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Abstract 

 

The past century has seen global rapid land use/cover changes (LUCC) due to the need 

of accommodating the rapid population increase of human society. Mountainous agricultural 

landscapes around the world have all in common experienced agricultural abandonment and 

subsequently afforestation due to migration of rural farmers to the urban areas. As an example, 

in the heritage landscape of Ifugao rice terraces in the Philippines, agricultural occurs due to a 

combination of social drivers such as lack of farmland successors and environmental drivers 

such as lack of water supply. With this ongoing problem in the Ifugao rice terraces, it is 

important to formulate policies based on information of past changes, the driving factors, and 

the prediction of future status. Methods that utilize spatial data such as remote sensing, GIS, 

spatial regression, and agent-based modeling can provide holistic information for formulating 

policies.  

This thesis aims to characterize the dynamics of the land cover in the Ifugao rice 

terraces to propose policies for the mitigation of agricultural abandonment. Specifically, the 

research aims to establish a Geomatics framework for informing environmental management, 

observe the past land cover transitions and paddy field dynamics, identify the spatial and non-

spatial drivers of agricultural abandonment, and simulate the impact of policies on the future 

status of the agricultural landscape. The current research started with the analysis of the past 

land cover transitions and paddy field dynamics in the study area from 1990 to 2020. This was 

then followed by the development of a statistical model of agricultural abandonment that 

utilizes spatial and non-spatial drivers. Finally, Agent-Based Modelling was implemented to 

simulate the impact of combinations of socio-environmental policies to mitigate future 

agricultural abandonment.  

Written as a position paper, Chapter 2 sets the general methodological workflow of the 

thesis by establishing a Geomatics framework that aims to holistically inform decision-making 

for environmental management. This framework is composed of three main tasks: data 

acquisition, spatial analysis, and Geosimulation. The framework can be utilized as an approach 

for utilizing spatial data of the environment with the purpose of "predicting the future through 

observations of the past". Two case studies of research projects that utilized the general 

Geomatics framework were presented to provide sample applications of the Geomatics 
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framework for aiding environmental management. Three implications of the Geomatics 

framework were discussed: the widening of the environmental application of Geomatics, the 

establishment of a methodological workflow for informing environmental management, and 

the enhancement of the collaboration between Geosimulation and other spatial science fields. 

The analysis of past land cover transitions in Chapter 3 revealed that paddy fields 

turning into forests typically undergo a two-step process of transitioning first into low 

vegetation before transitioning into forests, which is unlike in previous land cover change 

studies in mountainous agricultural landscapes that observed the occurrence of afforestation 

due to abandonment of paddy fields. Transitions between low vegetation and forest were also 

observed to be regularly occurring at high rates, which may be attributed to the traditional 

practices of the local people such as tree-cutting and swidden farming. Analysis of paddy field 

dynamics showed that agricultural abandonment has been continuously occurring in the 

landscape. Although recultivation of paddy fields occurred from 2000 to 2010, permanent 

abandonment has increased again after this period. It was also found that the abundance of low 

vegetation cover has a significant inverse relationship with subsequent permanent 

abandonment of paddy fields, which coincides with previous studies showing that decreasing 

water yield from afforestation contributes to the abandonment of paddy fields.  

To identify the spatial and non-spatial drivers of agricultural abandonment, a spatial 

statistical model was developed in Chapter 4 that integrates logistic and linear models in a 

single modeling framework to simulate LULC changes. The logistic model processes 

explanatory spatial variables to generate a probability map, while the linear model handles 

explanatory non-spatial variables to generate a global probability threshold. Results of the 

statistical modeling showed that slope, cosine aspect, quickflow, distance to town center, 

distance to road, world heritage site status, forest density, low vegetation density, and paddy 

field density were significant determinants of the local probabilities of agricultural 

abandonment while total forest area, five-year average precipitation, and average daily 

maximum temperature were significant determinants of the global probabilities of agricultural 

abandonment.  

The impacts of combinations of socio-environmental policies to the spatial patterns of 

paddy fields were simulated by implementing agent-based modeling in Chapter 5. The 

simulation results showed that providing aid in restoring eroded terraces mitigates almost half 

of the agricultural abandonment. Meanwhile, increasing the ratio of youth valuing the terraces 
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and providing subsidy to farm households showed only a small impact on mitigating 

agricultural abandonment. Thus, it is recommended that the local government of Banaue should 

just focus on providing aid in restoring eroded terraces for effectively mitigating agricultural 

abandonment. The results of the simulations also imply that environmental drivers such as 

erosion have more effect on the agricultural abandonment than the social drivers such as lack 

of successors.  

Chapter 6 synthesizes the research outputs of the previous chapters. The results of this 

thesis provide key information for mitigating the agricultural abandonment in the Ifugao rice 

terraces. First, the monitoring of past changes addressed the lack of accurate maps and 

quantification of the amount of abandonment. Second, the identification of significant drivers 

of agricultural abandonment in the Ifugao rice terraces provides landscape planners with an 

understanding of the phenomenon of agricultural abandonment. Lastly, simulations from the 

developed agent-based model identified the appropriate policies to implement for mitigating 

agricultural abandonment. The findings from this thesis provide new information for planning 

mountainous agricultural landscapes such as the consideration of the land-transition feedback 

loop that further promotes agricultural abandonment and the dynamics of farm succession and 

inheritance. Meanwhile, the methodological frameworks implemented can be adopted by other 

studies to provide solutions to environmental issues. 

 

Keywords: Remote Sensing, GIS, Logistic regression, Spatial modeling, Agent-Based 

Modeling, Scenario simulation, Ifugao rice terraces, Mountainous agricultural landscape 
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1. Introduction 

 Chapter 1:  

Introduction 

1 

1.1. Land cover change as a global phenomenon 

 

Land use/cover change (LUCC) continuously occur on the surface of the earth as a 

result of complex interactions between socio-economic and environmental drivers (Geist et al., 

2006; He et al., 2022; Mas et al., 2014; Mitsuda & Ito, 2011; Munroe & Müller, 2007). In the 

current age of globalization, LUCC typically occur as urban expansion where non-urban land 

use types are converted for urban use (Güneralp & Seto, 2013; Seto et al., 2011; van Vliet, 

2019). Along with continuous urban expansion, globalization also drives the occurrence of 

other LUCC such as agricultural abandonment, deforestation, and reclamation (W. Cao et al., 

2021; Hou et al., 2021; Phiri et al., 2019; van der Zanden et al., 2017; Wu et al., 2016; Xystrakis 

et al., 2017). As human society continuously interacts with the global environment to acquire 

its needs, hence forming perpetual socio-ecological systems (SES), it is expected that human 

activities will continuously cause impacts on the environment leading to recurring LUCC (X. 

Li et al., 2017; Synes et al., 2019).  

However, with the modern ever-changing world, some LUCC may occur at an alarming 

rate, leading to various environmental consequences that can be detrimental if left in its current 

trend. For example, urbanization causes conversion of natural habitats leading to loss of 

biodiversity (McDonald et al., 2019), while increase in urban land use is projected to increase 

the hours of discomfort in cities (Vinayak et al., 2022; B. Yang et al., 2019) Agricultural 

abandonment has been shown to promote soil erosion (Cerdà et al., 2018) and decrease water 

yield (Soriano & Herath, 2018), which results to a feedback loop of further agricultural 

abandonment (Estacio et al., 2022). On the other hand, deforestation can decrease access to 

clean drinking water (Mapulanga & Naito, 2019), increase dry season fire (Butt et al., 2021), 

and induce global warming (Lawrence & Vandecar, 2014). Overall, changes in LUCCs cause 

alterations in ecosystem services leading to environmental problems (B. Li et al., 2016; Y. Liu 

et al., 2020; Wang et al., 2018; Zhang et al., 2019).  
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1.2. Deteriorating mountainous agricultural landscapes 

 

Mountainous agricultural landscapes feature strong human-environment interactions 

that form socio-ecological systems, where local communities alter and nurture the environment 

while the environment provides food, resources, and livelihoods for the community (Aguilar 

et al., 2021; Y. Cao et al., 2013; Pôças et al., 2011; Tarolli & Straffelini, 2020). In addition to 

crops and wood, these landscapes also provide bundles of ecosystem services (Burkhard et al., 

2015; Peng et al., 2019) such as water regulating services (Arnáez et al., 2015; Soriano & 

Herath, 2018). Some of these landscapes are also designated as Globally Important Agricultural 

Heritage Systems (GIAHS) such as the Hani Rice Terraces in China, Takachihogo-Shiibayama 

site in Japan, and Ifugao Rice Terraces in the Philippines (FAO, 2021). Hence, these landscapes 

also provide cultural identity (Tarolli et al., 2014; Tilliger et al., 2015) and opportunities for 

tourism (Terkenli et al., 2019; Tian et al., 2016).  

As part of the direct interaction between the local community and the environment such 

as farming, fallowing, woodcutting, and tree planting, mountainous agricultural landscapes 

experience frequent transitions in land cover (Liang et al., 2020; Minta et al., 2018; Xystrakis 

et al., 2017). These changes can alter ecosystem services (Locatelli et al., 2017; Vidal-Legaz et 

al., 2013), hence it is vital to analyze the land cover changes in these landscapes for land use 

planning. 

 

1.3. The Ifugao rice terraces: a world heritage in danger 

 

The Ifugao Rice Terraces is a mountainous agricultural landscape in the Ifugao province, 

Philippines recognized for its five clusters of terraces being United Nations Educational, 

Scientific and Cultural Organization (UNESCO) world heritage sites (SITMo, 2008) (Fig. 1.1). 

Built with minimal equipment, largely manual (by hand), by the ancestors of the Igorot people, 

the public occasionally calls the terraces the “Eighth Wonder of the World.” As a product of 

socioeconomic and environmental drivers, the rice terraces have become a critical part of the 

supporting ecosystems of Ifugao communities and beyond (Camacho et al., 2016; De Luna 

Habito & Ealdama, 2019). 
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Fig. 1.1 The Batad rice terrace cluster, one of the five inscribed world heritage cluster in the 

Ifugao rice terraces (photo taken from fieldwork) 

 

The terraced landscape containing the five heritage clusters is commonly known as 

Ifugao rice terraces by the local people but is also interchanged as Banaue rice terraces by 

Filipinos (Cagat, 2018). However, this can is a misconception as the Banaue rice terraces refer 

only to the terraces in the municipality of Banaue. This interchange of name can be attributed 

to the popularity of the Banaue rice terraces as a tourism site. Meanwhile, the UNSECO 

actually refers to the world heritage landscape as the Rice Terraces of the Philippine Cordilleras 

(UNESCO, n.d.). The five clusters of terraces inscribed as world heritage sites are the following 

(Fig. 1.3): 

1. The Nagacadan terrace cluster in the municipality of Kiangan, 

2. The Hungduan terrace cluster that covers the whole municipality of Hungduan, 

3. The Central Mayoyao terrace cluster in the municipality of Mayoyao, 

4. The Bangaan terrace cluster in the municipality of Banaue, and 

5. The Batad terrace cluster in the municipality of Banaue (Fig. 1.1). 
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Fig. 1.2 A map showing the locations of the five inscribed heritage cluster in the Ifugao rice 

terraces (SITMo, 2008) 

 

The landscape is classified as Climate Type III, one of the Corona's four climate types 

that are classified based on monthly rainfall. A place is classified as a Climate Type III if there 

is no pronounced maximum rain period. At the same time, the dry season lasts for about one to 

three months, starting at the earliest in December and ending at the latest in May (Ducusin et 

al., 2019; PAGASA, n.d.). Agriculture is mainly the source of sustenance and income of the 

local people in the Ifugao rice terraces, but the tourism industry also generates a large part of 

the local government’s revenue (Calderon et al., 2009). 

Soil types within the study area range from moderately-high runoff potential to high 

runoff potential. In conjunction with the high slopes, the soil makes the entire area susceptible 

to erosion. In fact, farmers have referred to the erosion of their agricultural lands as a critical 
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reason for abandoning their lands (Calderon et al., 2009). Scholars have also cited water 

availability as another critical cause of land abandonment, referring to an insufficient water 

supply from streams during the dry season (Calderon et al., 2009). 

Aside from sowing, transplanting, and harvesting in the rice terraces, the local people 

also practice swidden farming, fallowing, wood cutting, and seedling planting (Aguilar et al., 

2021; Camacho et al., 2016; Castonguay et al., 2016). Hence, the landscape undergoes frequent 

land cover transitions as part of the socio-ecological system in the landscape. With the rise of 

tourism and urbanization in the province, several people have emigrated, leaving some of the 

paddy fields permanently abandoned (Bantayan et al., 2012). In 2001, the Ifugao rice terraces 

was included in UNESCO’s List of World Heritage in Danger due to increasing degradation 

and abandonment of the agricultural lands (UNESCO, n.d.). It has already been lifted from the 

list in 2012, but it still faces continuous abandonment in the present (FAO, 2018). Because of 

the rapid land cover changes and ongoing agricultural abandonment, the landscape of Ifugao 

rice terraces is ideal for investigating the socio-ecological system in a mountainous agricultural 

landscape. 

As a case study, a watershed in Banaue municipality covering the Ifugao rice terraces 

was designated as a study area. (Fig. 1.3). A watershed was designated as the extent of analysis 

because of the assumption that hydrological processes in the landscape provide relations 

between land cover types (Soriano & Herath, 2018). For this study, the watershed being 

monitored is referred to as the Bangaan watershed. The Bangaan watershed has an area of 5,713 

ha with the highest point being 2,111 m above mean sea level. The watershed mainly consists 

of forest areas, with other abundant land use types as shrublands, grasslands, rice field terraces, 

and swidden fields. Built-up areas are abundant mainly in the town center, with their sprawls 

scattered around the terraces (Acabado, 2012; McKay, 2003). In general, its topography widely 

varies, with an elevation range of 1,431 m and slopes reaching angles of 65°. 
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Fig. 1.3 The location of the Bangaan watershed: (A) The location of Ifugao province in the 

Philippines; (B) The location of the Bangaan watershed and Banaue municipality in the Ifugao 

province; (C) The topography in the Bangaan watershed. 

 

1.4. Research motivations 

 

As a landscape for five world heritage sites, it is imperative that the Ifugao rice terraces 

be conserved. Not only is it of significance to pass down this heritage to the future generations 

but the agricultural landscape also provides an abundance of ecosystem services that not only 

benefits the local Ifugao people but also downstream residents (Avtar et al., 2019; Soriano & 

Herath, 2018; Tilliger et al., 2015). 

Although several estimates have been given for the land abandonment in the Ifugao rice 

terraces, there has not been any previous effort in mapping the agricultural lands to provide 

accurate values of the abandonment through time. It is important to produce maps of landscapes 

that are subject of environmental management not just for quantitative estimates but also for 

essential spatial analysis. At the same time, drivers of the abandonment may already be 
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understood based on interviews with farmers and environmental analysis in previous studies, 

but the combination of spatial factors that dictate the location of the abandoned fields is still 

unknown. Lastly, it is important that the results of monitored land cover changes and analysis 

of driving factors be used to provide informed decisions on making policies. An approach to 

accomplish this is to implement Agent-Based modeling that utilizes social-ecological inputs 

and processes to show emerging status of the agricultural lands.  

On a global scale, the research on the Ifugao rice terraces will provide new information 

for studies of mountainous agricultural landscapes. As a unique socio-ecological system that 

features tight human-environment interactions and frequent land cover transitions, further 

research of these landscapes can provide new insights into planning and managing these 

landscapes. The thesis can thus aid in future landscape planning of mountainous agricultural 

landscapes.  

Lastly, methodological frameworks that will be developed to obtain essential research 

outputs will provide novel approaches for informing environmental management actions and 

addressing environmental problems. As observations of the past trend, identification of driving 

factors, and simulation of the future status of the agricultural abandonment is planned to be 

implemented, it is expected that an abundance of spatial data will be utilized in this thesis. In 

general, this thesis will contribute to the advancement of Geomatics.   

 

1.5. Research objectives 

 

The main objective of this study is to analyze and understand the dynamics of 

agricultural abandonment in the mountainous agricultural landscape of Ifugao rice terraces by 

looking into its past trend, driving factors, and future status so that policies and management 

strategies can be proposed for its mitigation.  

Addressing land cover changes such as agricultural abandonment should be realized 

through a multi-disciplinary and holistic approach. First, the magnitude and scope of the land 

cover change should be assessed by observing the past trend and analyzing the periodic 

transitions that occurred. The next step is to identify the drivers of these transitions so that the 

processes behind the land cover changes can be understood. Lastly, policies should be 

formulated to mitigate the land cover changes with the information of its future impacts. To 

achieve the main objective, the following specific objectives need to be attained: 
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1. To establish a general Geomatics framework for informing environmental management 

through "predicting the future through observations of the past". 

2. To observe the land cover changes in the study area from 1990 to 2020 and analyze the 

dynamics of the paddy fields using remote sensing and GIS. 

3. To identify the spatial and non-spatial drivers of agricultural abandonment in the study 

area using spatial regression.  

4. To simulate the impacts of combinations of policies on the mitigation of agricultural 

abandonment in the study area by developing an Agent-Based Model (ABM). 

 

1.6. Thesis Structure 

 

This thesis is composed of six chapters (Fig. 1.4). Chapter 1 introduces the study by 

providing the background of the study, the case study, research motivations, and the research 

objectives. Chapter 2 proposes a general Geomatics methodological framework for informing 

environmental management that will be adopted for the whole thesis.  Chapter 3 presents the 

observation of the past land cover changes in the study area and analysis of the paddy field 

dynamics. Chapter 4 builds on the observation results and identifies the spatial and non-spatial 

drivers of agricultural abandonment by developing a statistical model based on a combination 

of logistic and linear models. Chapter 5 utilizes data on the past changes and the driving factors 

to develop an ABM to simulate the impact of combinations of socio-environmental policies to 

mitigate future agricultural abandonment. Finally, Chapter 6 concludes the study by 

summarizing the discussions and synthesizing its implications for managing the Ifugao rice 

terraces, contributions to research on mountainous agricultural landscapes, and the 

methodological novelties. 
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Fig. 1.4 Framework of the dissertation 
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2. A Geomatics framework for aiding environmental management 

 Chapter 2:  

A Geomatics framework for aiding environmental management 

The contents of this chapter have been submitted for peer-review under the  

Geo-spatial Information Science journal: 

Estacio, I., Onitsuka, K., & Hoshino, S. (under review). Predicting the future through 

observations of the past: Concretizing the role of Geosimulation for holistic geospatial 

knowledge. Geo-spatial Information Science. 

2 

2.1. Introduction 

 

Simulations for predicting the future environment are already ubiquitous tools in the 

21st century for informing decision-making in environmental management efforts. From 

predicting the global temperature, animal species distribution, and land cover changes, 

simulations have come a long way in providing useful accurate information of our future. In 

the early 2000s, a book Geosimulation was published by Benenson & Torrens (2006). In there, 

Geosimulation was defined to be concerned with the design and construction of object-based 

high-resolution spatial models, using these models to explore ideas and hypotheses about how 

spatial systems operate, developing simulation software and tools to support object-based 

simulation, and applying simulation to solving real problems in geographic contexts. A concise 

but shorter definition can be elicited from a later paper by Torrens (2006) where Geosimulation 

was stated to be characteristic of models that handle massive quantities of geographic entities, 

each represented at an atomic (individual and independent) scale of consideration. This being 

said, the availability of spatial data (or Geographic Information) is a vital part in Geosimulation 

as they provide the properties and attributes of the geographic entities in a model. Not to 

mention that only these spatial data provide the data used by the model but they are also used 

for calibrating and validating the Geosimulation model (Benenson & Torrens, 2004). We can 

therefore infer that there is a strong connection between Geosimulation and the fields of 

Remote Sensing and Geographic Information System (GIS);  Remote Sensing and GIS provide 

the spatial information of the environment observed in the past while Geosimulation utilizes 
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these data to provide spatial predictions of the environment the future. In some sense, the 

utilization of spatial data to derive information about the Earth unifies these three fields. A term 

that encompasses this definition is Geomatics. 

Based on the recent 2022 article “Proposal of Redefinition of the Terms Geomatics and 

Geoinformatics on the Basis of Terminological Postulates” (Zlatanova & Krawczyk, 2022), 

Geomatics was proposed to be defined as the knowledge and ability to use information systems 

to integrate data about spatial objects and space-time phenomena relating to the Earth’s 

surface, in order to perform spatial analyzes, forecast and visualize their state and changes. 

This definition implies that Geomatics is a practice, in contrast with previous statements that 

Geomatics is a discipline. A 2009 definition is quite similar in this aspect which defines it as 

an approach, specifically a systemic, multidisciplinary, integrated approach to selecting the 

instruments and the appropriate techniques for collecting, storing, integrating, modelling, 

analysing, retrieving at will, transforming, displaying and distributing spatially georeferenced 

data from different sources with well-defined accuracy characteristics continuity and in a 

digital format (Gomarasca, 2009). Regardless of definition, it is quite agreeable that Geomatics, 

the utilization of spatial data, is used as a tool for understanding environmental issues so that 

informed decision-making can be carried out for environmental management actions. 

However, as a tool for environmental management, Geomatics is well-known to be 

utilized only for  the acquisition and analysis of spatial information and typically exclude the 

prediction of future conditions. Funded research projects supervised by professors in 

universities’ Geomatics departments mainly ranged from the utilization of remote sensing 

techniques to acquire the spatial data of the environment and implementation of different 

spatial analysis in GIS to uncover relationships between spatial variables. Although studies that 

utilize Geosimulation may already be currently abundant, such studies are still lagging behind 

when compared to research done with remote sensing and GIS. This is an irony with the fact 

that the recent definition of Geomatics includes the forecasting of the state and changes on the 

Earth’s surface. It is definitely the case that the role of Geosimulation is still not concreted in 

Geomatics, either in practice or as an approach. It is also worth mentioning that since that there 

has not been any concrete definition of Geomatics in the past decades and it was only recent 

that an effort has been made to formally define Geomatics terminologically (Zlatanova & 

Krawczyk, 2022), a general framework for integrating the different tasks encompassed by 

Geomatics—which includes forecasting—is still not established.  
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To establish and enhance the methodological repertoire of Geomatics, I posit that the 

role of Geosimulation for environmental management should be concreted. I write this chapter 

as a position paper with two main objectives. The first objective is to establish a general 

framework for Geomatics that positions the different spatial science disciplines along the 

workflow of data acquisition, spatial analysis, and Geosimulation. This proposed framework 

also brings forward the second objective which is to present Geomatics as an approach that can 

be used for "predicting the future through observations of the past". 

In the following sections, I first define the different disciplines that Geomatics 

integrates itself into, which includes Geosimulation. I then propose a general Geomatics 

framework for unifying these disciplines, which in turn can establish Geomatics as an approach 

for decision-making in environmental management through "predicting the future through 

observations of the past". I then provide sample applications of using Geomatics for this 

approach by providing research projects that ranged from observation to simulation. I then offer 

my thoughts on the implications of establishing the Geomatics framework and concretizing the 

role of Geosimulation in Geomatics.  

 

2.2. Definitions of disciplines that Geomatics integrates into 

 

Several disciplines are concerned with the utilization or processing of spatial data. 

Hence, Geomatics willingly integrates itself into different fields (Zlatanova & Krawczyk, 

2022). Such disciplines have their own sets of methodologies and end goals for tackling spatial 

data, thus each has its own role for aiding in informing environmental management actions. 

For the sake of establishing a Geomatics framework, I list down some of the disciplines that 

Geomatics mostly integrates into along with their roles in environmental management: 

Remote Sensing: the measurement of object properties on the earth's surface using data 

acquired from aircraft and satellites… therefore an attempt to measure something at a distance, 

rather than in situ (Schowengerdt, 2007). Remote sensing is mostly used for observing the 

environment to acquire spatial data for analyzing environmental conditions. Currently, public 

or paid images from various satellite sensors can be utilized to acquire specific spatial 

information regarding environmental issues such as land degradation, pollution, urban heat 

island, or deforestation by considering the spectral signatures of features on the surface of the 

earth. 
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Global navigation satellite system (GNSS): a worldwide position and time 

determination system that includes one or more satellite constellations, aircraft receivers and 

system integrity monitoring, augmented as necessary to support the required navigation 

performance for the intended operation (ICAO, 2018). For data acquisition, geotagging is 

mainly used for determining and acquiring the 2D coordinates (or 3D if including the elevation) 

of a feature on earth. Hence, GNSS is used to ‘spatialize’ an object of interest so that it can be 

used for the subsequent spatial analysis. 

Light Detection and Ranging (LiDAR): a surveying method that utilizes a pulsed light 

source to illuminate a target object; by measuring the return time of the reflected light pulses, 

it is possible to calculate the object distance (Kim et al., 2021). LiDAR can be classified as a 

type of remote sensing as it utilizes light pulses to sense objects and their characteristics. Hence, 

similar to the use of remote sensing for environmental management, LiDAR is used to acquire 

spatial data of features on the surface of the earth such as for 3d modeling and canopy analysis. 

Geographic Information System (GIS): computer assisted systems for the capture, 

storage, retrieval, analysis and display of spatial data (Clarke, 1986). GIS and remote sensing 

usually go hand-in-hand, with remote sensing used for acquiring raster files and GIS used for 

storing, converting, and analyzing these spatial data. GIS also acts as a data processing method 

for other disciplines such as in spatial regression and cellular automata that involve raster files. 

For analyzing environmental issues, GIS can be used for extracting specific changes in 

environmental conditions and processing potentially significant explanatory variables such as 

topography, proximity, or meteorological variables.  

Spatial regression: the estimation of the cause-and-effect relationship between a 

response variable and one or more covariates that do account for spatial autocorrelation 

(Okunlola et al., 2021; Srinivasan, 2015). Spatial regression is used for identifying the spatial 

explanatory variables that have significant correlation with a response variable. This is mostly 

used for identifying the spatial drivers of an environmental phenomenon such as land cover 

changes or urban heat island. 

Cellular Automata (CA): an arrangement of connected individual automata, arranged 

to form a partitioned space… static in their lattice space; they may diffuse information to 

neighbors, but they cannot alter their position (Torrens, 2006). CA models usually integrate 

raster files derived from GIS and treat individual pixels as individual automata. Rules are then 

established that consider the attributes, states, and neighborhoods of such pixels to manifest 
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the physical processes in the environment. Simulations can then be implemented by repeating 

these rules in steps, hereby also changing the attributes, states, and neighborhoods of the pixels. 

Simulations of scenarios can also be implemented by changing the rules of the model or 

changing the input values in the pixels.  

Agent-based modeling: can also be referred as multi-agent systems, a systems modeling 

approach where a system is modeled as a collection of autonomous decision-making entities 

called agents (Bonabeau, 2002). In contrast to CA, agents in an Agent-Based Models (ABM) 

can move in space. ABMs are also called bottom-up models as they simulate small-scale 

processes to forecast changes in the large-scale. Scenario simulations can be implemented 

through ABMs by modifying agents (whether their behavior, properties, or interaction) to see 

how these changes emerge into global changes. In the context of environmental management, 

Agent-Based Modeling is used to understand how policies that alter the processes between the 

environment and actors such as farmers, fishermen, or commuters, hereby showing the 

emergent changes to the environment.  

 

2.3. The Geomatics framework 

 

 

Fig. 2.1 The proposed Geomatics framework for informing decision-making for environmental 

management actions 
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Decision-making for addressing environmental problems and planning environmental 

management actions are usually informed through understanding the extent of damage caused 

by the environmental issue and understanding the drivers of this problem. However, decision-

making can be informed more holistically if information on the effects of the proposed 

management actions can be understood. Thus, we propose a Geomatics framework where 

spatial information spanning from the past to the future is utilized for decision-making in 

environmental management (Fig. 2.1). In this framework, three main steps are followed in the 

chronological order of Data acquisition, Spatial analysis, and Geosimulation (Table 2.1).  

The first step of the framework is acquisition of data. This mostly entails gathering of 

spatial data that provides information of spatially-varying variables that may be environmental, 

social, economic in nature. At the same time, non-spatial data can also be gathered to support 

later analysis of data. The goal of this step is to observe the magnitude and scope of the 

environmental problem in the past which can be for just one time stamp or through a time frame 

which can span decades. For this reason, remote sensing is ideal for usage as it can effectively 

gather data of the past as there is an abundance of satellite and aerial images that can be utilized. 

Field surveys can also be utilized in this step for data gathering, but it is mostly used in 

conjunction with remote sensing to validate generated maps. Methods in field surveys can vary 

and may include geotagging of land features using GNSS, field spectroscopy, or capturing 

photos using hand-held cameras or drones.  

 

Table 2.1 The three main steps in the Geomatics framework along with their definitions and 

sample applicable techniques 

Step Definition Sample techniques 

Data 

acquisition 

Application of knowledge of measuring techniques, of 

the use of remote sensing methods and GNSS, and 

knowledge of measurements’ accuracy (Zlatanova & 

Krawczyk, 2022) 

Hyperspectral remote sensing, 

close-range photogrammetry, 

LiDAR, geotagging by GNSS 

Spatial 

analysis 

Utilization of methods useful when the data are 

spatial... with the objective of solving some scientific 

or decision-making problem (Goodchild & Longley, 

1999) 

Spatial regression, Network 

analysis, 3D analysis, Land 

cover change analysis 

Geosimulation Development of models that handle massive 

quantities of geographic entities, each represented at 

an atomic (individual and independent) scale of 

consideration (Torrens, 2006) 

Cellular Automata, 

Agent-based modelling, hybrid 

spatial models 
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The second step is spatial analysis which aims to answer relevant questions about the 

environmental problem to understand the conditions for it to occur. A main question usually 

answered to better understand the problem is to identify the driving factors of the 

environmental problem; For this part, spatial regression can be utilized to find explanatory 

variables that have significant correlations with a response variable representing the 

environmental problem. Network analysis is also a popular method to answer questions that 

involve consideration of connections of spatial features through a spatial network. 3D analysis 

is also gaining popularity as it considers the three-dimensional nature of spatial phenomena 

and can answer questions that involve heights of objects such as visibility analysis and 

volumetric analysis. By the end of this step, a better understanding of the relationships between 

spatial entities can be achieved. 

The last step is Geosimulation which involves the development of models that captures 

the processes involving spatial entities in a system, thereby able to simulate the future 

conditions of the spatial entities by repeatedly running the processes in a loop. Geosimulation 

differentiates itself through other modeling and simulation paradigms through its extensive 

usage of spatial data such as raster and vector files for manifesting spatial entities. 

Geosimulation is an ideal last step for informing environmental management decisions as the 

effect of proposed policies can be simulated by altering the processes or entities in the model, 

thereby constructing scenarios that mimic the implementation of policies. In doing so, decision-

makers can be informed of which policies or strategies are best to implement for addressing 

the environmental problem.  

 

Table 2.2 Research projects utilizing Geomatics to inform environmental management actions 

Environmental Problem Data acquisition Spatial analysis Geosimulation 

Deterioration of blue 

carbon ecosystems 

Multi-spectral remote 

sensing, LiDAR, drone 

mapping 

Land cover change 

analysis, Suitability 

analysis 

agent-based modeling, 

coupling with a 

hydrodynamic model 

Urban Heat Island in 

cities 

Multi-spectral remote 

sensing, drone mapping, 

geotagging by GNSS 

Spatial regression, 

distance analysis 

Micro-climate simulation, 

cellular automata, agent-

based modeling 
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By utilizing this three-step holistic approach that mainly involves spatial data, or we 

call it the Geomatics approach, formulating policies for mitigating environmental problems 

based on science-based information can be implemented. 

 

2.4. Case examples 

 

To provide empirical examples of research projects that adopt the Geomatics 

framework as a general methodological workflow, we discuss two completed research that 

aimed to provide solutions to environmental problems through the utilization of spatial data 

(Error! Reference source not found.). All of these projects followed a methodological  w

orkflow consisting of first acquiring spatial data using a combination of remote sensing and 

field survey techniques, then analyzing the spatial data using a combination of GIS techniques 

and other software, then implementing Geosimulation to simulate the future status of the 

environment. After the completion of the research, environmental management actions were 

recommended based on a combined knowledge of the magnitude of the problem, the conditions 

of the environment, and simulations of scenarios. 

 

2.4.1. Deterioration of blue carbon ecosystems 

 

Because of ongoing unsustainable practices in coastal areas as well as unmonitored 

coastal tourism, massive land cover changes have occurred in coastal ecosystems, specifically 

on the mangroves and seagrass areas. In 2018, a research program was funded by the 

Philippines’ Department of Science and Technology with the name Integrated Assessment and 

Modelling of Blue Carbon Ecosystems for Conservation and Adaptive Management 

(IAMBlueCECAM). This research program aimed to propose conservation and natural resource 

management actions for blue carbon ecosystems by producing an inventory of mangrove 

forests and seagrass habitats and simulating the dynamics in these ecosystems (United Nations 

ESCAP, n.d.).  The research program is made up of ten component projects that all handle 

spatial data but work at different steps in the Geomatics framework. The first two projects 

utilized remote sensing to provide inventories of the mangrove and seagrass extents. One 

project worked on suitability models for spatial analysis. Meanwhile, four projects utilized 

Geosimulation techniques to elucidate blue carbon dynamics and associated ecosystem 
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services. Based on the synthesis of findings produced by the different projects, sustainable 

environmental management actions were presented to officials of respective government units. 

 

2.4.2. Urban Heat Island in cities 

 

Cities all experience the phenomenon Urban Heat Island (UHI), the increase in air 

temperature in urban areas relative to its surrounding natural areas. This phenomenon is caused 

by the combination of artificial materials and buildings in cities which eventually absorb and  

retain heat. UHI causes a variety of harmful impacts to people such as extreme discomfort, heat 

stroke, and a variety of illnesses. To mitigate the UHI in Philippines cities, the research project 

Geospatial Assessment and Modelling of Urban Heat Islands in Philippine Cities (GUHeat) 

was implemented to monitor the magnitude of the UHIs in different cities, relate this to with 

environmental factors, and utilize modeling techniques to simulate possible mitigation 

scenarios (PCIEERD, n.d.). In general, the research project also followed the Geomatics 

framework to implement a workflow spanning from data acquisition, spatial analysis, and 

Geosimulation. By the end of the project, research findings were presented to the cities’ 

government officials such as the cooling effect of rivers, proper positioning of urban trees, and 

causes of local climate zones in cities. 

 

2.5. Implications of the Geomatics framework 

 

Adoption of the Geomatics framework for environmental management, thereby 

concretizing the role of Geosimulation in Geomatics, has several implications for future studies 

dealing with spatial data.  

First, this will widen the application of Geomatics to include understanding the most 

probable future status of the environment based on scenarios. Conventionally, the 

environmental applications of Geomatics span only from the monitoring of spatial data of the 

environment to analyzing the relationships between these spatial data. Of course, understanding 

the past and present conditions of the environment may already be sufficient at times for 

providing insights on how to manage the environment. This is especially true in decision-

making in a government level where information of the status of the environment and its causes 

is enough to signal intervening actions. However,  understanding  also the impacts of policies 
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on the future conditions of the environment can definitely provide a more holistically informed 

decision for drafting policies. This can be likened to how knowing that the climate has changed 

for the past decades brought awareness to people, but it is predictions of the future warming 

climate that triggered the worldwide actions from small to large-scale actors. Without a doubt, 

Geosimulation can provide valuable information for environmental management and 

concretizing the role of Geosimulation in Geomatics will make Geomatics a more holistic 

approach. 

The second implication is a corollary of the first whereby a methodological workflow 

will be established that can be used as a generic template for implementation of research aiming 

to inform environmental management. This workflow will provide a straightforward approach 

that addresses both monitoring the past, understanding the causes, and predicting the future of 

an environmental problem. We posit that this methodological workflow will aid research 

projects in achieving more holistic findings that can easily be translated into policies. 

Lastly, the Geomatics framework will enhance the collaboration between 

Geosimulation and the other spatial science disciplines such as Remote Sensing and GIS. This 

would stimulate an environment where more novel methodological approaches can be 

developed that would cover at least a combination of Geosimulation and either remote sensing 

or GIS. Currently, the remote sensing and GIS disciplines are strongly connected and a huge 

chunk of remote sensing studies already include a spatial analysis section. The connection 

between GIS and Geosimulation can also be deemed quite well established. Several cellular 

automata and agent-based models have been developed which utilize outputs from spatial 

regression or suitability mapping. The agent-based modeling software GAMA (GIS Agent-

based Modeling Architecture) has also been developed that provides easy utilization of raster 

and vector files in developing ABMs (Taillandier et al., 2019). However, compared to 

combined remote sensing and GIS studies, combined Geosimulation and GIS studies are still 

relatively scarce. Once Geosimulation is concretized in Geomatics, more GIS-Geosimulation 

studies can be expected to flourish.  

 

2.6. Conclusion 

 

The latest definition of Geomatics is the knowledge and ability for analyzing and 

forecasting spatial phenomena. However, the role of forecasting is still not effectively utilized 



 20 

when spatial data is used for informing environmental management actions. As a call to 

concretize the role of Geosimulation in Geomatics, we propose a Geomatics framework that 

spans from data acquisition, spatial analysis, and Geosimulation. This Geomatics framework 

can also be adopted as a methodological workflow for informing decision-making in 

environmental management with its capability of "predicting the future through observations 

of the past". To provide examples of the usage of the Geomatics framework as a workflow, we 

presented case studies that aimed to inform environmental management actions through 

utilization of spatial data.  

We also discussed the possible implications of adopting the Geomatics framework: the 

widening of the environmental application of Geomatics, the establishment of a 

methodological workflow for informing environmental management, and the enhancement of 

the collaboration between Geosimulation and other spatial science fields. We hope that we were 

able to demonstrate the benefits of concretizing the role of Geosimulation in Geomatics. We 

write this paper mainly to advocate the adoption of this framework as the implications stated 

above will only manifest if it is disseminated. The quickest way to achieve this is if educational 

curriculums in Geomatics adopt this framework. We believe that this new perspective in 

Geomatics will bring value in teaching the environmental applications of Geomatics. Another 

way for this framework to be adopted is if spatial scientists utilize it in their research. We thus 

also invite researchers to utilize or enhance this framework to advance the practice of 

Geomatics. 
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3. Observing the past dynamics of land cover changes 

 Chapter 3:  

Observing the past dynamics of land cover changes 

The contents of this chapter have been published as: 

Estacio, I., Basu, M., Sianipar, C. P. M., Onitsuka, K., & Hoshino, S. (2022). Dynamics of land 

cover transitions and agricultural abandonment in a mountainous agricultural landscape: Case 

of Ifugao rice terraces, Philippines. Landscape and Urban Planning, 222, 104394. 

https://doi.org/10.1016/J.LANDURBPLAN.2022.104394 

3 

3.1. Introduction 

 

Land cover transitions in mountainous agricultural landscapes have previously been 

analyzed through the utilization of remote sensing technologies such as satellite and aerial 

images (Aguirre-Gutiérrez et al., 2012; Minta et al., 2018; Pôças et al., 2011; Xystrakis et al., 

2017). However, analysis of land cover transitions in these studies was limited as the time-

intervals between land cover maps were more than ten years or inconsistent. This limits the 

analysis of land cover transitions as it may not have captured rapid land cover transitions that 

have occurred in shorter time spans. Previous analysis may have missed a step before observed 

transitions or may have mistaken retransitions to former land covers as no changes.  

Apart from undergoing regular transitions in land cover, mountainous agricultural 

landscapes have also been observed to undergo agricultural abandonment due to socio-

economic and environmental drivers such as high cultivation cost in steep conditions and lack 

of available water in high elevations (Gellrich, Baur, Koch, et al., 2007; Gellrich & 

Zimmermann, 2007; Hou et al., 2021; Minta et al., 2018; Modica et al., 2017; Xystrakis et al., 

2017). It is important to monitor the rate of permanent abandonment to maintain cultural 

ecosystem services (Tilliger et al., 2015) and prevent erosion (Londoño et al., 2017; Tarolli et 

al., 2014). However, as fallowing is a common practice in these landscapes, previous 

monitoring studies may have misclassified fallowing as permanent abandonment (Pôças et al., 

2011; Xystrakis et al., 2017). Transitions from agricultural land to other land cover type were 

generally classified as agricultural abandonment and may have missed out on the fallowing 



 22 

process.  

As a consequence of agricultural abandonment, afforestation has also been widely 

observed to occur in mountainous agricultural landscapes (Gellrich, Baur, Koch, et al., 2007; 

Gellrich & Zimmermann, 2007; Kobler et al., 2005). Forest growth was shown to decrease 

water yield (García-Ruiz & Lana-Renault, 2011; Soriano & Herath, 2018; Ziegler et al., 2004), 

which also acts as a catalyst for further land abandonment. This implies a feedback loop 

between afforestation and agricultural abandonment, where the increase of occurrence of one 

phenomenon also increases the occurrence of the other phenomenon (Soriano & Herath, 2018). 

Previous studies have shown that proximity from forest areas increases the likelihood of 

agricultural abandonment (Bolliger et al., 2017; Gellrich, Baur, & Zimmermann, 2007; Pazúr 

et al., 2020). However, there haven’t been previous studies that show that the total area or 

abundance of forest cover also increases the magnitude of agricultural abandonment. This is 

important in landscape planning with the purpose of conserving agricultural lands. 

This study aims to analyze the dynamics of rapid land cover transitions and permanent 

agricultural abandonment in the mountainous agricultural landscape of Ifugao rice terraces in 

the Philippines. Specifically, this study aims to answer the following three questions: (1) What 

rapid land cover transitions are prominent in the Ifugao rice terraces landscape? (2) What is the 

frequency of permanent abandonment, fallowing, first-time cultivation, and recultivation in the 

landscape? And (3) Is permanent agricultural abandonment related to abundance of other 

vegetation types in the landscape? To answer these research questions, time-series land cover 

mapping and transition analysis in consistent five-year intervals were implemented in Google 

Earth Engine (GEE). A framework for analyzing paddy field dynamics from land cover maps 

was developed. Lastly, regression analysis was implemented to analyze correlation between 

vegetation abundance and subsequent permanent agricultural abandonment.  

 

3.2. Methods  

 

3.2.1. Datasets 

 

For this study, GEE was used as the source for most datasets. GEE is an online platform 

that provides an abundance of geospatial data and automatic cloud-based computations for 

handling data (Gorelick et al., 2017). GEE is especially useful for spatial-temporal analysis 
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because of the automated process of extracting time-series images and generating image 

composites. GEE was also utilized for analyzing the land cover transitions and paddy field 

dynamics.  

Landsat 5 and Landsat 8 Level 2, Collection 2, Tier 1 image collections were used as 

the main data for mapping the land cover in the Bangaan watershed from 1990 to 2020. These 

Landsat images were already geometrically and atmospherically corrected and cross-calibrated 

among different sensors, so they are suitable for decadal time series land cover change 

applications (Wulder et al., 2016). Shuttle Radar Topography Mission (SRTM) Version 3.0 

Digital Elevation Model (DEM), which was released in 2013 and has a 30 m spatial resolution, 

was used for generating the shapefile of the Bangaan watershed and for training classification 

models. 

Aside from GEE, other software were also utilized for generating and exploring needed 

dataset. The shapefile of the Bangaan watershed was derived by using the SRTM DEM as input 

in the Arc Hydro tools in ArcGIS. Arc Hydro uses a straightforward approach in generating 

watersheds in a specified region by using a DEM to compute water flow, define streams, and 

generate catchments (Djokic et al., 2011). High-resolution images from Google Earth were 

used for the creation of training samples and validation of land cover images. Google Earth has 

been widely used alongside GEE to refer to high-resolution images for time-series mapping 

purposes (W. Cao et al., 2021; Zhou et al., 2019). 

 



 24 

 

Fig. 3.1 The framework for mapping the land cover at the Bangaan watershed from 1990 to 

2020 using a combination of Google Earth Engine, Google Earth. and ArcGIS. RF = Random 

Forest 

 

3.2.2. Mapping 

 

The framework for mapping the land cover from 1990 to 2020 includes pre-processing, 

creation of training samples, land cover classification, post-processing, and accuracy 

assessment (Fig. 3.1). The procedures were implemented mostly in GEE and supplemented by 

ArcGIS and Google Earth.  

 

3.2.2.1. Pre-processing  

 

Landsat image collections were spatially filtered to images overlapping with the 

location of the Bangaan watershed and temporally filtered to images captured during the dry 
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season, set from December 1st of a previous year to May 31st of a subject year. The dry season 

in the Ifugao province was used as the intra-annual period as this coincides with the 

transplanting and growth stage of the rice in the rice terraces (SITMo, 2008), where flooding 

can be detected in paddy fields (Dong et al., 2015). The images were temporally grouped into 

collections of five-year time period for creating an image composite, with the target years as 

the middle years (e.g., for the year 2000, an image collection was created with images spanning 

from the years 1998 to 2002). Image composition has been widely used in previous studies to 

take into account phenology of vegetation (Chen et al., 2017; Kollert et al., 2021; Praticò et al., 

2021) or agricultural cycle (Dong et al., 2015). A five-year period was used as making image 

collections from single year or three-year periods cannot produce a whole composite after 

implementing cloud and shadow masking. Also, a five-year interval between land cover maps 

was deemed appropriate for land cover transition analysis. Collections that have images from 

1988 to 2012 were derived from the Landsat 5 satellite while images from 2013 to 2021 were 

derived from the Landsat 8 satellite; Landsat 7 images were not used because of the 

inconsistency produced by the scan-lines. For the case of year 2020, the three-year period 

2019–2021 was used because the year 2021 can only be the used as latest year. 

 

 

Fig. 3.2 The spatial distribution of good observation count per time period 
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The images from the dry-season multi-year collections were clipped to the shape of the 

watershed. Clouds and cloud shadows were masked for every image by utilizing the available 

pixel quality attributes generated from the CFmask algorithm (Foga et al., 2017). The spatial 

distribution of good observation counts per pixel showed consistent low counts in the higher 

mountainous areas, indicating more pixels are being masked which may be due to terrain 

shadows (Fig. 3.2). The respective Blue, Green, Red, Near Infrared (NIR), Short-wave Infrared 

1 (SWIR1), and Short-wave Infrared 2 (SWIR2) bands of Landsat 5 and Landsat 8 were 

selected as these are the common bands between the two Landsat sensors, hence leaving out 

the other bands. A median function was implemented for each image collection to derive the 

image composite per target year (Alencar et al., 2020). A median function was used to get 

average pixel values during the dry period but at the same time ignore possible outlier values 

in paddy field areas such as fields that is not in the transplanting stage which may produce 

values close to low vegetation. Lastly, an elevation band derived from the SRTM DEM was 

added to each yearly composite, making each composite have seven bands for training the 

classifications models (Blue, Green, Red, NIR, SWIR1, SWIR2, and elevation). Before adding 

the elevation band, grains of misclassified pixels occurred in areas where there were terrain 

shadows, hence had low good observation count because of shadow masking. Coincidentally, 

these areas were in the higher parts of the mountain where there was only forest cover as 

training points, hence adding an elevation band easily removed the misclassified pixel grains. 

Seven image composites were produced, representing the years 1990, 1995, 2000, 2005, 2010, 

2015, and 2020.  

 

3.2.2.2. Creation of training samples for land cover classification 

 

Based on a field visit and previous studies on the Ifugao rice terraces, land usages in 

the landscape were identified (Table 3.1). These land usages were compared to high-resolution 

images in Google Earth and true color and false color images from the generated Landsat 

composites for identification. Spectral signatures of the different land usages in Landsat images 

were inspected and it was found that some of these land usages have low spectral separability 

(e.g., grassland and caneland cannot be differentiated). Also, not all land usages can be 

identified with confidence by image interpretation using Google Earth and Landsat images, 

which is important for creating training and validation samples. When choosing the land cover 
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types to be classified for subsequent land cover transition analysis, the following were 

considered: (1) Transitions involving paddy field and forest land cover types are the most 

important as based on previous studies, agricultural abandonment leads to afforestation, and 

afforestation promotes agricultural abandonment through decrease in water yield; (2) 

Obtaining high accuracies for generated land cover maps is a priority to obtain reliable land 

cover transition analysis. From these considerations, the land cover types chosen for image 

classification were paddy field, low vegetation, forest, and built-up (Table 3.1) as these land 

cover types have high spectral separability and can be differentiated with confidence using 

Google Earth and Landsat images. Some land use transitions may be missed (e.g., transitions 

between grassland and swidden field), but this is deemed acceptable for the current research as 

dynamics involving paddy field and forest were prioritized. Water was not included as there 

were no lakes due to the study area being in a mountainous area, while the streams did not 

cover much area (only around 20 pixels per image composite). The small area of water was 

instead addressed in the post-classification section. 

 

Table 3.1 Description and land usage of each land cover type 

Land cover 

type 
Description 

Land usage  

(Acabado, 2012) 

Paddy field Flooded terraced land for cultivation of 

semiaquatic crops such rice or taro 

Pond-field 

Low 

vegetation 

 

Dry land with vegetation of low density 

such as lands with sparse trees or lands 

filled with grass or vegetables 

Grassland, 

Caneland, 

Swidden, Drained 

field 

Forest Land with high, woody, and compacted 

trees 

Woodlot,  

Forest 

Built-up Land with artificial surfaces such as 

concrete, asphalt, or aluminum 

House terrace, 

Roads, Buildings 
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Fig. 3.3 Comparison between a 2015 high-resolution image from Google Earth and a 2015 

Landsat Principal Component Analysis (PCA) image in a terraced area in the Bangaan 

watershed. Reference points indicate the landcover type in relation to the visualizations in the 

high-resolution image and PCA image. 

 

After choosing the land cover types to classify, 600 training samples (150 points per 

land cover type) were created based on Google Earth high-resolution images, Landsat true color, 

false color, and Principal Components Analysis (PCA) images. Principal Component Analysis 

is a dimensionality-reduction method applied in remote sensing that linearly transforms a 

multi-band image to generate a new image with less correlated bands, with the first band 

covering the maximum variance in the data space (Lei et al., 2008; Munyati, 2004). PCA is 

useful for identifying land cover types through visualization as the first three bands can capture 

most of the variance in the image’s spectral values. PCA images aided in differentiating the 

different land cover types, especially between built-up and low vegetation areas (Fig. 3.3). 

High-resolution images in Google Earth were only available from the years 2010 to 2020, so 

Landsat image interpretation were mostly used for creating the samples. However, Google 

Earth images from 2010 onwards also helped in sampling previous years as it confirmed low 

vegetation cover that were previously paddy fields due to the forms of the terraces. As the pixel 

size of Landsat images is larger than the pixel size of Google Earth images (which can reach 

sub-meter level accuracy), sampling was limited to one point per Landsat pixel, with Google 
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Earth image pixels within the Landsat pixel used as supplement for interpreting the land cover 

type of the sample point.  

 

3.2.2.3. Land cover classification 

 

Two rounds of pixel-based supervised classification were employed to generate the land 

cover maps (Alencar et al., 2020). In the first round of classification, the 600 training samples 

per target year were used to train a Random Forest classifier model (Breiman, 2001). Random 

Forest is a machine learning classifier that combines several randomized decision trees and 

aggregates their predictions by averaging (Biau & Scornet, 2016). It aims to form an ensemble 

of classification and regression tree(CART)-like classifiers to classify remote sensing images 

(Gislason et al., 2006). In this study, the parameter for the number of trees in the Random Forest 

model was calibrated according to coherence of generated land cover maps to actual images in 

Google Earth Engine until the parameter was set to 100. The other parameters in the model 

were set as default (number of variables per split = square root of number of variables, min leaf 

population = 1, bag fraction = 0.5, max nodes = no limit). After the first round, the authors 

noticed that some areas in the classified images have inconsistent classification through the 

years. This may be due to the fact that the spectral signatures gathered from the training samples 

may have been insufficient to train consistent Random Forest models through the years. To 

address this, the authors decided to adopt two-rounds of classification by Alencar et al. (2020). 

In the second round, the initial seven generated land cover images were used to produce a new 

set of training points. If a land cover type occurred in a pixel for at least five years (e.g., 1990, 

2000, 2005, 2015, and 2020), a point was placed in that pixel with the classification of the 

subject land cover type and was treated as a training point for the years the land cover type 

occurred. This procedure produced a minimum of 13,000 training samples per year. After the 

second classification, the maps produced looked more consistent, which will aid in land cover 

transition analysis. 

 

3.2.2.4. Post-classification 

 

To further improve the accuracies of the land cover images, two post-classification 

procedures were applied: temporal filter and masking misclassified paddy fields on the 
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streamline. Temporal filtering is a post-processing technique which reclassifies the land cover 

types in time-series land cover maps to correct the transitions between land cover types. 

Meanwhile, masking in the context of post-processing is used when a portion or feature in a 

classified land cover map exhibits misclassification. By identifying the feature associated with 

this misclassification, masking can be implemented to correct the misclassified land cover type.  

Generated classified images showed some grains which were obviously misclassified. 

As these grains of misclassification will affect the land cover transition analysis, temporal 

filters were implemented (Alencar et al., 2020). Transition rules were applied on land cover 

images based on the assumption that some transitions are improbable to occur in the 

mountainous agricultural landscape (Table 3.2). For example, built-up land cover type 

occurring between periods of paddy fields is highly improbable and may be caused by 

misclassification. These transition rules were applied to the land cover images, starting from 

the earliest year (1990) until the last year (2020), then repeated two times.  

 

Table 3.2 Transition rules for the temporal filter. P = Paddy field; L = Low vegetation; F = 

Forest; B = Built-up. 

ID Rules Correction 

First-year rules 

1 B-P-P P-P-P 

2 B-F-F F-F-F 

Between-years rules 

3 P-B-P P-P-P 

4 P-F-P P-P-P 

5 B-P-B B-B-B 

6 B-F-B B-B-B 

7 B-L-B B-B-B 

8 F-P-F F-F-F 

9 F-B-F F-F-F 

10 L-B-L L-L-L 

Last-year rules 

11 B-B-P B-B-B 

12 B-B-F B-B-B 
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Fig. 3.4 Illustration of masking misclassified paddy field pixels on a streamline. 

 

It was also observed that some pixels along the streamlines were misclassified as paddy 

fields. This may be explained with the water along streamlines being mistaken as the flooding 

in the paddy fields. To address this, misclassified paddy field pixels on the streamline were 

masked and converted to neighboring land cover types (Fig. 3.4). A polyline shapefile of the 

streamline was first digitized using high-resolution images as reference, then converted to raster. 

Paddy field pixels that intersected with streamline pixels were considered misclassified and 

were masked. These masked pixels were then converted to the land cover type of the majority 

in the square neighborhood pixel.     

 

3.2.2.5. Accuracy assessment 

 

The accuracies of the final land cover maps were assessed using validation points 

sampled using stratified random sampling (W. Cao et al., 2021). After generating the final land 

cover maps, 300 validation points were generated per target year, with the number of points 

per land cover type in proportion to the land cover type’s area. The generated validation points 

were assigned a reference data by referring to Google Earth high-resolution images and Landsat 

true color, false color, and PCA images. Meanwhile, classifications in the generated land cover 
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map were extracted into the validation points as classification data. Using the validation points, 

the Producer’s and User’s accuracies of each land cover type and the Overall accuracy of each 

land cover map were determined to assess the land cover maps.  

 

3.2.3. Analysis of dynamics of land cover transitions and paddy field abandonment 

 

From the generated land cover maps, relational and conditional raster operations were 

implemented to analyze land cover transitions, paddy field dynamics, and the relationship 

between vegetation cover abundance and paddy field abandonment.  

 

 

Fig. 3.5 The framework for analyzing paddy field dynamics for the study period 1990–2020: 

(A) Generating a raster showing the first period of cultivation and a raster showing the last 

period of cultivation; (B) Generating rasters of abandonment and expansion for each five-year 

period; (C) Generating a raster of paddy field dynamics which shows permanent abandonment, 

fallowing, first-time cultivation, and recultivation. 
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3.2.3.1. Land cover transitions 

 

For each five-year interval between land cover maps, the transitions between land cover 

types were analyzed. For example, if a pixel was classified as Paddy Field in 2000 and Low 

Vegetation in 2005, the pixel was classified as a “Paddy Field to Low Vegetation” transition in 

the 2000–2005 land cover transition map. The total area for every transition type was computed 

to determine the abundant transitions in the watershed (Aguirre-Gutiérrez et al., 2012; Pôças 

et al., 2011; Zhu & Woodcock, 2014). 

 

3.2.3.2. Paddy field dynamics 

 

Based on the time-series land cover maps, a three-part framework for analyzing 

temporal dynamics of paddy fields was developed (Fig. 3.5). 

The first part deals with deriving maps showing the years cultivation was first and last 

practiced (Fig. 3.5A). The ‘First period of cultivation’ map was generated by identifying the 

earliest year a paddy field was identified in a pixel. For example, given a pixel from land cover 

maps spanning from 1990 to 2020, if the first year a paddy field was detected is year 2000, the 

value in the ‘First period of cultivation’ map for the respective pixel is ‘2000’. On the other 

hand, the ‘Last period of cultivation’ map was generated by identifying the last year a paddy 

field was identified in a pixel. For example, given the same pixel, if the last year a paddy field 

was detected is year 2015, the value of the pixel in ‘Last period of cultivation’ map is ‘2015’.   

The second part deals with deriving maps showing abandonment and expansion of 

paddy fields for every five-year period (Fig. 3.5B). Abandonment maps were generated by 

treating transitions from paddy field as ‘Abandonment’. For example, given a pixel in 2000 

and 2005 land cover maps, if the pixel transitioned from a paddy field, the pixel is classified as 

‘Abandonment’ in the 1995–2000 Abandonment map. On the other hand, expansion maps were 

generated by treating transitions to paddy field as ‘Expansion’. For example, given a pixel in 

2000 and 2005 land cover maps, if the transition is going into a paddy field, the pixel is 

classified as “Expansion” in the 1995–2000 Expansion map 

The third part combines the results of the first and second parts and derives maps 

showing the dynamics of paddy fields for every five-year period (Fig. 3.5C). First, 

‘Abandonment’ pixels in an Abandonment map are inspected. If an ‘Abandonment’ pixel for a 
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period coincides with a pixel that has a value of the period’s ending year in the ‘Last period of 

cultivation’ map, the pixel is identified as “Permanent abandonment”. For example, in the 

1995–2000 Abandonment map, if an ‘Abandonment’ pixel coincides with a ‘2000’ pixel from 

the ‘Last period of cultivation’ map. the pixel will be classified as “Permanent Abandonment”. 

On the other hand, if an abandonment pixel does not coincide with a pixel that has a value of 

the period’s ending year in the ‘Last period of cultivation’ map, it is classified as ‘Fallowing’. 

For example, if an abandonment pixel from the same 1995–2000 Abandonment map does not 

coincide with a ‘2000’ pixel from ‘Last period of cultivation’, the pixel will be classified as 

“Fallowing”. After inspecting ‘Abandonment’ pixels, ‘Expansion’ pixels in an Expansion map 

are inspected next. If an ‘Expansion’ pixel coincides with a pixel that has a value of the period’s 

starting year in the ‘First period of cultivation’ map, the pixel is identified as ‘First-time 

cultivation’. For example, in the 1995–2000 Expansion map, if an ‘Expansion’ pixel coincides 

with a ‘1995’ pixel from the ‘First period of cultivation’ map, the pixel will be classified as 

‘First-time cultivation’. On the other hand, if an ‘Expansion’ pixel does not coincide with a 

pixel with a value of the period’s starting year in the ‘First period of cultivation’ map, it is 

classified as ‘Recultivation’. For example, if an ‘Expansion’ pixel from the same 1995–2000 

land cover transition map does not coincide with a ‘1995’ pixel from ‘First period of 

cultivation’, the pixel will be classified as “Recultivation”. 

Through this developed three-part framework, the temporal dynamics of permanent 

abandonment, fallowing, first-time cultivation, and recultivation were analyzed.      

 

3.2.3.3. Relationship between vegetation cover abundance and paddy field abandonment  

 

To analyze the relationship between the abundance of vegetation land cover types (low 

vegetation and forest) to the permanent abandonment of paddy fields, regression analysis was 

implemented. The areas of the vegetation land cover types were each treated as an explanatory 

variable while the subsequent permanent abandonment was treated as the response variable. 

Since abandonment pixels in the 2015–2020 period were all classified as permanent 

abandonment (recultivation still cannot be confirmed), only periods from 1990 to 2015 were 

considered in the regression analysis. Regression analysis was implemented using the Analysis 

ToolPak in Microsoft Excel. 

3.3. Results  
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3.3.1. Land cover change from 1990 to 2020 

 

Table 3.3 Confusion matrices of the land cover maps generated every five years from 1990 to 

2020. UA = user’s accuracy, PA = producer’s Accuracy, OA = overall accuracy  

Year Classification 

Reference 

UA (%) 
Paddy Field 

Low 

Vegetation 
Forest Built-up 

1990 

Paddy Field 26 0 2 0 92.86 

Low Vegetation 0 68 2 0 97.14 

Forest 2 2 189 0 97.93 

Built-up 1 0 0 8 88.89 

PA (%) 89.66 97.14 97.93 100.00 OA = 97.00 

1995 

Paddy Field 28 2 0 0 93.33 

Low Vegetation 1 65 0 0 98.48 

Forest 1 1 194 0 98.98 

Built-up 0 0 0 8 100.00 

PA (%) 93.33 95.59 100.00 100.00 OA = 98.33 

2000 

Paddy Field 27 0 0 0 100.00 

Low Vegetation 0 65 5 0 92.86 

Forest 0 3 191 0 98.45 

Built-up 0 0 1 8 88.89 

PA (%) 100.00 95.59 96.95 100.00 OA = 97.00 

2005 

Paddy Field 27 1 0 0 96.43 

Low Vegetation 0 71 1 0 98.61 

Forest 1 3 187 0 97.91 

Built-up 0 0 0 9 100.00 

PA (%) 96.43 94.67 99.47 100.00 OA = 98.00 

2010 

Paddy Field 29 0 0 0 100.00 

Low Vegetation 0 54 3 0 94.74 

Forest 1 2 203 0 98.54 

Built-up 0 0 0 8 100.00 

PA (%) 96.67 96.43 98.54 100.00 OA = 98.00 

2015 

Paddy Field 26 0 0 0 100.00 

Low Vegetation 1 60 0 0 98.36 

Forest 0 4 201 0 98.05 

Built-up 0 0 0 8 100.00 

PA (%) 96.30 93.75 100.00 100.00 OA = 98.33 

2020 

Paddy Field 21 2 0 1 87.50 

Low Vegetation 1 57 1 0 96.61 

Forest 0 3 205 0 98.56 

Built-up 0 0 0 9 100.00 

PA (%) 95.45 91.94 99.51 90.00 OA = 97.33 
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Fig. 3.6 The land cover of the Bangaan watershed at the start and end of the three-decade time 

period: (A) The land cover map in 1990; (B) The land cover map in 2020. 

 

Time-series land cover maps from 1990 to 2020, in five-year intervals, were produced. 

The minimum overall accuracy of the land cover maps was 97.00% (for the years 1990 and 

2000), the minimum producer’s accuracy was 89.66% (Paddy field for year 1990), and the 

minimum user’s accuracy was 88.89% (Built-up for the years 1990 and 2000) (Table 3.3). 

These accuracies indicated that the land cover maps produced were accurate and reliable to be 

used for land cover transition analysis. The high accuracies of the maps may be attributed to 

the large number of training samples from the second round of classification and the post-

classification procedures. 

From 1990 to 2020, paddy fields and low vegetation covers in the Bangaan watershed 

experienced net loss in area (Fig. 3.6). The paddy fields in the terraces experienced the most 

decrease in area, where it only retained 60% of its original cover and expanded only to other 

land cover by 17%, having only 77% of net area from 1990 (Table 3.4). Low vegetation only 

retained 60% of its original cover and expanded by 28%, having 88% of net area from 1990. 

On the other hand, forest and built-up covers experienced net gains in area. Forests retained 

93% of its original cover, and expanded by 14%, having a net area of 107% from 1990. Built-
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up, although retaining only 59% of its original cover, expanded to other areas by 65%, having 

a net area of 114% from 1990. 

All land cover types also underwent both increases and decreases in area (Fig. 3.7). 

Paddy fields experienced a decrease in area of 113 ha from 1990 to 2000. It experienced a slight 

increase of 37 ha in the following ten years from 2000 to 2010 before experiencing a decrease 

of 69 ha from 2010 to 2020. Forests experienced almost alternating increases and decreases in 

area, but it notably experienced a sharp increase of 304 ha in the 2005–2010 period. Same with 

the forests, low vegetation cover experienced almost alternating changing trends, but on the 

other hand, experienced a sharp decrease of 303 ha in the 2005–2010 period. Built-up was 

relatively stable, with the highest magnitude of change at 30 ha (increase) in 2015–2020.  

 

 

Fig. 3.7 Trend in total area of the four land cover types in the Bangaan watershed from 1990 to 

2020 

 

 

Table 3.4 The overall retained areas, reduction, and expansion of the land cover types from 
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1990 to 2020. Percentage is ratio with the 1990 land cover type area 

Land cover type 

Retained 

areas 

Total 

reduction 

Total 

expansion 

(ha) (%) (ha) (%) (ha) (%) 

Paddy field 374 60 252 40 105 17 

Low vegetation 761 60 511 40 352 28 

Forest 3,418 93 253 7 524 14 

Built-up 85 59 60 41 94 65 

 

 

Fig. 3.8 The magnitudes of transitions between the four land cover types in the watershed for 

each five-year period. The total area of a color per period indicates the total transition from a 

land cover type while the total area of a column indicates the total transition into the land cover 

type. 

 

3.3.2. Land cover transitions 

 

When the net area of a land cover type changes, a transition between land cover types 

occurs (Fig. 3.8, Fig. 3.9). For most land cover transitions that occurred, low vegetation acted 

as a dominant transition source and transition outcome; the other land cover types (Paddy field, 

Forest, Built-up) mostly transitioned from and into low vegetation. It appears that low 

vegetation acts as an intermediary land cover for transitions. In the three-decade study period, 
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most transitions occurred between paddy fields, low vegetation, and forest; there was only a 

relatively small amount of change in built-up per period compared with the other land cover 

types. From a spatial perspective, the same areas in the study area experienced multiple 

transitions in the three-decade period, such that first-time transitions were almost followed later 

on by another transition.  

 

 

Fig. 3.9 Spatial pattern of land cover transitions between paddy field, low vegetation, and forest 

for each five-year period from 1990 to 2020. Built-up was not included in the visualization 

because of relatively low magnitude of change  

 

 

Throughout the three-decade study period, “from low vegetation to forest” and “from 
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forest to low vegetation” transitions were constantly the largest transitions in the landscape. 

Forest and low vegetation covers regularly interchanged between each other at large and almost 

alternating rates. Forest transitioned more to low vegetation in the 1995–2000, 2000–2005, and 

2010–2015 periods, while low vegetation transitioned more to forest in the 1990–1995, 2005–

2010, 2015–2020. Notably, there was a relatively large transition of 369 ha from low vegetation 

to forest in the 2005–2010 period, making up 70% of the total expansion of forest and 72% of 

the total reduction of low vegetation in the three-decade study period.     

For most periods, transitions from paddy fields (agricultural abandonment) exceeded 

transitions to paddy fields (agricultural expansion). For the periods 2000–2005 and 2005–2010, 

agricultural expansion exceeded agricultural abandonment by 28 ha and 8 ha, respectively. 

However for all other periods, agricultural abandonment exceeded expansion in average by 36 

ha. This greater rate of agricultural abandonment compared with expansion may be accounted 

for the overall net decrease of paddy fields through the three-decade study period.  

 

 

Fig. 3.10 Spatio-temporal patterns of paddy field cultivation from 1990 to 2020: (A) The 

overall land cover change in paddy fields in the three-decade period; (B) The period when an 

area was first cultivated; (C) The period when an area was last cultivated. 

 

 

3.3.3. Dynamics of paddy fields 
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Maps of the first and last period of cultivation in the paddy fields showed different years 

when agricultural expansion and abandonment were abundant (Fig. 3.10B and C). In the 

periods from 1990 to 2020, first-time cultivations occurred at a rate of 36 ha per five-year 

period, with no period having a notable magnitude (Fig. 3.11). On the other hand, permanent 

abandonment occurred at an average of 61 ha per five-year period, almost double the area of 

first-time cultivations. Notably, the years of 2010 and 2015 had the highest area of permanent 

abandonment at 88 ha and 94 ha, respectively. Overall, from 1990 to 2020, the areas 

permanently abandoned exceeded the areas newly cultivated, making the total area of paddy 

fields lower by 2020 (Fig. 3.10A). 

Analysis of the dynamics of paddy fields also confirms the regular occurrence of 

fallowing and recultivation in the landscape (Fig. 3.11). From 1990 to 2015, the area of 

fallowed paddy fields was constantly decreasing, indicating that the practice of fallowing has 

been decreasing. Fallowing had relatively high occurrence between 1990 and 2000 at an 

average of 52 ha per five-year period compared with the occurrence between 2000 and 2010 at 

an average rate of 20 ha per five-year period. It should be noted that there were no fallowed 

areas in the 2015–2020 period as future recultivation cannot be determined. Meanwhile, 

recultivation varied for every period. In the 2000–2005 period, recultivation increased by 416% 

compared to the value in the 1995–2000, indicating that large-scale agricultural expansion 

occurred in this period. It should also be noted that there were no recultivated areas in the 1990–

1995 period as previous fallowing cannot be determined. 
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Fig. 3.11 Dynamics of paddy fields for every five-year period from 1990 to 2020: The spatial 

distribution of paddy field dynamics in (A) 1990–1995; (B) 1995–2000; (C) 2000–2005; (D) 

2005–2010; (E) 2010–2015; (F) 2015–2020; (G) Magnitude of changes for each period. The 

total area of a column indicates the total agricultural abandonment or expansion per period. 
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Fig. 3.12 Relationship between abundance of vegetation land cover types and permanent 

abandonment of paddy fields from 1990 to 2020: (A) The temporal variation of low vegetation 

area, forest area, and subsequent permanent paddy field abandonment; (B) Correlation between 

low vegetation area and subsequent permanent abandonment; (C) Correlation between forest 

area and subsequent permanent abandonment. 

 

3.3.4. Relationship of vegetation abundance to paddy field abandonment   

 

Total area of low vegetation cover had a significant inverse relationship with 

subsequent permanent abandonment of paddy fields (Slope = −0.161, R2 = 0.772, P = 0.0498) 

(Fig. 3.12B). In general, higher areas of low vegetation led to lower rates of permanent paddy 
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field abandonment (Fig. 3.12A). For forests, total area had a direct relationship with subsequent 

permanent abandonment (Slope = 0.159, R2 = 0.757, P = 0.0551) (Fig. 3.12C), with higher 

forest areas leading to higher rates of permanent paddy field abandonment. 

 

3.4. Discussion 

 

3.4.1. Land cover transitions 

 

Analysis of land cover transitions in consistent five-year intervals showed that the 

mountainous agricultural landscape of Ifugao rice terraces undergo frequent rapid transitions. 

Transition maps also showed that the same areas experienced multiple transitions throughout 

the three-decade study period. Regularity of land cover transitions is in line with studies on 

agroecosystems in mountainous agricultural landscapes (Aguilar et al., 2021; Liang et al., 

2020). These agricultural systems are examples of socio-ecological systems where humans 

interact with agricultural lands, forests, and other land cover types, and in turn cause the regular 

transitions in land cover in these landscapes.   

Specifically in the Ifugao rice terraces, the farmers practice slash-and-burn for the 

swidden fields which converts forest cover into low vegetations cover (Avtar et al., 2019). 

Swidden fields when left alone are then converted to woodlot, which may cause afforestation 

(Herzmann et al., 1998; Serrano & Cadaweng, 2005). Tree cutting for woodcarving or fuel and 

planting of seedlings are also common practices in the area. (Camacho et al., 2016). The 

occurrence of these traditional practices may explain the frequent transition between forest to 

low vegetation. However, in the past decades, local people doing these practices have decreased 

due to emigration and lack of successors (Calderon et al., 2009; Dizon et al., 2012). The 

decrease of occurrence of these practices may have driven the long-term decrease of low 

vegetation, especially in the 2005–2010 period. 

Previous studies have established that agricultural abandonment in mountainous 

agricultural landscapes consequently result to afforestation (Gellrich, Baur, Koch, et al., 2007; 

Gellrich & Zimmermann, 2007; Kobler et al., 2005). These studies however have only 

observed the long-term changes in the landscape. The land cover transition analysis in this 

study revealed that typically a two-step transition process occurs between agricultural 

abandonment and afforestation. Low vegetation acts as an intermediary land cover type for 
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transitions between paddy field and forest. Hence, paddy fields first transition into low 

vegetation cover before transitioning into forests.    

Low vegetation being an intermediary land cover for transitions may also explain its 

large variation in changes through the three-decade time period. Low vegetation regularly 

undergoes multiple transitions hence is vulnerable to changes in total area. Grassland, being 

one of the land use types under low vegetation land cover, may also be a reason for the large 

changes observed in this study.. Xystrakis et al. (2017) observed that grassland is a dynamic 

land cover and large changes in area occurred in all periods of their study. Along with grassland, 

swidden fields are also dynamic land use types, with active periods spanning two to five years 

and fallows periods of up to five years (Camacho et al., 2016).  

 

3.4.2. Paddy field dynamics 

 

Farmers in the Ifugao rice terraces traditionally practice fallowing of paddy fields to 

allow the land to recover, hence cultivation of paddy fields are always in a cycle of continuous 

cultivation, a period of fallowing, then recultivation (Herath et al., 2015). This agricultural 

cycle in turn lead to the observed dynamics in paddy fields and the regular transitions from and 

to paddy fields.  

Along fallowing and recultivation, permanent abandonment and first-time cultivation 

of paddy fields have also been observed, with permanent abandonment having a much greater 

average rate than first-time cultivations, evident by the total area of the paddy fields being 

much lower in the year 2020 than in 1990. In the periods from 1990 to 2000, large rates of 

permanent abandonment were observed. This observation is in line with historical accounts as 

in 2001, the Ifugao rice terraces was put in UNESCO’s List of World Heritage in Danger due 

to increasing abandonment and degradation in the rice fields (UNESCO, n.d.). After this 

declaration, the Philippine government established the Ifugao Rice Terraces Cultural Heritage 

Office (IRTCHO) in 2003 that oversaw the conservation of the rice terraces and the drafting of 

a 10-year master plan (Calderon et al., 2009). Based on the master plan, projects were 

implemented for water management, agricultural management, watershed management, hazard 

management, transport development, spatial restructuring and tourism development, cultural 

enhancement, and livelihood development (UNESCO, 2005). In the periods from 2000 to 2010, 

it was observed that first-time cultivation and recultivation rates occurred at rates much higher 
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than previous occurrences, hence signifying that such implemented projects were successful in 

restoring parts of the terraces. Consequently, the Ifugao rice terraces was removed from the 

List of World Heritage in Danger in 2012 (UNESCO, n.d.). However, the problem of 

agricultural abandonment still persisted after (FAO, 2018), as was observed in the large area of 

permanent abandonment observed from 2010 to 2020.  

As with the case of Ifugao rice terraces, agricultural abandonment has also been 

observed to occur in other mountainous agricultural landscapes (Gellrich, Baur, Koch, et al., 

2007; Gellrich & Zimmermann, 2007; Xystrakis et al., 2017). In fact, a review by MacDonald 

et al. (2000) found that most mountainous landscapes around Europe have experienced 

widespread abandonment after World War II. Modica et al. (2017) have also observed dynamics 

of fallowing and recultivation in the terraced landscape of Costa Viola in Italy using photo 

interpretation. The study found that some of the terraces that were active at the start and end of 

the study period were once abandoned during the period. At the same time, some of abandoned 

terraces were also active at some point, indicating that dynamics of fallowing, recultivation, 

permanent abandonment, and first-time cultivation also occurred in other mountainous 

agricultural landscapes. In all of these studies, agricultural abandonment occurred in such 

landscapes due to socio-economic factors such as high cultivation costs in steep areas and 

migration to lowland areas. As the world undergoes modernization, the difficult cultivating 

conditions in mountainous agricultural landscapes create lower wages which prompt farmers 

to seek better working and living conditions. This situation leads to the abandonment of 

agricultural lands, which through time leads also to natural afforestation.  

 

3.4.3. Relationship between vegetation abundance and permanent paddy field abandonment 

 

The results showed a significant inverse relationship between abundance of low 

vegetation cover and subsequent permanent abandonment of paddy fields. Studies have shown 

that forest regeneration leads to a decrease in water yield (García-Ruiz & Lana-Renault, 2011; 

Soriano & Herath, 2018). Forest cover decreases the water yield because forest canopy 

intercepts water and exotic trees decrease low flow, the stream of water during dry season 

(Bonnesoeur et al., 2019). Grasslands in high elevations also have water yield 40% greater than 

tree plantations (Bonnesoeur et al., 2019). As a consequence, a higher low vegetation cover 

and lower forest cover in the landscape indicate higher water recharge. As water scarcity is one 
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of the factors for terrace abandonment in the Ifugao rice terraces (Calderon et al., 2009; 

Camacho et al., 2016), a higher area of low vegetation cover and lower area of forest cover 

would also indicate a lower rate of permanent paddy field abandonment. 

 

3.4.4. Implication for landscape planning 

 

Overall, the abundance of low vegetation and forest cover forms a feedback loop with 

permanent abandonment of the paddy fields (Soriano & Herath, 2018) (Fig. 3.13). As part of 

the socio-ecological system in the Ifugao rice terraces, traditional practices of the local farmers 

regularly alter the paddy field, low vegetation, and forest covers in the mountainous agricultural 

landscape. These practices have been sustainable for several generations as the condition of the 

terraces can be retained. However, due to a variety of driving forces such as emigration, lack 

of successors, and water scarcity, permanent abandonment of paddy fields occurs (Calderon et 

al., 2009; Camacho et al., 2016; Dizon et al., 2012). Permanent abandonment of paddy fields 

leads to transitions into low vegetation cover, which later on transitions into forest cover. 

Increase of forest cover or afforestation alters the hydrological balance in the watershed, 

decreasing the water resources for the paddy field. This decrease in water resources again 

causes permanent abandonment which starts the feedback loop, making the condition of the 

terraces in the mountainous agricultural landscape unsustainable to be retained. Based on this 

mechanism in the Ifugao rice terraces, the Local Government Unit (LGU) should look into 

developing policies to mitigate both the social and environmental driving factors to maintain 

the Ifugao rice terraces. 

For the social factors, different programs and policies have already been initiated by 

the LGU to maintain the farmers in the terraces. A sustainable financing mechanism has been 

proposed where payment from tourists is to be optimized and allocated to farmers to prevent 

emigration (Calderon et al., 2009). A program was also initiated where wood carving and fabric 

weaving were promoted to farmers when it is agricultural off-season to increase income and 

motivate them to still engage in agriculture (Agoot, 2018). A school has also been established 

called “School of Living Traditions” that teaches the culture of the Ifugao indigenous 

community and promotes the maintenance of the rice terraces to the younger generation 

(Dulnuan, 2014).   
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Fig. 3.13 Overview of the land cover processes occurring in the mountainous agricultural 

landscape. Land cover processes are either regular transitions caused by traditional practices 

and long-term changes caused by driving forces. The driving forces and the resulting impacts 

form a feedback loop that will continue to decrease the area of paddy fields and low vegetation, 

and increase the area of forests (modified from Soriano and Herath, 2018). 

 

To maintain the water supply, the status of the paddy fields should be prioritized. 

Afforestation starts with the permanent abandonment of paddy fields, hence maintaining the 

paddy fields prevents further increase of forests, which will maintain the water supply. To 

maintain the paddy fields, the social problems stated before should first be addressed to prevent 

further abandonment. This implies that mitigating the social driving factors also help in 

mitigating the environmental driving factors. Maintaining the population of agricultural 

practitioners also maintains the area of low vegetation cover. 

The LGU should also take into account the trade-offs in ecosystem services brought by 

changing land cover. The decrease of paddy field and low vegetation covers and increase in 

forest cover brings an increase in other ecosystem services such as carbon sequestration and 

habitat quality (S. Yang et al., 2018). Analyzing the ecosystem trade-offs should also be done 

hand-in-hand with analyzing sustainability of the different aspects in the mountainous 

agricultural landscape such as economic, environmental, and social aspects. In the end, the 

local community should benefit with drafted policies as they are the ones interacting with the 

landscape.         
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3.4.5. Advantages of the mapping and analysis frameworks 

 

As was implemented by Alencar et al., (2020), two rounds of image classification were 

implemented. The first round used training samples extracted from image interpretation to 

create land cover classification images from Random Forest models. The second round of 

classification used recurring land cover types from the initial classified images to train a second 

batch of Random Forest models. Applying a second classification model where the training 

points were extracted from recurring land cover locations provided more training samples 

which provided more spectral signatures for training the Random Forest models. This 

procedure produced more accurate land cover maps which made the land cover transition 

analysis reliable. 

The developed framework for analyzing paddy dynamics provided an in-depth analysis 

of the spatio-temporal patterns of fallowing and recultivation in paddy fields based on land 

cover maps. The approach for analyzing paddy field dynamics was able to uncover periodic 

dynamics of permanent abandonment, fallowing, first-time cultivations, and recultivation. This 

analytical framework can be applied not only in mountainous agricultural landscapes but also 

in agricultural lands in general where dynamics of cultivation need to be monitored. These data 

provide a more detailed view on farmer actions and how cultivation patterns can cause changes 

in land cover. In the future, these data on farmer actions can be related with social and 

environmental factors to determine the drivers for these cultivation patterns.    

 

3.5. Conclusion 

 

Due to modifications by local people and challenges from globalization, mountainous 

agricultural landscapes tend to undergo frequent land cover changes which includes 

agricultural abandonment and afforestation. Hence, it is important that transitions in land cover 

and dynamics of paddy fields are analyzed to draft information-based policies for the 

management and conservation of these cultural landscapes. The current study utilized the quick 

cloud-computing capability of Google Earth Engine to map five-year interval land cover maps 

in a mountainous agricultural landscape (Ifugao rice terraces, Philippines) from 1990 to 2020 

then analyzed the land cover transitions and paddy field dynamics. Unlike in previous land 

cover change studies in mountainous agricultural landscapes that observed the occurrence of 
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afforestation due to abandonment of paddy fields, analysis of land cover transitions in this study 

revealed that paddy fields turning into forests typically undergo a two-step process of 

transitioning first into low vegetation before transitioning into forests. Transitions between low 

vegetation and forest was also observed to be regularly occurring at high rates, which may be 

attributed to the traditional practices of the local people such as tree-cutting and swidden 

farming. To the best of the author's knowledge, this is the first study to observe temporal 

dynamics in paddy fields such as permanent abandonment, fallowing, first-time cultivation, 

and recultivation based on time-series land cover maps. This framework of analysis can be used 

for analyzing patterns of cultivation in agricultural landscapes to bring informed decisions on 

the management of these landscapes. Analysis on the long-term changes in the landscape 

showed that agricultural abandonment has been continuously occurring in the landscape. 

Although government efforts have been successful in recultivating the paddy fields from 2000 

to 2010, permanent abandonment have increased again after this period. It was also found that 

the abundance of low vegetation cover has a significant inverse relationship with subsequent 

permanent abandonment of paddy fields, which coincides with previous studies showing that 

decreasing water yield from afforestation contributes to the abandonment of paddy fields. 

Given the continuous abandonment of paddy fields in the landscape, planning of the 

conservation of the terraces should also consider the abundance of other vegetation cover types 

aside from existing social driving factors. In the future, analysis of the change in ecosystem 

services due to the observed land cover transitions will aid in land use planning of the landscape. 

In-depth study of the driving factors for the observed paddy field dynamics is also worth 

investigating. Lastly, the mapping and analysis frameworks applied in this study can be utilized 

in future temporal land cover change analysis. The mapping framework that utilized two rounds 

of classification to generate more training samples can provide more coherent time-series land 

cover maps. Meanwhile, the analysis framework that explains the temporal dynamics of 

cultivation in agricultural lands can be used to elucidate farmer actions in relation to spatial 

drivers. 

 

 

 

 

 



 51 

4. Identifying the drivers of agricultural abandonment 

 Chapter 4:  

Identifying the drivers of agricultural abandonment 

The contents of this chapter have been published as: 

Estacio, I., Sianipar, C. P. M., Onitsuka, K., Basu, M., & Hoshino, S. (2023). A statistical model 

of land use/cover change integrating logistic and linear models: An application to agricultural 

abandonment. International Journal of Applied Earth Observation and Geoinformation, 120, 

103339. https://doi.org/10.1016/j.jag.2023.103339 

4 

4.1. Introduction 

 

Land use/cover change (LUCC) continuously occur on the surface of the earth as a 

result of complex interactions between socio-economic and environmental drivers (Geist et al., 

2006; He et al., 2022; Mitsuda & Ito, 2011). In the current age of globalization, LUCC typically 

occur as urban expansion where non-urban land use types are converted for urban use 

(Güneralp & Seto, 2013; Seto et al., 2011; van Vliet, 2019). Along with continuous urban 

expansion, globalization also drives the occurrence of other LUCC such as agricultural 

abandonment, deforestation, and reclamation (W. Cao et al., 2021; Hou et al., 2021; Wu et al., 

2016; Xystrakis et al., 2017). As human society continuously interacts with the global 

environment to acquire its needs, hence forming perpetual socio-ecological systems (SES), it 

is expected that human activities will continuously cause impacts on the environment leading 

to recurring LUCC (X. Li et al., 2017; Synes et al., 2019). These LUCCs cause alterations in 

ecosystem services that can lead to multifaceted environmental problems (B. Li et al., 2016; Y. 

Liu et al., 2020; Wang et al., 2018; Zhang et al., 2019). Thus, it is imperative that future LUCC 

based on current trends can be projected so that planners will have the technical information to 

devise counter-interventions to mitigate the escalation of subjected LUCCs. 

For simulating the future status of land, several LUCC models and tools have been 

developed in previous research (T. Liu & Yang, 2015; Ren et al., 2019; Verburg et al., 2019). 

LUCC models can be placed along a spectrum of pattern-based to process-based model types 

(Ren et al., 2019), On one end of the spectrum, the process-based models, which adopt “bottom-
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up” approach, simulate the behavior and interactions of system actors to predict the emergent 

spatial patterns of land cover. These models are useful for simulating scenarios based on 

management policies, thus they can act also as decision models. However, development of 

process-based models is limited by the availability of empirical resources and the ability to 

capture the significant system processes, hence most of the time cannot achieve high land cover 

prediction accuracy (T. Liu & Yang, 2015; Ren et al., 2019). On the other hand, pattern-based 

models, which adopt a “top-bottom” approach, map future land cover based on historical 

patterns by utilizing statistical or machine learning approaches (Boavida-Portugal et al., 2016). 

The advantage of such models is that future land cover maps can be simulated with relatively 

more available data even with lack of knowledge of the processes of the LUCC. Within 

statistical approaches, a demand-allocation approach is implemented where Markov chains 

compute the demand or quantitative data of LUCC while logistic models compute the 

allocation of the quantitative data into a map through probability maps. A limitation of this 

purely statistical approach is that only spatial drivers can be incorporated, but in reality, non-

spatial drivers have significant effects in the quantity of LUCC. To address this limitation, 

hybrid models have also been developed which, like pattern-based models, adopt a demand-

allocation approach but integrates process-based models to represent the demand component 

so that non-spatial drivers can be incorporated to project LUCC. For example, System 

Dynamics has been used in several studies to represent how aggregated system structures affect 

the quantity of LUCC (Dang & Kawasaki, 2017; Mao et al., 2014; Xu et al., 2016). Previous 

studies have also incorporated Agent-based models (ABM) to incorporate the decision making 

in an SES (D. Liu et al., 2020; Mustafa et al., 2017; Tang & Yang, 2020).  

Although there already exist hybrid models that can incorporate non-spatial drivers to  

project future LUCC, two limitations can be found in the usage of these models. First, as much 

as current hybrid models can accept various non-spatial variables as inputs, it is possible that 

the variables being used by a specific model may not be significant drivers of an LUCC being 

studied. For example, agricultural abandonment is a multifaceted global phenomenon that is 

driven by various drivers depending on the social, economic, and environmental settings of a 

landscape (Gellrich & Zimmermann, 2007; Osawa et al., 2016; Pazúr et al., 2020). It is thus 

necessary that in projecting the future agricultural abandonment in a study area, the significant 

spatial and non-spatial drivers be first identified so that they can all be incorporated in a 

simulation model. Second, development of a model that incorporate all the significant drivers 
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of an LUCC model requires capturing the complexity of the interactions and feedbacks of all 

these drivers in a socio-ecological system (T. Liu & Yang, 2015; Ren et al., 2019). However, 

modeling of these systems requires the participation of experts and stakeholders which possess 

the empirical knowledge regarding the SES in hand and a skilled modeler that can devise a 

model structure to incorporate this empirical knowledge. For planning purposes, the 

participation of such knowledgeable and skilled personnel is mostly not feasible. For simple 

prediction purposes such as projecting LUCC brought by changes in some driving factors, a 

more general statistical model which can also incorporate non-spatial drivers can be useful. 

Looking into the spectrum of process-based to pattern-based models of LUCC, there has not 

been a previously developed statistical pattern-based model that can incorporate non-spatial 

drivers.  

In order to propose a method of identifying both the significant spatial and non-spatial 

drivers of LUCC and simplifying the projection of future LUCC, this study presents a statistical 

model of LUCC which integrates both a logistic model based on spatial explanatory variables 

and a linear model based on non-spatial explanatory variables. Specifically, the proposed 

statistical model simulates LUCC by mapping a probability map and a global probability 

threshold through the logistic model and linear model, respectively. By comparing each pixel 

in the probability map with the global probability threshold, the true-or-false occurrence value 

of LUCC in every pixel is mapped. To test the statistical model’s capability in simulating LUCC 

maps, the model was applied in simulating the agricultural abandonment in the Ifugao rice 

terraces in the Philippines, where a UNESCO World Heritage site is situated. The accuracies 

of the simulated maps were assessed by comparing the simulated maps with actual maps of 

agricultural abandonment using map comparison accuracy measures. 

 

4.2. Model description 

 

In pattern-based and hybrid models of LUCC, a logistic model is used to act as an 

allocation component which produces a probability map (also called suitability map) of 

occurrence of an LUCC (Gellrich, Baur, Koch, et al., 2007; Hu & Lo, 2007). A logistic model 

is expressed as a function of the form 
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𝑃(𝑢, 𝑣, 𝑡) =
1

1+𝑒
−(𝑎0+∑ 𝑎𝑖𝑥𝑖(𝑢,𝑣,𝑡)

𝑚
𝑖=1 )

=
1

1+𝑒−(𝑎0+𝑎1𝑥1+𝑎2𝑥2+⋯+𝑎𝑚𝑥𝑚)                (Eq. 4.1) 

where 𝑃 is the probability of the LUCC to occur at a pixel of indices (𝑢, 𝑣) at a time period 𝑡 

and has a range from 0 to 1 where a higher value indicates a higher likelihood of LUCC 

occurrence, 𝑥𝑖(𝑖 = 1,2, … ,𝑚) is a spatial explanatory variable that varies through space and 

time, and 𝑎𝑖(𝑖 = 0,1, … ,𝑚) is a parameter estimated from logistic regression, where 𝑎0 is the 

intercept and 𝑎1, 𝑎2, …, 𝑎𝑚 are the respective coefficients of the spatial explanatory variables 

𝑥1, 𝑥2, …, 𝑥𝑚 (Cheng & Masser, 2003; Shu et al., 2020). Logistic regression, which estimates 

the parameters of the logistic model, is implemented by denoting a binary variable 𝑍  as a 

dependent variable, where Z takes only values of 1 or 0, a value of 1 denoting the LUCC 

occurred while 0 denoting the LUCC did not occur. However, as the logistic model only 

produces values of probability that ranges from 0 to 1, the logistic model in the form of 

Equation 4.1 does not produce the spatial pattern of occurrences of LUCC but instead produces 

just the spatial pattern of probability. Hence, for the simulation of future LUCC, a demand 

module is incorporated which produces quantitative data based on non-spatial explanatory 

variables (T. Liu & Yang, 2015; Ren et al., 2019). Different types of demand modules have 

been utilized such as System dynamics (Dang & Kawasaki, 2017; Mao et al., 2014; Xu et al., 

2016), and Agent-based Modeling (Tang & Yang, 2020). 

A workaround from computing a quantitative data of LUCC is to implement 

thresholding of probability values in a probability map. Thresholding is implemented by 

assigning a global probability threshold   𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  and using the following equation to 

compute for the LUCC occurrence 𝑍: 

𝑍(𝑢, 𝑣, 𝑡) = {
1, 𝑃(𝑢, 𝑣, 𝑡) > 𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝑡)

0, 𝑃(𝑢, 𝑣, 𝑡) ≤ 𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝑡)
                                (Eq. 4.2) 

Equation 4.2 indicates that the occurrence of LUCC in a pixel is based on the comparison of 

the pixel’s probability value with a global 𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 at period 𝑡 with the probability value in a 

pixel, where the lower is the 𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, the higher is the chance that the LUCC will occur in 

the pixel. Thus the 𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 acts as a global model parameter that increases or decreases the 

likelihood of LUCC in a map, hereby affecting the quantitative value of LUCC in an inversely 

proportional manner. This also implies that different probability threshold values will produce 

different simulated maps which will have different accuracies when compared to actual maps 

of LUCC. Hence, an optimal probability threshold exists where the difference between 
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simulated and actual maps will be at a minimum and accuracy will be maximized. Previous 

studies implemented different strategies to find the optimal thresholding values such as through 

parametric methods (Sandnes, 2011) or by optimizing an objective function (H. Li et al., 2020). 

In the study, an optimal probability threshold value was determined by implementing an 

optimization routine with the objective to find the 𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  that maximizes the similarity 

statistic between simulated and actual LUCC maps. 

 

 

Fig. 4.1 The conceptual framework of the statistical model for simulating maps of LUCC based 

on spatial and non-spatial factors  
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The probability of LUCC, 𝑃, was related to spatial explanatory variables because it is 

spatial in nature. On the other, the 𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is a global variable that is constant throughout a 

study area, thus it is a non-spatial in nature and can be related to non-spatial explanatory 

variables. To relate the global probability threshold to non-spatial explanatory variables, a 

linear model is utilized in the form 

𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝑡) = 𝑏0 + ∑ 𝑏𝑗𝑦𝑖(𝑡)
𝑛
𝑗=1 = 𝑏0 + 𝑏1𝑦1 + 𝑏2𝑦2 +⋯+ 𝑏𝑛𝑦𝑛                   (Eq. 4.3) 

where 𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is the global probability threshold value for converting a probability map at 

time period 𝑡 into an LUCC map, 𝑦𝑖(𝑗 = 1,2, … , 𝑛) is a non-spatial explanatory variable that 

varies through time, and 𝑏𝑖(𝑗 = 0,1, … , 𝑛)  is a parameter estimated from linear regression, 

where 𝑏0 is the intercept and 𝑏1, 𝑏2, …, 𝑏𝑛 are the respective coefficients of the non-spatial 

explanatory variables 𝑦 , 𝑦2 , …, 𝑦𝑛 . To produce the linear model in Equation 4.3, linear 

regression is implemented where the dependent variable is 𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 values through time and 

the explanatory variables are non-spatial drivers, variables that are constant through the 

mapping area but varies through time. Based on accuracy statistics of the linear regression, 

variables that are found significant for explaining the variation in quantities of LUCC through 

different periods will be added to the linear model.  

Based on equations 4.1, 4.2, and 4.3, this study developed a statistical model which 

incorporates a logistic model and a linear model for simulating LUCC at pixel (𝑢, 𝑣) at time 

period 𝑡 with the form: 

𝑍(𝑢, 𝑣, 𝑡) = {

1,          
1

1+𝑒
−(𝑎0+∑ 𝑎𝑖𝑥𝑖(𝑢,𝑣,𝑡)

𝑚
𝑖=1 )

 >  𝑏0 + ∑ 𝑏𝑗𝑦𝑗(𝑡)
𝑛
𝑗=1

0,          
1

1+𝑒
−(𝑎0+∑ 𝑎𝑖𝑥𝑖(𝑢,𝑣,𝑡)

𝑚
𝑖=1 )

 ≤  𝑏0 + ∑ 𝑏𝑗𝑦𝑗(𝑡)
𝑛
𝑗=1

             (Eq. 4.4) 

The left side of Equation 4.4, which comes from the logistic model, dictates the local 

probabilities of LUCC by producing a probability map based on spatial drivers (Fig. 4.1). The 

right side of the equation, which comes from the linear model, dictates the global probability 

of LUCC by computing for a global probability threshold based on non-spatial drivers. By 

comparing every pixel in the probability map with the global probability threshold, an LUCC 

map will be produced. 
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Fig. 4.2 Workflow of the modeling process in five main steps 

 

4.3. Methods 

 

The methodological workflow was implemented in five main steps (Fig. 4.2). First, GIS 

techniques were utilized to prepare spatial and non-spatial data. Second, logistic regression was 

implemented based on point samples of the binary response variable and spatial explanatory 

variables to produce a logistic model. Third, optimization based on a Genetic Algorithm (GA) 

was implemented to find the optimal global probability threshold for every probability map 

produced by the logistic model. Fourth, linear regression was implemented based on values of 

the optimal global probability threshold response variable and non-spatial explanatory 

variables to produce a linear model. Lastly, the accuracies of the simulated maps were assessed 

by comparing it to the actual maps of agricultural abandonment.  

 

4.3.1. Data preparation 

 

Four types of data were prepared for the statistical modeling of agricultural 

abandonment: Raster files of LUCC binary response variable, vector files of sample points, 

raster files of spatial explanatory variables, and tables values of non-spatial explanatory 
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variables.  

 

4.3.1.1. Preparation of the LUCC binary response variable 

 

Binary maps of continuously cultivated and permanently abandoned paddy fields were 

prepared using Geographic Information System (GIS) analysis (Fig. 4.3). First, land cover 

maps that include a class for paddy field were prepared by acquiring maps of the Ifugao rice 

terraces from 1990 to 2015 (in five-year intervals) derived by a previous research that utilized 

Landsat satellite images (Estacio et al., 2022). The class of paddy field was extracted from the 

acquired land cover maps and reclassified to the value of 0 (indicating false for the subsequent 

logistic regression). Alongside the land cover maps, maps showing dynamics of the paddy field 

from 1990 to 2015 such as permanent abandonment, fallowing, first-time cultivation, and 

recultivation were also acquired (Estacio et al., 2022). The class of permanent abandonment 

was extracted from these maps and reclassified to the value of 1 (indicating true for the 

subsequent logistic regression). Using map algebra in ArcGIS, a raster file of paddy field for a 

year (e.g., 1990) and a raster file of permanent abandonment for the subsequent period (e.g., 

1990–1995) were added together to create a single raster file showing permanently abandoned 

paddy fields (1) and continuously cultivated paddy fields (0). In total, five binary response 

maps were produced from 1990 to 2015, one for each five-year period.  

 

4.3.1.2. Creation of sample points 

 

It is imperative that samples of the binary response variable are not spatially 

autocorrelated of each other, else sampling bias will arise. Hence, proper point sampling is 

needed to achieve a spatial autocorrelation which denotes that points are not clustered or 

dispersed, but random. For a class in the binary response map (0 or 1), random sampling was 

implemented using the Create Random Points tool in ArcGIS by specifying a ‘minimum 

allowed distance’ (starting at 60 m). Depending on the number of points generated by the tool, 

points are randomly removed or added until 150 points were generated each for permanently 

abandoned paddy fields and continuously cultivated paddy fields, for a total of 300 points per 

binary response map. The Spatial Autocorrelation tool was implemented to assess the 

randomness of the produced points. If the z-score is between -1.65 and 1.65, the points were 
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considered random. Else if the z-score does not fall between this range, random sampling was 

reimplemented by increasing the minimum allowed distance and creating random points until 

the spatial autocorrelation test states that the points are already random. For all binary response 

maps, sample points achieved a z-score within the desired range and a maximum magnitude of 

Moran’s I of 0.027, meaning that the spatial autocorrelation between points is low and that the 

points are considered random (Cheng & Masser, 2003; Xiao et al., 2015). 

 

 

Fig. 4.3 Spatial distribution of the continuously cultivated and permanently abandoned paddy 

fields through five-year periods from 1990 to 2015 
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Table 4.1 List of spatial explanatory variables included in the logistic regression to model 

probability maps of permanent agricultural abandonment 

Category Variable (unit) Nature Data source Method 

Topography Elevation (m) Continuous SRTM 3.0 DEM - 

 Slope (°) Continuous SRTM 3.0 DEM Slope tool in ArcGIS 

 Sine aspect Continuous SRTM 3.0 DEM Aspect tool in ArcGIS 

 Cosine aspect Continuous SRTM 3.0 DEM Aspect tool in ArcGIS 

Productivity Soil type Binary Global Hydrologic Soil 

Groups (HYSOGs250m) 

- 

 Quickflow (mm) Continuous Land cover (Estacio et al., 

2022), HYSOGs250m, 

WorldClim global 

climate data 

InVEST software 

Accessibility Distance to 

stream (m) 

Continuous Land cover (Estacio et al., 

2022), HYSOGs250m, 

WorldClim global 

climate data 

InVEST software, 

Euclidean tool in ArcGIS 

 Distance to town 

center (m) 

Continuous Google Earth image Digitization of town 

center, Euclidean tool in 

ArcGIS 

 Distance to road 

(m) 

Continuous OpenStreetMap Euclidean tool in ArcGIS 

 Distance to 

tourist hotspot 

(m) 

Continuous Google Earth image Digitization of tourist 

hotspot, Euclidean tool 

in ArcGIS 

Political 

restriction 

World heritage 

site status 

Binary Google Earth image Digitization of area of 

world heritage site 

Spatial 

configuration 

Forest density 

(Circle, 150 m 

diameter, 

mean) 

Continuous Land cover maps (Estacio 

et al., 2022) 

Neighborhood statistics, 

Bivariate analysis 

 Low vegetation 

density 

(Square, 90 m 

width, mean) 

Continuous Land cover maps (Estacio 

et al., 2022) 

Neighborhood statistics, 

Bivariate analysis 

 Built-up density 

(Circle, 330 m 

diameter, max) 

Continuous Land cover maps (Estacio 

et al., 2022) 

Neighborhood statistics, 

Bivariate analysis 

 Paddy field 

density 

(Square, 90 m 

width, mean) 

Continuous Land cover maps (Estacio 

et al., 2022) 

Neighborhood statistics, 

Bivariate analysis 
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4.3.1.3. Preparation of spatial explanatory variables 

 

Based on previous studies on the abandonment of mountainous agricultural landscapes 

(Nainggolan et al., 2012; Pazúr et al., 2020; Xystrakis et al., 2017) and also subjected to data 

availability, spatial explanatory variables were selected and prepared for logistic regression 

(Fig. 4.4, Table 4.1). The variables were categorized based on the categories of LUCC drivers 

reviewed by Mitsuda & Ito (2011), resulting in five categories of variables: topography, 

productivity, accessibility, political restriction, and spatial configuration.  

Topography determines the form and shape of the land surface. Topography can dictate 

the flow of supply of resources and is an important indicator of landscape connectivity (Pe’er 

et al., 2006). Topography can also dictate the suitability for cultivation, thus is an important 

indicator in agriculture. To prepare the topography variables, a Digital Elevation Model (DEM) 

of 30 m spatial resolution generated from the Shuttle Radar Topography Mission (SRTM) 

Version 3.0 was acquired from Google Earth Engine (Gorelick et al., 2017). Slope, Aspect, and 

Raster Calculator tools were used to derive the topography variables.  

Productivity indicates factors that affect the potential productivity of a paddy field for 

agricultural yield (Mitsuda & Ito, 2011). For example, the type of soil can affect the agricultural 

productivity of land as it directly affects the growth of crops. For preparing the soil type, maps 

from the Global Hydrologic Soil Groups (HYSOGs250m) of the Oak Ridge National 

Laboratory (ORNL) Distributed Active Archive Center (DAAC) were used. Furthermore, 

erosion or landslide also affect productivity as eroded land in mountainous landscapes cannot 

be used for cultivation unless restored back to its terraced state (Calderon et al., 2009). To 

indicate the susceptibility of a land to erosion, quickflow, which is the amount of water that 

flows on land during or shortly after a rain event was used. The spatial distribution of quickflow 

was mapped using the Seasonal Water Yield model in the InVEST (Integrated Valuation of 

Ecosystem Services and Tradeoffs) suite (Benra et al., 2021). InVEST is an open-source 

software composed of different models that can be used to map certain ecosystem services.  
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Fig. 4.4 Raster layers of spatial explanatory variables included in the logistic regression 

(sample layers for the year 2000) 
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Accessibility factors, represented by the distance from an agricultural land to a 

particular place, indicate the accessibility of services (transportation or health care), supplies 

(water or food), or opportunities (work or tourism). To represent accessibility, four variables 

were prepared; distance to steam which represents accessibility to water; distance to town 

center which represents accessibility to services, supplies, and jobs, distance to road which 

represents accessibility to transportation, and distance to tourist hotspot (the Viewpoint place 

in Ifugao) which represents accessibility to tourists. All variables were processed using the 

Euclidean tool in ArcGIS. 

Political restriction determines if an area is a conservation site due to a special status 

imposed by the government. In the study area, the status of a terrace cluster as a World Heritage 

was selected as a political restriction factor. Using high-resolution images in Google Earth 

Engine, the clusters of the Bangaan world heritage site was delineated and converted to a binary 

raster file.   

Spatial configuration denotes the pattern of the neighborhood where LUCC occurs such 

as the density of neighboring land cover types. Based on the acquired land cover maps, 

variables indicating the density of a particular land cover within a neighborhood were prepared: 

forest density, low vegetation density, built-up density, and paddy field density. As the 

definition of neighborhood varies based on the shape, diameter length, and aggregation 

statistics of the neighborhood, different neighborhood types were first tested for each land 

cover type using a bivariate analysis. First, the Focal Statistics tool was used to map different 

land cover densities by considering different neighbor neighborhood types. Multiple raster files 

were produced by using different combinations of neighborhood shape (varied between circle 

or rectangle), diameter length (varied from 90 m to 390 m, in 60 m increments), and 

aggregation statistics (varied between mean or maximum). Second, preliminary bivariate 

logistic regression was implemented for each land cover density raster file where land cover 

density was treated as an explanatory variable and the binary agricultural abandonment variable 

was treated as the response variable. Lastly, after deriving the statistics for each logistic 

regression, the land cover density with the lowest p-value was chosen as the neighborhood 

configuration for the particular land cover type. For example, for forest density, the bivariate 

analysis showed that the mean number of forest pixels within a circle neighborhood of 150 m 

radius has the highest significance in explaining the variation in agricultural abandonment 

(neighborhood configurations for the other density variables are shown in Table 4.1).  



 64 

After preparing the raster files of all spatial explanatory variables, their values were 

extracted into the created sample points so that each point has a binary value of agricultural 

abandonment occurrence alongside values of the spatial explanatory variables. 

 

4.3.1.4 Preparation of non-spatial explanatory variables 

 

Previous models of LUCC have incorporated non-spatial drivers such as economic, 

social, and environment variables to set quantitative data of LUCC (D. Liu et al., 2020; Mao et 

al., 2014; Xu et al., 2016). In the same sense, non-spatial drivers were selected and prepared, 

subjected to data availability, to produce a linear model of the global probability threshold of 

agricultural abandonment in the study area (Table 4.2). These non-spatial variables were 

categorized into three: land cover, demography, and environment. 

Land cover refers to the total area of a particular land cover type in the watershed. 

Previous studies have shown that the total area of vegetation cover types has a correlation on 

agricultural abandonment due to changing water yield (Estacio et al., 2022; Soriano & Herath, 

2018). Values of land cover area in the starting years of every five-year period were derived 

from the acquired land cover maps.  

Demography refers to the size and structure of the population in Banaue (the 

municipality encompassing the watershed). Migration of local people into the lowlands has 

been cited as a factor for abandonment (Calderon et al., 2009; Castonguay et al., 2016), hence 

the change in demography can be a significant explanatory factor for agricultural abandonment. 

Demographic data were acquired from publicly available administrative data in the Philippines.  

Lastly, climate refers to the weather over the study area during a particular period. Even 

though climatic variables such as temperature and precipitation may vary through space, as the 

study area is a small-scale area (with maximum length of approximately15 km), the spatial 

resolution of acquired historical climatic variables cannot capture the spatial variation in the 

study area, hence climate variables were treated as non-spatial variables that vary through time 

due to climate changes. Climate data were acquired from the Climate Change Knowledge 

Portal (CCKP). 
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Table 4.2 List of non-spatial explanatory variables included in the linear regression to model 

global probability thresholds of permanent agricultural abandonment 

Category Variable (unit) 

Land cover Paddy field total area (m2) 

 Low vegetation total area (m2) 

 Forest total area (m2) 

 Built-up total area (m2) 

Demography Average household size 

 Number of households 

 Household Population 

Climate Precipitation – annual mean (mm) 

 Precipitation – 5-year smooth (mm) 

Mean Temperature – annual mean (°C) 

Mean Temperature – 5-year smooth (°C) 

 Min Temperature – annual mean (°C) 

 Min Temperature – 5-year smooth (°C) 

 Max Temperature – annual mean (°C) 

 Max Temperature – 5-year smooth (°C) 

 

4.3.2. Logistic regression of LUCC binary response variable with spatial explanatory variables 

 

To identify the significant spatial drivers of agricultural abandonment, logistic 

regression was implemented using the 1500 samples points of binary response variable and 

spatial explanatory variables gathered from 1990 to 2015. The accuracy of the resulting logistic 

model was assessed using Pseudo R-square and ROC (Relative Operating Characteristic) 

values. If the Pseudo R-Square is greater than 0.2, the produced logistic model for the 

respective period was deemed to be of good fit to be used to explain the significance of each 

spatial driver to the occurrence of agricultural abandonment (Hu and Lo, 2007). Logistic 

regression was implemented using R 3.3.0. 

 

4.3.3. Derivation of optimal probability threshold by optimization 

 

The next step is to derive the optimal probability thresholds for the probability maps of 

every period. First, probability maps for every period were generated using the produced 

logistic model, utilizing the spatial explanatory variables for every period. Optimization was 

then implemented using a Genetic Algorithm (GA) to find the probability threshold that will 

yield the highest Fuzzy Kappa statistic between a simulated map and an actual map. Fuzzy 
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Kappa is a statistic for comparing the similarities between two maps based on local 

neighborhood, and is closer to how human observers compare maps (Drogoul et al., 2016; 

Visser & De Nijs, 2006). Hence, optimizing the probability threshold based on maximizing the 

fuzzy kappa statistic is akin to finding a simulated map with the least difference between an 

actual map. It should be noted that Fuzzy simulation, another accuracy statistic, was not used 

because an end-state land use/cover map is used as input in this statistic, and a map simulated 

in this step is an LUCC (land use/cover change). A Genetic Algorithm, which is a population-

based search algorithm that aims to find the best solution, was set with the following parameters: 

population = 7, generations = 5, crossover = 0.7, mutation = 0.1 (Katoch et al., 2021; Mirjalili, 

2019). After implementing the GA, optimal probability thresholds for each period were 

obtained. Coding of the GA was implemented in the GAMA platform (Taillandier et al., 2019). 

 

4.3.4. Linear regression of optimal probability thresholds with non-spatial explanatory 

variables 

 

To relate the variation of the global probability thresholds with non-spatial explanatory 

variables, multivariate linear regression was implemented to create a linear model. First, as 

several non-spatial explanatory variables were prepared, different combinations of variables 

were tested for the linear regression. For every combination, the P-value of every non-spatial 

explanatory variable was checked for its significance (if P < 0.05). The significance F of the 

model was also checked for is significance (if F < 0.05), which indicates that the linear model 

fits the data better than a model with no explanatory variables. Once all the P-values and 

significance F in a combination of variables are significant, the adjusted R-squared of the model 

was recorded. After testing different combinations of variables, the combination with the 

recorded highest adjusted R-squared was chosen as the non-spatial explanatory variables of the 

linear model of global probability threshold. Linear regression was implemented using the Data 

Analysis tools in Microsoft Excel. 
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4.3.5. Accuracy assessment of modeled maps 

 

Using the produced linear model where non-spatial explanatory variables and 

probability maps were used as inputs, binary maps of agricultural abandonment for every 

period were simulated. To assess the accuracy of the simulated agricultural abandonment maps 

and the reliability of the statistical model, the simulated maps were compared with its 

respective actual maps by computing for the Fuzzy Kappa and Absolute Deviation Percentages 

(ADP) statistics. Unlike Fuzzy Kappa statistic which computes similarities based on local 

neighborhood, ADP is a global indicator that computes the differences between maps based on 

the quantity of each land cover class (Truong et al., 2016). Using the two statistics, along with 

visual comparison of the actual and simulated maps, the accuracy of the model was assessed if 

it can be used for LUCC simulation.  

 

4.4. Results  

 

4.4.1. Logistic regression of agricultural abandonment with spatial explanatory variables 

 

Logistic models for each five-year period from 1990 to 2015 produced by the logistic 

regression achieved a minimum Pseudo-R squared value of 0.202 and a minimum AUC ROC 

of 0.793 (Table 4.3), suggesting that all produced logistic models were of good-fit and can be 

used for explaining the significant drivers of agricultural abandonment in the rice terraces. In 

four of the five periods, slope was highly significant (P < 0.01) in influencing agricultural 

abandonment, with higher slope values indicating higher probabilities of abandonment. Paddy 

field density was also significant for three periods (P < 0.05), where paddy fields with low 

density of neighboring paddy fields have higher chances of abandonment. Cosine aspect was 

highly significant for two periods (P < 0.01), where negative estimates indicate that sloping 

fields facing south is more likely to experience abandonment than fields facing north, while 

fields facing east and west are not affected. Other variables were found to be significant for 

only one period such as quickflow, world heritage site status, forest density, and low vegetation 

density. 
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Table 4.3 Coefficients of significant spatial variables and accuracy statistics for the logistic 

models of every period 

Spatial variables (standardized) 1990–1995 1995–2000 2000–2005 2005–2010 2010–2015 

(Intercept) ns ns ns ns ns 

Elevation ns ns ns -0.712* ns 

Slope 0.495** 0.678*** ns 0.446** 0.430** 

Sine aspect ns ns ns ns ns 

Cosine aspect ns -0.663*** ns -0.419** ns 

Soil type ns ns ns ns ns 

Quickflow ns 0.503** ns ns ns 

Distance to stream ns ns ns ns ns 

Distance to town center ns ns ns ns ns 

Distance to road ns ns ns ns ns 

Distance to tourist hotspot ns ns ns ns ns 

World heritage site status ns ns -0.606** ns ns 

Forest density ns 0.588* ns ns ns 

Low vegetation density ns 0.609* ns ns ns 

Built-up density ns ns ns ns ns 

Paddy field density -0.954** ns -1.081*** -0.729* ns 

      

Accuracy: Pseudo R-squared 0.253 0.342 0.267 0.228 0.202 

Accuracy: AUC ROC 0.824 0.866 0.829 0.810 0.793 

ns: P > 0.05 (insignificant) 

*: 0.01 ≤ P < 0.05 

**: 0.001 ≤ P < 0.01 

***: P < 0.001 

 

Logistic regression based on 1500 samples from all periods produced a logistic model 

with Pseudo-R squared value of 0.225 and AUC ROC of 0.804, indicating that this model was 

also of good fit (Table 4.4). Similar to the logistic models of each period, slope and paddy field 

density were the most significant drivers of agricultural abandonment in the general logistic 

model (P < 0.001). The next set of significant variables are cosine aspect, quickflow, and low 

vegetation density (P < 0.01), which were significant in at least one period in the periodic 

logistic models. Other significant drivers were distance to town center, distance to road, world 

heritage site status, and forest density (P < 0.05). It is worth noting that even though both of 

the accessibility variables, distance to town center and distance to road, were not significant in 

any of the periods, the general logistic model determined that these accessibility variables were 

significant factors of agricultural abandonment from 1990 to 2015. This implies that the 
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significant explanatory variables in the general logistic model affect the overall variability in 

occurrence of agricultural abandonment in the whole 25-year period, and do not necessarily 

have to be significant for a particular five-year period.  

 

Table 4.4 Coefficients of significant spatial variables and accuracy statistics for the logistic 

model for all periods 

Spatial variable (unit) Coefficients Standard error Z P-value 

(Intercept) ns ns 0.338 0.653 

Elevation (m) ns ns -0.807 0.420 

Slope (°) 0.0499*** 0.00851 5.868 0.000 

Sine aspect ns ns 1.682 0.092 

Cosine aspect -0.303** 0.0939 -3.221 0.001 

Soil type ns ns 0.432 0.666 

Quickflow (mm) 0.000360** 0.000111 3.243 0.001 

Distance to stream (m) ns ns 0.950 0.342 

Distance to town center (m) 0.000198* 0.0000836 2.366 0.018 

Distance to road (m) -0.000281* 0.000129 -2.179 0.029 

Distance to tourist hotspot (m) ns ns -0.532 0.594 

World heritage site status -0.841* 0.404 -2.080 0.038 

Forest density 1.210* 0.587 2.057 0.040 

Low vegetation density 2.010** 0.617 3.256 0.001 

Built-up density ns ns -1.456 0.145 

Paddy field density -2.540*** 0.544 -4.673 0.000 

     

Accuracy: Pseudo R-squared 0.225    

Accuracy: AUC ROC 0.804    

ns: P > 0.05 (insignificant) 

*: 0.01 ≤ P < 0.05 

**: 0.001 ≤ P < 0.01 

***: P < 0.001 

 

Table 4.5 Optimal probability thresholds for maximizing fuzzy Kappa statistics between 

simulated and actual maps of agricultural abandonment 

Period Optimal probability threshold Maximum fuzzy kappa 

1990–1995 0.82 0.3718 

1995–2000 0.86 0.5062 

2000–2005 0.87 0.3978 

2005–2010 0.87 0.4440 

2010-2015 0.73 0.4327 
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4.4.2. Linear regression of optimal probability threshold with non-spatial explanatory 

variables 

 

Optimal probability thresholds for maximizing the similarity between simulated maps 

and actual maps were derived using a GA (Table 4.5). The minimum attained Fuzzy Kappa 

statistic for all simulated maps was 0.3718 while the maximum statistic is 0.5062. On the other 

hand, the optimal probability threshold ranges only from 0.73 to 0.86, revealing that the optimal 

probability threshold only underwent small variations between periods. This however does not 

imply that the subsequent quantitative change in LUCC will have the same variation as 

quantitative change also depends in the values in the probability maps. 

Using the optimal probability thresholds as the response variable, linear regression 

based on using forest total area, precipitation (5-year smooth), and maximum temperature 

(annual mean) as non-spatial explanatory variables produced a linear model with adjusted R-

squared of 0.9999996 and significance F of 0.0003817, indicating that the linear model was of 

excellent fit (Table 4.6). All explanatory variables attained significant P values (P < 0.01), with 

forest total area and max temperature having P values less than 0.001.  

 

Table 4.6 Summary statistics of the linear model of global probability threshold of agricultural 

abandonment 

Temporal non-spatial variables (unit) Coefficients Standard error t-stat P-value 

(Intercept) 7.3859*** 0.00342 2158.31 0.00029 

Forest total area (m2) -0.00039391*** 0.000000208 -1895.66 0.00034 

Precipitation – 5-year smooth (mm) -0.0000354805** 0.0000000940 -377.446 0.0017 

Max Temperature – annual mean (°C) -0.16666*** 0.000117 -1422.39 0.00045 

     

Accuracy: Adjusted R-squared 0.9999996    

Accuracy: Standard error 0.0000357    

Accuracy: Significance F 0.0003817    
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4.4.3. Statistical model for mapping agricultural abandonment 

 

By integrating the logistic model based on spatial explanatory variable and the linear 

model based on non-spatial explanatory variables, a statistical model was derived for mapping 

agricultural abandonment, in the form: 

𝑍 =

{
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(Eq. 4.5) 

where 𝑍 is the occurrence of agricultural abandonment in a pixel in a particular period where 

a value of 1 denotes occurrence while 0 denotes no occurrence, S is the slope, C is the cosine 

aspect, Q is the Quickflow, T is the distance to town center, R is the distance to road, H is the 

status as world heritage site, 𝐷𝐿 is the low vegetation density, 𝐷𝐹 is the forest density, 𝐷𝑃 is the 

paddy field density, 𝐴𝐹 is the forest total area, 𝑃𝐴 is the average precipitation within 5 years, 

and 𝑇𝑚𝑎𝑥 is the annual mean of the daily maximum temperature. The statistical model includes 

nine spatial explanatory variables and three non-spatial explanatory variables. All variables 

vary through time, hence given a pixel of indices (𝑢, 𝑣) , the occurrence of agricultural 

abandonment at different periods may vary depending on the temporal variation of the 

explanatory variables (such as quickflow, forest density, or precipitation).  
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Fig. 4.5 Side-by-side comparison of actual and simulated agricultural abandonment maps for 

the periods 1990–1995 (the period with the worst Fuzzy Kappa and ADP), 1995–2000 (the 

period with the best Fuzzy Kappa), 2010–2015 (the period with the best ADP).  

 

4.4.4. Accuracy assessment of modeled maps 

 

Through the statistical model, maps of agricultural abandonment for every period were 

simulated using the spatial and non-spatial explanatory variables in every respective period 
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(Fig. 4.5). The accuracies of these simulated maps were assessed by comparing them to the 

actual maps of agricultural abandonment for the respective period (Table 4.7). As the fit of the 

linear model is almost equal to 1.0 (Table 4.6), the derived Fuzzy Kappa statistics for the 

simulated maps are almost equal as those derived from the optimal probability thresholds 

(Table 4.5). The maximum ADP for all modeled maps was 1.053%, indicating that the 

differences in derived quantitative values of agricultural abandonment is minimal, even when 

optimization of probability threshold is aimed on maximizing Fuzzy Kappa which focuses on 

neighborhood similarities.  

Analyzing each simulated map, the simulated map for the period 1990–1995 attained 

both the highest ADP and lowest fuzzy kappa, indicating that this map had the lowest 

neighborhood similarity and highest difference in quantitative value with an actual map. 

However, this does not indicate that Fuzzy Kappa is inversely proportional to ADP. The 

simulated map for the period 1995–2000 attained the highest fuzzy Kappa but did not attain 

the lowest ADP. Similarly, the simulated map for the period 2005–2010 attained the lowest 

ADP but did not attain the highest fuzzy kappa. This implies that high neighborhood similarities 

in a map do not equate to high global similarities.  

 

Table 4.7 Accuracy statistics for the simulated agricultural abandonment maps of every period 

Period Fuzzy Kappa ADP 

1990–1995 0.3718 1.053% 

1995–2000 0.5062 0.277% 

2000–2005 0.3978 0.576% 

2005–2010 0.4440 0.113% 

2010–2015 0.4327 0.863% 
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4.5. Discussion 

 

4.5.1. Implications of the developed LUCC statistical model 

 

The structure of the developed statistical model of LUCC that is composed of a logistic 

model and a linear model implies a different mechanism of simulating LUCC than the demand-

allocation models that also incorporate a logistic model. Demand-allocation models 

incorporate two modules, allocation and demand (T. Liu & Yang, 2015; Ren et al., 2019). The 

demand module generates the quantitative value of LUCC by adopting models such as System 

dynamics or Markov Chain (Boavida-Portugal et al., 2016; Dang & Kawasaki, 2017; Xu et al., 

2016). The derived quantitative value of land cover change from the demand module are then 

allocated into an LUCC map through the allocation module. Thus, the allocation module 

dictates the spatial pattern of LUCC by deriving probability maps using a logistic model 

derived from historical patterns of spatial explanatory variables. Through a probability map, 

LUCC is allocated to pixels starting from the pixel with the highest probability of change going 

to the next highest one, until the quantitative value of LUCC is met. Previous studies have also 

incorporated rules in allocation such as cellular automata that takes into account neighborhood 

effects and limitations on transitions (Mao et al., 2014; Mustafa et al., 2017).  

In the proposed statistical model, instead of a demand module, the model utilizes a 

linear model of global probability threshold which dictates which pixels undergo LUCC based 

on comparing the local probability and the global probability threshold. This structure implies 

that the probability map also dictates the quantitative value of the LUCC, as compared to 

demand-allocation models where probability maps only dictate the spatial pattern. For example, 

in a demand-allocation model, adding a constant probability value in a particular area in the 

probability map will not affect the total quantitative value of the LUCC but will only affect the 

spatial pattern. However, in the developed statistical model, subtracting a constant probability 

value in a particular area will not only affect the spatial pattern but also the quantitative value. 

In relation to this, global probability thresholds hold a role of dictating on which probability 

value pixels start to change, where lower thresholds lead to more changes, and vice versa. 

Global probability thresholds can hence be treated as an inverse global probability of the LUCC 

occurring in the whole mapping area. 

In essence, spatial explanatory variables, which dictate the probability maps, control 
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the local probabilities of LUCC and hold an effect not only to the spatial pattern but also to the 

quantitative value of LUCC. For example, in the case study, adding more conservation areas in 

a political restriction variable will affect the simulated quantitative value of agricultural 

abandonment. Another example is improving the values in a productivity variable which will 

lead to less quantities of agricultural abandonment. In a demand-allocation model which uses 

system dynamics, modifying the stocks or flows in the SD module should be implemented if 

quantitative value of LUCC based on changes in spatial variables need to be simulated. 

However, in the developed model, this is not needed as changes in the spatial explanatory 

variable directly affect the quantitative value of LUCC.  

On the other hand, non-spatial explanatory variables, which dictate the global 

probability threshold, control the global probability of LUCC which affects the quantitative 

value of LUCC. For example, the results show that precipitation has a significant inverse linear 

relationship with the global probability threshold. As the global probability threshold has a 

negative relationship with quantitative value of LUCC, precipitation can be treated as a 

determinant that has a positive relationship on the probability of agricultural abandonment, 

where an increase in precipitation leads to an increase in the overall probability of agricultural 

abandonment in the study area.  

Lastly, the developed statistical model simulates LUCC by utilizing the generated 

significant statistical relationships with spatial and non-spatial explanatory variables. In 

modeling terms, the statistical model acts like a black box that accepts inputs and generates an 

output without an understanding of the socio-ecological processes that produce the statistical 

relationships between entities. This differentiates itself from process-based models where a 

thorough manifestation of system processes is used to generate outputs based on inputs. Thus, 

in the spectrum of LUCC models, the developed statistical model can be put under the 

classification of pattern-based models (Ren et al., 2019). Regardless of the model type, the 

developed statistical model also follows the capabilities of other models in simulating future 

scenarios where inputs or parameters are modified to match the circumstances of a scenario. 

For example, as the statistical model has shown that “distance to road” is a significant spatial 

driver of agricultural abandonment, modifying the map of this variable to show a scenario 

where new roads are established can be implemented to simulate the effects of building roads 

to agricultural abandonment. 
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4.5.2. Application of the model: spatial and non-spatial drivers of agricultural abandonment 

 

The produced logistic model for the period from 1990 to 2015 attained a Pseudo R-

squared a value greater than 0.2, indicating that models is of good fit and can be used to explain 

the explain the significance of each spatial driver to the occurrence of permanent abandonment 

in each period (Hu & Lo, 2007). Based on the logistic model, slope and paddy field density 

were the most significant spatial drivers of agricultural abandonment in the rice terraces. This 

indicates that fields of steep slopes and low neighborhood percentages of paddy field 

experienced the highest probability of agricultural abandonment. This result aligns with the 

study of Corbelle-Rico et al. (2012) which found that agricultural parcels with steeper slopes 

and higher distances to farm (hence, less neighborhood of agricultural parcels) lead to more 

abandonment. The next set of significant variables were cosine aspect, quickflow, and low 

vegetation density. Results show that fields that face south, experience heavy quickflow during 

rainy periods, and have high neighborhood percentages of low vegetation are also most likely 

to experience permanent abandonment. Results for the low vegetation density aligned with the 

study of Pazúr et al. (2014) which showed that fields that are nearer to shrubs have higher 

chances of being abandoned. The last set of significant spatial drivers are distance to town 

center, distance to roads, status as world heritage site, and forest. Fields that are far from the 

town center, are near to roads, are not part of the world heritage site, and have high 

neighborhood percentages of forest also have high chances of being abandoned. Pazúr et al. 

(2020) also showed that forest density increases the likelihood of abandonment. Results for the 

distance to town center aligned with the results of previous studies, such as of Pazúr et al. (2014) 

which showed that increasing the distance to a county center increased the likelihood of 

agricultural abandonment and of Perpiña Castillo et al. (2021) which showed that remoteness, 

represented by the travelling time to the nearest town, also increased the likelihood of 

agricultural abandonment. For the results of the world heritage site, it is worth noting that status 

as world heritage site was highly significant (P < 0.01) for the particular period of 2000–2005, 

which may be attributed to the inclusion of the Ifugao rice terraces heritage cluster into 

UNESCO’s list of World Heritage in Danger in 2001 (UNESCO, n.d.), influencing the farmers 

to exclude the fields in the heritage cluster for abandonment. Increase in  probability of 

abandonment in areas neared to roads may be attributed to the conversion of paddy fields near 

roads to built-up cover, which is related to the findings of Nainggolan et al. (2012) which 
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showed that likelihood of abandonment was higher in areas close to the village due to the 

demand for settlement expansion.  

For the linear model, the linear regression attained a significance F of 0.0003817, 

indicating that the non-spatial explanatory variables were of good fit to the global probability 

threshold. The linear model revealed that total forest area, precipitation, and average daily 

maximum temperature were significant determinants of the probability of agricultural 

abandonment. Higher areas of forest cover led to higher probability of agricultural 

abandonment in the study area. This is in line with previous studies in the Ifugao rice terraces 

where increases in forest cover decreased the total water yield, thereby promoting further 

agricultural abandonment (Estacio et al., 2022; Soriano & Herath, 2018). This implies that even 

though water scarcity is an existing problem in the Ifugao rice terraces, high precipitation 

promotes agricultural abandonment because of the resulting increase in erosion. Combining 

the implications of the total forest area and precipitation, results indicate that it is the water 

yield during the dry season, not the amount of precipitation during the wet season, that is 

important in the rice terraces as cultivation of rice occurs during the dry season. Lastly, 

increasing daily maximum temperature was found to increase chances of abandonment. This 

can also be related to the water yield as the rice terraces suffer insufficient supply of water in 

the dry season, hence the paddy fields are sensitive to increases in evaporation brought by 

increasing temperature, leading to more abandonment.  

 

4.5.3. Future direction in LUCC modeling 

 

Simulated maps of agricultural abandonment using the statistical model attained Fuzzy 

Kappa statistics ranging from 0.3718 and 0.5062 and ADP ranging from 1.053% to 0.277%, 

which are satisfactory accuracy values for LUCC simulations. For example, the hybrid ABM 

developed by Mustafa et al. (2017) simulated maps in three experiments and achieved Fuzzy 

Kappa ranging from 0.3942 to 0.4792 and ADP ranging from 43.22% to 22.11%. The simulated 

maps from the developed statistical model achieved fuzzy kappa values in the same range while 

the ADP values are much more accurate. Ahmed et al. (2013) compared maps simulated from 

three types of Markov models (Stochastic, Cellular Automata, and Multi-layer Perceptron) and 

calculated Fuzzy Kappa accuracies of 0.304, 0.862, and 0.953, respectively. Based on this, the 

performance of the statistical model can be assessed to be in between a Stochastic Markov 
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model and a Cellular Automata Markov model. Based on this assessment, the statistical model 

can then be deemed suitable for simulating future LUCC maps. 

The statistical model differentiates itself from other LUCC models through its 

capability of identifying the significant non-spatial drivers of an LUCC. In using established 

LUCC simulation models, input variables are already set thus users are limited with their ability 

to incorporate variables that may be significant for the LUCC. A user can opt to develop a 

hybrid LUCC model coupled with system dynamics or agent-based model to be able to 

incorporate all significant non-spatial drivers. However, building such a complicated model 

needs detailed capturing of the system processes hence can take a lot of time. Thorough 

calibration of the model to ensure that generated LUCC maps are of acceptable accuracy also 

takes plenty of trial-and-error. With the proposed statistical model, the significant non-spatial 

drivers can be identified and, at the same time, be incorporated in the model right away for 

simulation. 

To simulate future LUCC through the statistical model, generating the future values of 

the explanatory variables is essential, thus coupling with another established models to derive 

these future values may be essential if the situation calls for it. For example, in the case study 

where future agricultural abandonment is to be simulated, predictions of some explanatory 

variables are needed such as future land cover maps, quickflow maps, precipitation, and 

temperature. For this purpose, existing models can be utilized such as Markov Chain for 

predicting future land cover values, the InVEST seasonal water yield model for mapping 

quickflow, and climate models for projecting future trends of precipitation and temperature.  

Aside from being used for simulation of scenarios, the statistical model can also be used 

as a step before using process-based models to identify first the significant drivers of LUCC. 

After the identification of the significant drivers of LUCC using the statistical model, a user 

will then be informed on which current process-based LUCC model is most suitable to use for 

scenario simulation. At the same time, a modeler can also use the model to gain insight on the 

drivers of a LUCC before proceeding to model the socio-ecological processes of an LUCC in 

hand. 

A main limitation of the statistical model that users should remember is its capability 

of simulating only one type of LUCC, as in the case study, agricultural abandonment. In reality, 

LUCC occurs in various land cover types which also transition into more than one LUCC type. 

Hence, the statistical model is limited in its ability to project the full end-state land cover of a 
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study area. The statistical model can however be useful when only one type of LUCC is of 

concern, such as urban expansion, deforestation, or reclamation. The proposed statistical model 

is especially useful to inform relevant land use stakeholders of the significant drivers of an 

LUCC they are concerned about and to show the future circumstance of the LUCC based on 

future values of these drivers. 

In the future, studies can explore the calibration of global probability thresholds based 

on a different objective function. In the developed statistical model, global probability 

threshold values were derived using an optimization routine based on a GA that maximizes 

fuzzy kappa, a map comparison statistic which is on similarities in local neighborhood 

similarities. However, maximizing fuzzy kappa does not guarantee similarities in global value 

of the LUCC. In the future, LUCC studies can explore minimizing the ADP, which focuses on 

differences in global quantitative value, to find the optimal probability threshold. Examples of 

such studies may focus on simulation of future reclamation, mangrove extent change, or 

urbanization which focuses more on quantity prediction.  

 

4.6. Conclusions 

 

This paper developed a statistical model for simulating LUCC by integrating a logistic 

model based on spatial explanatory variables that generates a probability map and a linear 

model based on non-spatial explanatory variables that generates a global probability threshold. 

Previous LUCC models integrated an allocation module based on a logistic model with a 

demand module such as systems dynamics to compute a quantitative value of LUCC based on 

non-spatial explanatory variables. These allocation-demand models can produce accurate maps 

but are too complex to develop if a list of significant non-spatial explanatory variables should 

be included in a model. The developed statistical model adopts a simple pattern-based approach 

where non-spatial explanatory variables are incorporated in simulating LUCC by relating these 

non-spatial variables to a global probability threshold through a linear model. By comparing 

the pixel values in the probability map with the global probability threshold, maps of LUCC 

occurrence can be simulated. To derive optimal probability thresholds for linear regression, 

optimization through a GA was implemented that will maximize the Fuzzy Kappa or 

neighborhood similarities between simulated and actual maps.  

The statistical model was applied in a watershed in the Ifugao rice terraces, Philippines 
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to simulate the occurrence of agricultural abandonment. Results showed that slope, cosine 

aspect, quickflow, distance to town center, distance to road, world heritage site status, forest 

density, low vegetation density, and paddy field density were significant determinants of the 

local probabilities of agricultural abandonment while total forest area, five-year average 

precipitation, and average daily maximum temperature were significant determinants of the 

global probabilities of agricultural abandonment. Accuracy assessment of the simulated maps 

showed satisfactory accuracies for LUCC simulation applications. This confirms that the 

developed statistical model that uses time-series trends of spatial and non-spatial explanatory 

variables can be utilized to simulate future LUCC.  

The developed statistical model brings forward the field of LUCC modeling by 

providing land use scientists and planners with another option in modeling and simulation with 

its capability to identify the significant spatial and non-spatial driving factors of LUCC and use 

these factors for future simulation. In future research, derivation of global probability 

thresholds based on optimization can be geared towards minimizing ADP to align simulated 

quantitative value of LUCC to actual quantitative values. Coupling the statistical model with 

simulation models to simulate LUCC based on future values of explanatory variables can also 

be explored.  
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5. Simulating the future status of the cultural landscape 

 Chapter 5:  

Simulating the future status of the cultural landscape 

The contents of this chapter have been considered for major revision under the Ecological 

Informatics journal: 

Estacio, I., Sianipar, C. P. M., Onitsuka, K., & Hoshino, S. (in revision). Impacts of socio-

environmental policy mix on mitigating agricultural abandonment: An empirical agent-based 

modeling. Ecological Informatics. 

5 

5.1. Introduction 

 

To formulate science-based policies for agricultural landscapes, the complexity of 

agricultural landscapes, which is composed of social and ecological components, should be 

considered. A way to analyze such systems is through Agent-Based modeling, a bottom-up 

modeling paradigm where interaction of system actors are modeled to see the emergent 

phenomenon (Bonabeau, 2002; Groeneveld et al., 2017) An advantage of agent-based 

modeling over other modeling paradigms such as Statistical Modeling or System Dynamics is 

it can simulate the effects of decisions, processes, and interactions of actors. Thus, a modeler 

can create simulations of different scenarios by modifying the characteristics of actors in the 

system. Because of this, agent-based modeling is especially useful in simulating planning 

scenarios involving human behavior (Le Page et al., 2017). 

Several Agent-Based Models (ABMs) have already been developed for modeling 

agricultural systems and simulating policy scenarios. Kremmydas et al. (2018) have reviewed 

ABMs developed for evaluating the impacts of agricultural policies. However, to the best of 

the authors’ knowledge, there has not yet been any agent-based model developed that 

incorporated the passing down of farmlands of farm owners to their children. This is a vital 

component that needs to be considered as lack of farmland successors is one of the main global 

drivers of agricultural abandonment (Piras & Botnarenco, 2019; Qiu et al., 2014). Incorporating 

the process of farm succession within a farm household will lead to a better understanding of 

the dynamics of agricultural abandonment in mountainous landscapes where selling of 
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farmlands rarely occurs.  

  In addition to the research gap above, efforts in creating accurate maps based on agent-

based models are lacking. Despite the fact that spatial agent-based models have been developed 

in the past, most of the modeling process did not incorporate a validation process for checking 

the accuracy of the produced maps. There have been efforts to check the accuracies of 

simulated maps in the past (Drogoul et al., 2016; Truong et al., 2016), but the maps only 

achieved moderate accuracies. In addition, there has not been a methodology established for 

developing models that simulate land cover maps based on non-spatial agents. This is a 

research gap that needs to be addressed because most human agents are difficult to spatialize 

like farmers.  

This study aims to develop an ABM to simulate the impacts of various socio-

environmental policy mixes on the spatial patterns of agricultural lands in a farm succession-

based agricultural landscape. The ABM considers the interactions between the environment, 

government, and farm households composed of farm owners, farmlands, and children. The 

model generates the spatial patterns of paddy fields by simulating first the emergent total area 

of agricultural abandonment based on small-scale processes and allocates the abandonment 

area into land grids. To model the spatial aspect of the system, the ABM utilizes GIS raster files 

and a logistic model. To calibrate the model, Pattern-oriented modeling (POM) was adopted 

where a Genetic Algorithm was utilized to find the set of parameters that simulates system 

patterns closest to actual data (Grimm et al., 2005). This study is expected to advance the 

understanding of farm succession in agricultural landscapes. The developed ABM framework 

is also expected to advance the field of agent-based modeling in terms of simulating accurate 

maps without the need for spatial agents.  

 

5.2. Methods 

 

5.2.1. Empirical characterization and parametrization of the ABM 

 

To empirically model the socio-ecological system of the Banaue rice terraces using an 

agent-based model, it is important to properly parametrize the attributes and behavior of actors 

in the system. For this purpose, the CAP (Characterization and Parametrization framework) 

was followed (Smajgl & Barreteau, 2017). A contextual circumstances case was adopted where 
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a large population exists, census data is not available, and only small-scale fieldwork can be 

implemented. In this case, expert knowledge and participant observation were utilized to 

characterize the model and elicit behavioral and attribute data of farm households in Banaue 

(Smajgl et al., 2014).  

 

 

Fig. 5.1 One of the Ifugao farmers interviewed during the fieldwork. Permission was asked to 

take the photo. 
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Fig. 5.2 The conceptual framework showing the interaction between the entities in the ABM 

 

A small-scale fieldwork was conducted in August 2022 in the province of Ifugao, 

Philippines with the goal of interviewing academic experts, government officials, and farmers 

to elicit different points of views with regards to the abandonment of the rice terraces (Fig. 5.1). 

For these interviews, a semi-structured questionnaire was used to gather behavioral data in 

relation to attribute data. The questionnaires tackled the following: decision-making of farmers 

in abandoning their farmlands, drivers of abandonment, and possible mitigating policies. For 

the academic expert, an interview was conducted with the director of Center for Ifugao Rice 

Terraces as Globally Important Agricultural Heritage Systems, Ifugao State University, a 

research center established specifically to conduct focused research on the conservation of the 
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Ifugao Rice Terraces. For the point of view from the government, an interview with the 

agriculture division of the municipal government of Banaue was conducted. For the farmers, 

focus group discussion with five farmers ranging from 21 to 60 years old was conducted. Based 

on these interviews, agent classes, agent attributes, agent behaviors, and agent interactions were 

formulated (Fig. 5.2). 

Aside from expert knowledge elicited from interviews, publicly available data were 

also used to parametrize the model. Data from the Philippine Statistics Authority were used to 

represent time-varying social data such as number of farm owners, family size, and life 

expectancy. Data from the public archive Climate Change Knowledge Portal Time were used 

to represent time-varying climate data such as precipitation and maximum temperature. Data 

from literature were also referred to parametrize the model. 

 

Table 5.1 Global parameters in the model, its sources, and values 

Group Parameter Source Unit 
Default 

value 

Environment Coefficient of precipitation  Calibrated mm-2 10 

 Coefficient of max temperature Calibrated °C -2 69 

Government Government restores eroded terraces Field survey binary False 

 Ratio of heritage-valuing youth Dizon et al., 2012 - 0.25 

 Subsidy per farm owner Field survey ₱  0.0 

Farm 

household 

Initial number of farm owners Philippine Statistics 

Authority 

- 1746 

 Initial lowest farm owner age Calibrated - 29 

 Initial highest farm owner age Calibrated - 60 

 Initial total paddy field area Estacio et al., 2022 Ha 493.47 

 Monthly average family income Philippine Statistics 

Authority 

₱ 18166.67 

 Income threshold to consider migration Calibrated ₱ 19,000.00 

Land cells Coefficient of slope Logistic regression °-1 0.0499 

 Coefficient of cosine aspect Logistic regression - -0.303 

 Coefficient of quickflow Logistic regression mm-1 0.000360 

 Coefficient of distance to town center Logistic regression m-1 0.000198 

 Coefficient of distance to road Logistic regression m-1 -0.000281 

 Coefficient of heritage Logistic regression - -0.841 

 Coefficient of density of forest Logistic regression - 1.21 

 Coefficient of density of low vegetation Logistic regression - 2.01 

 Coefficient of density of paddy field Logistic regression - -2.54 
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5.2.2. Development of the ABM 

 

The aim of the ABM is to simulate maps of paddy fields in Banaue as a result of farm 

cultivation, farm succession, and environmental conditions. By modifying selected parameters 

in the model, the model can also simulate the effects of policies in mitigating agricultural 

abandonment. The model utilizes combinations of spatial and non-spatial data that can be static 

or temporally-varying. Unknown global parameters were calibrated such that simulated 

temporal patterns of number of farm owners and area of paddy fields match actual data (Table 

5.1). The ABM was developed through the open-source agent-based modeling software GAMA 

(GIS & Agent-based Modelling Architecture 1.8). 

 

 

Fig. 5.3 The general flowchart of the ABM, showing the initialization of agents, the steps in 

the annual cycle, and the emergent patterns. 
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The mechanism of the ABM is based on the interaction between the environment, 

government, land grids, and farm households that consist of farmland, a farm owner, and their 

children. To implement this concept, three types of agents were used. The first type is a farm 

household agent where one agent represents both a farm owner and the respective farmland. 

The second type is a child agent which is an agent under a farm household. For each farm 

household, child agents exist which can potentially succeed the farmland and be future farm 

owners. The third type is a land grid agent which represents the characteristics of land for a 

grid of 30-m length. Input raster files were utilized to instantiate the state variables of these 

land grid agents such as land cover classification and spatial explanatory variables. The farm 

household agents, child agents, and land grid agents are all enclosed under a global agent which 

represents both the environment and government. 

The time step of the model is set at 1 year, where in each time step the environment and 

government affect farm households, farm owners till their lands, farm owners can pass their 

lands to their children, and land grid cells change (Fig. 5.3). By the final simulation year, the 

number of farm owners, the total paddy field area, and a paddy field map are generated as 

emergent patterns of the system. The Overview, Design concepts, and Details (ODD) of the 

Banaue ABM was also laid out (Table 5.2) (Grimm et al., 2020). ODD is a generic format and 

a standard structure for documenting ABMs so that they can be replicated (Grimm et al., 2010).  

 

Table 5.2 ODD (Overview, Design concepts, Details) protocol for the model (Grimm et al., 

2020) 

Elements of ODD protocol Description 

Overview 1. Purpose and 

Patterns 

Purpose 

The purpose of the model is to simulate maps of 

agricultural lands as a result of farm cultivation, farm 

succession, and changing environmental conditions. In parallel 

to this, the model also aims to simulate the resulting 

agricultural map based on a policy mix. 

 

  Patterns 

The model reproduces three patterns as a result of 

bottom-up processes: number of farm owners, area of paddy 

fields, and spatial pattern of paddy fields.  
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 2. Entities, state 

variables, and 

scales 

Entities 

The model includes four types of agents: a farm 

household agent which represents a farm owner and the 

respective farmland, a child agent which represents a child 

under a farm household, a land grid agent which represents 

grids that vary through space in the model, and a global agent 

which represents the both the environment and the government 

that encloses all the other agents. Thus, a hierarchical 

representation would be child agents populate a single farm 

household, and farm household agents and land grid agents 

populate a global agent.  

 

  State variables 

Global agent:  

Environment 

▪ Precipitation 

▪ Maximum temperature 

▪ Average family size 

▪ Life expectancy 

▪ Erosion rate 

▪ Water availability rate 

▪ Total area of agricultural lands 

▪ Total agricultural abandonment 

▪ Farm household agents 

▪ Land grid agents 

Government 

▪ Ratio of heritage-valuing youth 

▪ Provision of aid in restoring eroded terraces exists? 

▪ Amount of subsidy per farm household 

 

Farm household agent: 

Farm owner 

▪ Age 

▪ Child agents 

Farmland 

▪ Area of farmland 

▪ Area of cultivated paddy fields 

▪ Area of fallowed paddy fields (three-item list representing 

the area of fallowed land for the last three years) 

 

Child agents: 

▪ Age 
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▪ Income 

▪ Stayed or migrated? 

▪ Values the heritage of the terraces? 

▪ Can inherit? 

 

Land grid agents:  

▪ Is a paddy field? 

▪ Slope 

▪ Cosine aspect 

▪ Distance from town center 

▪ Distance from road 

▪ Is a world heritage site? 

▪ Quickflow 

▪ Density of forests 

▪ Density of paddy fields 

▪ Density of low vegetation 

   

Scales 

Spatial:  

The extent of the Bangaan watershed, which is around 8 

km x 15 km long, is covered by spatially-varying 30 m x 30 m 

grids. 

Temporal:  

The model runs at a 1-year time step. For calibration and 

validation, the model ran from the year 1990 to 2020 while for 

the simulation of policies, the model ran from 1990 to 2050. 

   

 3. Process 

overview 

and 

scheduling 

1. Initialize the simulation. Load the raster files and store them 

as state variables of the land grid agents. Create farm 

household agents along with its child agents. Start the 

simulation. 

2. At the start of every year, the global agent runs its “Update 

the environment” sub-model which updates its state variables 

precipitation, max temperature, average family size, life 

expectancy, erosion rate, and water supply rate. 

3. Each farm household agent executes its “Cultivation” sub-

model which updates its farmland area, cultivated area, and 

fallowed area. 

4. Each farm household agent executes its “Succession” sub-

model which updates its age and asks each of its child agents 

if they are willing to succeed the farmland. A child agent 
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updates its age and decides if it will choose to inherit the 

farmland. A farm household agent is removed from the model 

(the farm owner dies and the farmland becomes abandoned) if 

the farm owner’s age exceeds the life expectancy.   

5. The global agent runs its “Update land grids” sub-model 

which updates the total area of agricultural lands and the land 

grid agents’ Boolean variable Is a paddy field? 

6. Repeat steps 2 to 5 for each year until the final year. By the 

final year, export the land grids as a map along with other 

information such as number of farm owners and area of paddy 

fields.  

   

Design 

concepts 

4. Design 

concepts 

Basic principles 

At the system level, the model addresses the question of 

how farm succession affect the area and spatial pattern of 

agricultural lands. The model also addresses a question in rural 

planning of how policies addressing farm owners will affect 

the farmlands. 

  Emergence 

The primary result of the model is a map of the 

agricultural lands which emerges from cultivation based on 

environmental conditions and farm succession based on 

children’s incomes and heritage values.  

  Adaptation 

Farmers adapt to water unavailability by fallowing paddy 

fields that cannot be supplied by water. Child agents adapt to 

financial incapability by choosing to not inherit farmlands and 

migrate.   

  Objectives 

Child agents who do not value the terraces decide 

whether to migrate by comparing their future total income to a 

threshold income. 

  Prediction 

The decision-making of child agents in choosing to 

succeed the farmland is based on the implicit prediction that 

succeeding the farmland when the future total income is below 

a threshold will result to a poor quality of life. 
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  Interaction 

There are two kinds of interaction in the model: a direct 

interaction between farm household agents and their child 

agents and a mediated interaction between farm household 

agents and land grid agents. Farm household agents interact 

directly with their child agents by asking each of their child 

agents if they are willing to succeed the farmland. Child agents 

who are willing to succeed become new farm household agents 

while the previous farm household agent is removed. 

Meanwhile, farm household agents interact with land grid 

agents by altering the total area of cultivated paddy field, 

thereby altering the total abandonment area that will be 

allocated to land grid agents.  

  Stochasticity 

During initialization, the initial farmland area, farm 

owner age, and number of children are randomized for each 

farm household agent. For each created child agent, its age, 

future income, and heritage valuation are also randomized.   

Observation 

By the end of the simulation, the model produces a map 

of the paddy fields as a result of a policy mix. 

   

Details 5. Initialization The simulation space of the model is first created by 

importing all raster files that will be used in the simulation 

(e.g., raster files of paddy field cover and spatial explanatory 

variables of agricultural abandonment). The extent of the raster 

files (all of which have the same extent) is set as the simulation 

space of the model. CSV files enumerating the values of 

precipitation, maximum temperature, average family size, and 

life expectancy for every year from 1990 to 2020 are imported.  

For calibration and validation, CSV files of the number of farm 

owners and area of paddy fields for years with available data 

are also imported.  

Global parameters such as coefficients from the logistic 

model and calibrated parameters are set. Depending on the 

scenario, the values of heritage-valuing youth ratio, existence 

of erosion aid, and subsidy are assigned.   

Land grid agents are instantiated throughout the 

simulation space based on the cells of the 1990 paddy field 

raster file. The initial paddy field classification is based on the 

classification in the same 1990 paddy field raster file. The 

spatial explanatory variables of the land grid agents are 
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adopted from the respective raster files for the year 1990. 

Farm household agents are instantiated based on the 

number of farm owners in 1990 (1746 farm owners). Farm area 

for each farm household agent is assigned such that the total 

farm area of all agents equals the total paddy field area in 1990, 

Totalpaddyfieldarea. To do this, a variable areafactor ranging 

from 1 to 3 is assigned to each farm household agent. The sum 

of all farm household agents’ areafactor is computed as 

areafactorsum. The area of Farmland for each farmer is then 

computed as follows: 

𝐹𝑎𝑟𝑚𝑙𝑎𝑛𝑑 =
𝑇𝑜𝑡𝑎𝑙𝑝𝑎𝑑𝑑𝑦𝑓𝑖𝑒𝑙𝑑𝑎𝑟𝑒𝑎 ∗ 𝑎𝑟𝑒𝑎𝑓𝑎𝑐𝑡𝑜𝑟

𝑎𝑟𝑒𝑎𝑓𝑎𝑐𝑡𝑜𝑟𝑠𝑢𝑚
 

Meanwhile, a farm owner’s age is randomized from an 

equal distribution ranging from 26 to 50. The number of child 

agents in a farm household agent, NC, is also randomized based 

on the average family size, FS, as shown below: 

𝑁𝐶 = 𝑟𝑛𝑑((𝐹𝑆 − 2) − 0.5, (𝐹𝑆 − 2) + 0.5) 

Child agents are instantiated as belonging under a farm 

household agent. The age of a child is determined from an 

equal distribution based on the farm owner’s age using the 

equation below: 

𝐶ℎ𝑖𝑙𝑑𝑎𝑔𝑒 = 𝐹𝑎𝑟𝑚𝑜𝑤𝑛𝑒𝑟𝑎𝑔𝑒 − 𝑟𝑛𝑑(26,35) 

The income of the child is randomized based on an equal 

distribution centered on the average income in the Banaue 

municipality, represented by the following equation below: 

𝐼𝑛𝑐𝑜𝑚𝑒 =  𝑟𝑛𝑑(8167.0, 28167.0) 

Even though the child has just been created (hence is a baby), 

the income was already assigned assuming that it will be the 

future income of the child.   

   

 6. Input data For the years 1990 to 2020, CSV files enumerating the 

annual values of precipitation, maximum temperature, average 

family size, and life expectancy are used to update the annual 

values of respective variables. Every five years (e.g., 1995, 

2000, 2005), raster files of spatial explanatory variables are 

used to update the respective variables in the land grid agents.  
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 7. Sub-models Update the environment sub-model 

Details of this sub-model can be found in subsection 5.2.2.1. 

Update of the global environment 

 

Cultivation sub-model  

Details of this sub-model can be found in subsection 5.2.2.2. 

Cultivation of farmlands by farm owners 

 

Succession sub-model 

Details of this sub-model can be found in subsection 5.2.2.3. 

Passing down of farmlands to children 

  Update land grids sub-model 

Details of this sub-model can be found in subsection 5.2.2.3. 

Update of land grids 

 

5.2.2.1. Update of the global environment 

 

Based on the fieldwork interview and related literature, erosion occurs in the Banaue 

rice terraces when heavy rains occur. Meanwhile, lack of available water occurs due to drying 

of creeks and streams in the dry season (Calderon et al., 2009; Soriano & Herath, 2018). In the 

model, erosion and water availability are represented by erosion rate and water availability rate, 

respectively, which indicate the rates that the two environmental factors affect farmlands. 

Erosion rate, 𝐸𝑅 , which indicates the percentage of a farmland affected by erosion, is 

represented by the following equation: 

𝐸𝑅 = 10−10 ∗ 𝑐𝐸𝑅 ∗ 𝑃𝑟𝑒𝑐𝑖𝑝
2                                          (Eq. 5.1) 

where 𝑃𝑟𝑒𝑐𝑖𝑝 is the mean annual value of precipitation for the current simulation year while 

𝑐𝐸𝑅 is a coefficient for calibrating the effect of precipitation to erosion rate. Meanwhile, water 

availability rate, 𝑊𝑅, which indicates the percentage of paddy fields that can be supplied by 

water, is represented by the following equation: 

𝑊𝑅 = 102 ∗ 𝑐𝑊𝑅 ∗ 𝑇𝑒𝑚𝑝𝑚𝑎𝑥
2
                                       (Eq. 5.2) 

where 𝑇𝑒𝑚𝑝𝑚𝑎𝑥  is the mean annual value of the maximum temperature for the current 

simulation year while 𝑐𝑊𝑅 is a coefficient for calibrating the effect of max temperature to water 

availability rate. Both precipitation and maximum temperature vary through time using trends 

based on historical values. Aside from these environmental factors, the model also updates the 

annual values of demographic variables such as average family size and average life expectancy. 
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5.2.2.2. Cultivation of farmlands by farm owners 

 

The farmers in the study area practice fallowing and recultivation depending on the 

available water supply (Estacio et al., 2022). For each farm household agent, a flowchart is 

followed to compute the area of paddy field that will be cultivated in a year (Fig. 5.4). This 

decision flowchart considers current values of erosion rate, water availability rate, area of the 

farmland, area of active paddy fields, area of fallowed fields, and age of the farm owner to 

calculate the area of recultivated fields, area of fallowed fields, and the consequent area of the 

farmland.  

The flowchart starts with the computation of the area of eroded paddy fields, 

𝐹𝑖𝑒𝑙𝑑𝑒𝑟𝑜𝑑𝑒𝑑, based on the current year’s erosion rate 𝐸𝑅: 

𝐹𝑖𝑒𝑙𝑑𝑒𝑟𝑜𝑑𝑒𝑑 = 𝐸𝑅 ∗ 𝐹𝑖𝑒𝑙𝑑𝑎𝑐𝑡𝑖𝑣𝑒                                       (Eq. 5.3) 

where 𝐹𝑖𝑒𝑙𝑑𝑎𝑐𝑡𝑖𝑣𝑒 is the area of the active paddy fields. If the government does not provide aid 

in restoring eroded terraces, the eroded paddy fields are immediately treated as abandoned. 

Next, the maximum area that can be supplied by water, 𝑀𝑎𝑥𝑤𝑎𝑡𝑒𝑟𝑒𝑑, is computed based on 

the current water availability rate 𝑊𝑅:   

𝑀𝑎𝑥𝑤𝑎𝑡𝑒𝑟𝑒𝑑 = 𝑊𝑅 ∗ 𝐹𝑎𝑟𝑚𝑙𝑎𝑛𝑑                                     (Eq. 5.4) 

Old farmers will also opt to cultivate only a portion of their land based on their capability. This 

is represented by the following equation: 

𝑀𝑎𝑥𝑐𝑎𝑝𝑎𝑏𝑙𝑒 =
80− 𝑎𝑔𝑒

20
∗  𝐹𝑎𝑟𝑚𝑙𝑎𝑛𝑑                                  (Eq. 5.5) 

Equation 5.5 is only applied when a farm owner’s age is greater than 60 and less than 80. The 

equation indicates that after the age of 60, a farm owner slowly loses the capability to farm and 

by the age of 80, is already incapable of tilling the farmlands. The harvestable land for the 

current year, 𝐿𝑎𝑛𝑑ℎ𝑎𝑟𝑣𝑒𝑠𝑡𝑎𝑏𝑙𝑒, is based on the lowest area between the maximum watered land, 

the maximum land that the farm owner is capable of cultivating, and farmland still not eroded, 

which is represented by the following equation:  

𝐿𝑎𝑛𝑑ℎ𝑎𝑟𝑣𝑒𝑠𝑡𝑎𝑏𝑙𝑒 = min(𝑀𝑎𝑥𝑤𝑎𝑡𝑒𝑟𝑒𝑑,𝑀𝑎𝑥𝑐𝑎𝑝𝑎𝑏𝑙𝑒, 𝐹𝑎𝑟𝑚𝑙𝑎𝑛𝑑 − 𝐹𝑖𝑒𝑙𝑑𝑒𝑟𝑜𝑑𝑒𝑑)  (Eq. 5.6) 
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Fig. 5.4 Flowchart of processes in the cultivation sub-model of each farm household 

 

If harvestable land is less than the active paddy fields, fallowing occurs where the 
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fallowed land is saved for 3 years. If it exceeds by 3 years, it will be considered permanently 

abandoned. If harvestable land is more than the active paddy fields, recultivation occurs. In this 

case, the area of fallowed land decreases by the area of the recultivated land. Whether 

recultivation or fallowing occurs, the area of the current active paddy fields for the current year 

is always equal to the area of the harvestable land.  

The area of abandoned land for the current year is computed as the sum of the areas of 

eroded fields, 𝐹𝑖𝑒𝑙𝑑𝑒𝑟𝑜𝑑𝑒𝑑, and fallowed fields for 3 years, 𝐹𝑖𝑒𝑙𝑑𝑓𝑎𝑙𝑙𝑜𝑤𝑒𝑑3𝑦𝑒𝑎𝑟𝑠, which is as 

follows:  

𝐹𝑖𝑒𝑙𝑑𝑎𝑏𝑎𝑛𝑑𝑜𝑛𝑒𝑑 = 𝐹𝑖𝑒𝑙𝑑𝑒𝑟𝑜𝑑𝑒𝑑 + 𝐹𝑖𝑒𝑙𝑑𝑓𝑎𝑙𝑙𝑜𝑤𝑒𝑑3𝑦𝑒𝑎𝑟𝑠                       (Eq. 5.7) 

Lastly, the area of the 𝐹𝑎𝑟𝑚𝑙𝑎𝑛𝑑 decreases by the area of the abandoned field, as represented 

by the following equation: 

𝐹𝑎𝑟𝑚𝑙𝑎𝑛𝑑𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝐹𝑎𝑟𝑚𝑙𝑎𝑛𝑑 − 𝐹𝑖𝑒𝑙𝑑𝑎𝑏𝑎𝑛𝑑𝑜𝑛𝑒𝑑                      (Eq. 5.8) 

 

5.2.2.3. Passing down of farmlands to children 

 

Another main driver of agricultural abandonment is a lack of farmland successors. 

Based on the fieldwork interviews, almost all farm owners in Banaue work other jobs and treat 

farming as their part-time job. Farming on the rice terraces is almost unprofitable, hence selling 

of farmlands seldom occurs. In the rare occasion that a farmland is sold, the whole farmland is 

said to be retained hence no land is abandoned. Land abandonment mainly occurs when 

farmland is not inherited by any of the farm owner’s children and the farm owner loses the 

capability to cultivate the farmland. From the perspective of a farm owner’s child, the decision 

of inheriting the parents’ farmland is based on the future income and valuation of the terraces 

as a heritage.  

Based on this, a decision flowchart was formulated based on the dynamics of farm 

succession (Fig. 5.5). First, for a specific farm household agent, the ages of the farm owner and 

all children increase. For each child agent whose age is greater than 18 years old, the valuation 

of the rice terraces will be inspected. If the child agent values the rice terraces, it will still stay. 

If not, its income plus the government subsidy is computed to predict the total income once the 

child agent becomes a farm owner. If the total income is more than the global income threshold, 

the child will choose to stay. If not, it will migrate.  
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Fig. 5.5 Flowchart of processes in the succession sub-model of each farm household 
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The farmland is usually passed down by a farm owner once a succeeding child becomes 

married, per say as a way to increase the source of income of the newly married child. Thus, in 

the flowchart, the farmland is passed down once the oldest child turns 25. Most lands are passed 

down and distributed to the three eldest children who do not migrate, hence in the model, the 

farmland area is divided and distributed to a maximum of three child agents who stay. 

Abandonment of the farmland mainly occurs if there are no inheritors among the children in a 

farm household. This is represented in the flowchart as when a farmer exceeds the average life 

expectancy, the farm owner dies and the farmland becomes abandoned.  

 

5.2.2.4. Update of land grids 

 

After implementing the processes in the farm household agents, the emergent total 

paddy field area is computed by taking the sum of the farmland area of all farm household 

agents. Subtracting the total paddy field area to the former total paddy area results in the total 

agricultural abandonment for the current year. 

To spatially allocate the value of agricultural abandonment, the probability of 

agricultural abandonment for each land grid agent is first computed using the produced logistic 

model, where state variables in the land grid agents are used as explanatory variables. The area 

of agricultural abandonment is then allocated to land grid agents one by one, where the land 

grid with the highest probability is assigned first as abandoned, then into the next land grid 

with the highest probability, until the total area of agricultural abandonment has been allocated. 

It is also possible that the total paddy field area for the current year is greater than last year’s 

area. In this case, total recultivation occurred and the allocation procedure is skipped for the 

current year. The allocation procedure is resumed once the total paddy field area becomes less 

than the total paddy field area during the time the last allocation procedure was implemented. 

 

5.2.3. Model calibration and validation 

 

To ensure that the developed ABM closely imitates reality, the concept of Pattern-

oriented modeling was adopted where model calibration is implemented until simulated system 

patterns match observed patterns in the agricultural landscape (Grimm et al., 2005). The 

temporal values of number of farm owners and area of paddy fields were used to calibrate 
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selected model parameters while spatial patterns of paddy fields were used to validate the 

model.   

The calibration procedure employs a Genetic Algorithm to find the set of parameters in 

the model that minimizes the difference between simulated and actual patterns. To do this, an 

optimization measure, 𝑂𝑀, was formulated as follows:  

𝑂𝑀 = 𝑆𝐷𝑓𝑎𝑟𝑚𝑜𝑤𝑛𝑒𝑟𝑠𝑛𝑢𝑚𝑏𝑒𝑟 ∗ 𝑆𝐷𝑝𝑎𝑑𝑑𝑦𝑓𝑖𝑒𝑙𝑑𝑎𝑟𝑒𝑎                         (Eq. 5.9) 

where 𝑆𝐷𝑓𝑎𝑟𝑚𝑜𝑤𝑛𝑒𝑟𝑠𝑛𝑢𝑚𝑏𝑒𝑟  is the standard deviation between the actual and simulated 

numbers of farm owners while 𝑆𝐷𝑝𝑎𝑑𝑑𝑦𝑓𝑖𝑒𝑙𝑑𝑎𝑟𝑒𝑎 is the standard deviation between actual and 

simulated total areas of paddy fields. This optimization measure ensures that both the standard 

deviations in number of farm owners and area of paddy field were minimized. The parameters 

chosen for calibration were coefficient of erosion (from 1 to 100), coefficient of water 

availability (from 1 to 100), income threshold to consider migration (from ₱10,000 to ₱20,000), 

initial lowest farm owner age (varied from 26 to 35), and initial highest farm owner age (varied 

from 50 to 60). A simulation for each set of parameters was run with 30 repetitions to consider 

randomness.  

After incorporating the optimized set of parameters, a validation procedure was 

implemented to check the robustness of the model in simulating system patterns close to reality. 

In addition to the number of farm owners and area of paddy fields, the simulated maps were 

also assessed for their accuracies. For the number of farm owners, except for the initial year, 

data were available only for the years 2002 and 2012. For the land cover, maps were available 

from 1990 to 2020 in five-year intervals. However, only data for the years 1995, 2000, 2015, 

and 2020 were used for validating the area and spatial patterns of paddy fields. The years 2005 

and 2010 were excluded as expansion of paddy fields occurred after the declaration of the 

world heritage sites in the Ifugao rice terraces as “in danger” in 2002 (Estacio et al., 2022). The 

expansion of paddy fields during this period was treated as the effect of an external driver and 

not of a naturally occurring process in the Ifugao rice terraces, hence the maps for 2005 and 

2010 were not included for validation. The fuzzy Kappa statistic, which represents the 

similarities between two maps based on local neighborhoods, was used as the accuracy measure 

for comparing simulated and actual maps (Drogoul et al., 2016; Visser & De Nijs, 2006). 
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Table 5.3 Policies considered for mitigating agricultural abandonment 

Policies Description Parameter to be varied 
Experiment

al values 

Provision of aid 

in restoring 

eroded terraces 

A program where the local 

government provides aid to 

farmers whenever a portion of 

their farmlands is eroded. In 

this policy, all eroded terraces 

are restored hence farmers do 

not have to abandon this 

portion of their land. 

Government restores 

eroded terraces 

True 

Promoting 

heritage 

valuation 

through 

education 

A program where the education 

curriculum in the Ifugao has an 

intensive focus on establishing 

the valuation of the Ifugao rice 

terraces to the youth 

Ratio of heritage-

valuing youth 

0.30 – 0.50 

(increments 

of 0.05) 

Provision of 

subsidy per farm 

household 

A program where the local 

government provides a 

monthly subsidy to each farm 

household for choosing to 

participate in preserving the 

Ifugao rice terraces 

Subsidy per farm owner ₱0 – ₱3000 

(increments 

of ₱500) 

 

5.2.4. Simulation of policies through batch experiments 

 

Three policies were considered for the mitigation of the agricultural abandonment in 

the rice terraces: (i) Provision of aid in restoring eroded terraces, (ii) Promoting heritage 

valuation through education, and (iii) Provision of subsidy per farm household. To determine 

if a synergistic effect exists between these policies, a batch simulation was implemented where 

policy-related parameters were varied one-by-one until every mix of parameters was used 

(Table 5.3). A simulation for each set of parameters was run in 30 repetitions. Temporally-

varying parameters used trends from past values to forecast their future values. Thus, the 

simulations consider climate-change and changing demographic profile.  
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Table 5.4 Actual and simulated values of number of farms and area of paddy fields through 

different years 

Patterns Year Actual Simulated Residual Percent deviation 

Number of farm owners 2002 1946 2186 240 12.32% 

 2012 2615 2449 -166 -6.35% 

Area of paddy field (ha) 1995 600.03 603.22 3.19 0.53% 

 2000 528.21 580.64 52.43 9.93% 

 2015 503.28 502.27 -1.01 -0.21% 

 2020 493.47 479.32 -14.15 -2.87% 

 

 

Fig. 5.6 Comparison between actual and simulated maps of paddy fields in the study area 

 

5.3. Results 

 

5.3.1. Calibration and Validation 

 

Validation of the ABM based on comparing the simulated system patterns with actual 

data produced accuracy measures for every year (Table 5.4 and Fig. 5.6). For the simulated 
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area of paddy fields, the maximum magnitude of the residual was 52.43 ha (for the year 2000) 

and the maximum magnitude of the percent deviation was 9.93% (also for the same year). 

Given that the maximum absolute percent deviation was less than 10%, the model was deemed 

able to simulate the area of paddy fields with an acceptable accuracy. 

For the simulated number of farm owners, the maximum magnitude of the residual was 

240 (for the year 2002) and the maximum magnitude of the percent deviation was 12.32% (also 

for the same year). Even though the maximum absolute deviation was above 10%, given the 

difficulty of modeling the complexity of population dynamics and how close the deviation is 

to the 10% value, the maximum absolute percent deviation of 12.32% was accepted. Thus, the 

model was deemed to simulate the number of farm owners at an acceptable but low accuracy.  

For the simulated spatial patterns of paddy fields, it can be observed that the Fuzzy 

Kappa statistic, which represents the local neighborhood similarities between two maps, 

decreases through time from the initial year. This was expected as the initial paddy field map 

in the model was initialized using an actual map. In the real world, a current land cover will be 

more similar to land cover five years from now than land cover twenty years from now. Given 

that there will be more variation in land cover change as the year passes, the difference between 

actual and simulated maps will also be higher. Given this circumstance, the lowest fuzzy Kappa 

statistic produced was 0.7780 for the latest year of 2020, 30 years from the starting year. Given 

that the fuzzy kappa statistic is still of high value even  after a 30-year period from the initial 

year, the model was deemed able to simulate the spatial patterns of paddy fields at an acceptable 

accuracy. 

 

5.3.2. The future of the terraces given a business-as-usual scenario 

 

Based on the BAU scenario where climate change and demographic changes were 

considered by assuming that past trends will continue, simulation results showed that the area 

of paddy fields will continue to decrease from 479 ha in the year 2020 to 336 ha by the year 

2050 (Fig. 5.7). This is a 143-ha decrease in a span of 30 years. Interestingly, in the 30-year 

period between 2020 and 1990, the rice terraces decreased in area by 178 ha. Thus, even with 

the consideration of future climate changes, the amount of abandonment for the next 30 years 

is less than the abandonment in the previous 30 years.  
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Fig. 5.7 Trend in total area of paddy fields from 2020 to 2050 with and without the provision 

of aid in restoring eroded terraces 

 

5.3.3. Effect of each proposed policy 

 

Simulations showed that providing aid to farmers in restoring eroded terraces will make 

the total area of the rice terraces to 417 ha by 2050, preventing 81 ha of abandonment if 

compared to the BAU scenario (Fig. 5.7). This is a 56% decrease in abandoned areas through 

the 30-year period from 2020 to 2050, hence restoration of eroded areas can be deemed an 

effective policy for mitigating agricultural abandonment.  

For promoting heritage valuation through education, the simulations showed that 

increasing the ratio of heritage-valuing youth leads to an increase in the the future area of the 

paddy fields (Fig. 5.8). This was expected as a higher percentage of children valuing the 

terraces lead to less migration which also leads to an increase of successors. However, contrary 

to expectations, strengthening the heritage valuation of the youth only showed negligible 

effects in mitigating land abandonment. By the year 2050, a 0.5 ratio of youth valuing the 

terraces will lead to a total paddy field area of 341 ha, only a 5-ha increase from the BAU value 

of 336 ha. This is only 4% of the 143-ha of abandoned land from 2020 to 2050. Hence, even 

though the interviewed experts suggested the promotion of the rice terrace’s heritage value as 

a mitigating solution, it may not be deemed as an effective solution based on the simulation 
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results.  

 

 

Fig. 5.8 Trend in total area of paddy fields through scenarios of varying average ratios of youth 

valuing the rice terraces: (A) Trend from 2020 to 2050; (B) Trend from 2045 to 2050 to 

emphasize the differences in total area 

 

 

 



 105 

 

Fig. 5.9 Trend in total area of paddy fields through scenarios of varying amounts of monthly 

subsidy given to each farm owner: (A) Trend from 2020 to 2050; (B) Trend from 2045 to 2050 

to emphasize the differences in total area 

 

Lastly, simulations showed that provision of subsidies to farm owners results in the 

mitigation of agricultural abandonment (Fig. 5.9). This was an expected effect as providing 

subsidies motivates children in inheriting the farmlands because of a predicted increase in 

financial capability. Similar to the previous policy, the simulations showed that provision of 

subsidy only had negligible effects in mitigating agricultural abandonment, with only 3% of 

the abandonment starting from the year 2020 mitigated. Overall, the simulation results indicate 
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that providing subsidies to farm households is ineffective for mitigating agricultural 

abandonment.  

 

5.3.4. Policy mix 

 

Implementing a policy mix has a higher mitigating effect on agricultural abandonment 

than implementing just a single policy (Fig. 5.10). However, the provision of subsidy and 

promoting heritage valuation showed an antagonistic relationship, where increasing the input 

of one of the policies lessens the effect of the other policy. For example, at a subsidy of ₱0 

without aid in restoring eroded areas, increasing the heritage-valuing youth ratio by 0.05 led to 

a paddy field area increase of around 1 ha. However, at a subsidy of ₱3,000 (still without aid 

in restoring eroded areas), increasing the youth ratio by 0.05 only led to paddy field area 

increase of around 0.5 ha. The other way around can also be the case, where increasing the 

subsidy at lower heritage values has higher impact to the paddy field area than increasing the 

subsidy at higher heritage values. This circumstance can be explained by both policies affecting 

the migration rate which may lead to redundancy. An increase in heritage-valuing youth leads 

to less people needing subsidies to be persuaded not to migrate, and vice-versa. In that sense, 

applying these policies in parallel as a policy mix is inefficient. 

On the other hand, providing aid in restoring eroded areas displayed a synergistic effect, 

where implementing it also increased the effect of the other policies. For example, increasing 

the heritage-valuing youth ratio at ₱0 subsidy when restoration aid was provided showed an 

average increase of around 1 ha while the increase was only around 0.8 ha for the same case 

without the restoration aid. The same can also be said for increasing the subsidy, where 

providing subsidies with erosion aid has more impact on mitigating abandonment than 

providing subsidies without erosion aid. Thus, mixing the provision of aid in restoring eroded 

terraces with one of the other policies (selective policy mix) is deemed efficient. 
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Fig. 5.10 Effect of different policy mix on the total area of paddy fields by the year 2050. 
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5.4. Discussion 

 

5.4.1. Robustness of the ABM in simulating spatial and non-spatial patterns 

 

To calibrate the model, an optimization procedure was implemented where a Genetic 

Algorithm was utilized for adopting pattern-based modeling. A key component of this 

procedure is the formulation of an optimization measure where the standard deviation of every 

pattern is treated as a controlling factor. By minimizing this optimization measure through a 

Genetic Algorithm, the set of global parameters that minimizes the differences between 

simulated and actual patterns can be found. This can be useful in ABM studies where 

calibration for pattern-oriented modeling is needed. 

Validation of the calibrated model showed that the simulated patterns of number of farm 

owners and areas of paddy fields reached acceptable accuracies. Thus, the developed ABM can 

be considered generating non-spatial system patterns similar to observed patterns. For the 

spatial patterns of paddy fields, the accuracies of generated land cover maps were shown to 

decrease as the years from the initial simulation year increase. However, as the ABM utilizes a 

spatial allocation based on a logistic model, the model will create a map based on the dominant 

spatial pattern of paddy fields which is the main clusters of terraces. Thus, despite the nature 

of the simulations where accuracies of generated map decrease through time, it can still be 

deemed that the generated maps still capture the dominant patterns of the paddy fields. 

Moreover, despite a 30-year difference from the initial year, the generated paddy field map can 

still be considered of high accuracy (Drogoul et al., 2016; Truong et al., 2016). Thus, the 

developed ABM can also be considered generating accurate spatial patterns of land cover 

despite the usage of non-spatial agents. 

 

5.4.2. Policy implications for conserving the Ifugao rice terraces 

 

Based on the fieldwork interviews and proposals from literature (Calderon et al., 2009; 

Castonguay et al., 2016), three policies were considered for mitigating the agricultural 

abandonment in the Ifugao rice terraces: aid in restoring eroded terraces, increasing heritage 

valuation through education, provision of subsidy per farm household. Based on the 

simulations, providing aid to farmers in restoring terraces in their farmlands is highly effective 



 109 

in mitigating agricultural abandonment. The simulation results imply that erosion contributes 

to almost half of the total abandonment in the rice terraces, and that restoring these eroded areas 

has the highest impact in mitigating agricultural abandonment. Meanwhile, increasing the 

heritage valuation of the rice terraces among the youth through education was found to be 

ineffective in mitigating agricultural abandonment,  mitigating only 4% of the total agricultural 

abandonment from a BAU scenario. Provision of subsidy to farm owners was also found 

ineffective, mitigating only 3% of the total abandonment. Overall, given the restricted budget 

of the municipal government of Banaue for conserving the rice terraces, it is recommended that 

government officials should just focus on providing continuous aid in restoring eroded areas to 

mitigate as much agricultural abandonment as possible (Fig. 5.11). 

 

 

Fig. 5.11 Maps of paddy fields by the year 2050 through a business-as-usual scenario and a 

scenario where the government aids in restoring eroded terraces. 
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The effectiveness of restoring eroded areas can be attributed to two factors. First, the 

results imply that the environmental driver erosion has a larger contribution to the agricultural 

abandonment than the social driver lack of successors brought by financial incapability and 

low heritage valuation. Contrary to former hypothesis that social policies may have a huge 

environmental effect, simulations showed that the emergent effect is small relative to 

environmental policies. Thus, addressing erosion brought a much higher mitigating effect than 

addressing financial incapability and low heritage valuation. Second, the effectiveness of 

restoring eroded areas can also be attributed to its instant effect to the paddy fields. Restoring 

eroded areas directly affects the paddy fields, hence its effect in increasing paddy field area 

manifests instantly. On the other hand, the effect of subsidy and education takes time to 

manifest as a lack of successor only takes of effect on the rice paddy fields once the farm owner 

without a successor starts to age and then dies, leaving the farmlands abandoned. Hence, the 

effect of social policies may take at least one generation for its effect to manifest. 

It is also expected that agricultural abandonment due to a lack of successor will ease in 

the future if the trend of increasing family size continues. During the field work, the authors 

suggested in interviews if birth control may have an impact in mitigating the agricultural 

abandonment, to which all correspondents answered that it may not have a significant effect. 

Based on the simulation results, the answer of the respondents may prove to be correct as more 

children ensure the likeliness that a successor will be present in one of the children. However, 

even with the existence of an inheritor, large decreases in the paddy fields will still occur 

brought by the environmental driver. With the advent of climatic change which drives increases 

in precipitation brought by more intense typhoons, it is also expected that agricultural 

abandonment will intensify. Overall, given the larger effect of environmental drivers over 

social drivers, agricultural abandonment for the next 30 years may have a larger magnitude 

than for the last 30 years. In the end, policies that directly affect agricultural lands have much 

higher mitigating impacts than policies that affect the social aspects of farm households. 

 

5.4.3. Limitations and future direction 

 

An inevitable part in modeling is the simplification of processes as some processes are 

too complex to be incorporated. Hence, the developed ABM has several limitations and may 

need improvements in the future. 
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First, the process of computing the values of erosion and water supply were simplified 

to only be caused by precipitation and maximum temperature, respectively. In reality, several 

factors affect the magnitude of these environmental drivers. For example, erosion is affected 

not only by precipitation but also by the slopes of the land and the types of soil. In the model, 

it was assumed that the mountain slopes and soil types do not change through time, hence only 

the precipitation rates will have an effect in the temporal variation of erosion values. Same with 

erosion, water supply is affected not only by temperature but also by the quality of the land. 

Again, the quality of the land was also assumed to be constant through time and only 

temperature affects the temporal variation of water supply. In the future, determination of 

erosion and water supply based on additional factors can be incorporated in the ABM to make 

the simulation results more accurate.  

The model also does not consider the feedback caused by the changing land cover. 

Several studies have shown that the transitions between paddy fields and vegetation cover 

changes the water yield and further aggravates agricultural abandonment, creating a feedback 

loop between land cover and farmers’ cultivation processes (Estacio et al., 2022; Soriano & 

Herath, 2018). Aside from this, the density of a land cover type in the surrounding of a parcel 

also determines the likelihood of abandonment, thus the feedback loop is also spatial in nature. 

The complexity of this feedback loop needs thorough calibration and validation, hence should 

be meticulously incorporated in the model. 

Lastly, the model does not consider social changes in the real world. For example, the 

marrying age in almost all parts of the world is increasing over time. The income of people and 

the prices of commodities also change according to the economy. To make a more accurate (but 

more complicated) model, these demographic and economic changes need to be incorporated. 

The socio-ecological system of Ifugao is a complex system composed of interacting 

social, economic, and environmental entities that change through time. Therefore, future 

studies are still needed to fully capture the processes in the system. It should be worth 

mentioning that not every process in the model needs to be captured to develop a decision-

making model. A more complicated model does not necessarily translate into a more effective 

model (Sun et al., 2016).  

5.5. Conclusion 

 

This study presents an ABM that simulates the impacts of socio-environmental policy 
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mix to the spatial patterns of paddy fields in the mountainous agricultural landscape of Ifugao 

rice terraces. The ABM models the interactions between the environment, government, and 

farm households composed of farm owners, farmlands, and children. The model employed a 

procedure to generate accurate land cover maps even with the use of non-spatial agents by 

simulating first the emergent change in area of a land cover then allocating it into map through 

a logistic model. To calibrate the model, pattern-oriented modeling was adopted so that 

simulated system patterns match actual data. To simulate the impact of a policy mix, selected 

parameters were varied to represent policy scenarios.  

The validation of the model showed that simulated system patterns such as number of 

farm owners, area of paddy fields, and spatial patterns of paddy fields were of acceptable 

accuracy. The simulation results showed that providing aid in restoring eroded terraces 

mitigates almost half of the agricultural abandonment. Meanwhile, increasing the ratio of youth 

valuing the terraces and providing subsidies to farm households showed only negligible 

impacts on mitigating agricultural abandonment. Thus, it is recommended that the local 

government of Banaue should just focus on providing aid in restoring eroded terraces for 

effectively mitigating agricultural abandonment. The results of the simulations also imply that 

the environmental driver erosion has a higher contribution to the agricultural abandonment 

problem than the social driver lack of successors.  

The employed methodology of utilizing non-spatial agents to create accurate land cover 

maps can be adopted in other agent-based modeling studies where agents do not have locations 

but emergent spatial patterns of environmental changes need to be simulated. The employed 

calibration routine of using GA to implement pattern-oriented modeling can also be used in 

other studies. In the future, the developed ABM can be recalibrated and applied to other 

mountainous agricultural landscapes where farm succession occurs. Future improvements to 

the model can be used such as incorporating the feedback of changing land cover to the farmers’ 

cultivation process.  
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6. Summary and Conclusion 

 Chapter 6:  

Summary and Conclusion 

6 

6.1. Introduction 

 

Due to the ever-changing demands of human society, land cover changes occur globally. 

Among the landscapes present, mountainous agricultural landscapes are one of the most 

vulnerable to changes because of the tight interaction between the local people and its 

environment (Aguilar et al., 2021; Y. Cao et al., 2013; Pôças et al., 2011; Tarolli & Straffelini, 

2020). Not only do actors in these socio-ecological systems regularly alter the environment, 

modernization in the 20th century also brought unprecedented changes to these systems 

(Gellrich, Baur, Koch, et al., 2007; Gellrich & Zimmermann, 2007; MacDonald et al., 2000; 

Xystrakis et al., 2017). For example, the mountainous agricultural landscape of Ifugao rice 

terraces has been experiencing intensive agricultural abandonment for several decades already 

(Bantayan et al., 2012; Calderon et al., 2015; FAO, 2018). If left unmanaged, changes in 

mountainous agricultural landscapes may lead to changes in the ecosystem services that can 

lead to harsh consequences to the people and the environment (B. Li et al., 2016; Y. Liu et al., 

2020; Wang et al., 2018; Zhang et al., 2019). Thus, it is of importance that these landscapes are 

managed based on information of past changes, driving factors, and future status. This thesis 

aims to aid in formulating science-based policies for managing a mountainous agricultural 

landscape by characterizing the dynamics of the agricultural abandonment. Based on this 

objective, the current research was structured to include proposing of a Geomatics framework 

for informing environmental management, observing the past land cover changes, identifying 

the spatial and non-spatial drivers of agricultural abandonment, and simulating the impact of 

policies on the mitigation of agricultural abandonment. This chapter summarizes the 

discussions of each chapter and synthesizes the implications for managing the Ifugao rice 

terraces, contributions to research of mountainous agricultural landscapes, and novelties in the 

applied methods. To conclude the thesis, the future direction of the current research is discussed.   

6.2. Summary of the discussions 
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6.2.1. A Geomatics framework for aiding environmental management 

 

The goal of Chapter 2 was to present a general methodological framework that mainly 

utilizes spatial data for “simulating the future through observations of the past”. This 

Geomatics framework is composed mainly of the following steps: data acquisition, spatial 

analysis, and Geosimulation to provide key information spanning from the past to the future 

conditions of an environment. Adopting this framework will then provide holistic information 

for decision-making in environmental management. To provide examples on how to adopt the 

Geomatics framework, two case studies were presented which were completed research that 

utilized the three main steps of the framework to address ongoing environmental problems and 

provide solutions to them. This is also the same general methodological framework adopted in 

this thesis to understand the dynamics of agricultural abandonment in the Ifugao rice terraces 

By presenting the Geomatics framework, this chapter thus provided a proposal of 

concretizing the role of Geosimulation in Geomatics. Without a doubt, simulations of impacts 

of policies on addressing an environmental problem have added value for policy-making. On 

top of widening the applications of Geomatics and providing a methodological workflow for 

future Geomatics research, this framework will also strengthen the collaboration between 

Geosimulation and the other spatial science disciplines.   

 

6.2.2. Observing the past dynamics of land cover changes 

 

The goal of Chapter 3 was to observe the past land cover changes in the study area in 

five-year periods from 1990 to 2020. This chapter particularly focused on explaining the 

dynamics of rapid land cover transitions and permanent agricultural abandonment in the Ifugao 

rice terraces. The chapter utilized Google Earth Engine (GEE) to implement time-series land 

cover mapping, transition analysis, and analysis of paddy field dynamics. The chapter also used 

regression analysis to analyze the correlation between vegetation abundance and agricultural 

abandonment.  

The first key finding of this chapter is that low vegetation cover intermediates 

agricultural abandonment and afforestation. Transition analysis showed that a two-step process 

involving low vegetation as an intermediary land cover typically occurs in between agricultural 
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abandonment and afforestation. This adds new information to the land cover dynamics in  

mountainous agricultural landscapes as previous studies have only indicated that afforestation 

follows agricultural abandonment. In addition to the land cover transitions involving paddy 

fields, transitions between low vegetation and forest also regularly occurred at high rates which 

may be due to tree cutting and swidden farming. 

The second key finding is that agricultural abandonment mainly occurred in the 1990s 

then followed by recultivation in the 2000s. Observed temporal dynamics of paddy fields 

aligned with historical records such as high rates of permanent abandonment in the period 

between 1990 and 2000 and recultivation (416% increase) in the period between 2000 and 2010. 

This indicates that efforts from the government and international organizations have been 

successful in recultivating the paddy fields. However, after 2010, permanent abandonment has 

been observed to again continuously increase. 

The third key finding is that decreasing low vegetation abundance promotes paddy field 

permanent abandonment. Regression analysis revealed that there is a significant correlation 

between low vegetation cover abundance and subsequent paddy field permanent abandonment 

(P=0.0498), which confirms that afforestation in the landscape decreased the water yield and 

promoted agricultural abandonment. This finding coincides with previous studies showing that 

decreasing water yield from afforestation contributes to the abandonment of paddy fields 

(Soriano & Herath, 2018). 

This chapter has the novel contribution of developing a framework for analyzing paddy 

field dynamics involving first-time cultivations, fallowing, recultivation, and permanent 

abandonment. To the best of the author's knowledge, this is the first study to observe temporal 

dynamics in paddy fields based on time-series land cover maps. The developed framework can 

be used to elucidate the patterns of cultivation of farmers which will bring informed decisions 

for policy making. 

 

6.2.3. Identifying the drivers of agricultural abandonment 

 

The goal of Chapter 4 was to analyze the significant spatial and non-spatial driving 

factors of agricultural abandonment in the Ifugao rice terraces. This chapter particularly 

focused on using spatial statistical modeling to analyze the drivers of agricultural abandonment 

observed in Chapter 3. 
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A key aspect of this chapter is that it proposes a novel statistical LUCC modeling that 

integrates a logistic model for spatial LUCC drivers and a linear model for non-spatial drivers. 

The logistic sub-model produces a probability map representing the local probabilities of 

LUCC, while the linear sub-model produces a probability threshold representing the global 

LUCC probability. Comparisons between every pixel in the probability map and the global 

probability threshold generates the LUCC map. The developed spatial statistical model can 

thus simulate scenarios of future LUCC by using maps and non-spatial values representing 

respective scenarios as inputs in the model.  

The first key finding of this chapter is the identification of the significant spatial drivers 

of agricultural abandonment. Results showed that slope, cosine aspect, quickflow, distance to 

town center, distance to road, world heritage site status, forest density, low vegetation density, 

and paddy field density were significant determinants of the local probabilities of agricultural 

abandonment. This finding implies that altering the values of these spatial explanatory 

variables (for example building new roads) will then change the probability of occurrence of 

agricultural abandonment for a given location.   

The second key finding is the identification of the significant non-spatial drivers of 

agricultural abandonment. Results show that total forest area, five-year average precipitation, 

and average daily maximum temperature were significant determinants of the global 

probabilities of agricultural abandonment. Like the first key finding, the change of values in 

these non-spatial explanatory variables (for example the increase in daily maximum 

temperature due to climate change) will alter the global probability of agricultural 

abandonment in the whole Ifugao rice terraces.  

The third key finding is that the accuracy assessment of the simulated maps showed 

satisfactory accuracies, confirming that the developed spatial statistical model is suitable for 

LUCC simulation. This then shows that research in this chapter was able to provide a novel 

contribution of developing a spatial statistical model that can be utilized for simulating future 

LUCC based on spatial and non-spatial explanatory variables. 

 

6.2.4. Simulating the future status of the cultural landscape 

 

The goal of Chapter 5 was to develop an ABM that simulates the impact of 

combinations of socio-environmental policies on the spatial patterns of agricultural lands in a 
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farm succession-based agricultural landscape. Using expert knowledge, GIS raster files, and a 

spatial logistic model (developed in the previous chapter), the ABM simulates the interaction 

between the environment, government, and farm households composed of farm owners, 

farmlands, and children. To calibrate the model, pattern-oriented modeling was utilized to 

match simulated temporal patterns of the number of farms and area of paddy fields with 

observed patterns. 

The first key finding of this chapter is that the validation of the model showed that the 

accuracy of simulated spatial patterns of paddy fields were of acceptable accuracies. Thus, it 

can be deemed that the simulations generated by the developed ABM can be used for 

predictions of future scenarios.  

The second key finding is that the simulation of policies showed that the provision of 

aid in restoring eroded terraces is effective in mitigating agricultural abandonment, preventing 

almost half of the agricultural abandonment compared to the BAU scenario. Meanwhile, 

promoting the heritage value of the terraces to the youth and provision of monthly subsidies to 

farm owners do not have significant mitigation effects to the rice terraces, preventing only 3% 

of the total abandonment compared to the BAU scenario. Thus, it is recommended that the 

focus on the local government of Banaue should be to just provide aid in restoring eroded 

terraces.  

The third key finding is an implication of the simulation results which is that the 

environmental driver erosion has a significantly higher impact on agricultural abandonment 

than the social driver lack of successors. This suggests that policies directly affecting the 

environment will have a quicker and intensive effect on the environment than social policies 

that may take time to manifest.  

This chapter contributes to the field of Agent-Based Modeling by adopting a modeling 

framework that can generate accurate land cover maps as an emergent phenomenon of the 

actions of non-spatial agents. This framework can be adopted in other agent-based modeling 

studies where actors in a socio-environmental system lack geospatial data but spatially-varying 

environmental variables such as land cover need to be simulated.  

 

6.3. Implications for managing the Ifugao rice terraces 

 

In the past three decades, the Ifugao rice terraces have faced severe agricultural 
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abandonment and need intervention to mitigate this phenomenon. A major problem in facing 

this problem is the lack of accurate maps and quantification of the amount of abandonment that 

occurred in the past decades. This thesis addresses this lack of information. By mapping the 

rapid land cover changes in five-year intervals from 1990 to 2020, the thesis was able to 

observe the changes that occurred in the landscape, which can be used as basis for future 

analysis and planning. It is worth noting in these observations that recultivations of the paddy 

fields were successful achieved through combined efforts of the government units and 

organizations. This can be used as an inspiration for goal-setting future management plans; 

restoring a significant part of the terraces is definitely achievable.  

The existence of a feedback loop between the abundance of vegetation cover (low 

vegetation and forest cover) and permanent abandonment of the paddy fields stresses the 

importance of mitigating the agricultural abandonment as increasing abandoned paddy fields 

lead to more abandonment. This should also be used as motivation for large-scale actors to take 

initiative about this problem. Although difficult to address, the solving of the problem of water 

scarcity should be addressed by the national government as this is one of the main factors for 

the feedback loop. As was shown in both chapters 3 and 4, increasing forest cover also 

agricultural abandonment brought by decreasing water yield. Thus, it is also recommended that 

the trade-offs in ecosystem services brought by changing land cover should be implemented to 

show how much ecosystem services such as water yield, carbon sequestration, and habitat 

quality can change.  

As with other mountainous agricultural landscapes, the agricultural abandonment in the 

Ifugao rice terraces is a multi-faceted phenomenon brought by a variety of social and 

environmental drivers. Before addressing any environmental problem, it is of significance to 

first identify drivers so that policies can be drafted to address them. The results of the thesis 

identified the significant spatial and non-spatial drivers of agricultural abandonment in the 

Ifugao rice terraces. Some of these factors are difficult or impossible to alter by human actions 

such as mountain topography or meteorological variables. However, some can provide insights 

about the social conditions that drive abandonment such as distance to town center and distance 

to road. It is most probable that improving the access of farmers to services and transportation 

can reduce abandonment due to improvement in quality of life. It may be improbable to develop 

new town centers but the government can look into ways of setting up more services in the 

more rural parts of the Ifugao province to improve the quality of life of farmers. Building new 
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roads may be a straightforward solution but also improving pathways to roads may improve 

the accessibility to roads.  

Given this variety of drivers of agricultural abandonment, implementing the optimum 

combination of policies to address the problem can be a daunting task. Knowing the effect of 

policy implementation beforehand can inform stakeholders of the appropriate set of actions to 

carry out. The thesis was able to identify the appropriate policies to implement by simulating 

its impacts on the conservation of the Ifugao rice terraces. Based on the simulation results from 

the developed ABM, providing aid to farmers in restoring eroded terraces is the most effective 

policy for mitigating agricultural abandonment. It also showed a synergistic effect when paired 

with another policy such as increasing the heritage valuation of the rice terraces among the 

youth and provision of subsidy to farm owners. Thus, it is recommended the government unit 

should implement a policy of aiding in restoring eroded terraces to farmers who need it. 

Another policy can also be implemented alongside this but given the limited budget of the 

provincial government of Ifugao, focusing just on restoring eroded terraces may be the best 

course of action.  

 

6.4. Contributions to research on mountainous agricultural landscape 

 

In the global context, the thesis contributes to studies of mountainous agricultural 

landscapes. Previous studies of land cover changes in mountainous agricultural landscapes 

observed the occurrence of afforestation after agricultural abandonment. However, it was 

revealed in the thesis that typically a two-step transition process occurs between agricultural 

abandonment and afforestation. Low vegetation acts as an intermediary land cover type for 

transitions between paddy field and forest. Hence, paddy fields typically first transition into 

low vegetation before transitioning into forests.  

As mountainous agricultural landscapes around the world are part of one of multiple 

watersheds, water yield is highly dependent on the land cover in the highlands. It is then most 

likely that the land-transition feedback loop that further promotes agricultural abandonment in 

the Ifugao rice terraces also exist in other such landscapes. The findings suggest that planning 

of mountainous agricultural landscapes should address social and environmental driving 

factors to mitigate this feedback loop to prevent further agricultural abandonment. Specifically, 

planning of these landscapes should also consider the abundance of other vegetation cover 
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types aside from only addressing social issues.  

The driving factors of agricultural abandonment in the Ifugao rice terraces can also be 

compared with the drivers of agricultural abandonment in other landscapes. From here, 

inferences can then be made as to what are the common global drivers of agricultural 

abandonment. The findings on the set of spatial and non-spatial drivers of abandonment can 

then be especially useful for synthesis of global research on agricultural abandonment.  

The thesis also provides information on the magnitude of impacts of the social and 

environmental policies for a farm succession-based agricultural landscape, which is typically 

the case for mountainous agricultural landscapes. Findings from ABM simulations imply that 

policies which directly affect agricultural lands have much higher mitigating impacts on 

agricultural abandonment than policies that affect the social aspects of farm households. This 

may be attributed to the quickness of the manifestation of effects to the paddy fields. The effect 

of social policies aiming to promote farm succession takes time to manifest as the effect of a 

lack of successor only manifests on the rice paddy fields once the farm owner starts to age. 

Meanwhile, environmental policies directly affect the paddy fields, hence its effect in 

increasing paddy field area instantly manifests. 

 

6.5. Methodological novelties 

 

The thesis advances the usage of Geomatics for environmental applications by 

proposing and adopting a Geomatics framework that aims to holistically inform decision-

making for environmental management. The framework is composed of the three main tasks: 

acquisition, spatial analysis, and Geosimulation. This proposed framework can also be treated 

as an approach for utilizing spatial data for "predicting the future through observations of the 

past". It is posited that the adoption of this framework leads to the widening of the 

environmental application of Geomatics, the establishment of a methodological workflow for 

informing environmental management, and the enhancement of the collaboration between 

Geosimulation and other spatial science fields. 

A methodological framework for analyzing paddy dynamics was developed for 

providing an in-depth analysis of spatio-temporal patterns of fallowing and recultivation in 

paddy fields based on land cover maps. These paddy field dynamics are represented by 

permanent abandonment, fallowing, first-time cultivations, and recultivation. This analytical 
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framework can be applied in other agricultural lands, especially in mountainous agricultural 

landscapes which experience frequent permanent abandonment. With that being said, 

information derived from this framework can elucidate farmer actions and how cultivation 

patterns can cause changes in land cover.  

The thesis also developed a statistical model of LUCC that integrates a logistic model 

based on spatial drivers and a linear model based on non-spatial drivers. The logistic model 

produces a probability map that represents local probabilities of LUCC while the linear model 

produces a global probability threshold that represents a global probability of LUCC, and by 

comparing the two variables, LUCC is mapped. Accuracy assessment showed that simulated 

maps achieved accuracies suitable for LUCC simulation, demonstrating that the statistical 

model can be a potential tool for prediction of future LUCC. 

Lastly, an ABM was developed that adopted two novel methods. First, the ABM 

employed a modeling framework that was able to generate accurate land cover maps even with 

the use of non-spatial agents. In the future, Agent-based modeling research which does not 

have location-data of actors can adopt this framework to simulate spatial patterns of emergent 

environmental changes. Second, the ABM employed a calibration routine of using GA to 

implement pattern-oriented modeling. Future calibration for ABMs can also adopt this routine 

to find the set of parameters that best fit observed patterns of socio-ecological systems. 

 

6.6. Conclusions 

 

This study presents key information for the conservation of the Ifugao rice terraces by 

characterizing the dynamics of the agricultural abandonment. This comprises the observation 

of past changes, identification of driving factors, and simulation of the future status. The results 

show that the Ifugao rice terraces have experienced severe agricultural abandonment from 1990 

to 2020 due to a combination of environmental and social drivers. Nine spatial factors and three 

non-spatial factors were found to significantly cause the occurrence of agricultural 

abandonment. Based on simulations, it is suggested that the local government should focus on 

providing aid in restoring eroded terraces to mitigate as much agricultural abandonment as 

possible. The findings of this study provide key information for informing the environmental 

management of not only the Ifugao rice terraces but also of other mountainous agricultural 

landscapes. The methodological frameworks implemented in this study, especially the 
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Geomatics framework for “simulating the future through observations of the past”, can be 

adopted by future researchers in their studies of bringing solutions to environmental issues. 
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Appendix 

8 

A1. The Google Earth Engine code 

 

The following lines were the JavaScript code executed in Google Earth Engine to 

implement the methodological framework. The link of the code can also be accessed in this 

link: https://code.earthengine.google.com/a0fc0e8278dd7d73e621007d03cbca78 

 

 

//----------Dates---------- 

var SD88 = ee.Date('1987-12-01');var ED88 = ee.Date('1988-05-31'); 

var SD89 = ee.Date('1988-12-01');var ED89 = ee.Date('1989-05-31'); 

var SD90 = ee.Date('1989-12-01');var ED90 = ee.Date('1990-05-31'); 

var SD91 = ee.Date('1990-12-01');var ED91 = ee.Date('1991-05-31'); 

var SD92 = ee.Date('1991-12-01');var ED92 = ee.Date('1992-05-31'); 

var SD93 = ee.Date('1992-12-01');var ED93 = ee.Date('1993-05-31'); 

var SD94 = ee.Date('1993-12-01');var ED94 = ee.Date('1994-05-31'); 

var SD95 = ee.Date('1994-12-01');var ED95 = ee.Date('1995-05-31'); 

var SD96 = ee.Date('1995-12-01');var ED96 = ee.Date('1996-05-31'); 

var SD97 = ee.Date('1996-12-01');var ED97 = ee.Date('1997-05-31'); 

var SD98 = ee.Date('1997-12-01');var ED98 = ee.Date('1998-05-31'); 

var SD99 = ee.Date('1998-12-01');var ED99 = ee.Date('1999-05-31'); 

var SD00 = ee.Date('1999-12-01');var ED00 = ee.Date('2000-05-31'); 

var SD01 = ee.Date('2000-12-01');var ED01 = ee.Date('2001-05-31'); 

var SD02 = ee.Date('2001-12-01');var ED02 = ee.Date('2002-05-31'); 

var SD03 = ee.Date('2002-12-01');var ED03 = ee.Date('2003-05-31'); 

var SD04 = ee.Date('2003-12-01');var ED04 = ee.Date('2004-05-31'); 

var SD05 = ee.Date('2004-12-01');var ED05 = ee.Date('2005-05-31'); 

var SD06 = ee.Date('2005-12-01');var ED06 = ee.Date('2006-05-31'); 

var SD07 = ee.Date('2006-12-01');var ED07 = ee.Date('2007-05-31'); 

var SD08 = ee.Date('2007-12-01');var ED08 = ee.Date('2008-05-31'); 

var SD09 = ee.Date('2008-12-01');var ED09 = ee.Date('2009-05-31'); 

var SD10 = ee.Date('2009-12-01');var ED10 = ee.Date('2010-05-31'); 

var SD11 = ee.Date('2010-12-01');var ED11 = ee.Date('2011-05-31'); 

var SD12 = ee.Date('2011-12-01');var ED12 = ee.Date('2012-05-31'); 

var SD13 = ee.Date('2012-12-01');var ED13 = ee.Date('2013-05-31'); 

var SD14 = ee.Date('2013-12-01');var ED14 = ee.Date('2014-05-31'); 

var SD15 = ee.Date('2014-12-01');var ED15 = ee.Date('2015-05-31'); 

var SD16 = ee.Date('2015-12-01');var ED16 = ee.Date('2016-05-31'); 

var SD17 = ee.Date('2016-12-01');var ED17 = ee.Date('2017-05-31'); 

var SD18 = ee.Date('2017-12-01');var ED18 = ee.Date('2018-05-31'); 

var SD19 = ee.Date('2018-12-01');var ED19 = ee.Date('2019-05-31'); 

var SD20 = ee.Date('2019-12-01');var ED20 = ee.Date('2020-05-31'); 

var SD21 = ee.Date('2020-12-01');var ED21 = ee.Date('2021-05-31'); 

//----------------------------------------Start---------------------------------------- 

//1. Filter collection to study area 

var L5_Ifugao = L5_SR.filterBounds(Catchment); 

var L8_Ifugao = L8_SR.filterBounds(Catchment); 

Map.centerObject(Catchment, 13); 

 

//2. Filter collections to plus/minus two years (Planting Season) 

function plusminus2years(imgcol,SDm2,EDm2,SDm1,EDm1, 

                              SD00,ED00,SDp1,EDp1,SDp2,EDp2){ 

  var Ifugao_m2 = imgcol.filterDate(SDm2, EDm2); 

  var Ifugao_m1 = imgcol.filterDate(SDm1, EDm1); 
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  var Ifugao_00 = imgcol.filterDate(SD00, ED00); 

  var Ifugao_p1 = imgcol.filterDate(SDp1, EDp1); 

  var Ifugao_p2 = imgcol.filterDate(SDp2, EDp2); 

  var Ifugao_TP = Ifugao_m2.merge(Ifugao_m1) 

                  .merge(Ifugao_00).merge(Ifugao_p1) 

                  .merge(Ifugao_p2); 

  return Ifugao_TP; 

} 

function plusminus1year2020(imgcol,SDm1,EDm1, 

                              SD00,ED00,SDp1,EDp1){ 

  var Ifugao_m1 = imgcol.filterDate(SDm1, EDm1); 

  var Ifugao_00 = imgcol.filterDate(SD00, ED00); 

  var Ifugao_p1 = imgcol.filterDate(SDp1, EDp1); 

  var Ifugao_TP = Ifugao_m1.merge(Ifugao_00) 

                  .merge(Ifugao_p1); 

  return Ifugao_TP; 

} 

var L5_Ifugao1990_TP = plusminus2years(L5_Ifugao,SD88,ED88,SD89,ED89, 

                              SD90,ED90,SD91,ED91,SD92,ED92); 

var L5_Ifugao1995_TP = plusminus2years(L5_Ifugao,SD93,ED93,SD94,ED94, 

                              SD95,ED95,SD96,ED96,SD97,ED97); 

var L5_Ifugao2000_TP = plusminus2years(L5_Ifugao,SD98,ED98,SD99,ED99, 

                              SD00,ED00,SD01,ED01,SD02,ED02); 

var L5_Ifugao2005_TP = plusminus2years(L5_Ifugao,SD03,ED03,SD04,ED04, 

                              SD05,ED05,SD06,ED06,SD07,ED07);                              

var L5_Ifugao2010_TP = plusminus2years(L5_Ifugao,SD08,ED08,SD09,ED09, 

                              SD10,ED10,SD11,ED11,SD12,ED12);   

var L8_Ifugao2015_TP = plusminus2years(L8_Ifugao,SD13,ED13,SD14,ED14, 

                              SD15,ED15,SD16,ED16,SD17,ED17); 

var L8_Ifugao2020_TP = plusminus1year2020(L8_Ifugao,SD19,ED19, 

                              SD20,ED20,SD21,ED21); 

 

//3. Clip collections to catchment, mask cloud and cloud shadows, and rename bands 

function watershedclip(img){ 

  return img.clip(Catchment); 

} 

function maskLSR(image) { 

  var qaMask = image.select('QA_PIXEL').bitwiseAnd(parseInt('11111', 2)).eq(0); 

  var saturationMask = image.select('QA_RADSAT').eq(0); 

  var opticalBands = image.select('SR_B.').multiply(0.0000275).add(-0.2); 

  var thermalBands = image.select('ST_B.*').multiply(0.00341802).add(149.0); 

  return image.addBands(opticalBands, null, true) 

      .addBands(thermalBands, null, true) 

      .updateMask(qaMask) 

      .updateMask(saturationMask); 

} 

function renamebands5(img){ 

  var blue = img.select('SR_B1').rename('blue'); 

  var green = img.select('SR_B2').rename('green'); 

  var red = img.select('SR_B3').rename('red'); 

  var nir = img.select('SR_B4').rename('nir'); 

  var swir1 = img.select('SR_B5').rename('swir1'); 

  var swir2 = img.select('SR_B7').rename('swir2'); 

  return img.addBands(blue).addBands(green).addBands(red) 

            .addBands(nir).addBands(swir1).addBands(swir2); 

} 

function renamebands8(img){ 

  var blue = img.select('SR_B2').rename('blue'); 

  var green = img.select('SR_B3').rename('green'); 

  var red = img.select('SR_B4').rename('red'); 

  var nir = img.select('SR_B5').rename('nir'); 

  var swir1 = img.select('SR_B6').rename('swir1'); 

  var swir2 = img.select('SR_B7').rename('swir2'); 

  return img.addBands(blue).addBands(green).addBands(red) 

            .addBands(nir).addBands(swir1).addBands(swir2); 

} 

var Ifugao1990_TP_masked = L5_Ifugao1990_TP.map(watershedclip).map(maskLSR).map(renamebands5); 
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var Ifugao1995_TP_masked = L5_Ifugao1995_TP.map(watershedclip).map(maskLSR).map(renamebands5); 

var Ifugao2000_TP_masked = L5_Ifugao2000_TP.map(watershedclip).map(maskLSR).map(renamebands5); 

var Ifugao2005_TP_masked = L5_Ifugao2005_TP.map(watershedclip).map(maskLSR).map(renamebands5); 

var Ifugao2010_TP_masked = L5_Ifugao2010_TP.map(watershedclip).map(maskLSR).map(renamebands5); 

var Ifugao2015_TP_masked = L8_Ifugao2015_TP.map(watershedclip).map(maskLSR).map(renamebands8); 

var Ifugao2020_TP_masked = L8_Ifugao2020_TP.map(watershedclip).map(maskLSR).map(renamebands8); 

 

//4. Spatial patterns of good observation 

var I1990goodobservation = Ifugao1990_TP_masked.reduce(ee.Reducer.count()); 

var I1995goodobservation = Ifugao1995_TP_masked.reduce(ee.Reducer.count()); 

var I2000goodobservation = Ifugao2000_TP_masked.reduce(ee.Reducer.count()); 

var I2005goodobservation = Ifugao2005_TP_masked.reduce(ee.Reducer.count()); 

var I2010goodobservation = Ifugao2010_TP_masked.reduce(ee.Reducer.count()); 

var I2015goodobservation = Ifugao2015_TP_masked.reduce(ee.Reducer.count()); 

var I2020goodobservation = Ifugao2020_TP_masked.reduce(ee.Reducer.count()); 

 

//5. Create composite for Principal Components Analysis 

var bandsI = ['blue', 'green', 'red', 'nir', 'swir1', 'swir2']; 

var PCAcomposite1990 = Ifugao1990_TP_masked.median().select(bandsI); 

var PCAcomposite1995 = Ifugao1995_TP_masked.median().select(bandsI); 

var PCAcomposite2000 = Ifugao2000_TP_masked.median().select(bandsI); 

var PCAcomposite2005 = Ifugao2005_TP_masked.median().select(bandsI); 

var PCAcomposite2010 = Ifugao2010_TP_masked.median().select(bandsI); 

var PCAcomposite2015 = Ifugao2015_TP_masked.median().select(bandsI); 

var PCAcomposite2020 = Ifugao2020_TP_masked.median().select(bandsI); 

 

//6. Train with Principal Component Analysis (in ArcGIS) 

function getNewBandNames(prefix, bNames){ 

  var seq = ee.List.sequence(1, bNames.length()); 

  return seq.map(function(b){ 

    return ee.String(prefix).cat(ee.Number(b).int()); 

  }); 

} 

function DoCentered(composite, region){ 

  var bandNames = composite.bandNames(); 

  var meanDict = composite.reduceRegion({ 

      reducer: ee.Reducer.mean(), 

      geometry: region, 

      scale: 30, 

      maxPixels: 1e9 

  }); 

  var means = ee.Image.constant(meanDict.values(bandNames)); 

  var centered = composite.subtract(means);   

  return centered; 

} 

function getPrincipalComponents(centered, region){ 

  var bandNames = centered.bandNames(); 

  var arrays = centered.toArray(); 

  var covar = arrays.reduceRegion({ 

    reducer: ee.Reducer.centeredCovariance(), 

    geometry: region, 

    scale: 30, 

    maxPixels: 1e9 

  }); 

  var covarArray = ee.Array(covar.get('array')); 

  var eigens = covarArray.eigen(); 

  var eigenValues = eigens.slice(1, 0, 1); 

  var eigenVectors = eigens.slice(1, 1); 

  var arrayImage = arrays.toArray(1); 

  var principalComponents = ee.Image(eigenVectors).matrixMultiply(arrayImage); 

  var sdImage = ee.Image(eigenValues.sqrt()) 

    .arrayProject([0]).arrayFlatten([getNewBandNames('sd', bandNames)]); 

  return principalComponents 

    .arrayProject([0]) 

    .arrayFlatten([getNewBandNames('pc', bandNames)]) 

    .divide(sdImage); 

} 
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var pcImage1990 = getPrincipalComponents(DoCentered(PCAcomposite1990,Catchment),Catchment); 

var pcImage1995 = getPrincipalComponents(DoCentered(PCAcomposite1995,Catchment),Catchment); 

var pcImage2000 = getPrincipalComponents(DoCentered(PCAcomposite2000,Catchment),Catchment); 

var pcImage2005 = getPrincipalComponents(DoCentered(PCAcomposite2005,Catchment),Catchment); 

var pcImage2010 = getPrincipalComponents(DoCentered(PCAcomposite2010,Catchment),Catchment); 

var pcImage2015 = getPrincipalComponents(DoCentered(PCAcomposite2015,Catchment),Catchment); 

var pcImage2020 = getPrincipalComponents(DoCentered(PCAcomposite2020,Catchment),Catchment); 

 

//7. Include elevation as band 

var bandsL = ['blue', 'green', 'red', 'nir', 'swir1', 'swir2','elev']; 

var elev = ee.Image(watershedclip(DEM)).select('elevation').rename('elev'); 

var composite1990 = Ifugao1990_TP_masked.median().addBands(elev).select(bandsL); 

var composite1995 = Ifugao1995_TP_masked.median().addBands(elev).select(bandsL); 

var composite2000 = Ifugao2000_TP_masked.median().addBands(elev).select(bandsL); 

var composite2005 = Ifugao2005_TP_masked.median().addBands(elev).select(bandsL); 

var composite2010 = Ifugao2010_TP_masked.median().addBands(elev).select(bandsL); 

var composite2015 = Ifugao2015_TP_masked.median().addBands(elev).select(bandsL); 

var composite2020 = Ifugao2020_TP_masked.median().addBands(elev).select(bandsL); 

 

//8. Classification through Random Forest (Part 1) 

function doTrainAndClassify_1(composite,bb,PCtrain){ 

  var training_1 = composite.select(bb).sampleRegions({ 

    collection: PCtrain, 

    properties: ['LC'], 

    scale: 30 

  }); 

  var classifier_1 = ee.Classifier.smileRandomForest(100) 

    .train({ 

      features: training_1, 

      classProperty: 'LC', 

      inputProperties: bb 

    }); 

  var classified = composite.classify(classifier_1); 

  return classified; 

} 

var classified1990 = doTrainAndClassify_1(composite1990,bandsL,Train1990); 

var classified1995 = doTrainAndClassify_1(composite1995,bandsL,Train1995); 

var classified2000 = doTrainAndClassify_1(composite2000,bandsL,Train2000); 

var classified2005 = doTrainAndClassify_1(composite2005,bandsL,Train2005); 

var classified2010 = doTrainAndClassify_1(composite2010,bandsL,Train2010); 

var classified2015 = doTrainAndClassify_1(composite2015,bandsL,Train2015); 

var classified2020 = doTrainAndClassify_1(composite2020,bandsL,Train2020); 

 

//9. Create Frequency Map 

var lc_col = ee.ImageCollection(classified1990) 

             .merge(ee.ImageCollection(classified1995)) 

             .merge(ee.ImageCollection(classified2000)) 

             .merge(ee.ImageCollection(classified2005)) 

             .merge(ee.ImageCollection(classified2010)) 

             .merge(ee.ImageCollection(classified2015)) 

             .merge(ee.ImageCollection(classified2010)); 

function MaskFrequentLC(img){ 

  var frequent = img.gte(5); 

  return frequent.updateMask(frequent); 

} 

var freq_ricefield = MaskFrequentLC(lc_col 

                  .map(function(img){return img.updateMask(img.eq(1))}) 

                  .reduce(ee.Reducer.count())); 

var freq_builtup = MaskFrequentLC(lc_col 

                  .map(function(img){return img.updateMask(img.eq(2))}) 

                  .reduce(ee.Reducer.count())); 

var freq_forest = MaskFrequentLC(lc_col 

                  .map(function(img){return img.updateMask(img.eq(3))}) 

                  .reduce(ee.Reducer.count())); 

var freq_lowplants = MaskFrequentLC(lc_col 

                  .map(function(img){return img.updateMask(img.eq(4))}) 

                  .reduce(ee.Reducer.count())); 
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var ricefieldvector = freq_ricefield.reduceToVectors({geometry: Catchment,scale: 30}); 

var builtupvector = freq_builtup.reduceToVectors({geometry: Catchment,scale: 30}); 

var forestvector = freq_forest.reduceToVectors({geometry: Catchment,scale: 30}); 

var lowplantsvector = freq_lowplants.reduceToVectors({geometry: Catchment,scale: 30}); 

 

//10. Create new training samples 

function GetTrainingSamples(classified,vector){ 

  var trainingfeat = classified.sample({ 

    region: vector, 

    scale: 30, 

    numPixels: 5000, 

    geometries: true 

  }); 

  return trainingfeat; 

} 

function GetTrainingSamples(classified,code,vector){ 

  var trainingfeat = classified.updateMask(classified.eq(code)).sample({ 

    region: vector, 

    scale: 30, 

    numPixels: 5000, 

    geometries: true 

  }); 

  return trainingfeat; 

} 

 

function GetTrainFeat(classified,v1,v2,v3,v4){ 

  var train_ricefield = GetTrainingSamples(classified,1,v1); 

  var train_builtup = GetTrainingSamples(classified,2,v2); 

  var train_forest = GetTrainingSamples(classified,3,v3); 

  var train_lowplants = GetTrainingSamples(classified,4,v4); 

  var train_features = train_ricefield.merge(train_builtup) 

                        .merge(train_forest).merge(train_lowplants); 

  return train_features; 

} 

var Trainfeat_2020 = GetTrainFeat(classified2020,ricefieldvector, 

                      builtupvector,forestvector,lowplantsvector); 

var Trainfeat_2015 = GetTrainFeat(classified2015,ricefieldvector, 

                      builtupvector,forestvector,lowplantsvector); 

var Trainfeat_2010 = GetTrainFeat(classified2010,ricefieldvector, 

                      builtupvector,forestvector,lowplantsvector); 

var Trainfeat_2005 = GetTrainFeat(classified2005,ricefieldvector, 

                      builtupvector,forestvector,lowplantsvector); 

var Trainfeat_2000 = GetTrainFeat(classified2000,ricefieldvector, 

                      builtupvector,forestvector,lowplantsvector); 

var Trainfeat_1995 = GetTrainFeat(classified1995,ricefieldvector, 

                      builtupvector,forestvector,lowplantsvector); 

var Trainfeat_1990 = GetTrainFeat(classified1995,ricefieldvector, 

                      builtupvector,forestvector,lowplantsvector); 

 

//11. Classification through Random Forest (Part 2) 

function doTrainAndClassify_2(composite,bb,train){ 

  var training_2 = composite.select(bb).sampleRegions({ 

    collection: train, 

    properties: ['classification'], 

    scale: 30 

  }); 

  var classifier_2 = ee.Classifier.smileRandomForest(100) 

    .train({ 

      features: training_2, 

      classProperty: 'classification', 

      inputProperties: bb 

    }); 

  var classified = composite.classify(classifier_2); 

  return classified; 

} 

var classified_2_1990 = doTrainAndClassify_2(composite1990,bandsL,Trainfeat_1990); 

var classified_2_1995 = doTrainAndClassify_2(composite1995,bandsL,Trainfeat_1995); 
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var classified_2_2000 = doTrainAndClassify_2(composite2000,bandsL,Trainfeat_2000); 

var classified_2_2005 = doTrainAndClassify_2(composite2005,bandsL,Trainfeat_2005); 

var classified_2_2010 = doTrainAndClassify_2(composite2010,bandsL,Trainfeat_2010); 

var classified_2_2015 = doTrainAndClassify_2(composite2015,bandsL,Trainfeat_2015); 

var classified_2_2020 = doTrainAndClassify_2(composite2020,bandsL,Trainfeat_2020); 

 

//12. Transition rules 

var lc_col2 = ee.ImageCollection(classified_2_1990) 

             .merge(ee.ImageCollection(classified_2_1995)) 

             .merge(ee.ImageCollection(classified_2_2000)) 

             .merge(ee.ImageCollection(classified_2_2005)) 

             .merge(ee.ImageCollection(classified_2_2010)) 

             .merge(ee.ImageCollection(classified_2_2015)) 

             .merge(ee.ImageCollection(classified_2_2020)); 

function transitionfirstyear(img1,img2,img3,c1,c2){ 

  var img1rule = img1.updateMask(img1.eq(c1));  

  var img2rule = img2.updateMask(img2.eq(c2)); 

  var img3rule = img3.updateMask(img3.eq(c2)); 

  var finalrule = img1rule.and(img2rule).and(img3rule); 

  var img1filtered = img1.where(finalrule.eq(1),c2); 

  return img1filtered; 

} 

function transitionbetween(img1,img2,img3,c1,c2){ 

  var img1rule = img1.updateMask(img1.eq(c1));  

  var img2rule = img2.updateMask(img2.eq(c2)); 

  var img3rule = img3.updateMask(img3.eq(c1)); 

  var finalrule = img1rule.and(img2rule).and(img3rule); 

  var img2filtered = img2.where(finalrule.eq(1),c1); 

  return img2filtered; 

} 

function transitionlastyear(img1,img2,img3,c1,c2){ 

  var img1rule = img1.updateMask(img1.eq(c1));  

  var img2rule = img2.updateMask(img2.eq(c1)); 

  var img3rule = img3.updateMask(img3.eq(c2)); 

  var finalrule = img1rule.and(img2rule).and(img3rule); 

  var img3filtered = img3.where(finalrule.eq(1),c1); 

  return img3filtered; 

} 

function Filtertransitionfirstyear(lclist,accfilcol){ 

  accfilcol = ee.ImageCollection(accfilcol); 

  lclist = ee.List(lclist); 

  var img1 = ee.Image(lclist.get(0)); 

  var img2 = ee.Image(lclist.get(1)); 

  var img3 = ee.Image(lclist.get(2)); 

  var rule9 = transitionfirstyear(img1,img2,img3,2,1); //BRR 

  var rule10 = transitionfirstyear(rule9,img2,img3,2,3); //BFF 

  var resultimage = ee.Image(rule10); 

  var accfilcol_update = accfilcol.merge(ee.ImageCollection(resultimage)); 

  return accfilcol_update; 

} 

function Filtertransitionbetween(currentno,startdic){ 

  startdic = ee.Dictionary(startdic); 

  var accfilcol = ee.ImageCollection(startdic.get('accfilcol')); 

  var lclist = ee.List(startdic.get('lclist')); 

  currentno = ee.Number(currentno); 

  var img1 = ee.Image(lclist.get(currentno.subtract(1))); 

  var img2 = ee.Image(lclist.get(currentno)); 

  var img3 = ee.Image(lclist.get(currentno.add(1))); 

  var rule1 = transitionbetween(img1,img2,img3,1,2); //RBR 

  var rule2 = transitionbetween(img1,rule1,img3,1,3); //RFR 

  var rule3 = transitionbetween(img1,rule2,img3,2,1); //BRB 

  var rule4 = transitionbetween(img1,rule3,img3,2,3); //BFB 

  var rule5 = transitionbetween(img1,rule4,img3,2,4); //BLB 

  var rule6 = transitionbetween(img1,rule5,img3,3,1); //FRF 

  var rule7 = transitionbetween(img1,rule6,img3,3,2); //FBF 

  var rule8 = transitionbetween(img1,rule7,img3,4,2); //LBL 

  var resultimage = ee.Image(rule8); 
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  var coldictionary = ee.Dictionary({ 

    accfilcol: accfilcol.merge(ee.ImageCollection(resultimage)), 

    lclist: lclist 

  }); 

  return coldictionary; 

} 

function Filtertransitionlastyear(lclist,accfilcol){ 

  accfilcol = ee.ImageCollection(accfilcol); 

  lclist = ee.List(lclist); 

  var img1 = ee.Image(lclist.get(-3)); 

  var img2 = ee.Image(lclist.get(-2)); 

  var img3 = ee.Image(lclist.get(-1)); 

  var rule11 = transitionlastyear(img1,img2,img3,2,1); //BBR 

  var rule12 = transitionlastyear(img1,img2,rule11,2,3); //BBF 

  var resultimage = ee.Image(rule12); 

  var accfilcol_update = accfilcol.merge(ee.ImageCollection(resultimage)); 

  return accfilcol_update; 

} 

function IterateTemporalFilter(curno, lccol){ 

  lccol = ee.ImageCollection(lccol); 

  var landcoverlist = ee.List(lccol.toList(7)); 

  var accfiltercol = ee.ImageCollection([]); 

  var filfirst_accfilcol = Filtertransitionfirstyear(landcoverlist,accfiltercol); 

  var bet_list = ee.List([1,2,3,4,5]); 

  var bet_dic = ee.Dictionary({ 

      accfilcol: filfirst_accfilcol, 

      lclist: landcoverlist 

    }); 

  var betweenresdic = ee.Dictionary(bet_list.iterate(Filtertransitionbetween, bet_dic)); 

  var filbet_accfilcol = ee.ImageCollection(betweenresdic.get('accfilcol')); 

  var fillast_accfilcol = Filtertransitionlastyear(landcoverlist,filbet_accfilcol); 

  return fillast_accfilcol; 

} 

var iter_list = ee.List([1,2,3]); 

var fil_lc_col = ee.ImageCollection(iter_list.iterate(IterateTemporalFilter, lc_col2)); 

var prefinalclassified1990 = ee.Image(fil_lc_col.toList(7).get(0)); 

var prefinalclassified1995 = ee.Image(fil_lc_col.toList(7).get(1)); 

var prefinalclassified2000 = ee.Image(fil_lc_col.toList(7).get(2)); 

var prefinalclassified2005 = ee.Image(fil_lc_col.toList(7).get(3)); 

var prefinalclassified2010 = ee.Image(fil_lc_col.toList(7).get(4)); 

var prefinalclassified2015 = ee.Image(fil_lc_col.toList(7).get(5)); 

var prefinalclassified2020 = ee.Image(fil_lc_col.toList(7).get(6)); 

 

//13. Masking misclassified paddy fields 

function filterclip(img){ 

  var watermask =  img.where(img.eq(1),1) 

                      .where(img.eq(2),1) 

                      .where(img.eq(3),1) 

                      .where(img.eq(4),1) 

                      .where(img.eq(5),0); 

  var maskedcliped = img.updateMask(watermask).clip(Catchment).rename('classification'); 

  return maskedcliped; 

} 

function maskpaddyinstream(prefinalclassified,stream){ 

  var paddyinwater = prefinalclassified.eq(1).and(stream); 

  var prefinalwater = prefinalclassified.where(paddyinwater.eq(1),5); 

  var neighbor = prefinalwater.neighborhoodToBands(ee.Kernel.square(1)); 

  var neighborscollection =  

                      ee.ImageCollection(filterclip(neighbor.select("classification_-1_-1"))) 

               .merge(ee.ImageCollection(filterclip(neighbor.select("classification_0_-1")))) 

               .merge(ee.ImageCollection(filterclip(neighbor.select("classification_1_-1")))) 

               .merge(ee.ImageCollection(filterclip(neighbor.select("classification_-1_0")))) 

               .merge(ee.ImageCollection(filterclip(neighbor.select("classification_1_0")))) 

               .merge(ee.ImageCollection(filterclip(neighbor.select("classification_-1_1")))) 

               .merge(ee.ImageCollection(filterclip(neighbor.select("classification_0_1")))) 

               .merge(ee.ImageCollection(filterclip(neighbor.select("classification_1_1")))); 

  var majorityneighbor = neighborscollection.reduce(ee.Reducer.mode()); 
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  var finalclassified = prefinalclassified.where(paddyinwater.eq(1),majorityneighbor); 

  return finalclassified; 

} 

var finalclassified1990 = maskpaddyinstream(prefinalclassified1990,Streamline); 

var finalclassified1995 = maskpaddyinstream(prefinalclassified1995,Streamline); 

var finalclassified2000 = maskpaddyinstream(prefinalclassified2000,Streamline); 

var finalclassified2005 = maskpaddyinstream(prefinalclassified2005,Streamline); 

var finalclassified2010 = maskpaddyinstream(prefinalclassified2010,Streamline); 

var finalclassified2015 = maskpaddyinstream(prefinalclassified2015,Streamline); 

var finalclassified2020 = maskpaddyinstream(prefinalclassified2020,Streamline); 

var LCPalette = { 

  min: 1,  

  max: 4, 

  palette: [ 

    'cdb33b', // rice field 

    'c4c4c4', // built-up 

    '225129', // forest 

    '387242' // low plants 

  ] 

}; 

Map.addLayer(finalclassified1990, LCPalette, 'Land Cover 1990'); 

Map.addLayer(finalclassified1995, LCPalette, 'Land Cover 1995'); 

Map.addLayer(finalclassified2000, LCPalette, 'Land Cover 2000'); 

Map.addLayer(finalclassified2005, LCPalette, 'Land Cover 2005'); 

Map.addLayer(finalclassified2010, LCPalette, 'Land Cover 2010'); 

Map.addLayer(finalclassified2015, LCPalette, 'Land Cover 2015'); 

Map.addLayer(finalclassified2020, LCPalette, 'Land Cover 2020'); 

 

//14. Accuracy Assessment 

function validateImage(finalclassifiedyr, Valyr, yr){ 

  var validationyr = finalclassifiedyr.sampleRegions({ 

    collection: Valyr, 

    properties: ['actual'], 

    scale: 30, 

  }); 

  print("Validation feature:", yr, validationyr); 

  var testAccuracyyr = validationyr.errorMatrix('actual', 'classification'); 

  print('Validation error matrix: ', yr, testAccuracyyr); 

  var AccuracyDic = ee.Dictionary({ 

    Consumers: testAccuracyyr.consumersAccuracy(), 

    Producers: testAccuracyyr.producersAccuracy(), 

    Overall: testAccuracyyr.accuracy(), 

    Kappa: testAccuracyyr.kappa() 

  }); 

  print("Validation Accuracies:", yr, AccuracyDic); 

  return testAccuracyyr; 

} 

var testAccuracy1990 = validateImage(finalclassified1990, Val1990, 1990); 

var testAccuracy1995 = validateImage(finalclassified1995, Val1995, 1995); 

var testAccuracy2000 = validateImage(finalclassified2000, Val2000, 2000); 

var testAccuracy2005 = validateImage(finalclassified2005, Val2005, 2005); 

var testAccuracy2010 = validateImage(finalclassified2010, Val2010, 2010); 

var testAccuracy2015 = validateImage(finalclassified2015, Val2015, 2015); 

var testAccuracy2020 = validateImage(finalclassified2020, Val2020, 2020); 

 

//15. Agriculture Change analysis 

function AgriAbandon(classified, code){ 

  var rice = classified.where(classified.eq(1),code) 

                        .where(classified.eq(2),0) 

                        .where(classified.eq(3),0) 

                        .where(classified.eq(4),0); 

  return rice;                       

} 

var riceA1990 = AgriAbandon(finalclassified1990,1); 

var riceA1995 = AgriAbandon(finalclassified1995,2); 

var riceA2000 = AgriAbandon(finalclassified2000,3); 

var riceA2005 = AgriAbandon(finalclassified2005,4); 
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var riceA2010 = AgriAbandon(finalclassified2010,5); 

var riceA2015 = AgriAbandon(finalclassified2015,6); 

var riceA2020 = AgriAbandon(finalclassified2020,7); 

var rice_last = ee.ImageCollection(riceA1990) 

             .merge(ee.ImageCollection(riceA1995)) 

             .merge(ee.ImageCollection(riceA2000)) 

             .merge(ee.ImageCollection(riceA2005)) 

             .merge(ee.ImageCollection(riceA2010)) 

             .merge(ee.ImageCollection(riceA2015)) 

             .merge(ee.ImageCollection(riceA2020)).max(); 

function AgriExpansion(classified, code){ 

  var rice = classified.where(classified.eq(1),code) 

                        .where(classified.eq(2),8) 

                        .where(classified.eq(3),8) 

                        .where(classified.eq(4),8); 

  return rice;                       

} 

var riceE1990 = AgriExpansion(finalclassified1990,1); 

var riceE1995 = AgriExpansion(finalclassified1995,2); 

var riceE2000 = AgriExpansion(finalclassified2000,3); 

var riceE2005 = AgriExpansion(finalclassified2005,4); 

var riceE2010 = AgriExpansion(finalclassified2010,5); 

var riceE2015 = AgriExpansion(finalclassified2015,6); 

var riceE2020 = AgriExpansion(finalclassified2020,7); 

var rice_first = ee.ImageCollection(riceE1990) 

             .merge(ee.ImageCollection(riceE1995)) 

             .merge(ee.ImageCollection(riceE2000)) 

             .merge(ee.ImageCollection(riceE2005)) 

             .merge(ee.ImageCollection(riceE2010)) 

             .merge(ee.ImageCollection(riceE2015)) 

             .merge(ee.ImageCollection(riceE2020)).min() 

             .remap([1,2,3,4,5,6,7,8],[1,2,3,4,5,6,7,0]); 

 

//16. Expansion and reduction of land cover types 

function Reclass(classified,classcode,code){ 

  var reclass = classified.where(classified.eq(1),0) 

                        .where(classified.eq(2),0) 

                        .where(classified.eq(3),0) 

                        .where(classified.eq(4),0) 

                        .where(classified.eq(classcode),code); 

  return reclass;                       

} 

function RedandExp(finalc1990,finalc2020,classcode){ 

  var classfirstyr = Reclass(finalc1990,classcode,1); 

  var classlastyr = Reclass(finalc2020,classcode,2); 

  var classdiff = classlastyr.subtract(classfirstyr); 

  var classchange = classfirstyr //if continuous, = 1 

                  .where(classdiff.eq(-1),2) //if abandoned, = -1 

                  .where(classdiff.eq(2),3); //if expanded, = 2 

  return classchange; 

} 

var ricechange = RedandExp(finalclassified1990,finalclassified2020,1); 

var builtupchange = RedandExp(finalclassified1990,finalclassified2020,2); 

var forestchange = RedandExp(finalclassified1990,finalclassified2020,3); 

var lowplantschange = RedandExp(finalclassified1990,finalclassified2020,4); 

 

//17. Transition values 

function TransitionClass(classifiedfrom,classifiedto,classcodefrom,classcodeto){ 

  var transtofrom = classifiedfrom.eq(classcodefrom).and(classifiedto.eq(classcodeto)); 

  return transtofrom;                       

} 

function TransitionsEachPeriod(classifiedfrom,classifiedto){ 

  var ricTOric = TransitionClass(classifiedfrom,classifiedto,1,1); 

  var ricTObui = TransitionClass(classifiedfrom,classifiedto,1,2); 

  var ricTOfor = TransitionClass(classifiedfrom,classifiedto,1,3); 

  var ricTOlow = TransitionClass(classifiedfrom,classifiedto,1,4); 

  var buiTOric = TransitionClass(classifiedfrom,classifiedto,2,1); 
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  var buiTObui = TransitionClass(classifiedfrom,classifiedto,2,2); 

  var buiTOfor = TransitionClass(classifiedfrom,classifiedto,2,3); 

  var buiTOlow = TransitionClass(classifiedfrom,classifiedto,2,4); 

  var forTOric = TransitionClass(classifiedfrom,classifiedto,3,1); 

  var forTObui = TransitionClass(classifiedfrom,classifiedto,3,2); 

  var forTOfor = TransitionClass(classifiedfrom,classifiedto,3,3); 

  var forTOlow = TransitionClass(classifiedfrom,classifiedto,3,4); 

  var lowTOric = TransitionClass(classifiedfrom,classifiedto,4,1); 

  var lowTObui = TransitionClass(classifiedfrom,classifiedto,4,2); 

  var lowTOfor = TransitionClass(classifiedfrom,classifiedto,4,3); 

  var lowTOlow = TransitionClass(classifiedfrom,classifiedto,4,4); 

  var transitionmap = classifiedfrom 

                      .where(ricTOric.eq(1),1).where(ricTObui.eq(1),2) 

                      .where(ricTOfor.eq(1),3).where(ricTOlow.eq(1),4) 

                      .where(buiTOric.eq(1),5).where(buiTObui.eq(1),6) 

                      .where(buiTOfor.eq(1),7).where(buiTOlow.eq(1),8) 

                      .where(forTOric.eq(1),9).where(forTObui.eq(1),10) 

                      .where(forTOfor.eq(1),11).where(forTOlow.eq(1),12) 

                      .where(lowTOric.eq(1),13).where(lowTObui.eq(1),14) 

                      .where(lowTOfor.eq(1),15).where(lowTOlow.eq(1),16); 

  return transitionmap; 

} 

var transition1990to1995 = TransitionsEachPeriod(finalclassified1990,finalclassified1995); 

var transition1995to2000 = TransitionsEachPeriod(finalclassified1995,finalclassified2000); 

var transition2000to2005 = TransitionsEachPeriod(finalclassified2000,finalclassified2005); 

var transition2005to2010 = TransitionsEachPeriod(finalclassified2005,finalclassified2010); 

var transition2010to2015 = TransitionsEachPeriod(finalclassified2010,finalclassified2015); 

var transition2015to2020 = TransitionsEachPeriod(finalclassified2015,finalclassified2020); 

 

//18. Agricultural Abandonment and Expansion 

function Paddydynamics(transition,ricelast,lastcode,ricefirst,firstcode){ 

  var abandonment = transition.where(transition.eq(1),0).where(transition.eq(2),1) 

                              .where(transition.eq(3),1).where(transition.eq(4),1) 

                              .where(transition.eq(5),0).where(transition.eq(6),0) 

                              .where(transition.eq(7),0).where(transition.eq(8),0) 

                              .where(transition.eq(9),0).where(transition.eq(10),0) 

                              .where(transition.eq(11),0).where(transition.eq(12),0) 

                              .where(transition.eq(13),0).where(transition.eq(14),0) 

                              .where(transition.eq(15),0).where(transition.eq(16),0); 

  var expansion = transition.where(transition.eq(1),0).where(transition.eq(2),0) 

                              .where(transition.eq(3),0).where(transition.eq(4),0) 

                              .where(transition.eq(5),1).where(transition.eq(6),0) 

                              .where(transition.eq(7),0).where(transition.eq(8),0) 

                              .where(transition.eq(9),1).where(transition.eq(10),0) 

                              .where(transition.eq(11),0).where(transition.eq(12),0) 

                              .where(transition.eq(13),1).where(transition.eq(14),0) 

                              .where(transition.eq(15),0).where(transition.eq(16),0); 

  var paddydynamics = abandonment.where(rice_last.eq(lastcode),2) 

        .where(expansion.eq(1),3).where(rice_first.eq(firstcode),4); 

  return paddydynamics;                       

} 

var PaddyDynamics19901995 = Paddydynamics(transition1990to1995,rice_last,1,rice_first,2); 

var PaddyDynamics19952000 = Paddydynamics(transition1995to2000,rice_last,2,rice_first,3); 

var PaddyDynamics20002005 = Paddydynamics(transition2000to2005,rice_last,3,rice_first,4); 

var PaddyDynamics20052010 = Paddydynamics(transition2005to2010,rice_last,4,rice_first,5); 

var PaddyDynamics20102015 = Paddydynamics(transition2010to2015,rice_last,5,rice_first,6); 

var PaddyDynamics20152020 = Paddydynamics(transition2015to2020,rice_last,6,rice_first,7); 
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A2. The R code 

 

The following lines were the R code executed in Rstudio to implement the logistic 

regression for building the statistical model of LUCC. 

 

##0. Set working directory and library 

install.packages("pscl") 

install.packages("ROCR") 

library(pscl) 

library(ROCR) 

setwd("C:/Users/estac/Documents/(Acads) PhD - Environmental Management/Dissertation/Data/2. Logistic 

regression/...Revision/Bivariate analysis/WorkingDIR") 

getwd() 

##set the personal library 

.libPaths("C:/Users/estac/Documents/(Acads) PhD - Environmental Management/Dissertation/Data/2. Logistic 

regression/Final regression/WorkingDIR/MyLibrary") 

#.libPaths() ## Press tab for options 

 

##1. Add and attach training csv to R 

#agriabandon.data <- read.csv("MyData2/Reg20052010.csv") 

agriabandon.data <- read.csv("MyData2/Generalregression.csv") 

attach(agriabandon.data) 

summary(agriabandon.data) 

 

##2. Convert "variablen" to categorical variable (example) 

#s_aspect <- ifelse(aspect > 135 & aspect <225, 1, 0) 

##add new variable to data 

#agriabandon.data <- cbind(agriabandon.data, s_aspect) 

 

##3. Are any of your covariates correlated? Generate a Pearson correlation coefficient matrix 

cor.matrix <- cor(agriabandon.data, method = "pearson") 

cor.matrix 

 

##4. Standardize continuous variables which allows you to compare the strength of each covariate in model results 

#z-score scaling (var-mean/sd, which makes the mean=0, sd=1, var ranges, add to dataframe) 

Elevation.std <- scale(dem, center=TRUE, scale=TRUE) 

Slope.std <- scale(slope, center=TRUE, scale=TRUE) 

SinAspect.std <- scale(SinAspect, center=TRUE, scale=TRUE) 

CosAspect.std <- scale(CosAspect, center=TRUE, scale=TRUE) 

Soilgroup.std <- scale(Soil_Group, center=TRUE, scale=TRUE) 

QF.std <- scale(QF, center=TRUE, scale=TRUE) 

Dist_stream.std <- scale(stream, center=TRUE, scale=TRUE) 

Dist_townc.std <- scale(Dist_city, center=TRUE, scale=TRUE) 

Dist_road.std <- scale(Dist_road, center=TRUE, scale=TRUE) 

Dist_viewp.std <- scale(Dist_view, center=TRUE, scale=TRUE) 

Heritagesi.std <- scale(Heritage, center=TRUE, scale=TRUE) 

Lowveg.std <- scale(Lowveg, center=TRUE, scale=TRUE) 

Forest.std <- scale(forest, center=TRUE, scale=TRUE) 

Builtup.std <- scale(builtup, center=TRUE, scale=TRUE) 

Ricefield.std <- scale(Paddyfield, center=TRUE, scale=TRUE) 

agriabandon.data <- cbind(agriabandon.data, Elevation.std, Slope.std, SinAspect.std, CosAspect.std, Soilgroup.std, QF.std, 

Dist_stream.std, Dist_townc.std, Dist_road.std, Dist_viewp.std, Heritagesi.std, Lowveg.std, Forest.std, Builtup.std, 

Ricefield.std) 

 

###5. Run logistic regression and summarize results 

#abandonment_vars.model <- glm(Code ~ Elevation.std + Slope.std + SinAspect.std + CosAspect.std + Soilgroup.std + 

QF.std + Dist_stream.std +  Dist_townc.std + Dist_road.std + Dist_viewp.std + Heritagesi.std + Lowveg.std + Forest.std + 

Builtup.std +  Ricefield.std, family = binomial, data = agriabandon.data) 

abandonment_vars.model <- glm(Code ~ dem + slope + SinAspect + CosAspect + Soil_Group + QF + stream +  Dist_city + 

Dist_road + Dist_view + Heritage + Lowveg + forest + builtup + Paddyfield, family = binomial, data = agriabandon.data) 

summary(abandonment_vars.model) 

pR2(abandonment_vars.model) 
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###9. predicted values 

Predicted=predict(abandonment_vars.model, type="response") 

write.table(Predicted, "predictedvalues.txt", sep="\t") 

 

###10. Residuals 

##residual deviance indicates the response predicted by a model  

##on adding independent variables. The lower the values, the better the model 

residuals(abandonment_vars.model, type="deviance") 

 

###11. Confusion matrix: a tabular representation of actual vs predicted values 

##This helps us to find the accuracy of the model and avoid overfitting  

table(agriabandon.data$Code, Predicted > 0.5) 

 

###12. ROC : ROC summarizes the predictive power for all possible values of p > 0.5. 

ROCRpred <- prediction(Predicted, agriabandon.data$Code) 

ROCRperf <- performance(ROCRpred, 'tpr', 'fpr') 

plot(ROCRperf) 

#### Find AUC area under curve of ROC: referred to as index of accuracy (A) or  

##concordance index, is a perfect performance metrix for ROC curve 

auc <- performance(ROCRpred, measure = "auc") 

auc <- auc@y.values[[1]] 

auc 

plot(ROCRperf, main="AUC=0.69", colorize = TRUE, text.adj = c(-0.2,17)) 
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A3. The GAMA code 

 

The following lines were the GAML code executed in GAMA to develop the Agent-

based model of Ifugao rice terraces 

 

model Ifugaoriceterraces 

 

global {// 

//--Modeling and simulation fundamentals-- 

//float seedvalue <- 9.0;  

float startt <- machine_time; 

 

//--Experiment type-- 

int by_optimization <- 0; 

bool bool_optimization <- by_optimization = 1 ? true:false; 

bool stop_currentrun <- false; 

bool is_batch <- false;   

bool is_calibration <- false; 

 

//--For accuracies-- 

list<string> categories <- ["Paddyfield", "otherlandcover","NODATA"]; 

matrix<float> fuzzy_categories; 

matrix<float> fuzzy_transitions; 

list<float> nb_per_cat_actual; 

list<float> nb_per_cat_model; 

float accuracy_fuzzykappa; 

float accuracy_fuzzykappa_sim; 

float accuracy_PAD; 

float accuracy_paddyfieldresidual; 

int accuracy_numberoffarmsresidual;  

list<float> yearlyfuzzykappa; 

list<float> yearlyfuzzykappa_sim; 

list<float> yearlyPAD; 

list<float> yearlypaddyfieldresidual; 

list<int> yearlynumberoffarmsresidual; 

float model_fuzzykappa; 

float model_fuzzykappa_sim; 

float model_PAD; 

float model_paddyfieldresidual; 

float model_numberoffarmsresidual; 

float optimizationmeasure; 

 

//--import of files and setting of the environment--  

//csv 

file csv_file_Tabledata <- csv_file("../includes/Final_Yearlytabledata.csv",","); 

matrix matrix_Tabledata <- matrix(csv_file_Tabledata); 

file csv_file_paddyfieldarea <- csv_file("../includes/Final_LULCdata.csv",","); 

matrix matrix_paddyfieldarea <- matrix(csv_file_paddyfieldarea); 

file csv_file_numberoffarms <- csv_file("../includes/Numberoffarms.csv",","); 

matrix matrix_numberoffarms <- matrix(csv_file_numberoffarms); 

 

//raster files 

grid_file raster_file_LCactual1990 <- file('../includes/lcactual1990.asc'); //0 

grid_file raster_file_slope <- file('../includes/slope.asc'); //2 

grid_file raster_file_cosaspect <- file('../includes/cosaspect.asc'); //3 

grid_file raster_file_disttowncenter <- file('../includes/dist_towncenter.asc'); //4 

grid_file raster_file_distroad <- file('../includes/dist_road.asc'); //5 

grid_file raster_file_heritage <- file('../includes/heritage.asc'); //6 

grid_file raster_file_quickflow1990 <- file('../includes/qf1990.asc'); //7 

grid_file raster_file_densforest1990 <- file('../includes/density_forest1990.asc'); //8 

grid_file raster_file_denslowveg1990 <- file('../includes/density_lowveg1990.asc'); //9 

grid_file raster_file_denspaddy1990 <- file('../includes/density_paddyfield1990.asc'); //10 
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grid_file raster_file_quickflow1995 <- file('../includes/qf1995.asc'); //11 

grid_file raster_file_densforest1995 <- file('../includes/density_forest1995.asc'); //12 

grid_file raster_file_denslowveg1995 <- file('../includes/density_lowveg1995.asc'); //13 

grid_file raster_file_denspaddy1995 <- file('../includes/density_paddyfield1995.asc'); //14 

grid_file raster_file_LCactual1995 <- file('../includes/lcactual1995.asc'); //15 

 

 

grid_file raster_file_quickflow2000 <- file('../includes/qf2000.asc'); //17 

grid_file raster_file_densforest2000 <- file('../includes/density_forest2000.asc'); //18 

grid_file raster_file_denslowveg2000 <- file('../includes/density_lowveg2000.asc'); //19 

grid_file raster_file_denspaddy2000 <- file('../includes/density_paddyfield2000.asc'); //20 

grid_file raster_file_LCactual2000 <- file('../includes/lcactual2000.asc'); //21 

 

/* 

grid_file raster_file_quickflow2005 <- file('../includes/qf2005.asc'); //23 

grid_file raster_file_densforest2005 <- file('../includes/density_forest2005.asc'); //24 

grid_file raster_file_denslowveg2005 <- file('../includes/density_lowveg2005.asc'); //25 

grid_file raster_file_denspaddy2005 <- file('../includes/density_paddyfield2005.asc'); //26 

//grid_file raster_file_LCactual2005 <- file('../includes/lcactual2005.asc'); //27 

 

grid_file raster_file_quickflow2010 <- file('../includes/qf2010.asc'); //29 

grid_file raster_file_densforest2010 <- file('../includes/density_forest2010.asc'); //30 

grid_file raster_file_denslowveg2010 <- file('../includes/density_lowveg2010.asc'); //31 

grid_file raster_file_denspaddy2010 <- file('../includes/density_paddyfield2010.asc'); //32 

//grid_file raster_file_LCactual2010 <- file('../includes/lcactual2010.asc'); //33 

*/ 

 

grid_file raster_file_quickflow2015 <- file('../includes/qf2015.asc'); 

grid_file raster_file_densforest2015 <- file('../includes/density_forest2015.asc'); //30 

grid_file raster_file_denslowveg2015 <- file('../includes/density_lowveg2015.asc'); //31 

grid_file raster_file_denspaddy2015 <- file('../includes/density_paddyfield2015.asc'); //32 

grid_file raster_file_LCactual2015 <- file('../includes/lcactual2015.asc'); 

 

grid_file raster_file_LCactual2020 <- file('../includes/lcactual2020.asc'); 

  

//boundary 

geometry shape <- envelope(raster_file_LCactual1990); 

 

//--Constant parameters through all scenarios (based on data)-- 

//Time-constant 

int startingyear <- 1990; 

int endingyear <- 2020; 

float coef_slope <- 0.0499; 

float coef_cosaspect <- -0.303; 

float coef_quickflow <- 0.000360; 

float coef_disttowncenter <- 0.000198; 

float coef_distroad <- -0.000281; 

float coef_heritage <- -0.841; 

float coef_densforest <- 1.210; 

float coef_denslowveg <- 2.010; 

float coef_denspaddy <- -2.540; 

int init_nb_farmers <- 1746; 

float Valuesheritage_rate <- 0.25;   

//Time-changing 

float precipitation  <- 20.0; 

float max_temp <- 20.0; 

float familysize <- 4.87; 

float lifeexpectancy <- 65.0; 

float actual_paddyfieldarea <- 0.0; 

//--Constant parameters through all scenarios (based on calibration)-- 

float parameter_precip_effect_on_erosion <- 10.0;  

float parameter_maxtemp_effect_on_watersupply <- 69.0;  

float parameter_threshold_succesorincome <- 19000.0; 

int initialoldestfarmer <- 60; 

int initialyoungestfarmer <- 29; 

 

//--Changing parameters through scenarios-- 
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int govfixeserosion_number <- 0; 

bool governmentfixeserodedareas <- govfixeserosion_number = 1 ? true:false;  

float subsidyperfamilyhead <- 0.0; 

 

//--Temporal variables-- 

//year 

    int current_year; 

    //Environment 

float erosion_rate <- 0.9; 

float watersupply_rate <- 0.10; 

    //Agents 

    int nb_farmerhouseholds; 

float ave_farmarea; 

list yearlynb_farmerhouseholds; 

//LUCC 

float Permanentlyabandonedarea; 

int Permanentlyabandonedcount; 

float PeriodicPermanentlyabandonedarea; 

int PeriodicPermanentlyabandonedcount; 

float Paddyfieldarea; 

    int Paddyfieldcount; 

    list yearlypaddyfieldarea; 

     

    //--initialization setting-- 

    init{           

     write startingyear; 

 current_year <- startingyear; 

 erosion_rate <- 0.1; 

 watersupply_rate <- 0.9; 

  

 list<float> areafactorlist; 

     loop times: init_nb_farmers{ 

  float areafactor <- rnd(1.0,3.0); 

  add areafactor to: areafactorlist; 

 } 

 float areafactorsum <- sum(areafactorlist); 

 list init_yearcolumn <- matrix_paddyfieldarea column_at 0; 

 int init_index <- init_yearcolumn index_of current_year; 

 float currenttotalpaddyarea <- float(matrix_paddyfieldarea[1,init_index]); 

 list<float> parameterinit_farmerareas; 

 loop areafactor over: areafactorlist{ 

  float farmerarea <- areafactor*currenttotalpaddyarea/areafactorsum; 

  add farmerarea to: parameterinit_farmerareas; 

 }  

 int initializedfarmowner <- 0; 

 create farmowner number: init_nb_farmers{  

  farmarea <- parameterinit_farmerareas at initializedfarmowner; 

  farmarea_stillpaddy <- farmarea; 

  farmarea_temporarilyabandoned <- [0.0,0.0,0.0]; 

  farmowner_age <- rnd(initialyoungestfarmer, initialoldestfarmer); 

  convertedfrompaddy <- 0.0; 

  newowner <- true;  

  do createsuccesors; 

  initializedfarmowner <- initializedfarmowner + 1;        

 } 

 nb_farmerhouseholds <- length(farmowner); 

 ave_farmarea <- farmowner mean_of each.farmarea;  

 Permanentlyabandonedarea <- farmowner sum_of (each.convertedfrompaddy); 

 Permanentlyabandonedcount <- int(Permanentlyabandonedarea/900.0); 

     Paddyfieldarea <- farmowner sum_of each.farmarea_stillpaddy; 

     Paddyfieldcount <- int(Paddyfieldarea/900.0); 

      

 ask grid_cell {    

  neighbours  <- self neighbors_at 1; 

  LCtype  <- bands[0]; 

  paddyfield <- LCtype = 1.0 ? true:false; 

  paddyfieldactual <- -1.0; 



 153 

  paddyfieldmodel <- -1.0; 

  grid_value <- -1.0; 

  paddyLUCCprob <- -1.0; 

  if LCtype > 1.0{ 

   paddyfieldactual <- 0.0; 

   paddyfieldmodel <- 0.0; 

   grid_value <- 0.0; 

  } 

  if paddyfield{ 

   paddyfieldactual <- 1.0; 

   paddyfieldmodel <- 1.0; 

   grid_value <- 1.0; 

   paddyLUCCprob <- 0.0; 

  } 

  if grid_value >= 0{ 

   color <- rgb(255, 255*(grid_value),0); 

  } else{ 

   color <- #black; 

  } 

   

  if paddyfieldactual = 1.0{ 

   cat_init <- "Paddyfield"; 

   cat_actual <- "Paddyfield"; 

  } else if paddyfieldactual = 0.0{ 

   cat_init <- "Paddyfield"; 

   cat_actual <- "otherlandcover"; 

  } else{ 

   cat_init <- "Paddyfield"; 

   cat_actual <- "NODATA"; 

  } 

  realdata <- cat_actual = "NODATA" ? false: true; 

 } 

 ask factorsnondens {  

  slope <- bands[1]; 

  cosaspect <- bands[2]; 

  disttowncenter <- bands[3]; 

  distroad <- bands[4]; 

  heritage <- bands[5]; 

  quickflow <- bands[6]; 

  color <- rgb(255, 40*slope,0); 

 } 

 ask factorsdens {  

  densforest <- bands[1]; 

  denslowveg <- bands[2]; 

  denspaddy <- bands[3]; 

  color <- rgb(255, 255*densforest,0); 

 } 

    } 

 

reflex sequenceswithinayear when: (current_year != endingyear){ 

 if is_calibration{ 

  if current_year = 1995 or current_year = 2000  

  or current_year = 2015{ 

   do Updaterasterbandsandactualabandonment; 

   write "updated"; 

  }    

 } 

 do Effectofenvironmenttolivingconditions; 

 do Agentsactions; 

 do Changesbasedonsmallscaleprocesses; 

 current_year <- cycle + startingyear + 1; 

 write current_year; 

 if is_calibration{ 

  if current_year = 1995 or current_year = 2000 

  or current_year = 2015 or current_year = 2020{ 

   do Generationofnewlandusemap;    

  }    
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 }   

 if is_calibration{ 

  if current_year = 2002 or current_year = 2012{ 

   do Computeaccuracy_familysize;     

  } 

  if current_year = 1995 or current_year = 2000 or current_year = 2015  

  or current_year = 2020{ 

   do Computeaccuracy_LUCC;     

  }    

 } 

} 

 

reflex stop_simulation when: current_year = endingyear{ 

 if is_calibration{ 

  list yearlyfuzzykappasquared <- yearlyfuzzykappa collect (each^2); 

  list yearlyfuzzykappa_simsquared <- yearlyfuzzykappa_sim collect (each^2); 

  list yearlyPADsquared <- yearlyPAD collect (each^2); 

  list yearlypaddyfieldresidualsquared <- yearlypaddyfieldresidual collect (each^2); 

  list yearlynumberoffarmsresidualsquared <- yearlynumberoffarmsresidual collect (each^2); 

  model_fuzzykappa <- sqrt(yearlyfuzzykappasquared mean_of (each)); 

  model_fuzzykappa_sim <- sqrt(yearlyfuzzykappa_simsquared mean_of (each)); 

  model_PAD <- sqrt(yearlyPADsquared mean_of (each)); 

  model_paddyfieldresidual <- sqrt(yearlypaddyfieldresidualsquared mean_of (each)); 

  model_numberoffarmsresidual <- sqrt(yearlynumberoffarmsresidualsquared mean_of (each)); 

  optimizationmeasure <- model_paddyfieldresidual*model_numberoffarmsresidual; 

  write "model_fuzzykappa: " + model_fuzzykappa; 

  write "model_fuzzykappa_sim: " + model_fuzzykappa_sim; 

  write "model_PAD: " + model_PAD; 

  write "model_paddyfieldresidual: " + model_paddyfieldresidual; 

  write "model_numberoffarmsresidual: " + model_numberoffarmsresidual; 

  write "optimization measure: " + optimizationmeasure; 

 } 

        write "End of simulation. Duration: " + (machine_time - startt)/1000; 

 stop_currentrun <- true; 

 if !is_batch{ 

  //save grid_cell to:"../results/LCasc_calib.asc" type:"asc"; 

      //save grid_cell to:"../results/LCtif_calib.tif" type:"geotiff"; 

         save [nb_farmerhouseholds, ave_farmarea, Permanentlyabandonedarea, Paddyfieldarea 

            ] to: "../results/Simulationresults.csv" type: "csv" rewrite: true header: true;         

  do pause; 

 }        

    } 

     

    action Updaterasterbandsandactualabandonment{ 

 int rindex <- int((current_year-startingyear)/5); 

 if current_year = 2015{ 

  rindex <- 3; 

 } 

 int quickflowindex <- rindex + 6; 

 int densforestindex <- 3*rindex + 1; 

 int denslowvegindex <- 3*rindex + 2; 

 int denspaddyindex <- 3*rindex + 3; 

 ask factorsnondens{ 

  quickflow <- bands[quickflowindex];    

 } 

 ask factorsdens{ 

  densforest <- bands[densforestindex]; 

  denslowveg <- bands[denslowvegindex]; 

  denspaddy <- bands[denspaddyindex];    

 } 

} 

 

action Effectofenvironmenttolivingconditions{ 

 list yearcolumn <- matrix_Tabledata column_at 0; 

 int index <- yearcolumn index_of float(current_year); 

 precipitation <- float(matrix_Tabledata[1,index]); 

 max_temp <- float(matrix_Tabledata[2,index]); 
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 familysize <- float(matrix_Tabledata[3,index]); 

 lifeexpectancy <- float(matrix_Tabledata[4,index]);    

 erosion_rate <- parameter_precip_effect_on_erosion*(10.0^-10)*(precipitation^2); 

 watersupply_rate <- (100.0*parameter_maxtemp_effect_on_watersupply)/(max_temp^2); 

} 

 

action Agentsactions{ 

 int nooffarmer <- 1; 

 ask farmowner{ 

  do tillland; 

  nooffarmer <- nooffarmer + 1;   

 } 

 ask farmowner where !each.newowner{ 

  do seeksuccesors; 

  nooffarmer <- nooffarmer + 1;     

 }  

} 

 

action Changesbasedonsmallscaleprocesses{ 

 nb_farmerhouseholds <- length(farmowner); 

 ave_farmarea <- farmowner mean_of (each.farmarea); 

 float formerpaddyfieldarea <- Paddyfieldarea; 

 int formerpaddyfieldcount <- Paddyfieldcount; 

     Paddyfieldarea <- farmowner sum_of (each.farmarea_stillpaddy); 

 Paddyfieldcount <- int(Paddyfieldarea/900.0); 

 Permanentlyabandonedarea <-  formerpaddyfieldarea - Paddyfieldarea;  

 Permanentlyabandonedcount <- int(Permanentlyabandonedarea/900.0); 

 PeriodicPermanentlyabandonedarea <-  PeriodicPermanentlyabandonedarea + Permanentlyabandonedarea;  

 PeriodicPermanentlyabandonedcount <- int(PeriodicPermanentlyabandonedarea/900.0); 

 add nb_farmerhouseholds to: yearlynb_farmerhouseholds; 

 add Paddyfieldarea to: yearlypaddyfieldarea;   

} 

 

action Generationofnewlandusemap{ 

 ask grid_cell{   

  if paddyfield{ 

   paddyLUCCprob <- 1.0/(1.0+exp(-1.0*((coef_slope*factorsnondens(location).slope)+ 

     (coef_cosaspect*factorsnondens(location).cosaspect)+ 

     (coef_quickflow*factorsnondens(location).quickflow)+ 

     (coef_disttowncenter*factorsnondens(location).disttowncenter)+ 

     (coef_distroad*factorsnondens(location).distroad)+ 

     (coef_heritage*factorsnondens(location).heritage)+ 

     (coef_densforest*factorsdens(location).densforest)+ 

     (coef_denslowveg*factorsdens(location).denslowveg)+ 

     (coef_denspaddy*factorsdens(location).denspaddy))));        

  } 

 } 

 float allocatedPermanentlyabandonedcount <- 0.0; 

 write "PeriodicPermanentlyabandonedcount"+PeriodicPermanentlyabandonedcount; 

 loop while: PeriodicPermanentlyabandonedcount != allocatedPermanentlyabandonedcount{ 

  float highestprob <- grid_cell  

       where (each.paddyfield and each.paddyLUCCprob <= 1 and 

each.paddyLUCCprob >= 0)  

       max_of each.paddyLUCCprob; 

  grid_cell highestprobcell <- (grid_cell where (each.paddyfield and each.paddyLUCCprob=highestprob))[0]; 

  highestprobcell.LCtype <- 4.0; 

  highestprobcell.paddyfield <- false;  

  highestprobcell.paddyfieldmodel <- 0.0; 

  highestprobcell.grid_value <- 0.0; 

  allocatedPermanentlyabandonedcount <- allocatedPermanentlyabandonedcount + 1; 

 } 

 PeriodicPermanentlyabandonedarea <- 0.0; 

 PeriodicPermanentlyabandonedcount <- 0; 

 ask grid_cell{ 

  if grid_value >= 0{ 

   color <- rgb(255, 255*(grid_value),0); 

  } else{ 
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   color <- #black; 

  } 

 }  

} 

 

action Computeaccuracy_familysize{ 

 //compute numberoffarmers residual 

 list yearcolumn <- matrix_numberoffarms column_at 0; 

 int index <- yearcolumn index_of current_year; 

 int actualnumberoffarms <- int(matrix_numberoffarms[1,index]); 

 accuracy_numberoffarmsresidual <- actualnumberoffarms - nb_farmerhouseholds; 

 write "Number of farms residual: " + accuracy_numberoffarmsresidual;  

 add accuracy_numberoffarmsresidual to: yearlynumberoffarmsresidual; 

} 

 

action Computeaccuracy_LUCC{ 

 //compute fuzzy kappa value 

 //int rindex <- int((current_year-startingyear)/5);   

 int LCactualindex <- 0; 

 if current_year = 1995{ 

  LCactualindex <- 1; 

 } else if current_year = 2000{ 

  LCactualindex <- 2; 

 } else if current_year = 2015{ 

  LCactualindex <- 3; 

 } else if current_year = 2020{ 

  LCactualindex <- 4; 

 } 

    

 ask grid_cell{   

  LCtype  <- bands[LCactualindex]; 

  paddyfield <- LCtype = 1 ? true:false; 

  paddyfieldactual <- -1.0; 

  if LCtype > 1.0{ 

   paddyfieldactual <- 0.0; 

  } 

  if paddyfield{ 

   paddyfieldactual <- 1.0; 

  } 

  if paddyfieldactual = 1.0{ 

   cat_actual <- "Paddyfield"; 

  } else if paddyfieldactual = 0.0{ 

   cat_actual <- "otherlandcover"; 

  } else{ 

   cat_actual <- "NODATA"; 

  } 

  realdata <- cat_actual = "NODATA" ? false: true; 

   

  if paddyfieldmodel = 1.0{ 

   cat_model <- "Paddyfield"; 

  } else if paddyfieldmodel = 0.0{ 

   cat_model <- "otherlandcover"; 

  } else{ 

   cat_model <- "NODATA"; 

  } 

  if cat_model = "NODATA"{ 

   realdata <- false; 

  } 

 } 

 fuzzy_categories <- 0.0 as_matrix {length(categories),length(categories)}; 

 loop i from: 0 to: length(categories) - 1 { 

  fuzzy_categories[i,i] <- 1.0; 

 } 

 fuzzy_transitions <- 0.0 as_matrix {length(categories)*length(categories),length(categories)*length(categories)}; 

 loop i from: 0 to: (length(categories) * length(categories)) - 1 { 

  fuzzy_transitions[i,i] <- 1.0;  

 } 
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 list<float> similarity_per_agents ; 

 using topology(grid_cell) { 

  accuracy_fuzzykappa <- fuzzy_kappa(grid_cell where each.realdata,  

         grid_cell where each.realdata collect (each.cat_actual), 

         grid_cell where each.realdata collect (each.cat_model),  

         similarity_per_agents, 

         categories, 

         fuzzy_categories,  

         60); 

  accuracy_fuzzykappa_sim <- fuzzy_kappa_sim(grid_cell where each.realdata, 

         grid_cell where each.realdata collect (each.cat_init), 

         grid_cell where each.realdata collect (each.cat_actual),  

         grid_cell where each.realdata collect (each.cat_model), 

         similarity_per_agents, 

         categories, 

         fuzzy_transitions,  

         60); 

          

         /* 

         fuzzy_kappa(list(cell), 

         cell collect (each.cat_observed), 

         cell collect (each.cat), 

         similarity_per_agents, 

         categories, 

         fuzzy_categories,  

         10); 

         fuzzy_kappa_sim(list(cell), 

         cell collect (each.cat_init), 

         cell collect (each.cat_observed), 

         cell collect (each.cat), 

         similarity_per_agents, 

         categories, 

         fuzzy_transitions, 

         10); 

         *  

         *  

         *  

         * */ 

          

          

 } 

 list realcell <- grid_cell where each.realdata; 

 loop i from: 0 to: length(grid_cell where each.realdata) - 1 { 

  int val <- int(255 * similarity_per_agents[i]); 

  ask realcell[i]{ 

   color_fuzzy <- rgb(val, val, val); 

  } 

 } 

  

 //compute PAD 

 loop c over: categories { 

  nb_per_cat_actual << grid_cell count (each.cat_actual = c); 

  nb_per_cat_model << grid_cell count (each.cat_model = c);  

 } 

 accuracy_PAD <- percent_absolute_deviation(nb_per_cat_actual,nb_per_cat_model);  

 //compute paddy field area residual   

 list fiveyearcolumn <- matrix_paddyfieldarea column_at 0; 

 int yindex <- fiveyearcolumn index_of current_year; 

 actual_paddyfieldarea <- float(matrix_paddyfieldarea[1,yindex]); 

 accuracy_paddyfieldresidual <- actual_paddyfieldarea - Paddyfieldarea; 

  

 //Add to accuracy lists 

 write "Fuzzy Kappa: " + accuracy_fuzzykappa; 

 write "Fuzzy Kappa simulation: " + accuracy_fuzzykappa_sim; 

 write "PAD: " + accuracy_PAD; 

 write "Paddy field residual: " + accuracy_paddyfieldresidual;  

 add accuracy_fuzzykappa to: yearlyfuzzykappa; 
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 add accuracy_fuzzykappa_sim to: yearlyfuzzykappa_sim; 

 add accuracy_PAD to: yearlyPAD; 

 add accuracy_paddyfieldresidual to: yearlypaddyfieldresidual; 

} 

 

} 

 

species farmowner{ 

float farmarea; 

float farmarea_stillpaddy; 

list<float> farmarea_temporarilyabandoned; 

int farmowner_age; 

float convertedfrompaddy; 

bool newowner; 

  

  action createsuccesors{ 

     float childrennumber <- familysize - 2; 

     create succesor number: int(rnd(childrennumber-0.5,childrennumber+0.5)){ 

  succesor_age <- farmowner_age - rnd(26, 35); 

  totalincome <- rnd(8167.0,28167.0); 

  decided <- false; 

  migrated <- false; 

  valuesheritage <- false;  

  caninherit <- false; 

     } 

    } 

     

    action tillland{ 

     list<float> cultivationdiff <- [0.0,0.0,0.0]; 

     float farmarea_eroded <- 0.0; 

     float abandonedarea <- 0.0; 

 if !governmentfixeserodedareas{ 

  float erodedland <- erosion_rate*abs(farmarea_stillpaddy); 

  farmarea_eroded <- erodedland > abs(farmarea_stillpaddy) ? abs(farmarea_stillpaddy): erodedland; 

  farmarea_stillpaddy <-  farmarea_stillpaddy - farmarea_eroded; 

 }  

 float wateredfield <- watersupply_rate*abs(farmarea); 

 float maxareathatcanbetilled <- abs(farmarea); 

 if farmowner_age >= 60 and farmowner_age <= 80{ 

  float fieldpercentagethatcanbetilled <- (80.0 - farmowner_age)/20.0;  

  maxareathatcanbetilled <- fieldpercentagethatcanbetilled*abs(farmarea); 

 } 

 float harvestableland <- min([wateredfield,maxareathatcanbetilled,farmarea - farmarea_eroded]); 

 if harvestableland <= abs(farmarea_stillpaddy){ 

  abandonedarea <- abs(farmarea_stillpaddy) - harvestableland; 

  farmarea_temporarilyabandoned[2] <- abandonedarea; 

  farmarea_stillpaddy <-  harvestableland; 

 } else if harvestableland > abs(farmarea_stillpaddy){ 

  float recultivatedarea <- harvestableland - abs(farmarea_stillpaddy); 

  cultivationdiff[0] <- farmarea_temporarilyabandoned[0] - recultivatedarea; 

  if cultivationdiff[0] < 0{ 

   cultivationdiff[1] <- farmarea_temporarilyabandoned[1] + cultivationdiff[0]; 

   cultivationdiff[0] <- 0; 

  } 

  farmarea_temporarilyabandoned[0] <- cultivationdiff[0]; 

  farmarea_temporarilyabandoned[1] <- cultivationdiff[1]; 

  farmarea_stillpaddy <-  harvestableland; 

 } 

 farmarea <- farmarea - farmarea_eroded - farmarea_temporarilyabandoned[0]; 

 remove from: farmarea_temporarilyabandoned index: 0; 

 add 0 to: farmarea_temporarilyabandoned; 

 newowner <- false;      

    }          

     

   action seeksuccesors{ 

 farmowner_age <- farmowner_age + 1; 

 bool hasinheritor <- false; 
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 ask succesor{ 

  succesor_age <- succesor_age + 1; 

  if !decided{ 

   if succesor_age >= 18{ 

    totalincome <- totalincome + subsidyperfamilyhead; 

    valuesheritage <- flip(Valuesheritage_rate); 

    if (totalincome < parameter_threshold_succesorincome) and !valuesheritage{ 

     decided <- true; 

     migrated <- true; 

     caninherit <- false; 

    } else { 

     decided <- true; 

     migrated <- false; 

     caninherit <- true; 

    }  

   }         

  } 

  if succesor_age >= 25 and caninherit{ 

   hasinheritor <- true; 

  }    

 } 

 if hasinheritor{ 

  int num_possibleinheritors <- succesor count each.caninherit; 

  int num_inheritors <- num_possibleinheritors > 3 ? 3: num_possibleinheritors; 

  list oldesttoyoungest <- reverse(succesor where each.caninherit sort_by each.succesor_age); 

  loop inherittimes from: 0 to: num_inheritors-1{ 

   create farmowner number: 1{      

    farmarea <- myself.farmarea/num_inheritors; 

    farmarea_stillpaddy  <- myself.farmarea_stillpaddy/num_inheritors; 

    farmarea_temporarilyabandoned <- [myself.farmarea_temporarilyabandoned[0]/num_inheritors, 

           

 myself.farmarea_temporarilyabandoned[1]/num_inheritors, 

            0]; 

    farmowner_age <- oldesttoyoungest[inherittimes].succesor_age; 

    convertedfrompaddy <- myself.convertedfrompaddy/num_inheritors; 

    newowner <- true; 

    do createsuccesors; 

   }     

  }  

  do die; 

 } else{ 

  if farmowner_age >= lifeexpectancy{ 

   do die; 

  } 

 } 

    } 

     

species succesor {  

 int succesor_age; 

 float totalincome; 

 bool decided; 

 bool migrated; 

 bool valuesheritage; 

 bool caninherit; 

}      

} 

 

grid grid_cell use_regular_agents: false files: [raster_file_LCactual1990,  

     raster_file_LCactual1995,       

    raster_file_LCactual2000, 

    raster_file_LCactual2015, 

    raster_file_LCactual2020 

    ]{  

list<grid_cell> neighbours; 

float LCtype; 

bool paddyfield; 

float paddyfieldactual; 
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float paddyfieldmodel; 

float paddyLUCCprob; 

 

//For accuracy 

string cat_init; 

string cat_actual; 

string cat_model; 

bool realdata; 

 

//Visualization 

rgb color_actual; 

rgb color_modelled; 

rgb color_fuzzy; 

aspect actual{ 

 draw shape color: color_actual; 

} 

aspect modelled{ 

 draw shape color: color_modelled; 

} 

aspect fuzzy{ 

 draw shape color:color_fuzzy; 

}    

} 

 

grid factorsnondens use_regular_agents: false files: [raster_file_LCactual1990, raster_file_slope,raster_file_cosaspect,    

    raster_file_disttowncenter, raster_file_distroad, raster_file_heritage,  

    raster_file_quickflow1990, raster_file_quickflow1995,  

    raster_file_quickflow2000, /*raster_file_quickflow2005,  

    raster_file_quickflow2010,*/ raster_file_quickflow2015 

    ]{ 

//abandonment probability factors 

//constant  

float slope; 

float cosaspect; 

float disttowncenter; 

float distroad; 

float heritage;  

//changing  

float quickflow;       

} 

 

grid factorsdens use_regular_agents: false files: [raster_file_LCactual1990, raster_file_densforest1990, 

raster_file_denslowveg1990, raster_file_denspaddy1990,  

    raster_file_densforest1995, raster_file_denslowveg1995, raster_file_denspaddy1995,   

   

    raster_file_densforest2000, raster_file_denslowveg2000, raster_file_denspaddy2000,   

   

    //raster_file_densforest2005, raster_file_denslowveg2005, raster_file_denspaddy2005, 

    //raster_file_densforest2010, raster_file_denslowveg2010, raster_file_denspaddy2010, 

    raster_file_densforest2015, raster_file_denslowveg2015, raster_file_denspaddy2015 

    ]{ 

float densforest; 

float denslowveg; 

float denspaddy;  

} 

 

experiment Validation type: batch repeat: 15 keep_seed: true until: stop_currentrun{ 

parameter "Batch mode:" var: is_batch <- true; 

parameter "Calibration mode:" var: is_calibration <- true; 

 

int runnumber <- 1; 

    reflex save_results_explo{ 

     write "Run"+runnumber+"ended"; 

     float mean_model_fuzzykappa <- mean(simulations collect each.model_fuzzykappa); 

     float mean_model_fuzzykappa_sim <- mean(simulations collect each.model_fuzzykappa_sim); 

     float mean_model_model_PAD <- mean(simulations collect each.model_PAD); 

     float mean_model_model_paddyfieldresidual <- mean(simulations collect each.model_paddyfieldresidual); 
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     float mean_model_model_numberoffarmsresidual <- mean(simulations collect each.model_numberoffarmsresidual); 

     float mean_model_optimizationmeasure <- mean(simulations collect each.optimizationmeasure); 

     float mean_nb_farmerhouseholds <- mean(simulations collect each.nb_farmerhouseholds); 

     float mean_ave_farmarea <- mean(simulations collect each.ave_farmarea); 

     float mean_Paddyfieldarea <- mean(simulations collect each.Paddyfieldarea); 

     float mean_Paddyfieldcount <- mean(simulations collect each.Paddyfieldcount); 

 save [runnumber, parameter_precip_effect_on_erosion,parameter_maxtemp_effect_on_watersupply, 

parameter_threshold_succesorincome, initialoldestfarmer, 

 

 mean_model_fuzzykappa,mean_model_fuzzykappa_sim,mean_model_model_PAD,mean_model_model_paddyfieldre

sidual,mean_model_model_numberoffarmsresidual,mean_model_optimizationmeasure, 

  nb_farmerhouseholds,mean_ave_farmarea,mean_Paddyfieldarea,mean_Paddyfieldcount 

 ] to: "../results/Validation/Revised_Validation_fuzzysim_aggre2.csv" type: "csv" rewrite: false header: true;  

 //save grid_cell to:"../results/Validation8_map2_asc_calib.asc" type:"asc"; 

     //save grid_cell to:"../results/Validation8_map2_tif_calib.tif" type:"geotiff";               

    int simnumber <- 1; 

    ask simulations { 

        save [myself.runnumber, simnumber, self.model_fuzzykappa, self.model_fuzzykappa_sim, self.model_PAD, 

self.model_paddyfieldresidual, self.model_numberoffarmsresidual, self.optimizationmeasure, 

          self.nb_farmerhouseholds, self.ave_farmarea, self.Permanentlyabandonedarea, self.Permanentlyabandonedcount, 

self.Paddyfieldarea, self.Paddyfieldcount, 

          self.yearlyfuzzykappa, self.yearlyfuzzykappa_sim, self.yearlyPAD, self.yearlypaddyfieldresidual, 

self.yearlynumberoffarmsresidual,  

          self.yearlypaddyfieldarea, self.yearlynb_farmerhouseholds 

            ] to: "../results/Validation/Revised_Validation_fuzzysim_ind2.csv" type: "csv" rewrite: false header: true; 

        simnumber <- simnumber + 1; 

    } 

 runnumber <- runnumber + 1; 

    } 

} 

 

 

 

 

 

 

 

 

 

 

 

 



 
Dedication 

 

I read once that in making decisions,  

a foolproof  way to know if  we should do an action 

is to think if  our future self  will thank us for doing it. 

 

Too shy to leave the party? The tomorrow you will thank you if  

you let him have enough social rest. 

 

Stuck in an unhappy relationship? You six months from now will 

be grateful if  you give him a chance to find happiness again. 

 

Having doubts in taking a PhD? Three-years-after you will give 

you his deepest gratitude if  you stand up to the challenge.  

 

One night in 2022, I made a list of  adjectives and nouns  

that I want my future self  to embody 

I wrote down an oddly specific line: 

Highly cited professor in spatial modeling 

 

To my future self,  

probably too far from now but one I have high hopes for, 

I dedicate this dissertation to you. 


