1, ∀A ∈ ', : ∈  A , C ∈ ), (4.55c)

VA , _ ∈ [1, |) |],∀A ∈ ', 8 ∈ ), 9 ∈ )8, (4.55d)
I
9A

8
∈ {0,1} ,∀A ∈ ', 8 ∈ ), 9 ∈ )8 . (4.55e)

Equation (3.11) is replaced by (4.55c), which ensures that there is at most
one primary function for each VNF. ∑

A∈'
∏
C∈)

∏
:∈ A

∑
=∈# G

A:
C= represents the

number of accepted SFCs. _min is a given parameter, which represents the
specified minimum SSCAT that the SFCs should satisfy.

4.6 Summary
This chapter proposed a primary and backup VNF placement model for im-
proving the continuous available time of service function chains by avoiding
the interruptions caused by unavailable nodes and function reallocations. This
work formulated the proposed model as an ILP problem that maximizes the
minimum number of the longest continuous available time slots in each SFC
by considering deterministic availability schedules. This work extended the
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proposed model to a network-aware one with considering a routing problem.
Evaluation results showed that the proposed model improves the continuous
available time of SFCs, compared with the baseline models in the examined
cases. The network-aware proposed model reduces the latencies of services
with keeping the same values of SCATs of services compared with the non-
network-aware proposed model. This work introduced an algorithm that es-
timates the number of key unavailabilities at each time slot, which indicates
the number of unavailable nodes that are required to be eliminated priorly.
The number of key unavailabilities helps SPs to increase the service continu-
ous available time with the least cost of failure recovery. This work analyzed
the impact of different types of availability schedules on the proposed model.
In the examined test cases, the proposed model provides a lower improvement
on SSCATs if the positions of unavailabilities are more compact, and provides
a higher improvement on SSCATs if the positions of unavailabilities are more
sparse. This work developed and analyzed a heuristic algorithm to speed up
the computation for the case that the problem size increases. The heuristic
algorithm reduces 66.75% computation time with a cost of 1.57% performance
degradation in terms of the objective value on average in the examined test
cases. This work provided the discussion on dealing with multiple replicas of
a function and their backups.
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Robust resource allocation
model for uncertain availability
schedules

This chapter proposes a VNF allocation to maximize the continuous available
time of SFCs against service interruptions with considering uncertain avail-
ability schedules [96].

The remainder of the chapter is organized as follows. Section 5.1 describes
the application scenario and the selection of metrics in the proposed model.
Section 5.2 describes the proposed model. Section 5.3 introduces a heuristic
algorithm for large size networks. Section 5.4 presents numerical results that
show the performance of the proposed model in different cases. Section 5.5
discusses the influence of limited maintenance ability on the proposed model,
and an extension of the proposed model for supporting multiple unavailable
time periods on each node. Section 5.6 gives several directions to extend the
proposed model. Section 5.7 summarizes the key points of this chapter.
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5.1 Motivation and applicability

5.1.1 Motivation

An availability schedule from a maintenance schedule [76] has the locations of
unavailable VMs in the network during a period of time. The availability in
the work is not a metric. It is a state or event of a node, i.e., the node is able or
unable to allocate a VNF. The model is based on a motivation that the starting
and stop times of a machine is given and the normal running time of services is
what this work values. The model is not designed for the environment where
the running time and the total availability evaluated by the probability is the
objective are not cared about. If the operation time cannot be estimated,
the proposed model cannot be applied, either. The allocation of VNFs before
service running can suppress the interruptions caused by unavailabilities and
reallocations with a given availability schedule during the given period of time
so that SSCAT can be increased.

The scheduled maintenance may not be sometimes followed and is not
usually exact on the time and locations. A source of availability schedules is
predictive maintenance. A machine should be maintained after it continuously
works [97]. The duration of a maintenance activity may vary according to
some schedule-dependent factors, e.g., the starting time [98] and workload
[99]. It is a common case that the duration of unavailability is longer than
the duration in the plan. The unavailability can start a little earlier or later
than the time given by availability schedules; for example, the constraint of
starting time of maintenance activity is only a deadline in [98]. This work
can rely on recovery mechanisms [85] in the unavailable periods of nodes.
This work does not concern the details of the mechanisms. The model fully
believes the estimated availability schedules provided by administrators. If
a node is marked as available, this work considers that it is available. The
availability is ensured by the other protection systems. However, the protection
system cannot be fully believed in practice, which causes the uncertainty of
the availability schedules.

This work cares about the exact running time of services instead of the
mean time or probability of the normal running. As a condition of applying
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Figure 5.1: Demonstration of the impact of uncertain available schedule.

this model, the administrator or system must provide the time information of
service starting and stopping.

A demonstration of the impact of availability schedule is shown in Fig. 5.1.
An availability schedule including four unavailable periods is given in Fig. 5.1(a).
Based on this availability schedule, an allocation of four SFCs is given in
Fig. 5.1(c). The expected SSCAT is three. However, the given availability
schedule is not exact. The unavailable periods on nodes 6 and 7 are longer
than the estimation as shown in Fig. 5.1(b) so that the actual SSCAT of the
calculated allocation decreases from three to two. It is necessary to design a
robust model against the influences from these gaps. The challenge is how to
design a robust model to maximize SSCAT against the uncertain availability
schedules.

5.1.2 Applicability

The proposed model is designed for the initial allocation of VNFs in SFCs.
SPs store the relative information including the availability schedules, VNFs,
services, and network devices in the database. A computation element in the
network, which is an independent node or a node with VNFs, calculates the
allocation with these information. The allocation result is sent to each corre-
sponding node. The nodes run the corresponding functions or the containers
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in the nodes by pulling the corresponding images from repositories. The pro-
posed model is designed to determine the locations of disturbance sensitive
functions in the network, where the available schedule is uncertain and the
number of available VMs for functions is limited.

In the real deployment of VNFs, the container or VM of the VNF must
be placed to a node which is determined by an orchestration engine such as
Kubernetes [9]. The proposed model works as a scoring mechanism in scheduler
[100] in the engine. The placement is decided by the score provided by the
model. Based on the information provided by administers including availability
schedules and the information collected by the system including the nodes, the
model calculates the suitable locations for each VNF and gives the highest score
for the location.

The SPs usually have several replicas of a VNF in deployment for reliability
and redundancy. For a VNF, the nodes can be classified into three states
according to the state of the replica on the node: the replica is active, the
image of the VNF is pulled but not active, and the image does not exist on the
node. Without loss of generality, this work assumes that only one node where
the replica is active for each VNF at the same time. The works give a direction
of the assumption in Section 5.6. For stateless applications, the interruptions
come from the download of VNF images and data redirection from the failed
replicas to other replicas. For stateful applications, an additional interruption
comes from the status data synchronization. The interruptions periods are
estimated by the administrators and turned to the number of time slots used
in the availability schedules.

5.2 Problem formulation

5.2.1 Formulation with deterministic unavailability pe-
riods

The models with given deterministic availability schedules were introduced in
Chapters 3 and 4. They considered each unavailability marked in the avail-
ability schedule independently even on the same node.

This work assumes that the unavailabilities on a node can be continuous
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X X X... ...Node n

Time slot
1 2

Figure 5.2: Unavailability period. “×” means unavailability.

from one time slot to another time slot, i.e., form a period that can be one or
more time slots, which is called unavailability period. This work assumes that
there is at most one unavailability period on each node in the given ) . This
work gives a future discussion on multiple unavailability periods on each node
in Section 5.5.2.

This work uses a binary variable 4=C to express elements in the availability
schedule; if node = ∈ # is unavailable at time slot C, 4=C = 1, and otherwise 0.
For node = ∈ #, the period starts at time slot B= ∈ ) and lasts for another
5= ∈ [0, |) | − B=] continuous time slots, i.e., ends at time slot B= + 5= ∈ ) , as
shown in Fig. 5.2. If there is no unavailability marked in availability schedule
at node =, 5= is set to 0 and B= is set to a positive integer value �S which is
larger than |) |. The values of 4=C , C ∈ ), = ∈ #, can be obtained from B= and 5=

given by:

If B= ≤ C ≤ B= + 5= then
4=C = 1

Else
4=C = 0

(5.1a)

4=C ∈ {0, 1},∀= ∈ #, C ∈ ). (5.1b)

Based on the unavailability period, this work introduces the uncertainties of
the beginning time slots and durations of unavailability periods in 5.2.2 and
propose the model considering the uncertain availability schedule. The other
definitions and formulations in this subsection are the same with those in
Chapters 3 and 4 except for (5.2) and (5.3) because 4=C is a variable in this
work.
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>AC can be expressed by:

>AC =
∏
:∈ A

∏
=∈#
((GA:C= � GA:C−1,=) ∧ (1 − GA:C= ∧ 4=C ) ∧ (1 − GA:C−1,= ∧ 4=C−1)),∀A ∈ ',

C ∈ )\{1}. (5.2)

Here � expresses exclusive NOR operation between two binary variables whose
operations are: 1 � 1 = 1, 0 � 0 = 1, 1 � 0 = 0, 0 � 1 = 0. ∧ expresses the
multiplication between two binary variables whose operations are: 1 ∧ 1 =

1, 0 ∧ 0 = 0, 1 ∧ 0 = 0, 0 ∧ 1 = 0.
If it is necessary to avoid allocating functions to unavailable nodes, this

work adds the following constraint:

GA:C= ∧ 4=C = 0, ∀A ∈ ', C ∈ ), = ∈ #, : ∈  A . (5.3)

According to the linearization process in Appendix A, (5.1) is linearized
to (5.4a)-(5.4h), and (3.1) is linearized to (5.5a)-(5.5w) with some auxiliary
variables.

C − B= + n1 ≤ [=C · �,∀C ∈ ), = ∈ #, (5.4a)
C − B= + n1 ≥ ([=C − 1) · �,∀C ∈ ), = ∈ #, (5.4b)
B=+ 5= − C + n1 ≤ d=C · �,∀C ∈ ), = ∈ #, (5.4c)
B=+ 5= − C + n1 ≥ (d=C − 1) · �,∀C ∈ ), = ∈ #, (5.4d)
4=C ≤[=C ,∀C ∈ ), = ∈ #, (5.4e)
4=C ≤d=C ,∀C ∈ ), = ∈ #, (5.4f)
4=C ≥[=C + d=C − 1,∀C ∈ ), = ∈ #, (5.4g)
4=C , [

=
C ,d

=
C ∈ [0, 1],∀C ∈ ), = ∈ #, (5.4h)

qA:C= =1 − GA:C= − GA:C−1,= + 2 · ℎA:C= ,∀A ∈ ', C ∈ )\{1}, : ∈  A , = ∈ #, (5.5a)
ℎA:C= ≤GA:C= ,∀A ∈ ', C ∈ )\{1}, : ∈  A , = ∈ #, (5.5b)
ℎA:C= ≤GA:C−1,=,∀A ∈ ', C ∈ )\{1}, : ∈  A , = ∈ #, (5.5c)
ℎA:C= ≥GA:C= + GA:C−1,= − 1,∀A ∈ ', C ∈ )\{1}, : ∈  A , = ∈ #, (5.5d)
UA:C= ≤GA:C= ,∀A ∈ ', C ∈ ), : ∈  A , = ∈ #, (5.5e)
UA:C= ≤4=C ,∀A ∈ ', C ∈ ), : ∈  A , = ∈ #, (5.5f)
UA:C= ≥GA:C= + 4=C − 1,∀A ∈ ', C ∈ ), : ∈  A , = ∈ #, (5.5g)
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\A:C= ≤qA:C= ,∀A ∈ ', C ∈ )\{1}, : ∈  A , = ∈ #, (5.5h)
\A:C= ≤1 − UA:C= ,∀A ∈ ', C ∈ )\{1}, : ∈  A , = ∈ #, (5.5i)
\A:C= ≥qA:C= − UA:C= ,∀A ∈ ', C ∈ )\{1}, : ∈  A , = ∈ #, (5.5j)
cA:C= ≤\A:C= ,∀A ∈ ', C ∈ )\{1}, : ∈  A , = ∈ #, (5.5k)
cA:C= ≤1 − UA:C−1,=,∀A ∈ ', C ∈ )\{1}, : ∈  A , = ∈ #, (5.5l)
cA:C= ≥\A:C= − UA:C−1,=,∀A ∈ ', C ∈ )\{1}, : ∈  A , = ∈ #, (5.5m)
|A:C ≤cA:C= ,∀A ∈ ', C ∈ )\{1}, : ∈  A , = ∈ #, (5.5n)

|A:C ≥
∑
=∈#

cA:C= − |# | + 1,∀A ∈ ', C ∈ )\{1}, : ∈  A , (5.5o)

>AC ≤|A:C ,∀A ∈ ', C ∈ )\{1}, : ∈  A , (5.5p)

>AC ≥
∑
:∈ A

|A:C − | A | + 1,∀A ∈ ', C ∈ )\{1}, (5.5q)

>A1 =0,∀A ∈ ', (5.5r)
>AC ∈ {0,1} ,∀A ∈ ', C ∈ ), (5.5s)
~A9 ∈ {0,1} ,∀A ∈ ', 9 ∈ ), (5.5t)
|A:C ∈ {0,1} ,∀A ∈ ', : ∈  A , C ∈ )\{1}, (5.5u)
qA:C= ,ℎ

A:
C= , \

A:
C= , c

A:
C= ∈ {0,1} ,∀A ∈ ', : ∈  A , C ∈ )\{1}, = ∈ #, (5.5v)

UA:C= ,G
A:
C= , ∈ {0,1} ,∀A ∈ ', : ∈  A , C ∈ ), = ∈ #. (5.5w)

In the above equations, n1, n2, and � are given parameters, where 0 < n1 <
1

B=+ 5= , 0 < n2 < 1, and � is larger than B= + 5= + 1 − C, C − B= + n2, = ∈ #, C ∈ ) ,
and 1. The minimum of � can be taken to be |) | + 2.

In summary, the following model is given for VNF allocation with consid-
ering the deterministic availability schedule:

max _ + n
∑
A∈'

VA

s.t. (3.2) − (3.5), (3.7), (3.9) − (3.11), (3.13) − (5.5w), (5.4a) − (5.5w),
VA , _ ∈ [1, |) |],∀A ∈ ', 8 ∈ ), 9 ∈ )8,
I
9A

8
∈ {0,1} ,∀A ∈ ', 8 ∈ ), 9 ∈ )8 .
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X X X X X X X X X X

Figure 5.3: Type of uncertainty. “×” means unavailability.

5.2.2 Formulation with uncertain unavailability periods

In Section 5.2.1, B= and 5= are deterministic. This subsection considers the
uncertainty caused by an uncertain beginning time slot and an uncertain du-
ration of each node, as shown in Fig. 5.3. The uncertainty set of B= is symmetric
about B̄= and that of 5= is symmetric about 5̄=, i.e., B= ∈ [B̄= − B̂=, B̄= + B̂=] and
5= ∈ [ 5̄= − 5̂=, 5̄= + 5̂=], respectively, where B=, B= + 5= ∈ ) . If there is no unavail-
ability marked in availability schedule on node = ∈ #, the corresponding B̄= is
set to �S; B̂= 5̄=, and 5̂= are set to 0.

In (5.4a)-(5.4d), B= and 5= are uncertain. This work models an robust
optimization problem which can control the degree of robustness against un-
certainties and conservation of solutions. This work defines ΓS

= as the degree
of robustness of B=, = ∈ # and ΓF

= ∈ [−1, 1] as the degree of robustness of
5=, = ∈ #. The larger ΓS

= or ΓF
= is, the higher the level of robustness is.

ΓS
= controls the size of uncertainty set of beginning time slots P= on node

=. The larger ΓS
= is, the more the considered possible beginning time slots

of unavailability period on node = are. This work chooses bΓS
= · (2 · B̂= + 1)c

different beginning time slots from [B̄= − B̂=, B̄= + B̂=] and forms a set which is
an element in P=. P= contains all possible choices. The size of P= is |P= | =(

2 · B̂= + 1
bΓS

= · (2 · B̂= + 1)c

)
. Since the size of each element in P= is at least 1, i.e.,

bΓS
= · (2 · B̂= + 1)c ≥ 1, ΓS

= ∈ [ 1
2·B̂=+1 , 1]. The uncertainty set for all nodes is

denoted by P = {P1,P2, · · · ,P|# |}. One element in P is a combination of one
element in each P=. The size of P is |P | = |P1 | · |P2 | · · · · · |P|# | |. Let ? denote an
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element in P; ?= denote the selected set from P=; ?@= denote the @th element
in ?=.

ΓF
= controls the considered length of the duration of unavailability period

on node =, which is 5̄= + 5̂= · bΓF
= c.

To deal the uncertain unavailability periods, this work develops an MILP
formulation in terms of ΓS

= and ΓF
= . For the unavailability period on each node

= under the uncertainty of P, this work considers the worst case. The objective
of the considered problem is presented by:

max min
?∈P
{_? + n

∑
A∈'

V
?
A }. (5.6)

Here, _? means the value of _ under the uncertainty set ? ∈ P. V?A means the
value of VA under the uncertainty set ? ∈ P. The selected set of beginning
time slots ?= contains one or more time slot. Equations (5.4a)-(5.4h) are
transformed to:

C − ?@= + n1 ≤ [@C= · �,∀C ∈ ), = ∈ #, @ ∈ [1, |?= |], (5.7a)
C − ?@= + n1 ≥ ([@C= − 1) · �,∀C ∈ ), = ∈ #, @ ∈ [1, |?= |], (5.7b)
?
@
=+ 5̄= + ΓF

= · 5̂= − C + n1 ≤ d
@
C= · �,∀C ∈ ), = ∈ #,

@ ∈ [1, |?= |], (5.7c)
?
@
=+ 5̄= + ΓF

= · 5̂= − C + n1 ≥ (d
@
C= − 1) · �,∀C ∈ ), = ∈ #,

@ ∈ [1, |?= |], (5.7d)
g
@
C= ≤[

@
C=,∀C ∈ ), = ∈ #, @ ∈ [1, |?= |], (5.7e)

g
@
C= ≤d

@
C=,∀C ∈ ), = ∈ #, @ ∈ [1, |?= |], (5.7f)

g
@
C= ≥[

@
C= + d

@
C= − 1,∀C ∈ ), = ∈ #, @ ∈ [1, |?= |], (5.7g)

g
@
C=, [

@
C=, d

@
C= ∈ [0, 1],∀C ∈ ), = ∈ #, @ ∈ [1, |?= |] . (5.7h)

The above equations use g@C= to replace 4=C in (5.4a)-(5.4h). If node = is unavail-
able at time slot C when the beginning time slot @ is considered, g@C= is set to 1,
and otherwise 0. 4=C ∈ [0, 1], C ∈ ), = ∈ #, is expressed by:

4=C = ∨@∈[1,|?= |] g
@
C=,∀C, ∈ ), = ∈ #. (5.8)

Here ∨ means OR operation between two binary variables whose operations
are: 0 ∨ 0 = 0, 0 ∨ 1 = 1, 1 ∨ 0 = 1, 1 ∨ 1 = 1. According to the linearization
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process in Appendix A, (5.8) can be linearized to:

4=C ≥
1
|?= |
·

∑
@∈[1,|?= |]

g
@
C=,∀C, ∈ ), = ∈ #, (5.9a)

4=C ≤
∑

@∈[1,|?= |]
g
@
C=,∀C, ∈ ), = ∈ #. (5.9b)

According to the linearization process in Appendix A, the objective function
(5.6) can be linearized to:

maxΛ (5.10a)

s.t.Λ ≤ _? + n
∑
A∈'

V
?
A + (1 − X?o ) · �O,∀? ∈ P, (5.10b)

Λ ≥ _? + n
∑
A∈'

V
?
A − (1 − X?o ) · �O,∀? ∈ P, (5.10c)

_? + n
∑
A∈'

V
?
A ≤ (1 − X?o ) · �O + _?

′ + n
∑
A∈'

V
?′
A ,

∀? ∈ P, ?′ ∈ P\?, (5.10d)∑
?∈P

X
?
o = 1, (5.10e)

Λ ≤ _? + n
∑
A∈'

V
?
A ,∀? ∈ P, (5.10f)

X
?
o ∈ [0, 1],∀? ∈ P . (5.10g)

Here, �O is a given integer which is larger than _? + n ∑
A∈' V

?
A . The minimum

of �O can be taken to be |) | + 2.
To calculate the objective values in element ? ∈ P, this work performs the

following transformations. Equations (3.2)-(3.5) in Chapter 3 are transformed
to (5.11a)-(5.11d) by replacing >AC , I

9A

8
, ~A

9
to >A ?C , I

9A ?

8
, ~
A ?

9
, respectively. Equa-

tion (3.7) in Chapter 3 is transformed to (5.12a) by replacing _, VA to _?, V?A ,
respectively. Equations (3.9)-(3.11) in Chapter 3 are transformed to (5.13a)-
(5.13c) by replacing GA:C= to G

A: ?
C= , respectively. Equations (3.13)-(5.5w) are

transformed to (5.14a)-(5.15w) by replacing VA , ~A9 , XA9 , qA:C= , GA:C= , ℎA:C= , UA:C= , \A:C= , cA:C= ,
|A:C , >

A
C to V

?
A , ~

A ?

9
, X
A ?

9
, q

A: ?
C= , G

A: ?
C= , ℎ

A: ?
C= , U

A: ?
C= , \

A: ?
C= , c

A: ?
C= , |

A: ?
C , >

A ?
C , respectively.

Equations (5.7a)-(5.7h) are transformed to (5.16a)-(5.16h) by replacing 4=C , [
@
C=,

d
@
C=, g

@
C= to 4

=?
C , [

@?
C= , d

@?
C= , g

@?
C= , respectively. Equations (5.9a)-(5.9b) are trans-

formed to (5.17a)-(5.17b) by replacing 4=C to 4=?C , respectively.
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(
8+ 9−1∑
C=8

>
A ?
C ) − 9 + 1 ≤ I 9A ?

8
,∀8 ∈ ), 9 ∈ )8, A ∈ ', ? ∈ P, (5.11a)

I
9A ?

8
≤

∑8+ 9−1
C=8

>
A ?
C

9
,∀8 ∈ ), 9 ∈ )8, A ∈ ', ? ∈ P, (5.11b)

I
9A ?

8
≤~A ?

9
,∀8 ∈ ), 9 ∈ )8, A ∈ ', ? ∈ P, (5.11c)

~
A ?

9
≤
|) |− 9+1∑
C=1

I
9A ?
C ,∀ 9 ∈ ), A ∈ ', ? ∈ P, (5.11d)

_? ≤ V?A ,∀A ∈ ', ? ∈ P, (5.12a)∑
A∈'

∑
:∈ A

G
A: ?
C= ≤ 2B=C ,∀= ∈ #, C ∈ ), ? ∈ P, B ∈ (, (5.13a)∑

:∈ A
G
A: ?
C= ≤ 1, ∀A ∈ ', = ∈ #, C ∈ ), ? ∈ P, (5.13b)∑

=∈#
G
A: ?
C= = 1, ∀A ∈ ', : ∈  A , C ∈ ), ? ∈ P, (5.13c)

V
?
A − 1 ≤ 9~A ?

9
+

(
1 − XA ?

9

)
· �,∀ 9 ∈ ), A ∈ ', ? ∈ P, (5.14a)

V
?
A − 1 ≥ 9~A ?

9
−

(
1 − XA ?

9

)
· �,∀ 9 ∈ ), A ∈ ', ? ∈ P, (5.14b)

9~
A ?

9
≥

(
X
A ?

9
− 1

)
· � + ~A ?

9 ′ ,∀ 9 ∈ ), 9
′ ∈ )\ { 9} , A ∈ ',

? ∈ P, (5.14c)∑
9∈)

X
A ?

9
= 1,∀A ∈ ', ? ∈ P, (5.14d)

V
?
A − 1 ≥ 9~A ?

9
,∀ 9 ∈ ), A ∈ ', ? ∈ P, (5.14e)

X
A ?

9
∈ {0,1},∀ 9 ∈ ), A ∈ ', ? ∈ P, (5.14f)

q
A: ?
C= =1 − GA: ?C= − G

A: ?

C−1,= + 2 · ℎA: ?C= ,∀A ∈ ', C ∈ )\{1},

: ∈  A , = ∈ #, ? ∈ P, (5.15a)
ℎ
A: ?
C= ≤G

A: ?
C= ,∀A ∈ ', C ∈ )\{1}, : ∈  A , = ∈ #, (5.15b)

ℎ
A: ?
C= ≤G

A: ?

C−1,=,∀A ∈ ', C ∈ )\{1}, : ∈  A , = ∈ #, ? ∈ P, (5.15c)

ℎ
A: ?
C= ≥G

A: ?
C= + G

A: ?

C−1,= − 1,∀A ∈ ', C ∈ )\{1}, : ∈  A ,

= ∈ #, ? ∈ P, (5.15d)
U
A: ?
C= ≤G

A: ?
C= ,∀A ∈ ', C ∈ ), : ∈  A , = ∈ #, ? ∈ P, (5.15e)
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U
A: ?
C= ≤4

=?
C ,∀A ∈ ', C ∈ ), : ∈  A , = ∈ #, ? ∈ P, (5.15f)

U
A: ?
C= ≥G

A: ?
C= + 4

=?
C − 1,∀A ∈ ', C ∈ ), : ∈  A , = ∈ #,

? ∈ P, (5.15g)
\
A: ?
C= ≤q

A: ?
C= ,∀A ∈ ', C ∈ )\{1}, : ∈  A , = ∈ #, ? ∈ P, (5.15h)

\
A: ?
C= ≤1 − UA: ?C= ,∀A ∈ ', C ∈ )\{1}, : ∈  A , = ∈ #, ? ∈ P, (5.15i)
\
A: ?
C= ≥q

A: ?
C= − U

A: ?
C= ,∀A ∈ ', C ∈ )\{1}, : ∈  A , = ∈ #,

? ∈ P, (5.15j)
c
A: ?
C= ≤\

A: ?
C= ,∀A ∈ ', C ∈ )\{1}, : ∈  A , = ∈ #, ? ∈ P, (5.15k)

c
A: ?
C= ≤1 − UA: ?

C−1,=,∀A ∈ ', C ∈ )\{1}, : ∈  A , = ∈ #,

? ∈ P, (5.15l)
c
A: ?
C= ≥\

A: ?
C= − U

A: ?

C−1,=,∀A ∈ ', C ∈ )\{1}, : ∈  A , = ∈ #,

? ∈ P, (5.15m)
|
A: ?
C ≤cA: ?C= ,∀A ∈ ', C ∈ )\{1}, : ∈  A , = ∈ #, ? ∈ P, (5.15n)

|
A: ?
C ≥

∑
=∈#

c
A: ?
C= − |# | + 1,∀A ∈ ', C ∈ )\{1}, : ∈  A ,

? ∈ P, (5.15o)
>
A ?
C ≤|

A: ?
C ,∀A ∈ ', C ∈ )\{1}, : ∈  A , ? ∈ P, (5.15p)

>
A ?
C ≥

∑
:∈ A

|
A: ?
C − | A | + 1,∀A ∈ ', C ∈ )\{1}, ? ∈ P, (5.15q)

>
A ?

1 =0,∀A ∈ ', ? ∈ P, (5.15r)
>
A ?
C ∈ {0,1} ,∀A ∈ ', C ∈ ), ? ∈ P, (5.15s)
~
A ?

9
∈ {0,1} ,∀A ∈ ', 9 ∈ ), ? ∈ P, (5.15t)

|
A: ?
C ∈ {0,1} ,∀A ∈ ', : ∈  A , C ∈ )\{1}, ? ∈ P, (5.15u)

q
A: ?
C= , ℎ

A: ?
C= , \

A: ?
C= , c

A: ?
C= ∈ {0,1} ,∀A ∈ ', : ∈  A , C ∈ )\{1},

= ∈ #, ? ∈ P, (5.15v)
U
A: ?
C= , G

A: ?
C= , ∈ {0,1} ,∀A ∈ ', : ∈  A , C ∈ ), = ∈ #, ? ∈ P, (5.15w)

C − ?@?= + n1 ≤ [@?C= · �,∀C ∈ ), = ∈ #, @ ∈ [1, |?= |], ? ∈ P (5.16a)
C − ?@?= + n1 ≥ ([@?C= − 1) · �,∀C ∈ ), = ∈ #, @ ∈ [1, |?= |],

? ∈ P (5.16b)
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?
@?
= + 5̄= + ΓF

= · 5̂= − C + n1 ≤ d
@?
C= · �,∀C ∈ ), = ∈ #,

@ ∈ [1, |?= |], ? ∈ P (5.16c)
?
@?
= + 5̄= + ΓF

= · 5̂= − C + n1 ≥ (d
@?
C= − 1) · �,∀C ∈ ), = ∈ #,

@ ∈ [1, |?= |], ? ∈ P (5.16d)
g
@?
C= ≤[

@?
C= ,∀C ∈ ), = ∈ #, @ ∈ [1, |?= |], ? ∈ P (5.16e)

g
@?
C= ≤d

@?
C= ,∀C ∈ ), = ∈ #, @ ∈ [1, |?= |], ? ∈ P (5.16f)

g
@?
C= ≥[

@?
C= + d

@?
C= − 1,∀C ∈ ), = ∈ #, @ ∈ [1, |?= |], ? ∈ P (5.16g)

4
=?
C , [

@?
C= , d

@?
C= , g

@?
C= ∈ [0, 1],∀C ∈ ), = ∈ #, @ ∈ [1, |?= |],

? ∈ P (5.16h)

4
=?
C ≥

1
|?= |
·

∑
@∈[1,|?= |]

g
@?
C= ,∀C, ∈ ), = ∈ #, ? ∈ P, (5.17a)

4
=?
C ≤

∑
@∈[1,|?= |]

g
@?
C= ,∀C, ∈ ), = ∈ #, ? ∈ P . (5.17b)

From (5.11a) to (5.17b), a variable with the subscript ? means the value of
this variable under the uncertainty set ? ∈ P.

In summary, the robust optimization problem is given by:

maxΛ (5.18a)
s.t. (5.10b) − (5.10g), (5.11a) − (5.17b), (5.18b)

Λ ∈ [1, |) |], (5.18c)
V
?
A , _

? ∈ [1, |) |],∀A ∈ ', 8 ∈ ), 9 ∈ )8, ? ∈ P, (5.18d)
I
9A ?

8
∈ {0,1} ,∀A ∈ ', 8 ∈ ), 9 ∈ )8, ? ∈ P . (5.18e)

5.3 Heuristic algorithm

As the size of the ILP problem in Section 5.2 increases, the problem becomes
difficult to solve in practical time. A feasible solution may not be obtained
within admissible computational time, which can be specified by SPs. This
work introduces a heuristic algorithm based on the genetic algorithm [81]. To
accelerate the computation process, this work introduces an extension of this
algorithm by using CPU and GPU acceleration [101].
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5.3.1 Framework

The framework of this heuristic algorithm is shown in Algorithm 5.1. The
set of possible beginning time slots and the length of considered unavailability
period are calculated. The availability schedule is given by using (5.1) under a
combination of possible beginning time set ? in line 5. A set of initial feasible
solutions whose size is IPN is given by Algorithm 5.2 in lines 6–7. From line 8
to line 31, the heuristic algorithm enters a loop that has MG cycles. In each
cycle, the heuristic algorithm explores new feasible solutions by performing
internal crossover (see function 2A>BB_8= in Algorithm 5.3), external crossover
(see function 2A>BB_>DC in Algorithm 5.3), and mutation (see Algorithm 5.4)
according to three probabilities, ICP, ECP, and MP, respectively. Newly gen-
erated solutions at lines 12, 17, and 22 are stored in the new feasible solution
set (n once. They are added to the feasible solution set at a time in line 25. The
heuristic algorithm calculates the fitness for each solution (see Algorithm 5.5).
The heuristic algorithm finds the solution with the highest fitness score and
stores it. Finally, if the size of the feasible solution set exceeds ULPN, the
heuristic algorithm chooses ULPN feasible solutions as a new set of feasible
solutions according to the roulette gambler (see Algorithm 5.6).

Algorithm 5.1 Framework
Input: #, ) , ',  A , 2B=C ∈ �, B̄=, B̂=, 5̄=, 5̂=, ΓS

= , ΓF
= , IPN, MG, ECP, ICP, MP,

ULPN
Output: allocation for all functions
1: 5= ← 5̄= + ΓF

= · 5̂=
2: Calculate the possible choices of B= by ΓS

= , B̄=, B̂= and stored in P=
3: Calculate different combinations of P= on all nodes and store them in set
%

4: for ? ∈ P do
5: Calculate the value of 4=C according to (5.1) by using ? and 5=

6: Define (? as the feasible solution set for the possible uncertainty set ?
7: (? ←Generate set of initial feasible solutions by using function init_chromos

in Algorithm 3.2
8: for BC4? = 1→MG do
9: Define (?n as the new feasible solution set
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10: for each solution in (? do
11: if a random number in [0, 1] >1- ICN then
12: (

?
n ←Generate a non-redundant and mutant solution by us-

ing function 2A>BB_8= in Algorithm 5.3 whose inputs are the selected so-
lution in (? and random time slot C

13: end if
14: end for
15: for each solution in (? except for the first one do
16: if a random number [0, 1] >1- ECP then
17: (

?
n ←Generate a non-redundant and mutant solution by us-

ing function 2A>BB_>DC in Algorithm 5.3 whose inputs are the selected
solution and its previous solution in (

18: end if
19: end for
20: for each solution in (? do
21: if a random number [0, 1] >1- MP then
22: (

?
n ←Generate a non-redundant and mutant solution by us-

ing function mutation in Algorithm 5.4 whose input is the selected solution
in (?

23: end if
24: end for
25: Integrate (?n into (
26: Calculate the fitness score of the solutions in (? by using function

calc_fin_ness in Algorithm 5.5
27: Store the solution with the highest fitness score
28: if size of (? >ULPN then
29: Reduce the size of the set toUP by using function roulette_gambler

in Algorithm 3.6
30: end if
31: end for
32: Output the solution which has the smallest objective value among

(?, ? ∈ P
33: end for
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5.3.2 Initial solution generation

The heuristic algorithm generates a set of initial feasible solutions by using
Algorithm 5.2. Based on this set, more feasible solutions can be generated by
Algorithms 5.3 and 5.4.

In the heuristic algorithm, each solution is a three-dimensional matrix. The
first dimension represents time slots, the second one represents requests and
the third one represents functions. The value of an element whose location is
(C, A, :) is the allocation of the :th function of request A at time slot C, which
belongs to #.

Algorithm 5.2 Initial solution
1: function init_chromos(�)
2: Set of initial solutions B← q

3: Sort requests in ' in a non-increasing order of  A
4: for each time slot in ) do
5: Sort nodes in # in a non-increasing order of time from time slot C

to a time slot in which a node becomes unavailable. If the above values
are the same for some =, sort them in a non-increasing order of time from
time slot C to a time slot in which a node becomes unavailable secondly.
If the above values are the same for some =, sort them in a non-increasing
order of time from time slot C to the last time slot in which a node becomes
unavailable.

6: for A ∈ ' do
7: for 5 = 1→  A do
8: for = ∈ # do
9: if used capacity of = is less than 2C= AND any other func-

tions in A were not allocated to = then
10: Allocate the 5 th function in SFC A to =
11: Break
12: else
13: Continue
14: end if
15: end for
16: end for
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17: end for
18: Store the allocation to B
19: end for
20: Duplicate a solution iteratively until the number of solutions in B be-

comes IPN
21: return B

22: end function

Algorithm 5.2 reorders set ' according to the corresponding  A from long
to short first (line 3). Then, it performs function allocation one by one (lines
4–19). At each time slot, the heuristic algorithm reorders set # according
to the occurrence of unavailabilities from late to early (line 5). Then the
heuristic algorithm allocates the functions to physical nodes according to these
new orders (lines 9–13). Finally, the heuristic algorithm duplicates a solution
iteratively until the number of solutions becomes IPN (line 20).

5.3.3 New solution generation

There are three methods for generating new solutions in the heuristic algo-
rithm.

The internal crossover, function cross_in in Algorithm 5.3, crosses adja-
cent time slots in the same solution. The aim of cross_in is to suppress the
reallocations of VNFs between adjacent time slots.

The external crossover, function cross_out in Algorithm 5.3, crosses the
same time slot between two solutions in the feasible solution set. A new
solution is generated by modifying the VNF allocation in a randomly selected
time slot of one solution based on that of another solution.

Algorithm 5.3 Crossover
1: function cross_in(B← the selected solution , C ← the random time)
2: B[C] ← B[C + 1]
3: return B

4: end function
5: function cross_out(B1, B2)
6: ;>20C8>=← a random integer in [1, |) |]
7: B2 ← B1
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8: B2 [;>20C8>=] ← B2 [;>20C8>=]
9: return B2

10: end function

The other function for generating new solutions is function mutation in
Algorithm 5.4. init_chromos function in Algorithm 5.2 generates the initial
solution set based on the length of each SFC. On the other hand, mutation
function generates a new solution based on the SCAT of each SFC.

Algorithm 5.4 Mutation
1: function mutation(B← the selected solution, �)
2: Calculate the SCAT for all SFCs in solution s
3: Sort requests in ' in a weighted randomized order. The larger the

SCAT, the higher the order of the corresponding A.
4: Sort nodes in # in a weighted randomized order. The larger the time

from the first time slot to a time slot where a node becomes unavailable,
the higher the order of the corresponding =.

5: for A ∈ ' do
6: for 5 = 1→  A of request A do
7: for = ∈ # do
8: if used capacity of = is less than 2C= AND any other functions

in A were not allocated to = then
9: Allocate the 5 th function in SFC A to =
10: Break
11: else
12: Continue
13: end if
14: end for
15: end for
16: end for
17: return new solution
18: end function
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5.3.4 Calculation of fitness

The algorithm computes the fitness score for each solution by using the objec-
tive function.
Algorithm 5.5 Fitness calculation
1: function calc_fin_ness(B← the selected solution, �)
2: Calculate the SCAT for all SFCs in solution s
3: return min((��))+sum((��))/(|) | × |' |)
4: end function

5.3.5 Choice of solutions

The heuristic algorithm uses roulette wheel selection to create a new feasible
solution set by choosing *% solutions from the feasible solution set.

In the roulette_gambler and choice functions in Algorithm 5.6, input 2ℎA><B
is the set of solutions and 5 8C_?A>B is the set of the fitness scores of the cor-
responding solutions in 2ℎA><B.

Algorithm 5.6 Choice
1: function roulette_gambler( 5 8C_?A>B, 2ℎA><B)
2: ?82: ← a random number in [0, 1]
3: for 9 = 1→ |2ℎA><B | do
4: ?82: ← ?82: − 5 8C_?A>B[ 9]/sum( 5 8C_?A>B)
5: if ?82: ≤ 0 then
6: return 9

7: end if
8: end for
9: return |2ℎA><B | − 1
10: end function
11: function choice(2ℎA><B, 5 8C_?A>B)
12: 2ℎ>824_�4=B← q

13: for 8 = 1→ min( |2ℎA><B |,UP) do
14: 9 ← roulette_gambler( 5 8C_?A>B, 2ℎA><B)
15: append 2ℎA><B[ 9] to 2ℎ>824_�4=B
16: end for
17: return 2ℎ>824_�4=B
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18: end function

5.3.6 Parallelization

In lines 4–33 of Algorithm 5.1, the algorithm calculates the allocation under
different set %. These calculations can be parallelized. The algorithm initializes
|% | threads and performs the calculations at the same time. |% | results are
obtained. The final result is the smallest one among these results.

In order to further reduce the calculation time, this work can also make the
parallelization of the functions called in the heuristic algorithm. The loops in
lines 10–24 of Algorithm 5.1 can be parallelized. Each thread contains the cross
and mutation of one solution in (?. The new generated solutions are collected
and merged into set ( in line 25 of Algorithm 5.1. However, the number of
solutions required to be processed in parallel is greater than the number of
cores in a CPU. If the number of threads is small, the time consumed by
thread switching slows down the computation time. A method to reduce the
overhead time and the overall computation time is to apply GPU acceleration
on these functions instead of CPU multi-threading [101].

5.4 Numerical Evaluations

5.4.1 Comparison with other models

In this subsection, this work compares the proposed model with a persistence
allocation model, a single-slot allocation model, and a double-slot allocation
model with deterministic and uncertain availability schedules in two tests,
respectively. The given conditions B̂= and 5̂= are set to 0 in the tests considering
deterministic availability schedules.

The persistence allocation model does not consider the service interruptions
caused by node unavailabilities. This model maximizes SSCAT by suppressing
the interruptions caused by reallocations of VNFs. It determines a node to
which each VNF is allocated randomly and keeps this allocation from the first
time slot to the last one. This model has no ability to avoid unavailable nodes.

The single-slot allocation model considers the service interruptions caused
by node unavailabilities at each time slot, regardless of VNF reallocations
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between all adjacent time slots. This model minimizes the number of VNFs
allocated to unavailable nodes at each time slot. This model independently de-
termines VNF allocation of each time slot. This model tries to avoid allocating
VNFs to unavailable nodes according to the availability schedule. However, this
model does not consider the relationship between VNF allocations at adjacent
time slots; different allocations at adjacent time slots cause service interrup-
tions. For each C ∈ ) , the optimization problem of single-slot allocation model
is formulated as an ILP problem by:

min
∑
A∈'

∑
:∈ A

∑
=∈#

GA:C= 4
=
C (5.19)

s.t. (3.9)-(3.11).

The double-slot allocation model is an improvement of the single-slot al-
location model. This model computes the VNF allocation at time slot C by
considering that in the last time slot, GA:

C−1,=,∀= ∈ #, A ∈ ', : ∈  A . The solution
that minimizes the differences between time slots C and C − 1 is chosen when
there are multiple solutions that minimize ∑

A∈'
∑
:∈ A

∑
=∈# G

A:
C= 4

=
C . For each

C ∈ ) , the optimization problem of double-slot allocation model is formulated
by:

min
∑
A∈'

∑
:∈ A

∑
=∈#
(GA:C= 4=C + n3GA:C= � GA:C−1,=) (5.20)

s.t. (3.9) − (3.11).

A small number, n3, is multiplied to the second term to prioritize the first term
over the second term. n3 is given by 1

|# | |' |maxA ∈'{ A } .
The proposed model, the single-slot allocation model, and the double-slot

allocation model are solved by the IBM(R) ILOG(R) CPLEX(R) Interactive
Optimizer with version 12.7.1 [82], using Intel Core i7-7700 3.60 GHz 4-core
CPU, 32 GB memory. The persistence allocation model is implemented by
Python 3.7 and runs on the same hardware.

In the first test, the evaluation compares the proposed model with the three
baseline models considering deterministic availability schedules in terms of the
objective value. Seven cases are examined in this situation. The conditions
of these cases are shown in Table 5.1. In this table, Nodes means the number
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Figure 5.4: Evaluation results of test 1.

of nodes; Capacity means the capacity of each node at each time slot; Re-
quests means the number of functions in each request; Functions means the
number of functions in each request; Time slots means the number of time
slots; Unavailability parameters shows the beginning time slot and duration of
each unavailability period. The results are shown in Fig. 5.4. It shows that
the proposed model outperforms the three baseline models when availability
schedule is deterministic in terms of the objective value.

In the second test, the evaluation compares the proposed model with the
three baseline models considering uncertain availability schedule in terms of
the objective value. The three baseline models obtain the value of 4=C by using
(5.7a)-(5.7h), and (5.9a)-(5.9b) and consider the worst case in uncertainty set
P. The evaluation considers two cases in this text. In the first case, a four-node
network is considered. The evaluation determines the allocation of functions
among six time slots in two requests. The lengths of two requests are two and
three, respectively. The uncertainty set is given by: B̄1 = 2, B̂1 = 1, 5̄1 = 1, B̄2 =
2, 5̄2 = 2, 5̂2 = 1, other B̄ are �S, and B̂, 5̄ , and 5̂ are zero. In the second case,
a ten-node network is considered. The evaluation determines the allocation
of functions among seven time slots in three requests. The lengths of three
requests are two, three and five, respectively. The uncertainty set is given by:
B̄1 = 3, 5̄1 = 1, 5̂1 = 1, B̄2 = 2, 5̄2 = 2, B̄3 = 6, 5̄3 = 1, B̄5 = 4, B̂5 = 1, 5̄5 = 1, 5̂5 =
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1, B̄6 = 2, B̂6 = 1, B̄7 = 5, 5̄7 = 1, B̄9 = 1, other B̄ are �S, and B̂, 5̄ , and 5̂ are
zero. The evaluation evaluates the SSCAT values and the sum of SCATs of all
requests in different ΓF

= and ΓS
= . The result is shown in Table 5.2. Table 5.2

shows that the proposed model outperforms the three baseline models under all
levels of robustness in terms of the objective value. With the increasing of the
level of robustness of the solution, the objective value decreases. By comparing
the results between the proposed model and the three baseline models, the
allocation considering availability schedule provides higher SSCAT than the
allocation without considering availability schedule and the longer time slots
the model considers, the allocation with higher SSCAT the model provides.

5.4.2 Evaluation of different uncertainty sets

In this subsection, this work evaluates the influences of different uncertainty
sets with the same graph and robustness level. Because the durations of un-
availability periods 5=, = ∈ # are determined after the robustness levels ΓF

= are
given. The evaluation forces on the influence of 5=, = ∈ # on the objective
values. The evaluation is performed in a graph which has five nodes whose
capacities are two. Three requests need to be allocated in the graph in seven
time slots, whose lengths are two, two, three, respectively. There are four tests
with different B̄= and B̂=. The parameters and availability schedules are shown
in Fig. 5.5.

This work evaluates the relationship between different shapes of availability
schedules and the objective values under the same value of ΓS

= , = ∈ #, which
is 1

B̂=
. The objective values and the availability schedule under the worst case

in each test are shown in Fig. 5.6. When unavailabilities are concentrated in
the middle of the availability schedule, it is most likely to be the availability
schedule under the worst case as shown in Fig. 5.6(a), 5.6(b), and 5.6(c). When
the unavailabilities are distributed among nodes in different time slots, it is
most likely to be the availability schedule under the worst case as shown in
Fig. 5.6(a) and 5.6(b). By taking advantage of this observation, a number
of possible choices, such as the availability schedule with the unavailabilities
concentrated in one time slot, can be removed and the computational time can
be reduced. The worst case availability schedules in Fig. 5.5(a) and Fig. 5.5(c)
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              Node
Time slot

1 2 3 4 5

1 P P P P P
2 P P P P P
3 P P P P P
4 P P P P P
5 P P P P P
6 P P P P P
7 P P P P P

(a) Availability schedule 1. B̄= = 4, B̂= =
3,∀= ∈ #.

              Node
Time slot

1 2 3 4 5

1 P P P P P
2 P P P P P
3 P P P P P
4 P P P P P
5 P P P P P
6
7

(b) Availability schedule 2. B̄= = 3, B̂= =
2,∀= ∈ #.

              Node
Time slot

1 2 3 4 5

1 P
2 P P
3 P P P
4 P P P
5 P P P
6 P P
7 P

(c) Availability schedule 3. B̄= = = + 1, B̂= =
1,∀= ∈ #.

              Node
Time slot

1 2 3 4 5

1 P P
2 P P
3 P P
4
5 P P
6 P P
7 P P

(d) Availability schedule 4. B̄1 = B̄2 =

2, B̄3 = B̄4 = 6, B̂= = 1.

Figure 5.5: Possible locations of unavailabilities in four availability schedules.
If “P” is marked in a time slot, it is a possible location of an unavailability,
and otherwise it is available.

are the same, which is Fig. 5.6(a). The work can reduce the input parameters of
Fig. 5.5(a) to those of Fig. 5.5(c) in order to reduce the size of the uncertainty
set.

5.4.3 Effect of heuristic algorithm

This work evaluates the performance of the heuristic algorithm in terms of
the objective value and the computation time, which is called test 3. The
evaluation uses cases 1, 4, and 6 in Table 5.1 in this evaluation with uncertain
parameters in Table 5.3. In each case, the evaluation randomly sets several
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              Node
Time slot

1 2 3 4 5

1
2 U
3 U
4 U
5 U
6 U
7

(a) Worst case availability
schedule 1 and 3. Obj.
value is 3.52.

              Node
Time slot

1 2 3 4 5

1 U
2 U
3 U
4 U
5 U
6
7

(b) Worst case availability
schedule 2. Obj. value is
3.57.

              Node
Time slot

1 2 3 4 5

1
2
3 U U
4
5 U U
6
7

(c) Worst case availability
schedule 4. Obj. value is
4.57.

Figure 5.6: Worst case availability schedule in four tests. If “U” is marked in
a time slot, it is unavailable, and otherwise available.

Table 5.3: Uncertain conditions in test 3.

Case Uncertain unavailability parameters

1 B̄1 = 2, B̂1 = 1, 5̄1 = 1, B̄2 = 2, 5̄2 = 2, 5̂2 = 1, other B̄ are �S, and B̂, 5̄ ,
and 5̂ are zero.

4 B̄1 = 2, B̂1 = 1, 5̄1 = 3, 5̂1 = 1, B̄2 = 1, 5̄2 = 3, 5̂2 = 2, B̄3 = 6, 5̄3 = 4,
other B̄ are �S, and B̂, 5̄ , and 5̂ are zero.

6 B̄1 = 2, 5̄1 = 3, B̄2 = 1, 5̄2 = 3, 5̂2 = 2, B̄3 = 6, B̂3 = 3, B̄5 = 3, 5̄5 = 3, B̄9 =
3, 5̄9 = 2, 5̂9 = 1, other B̄ are �S, and B̂, 5̄ , and 5̂ are zero.

different values of ΓF
= and ΓS

= for each case. The evaluation computes the
allocations with these different robustnesses by using the heuristic algorithm
and the MILP approach. Table 5.4 shows the parameter setting used in this
evaluation. The heuristic algorithm is implemented by C++ 15, compiled by
Microsoft Visual C++ 2017 v15.9.16, using Intel Core i7-7700 3.60 GHz 4-core
CPU, 32 GB memory.

Table 5.5 compares the results of each test obtained by using the heuristic
algorithm with those obtained by the MILP approach. The evaluation observe
that the objective values obtained by the heuristic algorithm have smaller
differences with those of the MILP approach, as the size of the network is
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Table 5.4: Parameter setting.

Parameter Setting

"� 250
�%# 12
*!%# 100
��% 0.6
��% 0.3
"% 0.3

smaller or the number of unavailabilities is smaller. Note that, when the size
of the network is larger or the number of unavailabilities is larger, the difference
becomes large; they are 13.79% in rows 7 and 8 of case 4 and 24.41% in row
3 of case 6 in Table 5.5. The difference in test 3 between the MILP approach
and the heuristic algorithm is 3.37% on average.

Table 5.6 shows the average computation times for the MILP approach,
the heuristic algorithm, and the CPU accelerated heuristic algorithm for each
case. The evaluation observes that the heuristic algorithm without CPU-
accumulation reduces the computation time by 99.47% compared with the
MILP approach on average; the larger the problem size is, the more the com-
putation time of the heuristic algorithm is reduced compared with that of the
MILP approach. The CPU-accumulation reduces the computation time by
71.07% compared with the heuristic algorithm without CPU-accumulation.

5.4.4 Large-scale evaluation

This work compares the proposed model with the baseline models with larger
test cases in this subsection. The MILP approach spends so much time that
it cannot be applied in large-scale tests cases as shown in Table 5.6. This
evaluation compares the results obtained from the heuristic algorithm and
three baseline models. The parameters of the algorithm are shown in Table 5.4.
The evaluation prepares four test cases with different given conditions as shown
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Table 5.5: Comparison of objective values in test 3.

Case
Values of
ΓF and ΓS†

Objective value

MILP Heuristic algorithm Difference

Case 1

(−1, 1
3 ) 3.83 3.83 0.00%

(−1, 2
3 ) 3.83 3.83 0.00%

(−1, 1) 3.83 3.83 0.00%
(0, 1

3 ) 3.67 3.67 0.00%
(0, 2

3 ) 3.67 3.50 4.63%
(0, 1) 3.67 3.67 0.00%
(1, 1

3 ) 3.67 3.67 0.00%
(1, 2

3 ) 3.67 3.50 4.63%
(1, 1) 3.67 3.67 0.00%

Case 4

(−1,−1, 1
3 ) 7.81 7.81 0.00%

(−1,−1, 1) 7.81 7.81 0.00%
(−1, 1, 1

3 ) 6.69 6.69 0.00%
(−1, 1, 1) 6.69 6.69 0.00%
(1,−1, 1

3 ) 6.67 6.50 2.55%
(1,−1, 1) 6.67 6.50 2.55%
(1, 1, 1

3 ) 6.67 5.75 13.79%
(1, 1, 1) 6.67 5.75 13.79%

Case 6
(−1,−1, 1

3 ) 4.93 4.90 0.61%
(−1,−1, 1) 4.93 4.90 0.61%
(1, 1, 1) 3.80 2.88 24.21%

†(ΓF
2 , Γ

S
1 ) for Case 1; (ΓF

1 , Γ
F
2 , Γ

S
1 ) for Case 4; (ΓF

2 , Γ
F
9 , Γ

S
3 ) for Case 6.
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Table 5.6: Comparison of average computation times in test 3.

Case MILP (s) Heuristic algorithm (s)
CPU accelerated

heuristic algorithm (s)

Case 1 21.43 6.19 2.86
Case 4 249.66 10.69 5.84
Case 6 11310.59 44.89 9.17

in Table 5.7.
The evaluation calculates the allocation of VNFs with given conditions

by using the heuristic algorithm and three baseline models. The objective
values of the above four methods are shown in Table 5.8. Allocations obtained
from the heuristic algorithm have larger objective values than those from the
compared baseline models, especially in cases 9 and 10, where the available
space for functions is large and the number of functions is small. Even if there
are performance gaps between the results obtained from the heuristic algorithm
and those from the proposed model, the results of the heuristic algorithm are
still better than those of the baseline models in examined cases.

5.5 Discussions

5.5.1 Maintenance ability

Sometimes the maintenance ability of SP is limited. The number of unavailable
nodes in one time slot is limited. This section assumes that the maintenance
ability on time slot C is limited from "L

C to "U
C , where "L

C ≤
∑
=∈# 4

C
= ≤ "U

C .
By using the known maintenance ability, the size of the uncertainty set P= can
be reduced to reduce the computation time. The reduction is performed by
using the following algorithm which is applied before Algorithm 3.1.

If the MILP approach is applied to solve this model, this work adds the
following equations to reduce the number of possible choices and computational
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Table 5.8: Evaluation results in Section 5.4.4.

Case Obtained from
(ΓF

2 , Γ
S
1)

(0, 1
3 ) (0, 2

3 ) (0, 1) (1, 1
3 ) (1, 2

3 ) (1, 1)

9 Heuristic algorithm 7.00 7.00 7.00 7.00 7.00 7.00
Double-slot allocation model 4.82 4.82 4.82 4.82 4.82 4.82
Single-slot allocation model 2.33 2.33 2.33 2.33 2.33 2.33
Persistent allocation model 2.67 2.67 2.67 1.58 1.58 1.58

10 Heuristic algorithm 2.91 2.91 3.50 2.91 2.87 2.87
Double-slot allocation model 2.76 2.76 2.76 2.76 2.76 2.76
Single-slot allocation model 2.33 2.33 2.33 1.31 1.31 1.31
Persistent allocation model 2.69 2.69 2.69 1.62 1.62 1.62

11 Heuristic algorithm 2.83 2.81 2.85 2.41 1.81 2.56
Double-slot allocation model 2.67 2.67 2.67 2.67 2.67 2.67
Single-slot allocation model 2.33 2.33 2.33 1.27 1.27 1.27
Persistent allocation model 2.67 2.67 2.67 1.59 1.59 1.59

12 Heuristic algorithm 7.00 7.00 7.00 7.00 7.00 7.00
Double-slot allocation model 4.82 4.82 4.82 4.82 4.82 4.82
Single-slot allocation model 2.33 2.33 2.33 2.33 2.33 2.33
Persistent allocation model 2.66 2.66 2.66 1.59 1.59 1.59

Algorithm 5.7 Uncertainty set reduction by using maintenance ability
Input: "L

C , "U
C , P, ΓF

= , B̄=, B̂=, 5̄=, 5̂=, ) , #
Output: new uncertainty set
1: for ? ∈ P do
2: Calculate the value of 4=C according to (5.1) by using ? and 5=

3: for C ∈ ) do
4: if

∑
=∈# 4

=
C < "

L
C or∑=∈# 4

=
C > "

U
C then

5: Delete the current ? from P
6: end if
7: end for
8: end for
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time by using the maintenance ability:

If "L
C ≤

∑
=∈# 4

=?
C ≤ "U

C then
Δ
?
C = 1

Else
Δ
?
C = 0,

(5.21a)

Δ
?
C ∈ {0, 1},∀? ∈ P, C ∈ ), (5.21b)

which can be linearized by using Appendix A. (5.6) is changed to:

max min
?∈P

{
(_? + n

∑
A∈'

V
?
A ) ·

∑
C∈)

{
Δ
?
C · �

}}
. (5.22)

Here, � is a large constant which is larger than ( |' | + 1) · |) |.

5.5.2 More than one unavailability period per node

Deterministic unavailability period

The model in Section 5.2 assumes that there is at most one unavailability
period on each node. Let us give an extension for supporting more than one
unavailability period on each node in this model.

�= is a set for unavailability periods on node = ∈ #. B0= is the starting time
slot of the ath unavailability period in set �=. 5 0= is the duration of the ath
unavailability period in set �=. Equation (5.1) is replaced by:

If B0= ≤ C ≤ B0= + 5 0= then
40C= = 1

Else
40C= = 0,

(5.23a)

4=C = ∨0∈�=40C=,∀= ∈ #, C ∈ ), (5.23b)
40C= ∈ {0, 1},∀= ∈ #, C ∈ ), 0 ∈ �=, (5.23c)
4=C ∈ {0, 1},∀= ∈ #, C ∈ ). (5.23d)

According to the linearization process in Appendix A, (5.23) is linearized and
(5.4a)-(5.4h) are replaced by the following equations:

C − B0= + n1 ≤ [0C= · �,∀C ∈ ), = ∈ #, 0 ∈ �=, (5.24a)
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C − B0= + n1 ≥ ([0C= − 1) · �,∀C ∈ ), = ∈ #, 0 ∈ �=, (5.24b)
B0= + 5 0= − C + n1 ≤ d0C= · �,∀C ∈ ), = ∈ #, 0 ∈ �=, (5.24c)
B0= + 5 0= − C + n1 ≥ (d0C= − 1) · �,∀C ∈ ), = ∈ #, 0 ∈ �=, (5.24d)
4′0C= ≤ [0C=,∀C ∈ ), = ∈ #, 0 ∈ �=, (5.24e)
4′0C= ≤ d0C=,∀C ∈ ), = ∈ #, 0 ∈ �=, (5.24f)
4′0C= ≥ [0C= + d0C= − 1,∀C ∈ ), = ∈ #, 0 ∈ �=, (5.24g)

4=C ≥
1
|�= |
·
∑
0∈�=

4′0C=,∀C ∈ ), = ∈ #, (5.24h)

4=C ≤
∑
0∈�=

4′0C=,∀C ∈ ), = ∈ #, (5.24i)

4′0C=, [
0
C=, d

0
C= ∈ [0, 1],∀C ∈ ), = ∈ #, 0 ∈ �=, (5.24j)

4=C ∈ {0, 1},∀= ∈ #, C ∈ ). (5.24k)

Uncertain unavailability period

Confronted with uncertain unavailability periods and multiple unavailability
periods, ΓS

= still controls the size of uncertainty set of beginning time slots
P= on node =. The larger ΓS

= is, the more the considered possible beginning
time slots of unavailability periods on node = are. For unavailability period
0 ∈ �=, this work chooses bΓS

= · (2 · B̂0= + 1)c different beginning time slots
from [B̄0= − B̂0= , B̄0= + B̂0=] and form a set which is an element in P0= . P0= contains
all possible choices of uncertainty period 0 on node =. The size of P0= is

|P0= | =
(

2 · B̂0= + 1
bΓS

= · (2 · B̂0= + 1)c

)
. The uncertainty set for all nodes is denoted

by P = {{P1
1 , · · · ,P

|�= |
1 }, {P1

2 , · · · }, · · · , {· · · ,P
|�= |
|# | }}. One element in P is a

combination of one element in each P=. One element in P= is a combination of
one element in each P0= . Let ? denote an element in P; ?= denotes the selected
set from P=; ?@= denotes the @th element in ?=; ?@0= denotes the selected starting
time slot of ath unavailability period in the element in ?@=.

ΓF
= controls the considered length of the duration of unavailability period

on node =, which is 5̄ 0= + 5̂ 0= · bΓF
= c.

Equations (5.7a)-(5.7h) are replaced by:

C − ?@0= + n1 ≤ [@0C= · �,∀C ∈ ), = ∈ #, @ ∈ [1, |?= |], 0 ∈ �=, (5.25a)
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C − ?@0= + n1 ≥ ([@0C= − 1) · �,∀C ∈ ), = ∈ #, @ ∈ [1, |?= |],
0 ∈ �=, (5.25b)

?
@0
= + 5̄ 0= + ΓF

= · 5̂ 0= − C + n1 ≤ d
@0
C= · �,∀C ∈ ), = ∈ #,

@ ∈ [1, |?= |], 0 ∈ �=, (5.25c)
?
@0
= + 5̄ 0= + ΓF

= · 5̂ 0= − C + n1 ≥ (d
@0
C= − 1) · �,∀C ∈ ), = ∈ #,

@ ∈ [1, |?= |], 0 ∈ �=, (5.25d)
g′C=@0 ≤ [

@0
C= ,∀C ∈ ), = ∈ #, @ ∈ [1, |?= |], 0 ∈ �=, (5.25e)

g′C=@0 ≤ d
@0
C= ,∀C ∈ ), = ∈ #, @ ∈ [1, |?= |], 0 ∈ �=, (5.25f)

g′C=@0 ≥ [
@0
C= + d

@0
C= − 1,∀C ∈ ), = ∈ #, @ ∈ [1, |?= |], 0 ∈ �=, (5.25g)

g
@
C= ≥

1
|�= |
·
∑
0∈�=

g′C=@0,∀C ∈ ), = ∈ #, @ ∈ [1, |?= |], (5.25h)

g
@
C= ≤

∑
0∈�=

g′C=@0,∀C ∈ ), = ∈ #, @ ∈ [1, |?= |], (5.25i)

g′C=@0,[
@0
C= , d

@0
C= ∈ [0, 1],∀C ∈ ), = ∈ #, @ ∈ [1, |?= |], 0 ∈ �=, (5.25j)

g
@
C= ∈[0, 1],∀C ∈ ), = ∈ #, @ ∈ [1, |?= |] . (5.25k)

5.5.3 Unpredictable unavailabilities

This work assumes that the availability schedules used in the proposed model
are known by maintenance schedules in the proposed model. In maintenance
schedules, the locations of availabilities and unavailabilities are given so that
the availability schedules can be expressed by binary matrixes. By comparison,
there are some availabilities and unavailabilities whose locations cannot be
specified, such as burst unavailabilities and probabilistic unavailabilities.

Burst unavailabilities are caused by burst hardware and software failures
of servers. The influences of burst unavailabilities cannot be avoided by the
scheduling of the proposed model. The common ways to suppress the influence
of the burst unavailabilities are backup and replication. Probabilistic unavail-
abilities from prediction systems give probabilistic results instead of the exact
results. If this work wants to use the probabilistic results as binary availability
schedules, quantization of the probabilistic results are necessary, which will
bring extra uncertainty. If the administrators consider that the cost is accept-
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able, they can set a threshold of probability. If the probability exceeds the
threshold, it is considered to be one; otherwise, zero.

5.6 Directions to extend proposed model

5.6.1 Separate request from SFC

This work assumes that one request corresponds to one SFC in Section 5.2.
This work does not consider sharing VNFs among different SFCs in the pro-
posed model. This work gives a direction on how to separate the requests from
the SFCs in this subsection. This work redefines the requests, SFCs, and VNFs
to replace the definitions in Section 5.2. The definition of decision variable GA:C=
in Section 5.2 is changed as follows.

' represents the set of requests from the users. � represents the set of SFCs
waiting for provisions. Each SFC is an ordered set of VNFs. � is the set of
functions. �2 ⊆ � is the ordered set of VNFs used in SFC 2 ∈ �. Binary given
parameter k 5 2 is set to 1 if function 5 ∈ � is used in SFC 2 ∈ �. Binary given
parameter W2A , A ∈ ', 2 ∈ �, is set to 1 if request A requests SFC 2; 0 otherwise.
Given parameter @ 5B represents the amount of resource B ∈ ( which function
5 ∈ � requires. This work uses binary decision variable G 5C= to represent the
allocation; G 5C= is set to 1 if function 5 ∈ � is assigned to node = ∈ # at time
slot C ∈ ) , and 0 otherwise.

According to the above redefinitions, the work gives a new version of the
related parameters and constraints as follows.

>AC =
∏
=∈#

{(∏
2∈�

∏
5 ∈�2

k 5 2W2A (G 5C= � G
5

C−1,=)
)
∧
(
1 − (

∏
2∈�

∏
5 ∈�2

k 5 2W2AG
5
C=) ∧ 4=C

)
∧
(
1 − (

∏
2∈�

∏
5 ∈�2

k 5 2W2AG
5

C−1,=) ∧ 4
=
C−1

)}
,

∀A ∈ ', C ∈ )\{1}, (5.26a)∑
5 ∈�

G
5
C=@

5
B ≤ 2B=C ,∀= ∈ #, C ∈ ), B ∈ (, (5.26b)∑

5 ∈�2
G
5
C= ≤ 1, ∀2 ∈ �, = ∈ #, C ∈ ), (5.26c)
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=∈#

G
5
C= = 1, ∀ 5 ∈ �, C ∈ ), (5.26d)

G
5
C= ∧ 4=C = 0, ∀C ∈ ), = ∈ #, 5 ∈ �. (5.26e)

Equation (5.26a) replaces GA:C= in (3.1) with ∏
2∈�

∏
5 ∈�2 k 5 2 W2AG

5
C=. Equation

(5.26b) replaces (3.9) in Chapter 3 and ensures that each node’s computational
resources must not exceed its capacity during allocation. Equation (5.26c)
replaces (3.10) in Chapter 3 and assumes that one service chain does not
allocate multiple VNFs in this chain on one VM to avoid the influence of the
reallocation of VMs [44]. Equation (5.26d) replaces (3.11) in Chapter 3 and
ensures that all functions are allocated in the network.

5.6.2 Multiple active replicas for a VNF

This work assumes that only one replica is active for each VNF at the same time
regardless of the required processing abilities of requests and the processing
abilities which can be provided by VNFs in Section 5.2. Actually, multiple
replicas can be active at the same time and the processing abilities of the
active replicas need to meet the required processing abilities of the requests.
Based on Section 5.6.1, this work introduces the following parameters about
replicas and constraints.

Each VNF 5 ∈ � can be replaced by a pool of � 5 replica VNFs, each
of which requires different capacities with an extra overhead on capacity but
behaves collectively as the original one; the capacity of each replica VNF can be
different from each other associated with the same original VNF. ? 5 0 represents
the processing ability of the 0th replica of VNF 5 ∈ �. @

5 B
B represents the

resource requirement of the 0th replica of VNF 5 ∈ � for resource B ∈ (.
The required processing ability of request A ∈ ' is denoted by �A , which is a
given parameter. This work uses binary decision variable G 5 0C= to represent the
allocation; G 5 0C= is set to 1 if the 0th replica of function 5 ∈ � is assigned to
node = ∈ # at time slot C ∈ ) , and 0 otherwise.

>AC =
∏
=∈#

{(∏
2∈�

∏
5 ∈�2

k 5 2W2A

∏
0∈� 5
(G 5 0C= � G

5 0

C−1,=)
)
∧
(
1 − (

∏
2∈�
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∏
5 ∈�2

k 5 2W2A

∏
0∈� 5

G
5 0
C= ) ∧ 4=C

)
∧
(
1 − (

∏
2∈�

∏
5 ∈�2

k 5 2W2A

∏
0′∈� 5

G
5 0

C−1,=) ∧ 4
=
C−1

)}
,∀A ∈ ', C ∈ )\{1}, (5.27a)∑

5 ∈�

∑
0∈� 5

G
5 0
C= @

5 0
B ≤ 2B=C ,∀= ∈ #, C ∈ ), B ∈ (, (5.27b)∑

0∈� 5
G
5 0
C= ≤ 1, ∀2 ∈ �, = ∈ #, C ∈ ), 5 ∈ �, (5.27c)

G
5 0
C= ∧ 4=C = 0, ∀C ∈ ), = ∈ #, 5 ∈ �, 0 ∈ � 5 , (5.27d)∑
=∈#

∑
0∈� 5

? 5 0G
5 0
C= ≥

∑
2∈�

k 5 2

∑
A∈'

W2A�A ,∀C ∈ ), 5 ∈ �. (5.27e)

Equations (5.26a)-(5.26e) are replaced by (5.27a)-(5.27d). Equation (5.27b)
ensures that each node’s computational resources must not exceed its capacity
during allocation. Equation (5.27c) ensures that the replicas of the same VNF
cannot be assigned to the same node. Equation (5.27e) ensures that the sum
of the processing abilities of the replicas of each VNF meets the required
processing abilities from the requirements at each time slot.

5.6.3 Network-aware placement

The proposed model does not consider the routing between VNFs in the same
SFC or the recovery path from the unavailable VNFs to their new locations.
In a real deployment, some paths cannot be chosen because of the limitation
of the characteristic of links, such as bandwidth and latency. This subsection
gives a direction on how to handle the routing problems by taking advantage of
the network topology. Each virtual link (8, 9) ∈ ! corresponds to a connection
between two VMs with transmission resource 18 9 and length ;8 9 . The transmis-
sion resources demanded by request A ∈ ' is 3A . The latency of request A ∈ '
is required to be less than ]A .

Routing of SFCs

This work presents the following constraints to compute the VNF allocation
and the routes of all SFCs.
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The flow constraint of SFC paths is given by: ∀| ∈ #, A ∈ ', : ∈  A , C ∈ ),

∑
(8, 9)∈!

U|,8 9 d
:,8 9
AC =


−1, if GA:C| = 1
1, if GA,:+1C| = 1
0, if GA:C| = G

A,:+1
C| = 0.

(5.28)

For each request, there are three types of nodes: source node (a node at
which the first function of a request is allocated), destination node (a node
at which the last function of a request is allocated), and others. This work
defines indicator U|,8 9 , | ∈ #, (8, 9) ∈ !, to represent the adjacency of nodes
on directed graph �, where U|,8 9 = 1 if node | is the tail of the directed link
(8, 9), i.e., | = 9 ; U|,8 9 = −1 if node | is the head of the directed link (8, 9), i.e.,
| = 8; U|,8 9 = 0 otherwise. This work uses binary variable d:,8 9AC to express the
route. If link (8, 9) is a segment link between the :th function and the : + 1th
function of request A ∈ ' at time slot C ∈ ) , d:,8 9AC = 1, and 0 otherwise. This
work have the following constraints. According to (3.10) in Chapter 3, GA:C| and
G
A,:+1
C| cannot be 1 at the same time. Thus (5.28) can be simplified to:∑

(8, 9)∈!
U|,8 9 d

:,8 9
AC = − GA:C| + GA,:+1C| ,∀: ∈  A\ {| A |} , A ∈ ', C ∈ ), | ∈ #.

(5.29)

The link capacity constraint is given by:∑
A∈'

∑
:∈ A

d
:,8 9
AC 3A ≤ 18 9 ,∀(8, 9) ∈ !, C ∈ ), (5.30)

which ensures that each link’s transmission resource is not overused. The
latency constraint is given by:∑

C∈)

∑
:∈ A

∑
(8, 9)∈!

;8 9 d
:,8 9
AC ≤ ]A ,∀A ∈ ', (5.31)

which ensures that each request meets the requirement of latency.

Routing during recovery

For stateful application, the state information needs to be synchronized be-
tween the old and new nodes, which consumes the transmission resource of

135



Chapter 5

links. The flow constraint of recovery is given by: ∀| ∈ #, A ∈ ', : ∈  A , C ∈
)\{1},

∑
(8, 9)∈!

U|,8 9g
:,8 9
AC =


−1, if GA:

C−1,| = 1
1, if GA,:C| = 1
0, if GA:

C−1,| = G
A,:
C| = 0.

(5.32)

This work uses binary variable g:,8 9AC to express the route. If link (8, 9) is a
segment link between the nodes where the :th function of request A ∈ ' is
allocated at time slot C ∈ )\{1} and time slot C − 1 , g:,8 9AC = 1, and 0 otherwise.
The link capacity constraint except for the first time slot is given by:∑

A∈'

∑
:∈ A
(d:,8 9AC + g

:,8 9
AC )3A ≤ 18 9 ,∀(8, 9) ∈ !, C ∈ )\{1}. (5.33)

5.7 Summary
This chapter proposed a robust VNF allocation model for improving the con-
tinuous available time of service function chains with considering the uncertain
availability schedule. This work formulated the proposed model as an MILP
problem. Numerical results showed that the proposed model improves the con-
tinuous available time of SFCs, compared with the persistent allocation model,
the single-slot allocation model, and the double-slot allocation model in both
deterministic and uncertain availability schedules. In the cases examined, the
proposed model can provide longer continuous available time slots compared
with the three baseline models under different levels of the robustness of un-
certain availability schedule. The developed heuristic algorithm reduces the
computation time by 99.85% compared with the MILP approach with a lim-
ited performance penalty by 3.37% in our evaluations. We evaluated the re-
lationship between availability schedules and objective values. The size of the
uncertainty set can be reduced according to our observations. This work gave
three discussions of the proposed model: for maintenance ability, for multiple
unavailability periods on each node, and for unpredictable unavailabilities. In
addition, this work provided three directions to extend the proposed model.
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Fault-tolerant resource
allocation model considering
joint diversity and redundancy
for static requests

This chapter proposes an optimization model to derive a resilient virtual net-
work function allocation in service function chains aiming to reduce the end-
to-end (E2E) latency during the migrations from the primary functions to
backup functions considering VNF diversity and redundancy ensuring :-fault
tolerance [102,103].

This work notes that : is a parameter to be set by an SP considering
the worst-case scenarios, each of which is associated with : node failures.
This work considers that such scenarios possibly occur, all of which should be
incorporated; the sum of the maximum E2E latencies among functions under
all possible failure patterns with : node failures can reflect the fault tolerance
of services, instead of considering only one worst-case pattern to minimize the
maximum E2E latency.

An example of recovery is shown in Fig. 6.1. VNFs 2 and 3 are realized
by VNF replicas 2.1-2.3 and 3.1-3.2, respectively. Each replica is allocated
to a node. Different nodes are holding different replicas. VNFs 2.3 and 3.1
fail at a time. Two replicas, VNFs 2.4 and 2.5, are chosen from the replica
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VNF 1

VNF 2.2

VNF 2.3

VNF 3.1

VNF 3.2
VNF 4

Primary replicas

VNF 2.4
VNF 3.3

Backup replicas

VNF 2.1

VNF 2.5

Figure 6.1: Example of the recovery. Red “X” means that a node which holds a
replica is unavailable, i.e., a replica is unavailable. Load balancers are ignored
in this figure.

pool of VNF 2 for backup VNFs. When the primary VNF 2.3 fails, VNF 2.3
is replaced with backup replicas VNFs 2.4 and 2.5. One replica, VNF 3.1, is
chosen from the replica pool of VNF 3 for backup VNFs. When the primary
VNF 3.1 fails, primary VNF 3.1 is replaced with backup VNF 3.3. As the
blue lines in Fig. 3.1, the data of VNF 2.3 and VNF 3.1, which fail, need to
be transferred to backup VNF replicas 2.4 and 2.5, and VNF 3.3, respectively.
The E2E latency for recovering VNF 2 is determined by the transmission time
from VNF 2.3 to VNF 2.4 and the transmission time from VNF 2.3 to VNF 2.5;
the recovery time is the larger one of the above two transmission times. The
E2E latency between the primary and backup instances of VNF 3 under the
current failures is the transmission time between the primary VNF 3.1 and the
backup VNF 3.3.

The rest of this chapter is organized as follows. Section 6.1 describes the
model. Section 6.2 presents two approximate approaches to solve the proposed
model. Section 6.3 presents numerical results that show the performances of
the proposed model and the introduced approaches in different cases. Sec-
tion 6.4 discusses the boundaries of resiliency level. Section 6.5 summarizes
the key points of this paper and future directions.
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6.1 Problem formalization

6.1.1 VNF allocation model

This work considers a directed graph � (#, !), where # is a set of nodes and !
is a set of directed links. Different nodes have different computational resources
for supporting functions allocated to them. This work considers an abstract
metric of different types of resources, such as CPU, memory, and storage, for
each node. Node = ∈ # has <= units of available resources in total. Set #S ⊆ #
stores the nodes that have available resources for function allocations, i.e., node
= ∈ # is included in #S if <= > 0. This work assumes that the required time for
data forwarding, i.e. latency, between two nodes can be estimated [90], which
is dependent on the network congestion and physical distance. The estimated
time for data forwarding through directed link (8, 9) ∈ ! is 38 9 .

� is the set of SFCs waiting for provisions. Each SFC 2 ∈ � is an ordered
set of VNFs. � is the set of functions. �2 ⊆ � is the ordered set of VNFs used
in SFC 2 ∈ �. Binary given parameter k 5 2 is set to 1 if function 5 ∈ � is
included in SFC 2 ∈ �.

Each VNF 5 ∈ � can be replaced by a set of replicas selected from pools of
replica VNFs in terms of the processing ability, which is denoted by set �[•]

5
for

primary usage (• is P) and backup usage (• is B). The capacity of each replica
VNF can be different from each other associated with the same original VNF.
Since the backup replicas may have special functions to synchronize states so
that primary replicas can be backed up, the pools for primary and backup
replicas may be different, e.g., the images for primary and backup replicas
are different when the backups need to be initialized before becoming primary
replicas [104], and the backup replicas request specific snapshots when the
failures are so critical that the only remedy is to restore an earlier version
of the system [105]. This work considers that an NFV orchestrator detects
failures and notify them to the corresponding backup replicas. To increase the
feasibility of function selection and placement, the replica pools for primary
and backup replicas are separated, each of which can be given differently.
Decision binary variable G [•]

= 5 0
is set to 1 if the 0 ∈ [1, |�[•]

5
|]th primary replica

(• is P) or backup replica (• is B) of VNF 5 ∈ � is assigned to node = ∈ #; 0
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otherwise.

This work assumes that a software problem that causes a node to become
unavailable, where the VNFs running on the node also become unavailable for
simplicity, which is the worst scenario due to the software problem. This work
calls this unavailability a failure. Note that this work does not considers that
some VNFs in a node fail, while others in the node survive, which should be
addressed for further study. The node which hosts the failed VNFs has a copy
of data and status information for stateful VNFs. This work assumes that the
backup VNFs can fetch the data from the node. As an example, this work
can consider a shared storage system which is independent from the failed
VNF for holding the data of VNF as the system presented in [106]. The node
failures do not affect data accessibility. A backup VNF cannot start to run
until the data from the primary one are ready. : is a given integer parameter,
which indicates the number of failed nodes. The :-resiliency backup strategy
is applied in this paper. As long as there are : nodes failures, the proposed
strategy guarantees that the VNF instances running on these nodes can be
relocated to non-failed nodes without affecting other VNFs. Since there are
: failures of nodes at the maximum in the network, this work uses set * to
contain all possible combinations of : nodes from #S. This work calls element
D ∈ *, which is a set of nodes D ⊆ #S, an error pattern.

%
[•]
5 0

represents the processing ability of the 0 ∈ [1, |�[•]
5
|]th primary replica

(• is P) or backup replica (• is B) of VNF 5 ∈ �. ( [•]
5 0

represents the resource
requirement of the 0th primary replica or backup replica of VNF 5 ∈ �.

' is the set of requests from users. Binary given parameter W2A , A ∈ ', 2 ∈ �,
is set to 1 if request A requests SFC 2; 0 otherwise. The required processing
ability for SFC 2 ∈ � of request A ∈ ' is denoted by �2A , which is a given
parameter.

Binary decision variable ? 5 00
′

8 9
, (8, 9) ∈ !, 5 ∈ �, 0 ∈ �P

5
, 0′ ∈ �B

5
is set

to 1 if the migration route from the 0th primary replica of VNF 5 to the
0′th backup replica of 5 includes link (8, 9); 0 otherwise. ? 5 00

′

8 9
is defined by:
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∀| ∈ #, 5 ∈ �, 0 ∈ �P
5
, 0′ ∈ �B

5
,

∑
(8, 9)∈!

U|8 9 ?
5 00′

8 9
=


−1, if GP

| 5 0
=

∑
=∈# G

B
= 5 0′ = 1

1, if GB
| 5 0′ =

∑
=∈# G

P
= 5 0

= 1
0, otherwise,

(6.1)

where U|
8 9

is a given parameter that satisfies U|
8 9
= 1 if node | is the head of

(8, 9), i.e., | = 9 ; U|
8 9
= −1 if node | is the tail of (8, 9), i.e., | = 8; U|

8 9
= 0

otherwise. ∑
=∈# G

B
= 5 0′ = 1 means that there is a backup replica of VNF 5 ∈ �

that uses the 0′th replica in the pool; 0 otherwise. ∑
=∈# G

P
= 5 0

= 1 means that
there is a primary replica of VNF 5 ∈ � that uses the 0th replica in the pool;
0 otherwise. Equation (6.1) can be summarized to:∑

(8, 9)∈!
U|8 9 ?

5 00′

8 9
= −GP

| 5 0

∑
=∈#

GB
= 5 0′ + G

B
| 5 0′

∑
=∈#

GP
= 5 0
,

∀| ∈ #, 5 ∈ �, 0 ∈ �P
5
, 0′ ∈ �B

5
. (6.2)

Decision variable `D indicates the maximum sum of E2E latencies from the
primary replicas to the backup replicas among all VNFs in all chains under
error pattern D ∈ *, which is given by:

`D = max
0∈�P

5
,0′∈�B

5
, 5 ∈�c,2∈�

∑
(8, 9)∈!

{
38 9 ?

5 00′

8 9

∑
=∈D

GP
= 5 0

∑
=′∈#\{D}

GB
=′ 5 0′

}
,∀D ∈ *.

(6.3)

The lower bound of `D is 0. The upper bound of `D is the largest E2E latency
between any two nodes among all the replicas.

The proposed model aims to minimize the sum of the maximum E2E la-
tencies among functions for transferring data under all error patterns with :
failed nodes; if there are multiple solutions, this work chooses the solution
which has the minimum of the sum of the resource requirements of all VNF
replicas among all error patterns. The objective function is given by:

min
∑
D∈*

`D + n
∑
=∈#

∑
5 ∈�

©­­«
∑
0∈�P

5

(P
5 0
GP
= 5 0
+

∑
0∈�B

5

(B
5 0
GB
= 5 0

ª®®¬ . (6.4)
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Equation (6.4) has the primary and secondary objectives prioritized by n . The
primary objective is to minimize the maximum E2E latencies among all con-
sidered VNFs and error patterns, i.e., ∑

D∈* `D. The secondary objective is to
minimize the sum of all consumed resources of primary and backup VNF repli-
cas, i.e., ∑

=∈#
∑
5 ∈�

(∑
0∈�P

5
(P
5 0
GP
= 5 0
+∑

0∈�B
5
(B
5 0
GB
= 5 0

)
. n is a sufficiently small

value to prioritize the primary objective over the secondary objective so that
the solution which has the minimum value of the secondary objective is chosen
when there is more than one solution which has the minimum value of primary
objective. The value of n must be smaller than min(8, 9) ∈! 38 9∑

5 ∈�

(∑
0∈�P

5

(P
5 0
+∑

0∈�B
5

(B
5 0

) so that
a change within the second term will not exceed the smallest unit within the
first term.

The constraints in the optimization problem are as follows:

∑
5 ∈�

©­­«
∑
0∈�P

5

(P
5 0
GP
= 5 0
+

∑
0∈�B

5

(B
5 0
GB
= 5 0

ª®®¬ ≤ <=,∀= ∈ #, (6.5)∑
=∈#

∑
0∈�P

5

%P
5 0
GP
= 5 0
≥

∑
2∈�

k 5 2

∑
A∈'

W2A · �2A ,∀ 5 ∈ �, (6.6)

∑
=∈#\{D}

©­­«
∑
0∈�P

5

%P
5 0
GP
= 5 0
+

∑
0∈�B

5

%B
5 0
GB
= 5 0

ª®®¬ ≥
∑
2∈�

k 5 2 ·
∑
A∈'

W2A ·

�2A ,∀ 5 ∈ �, D ∈ *, (6.7)∑
=∈#

GP
= 5 0
≤ 1,∀ 5 ∈ �, 0 ∈ �P

5
, (6.8)∑

=∈#
GB
= 5 0
≤ 1,∀ 5 ∈ �, 0 ∈ �B

5
, (6.9)

Equation (6.5) ensures that the resources allocated to VNF instances do not
exceed the available resources on each node. Equation (6.6) ensures that the
primary replicas of each VNF meet the processing ability requirements of the
requests. Equation (6.7) ensures that the primary and backup replicas of each
VNF meet the processing ability requirements of the requests under all error
patterns. Equations (6.8) ensures that each primary replica must be mapped at
most once. Equations (6.9) ensures that each backup replica must be mapped
at most once.
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In the above equations, (6.2)-(6.4) are not linear. They are transformed
into linear formulations according to Appendix A. Equation (6.2) is linearlized
to (6.10a)-(6.10g). Equation (6.3) is linearlized to (6.11a)-(6.11i). For the
sake of brevity and readability, let (|, 5 , 0, 0′) ∈ Φ, (8, 9 , 5 , D, 0, 0′) ∈ Ω, and
( 5 , D, 0, 0′) ∈ Ξ denote | ∈ #, 5 ∈ �, 0 ∈ �P

5
, 0′ ∈ �B

5
, (8, 9) ∈ !, 5 ∈ �, 0 ∈

�P
5
, 0′ ∈ �B

5
, D ∈ *, and 5 ∈ �, D ∈ *, 0 ∈ �P

5
, 0′ ∈ �B

5
, respectively.∑

(8, 9)∈!
U|8 9 ?

5 00′

8 9
= [′| 5 00′ − [| 5 00′,∀(|, 5 , 0, 0

′) ∈ Φ, (6.10a)

[| 5 00′ ≤ GP| 5 0,∀(|, 5 , 0, 0
′) ∈ Φ, (6.10b)

[| 5 00′ ≤
∑
=∈#

GB
= 5 0′,∀(|, 5 , 0, 0

′) ∈ Φ, (6.10c)

[| 5 00′ ≥ GP| 5 0 +
∑
=∈#

GB
= 5 0′ − 1,∀(|, 5 , 0, 0′) ∈ Φ, (6.10d)

[′| 5 00′ ≤ G
B
| 5 0′,∀(|, 5 , 0, 0

′) ∈ Φ, (6.10e)

[′| 5 00′ ≤
∑
=∈#

GP
= 5 0
,∀(|, 5 , 0, 0′) ∈ Φ, (6.10f)

[′| 5 00′ ≥ G
B
| 5 0′ +

∑
=∈#

GP
= 5 0
− 1,∀(|, 5 , 0, 0′) ∈ Φ, (6.10g)

\
D 5 00′

8 9
≤ ? 5 00

′

8 9
,∀(8, 9 , 5 , D, 0, 0′) ∈ Ω, (6.11a)

\
D 5 00′

8 9
≤

∑
=∈D

GP
= 5 0
,∀(8, 9 , 5 , D, 0, 0′) ∈ Ω, (6.11b)

\
D 5 00′

8 9
≤

∑
=′∈#\{D}

GB
=′ 5 0′,∀(8, 9 , 5 , D, 0, 0

′) ∈ Ω, (6.11c)

\
D 5 00′

8 9
≥

∑
=∈D

GP
= 5 0
+

∑
=′∈#\{D}

GB
=′ 5 0′ − 2,∀(8, 9 , 5 , D, 0, 0′) ∈ Ω, (6.11d)

`D ≤
∑
(8, 9)∈!

{38 9\D 5 00
′

8 9
} + � − X′00′ 5 D�,∀( 5 , D, 0, 0

′) ∈ Ξ, (6.11e)

`D ≥
∑
(8, 9)∈!

{38 9\D 5 00
′

8 9
} − � + X′00′ 5 D�,∀( 5 , D, 0, 0

′) ∈ Ξ, (6.11f)∑
(8, 9)∈!

{38 9\D 5 00
′

8 9
} ≥ (X′00′ 5 D − 1)� +

∑
(8, 9)∈!

{38 9\D 5
′0′′0′′′

8 9
},∀( 5 , D,

0, 0′) ∈ (�,*, �P
5
, �B

5
), ( 5 ′, 0′′, 0′′′) ∈ (�, �P

5
, �B

5
)\{( 5 , 0, 0′)}, (6.11g)∑

5 ∈�

∑
0∈�P

5

∑
0′∈�B

5

X′00′ 5 D = 1,∀D ∈ *, (6.11h)
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`D ≥
∑
(8, 9)∈!

{38 9\D 5 00
′

8 9
},∀( 5 , D, 0, 0′) ∈ Ξ, (6.11i)

[| 5 00′, [
′
| 5 00′ ∈ {0, 1},∀(|, 5 , 0, 0

′) ∈ Φ, (6.12a)

\
5 ==′00′

8 9
∈ {0, 1},∀(8, 9 , 5 , D, 0, 0′) ∈ Ω, = ∈ D, =′ ∈ #\{D}, (6.12b)

X′00′ 5 D ∈ {0, 1},∀( 5 , D, 0, 0
′) ∈ Ξ. (6.12c)

� is sufficiently large to ensure that its value is larger than ∑
(8, 9)∈!

{
38 9

∑
=∈D

∑
=′∈#\{D}

\
5 ==′00′

8 9

}
,∀( 5 , D, 0, 0′) ∈ Ξ.

In summary, the proposed model is formulated as an MILP problem:

min
∑
D∈*

`D + n
∑
=∈#

∑
5 ∈�

©­­«
∑
0∈�P

5

(P
5 0
GP
= 5 0
+

∑
0∈�B

5

(B
5 0
GB
= 5 0

ª®®¬ (6.13a)

s.t. (6.5) − (6.9), (6.10a) − (6.12c), (6.13b)

?
5 00′

8 9
∈ {0, 1},∀(8, 9) ∈ !, 5 ∈ �, 0 ∈ �P

5
, 0′ ∈ �B

5
, (6.13c)

GP
= 5 0
∈ {0, 1},∀= ∈ #, 5 ∈ �, 0 ∈ �P

5
, (6.13d)

GB
= 5 0
∈ {0, 1},∀= ∈ #, 5 ∈ �, 0 ∈ �B

5
. (6.13e)

It should be noted that, as * contains all possible combinations of : nodes
from #S, it is possible that the size of * becomes large depending on #S and
:, which may make the size of MILP problem rapidly increase.

6.1.2 NP-completeness

This work defines a subproblem of the VNF allocation problem (SVNFA) in
the proposed model and prove that SVNFA is NP-complete [77, 78]. In the
subproblem, this work focuses on the hardness of deciding whether there is
a feasible solution that can provide the required processing ability under all
error patterns with : node failures regardless of the latency and routing among
replica VNFs. This work assumes that there is one VNF with its replica pool
waiting to be allocated to satisfy the constraints of processing ability and node
capacity in SVNFA. If SVNFA can be proved to be NP-complete, the decision
version of original problem in the proposed model, which covers SVNFA, is
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also NP-complete. Note that this work can show that the decision version of
original problem is NP in the similar way to the proof that SVNFA is NP in
Theorem 6.1, as described below.

Definition 6.1 Given a set of nodes # with the capacity <= of each node
= ∈ #, and a pool of VNF replicas �, in which each replica has its processing
ability %0, 0 ∈ �, and resource requirement (0, 0 ∈ �, each replica in the pools
can be allocated at most once. Is it possible to find an allocation of replicas from
the pools to satisfy the required processing ability � with ensuing :-resiliency
(: ≥ 2)?

Lemma 6.1 Let A= 5 denote the total processing ability of the replicas of VNF
5 ∈ � which are allocated to node = ∈ #S; this work defines � 5 = {�= 5 |= ∈ #(}.
For VNF 5 ∈ �, if and only if the sum of the |#( | − : smallest elements in
A 5 is larger than or equal to the required ability � 5 which is calculated by the
right side of (6.6), the allocation is : resilient for VNF 5 .

Proof: This work proves Lemma 6.1 from both sides. If the sum of
the |#( | − : smallest elements in A 5 is larger than or equal to � 5 , the sum
of any |#( | − : elements in A 5 is also larger than or equal to � 5 , so that the
allocation is : resilient for VNF 5 . If the allocation is : resilient for VNF 5 ,
any combination of |#( | − : elements in A 5 must be larger than or equal to
� 5 , which includes the sum of the |#( | − : smallest elements in A 5 . Thus,
Lemma 6.1 is true.

Theorem 6.1 SVNFA is NP-complete.

Proof: The SVNFA problem is NP, as this work can verify whether the
allocation satisfies the required processing abilities with ensuing :-resiliency
in polynomial-time $ ( |�| + |#S | log |#S | + :) according to Lemma 6.1. It takes
$ ( |�|) to obtain the processing abilities provide by each node. Finding the :
smallest elements takes $ ( |#S | log |#S |). The time complexity of summing :
numbers is $ (:).

This work presents that the partition problem, which is a known NP-
complete problem [79], is polynomial time reducible to SVNFA. The partition
problem is defined as: whether a given multi-set � of positive integers can be
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partitioned into two subsets �1 and �2 such that the sum of the numbers in �1

equals that in �2.
First, this work constructs an instance of SVNFA from any instance of the

partition problem. An instance of the partition problem consists of a set of
positive integers � = {�8 : 8 ∈ [1, |� |]}. An instance of SVNFA is constructed
with the following steps.

1. Consider a set of 2: nodes. The capacity of each node is set to 1
2
∑
�8∈� �8,

i.e., <= = 1
2
∑
�8∈� �8,∀= ∈ #.

2. This work sets |�| = |� | + 2: − 2. � consists of two disjoint subsets, �′

and �′′. This work sets �′ = �. �′′ has 2: − 2 replicas whose processing
abilities and resource requirements are 1

2
∑
�8∈� �8. The processing ability

of each replica %0, 0 ∈ �′, is �8 ∈ � and the resource requirement of each
replica (0, 0 ∈ �′, is also �8 ∈ �.

3. The required processing ability � is given by :
2
∑
�8∈� �8.

The presented construction has a polynomial complexity of $ ( |� | + :), which
transforms any instance of the partition problem into an instance of SVNFA.

Consider that a partition problem instance is a Yes instance, which in-
dicates that there exist two subsets of �1 and �2 with ∑

�8∈�1 �8 =
∑
�8∈�2 �8.

By using the presented construction to define the corresponding SVNFA in-
stance from any Yes instance of the partition problem, each replica is as-
signed to a node with a requirement of �8 units resources and presents �8
units processing ability. The replicas with processing ability �8 ∈ �1 are al-
located to one node. The replicas with processing ability �8 ∈ �2 are allocated
to another node. Each replica with processing ability 1

2
∑
�8∈� �8 is allocated

to a node separately. The sum of resource requirements of the replicas on
each node is ∑

�8∈�1 �8 =
∑
�8∈�2 �8 =

1
2
∑
�8∈� �8, which satisfies the resource con-

straint. The sum of providable processing ability of replicas over any : nodes
is : ∑

�8∈�1 �8 = :
∑
�8∈�2 �8 =

:
2
∑
�8∈� �8, which is equal to the required processing

ability, i.e, ensuring :-resiliency. The SVNFA instance is a Yes instance.
Conversely, this work shows that, if an SVNFA instance is a Yes instance,

the corresponding partition problem instance is a Yes instance. Since the

146



Section 6.2

SVNFA instance is a Yes instance, the allocation of replicas in the pools en-
sures :-resiliency and satisfies the node capacity constraint. The sum of pro-
cessing abilities over any : nodes is no less than the required processing ability
:
2
∑
�8∈� �8. The sum of resource requirements of the replicas on each node is

no more than 1
2
∑
�8∈� �8. For the 2: − 2 nodes with 1

2
∑
�8∈� �8 units capacities,

the replicas with processing abilities 1
2
∑
�8∈� �8 are allocated to them separately

with satisfying the resource requirement constraint, since the resource require-
ments of them are equal to the node capacities, which are 1

2
∑
�8∈� �8. For the

other two nodes, to ensure that each node has no less than 1
2
∑
�8∈� �8 units

processing ability, the sum of processing abilities of the replicas allocated to
one node must be 1

2
∑
�8∈� �8. All the processing abilities of the replicas allo-

cated to the same node must belong to the same set, �1 or �2. The processing
abilities in set � are partitioned into two subsets �1 and �2 such that the sum
of the numbers in �1 equals that in �2, which is 1

2
∑
�8∈� �8. Thus, if an SVNFA

instance is a Yes instance, the corresponding partition problem instance is also
a Yes instance, i.e., ∑�8∈�1 �8 =

∑
�8∈�2 �8.

6.2 Heuristic approaches

As the size of the problem presented in Section 6.1 increases, the problem
becomes difficult to solve in practical time. A feasible solution may not be
obtained within admissible computational time, which can be specified by
SPs. This work introduces two approaches, greedy approach and probabilistic
heuristic approach, in this section.

The greedy approach finds a local optimal solution by traversal, which is
introduced in Section 6.2.1. Section 6.2.2 analyzes the greedy algorithm the
optimality of the provided solutions in a special cas. Based on the initial
solution given by the greedy algorithm, Section 6.2.3 provides a probabilistic
heuristic approach to explore a better solution.

6.2.1 Greedy approach

A greedy approach is a simple heuristic approach which finds the best de-
cision at each step aiming to find a near optimal solution. Once the deci-

147



Chapter 6

sion is made at each step, it is not changed at the latter steps. The greedy
approach traverses all the nodes for placing each function and find a suit-
able location, where the deployment does not violate any constraints. The
greedy approach chooses the position for each replica of each VNF, which
has the minimum objective value at this step. Finally, the approach gets a
final allocation for all VNFs. The greedy approach employs Algorithm 6.1.
In lines 2–22, this algorithm allocates the primary replicas for each func-
tion with satisfying the requirement of required processing ability. In lines
3–5, this algorithm checks if there is any feasible solution under the given
condition by (6.6). In lines 19–21, if the allocated primary replicas can-
not satisfy the required processing ability after traversing all replicas and
nodes, there is no feasible solution provided by Algorithm 6.1. In lines 23–
41, this algorithm allocates the backup replicas for each function with sat-
isfying the requirement of required processing ability. In lines 38–40, this
algorithm checks if the allocated replicas ensure :-resiliency. The time com-
plexity of Algorithm 6.1 is $

(
|� |

(
|� | |' | + max 5 ∈� |�P5 | log (max 5 ∈� |�P5 |) +

max 5 ∈� |�B5 | log (max 5 ∈� |�B5 |) + |# | log |# |
(
max 5 ∈� |�P5 | + |! |max 5 ∈� |�B5 |

) ))
.

The greedy approach has two limitations as follows. Firstly, the approach
gives priority to satisfy the constraints, such as :-resiliency, rather than seeking
the optimal solution (line 28), which leads to the performance degradation of
the greedy approach. Secondly, in order to avoid the verification of :-resiliency
in factorial time, this algorithm uses a conservative verification method (lines
39–41), which may lead to the false negative, i.e., the infeasible solution ob-
tained by the greedy approach may be feasible.
Algorithm 6.1 Algorithm used in greedy approach
Input: Given parameters in Section 6.1
Output: allocation for selected replicas
1: Calculate the required processing ability � 5 for each function 5 ∈ � by

using the right side of (6.6).
2: for 5 ∈ � do
3: if

∑
0∈�P

5
%P
5 0
< � 5 then

4: return Infeasible.
5: end if
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6: For the replicas whose processing abilities are larger than or equal to � 5 ,
sort �P

5
according to %P

5 0
, 0 ∈ �P

5
, non-decreasingly; for the other replicas,

sort �P
5
according to %P

5 0
, 0 ∈ �P

5
, non-increasingly and put them after the

previous replicas.
7: for 0 ∈ �P

5
do

8: Sort #S according to the providable processing ability of each node,
non-decreasingly.

9: for = ∈ #S do
10: if there is enough capacity on = for 0 then
11: Allocate replica 0 to node =.
12: Break
13: end if
14: end for
15: if allocated replicas for VNF 5 can provide � 5 units processing

ability then
16: Combine the remaining replicas in �P

5
to �B

5
.

17: Break
18: end if
19: end for
20: if allocated replicas for VNF 5 cannot provide � 5 units processing

ability then
21: return Infeasible.
22: end if
23: end for
24: for 5 ∈ � do
25: For the replicas whose processing abilities are larger than or equal to � 5 ,

sort �B
5
according to %B

5 0
, 0 ∈ �B

5
, non-decreasingly; for the other replicas,

sort �B
5
according to %B

5 0
, 0 ∈ �B

5
, non-increasingly and put them after the

previous replicas. The original primary replicas are allocated before the
backup replicas.

26: for 0 ∈ �B
5
do

27: Let # 5 denote the nodes where the primary replicas of function 5

are allocated.
28: Sort #S according to the providable processing ability of each non-
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decreasingly. If there are nodes have the same processing ability, sort them
according to the highest latency among all nodes in # 5 , increasingly.

29: for = ∈ #S do
30: if there is enough capacity on = for 0 then
31: Allocate replica 0 to node =
32: Break
33: end if
34: end for
35: if |#S | − : nodes with minimum processing abilities can provide � 5

units processing ability then
36: Break
37: end if
38: end for
39: if |#S | − : nodes with minimum processing abilities cannot provide � 5

units processing ability then
40: return Infeasible.
41: end if
42: end for

6.2.2 Analysis of greedy approach in a special case

The greedy approach is difficult to analyze under a general case in the aspect
of approximate ratio, since the E2E latencies, processing abilities, and required
resources of the replicas are given arbitrarily. This work discusses the opti-
mality of the solutions provided by the greedy approach in terms of the first
term in the objective function under the special case that the capacity of each
node in #S is larger than or equal to ∑

5 ∈�
∑
0∈�P

5
(P
5 0
.

Observation 6.1 The first term in the objective function is zero under two
cases. One is that the backup replicas are not allocated and multiple primary
replica with sufficient processing ability can achieve :-fault tolerance without
any latency due to backup migration. The other one is that the primary and
backup replicas of the same VNF are allocated to the same node so that there
does not exist migration latency.

Observation 6.2 If the primary and backup replicas of the same VNF are
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allocated to the same node, the resiliency level of the VNF is zero.

Observation 6.3 If the required resiliency level of a VNF is zero, only pri-
mary replicas are enough for required processing ability according to (6.6).

Property 6.1 Let L be the maximum latency between two nodes in graph �.
The first term in (6.4) of the feasible solution provided by Algorithm 6.1 is at
most max 5 ∈� (

( |#S |
:

)
− �5 )L under the special case. �5 is an integer value,

which is calculated by:

�5 =


0, if |#S | − |�P5 | < :,( |#S |−|�P5 |

:

)
, otherwise

,∀ 5 ∈ �. (6.14)

Proof: If only the primary replicas are allocated, the first term in (6.4)
is zero. Since the work cares about the upper bound of the E2E latency,
this work discusses the situation that both primary and backup replicas are
allocated in the proof. Algorithm 6.1 allocates all primary replicas before the
backup replicas. When |#S | ≤ |�P5 |, at least one primary replica is allocated to
each node. If a node fails, the E2E latency between from the primary replica
to a backup replica is at most L. The E2E latency between the primary and
backup instances of VNF 5 ∈ � is at most

( |#S |
:

)
L.

When |#S | > |�P5 |, primary replicas are not allocated to |#S | − |�P5 | nodes
and backup replicas are preferentially allocated to these nodes. If |#( | − |�%5 | <
:, any error pattern causes the failures of primary replicas and the E2E latency
between the primary and backup instances of VNF 5 ∈ � is at most

( |#S |
:

)
L.

Otherwise, only backup replicas fail among
( |#S |−|�P5 |

:

)
error patterns and the

replicas do not need to be recovered. The E2E latency between the primary
and backup instances of VNF 5 ∈ � is at most (

( |#S |
:

)
−

( |#S |−|�P5 |
:

)
)L.

Property 6.2 Let the replica pools of VNFs be sorted in line 6 of Algo-
rithm 6.1. When the first term of the feasible solution provided by Algo-
rithm 6.1 is zero under the special case, the second term in (6.4) of the solution
is at most

∑
5 ∈�

∑
0∈[1,�5 ] (

P
5 0

under the special case, where �5 , 5 ∈ �, equals
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to > 5
:+1, if >

5

:+1 exists; |�P
5
|, otherwise. > 5

8
, 5 ∈ �, is defined by:

>
5

8
=


0, if 8 = 0,

argmin
�∈[> 5

8−1+1,|�
P
5
|]

∑
0∈[> 5

8−1+1]
,�]%P

5 0
≥ � 5 , otherwise. (6.15)

Proof: Let 
5 define the number of primary replicas of VNF 5 ∈ �
whose processing abilities are not less than � 5 . If 
5 ≥ : + 1, the first : + 1
replicas in �P

5
are enough for :-fault tolerance of VNF 5 ∈ �, whose total

resource requirements are ∑
0∈[1,:+1] (

P
5 0
. If 
5 < : + 1 for VNF 5 ∈ �, the

primary replicas of VNF 5 ∈ � whose processing abilities are less than �A need
to be allocated. The total processing ability provided by (> 5

8−1 + 1)th - > 5
8
th

replicas of VNF 5 ∈ � is not less than the required one. For each 8 ∈ [1, : +1],
if the above replicas are allocated to the same node which no replicas are allo-
cated to, the allocation satisfies :-fault tolerance of VNF 5 ∈ �. The number
of replicas using for satisfying :-fault tolerance of VNF 5 ∈ � is > 5

:+1, whose
total resource requirements are ∑

0∈[1,> 5
:+1]

(P
5 0
. In Algorithm 6.1, the number

of allocated replicas is not larger than >
5

:+1 as well as the required capaci-
ties according to the suitable combination of replicas with different processing
abilities. The total required capacity, i.e., the second term in (6.4), is at most∑
5 ∈�

∑
0∈[1,�5 ] (

P
5 0
.

6.2.3 Probabilistic heuristic approach

The greedy approach can achieve the optimal solution in the special case intro-
duced in Section 6.2.2. The optimal solution has the minimum total recovery
latency among all error patterns in a general case. The time complexity of
traversing all errors is not in polynomial time. Different VNFs have differ-
ent required processing abilities and replica pools. The selection of replicas
in limited capacity cases and the order of allocating VNFs are not handled
in the greedy approach. Since the greedy approach has the above limitations
on obtaining better solutions, a probabilistic heuristic (PH) approach based
on simulated annealing algorithm [107] is introduced in this subsection, which
can improve the accuracy of solution with the cost of longer computation time.
The parameters used in Algorithm 6.2 are shown in Table 6.1.
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Table 6.1: Parameters in Algorithm 6.2.

Parameter Description
IT Initial temperature
RT Minimum temperature limit
CF Cooling factor, between 0 and 1
MC Markov chain length

The PH approach obtains the initial solution based on the greedy approach.
There are two ways for generating new solutions: selecting an allocation ran-
domly, changing the allocation to a random location or deleting the allocation;
selecting two allocations randomly, exchanging their locations. If the generated
solution exceeds the capacity limitation on a node, an allocation on the node is
randomly selected and removed until the capacity limitation is not exceeded. If
the objective value calculated from the newly generated solution is better than
the currently best one and the :-fault tolerance is satisfied, the best result is
updated and the following procedure is based on the new solution; otherwise,
the new solution is used for the following procedure with a probability related
to the quality of the solution and the current temperature. The above proce-
dure is repeated with "� cycles under each temperature. The PH approach
ends when the temperature achieves ') . If the difference between the values
of RT and IT is small, the solution space will not be searched sufficiently; if
the difference is large, the algorithm will take longer to end. A balance needs
to be examined empirically in the choice of parameters. This work determines
such a small value of RT that our obtained solution is not affected by RT.

Algorithm 6.2 Algorithm used in PH approach
Input: Parameters in Table 6.1, given conditions in Section 6.1
Output: Allocations of replicas
1: Calculate an initial allocation (N obtained by Algorithm 6.1.
2: (C ← (N, (B ← (N

3: $B ← Objective value calculated from (B, $C ← $B

4: ) ← IT
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5: while ) ≥ RT do
6: for 1 to MC do
7: A ← a randomly generated value between 0 and 1.
8: if A ≥ 0.5 then
9: Randomly select a primary or backup replica and a location
∈ [0, |#S |].

10: if Location 0 is selected then
11: Remove the allocation of the selected replica if exists, sorted

the solution as (N.
12: else
13: Change the allocation of the selected replica to the selected

location, sorted the solution as (N.
14: end if
15: else
16: Randomly select two primary or backup replicas
17: Exchange the location of two selected allocation, sorted the so-

lution as (N.
18: end if
19: Calculate the required capacity of each node based on (N.
20: for = ∈ #S do
21: while the required capacity of node = by the current allocation

> <= do
22: Release an allocation on node = randomly.
23: end while
24: end for
25: $N ← Objective value calculated from (N

26: if $N < $C and (N satisfies the required :-fault tolerance then
27: $C ← $N, (C ← (N.
28: if $N < $B then
29: $B ← $N, (B ← (N.
30: end if
31: else
32: if A < $C−$N

)
then

33: $C ← $N, (C ← (N.
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34: else
35: $N ← $C.
36: end if
37: end if
38: end for
39: ) ← ) · CF.
40: end while
41: Return (B, $B.

6.3 Evaluations
This section prepares four tests. Test 1 compares the proposed model to five
baseline models with different : in terms of the objective value obtained by
(6.4). Test 2 compares the objective values obtained by the proposed model
with different given parameters to investigate the relationship between : and
each given parameter. Test 3 evaluates the impacts of different replica pools.
Test 4 evaluates the performances of the approaches introduced in Section 6.2.

The MILP approach of the proposed model is solved by the IBMr ILOGr

CPLEXr Interactive Optimizer, version 12.10.0, running on an Intel Core i7-
7700 3.60 GHz 4-core CPU, 32 GB memory. The considered baseline models
and the approximate approaches introduced in Section 6.2 are implemented
by Python 3.8.5 and run on the same hardware.

6.3.1 Comparison between proposed model and base-
line models

In the objective function of the proposed model, this work focuses on the
latency and the number of deployed replicas. Each of the five baseline models
represents different random and greedy algorithms with different concerns.
Each baseline focuses on only one objective instead of two of the proposed
models. The five baseline models that select the suitable replicas and backups
from the pools and determine the locations of them are introduced as follows:

• Random selection and random placement with a central backup server
(RSRP-CBS): data are re-fetched from the central storage server whose
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location is determined randomly. RSPR-CBS does not take the network
configuration into consideration. The replicas of each VNF are randomly
selected from the pool and placed.

• Random selection and random placement with distributed backup servers
(RSRP-DBS): data are re-fetched from the corresponding backup servers.
RSPR-DBS does not take the network configuration into consideration.
The primary and backup replicas of each VNF are randomly selected
from the pool and placed.

• Selection to minimize the number of instances for each VNF and ran-
dom placement (minISRP): data are re-fetched from the corresponding
backup servers. minISRP does not take the network configuration into
consideration. It chooses as few as possible primary and backup replicas
for each VNF. The placement of them are randomly determined.

• Selection to maximize the number of instances selection for each VNF
and random placement (maxISRP): data are re-fetched from the cor-
responding backup servers. maxISRP does not take the network con-
figuration into consideration. It chooses as many as possible primary
and backup replicas for each VNF. The placement of them is randomly
determined.

• Random selection and placement to minimize the distance of each VNF
replica instances and corresponding backups (RSminDP): data are re-
fetched from the corresponding backup servers. RSminDP takes the net-
work configuration into consideration. The primary and backup replicas
are randomly chosen from the pool of each VNF. Each backup is placed
as close to its primary as possible.

RSRP-CBS , RSRP-DBS and RSminDP focus on the placements of functions
instead of how to select replicas from the replica pools. minISRP and maxISRP
are concerned with how to select replicas from the replica pools but not how
to place the selected functions.

Note that, the work in [10] aims to reduce the inherent cost due to diver-
sity (overhead) and redundancy (backup resources), which is different from our
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Figure 6.2: Graphs used for evaluations. Each link is bi-directional. Each
number attached to a link means the estimated latency for the link.

objective. This work cannot directly compare two models with different objec-
tive functions. As a complement, the work gives the five baseline models that
consider the same objective function as the proposed model. Among them,
minISRP has a similar idea to [10], which considers both reliability assurance
and minimum cost deployment, i.e., the number of chosen replicas.

The settings of the cases in test 1 are given as follows. Without loss of
generality, this evaluation uses arbitrary units. In case 1.1, the evaluation uses
the directed graph in Fig. 6.2 (a). There are two SFCs and two requests in
this case. The required processing abilities of the requests are two and three,
respectively. The ordered function sets of two SFCs are {1, 2}, and {2, 3},
respectively. The sizes of the replica pools for all functions are three. The
processing abilities of the replicas of three functions are [1, 1, 2], [2, 3, 5], and
[1, 1, 2], respectively. The required capacities of the replicas of three functions
are [2, 2, 3], [3, 4, 6], and [2, 2, 3], respectively. In case 1.2, the evaluation
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uses the directed graph in Fig. 6.2 (b) and the other parameters are the same
as those in case 1.1.

The result of the MILP approach of the proposed model and the average
results of the five baseline models over 100 trials are shown in Table 6.2(a).
The evaluation only counts the feasible solutions provided by the baseline
models into the calculation of average results. Since the baseline models do
not consider the :-resiliency and the remaining processing ability of the func-
tions are not enough under the :-node failures according to the allocation
provided by the baseline models, the requirements may not be satisfied. This
work calls such an allocation an unaccepted allocation. This work uses U:
in Table 6.2(a) to represent the unaccepted ratios of the requirements under
different error patterns whose total number of failures is :, which is calculated
by the number of unaccepted allocations among all error patterns in *

|* | .

Table 6.2(a) shows that the proposed model ensures :-resiliency, i.e., the
unaccepted ratios are 0. Since RSRP-CBS has one central storage server, the
unaccepted ratio is always larger than zero and increases with the increase
of :. RSRP-DBS has several backup locations so that the E2E latency is
smaller than that of RSRP-CBS when : is larger than one at the cost of
higher unaccepted ratios compared with RSRP-CBS. The number of function
instances used in minISRP is chosen to be as small as possible. The number
of function instances used in maxISRP is chosen to be as large as possible.
The unaccepted ratios of these two models are smaller than those of RSRP
models with smaller objective values. maxISRP has smaller unaccepted ratios
than minISRP since more instances take up more nodes which more likely fail.
minISRP has smaller objective values than maxISRP since the backup replicas
are distributed widely in the network and they reduce the average distance
between primary replicas and backup replicas. RSminDP has the smallest
objective value among the proposed and five baseline models. However, it
cannot guarantee :-resiliency, and the unaccepted ratios are higher than all
the other baseline models in the examined cases. With the increase of :, the
unaccepted ratio increases rapidly.
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Table 6.2: Objective values and unaccepted ratios obtained by proposed and
baseline models.

(a) Test 1: objective values (former) and unaccepted ratios (latter) calculated
by baseline models under different : in cases 1.1 and 1.2

Model
Case 1.1

: = 1 :=2 : = 3

Proposed model 2.028, 0.000 68.037, 0.000 188.048, 0.000
RSRP-CBS 24.51, 0.167 75.08, 0.333 89.97, 0.500
RSRP-DBS 28.83, 0.108 63.89, 0.355 47.51, 0.634
minISRP 20.58, 0.115 59.02, 0.373 51.94, 0.633
maxISRP 36.42, 0.008 96.86, 0.104 70.60, 0.360
RSminDP 1.706, 0.237 6.066, 0.493 5.006, 0.727

Model Case 1.2

Proposed model 2.028, 0.000 26.037, 0.000 452.048, 0.000
RSRP-CBS 28.71, 0.125 139.1, 0.250 292.2, 0.375
RSRP-DBS 31.55, 0.093 137.5, 0.224 235.4, 0.405
minISRP 24.72, 0.055 109.1, 0.208 208.7, 0.432
maxISRP 47.76, 0.004 202.4, 0.026 334.8, 0.132
RSminDP 4.026, 0.136 16.59, 0.345 32.41, 0.464

(b) Test 2: objective values obtained by proposed model. “-" means no feasible
solution.

:

Case 1.1 1.2 2.1 2.2 2.3 2.4 2.5

1 2.028 2.028 2.029 0.021 0.021 0.021 0.019
2 68.037 26.037 94.038 18.033 10.030 0.039 0.035
3 188.048 452.048 - - 118.044 80.048 0.053
4 - - - - 134.048 98.060 60.062
5 - - - - - 36.078 24.072
6 - - - - - - -
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6.3.2 Relationship between resiliency level : and given
parameters

In addition to the test cases in test 1, this evaluation gives five more cases for
this evaluation. In case 2.1, the evaluation sets the capacities of nodes 1-8 to
6, 3, 10, 6, 3, 10, 0, 0, respectively. The other parameters are the same as
those in case 1.1. In case 2.2, the evaluation considers one SFC, whose ordered
function set is {1, 2, 3}, and one request, whose required processing ability is
two. The other parameters are the same as those in case 2.1. In case 2.3, the
evaluation considers one SFC, whose ordered function set is {1, 2, 3}, and one
request, whose required processing ability is two. The other parameters are the
same as those in case 1.1. In case 2.4, the evaluation increases the processing
abilities of the replicas of functions 1 and 3 to [2, 3, 5]. The other parameters
are the same as those in case 2.3. In case 2.5, the evaluation enlarges the size of
the replica pools of three functions. The processing abilities of the replicas of
three functions are [1, 2, 2, 5, 5], [2, 3, 3, 5, 5], and [1, 2, 2, 5, 5], respectively.
The other parameters are the same as those in case 2.3.

Table 6.2(b) observes that several conditions increase the largest resiliency
(:) under which the proposed model can have feasible solutions based on the
examined cases. This work calls the largest : under which a feasible solution
can be obtained by the proposed model in a case, a resiliency level. In the
comparison between cases 1.1 and 1.2, the increase of the number of available
nodes cannot provide a higher resiliency level if the total available resources
of nodes are enough for all the replicas both before and after the increase. In
the comparison between cases 1.1 and 2.1, the increase of the capacity of each
node can provide a higher resiliency level if the currently available resources of
nodes are not enough for all the replicas. In the comparison among cases 1.1,
2.1, 2.2, and 2.3, the reduction of the number of required resources from the
requests can provide a higher resiliency level. In the comparison among cases
2.3, 2.4, and 2.5, the increase of the size of replica pools and the processing
ability of each replica can increase the resiliency level if the currently available
resources of nodes are enough for all the replicas.

160



Section 6.3

6.3.3 Impact of replica pool design in terms of objective
value

The replica pools in the given condition is designed by SPs. SPs provide
the processing ability and resource requirement of each replica in the replica
pools. Different replica pools may lead to different allocations and objective
values, as shown in Table 6.2. In this subsection, this work shows the impact
of replica pools with different features on the objective values of the proposed
model. This evaluation aims to give directions for SPs on the design of replicas
pools in order to obtain better objective values. The features of primary and
backup replica pools which this work focuses on include the average values
of the processing abilities of the replicas in the pools, the variances of the
processing abilities of the replicas in the pools, and the relationship between
the processing ability of each replica and the required processing ability.

This work designs different test cases for the evaluation. In these test
cases, this work uses a directed graph in Fig. 6.2 (a). This work considers
one SFC whose ordered VNF set is {1,2,3}, and one request whose required
processing ability is five. The value of resource requirements is the same as
that of processing ability for each replica. The settings of replica pools are
shown in Table 6.3.

The evaluation results are shown in Table 6.3. In the examined cases,
if the average processing abilities in the pools are the same, the replica pool
with the smallest variance of processing abilities has the lowest objective value.
However, as shown in case 3.5, a replica pool with the smallest variance of pro-
cessing abilities may lead to decreasing the resiliency level, since the smallest
variance of processing abilities means that the types of replicas are limited and
the nodes with limited resources may not be able to hold enough replicas for
backup. As well, the computation time is the shortest when the replica pools
with the smallest variance of processing abilities are given, since the processing
abilities and resource requirements of replicas are the same and the selection
of replicas is omitted. If the variances of processing abilities are the same, the
replica pool with the largest average processing ability has the lowest objective
value and the shortest computation time.

If the resources of nodes are sufficiently large to accommodate all repli-
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cas, it is recommended that SPs provide the replicas with the same processing
ability and the processing ability should be as large as possible. Otherwise,
if the average processing abilities are larger than the required one, the vari-
ance of the processing abilities should be as small as possible; if the average
processing abilities are less than the required one, it is better to provide more
replicas whose processing abilities can reach the required one in the comparison
between cases 3.7 and 3.9.

Compared with the other models which do not consider the diversity of
VNFs, the proposed model is more suitable for the scenarios where the ca-
pacities of the nodes in the cluster are requested to be fully utilized, e.g., the
resource allocation in the edge computing network.

6.3.4 Comparison of MILP and approaches in Section 6.2

This subsection compares the approaches introduced in Section 6.2 with the
MILP approach in terms of the objective values and computation times. This
work performs the comparisons under cases 1.1-1.2 and cases 2.1-2.5. The
parameter settings for the PH approach used in this evaluation are: IT =
10000; RT = 1; CF = 0.98; MC = 100. The results are shown in Table 6.4.

In the examined cases, the three approaches, two approaches in Section 6.2
and the MILP approach, can obtain feasible solutions. The number of solvable
cases of the MILP approach, the greedy approach, and the PH approach are
24, 21, and 21, respectively. The average computation times of the MILP
approach, the greedy approach, and the PH approach among 21 cases are
35670.29 [s], 0.0042 [s], and 28.0167 [s], respectively; the objective values of
the MILP approach, the greedy approach, and the PH approach among 21
cases are 59.942, 98.704, and 87.659, respectively. This work can observe that
the greedy approach is the fastest approach among these three approaches.
The PH approach is more exact than the greedy approach. Note that the
greedy and PH approaches cannot get feasible solutions in some cases, where
the capacities of nodes are relatively small and the required resiliency level is
relatively high.

The greedy approach reduces 99.98% computation time compared with
the MILP approach on average among 21 test cases. The difference in the
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objective value between the results obtained by the MILP approach and the
greedy approach is 31.96% on average among 21 test cases. The difference in
the objective value between the results obtained by the MILP approach and
the PH approach is 23.76% on average among 21 test cases.

In summary, the greedy approach can reduce the computation time at
the cost of performance loss when : is relatively small; the greedy approach
may not be able to provide feasible solutions, otherwise. The PH approach
performs better than the greedy approach at the cost of longer computation
time. If this work considers that the accuracy of solution is the first priority,
this work uses the MILP approach as long as the computation time is allowed.
If the computation time of MILP is not allowed or the computation cannot be
achieved due to the memory constraint, this work needs to adopt a suitable
heuristic such as the greedy or PH approach. When an SP selects a suitable
heuristic, it should consider the differences of objectives between the MILP
and greedy approaches and between the MILP and PH approaches, where the
differences are 31.96% and 23.76%, respectively, with taking an advantage of
computation time of each heuristic. The selection of greedy and PH approaches
can be made considering the two aspects: computation time and accuracy of
solution.

6.4 Discussion on boundaries of resiliency level

The resiliency level is a key point for the service providers to evaluate the
ability of service to resist failures. However, this work can only get the accu-
rate resiliency level by calculating the optimal allocation based on different :
under the given conditions and check if there is any feasible solution, which
is time and resource consuming. This work gives approaches to estimate the
boundaries of the resiliency level in this subsection.

This work qualitatively observed the relationship between resiliency level
and given conditions in Section 6.3. Furthermore, this work discusses the
upper and lower boundaries of the maximum resiliency level which can be
reached under the given conditions including the node capacities, VNF pools,
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and required abilities.
This work uses the following notations in this subsection. A set of VNFs �

is given with required processing ability � 5 for VNF 5 ∈ �, which is calculated
by the right side of (6.6). Each replica of VNF 5 ∈ � is selected from the
corresponding replica pool, �[•]

5
, for primary (• is P) or backup (• is B) VNFs.

A replica has its capacity requirement ( [•]
5 0
, 0 ∈ �[•]

5
, 5 ∈ �, and processing

ability %[•]
5 0
. If the replica is a primary one, • is P; if the replica is a backup

one, • is B.
Before giving the boundaries of the maximum resiliency level, this work

gives the following assumptions.
Assumption 1 (sufficient processing ability in pool): This work assumes that

the processing abilities of the primary replicas in the pool satisfy the required
processing ability for each VNF, i.e., ∑0∈�P

5
%P
5 0
≥ � 5 ,∀ 5 ∈ �.

If Assumption 1 is untenable, there is no feasible solution under the given
conditions.

Assumption 2 (relationship between capacity and processing ability of a
replica): This work assumes that the required resource of a replica = overhead
+ F (processing ability of the replica), in which function F is a non-decreasing
function on the processing ability of the replica. The higher processing ability
of a replica has, the more resources it requires.

Assumption 2 ensures that, under the same requirement of processing abil-
ity, the deployment of one replica with larger processing ability does not require
larger capacity than that of more than one replica with smaller processing abil-
ities.

There are some impossible cases when not all the replicas are allocated,
e.g., all the primary replicas are not allocated, which is against (6.6). These
cases are not considered.

Lemma 6.2 Regardless of the limitation of node capacities, for a VNF, if this
work allocates all the replicas in the pool, its resiliency level is not less than
that of other allocations, in each of which only a part of replicas in the pool
are allocated.

Proof: If only a part of replicas in the pool are allocated, the allocation
of one more replica does not reduce the resiliency level. Adding another replica
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may increase the resiliency level. For example, a replica of VNF 5 ∈ � whose
processing ability is larger than � 5 is allocated to a node where no replica of
this VNF has been allocated. In conclusion, the allocations of all the replicas
in the pool provide not less resiliency level than the resiliency level of the
allocations in which a part of replicas in the pool are allocated.

This work uses bP
5 =

to denote the sum of processing abilities of replicas of
VNF 5 ∈ �, which are allocated to node = ∈ #.

Lemma 6.3 Let # 5 be an ordered set of nodes with replicas of VNF 5 , which
is sorted by a non-increasing order of bP

5 =
, = ∈ #S, 5 ∈ �. For VNF 5 ∈ �,

if the allocated replicas are determined, the allocation with the lowest value of∑
=∈#S\{|#S |}

∑
=′∈[=+1,|#S |] (bP

5 =
− bP

5 =′), i.e., allocating all the replicas in the pools
to the nodes evenly so that the processing capacity of each node can be balanced
as well as possible, provides not less resiliency level than other allocations.

Proof: This proof considers a situation that the total processing abil-
ity of VNFs on each node of a given allocation satisfies the minimum of∑
=∈#S\{|#S |}

∑
=′∈[=+1,|#S |] (bP

5 =
− bP

5 =′). The proof considers the resiliency level
of the allocation as :, which is given by maximizing : under the constraint∑
=∈[:+1,|# 5 |] b

P
5 =
≥ � 5 ,∀ 5 ∈ �.

This work uses the proof by contradiction. This proof assumes that there
is another allocation that can provide a resiliency level which is higher than
:. The allocation with higher : can be obtained by moving a replica based on
the current allocation. If this work moves a replica from one node to another
node, the value of ∑

=∈#S\{|#S |}
∑
=′∈[=+1,|#S |] (bP

5 =
− bP

5 =′) does not decrease since
the value before moving the replica is the minimum in the considered situation.

Let bP′
5 =

denote the sum of processing abilities of replicas of VNF 5 ∈ �,
which are allocated to node = ∈ # after the moving of the replica. Let #′

5

be an ordered set of nodes with replicas of VNF 5 , which is re-sorted by a
non-increasing order of bP′

5 =
, = ∈ #S, 5 ∈ �. This work considers the resiliency

level of the allocation after the moving as :′, which is given by maximizing :′

under the constraint ∑
=∈[: ′+1,|# 5 |] b

P′
5 =
≥ � 5 ,∀ 5 ∈ �.

After the moving of a replica and the re-sorting of the processing abil-
ity of each node, ∑

=∈[:+1,|# 5 |] b
P′
5 =

is no more than ∑
=∈[:+1,|# 5 |] b

P
5 =

as well as∑
=∈[1,:] b

P′
5 =

is no less than ∑
=∈[1,:] b

P
5 =
. :′ is no more than :, i.e., the re-
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siliency level of the allocation after the moving is no more than that of the
allocation before the moving, which contradicts the assumption that there is
another allocation can provide a resiliency level which is higher than :. Thus,
the allocation with the lowest value of ∑=∈#S\{1} (bP

5 =
− bP

5 ,=−1) provides not less
resiliency level than other allocations.

6.4.1 Lower bound of resiliency level

Let %P
5
and %B

5
be the sets of processing abilities of primary and backup replicas

in the pool, respectively. First, this work sorts the elements in %P
5
∪%B

5
, 5 ∈ �,

which is a set of the processing abilities of replicas in the primary and backup
pools of VNF 5 ∈ �, by a non-decreasing order. Let % 5 denote the ordered
set of the processing abilities of replicas %P

5
∪ %B

5
, 5 ∈ �. This work obtains

the value of bP
5 =
, 5 ∈ �, = ∈ #, by following the strategies in Lemmas 6.2 and

6.3, i.e., allocating all the replicas in the pools so that the processing capacity
of each node can be balanced as well as possible.

Theorem 6.2 (Lower bound related to the replica pools) If there are
sufficient capacities of the nodes for the given replicas, a lower bound of the
maximum resiliency level under the given conditions can be given by maximiz-
ing : under the constraint of � 5 ≤

∑
=∈[1,:] b

P
5 =
≤ ∑

=∈[:+1,|# 5 |] b
P
5 =
,∀ 5 ∈ �.

Proof: This proof divides the processing abilities of primary and backup
replicas and split them into two parts; the former part of the set has : elements
while the latter part has |# 5 | − : elements. The proof considers that the nodes
corresponds to : elements in the former part fail and the processing abilities
of the nodes corresponds to the |# 5 | − : elements in the latter part that can
replace the failed nodes and provide the sufficient required processing abilities.
When the number of the elements in the latter part is smaller than that of
the former part, i.e., |# 5 | − : < :, the remaining VNFs must not reach the
required processing abilities, since bP

5 =
, = ∈ # is in a non-increasing order for

VNF 5 ∈ �.
The larger : is, the more nodes fail with the more unavailable processing

abilities. The worst case corresponds to the situation that the maximum :

nodes fail while the total processing abilities of remaining |# 5 | − : VNFs can
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reach the required processing abilities. The processing ability provided by the
available replicas must be larger than the required processing ability for each
VNF for a feasible solution. Thus, a lower bound of the maximum resiliency
level under the given conditions is given by: max : under the constraint of
� 5 ≤

∑
=∈[1,:] b

P
5 =
≤ ∑

=∈[:+1,|# 5 |] b
P
5 =
,∀ 5 ∈ �, if node = ∈ # 5 can provide bP

5 =

processing ability for VNF 5 ∈ � under the constraint of node capacity.

6.4.2 Upper bound of resiliency level

Theorem 6.3 Regardless of the limitation of node capacities, this work allo-
cates all the replicas in the pools with minimizing max=∈# bP

5 =
for each VNF

5 ∈ �. Such an allocation gives an upper bound of the maximum resiliency
level under the given conditions, which is obtained by maximizing : under the
constraint

∑
=∈[:+1,|# 5 |] b

P
5 =
≥ � 5 ,∀ 5 ∈ �.

Proof: According to Lemmas 6.2 and 6.3, the allocation stated in this
theorem gives the highest resiliency level under the given conditions. For each
VNF, the proof assumes that : nodes with the highest providable processing
ability fail. If the providable processing ability after the failures is equal to or
larger than the required processing ability for each VNF, the resiliency level
is :. The maximum resiliency level that can reach is the maximum resiliency
level under the given conditions.

6.4.3 Examples

Seven cases are evaluated in Section 6.3. Their maximum resiliency levels are
shown in Table 6.2. This work calculates the upper and lower boundaries by
Theorems 6.2 and 6.3 and compare them with their actual maximum resiliency
levels as examples. The results are listed in Table 6.5. The accurate values
are between the upper bounds and lower bounds. The lower bound cannot be
estimated when the capacities of nodes are sufficiently small, e.g., cases 2.1
and 2.2.
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Table 6.5: Comparison between accurate resiliency level provided in Section 6.3
and boundaries of resiliency level calculated by Theorems 6.2 and 6.3

Case 1.1 1.2 2.1 2.2 2.3 2.4 2.5

Lower bound 2 2 N/A N/A 2 2 3
Accurate value 3 3 2 3 4 5 5
Upper bound 3 3 3 5 5 5 5

N/A: not applicable.

6.5 Summary
This chapter proposed a :-resilient VNF allocation model for reducing the
E2E latency during recovery migration with VNF diversity and redundancy.
This work formulated the proposed model as an MILP problem. This work
proved that the subproblem of the VNF allocation problem in the proposed
model is NP-complete. Numerical results showed that the proposed model re-
duces the E2E latencies between the primary replicas and the backup replicas,
compared with five baseline models. This work developed and analyzed two
approximate algorithms to solve the proposed model in a shorter computation
time on average at the cost of accuracy compared with the MILP approach.
In the examined cases, the greedy approach reduces 99.98% computation time
compared with the MILP approach at the cost of 31.96% performance loss on
average. The greedy and PH approaches become valuable to be applied as
the problem size increases. The performance loss of the PH approach is lower
than that of the greedy approach, which is 23.76% on average in the exam-
ined cases. This work evaluated the impact of replica pool design and gave
the suggestions to SPs for better allocations. This work investigated the rela-
tionship between the given conditions and resiliency level. This work derived
the theorems to give the upper and lower bounds of the resiliency level. This
work showed the practical methods to manage the replicas with the required
amount of processing ability and recover the data after the failures.
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Fault-tolerant resource
allocation model considering
diversity for dynamic requests
based on reinforcement learning

This chapter proposes a VNF allocation model to maximize the number of
accepted requests which ensures the required resiliency levels by choosing suit-
able replicas of VNFs from the corresponding pools and allocates them using
RL method to suitable locations for dynamic requests from users [108].

The rest of this chapter is organized as follows. Section 7.1 presents MDP
for handling the dynamic requests and the proposed model of the VNF de-
ployment problem. Section 7.2 introduces an RL-based approach for solving
the proposed model. Section 7.3 presents the evaluations that show the per-
formance of the proposed model compared with the two baseline models in
different cases. Section 7.4 summarizes the key points of this chapter.
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7.1 Problem formalization and Model descrip-
tion

This work introduces the dynamic NFV system in Section 7.1.1. The features
of network form dynamically arriving requests are captured by MDP described
in Section 7.1.2. For the accepted requests, the proposed model of the VNF
allocation problem is introduced in Section 7.1.3.

7.1.1 Dynamic network function virtualization system

An NFV system provides network functions by using the VNF deployed in
the physical or virtual machines. This chapter calls the physical or virtual
machines for VNF deployments nodes. The set of nodes is denoted by #. Each
node has a list of providable resources for VNFs, e.g., central processing unit
(CPU), memory, and storage. Without loss of generality, this work considers
one type of resource in this paper. The resource has a limitation in each node,
which is called the capacity of the node and denoted by <= for node = ∈ #.

VNFs take up the resources of the node where they are located and provide
services with a certain amount of ability, e.g., throughput for deep package in-
spection and firewall. Let � denote the set of providable VNFs by SPs. � 5

denotes a replica pool of VNF 5 ∈ �. Different replicas have different pro-
cessing abilities or resource requirements. Replica 0 in pool � 5 is represented
by � 5 0, whose providable processing ability is % 5 0 with a requirement of re-
source ( 5 0.

A dynamic system receives the service requests in sequence over time. '
represents the set of all received requests. Each request contains a set of
VNFs and the required processing ability for each VNF. If VNF 5 ∈ � is
selected by request A ∈ ', �A 5 is set to the required processing ability from
request A; otherwise, 0. �A is a set that contains the functions requested by
A ∈ ', which is defined by �A = { 5 ∈ � |�A 5 > 0}. The number of instances
which are instantiated from replica 0 ∈ � 5 of function 5 ∈ �A for request
A ∈ ' has an upper bound ΔA 5 0. ΔA 5 0 is a non-negative integer and can be
infinite if the upper bound is not required. If the system can provide enough
processing abilities by allocating replica instances within the given limitations
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Request 2

(VNF 1, 2)

(VNF 2, 5)

Request 1

(VNF 1, 10)
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VNF 2
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Ability: 5

VNF 2
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Ability: 2

Node 2 Node 3Node 1

VNF 1VNF 1VNF 1
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VNF 1VNF 1VNF 1

VNF 1 VNF 1 VNF 1

VNF 2 VNF 2

VNF 1 resiliency level: 2
VNF 1 resiliency level: 2

VNF 2 resiliency level: 1

Figure 7.1: Example of VNF allocations with dynamic requests. (VNF G, ~)
means the request includes VNF G with required processing ability ~.

on numbers in a request to suitable locations, the request can be accepted;
otherwise, the request is rejected. Request A ∈ ' arrives stochastically with
required processing ability for each VNF, time to live (TTL) XA , priority dA ,
and required resiliency level :A . The TTL is the duration of a request. The
priority is an integer value which has a relationship with the importance of
request, arrival time, urgency, etc.; the larger dA is, the higher the priority
of allocating request A ∈ ' is. The system is considered to accept as many
requests as possible with considering their priorities, and then improve the
resiliency of the VNF allocations. An example is shown in Fig. 7.1.

7.1.2 Markov decision process for handling real-rime re-
quests

For handling the network variations caused by the dynamic requests in se-
quence, this section introduces the concept of time slot. ) denotes the ordered
set of time slots. The last element in ) is the current time slot. A time slot
is a time duration whose length is decided by SPs considering the types of
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services, e.g., one hour for long-lived services or one second for time-sensitive
services. At each time slot, the system performs the following actions in order:
deleting the processing ability requirements from timeout requests; receiving
arriving requests; ordering the received requests by their priorities and arriving
time; checking if each request can be accepted; deciding the VNF allocations;
updating the network state.

Non-negative integer decision variable GA 5 0C= denotes the number of replica
instances instantiated from replica 0 in pool � 5 , 5 ∈ �, which are allocated to
node = ∈ # at time slot C ∈ ) . This work assumes that the creation, deletion,
and migration of the replicas can be completed in one time slot, which can be
handled by automated management tools.

Request A ∈ ' arrives at time slot {A ∈ ) . TTL XA of request A ∈ ' is
defined as the integer multiple of the length of a time slot. If binary variable
|AC = 1, request A ∈ ' is active at time slot C ∈ ) ; 0, otherwise. |AC is given
by: ∀C ∈ ), A ∈ ',

|AC =


1, {A ≤ C ≤ {A + XA ,
0, otherwise.

(7.1)

Let set 'C represent the set of active requests at time slot C ∈ ) , which is
defined by 'C = {A ∈ ' ||AC = 1}.

MDP is described by tuple (S,A,P,R, W) in which S is the discrete state
set, A is the discrete action set, P is the state transition probability, R is the
reward function, W ∈ [0, 1] is the discount factor, which is used to calculate
the cumulative reward.

State definition

State B ∈ S is defined as a vector ("̂B, �̂B, '̂B, %̂B, 2̂B, ĈB, {̂B, X̂B). "̂B = ("̂1
B , · · · ,

"̂
|# |
B ) represents the remaining resource of each node. �̂B = ( �̂1

B , · · · , �̂
|� | |# |
B )

represents the providable abilities of all VNFs for the currently being processed
request on each node. '̂B = ('̂1

B , · · · , '̂
|� |
B ) represents the required ability for

each VNF of currently being processed. %̂B = (%̂1
B , · · · , %̂

|� |
B ) represents the

providable ability for each VNF of current allocating replica. 2̂B represents the
required capacity of current allocating replica. ĈB represents the current time
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slot. {̂B represents the arriving time slot of currently being processed request.
X̂B represents the TTL of currently being processed request.

Action definition

An action indicates an allocation of a replica of a VNF to a node, which
is chosen from a discrete set. This work labels the nodes in set # with an
integer index 1, 2, · · · , |# |. Action U ∈ A is a non-negative integer, A =

{0, 1, 2, · · · , |# |}. U = 0 represents the case that VNF is not allocated to any
node; otherwise, U denotes the specific index of node in #, which means that
the agent tries to allocate the current replica to the Uth node. The size of
action set is |# | + 1.

Reward definition

The reward is related to the number of accepted requests. The mathemati-
cal formulation of the reward function is given in Section 7.1.3. The reward
shaping in the RL approach is described in Section 7.2.2.

State transition

A state transition is defined as (B, UB, AB, Bnext), where B ∈ S is the current
network state, UB ∈ A is the action taken for allocating a replica instance for
request AB ∈ ' at state B, AB is the currently being processed at state B, and
Bnext ∈ S is the next network state after taking the action. The processing
procedure is introduced in Section 7.2.2.

7.1.3 VNF allocation model for accepted requests

The resiliency and fault tolerance of VNFs are formulated as follows. Binary
decision variable ^:

A 5 C
is set to one if VNF 5 ∈ �A ensures the required processing

ability under any : fault nodes for request A ∈ 'C at time slot C ∈ ) , and zero
otherwise. Set *: contains all possible combinations of : nodes from #. This
work calls element D ∈ *, which is a set of nodes D ⊆ #, an error pattern. ^:

A 5 C

175



Chapter 7

is defined by: ∀: ∈ [0, |# |], 5 ∈ �A , A ∈ 'C , C ∈ ),

If
∑
=∈#\D

∑
0∈� 5 G

A 5 0
C= % 5 0 ≥ �A 5 ,∀D ∈ *: then

^:
A 5 C
= 1

Else
^:
A 5 C
= 0

(7.2a)

^:A 5 C ∈ {0, 1}. (7.2b)

Non-negative integer decision variable ]A 5 C denotes the resiliency level of func-
tion 5 ∈ � for request A ∈ 'C at time slot C ∈ ) . If the resiliency level of a
function is :, the processing ability of the function is ensured under at most
: node failures, which is defined by:

]A 5 C = max
:∈[0,|# |]

:^:A 5 C ,∀ 5 ∈ �A , C ∈ ), A ∈ 'C . (7.3)

Non-negative integer decision variable lA denotes the resiliency level of request
A ∈ ', which is the minimum resiliency level among all required functions
during the request active time slots. lA is given by:

lA = min
5 ∈�A ,C∈[{A ,{A+XA ]

]A 5 C ,∀A ∈ '. (7.4)

Let 'AC represent the set of accepted active requests at time slot C ∈ ) . If
the required resiliency level, :A , of request A ∈ 'C is satisfied, the request is
accepted, which is represented by:

lA ≥ :A ,∀A ∈ 'AC , C ∈ ). (7.5)

Let 'NC denote the set of newly arrival requests at time slot C ∈ ) , which is
defined by 'NC = {A ∈ ' |{A = C}. Let 'ANC denote the set of accepted requests
that arrive at time slot C ∈ ) , which is defined by 'ANC = {A ∈ 'AC |{A = C}.

The objective is to maximize the sum of priorities of accepted requests,
which is expressed by:

max
∑
A∈'ANC

∑
C∈)

dA . (7.6)

The diversity of VNFs is mapped as different replica instances in the model.
The constraints about the replica instances are as follows:∑

=∈#
G
A 5 0
C= ≤ ΔA 5 0,∀ 5 ∈ �A , 0 ∈ � 5 , A ∈ 'C , C ∈ ), (7.7)
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=∈#

∑
0∈� 5

G
A 5 0
C= % 5 0 ≤ �A 5 ,∀A ∈ 'AC , 5 ∈ �A , C ∈ ), (7.8)∑

A∈'AC

∑
5 ∈�A

∑
0∈� 5

G
A 5 0
C= ( 5 0 ≤ <=,∀= ∈ #, C ∈ ). (7.9)

Equation (7.7) ensures that the number of instances of a replica does not exceed
the given limitation. If ΔA 5 0 is infinite, (7.7) is omitted. Equation (7.8) ensures
that the replica instances of each VNF meet the processing ability requirements
of the requests. Equation (7.9) ensures that the resources allocated to replica
instances do not exceed the available resources on each node at each time slot.

In summary, the proposed model is formulated by:

max
∑
C∈)

∑
A∈'ANC

dA (7.10a)

s.t. (7.1) − (7.5), (7.7) − (7.9), (7.10b)
G
5 0
C= ∈ {0, 1},∀= ∈ #, 5 ∈ �, 0 ∈ � 5 , C ∈ ). (7.10c)

7.2 Policy gradient based deep reinforcement
learning approach

7.2.1 Overall structure

With MDP introduced in Section 7.1.2, the network state transitions caused
by the allocation of replica instances and the variations of dynamic requests
can be captured. However, the state transition probabilities in P are unknown
for us. This work needs an appropriate VNF replica instance allocation policy
to choose the suitable actions in each state so as to achieve a higher expected
reward. Thus, this work addresses the RL-VNFA approach to handle the VNF
allocation problem confronting dynamic requests with ensuring the required
processing abilities, which is modeled in Section 7.1.3.

The architecture of the RL-VNFA approach is shown in Fig. 7.2. The RL-
VNFA agent observes the state information from the RL-VNFA environment
and automatically selects an action suggested by a policy as a return. After
the action is taken, the RL-VNFA environment returns the reward and the
state to the agent. The agent updates related policies according to the reward
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RL-VNFA agent

RL-VNFA 

environment

Update policy

Reward

Topology Requests

Action State

Figure 7.2: Structure of reinforcement-learning based approach.

by a policy gradient (PG) based reinforcement learning algorithm described
in Section 7.2.3. The policy defines the agent’s behavior at a given time. The
above procedure is repeated until the environment returns a finish signal or
the procedure repeats a given number of loops.

The policy in the agent is designed as a multi-layer fully connected DNN
[109] based on the backpropagation neural network [110], which has an input
layer, several hidden layers, and an output layer as shown in Fig 7.3. The
input layer is the state vector and the output layer is the actions’ probability
distribution. The number of hidden layers is related to the number of nodes
and the size of replica pools. More input features require more hidden layers.
This work chooses the rectified linear unit (ReLU) as the activation function
for hidden layers, which introduces non-linear features to the neural network.
In terms of deciding the numbers of neurons in hidden layers, this work adopts
an empirical equation in [29]: #ℎ =

√
#B · #0 + V in which #ℎ is the width of a

hidden layer, #B is the width of the input layer of the hidden layer, #0 is the
width of the output layer of the hidden layer, and V is a constant in [0, 10] for
adjusting the performance of the backpropagation network.

The input data is normalized to 0-1 range in order to make the neural
network easy to be trained [111]. In order to keep the quantitative relations of
input data such as the resource utilization and processing ability requirements,
this work compresses the input data in each state B ∈ S with a constant. For
the input data related to the capacity, the element 2̂B and the elements in "̂B

are divided by max=∈# <=. For the input data related to the processing ability,
the elements in �̂B, '̂B, and %̂B are divided by an estimated constant which is
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Input layer

Hidden layers

Output layer

… … …

…

…

…

…

Figure 7.3: Example of neural network design with two hidden layers. A Value
after “:” is the number of nodes.

equal to or larger than max{max 5 ∈�,C∈)
∑
A∈'C �

A
5
,max 5 ∈�,0∈� 5 ( 5 0}. For the

input data related to the time slots, ĈB, {̂B, and X̂B are divided by the number
of time slots |) |.

7.2.2 Adapt to dynamic requests

SPs have a list of type of available services ℛ. A user requests a service from
ℛ as a request. The arrival rate of type + ∈ ℛ is _+. The service rate of
type + ∈ ℛ is `+. This work considers that the requests in ' are the instances
of ℛ. The requests in ' which request the same service have the same VNFs
with required processing abilities. The arrival interval of requests which are
the instances of + ∈ ℛ follows an exponential distribution with parameter _+.
The TTL of requests which are the instances of + ∈ ℛ follows an exponential
distribution with parameter `+.

Request A ∈ ' arrives and releases randomly. At each time slot, the system
performs the following actions: release the terminated requests; accept or reject
the arriving requests in sequence; and update the network state. There are two
cases between each pair of adjacent time slots. First, if new requests arrive in
a time slot, the allocation of any replica instance leads to the state transition
in MDP; this work calls this case intra time slot. Second, if there are no new
requests during several continuous time slots, no action is needed; this work
calls this case inter time slot. Fig. 7.4 shows the procedure during the moving
of time slots. Each time slot includes several steps. After all time slots, one

179



Chapter 7

episode is completed.

This work devise a greedy serialization-and-backtracking (SB) method to
handle more than one arriving request in an intra time slot. The set of arriving
requests is pre-ordered by the system according to the priorities of the requests.
The allocation tries to satisfy the processing requirements of each request in
sequence. Take the time slot C ∈ ) as an example. The system releases the
resources taken up by the replica instances of timeout requests at first, and
then obtains the newly arrival requests at time slot C as a batch 'NC . The
system tries to satisfy the requirements of the current request by deciding the
actions and allocating the replica instances of the requested VNFs one by one.
In each step, the system decides an allocation of a replica of a VNF requested
by the currently being processed request. If a replica is assigned to a node
which has insufficient capacity, a punishment on the reward (a negative value)
is added. If the requirements of the processing abilities of a requested VNF
can be satisfied after going through all the replicas of all VNFs, the request
is accepted and the reward for accepting the request is gained; otherwise, the
request is rejected and the network state backtracks to the beginning of the
allocations. The requests are processed in sequence until the last request in
'C is accepted or rejected. As shown in Fig 7.4, the requirement of request
1 cannot be satisfied after going through all replicas of all VNFs. Request 1
is rejected. The allocations of replica instances for request 1 are abandoned
and the network state backtracks to the beginning of the allocation so that
the allocations of replica instances for request 2 are not influenced by the
abandoned allocations. After all requests are processed, the system implements
the allocations and updates the network state.

In inter time slots, there is no arriving requests as the time slots from C − 1
to C in Fig. 7.4. The system releases the timeout requests, updates the system
state, and calculates the rewards for the released requests according to their
resiliency levels.

The procedure to handle the dynamic requests is listed in Algorithm 7.1.
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Figure 7.4: Procedure in RL-VNFA as the time slot moves on. VG R~ repre-
sents VNF G replica ~.
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Algorithm 7.1 Procedure in RL-VNFA as the time slot moves
1: Initial time slot C ← 1.
2: while 'NC = ∅ do
3: if Any request times out then
4: Release the replica instances of the request.
5: end if
6: C ← C + 1.
7: end while
8: for Request A ∈ 'NC do
9: for VNF 5 ∈ �A do
10: for Replica 0 ∈ � 5 do
11: for Instance 8 ∈ [1,ΔA 5 0] do
12: Select an action U from A
13: if There is enough capacity for replica 0 on the selected node. then
14: Allocate the replica to the selected node.
15: end if
16: end for
17: end for
18: end for
19: if the allocated replica instances satisfy the requirements of A and accepted requests

then
20: Request A is accepted. Reward + 1.
21: else
22: Request A is rejected. Backtrack the network state before the receiving of request

A.
23: end if
24: end for
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7.2.3 PG-based training procedure

PG uses the potential reward of an action to increase or decrease the proba-
bilities of the action occurrences. Our target is to obtain a policy to maximize
the expected final reward after the state transitions. Let c(0 |B, \) denote the
policy which represents the probability of choosing action U ∈ A at state B ∈ S
under parameter \. An episode in the training procedure is a sequence of MDP
state transitions. With PG, the training procedure needs to find the suitable
parameter \ by using gradient descent to achieve our target in an episode dur-
ing the interactions between the agent and the environment. The objective
function of the training procedure is given by:

maxJ (\) =
∑

4∈[1,|� |]
c(0 |B, \)A (B4, 04), (7.11)

where � is the length of the episode, A (B4, 04) is the reward of selecting action 0
at state B in the 4th state of the episode. J (\) is the expected final reward of
the episode.

PG is given by the gradient descent of the parameter, ∇\� (\). \ is updated
by:

\next ← \ + Y∇\� (\), (7.12)

where Y is the learning rate and is used for adjusting the convergence speed
of the training procedure. A higher learning rate increases the convergence
speed, but may lead to missing local minimum values.

The PG-based training procedure is shown in Algorithm 7.2. The algorithm
initializes parameter \ randomly at first. In each episode, actions are selected
by the current policy. The reward in each step is calculated and recorded for
updating the policy at last.

7.3 Evaluation

7.3.1 Baseline models

This work gives two baseline models to compare with the proposed model
introduced in Section 7.1.3. The first baseline model is called a random decision
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Algorithm 7.2 PG-based training procedure
1: Initialize \ randomly.
2: for episode← [1,maximum episodes] do
3: Initialize the network state. Let the current state be the first state, i.e., B← B1.
4: for step← [1,maximum steps] do
5: Select action Ustep according to the policy c(0step |Bstep, \).
6: Calculate the reward Astep based on the selected action U.
7: Transfer to the next state Bstep+1.
8: Reward for updating the policy is calculated by:

∑
8∈[1,step] W

step−8A8
9: end for
10: Updating \ by (7.12).
11: end for

model (RDM), which decides the allocation of replica instances belonging to
each requested VNF in each request randomly. The second baseline model
is called a single-slot allocation model (SAM), which tries to accept as many
requests as possible at each single time slot. For time slot C ∈ ) , SAM can be
expressed by:

max
∑
A∈'N

dA (7.13a)

s.t. (7.1) − (7.5), (7.7) − (7.9), (7.13b)
G
5 0
C= ∈ {0, 1},∀= ∈ #, 5 ∈ �, 0 ∈ � 5 . (7.13c)

SAM is solved by Algorithm 7.3. The time complexity of Algorithm 7.3 is
$

(
|' | |� |

(∑
0∈� 5 ΔA 5 B (log ∑

0∈� 5 ΔA 5 B + |# | log |# |)
) )
.

7.3.2 Performance evaluations

The proposed and baseline models are solved by Python 3.8.8 running on the
AMD Ryzen 3600 3.6GHz 6-core CPU, NVIDIA GeForce GTX1660 Super
GPU, 16 GB memory.

This work prepares two cases, cases 1 and 2, for the evaluation. This work
evaluates the performance of the proposed model in the cases that the resources
of nodes are limited for a large number of requests so that not all requests can
be accepted. In case 1, the system receives 500 requests among 100 time slots
and tries to allocate them to a three-node cluster. Each request selects at least
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Algorithm 7.3 Obtaining the allocation of replicas at time slot C ∈ ) in SAM
1: for A ∈ 'C do
2: for 5 ∈ � do
3: if 5 is satisfied by the allocated replicas then
4: Continue to the next function.
5: end if
6: Sort � 5 according to processing ability of each replica increasingly for the replicas

whose processing ability is larger than the required processing ability. For the other
replicas, sort them according to processing ability of each replica decreasingly and put
them after the previous set.

7: for 0 ∈ � 5 do
8: Sort # according to the providable processing ability of each non-decreasingly.

If there are any nodes that have the same processing ability, sort them according to the
highest latency among all nodes in # 5 increasingly.

9: for = ∈ # do
10: if there is enough capacity on = for 0 then
11: Allocate replica 0 to node =
12: Break
13: end if
14: end for
15: if 5 is satisfied by the allocated replicas then
16: Continue to the next function.
17: end if
18: end for
19: end for
20: end for
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two VNFs and at most three VNFs from five VNFs, the required processing
abilities are generated randomly between one and ten units, and the resiliency
levels are generated randomly between one and two. In case 2, the system
receives 1000 requests among 100 time slots and tries to allocate them to a
six-node cluster. The TTL of each request in both cases is generated between
10 and 100 time slots. Each request selects at least two VNFs and at most
five VNFs from five VNFs, the required processing abilities are generated ran-
domly between one and twenty units, and the resiliency levels are generated
randomly between one and three. The requests in both cases belong to five
types of requests. The pools of VNFs are given arbitrarily, which include four
replicas. The processing abilities of these replicas are 1, 2, 3, and 5, respec-
tively. The required capacities of these replicas are 2, 3, 4, and 6, respectively.
The capacity of each node in the clusters has ten units capacity. The interval
of the arrival time between each pair of adjacent requests obeys an exponential
distribution. The TTL of each request obeys exponential distribution. The
priority of each request is set to one.

In each case, this work trains a model under randomly generated environ-
ments by using the RL-VNFA approach and evaluate the performance of the
trained model in two tests, which are tests 1 and 2. In test 1, this work trains
one model for each case with a set of randomly generated requests. This work
uses one million and two million episodes for training the models in cases 1
and 2, respectively. The training time are 23.43 [min] and 54.95 [min], respec-
tively. The mean episode reward increases with the increase of training times,
as shown in Fig. 7.5. This work compares the proposed model solved by the
RL-VNFA with the two baseline models introduced in Section 7.3.1 under five
randomly generated requests. For each request, the RL-VNFA and RDM use
the average objective value from five decisions. This work explores the impact
of two levels of randomization on the performances of the models. In the first
level, the arrival time and TTL of evaluated requests are randomly generated.
This work calls it partial randomization (PR). In the second level, the re-
quired VNFs, processing abilities, arrival time, and TTL of evaluated requests
are randomly generated. This work calls it complete randomization (CR). The
average objective values and computation times of these approaches are shown
in Tables 7.1 and 7.2, respectively. This work can observe that the proposed
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(b) Case 2.

Figure 7.5: Increasing of mean episode rewards during training procedures.

model improves the number of accepted requests at the cost of longer com-
putation time. The objective value obtained by the proposed model is 20.85
times larger than that of RDM and 1.58 times larger than that of SAM on
average. Although the computation time of the proposed model is 11.59 times
longer than that of RDM and 5.06 times longer than that of SAM, it is still
in tens of milliseconds, which can be used in dynamic systems. Compared
with the performances in PR and CR, the proposed model performs better in
a limited range of random variables.

In test 2, this work evaluates the effectiveness of the additional training
data on improving the performances of the trained models confronting with
various environments. This work trains the models in cases 1 and 2 with one,
two, and three additional randomly generated requests and evaluate them with
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(a) Case 1 with partially randomized requests.
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(b) Case 1 with completely randomized re-
quests.

-1

0

1

2

3

4

5

6

7

90

92

94

96

98

100

102

104

1 2 3 4

P
er

ce
n

ta
g

e 
in

cr
ea

se
 [

%
]

O
b

je
ct

iv
e 

v
al

u
e

Number of training times using different requests

 Objective value  Percentage increase

(c) Case 2 with partially randomized requests.
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Figure 7.6: Increasing of mean episode rewards during training procedures.

188



Section 7.3

Table 7.1: Objective values obtained by proposed and baseline models in test 1.

Models
Case 1 Case 2

PR CR PR CR

RDM 1.12 0.16 8.68 7.08
SAM 61.00 42.00 89.4 33.00
Proposed 94.72 94.72 98.76 67.04

Table 7.2: Computation times [s] of proposed and baseline models per request
in test 1.

Models
Case 1 Case 2

PR CR PR CR

RDM 0.00418 0.00419 0.00595 0.00802
SAM 0.00932 0.00804 0.01447 0.01931
Proposed 0.05630 0.05405 0.06311 0.08537

five randomly generated requests. In each training procedure, this work uses
0.5 million and one million episodes for cases 1 and 2, respectively. The average
training time for cases 1 and 2 are 10.93 [min] and 23.10 [min], respectively.
This work evaluates the performances of the trained models in PR and CR,
which are the same with those in test 1. The objective values obtained by
different trained models are shown in Fig. 7.6. This work can observe that one
more training data may increase the performance of the proposed model in the
examined cases. However, the rate of increase of the objective values obtained
by RL-VNFA decreases with the increase of the amount of additional training
data. The performances even may become worse when too much training data
are used. There are two reasons for this situation. Firstly, the differences
between the training data set and the validation data set influence the quality
of the solution. If the trained model is only trained by some similar data sets,
its robustness is weak, i.e., only some specific cases can be solved. Secondly,
as the number of training sessions increases, the trained model becomes over-
fitting for a type of specific case if the training data sets are similar, or, the
trained model becomes confused if the training data sets are different. Too
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much data for training is potential for the decrease of the model performance.
Suitable training data sets can let the trained model experience most of the
possible requests and do not focus on any specific case.

7.4 Summary
This chapter proposed a resilient VNF allocation model for increasing the num-
ber of accepted requests with ensuring fault tolerance and considering VNF
diversity in a dynamic scenario. This work developed an RL-based approach
for solving the proposed model. This work designed the procedures for deal-
ing with arrival requests in the approach. Numerical results showed that the
proposed model increases the number of accepted requests compared with the
two baseline models. Compared with RDM which randomly determines the
allocations of replica instances, the proposed model accepts 20.85 times more
requests on average in the examined cases. Compared with SAM which de-
termines the allocations of replica instances independently at each time slot,
the proposed model accepts 1.58 times more requests on average in the ex-
amined cases. Although the proposed model improves the performance at the
cost of a longer computation time compared with the baseline models, it can
still determine the allocation of a request in tens of milliseconds in the exam-
ined cases. This work evaluated the impact of additional training data on the
performance of the proposed model. Suitable additional data can improve the
performance of the proposed model. Excessive training is harmful, which leads
to the performance degradation of the proposed model.
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Implementation of resource
allocation models and service
function chains

This chapter provides four demonstrations of how to implement resource al-
location models and the relative algorithms, e.g., the proposed models and
algorithms in Chapters 3–7, in the real network system. The current con-
troller in Kubernetes cannot manage the custom-defined resources in the pro-
posed models, e.g., service function chains in Chapters 3–5, backup resources
in Chapter 4, and VNF diversity in Chapter 6. A current scheduler in Kuber-
netes cannot deploy the VNFs to nodes automatically cooperating with multi-
ple VNF allocation models. This chapter aims to provide controller-based and
scheduler-based mechanisms cooperating with VNF resource allocation models
for a single resource allocation model with special customized resources and
multiple resource allocation models supporting hot swapping. This chapter
also aims to provide a network plugin that can manage the connections between
VNFs in SFCs cooperating with the controller and scheduler implemented with
the models related to the SFCs, e.g., models in Chapters 3–5. The demonstra-
tions can implement the approaches to solve the proposed models including a
optimization solver for precision solutions, e.g., CPLEX [82] and Gurobi [112],
and heuristic algorithms, e.g., algorithms introduced in Sections 3.3, 4.3, 5.3,
and 6.2.
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Among the four demonstrations introduced in this chapter, two of them
are designed for general VNFs [113, 114] and the other two implementations
are designed for VNFs in SFCs with the realizations of SFCs [115,116].

8.1 Controller-based implementation of VNF
allocation model considering diversity and
redundancy in Kubernetes

The controller-based implementation is designed for the users who have special
requirements on resources. For example, this section considers the VNF diver-
sity with resource pools and VNF redundancy with backup resources. In this
implementation, VNFs are usually packaged in VMs or containers. Kubernetes
[9] is an open-source system for automating deployment, scaling, and manage-
ment of containerized applications. A Pod is the smallest deployable unit of
computing that users can create and manage in Kubernetes. The deployment
with a given number of the replicas of Pods is a realization of a network func-
tion in Kubernetes. The controller of a resource in Kubernetes adjusts the
current state to the expected state through the control loop [117]. For exam-
ple, the deployment controller maintains the desired number of Pod replicas.
The providable processing ability of a network function can be required instead
of the number of active replicas of the function.

VNF diversity uses a group of replicas with different processing abilities
and resource requirements to replace a single VNF instance, which can fully
utilize server computing resources, especially for edge computing devices. The
replicas of a VNF are chosen from a pool of replica templates, which is given
by the cloud provider. The service providers allocate replicas with the require-
ments of resources to provide certain processing abilities. VNF diversity may
increase the risk of service unavailability since it allocates replicas to different
servers. The unavailability of a server leads to service performance degra-
dation. VNF redundancy which provides backups for replicas is adopted to
increase the service reliability. In [10], Chapters 6 and 7 provided allocation
models considering VNF diversity and redundancy jointly, which improves the
service resiliency.
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Figure 8.1: Overall structure.

However, the current deployment in Kubernetes is based on the alloca-
tion of a given number of replicas with fixed specifications [118]. The fixed
specifications may not fully utilize the computing resources of servers. If the
deployment can be realized by the replicas with different resource requirements
and processing abilities, the deployment can be allocated flexibly to the servers
with different capacities, and the computing resources of servers can be fully
utilized. The automatic selection, creation, and management of diversity and
redundancy resources are not considered in Kubernetes.

This section designs and implements a custom resource controller in Ku-
bernetes based on the processing ability. The custom defined resource (CDR)
jointly considers the diversity and redundancy of VNFs. This work calls it
diversity and redundancy Pod set (DRPS). This work uses exact and approx-
imate methods to select suitable replicas from a pool of replica templates to
satisfy the required processing ability with the minimum required number of
replicas. At last, this work performs demonstrations of the controller including
the function allocation and the switching from primary replicas to backups, to
show the improvement of server utilization by adopting DRPS.

8.1.1 Design and Implementation

Overall structure

Fig. 8.1 overviews the structure of the reported controller and relative com-
ponents. The service providers submit the configurations including adding,
updating, and deleting, in a form defined in DRPS definition to the Kuber-
netes application programming interface (API) server. Informer listens to the
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changes of the DRPS instances and pushes the corresponding events to the
WorkQueue. The unterminated control loop handles the events in WorkQueue
with the corresponding functions to let the current state of the DRPS in-
stances keep pace with the desired state of the DRPS instances configured by
the users. The key point is how to use the controller to cooperate with the
“add", “delete", “update", and “get" of the DRPS instances in Kubernetes. The
scheduler decides the locations of the created Pods with the default scheduler
or allocation-model-based scheduler in Chapter 6.

Definition of DRPS instance

The definition of a DRPS instance includes three parts: metadata, specifica-
tion, and status. Metadata contains the information that distinguishes different
DRPS instances, e.g., name and creation timestamp. Specification contains the
properties of a DRPS instance, e.g., required processing ability, specified solu-
tion methods, and the pool of replica templates. The pool of replica templates
contains the templates of Pods, which includes the processing ability of the
replica, the resource requirements, and the container image. Status contains
the latest status of the CDR instance, e.g., the number and the names of
Pods hosted by the instance. Status is updated periodically or updated after
modification in the control loop.

Control loop

The control loop receives and handles to create, update, and delete events.
When a DRPS instance is created, the Pods are created and allocated to
nodes. The selection of replica templates from pools and the scheduling of
the created Pods can be determined by two methods: an exact method, e.g,
integer linear programming (ILP), and an approximate method, e.g., heuristic
algorithms. When some primary Pods hosted by the instance fail, backup
Pods are converted to primary Pods. The remaining primary Pods are deleted
and a group of new backup Pods is created and allocated. Alternatively, the
remaining primary Pods are converted to backup Pods and new backup Pods
are created to compensate for the loss of processing ability. Fig. 8.2 shows the
flow chart of the controller.
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Figure 8.2: Flow chart of controller. PP: primary Pod. BP: backup Pod. RB:
required ability.

8.1.2 Demonstrations

The demonstrations implement the controller by Operator SDK v1.4.2, Golang
1.15, and Python 3.7 in Kubernetes 1.20 on a five-node Kubernetes cluster
(one master node and four worker nodes). The memory and central processing
unit (CPU) of four nodes are up to 2.3 GB and two cores, 2.3 GB and two
cores, 4.2 GB and three cores, and 4.2 GB and four cores, respectively. The
demonstrations deploy the controller as a deployment on the master node. The
demonstrations create a DRPS instance by applying a configuration file shown
in Fig. 8.3 and the list of Pods is shown in Fig. 8.4. A primary Pod hosted
by the instance fails, the backup Pods is switched to primary Pods and new
backup Pods are generated, as shown in Fig. 8.5. We can observe that the
backup Pod is converted to the primary Pod and a new backup Pod is started.

This demonstration deploys the instances with the same required ability
and the pool in Fig. 8.3 by using two types: traditional deployment and DRPS.
The traditional deployment accepts one request of the instance and completes
the allocations of a primary Pod and a backup Pod in 0.004 [s]. The DRPS
instance accepts two requests and completes the allocations in 2.931 [s]. The
allocation of the DRPS instance is shown in Fig. 8.6. The CPU and memory
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Figure 8.3: Configuration file of DRPS instance.

Figure 8.4: Pod list after allocation.

Figure 8.5: Pod list after primary Pod fails.

utilizations are compared in Fig. 8.7. We can observe that DRPS can accept
more requests and improve the system resource utilization compared with the
default deployment method with the cost of longer deployment time. The
main factor contributing to the increase in deployment time is solving complex
deployment models. More accurate results often lead to longer solution times.
Users of this demonstration need to carefully make a balance between the
deployment time and resource utilization and choose the suitable algorithm

196



Section 8.2

Node 1 Node 2 Node 3 Node 4

442 2 3 13 3

Figure 8.6: Allocation results of DRPS instance. A circular is a Pod. The
number in a circle means the template which the Pod uses.
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Figure 8.7: CPU and memory utilization comparison between default deploy-
ment method (left) and DRPS (right).

for solving their deployment problem.

8.2 Design of scheduler plugins for VNF allo-
cation models in Kubernetes

The scheduler-based implementation is designed for the users who have no
special requirements on resources. Compared with the implementation in Sec-
tion 8.1, this section implementation the VNF allocation models in a more
general way. This implementation relies on the scheduling framework in Ku-
bernetes. The locations of Pods are decided by the schedulers in Kubernetes,
which are implemented by a set of “plugin" application programming interfaces
(APIs) belonging to a pluggable architecture called scheduling framework [100].

The works in Chapters 3-7 developed function allocation models, which
are designed for different aspects of allocations with different objectives. The
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models are solved by different optimization solvers, such as IBMr CPLEXr,
and different heuristic algorithms, such as the simulated annealing algorithm
and the genetic algorithm.

The scheduler must allocate the VNFs to suitable locations according to
the results obtained by mathematical calculation. In addition, different users
have different requests of services with different quality requirements. The
expandability of scheduler is necessary to support multiple models without
restarting the scheduler in case of service interruption. However, no tools in
Kubernetes can be used to deploy the VNFs to nodes by using the results from
multiple allocation models.

This implementation designs and implements a scheduler to allocate VNFs
according to calculation results from multiple reliable function allocation mod-
els based on the scheduler framework in Kubernetes. The scheduler provides
an intermediate layer to convert the results from different calculators to the
pairs of VNFs and nodes in the network. New allocation models can be added
to the scheduler without restarting the scheduler. At last, this implementa-
tion prepares two demonstrations of the scheduler, one for multiple allocation
models, and the other one for a specific use case in a sensor network.

8.2.1 Design and Implementation

Overall structure

Fig. 8.8 overviews the structure of the reported scheduler. There are mainly
two components in the structure, a scheduler Pod and several model Pods. The
scheduler Pod receives the queue of the Pods corresponding to VNF requests
waiting to be allocated and determines the allocation of them computed by
the requested models according to the current network status. The model
Pods receive the network status, e.g., the available resources of nodes and
links, and compute the allocations. In addition, the model Pods convert the
network status from the scheduler Pod to the recognized data of calculators
and convert the calculation results from the calculators to the recognized data
of the scheduler Pod.
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Figure 8.8: Structure of designed scheduler.

Pods design

Scheduler Pod: there are mainly three components in the scheduler Pod:
a scheduler container, a data collector, and a database container or a shared
volume between the above two containers, as shown in Fig. 8.8. In addition,
another deployment can be used in some cases. The database container can
be separated into an independent Pod considering the sharing with other ap-
plications or high stress on the network resource consumption. The other two
functions communicate with the database through the Pod network.

The scheduler container implements four plugins in Kubernetes scheduling
framework [100], as shown in Fig. 8.9. The Sort plugin reorders the Pods cor-
responding to VNF requests in the waiting queue. The scheduler lets the Pods
corresponding to VNF requests and requesting the same model be scheduled
together. The Prescore plugin in our scheduler marks the non-schedulable
nodes and compares the existing data and current data. If the schedulable
nodes are changed or the available resources vary beyond a set threshold, the
scheduler Pod makes a model Pod start to compute the VNF allocations ac-
cording to the updated data. In addition, if no allocation result is detected
within the set timeout value, the plugin reports an error. The Score plugin
gives the scores for each node in an allocation. The Pods corresponding to VNF
requests are allocated to the node which has the highest score. The implemen-
tation uses the allocation results from the corresponding models to allocate the
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Figure 8.9: Plugins modified in scheduling framework.

Pods corresponding to VNF requests. For each Pod, the implementation gives
the highest score to the node to which it should be allocated so that the Pod
can be allocated following the allocation results. The Normalize Score plugin
limits the final scores of nodes to a range, [0, 100]. This implementation also
registers the plugins to Kubernetes and give the permissions to let the plugins
get the required data and decide the score of each node.

Model Pods: the model Pod has two main functions: data conversion and
uploading allocation results to the scheduler Pod. The model Pods may receive
a list of node names, a list of VNF names, and other network parameters.
They convert these data to the recognized format of the calculators. When
they receive the results from the calculators, they summarize the calculation
results and upload the results to the scheduler Pod in a prescribed format.

The model Pod has two types: calculator(s) in the model Pod and cal-
culator(s) out of the model Pod. If the model Pod includes the calculators,
it receives the data from the scheduler Pod, then computes the results, and
finally sends them to the scheduler Pod. If the calculator Pods are indepen-
dent of the model Pod, the model Pod starts its required calculator Pods and
manages their lifecycles.

A model Pod and independent calculator Pods are created as Jobs. A Job
in Kubernetes creates one or more Pods and ensures that a specified number
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of the Pods successfully terminate [119]. The model Pod Jobs are started
as Cron Jobs by the administrators, which run and upload the results on a
regular interval. If the Prescore plugin requires to update the allocation results
according to new network data, the model Pods are created as normal Jobs by
the plugin.

Database design

The database used in this scheduler has three types of tables, table node, ta-
ble request, and table request_model. There is only one table for node in the
database and each request has its own table request. Table node has the fields
of node name and unique identification number (UID), which are unique. The
node name is the primary key in this table. Table node also has the node
resource information, such as maximum CPU, maximum memory, available
CPU, and available memory. Each request has a field that marks the avail-
ability of a node in the request. At last, each record has a timestamp which
is the creation time of this record. Table request records the allocation re-
sults of the VNFs in a request. Each VNF has a field in the table, which is
linked with the field name in table node as the foreign key. Each record has
an auto-increment primary key, ID, a creation timestamp, and a name of the
request model. There is only one table for request_model in the database,
which stores the allocation result update intervals, the image names of model
Pods, initialize commands, and correspondences between the models and the
requests. One correspondence ensures that one request is computed by one
model.

Communication between components

There are three types of communications between components mentioned in
the structure: communication with Kubernetes API, communication with the
database, and communication between model Pods and calculator Pods. The
data collector and the scheduler container in scheduler Pod and some model
Pods need to communicate with the API server or the metrics server by Ku-
bernetes API. The communications are implemented by REST and client li-
braries. The model Pods, scheduler application, and network data collector
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Figure 8.10: Demo 1: list of existing Pods in the beginning.

in the scheduler Pod need to communicate with the database. The Internet
protocol (IP) address and port of the database are given in advance. They
use transmission control protocol (TCP) connections to communicate with the
database. The communication between model Pods and calculator Pods is im-
plemented by gRPC. The model Pod remotely calls functions running in the
calculator Pods and receives the results from them.

8.2.2 Demonstrations

The demonstrations implement the scheduler application by Golang 1.15 and
the data collector by Python 3.9. The images of the containers are built by
Docker 20.10.0. The database in the demonstrations is MySQL 8.0.22. The
demonstrations run on a four-node Kubernetes cluster, one master node, and
three worker nodes. The version of Kubernetes is 1.19.0.

Demonstration with multiple computing models

The demonstration prepares two requests which request models in [120] and
Chapter 3. Request 1 has five VNFs. Request 2 has three VNFs. The list
of Pods is shown in Fig. 8.10 and the Pods created for the scheduler are sur-
rounded by a box. The table node in the database is shown in Fig. 8.11.

Then the demonstration creates the Pods in two requests by a YAML
configuration file. The model Pods are created as Jobs and run as shown in
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Figure 8.11: Demo 1: table node in database.

(a) Model Jobs are created and running periodically.

(b) Allocation results
shown in tables request1
and request2.

(c) List of allocated Pods in the end.

(d) Log of a Pod, debian2, which is scheduled by our scheduler.

Figure 8.12: Demo 1: test results.

Fig. 8.12(a). After a few minutes, the allocation results are written into the
database, as shown in Fig. 8.12(b). The list of Pods allocated by the scheduler
is shown in Fig. 8.12(c). We observe that the final allocations are the same as
the results from the models.
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Figure 8.13: Demo 2: sensor network setting.

Demonstration with sensor network

This demonstration shows a real use case. The demonstration collects the
temperatures and humidities from three rooms by sensors and predict the
future temperatures and humidities through three VNFs, respectively. The
data from sensors are stored in a database, which is also a VNF. Finally, a Web
server displays the data. The demonstration has five VNFs in this request. The
connections between components in this demonstration are shown in Fig. 8.13.
The scheduler allocates the VNFs with a load balancer model.

The devices used in this demonstration are three FUJIKURA FSN-4001LC
™LoRaWAN sensor nodes with solar panel unit FSN-4001U and one ™LoRaWAN
gateway. Each sensor node provides the data of temperature, humidity, atmo-
spheric pressure, illumination, and motion detection. It does not need any
external power supply because of the usage of the solar panel unit, which is
environmentally friendly. ™LoRaWAN is used for low-frequency and wide-
area data collection. FUJIKURA sensors have been widely used in several
areas, such as warehouse temperature monitoring, heatstroke warning, and
room occupancy detection.

The data are collected every ten minutes. The original and predicated
data are stored in the database by using a seasonal autoregressive integrated
moving average model. The data successfully displayed by the Web Pod, as
shown in Fig. 8.14(a); the allocations follow the results provided by the model,
as shown in Fig. 8.14(b).
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(a) Data shown by Web Pod.

(b) Pod locations (upper) and results provided by the allocation model in database (lower).

Figure 8.14: Demo 2: test results.

8.3 Demonstration of network service header
based service function chain application
with function allocation model

Network service header (NSH) is a protocol described in [121]. NSH is the
SFC encapsulation. It is designed to identify the service function path and
the location of current function in an SFC. It can be easily implemented in
devices.

A VNF allocation model is designed to obtain a possible allocation strategy
for VNFs in SFCs. For example, the model in Chapters 3 was designed to
obtain VNF allocations which maximize SFC continuous available time. Its
performance in the network needs to be evaluated with different parameters
of network elements in addition to the mathematical results. It is not cost
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effective and convenient to perform the evaluation with real network devices.
One possible solution is to simulate the whole process by software on a single
computer. Computational capability required for this software should not be
so high. The simulation can run at a low-end computer, such as a laptop. The
result of the model is obtained by a mathematical programming approach or a
heuristic algorithm. Both of them can run by writing a programming language
such as Python. The functions in SFCs need to be allocated according to the
computed result in a single application.

This implementation reports an NSH-based SFC application with the co-
operation of the VNF allocation model in Chapters 3. This work implements
an NSH-based SFC application on Ryu software-defined networking frame-
work [35]. This work implements the functions of classifier, service function
forwarder, and SFC proxy [5] on switches by the modification of flow tables
which is conducted by the application. This work uses the application to sim-
ulate the VNF allocation and the traffic through these functions. The network
devices are simulated in Mininet [36], which is connected to the application
as a controller. It receives the registration message from allocated VNFs and
instructs the actions of switches when they are necessary. We observe that the
application allocates the VNFs to corresponding servers automatically and the
path of each SFC is configured correctly.

8.3.1 Implementation

Overall structure

Fig. 8.15 overviews the structure of the reported application. A user registers
the needed SFCs to database, as indicated by arrow 0. The VNF allocation
model with requested objective is triggered automatically or manually and
sends the result to corresponding servers, as indicated by arrow 1. The servers
which receive messages from the allocation model change themselves to the
corresponding functions and report their locations to the controller, as indi-
cated by arrow 2. When the controller receives these reports, it stores the
information to database, as indicated by arrow 3. When the user wants to
start a service between two specific nodes, the description of the service is sent
to the controller, as indicated by arrow 4. The controller modifies the flow
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Figure 8.15: Overall structure.

table in the switches when the service traffic goes through, as indicated by
arrow 5 .

Database structure

There are three tables in the database, which are named flow, service, and vnf.
In table flow, a user defines the filter rules including Internet protocol (IP)

and medium access control (MAC) addresses, ports of transmission control
protocol (TCP) and user datagram protocol (UDP), type of protocols, and
input port to decide if a flow belongs to a service whose identifier (ID) is
“Service_ID”. A user uses “ID” to identify a flow and start or delete a flow.
The application uses this value to match the detail of the service in table
service.

Table vnf stores the register information from VNF. “ID” is the identifi-
cation number for each VNF; “name” is a human-readable nickname for the
VNF; “dpid” is the datapath ID of connected switch of the VNF; “in_port”
is the port of the switch, which connects to the VNF; “Mac_addr” is the
Ethernet address of the VNF output port.

Table service describes the order of VNFs in each SFC given by users. Each
VNF in SFC has a record. “Service_ID” shows the location of the VNF and
is used in NSH.

Communication between each components

Allocation results distribution and function register: a program runs in
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each server for listening the configuration message from the allocation model.
When the allocation results are computed, service ID, name, VNF ID, and
other properties of each VNF are sent to the corresponding server. If the lis-
tening program receives the message, it chooses and starts a VNF according to
the message and sends a register message to the controller through OpenFlow
Packet_in message [122] which includes the information of the VNF.

Interaction between controller and switches: this implementation
uses four tables in each switch named tables 0, 1, 2, and 3. In tables 0 and
1, the implementation sets a flow entry which lets all packages go to table 3
with priority 0. In table 2, the implementation sets a flow entry which lets all
packages be sent to controller with priority 0. In table 3, the implementation
sets a flow entry which lets all packages to be forwarded normally.

The OpenFlow connection is established when a switch is connected to
controller. A new flow entry with priority 10 in table 0 is added to the new
switch. In this flow entry, it matches the VNF register message with preset IP
and MAC addresses. The action is to output the message to controller.

When a user starts a new service flow, a flow entry is configured to every
switch. It matches the filter conditions of this flow and sends a message with
the service ID, input port and the datapath ID to controller. It deletes all
preset flow entries related to this flow.

When the controller receives the packages from this service, it looks up
table service and finds the VNFs which belongs to this service by service ID.
For the switch which receives the first frame of the flow, the controller asks
the switch to encapsulate the Ethernet frame with NSH. In NSH, service path
identification (SPI) is set to service ID, and service index (SI) is set to the
length of SFC. An Ethernet frame whose destination is the address of the next
VNF is encapsulated out of NSH. For the switch which is connected by the
last VNF, it decapsulates NSH. For the other switches which are connected by
VNFs, they decapsulate NSH and send packages to VNF. When they receive
the packages from VNF, they encapsulate NSH with the same SPI and decrease
SI by 1. An Ethernet frame whose destination is the address of the next VNF
is encapsulated out of NSH.
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Figure 8.16: Device connection diagram of demonstration.

8.3.2 Demonstration

The demonstration uses Ryu 4.32 (added support for encap() and decap ()),
Mininet 2.3.0d6, Open vSwitch 2.12.0, Python 3.6.9, and Sqlite 2.8.17 for the
demonstration. The demonstration connects the devices as shown in Fig. 8.16
in Mininet and enable the IP forwarding function for each service node. The
demonstration runs allocation model on node N1 simulated by Mininet. The
objective of cooperated allocation model is to maximize the continuous avail-
able time of SFCs. We observe that the VNFs register themselves to database
successfully as shown in Fig. 8.17. The demonstration uses the tracepath com-
mand in Mininet to see the path of this flow. We observe that the data is
successfully encapsulated by NSH as shown in Fig. 8.18. We observe that the
path of a two-function chain is correctly configured from the result shown in
Fig. 8.19(a) compared with the old path shown in Fig. 8.19(b).

8.4 Implementation of service function chain
deployment with allocation models in Ku-
bernetes

An SFC allocation model obtains the allocations of functions in chains, whose
results can be calculated by a mathematical programming approach, a heuristic
approach, or a machine learning approach.
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Figure 8.17: Register information in database.

Figure 8.18: Ethernet frame is encapsulated by NSH and another Ethernet
frame.

(a) Before allocation.

(b) After allocation.

Figure 8.19: Result of tracepath.

Kubernetes [9] is a system for automating management of containerized
applications. A resource is an endpoint which stores the application inter-
face objectives of a certain kind in Kubernetes. A controller of a resource in
Kubernetes adjusts the current state to the expected state. However, no re-
source defines an SFC with its allocation strategy so that the functions can be
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Figure 8.20: Overall structure.

automatically allocated in Kubernetes.
This work reports an implementation of SFCs with the cooperation of the

SFC allocation models in Kubernetes. The implementation modifies the open
virtual network (OVN) [37] so that it can support the routing for SFC flow,
e.g., classifier, service function forwarder, and load balancer for multiple ports.
The implementation applies the customized OVN to Kubernetes as a container
network interface (CNI) plugin based on Kube-OVN [38]. The implementation
adds the definition of the SFC resource and its controller in Kubernetes. The
implementation prepares a demonstration to show that the functions in SFCs
are allocated to corresponding nodes automatically and the path of each SFC
is configured correctly.

8.4.1 Implementation

Overall structure

Fig. 8.20 reports the overall structure. The service providers submit the request
of adding, updating, or deleting an SFC instance to the Kubernetes through
our defined application interface (API). The SFC resource controller detects
the new requirement or changes of existing SFCs. If necessary, new function
instances are created and scheduled according to the allocation results. New
function instances are created and scheduled according to the allocation results
if necessary. At last, the commands for adding, updating, or deleting SFCs
are run in the OVN controller requested by the SFC resource controller.
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Modification on OVN modules

Compared with the official OVN version, our OVN can route the traffic that
meets the matching rules to pass through the specified functions in order to
form an SFC in a logical switch for transparent service functions [123]. The
modified OVN modules are based on [124]. The implementation adds the
following functions: weighted load balancing support for multiple input and
output ports of a VNF; flexible matching rules; and the removals of port-
security on VNF ports.

Command definitions: compared with the commands in the official OVN
version, there are four new commands for adding an SFC. Firstly, a pair of one
input port and one output port is given for a service function instance, which
is called a port pair (PP). Secondly, if there are multiple PPs for a service
function, a port pair group (PPG) is defined. Different weights can be set
for different PPs in a PPG. Scenarios that require multiple PPs include: one
function instance with multiple ports for inputting or outputting data stream,
and multiple function instances that form a logical service function. Thirdly,
an SFC is defined by giving ordered PPGs. Finally, the SFC is installed by
defining a classifier. The classifier of the SFC sets the flow entries in flow and
group tables to route the traffic, which matches the given rules through the
functions in order from the source endpoints to the destination endpoints.

Flow table design: two extra flow tables are added to OVN for ingress
and egress pipelines, respectively. When a classifier is set, the corresponding
flow entries are given. There are four types of flow entries: default entries,
inward entries, outward entries, and internal entries. The default entries skip
the current flow table for service chaining if there is no match. The inward
entries direct the flow that meets the matching conditions to the input port(s)
of the first VNF in the chain. The outward entries direct the flow that meets
the matching conditions from the output port(s) of the last VNF in the chain
to its destination. The internal entries direct the flow that meets the matching
conditions from the output port(s) of the previous VNFs in the chain to the
input port(s) of the next VNFs in the chain. The matching conditions are
decided by the given input port, output port, and other matching conditions.
The action is decided by the number of output ports. If there are multiple
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input ports for the next hop, a group action is created for load balancing
among the multiple input ports.

Design of SFC in Kubernetes

The definition of an SFC instance includes three parts: metadata, specification,
and status. Metadata contains the information that distinguishes different SFC
instances, e.g., name and creation timestamp. The specification contains the
properties of an SFC instance, e.g., the matching conditions, specified alloca-
tion methods for creating new instances, and the orders of VNFs in the chain.
A specified allocation method contains the container image, communication
interfaces, and other related requirements of the required allocation model.
The VNFs contain the resource requirements, the container image, and the
order of the VNF in the chain. Status contains the latest status of the SFC
instance, including the number and the names of containers hosted by the in-
stance; PPs, PPGs, SFC, and classifier created by the OVN controller. The
status is updated periodically or after modification.

8.4.2 Demonstrations

There are two demonstrations in this section. Demonstration 1 shows that the
created SFC connects existing functions deployed on different physical nodes
in a cluster. The matched traffic flows are routed as requested. Demonstra-
tion 2 shows that the controller creates the requested SFC and new functions
whose location is calculated by an allocation model which aims to reduce the
latency from the source to the destination. The demonstration compares the
latencies from the source to the destination through the requested SFC, which
are deployed by the default controller and our controller, respectively.

The demonstrations implement the design on a six-node Kubernetes cluster
including one master node and five worker nodes.

The SFC used for demonstration 1 includes three Pods, which are cre-
ated in advance along with two Pods for source and destination, respectively.
The demonstration uses traceroute to show the path between the source and
destination. Since the Pods cannot give an Internet control message proto-
col (ICMP) reply for time-to-live (TTL) expired, the demonstration deploys a

213



Chapter 8

(a) Nodes and Pods lists.

(b) Traceroute results. (Upper: before creating SFC, lower: after creating SFC.)

Logical switch created by OVNLP of sender LP of receiver

LP of vnf1 LP of vnf2 LP of vnf3

: Path before creating the SFC. : Path after creating the SFC.

(c) Schematic diagram of demonstration 1. (LP: logical port.)

Figure 8.21: Results and setting in demonstration 1.
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(a) Pod allocations of two groups. (Upper: group 1, lower: group 2.)

(b) File received in two groups. (Left: group 1, right: group 2.)
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(c) Latency comparison between groups 1 and 2.

Figure 8.22: Results and setting in demonstration 2.
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program by using Python and Scapy, which can send an ICMP reply for TTL
expired and forward the UDP packet if TTL is not expired. The results of
demonstration 2 are shown in Fig. 8.21.

In demonstration 2, the demonstration sets the incoming and outgoing
network latency of five worker nodes to 100, 200, 300, 400, and 500 [ms],
respectively. The source sends a text file to the destination. The function
instances in the chain add their names and timestamp to the file. In group 1,
three Pods are allocated by the model, and an SFC is created to connect them
simultaneously. In group 2, three Pods are created in advance, and then an
SFC is created to connect them in order. The results of demonstration 2 are
shown in Fig. 8.22. We can observe that the latency in the SFC is reduced
with the allocation model.

8.5 Summary
This chapter introduced four demonstrations on the cooperation between re-
source allocation models and containerized networks and SDN networks.

The first implementation designed and implemented a custom resource and
the corresponding controller in Kubernetes to manage the VNF diversity and
redundancy jointly. The demonstration of this implementation validated that
the controller automatically manages the resources correctly, improves the re-
source utilization, and increases the number of acceptable requests.

The second implementation designed and implemented a Pod scheduler
in Kubernetes. The implementation introduced the structure and the com-
ponents in the scheduler in details. The implementation provided the two
demonstrations of the introduced scheduler, which confirmed that the effec-
tiveness of the scheduler cooperating with the examined allocation models.

The third implementation designed and implemented a network service
header based service function chain application which can be cooperated with
the resource allocation models for SFCs in the SDN environment. Demonstra-
tion validates that the application allocates functions by using the allocation
from the model automatically and runs service function chains correctly.

The forth implementation designed and implemented an OVN based SFC-
compatible network plugin for Kubernetes. The implementation implements
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two controllers for creating SFCs among existing functions and SFC deploy-
ments without existing functions which can be cooperated with allocation mod-
els. The plugin allocates the functions in chains according to the given models
and connects each function in chains by setting suitable flow entries in Kuber-
netes. The demonstrations of this implementation validate the implementation
at last.
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Conclusions

Along with the large-scale deployment of VNFs in the network, failures of hard-
ware and software occur from time to time. How to improve the fault tolerance
of the network is an important issue that must be addressed in network virtu-
alization. This thesis classifies failures into three types and studies five specific
problems about the resource allocations in NFV with relative implementations
in containerized networks and SDN.

Firstly, this thesis proposed a VNF allocation model for improving the
continuous available time of service function chains assuming the existence of
known availability schedules. This work formulated the proposed model as an
ILP problem that maximizes the minimum number of the longest continuous
available time slots in each SFC. This work proved that the decision version of
the VNF allocation problem (VNFA) in the proposed model is NP-complete.
Numerical results showed that the proposed model improves the continuous
available time of SFCs, compared with the persistent allocation model, the
single-slot allocation model, and the double-slot allocation model. This work
observed that the proposed model reduces the path lengths of SFCs as it com-
putes VNF allocation and SFC routes at the same time. This work developed
a heuristic algorithm to yield practical the solution time. In the cases exam-
ined, the developed heuristic algorithm reduces the average computation time
with some penalty in performance compared with the ILP approach.

Secondly, this thesis proposed a primary and backup VNF placement model
for improving the continuous available time of service function chains by avoid-
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ing the interruptions caused by unavailable nodes and function reallocations.
This work formulated the proposed model as an ILP problem that maximizes
the minimum number of the longest continuous available time slots in each
SFC by considering deterministic availability schedules. This work extended
the proposed model to a network-aware one with considering a routing prob-
lem. Evaluation results showed that the proposed model improves the con-
tinuous available time of SFCs, compared with the baseline models in the
examined cases. The network-aware proposed model reduces the latencies of
services with keeping the same values of SCATs of services compared with the
non-network-aware proposed model. This work introduced an algorithm that
estimates the number of key unavailabilities at each time slot, which indicates
the number of unavailable nodes that are required to be eliminated priorly.
The number of key unavailabilities helps SPs to increase the service continu-
ous available time with the least cost of failure recovery. This work analyzed
the impact of different types of availability schedules on the proposed model.
In the examined test cases, the proposed model provides a lower improvement
on SSCATs if the positions of unavailabilities are more compact, and provides
a higher improvement on SSCATs if the positions of unavailabilities are more
sparse. This work developed and analyzed a heuristic algorithm to speed up
the computation for the case that the problem size increases. The heuristic
algorithm reduces 66.75% computation time with a 1.57% performance degra-
dation in terms of the objective value on average in the examined test cases.
This work provided the discussion on dealing with multiple replicas of a func-
tion and their backups.

Thirdly, this thesis proposed a robust VNF allocation model for improving
the continuous available time of service function chains with considering the
uncertain availability schedule. This work formulated the proposed model as
an MILP problem. Numerical results showed that the proposed model im-
proves the continuous available time of SFCs, compared with the persistent
allocation model, the single-slot allocation model, and the double-slot alloca-
tion model in both deterministic and uncertain availability schedules. In the
cases examined, the proposed model can provide longer continuous available
time slots compared with the three baseline models under different levels of
the robustness of uncertain availability schedule. The developed heuristic al-
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gorithm reduces the computation time by 99.85% compared with the MILP
approach with a limited performance penalty by 3.37% in our evaluations. We
evaluated the relationship between availability schedules and objective values.
The size of the uncertainty set can be reduced according to our observations.
This work gave three discussions of the proposed model: for maintenance abil-
ity, for multiple unavailability periods on each node, and for unpredictable
unavailabilities. In addition, this work provided three directions to extend the
proposed model.

Fourthly, this thesis proposed a :-resilient VNF allocation model for re-
ducing the E2E latency during recovery migration with VNF diversity and
redundancy. This work formulated the proposed model as an MILP prob-
lem. This work proved that the subproblem of the VNF allocation problem
in the proposed model is NP-complete. Numerical results showed that the
proposed model reduces the E2E latencies between the primary replicas and
the backup replicas, compared with five baseline models. This work devel-
oped and analyzed two approximate algorithms to solve the proposed model
in a shorter computation time on average at the cost of accuracy compared
with the MILP approach. In the examined cases, the greedy approach reduces
99.98% computation time compared with the MILP approach at the cost of
31.96% performance loss on average. The greedy and PH approaches become
valuable to be applied as the problem size increases. The performance loss of
the PH approach is lower than that of the greedy approach, which is 23.76%
on average in the examined cases. This work evaluated the impact of replica
pool design and gave the suggestions to SPs for better allocations. This work
investigated the relationship between the given conditions and resiliency level.
This work derived the theorems to give the upper and lower bounds of the re-
siliency level. This work showed the practical methods to manage the replicas
with the required amount of processing ability and recover the data after the
failures.

Fifthly, this thesis proposed a resilient VNF allocation model for increasing
the number of accepted requests with ensuring fault tolerance and consider-
ing VNF diversity in a dynamic scenario. This work developed an RL-based
approach for solving the proposed model. This work designed the procedures
for dealing with arrival requests in the approach. Numerical results showed
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that the proposed model increases the number of accepted requests compared
with the two baseline models. Compared with RDM which randomly deter-
mines the allocations of replica instances, the proposed model accepts 20.85
times more requests on average in the examined cases. Compared with SAM
which determines the allocations of replica instances independently at each
time slot, the proposed model accepts 1.58 times more requests on average in
the examined cases. Although the proposed model improves the performance
at the cost of a longer computation time compared with the baseline models,
it can still determine the allocation of a request in tens of milliseconds in the
examined cases. This work evaluated the impact of additional training data on
the performance of the proposed model. Suitable additional data can improve
the performance of the proposed model. Excessive training is harmful, which
leads to the performance degradation of the proposed model.

Sixthly, this thesis introduced four demonstrations on the cooperation be-
tween resource allocation models and containerized networks and SDN net-
works. The first implementation designed and implemented a custom resource
and the corresponding controller in Kubernetes to manage the VNF diversity
and redundancy jointly. The demonstration of this implementation validated
that the controller automatically manages the resources correctly, improves
the resource utilization, and increases the number of acceptable requests. The
second implementation designed and implemented a Pod scheduler in Kuber-
netes. The implementation introduced the structure and the components in
the scheduler in details. The implementation provided the two demonstra-
tions of the introduced scheduler, which confirmed that the effectiveness of the
scheduler cooperating with the examined allocation models.The third imple-
mentation designed and implemented a network service header based service
function chain application which can be cooperated with the resource allo-
cation models for SFCs in the SDN environment. Demonstration validates
that the application allocates functions by using the allocation from the model
automatically and runs service function chains correctly. The forth imple-
mentation designed and implemented an OVN based SFC-compatible network
plugin for Kubernetes. The implementation implements two controllers for
creating SFCs among existing functions and SFC deployments without exist-
ing functions which can be cooperated with allocation models. The plugin
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allocates the functions in chains according to the given models and connects
each function in chains by setting suitable flow entries in Kubernetes. The
demonstrations of this implementation validate the implementation at last.

The five proposed models studied five typical application scenarios of fault-
tolerant resource allocations in network virtualization with considering the de-
terministic, uncertain, and unknown failures. This work provided different
approaches with theoretical analyses in each model. The implementations of
the proposed model can be cooperated with the five models. SPs can select
appropriate models with suitable implementation methods according to the
specific requirements to achieve a reliable and economical network virtualiza-
tion environment.

For future works, the proposed models can be extended to consider resource
migration against network update with considering the update frequency to
guarantee consistency properties for the configured forwarding rules and paths
(e.g., to avoid forwarding loops which can quickly deplete switch buffers and
harm the availability and connectivity provided by a network). Previous re-
searches have never considered resource allocation models for VNFs placement
incorporating network updates; the introduced network resource allocation
models for VNF placement are designed under the assumption that the net-
work states and topologies are static. Against the network update, optimizing
VNF resource allocation and steering its traffic iteratively may lead to a dis-
ruptive network that will never converge. Since more intricate processes need
more calculation time, they are not appropriate for real-time decision-making
in a flexible data center network. Additionally, topology modification and
traffic shaping have costs. A change that occurs too often can disrupt rout-
ing and transport protocols and lower network usage because the network is
interrupted during the transition phase. The future works are expected to
handle the balance in resource migration against network update: the higher
frequency of updates will obviously improve the adaptability of resource allo-
cation against the updated network (this can be reflected in the service delay
of post-migration and consistency of network); but higher frequency will bring
troubles in consistency of network state, unavailability time against service in-
terruptions, and extra bandwidth and latency due to synchronization against
resource migration.
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Linearization of proposed
models

This thesis introduces the following linearization process for the proposed mod-
els.

G = max
8
{~8} ⇔



G ≤ ~8 + (1 − X8) · �,∀8 ∈ .
G ≥ ~8 − (1 − X8) · �,∀8 ∈ .
~8 ≥ (X8 − 1) · � + ~ 9 ,∀8 ∈ ., 9 ∈ .\{8}∑
8∈. X8 = 1

G ≥ ~8,∀8 ∈ .
X8 ∈ {0, 1},∀8 ∈ .

(A.1)

� is sufficiently large to ensure that its value is larger than ~8, 8 ∈ . .
G = min8{~8} can be expressed in linear form by:

G = min
8
{~8} ⇔



G ≤ ~8 + (1 − X8) · �,∀8 ∈ .
G ≥ ~8 − (1 − X8) · �,∀8 ∈ .
~8 ≤ (1 − X8) · � + ~ 9 ,∀8 ∈ ., 9 ∈ .\{8}∑
8∈. X8 = 1

G ≤ ~8,∀8 ∈ .
X8 ∈ {0, 1},∀8 ∈ .,

(A.2)
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where � is sufficiently large to ensure that its value is larger than ~8, 8 ∈ . .
For binary decision variables ~8 ∈ . , the operation G = ∨8∈.~8 = ~1 ∨ ~2 ∨

· · · ∨ ~|. | can be expressed in linear form as follows:

G = ∨8∈.~8 ⇔


G ≥ 1

|. | ·
∑
8∈. ~8

G ≤ ∑
8∈. ~8

G, ~8 ∈ {0, 1},∀8 ∈ . .

(A.3)

The relationship

If 0 ≤ G ≤ 1 then
4 = 1

Else
4 = 0

(A.4a)

4 ∈ [0, 1] (A.4b)
G ∈ Z. (A.4c)

can be linearized by using the following equations:

G − 0 + n ≤ U · � (A.5a)
G − 0 + n ≥ (U − 1) · � (A.5b)
1 − G + n ≤ V · � (A.5c)
1 − G + n ≥ (V − 1) · � (A.5d)
4 ≤ U (A.5e)
4 ≤ V (A.5f)
4 ≥ U + V − 1 (A.5g)
4, U, V ∈ [0, 1] (A.5h)
G ∈ Z. (A.5i)

0, 1 are given integer parameters. n is a given positive parameter: 0 < n < 1.
� is a number which is larger than G − 0 + n and 1 − G + n .
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Exclusive nor operation (�) can be expressed in linear form.

G = 0 � 1 ⇔



G = 1 − 0 − 1 + 2 · ℎ
ℎ ≤ 0
ℎ ≤ 1
ℎ ≥ 0 + 1 − 1
G, I, 0, ℎ ∈ {0, 1}

(A.6)

For binary variables ~8 ∈ . , the operation G = ∏
8∈. ~8 = ~1 ∧ ~2 ∧ · · · ∧ ~|. |

can be expressed in linear form.

G =
∏
8∈.

~8 ⇔


G ≤ ~8,∀8 ∈ .
G ≥ ∑

8∈. ~8 − |. | + 1
G, ~8 ∈ {0, 1},∀8 ∈ .

(A.7)
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