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Abstract

Motivation: The rapid accumulation of high-throughput sequence data demands the development of effective and
efficient data-driven computational methods to functionally annotate proteins. However, most current approaches
used for functional annotation simply focus on the use of protein-level information but ignore inter-relationships
among annotations.

Results: Here, we established PFresGO, an attention-based deep-learning approach that incorporates hierarchical
structures in Gene Ontology (GO) graphs and advances in natural language processing algorithms for the functional
annotation of proteins. PFresGO employs a self-attention operation to capture the inter-relationships of GO terms,
updates its embedding accordingly and uses a cross-attention operation to project protein representations and GO
embedding into a common latent space to identify global protein sequence patterns and local functional residues.
We demonstrate that PFresGO consistently achieves superior performance across GO categories when compared
with ‘state-of-the-art’ methods. Importantly, we show that PFresGO can identify functionally important residues in
protein sequences by assessing the distribution of attention weightings. PFresGO should serve as an effective tool
for the accurate functional annotation of proteins and functional domains within proteins.

Availability and implementation: PFresGO is available for academic purposes at https://github.com/BioColLab/PFresGO.

Contact: jiangning.song@monash.edu or geoff.webb@monash.edu or imoto@ims.u-tokyo.ac.jp

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Proteins are indispensable macromolecules that play fundamental
roles in many activities and biological functions in living cells, such
as maintaining normal metabolism, transporting nutrients, transduc-
ing signals and catalyzing biochemistry interactions (Lee et al.,
2007). To infer general or specific functions of proteins and to estab-
lish their relationships, standardized classification schemes
(Ouzounis et al., 2003), such as the enzyme classification (EC)
System (Bairoch, 2000), Kyoto Encyclopedia of Genes and Genomes

(KEGG) (Kanehisa et al., 2021) and Gene Ontology (GO) (The
Gene Ontology Consortium, 2008) have been developed. To date,
GO is a widely accepted and used system for the functional annota-
tion of proteins (i.e. gene products). GO terms are organized hier-
archically in a directed acyclic graph (DAG), according to protein
relationships and are divided into three non-overlapping branches,
namely molecular function (MF), biological process (BP) and cellu-
lar component (CC).

The rapid accumulation of protein datasets through the use of
genomic, transcriptomic and proteomic techniques has resulted in
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an exponential growth in demand for high-throughput and reliable
functional annotation of such datasets (Hasin et al., 2017). For ex-
ample, the UniProt database (The UniProt Consortium, 2021) con-
tains more than 200 million protein sequences, but <1% of these
entries have been fully annotated (Gligorijevic et al., 2021), which
relates to major limitations (in terms of throughput, time and cost)
associated with the conventional approach of annotating proteins
using laboratory-based methods and information from published lit-
erature. To circumvent these constraints, computational methods
have been established to predict the functions of proteins repre-
sented in large datasets (Sharma et al., 2022). These include
homology-based, machine-learning-based and deep-learning-based
methods. Homology-based methods rely on the comparison of pro-
tein sequences using, for example, BLAST (Ye et al., 2006), because
evolutionarily related proteins tend to have similar functions, al-
though minor mutations can significantly alter protein structure and
function.

Compared with homology-based methods, conventional
machine-learning approaches, such as support vector machines (Cai
et al., 2003) and random forest (Chen and Ishwaran, 2012), and
deep-learning-based approaches (Sapoval et al., 2022) are reported
to exhibit a superior prediction performance. Most deep-learning
methods treat the annotation of protein function as a multi-label
prediction task, where protein information is used as the model in-
put and the predicted GO terms represent outputs, disregarding the
correlations of GO labels. Although GO terms and their hierarchical
structure have been measured based on semantic similarity (Edera
et al., 2022) and applied in various studies, there are limited studies
that explicitly account for the GO term inter-relationships. DeepGO
(Kulmanov et al., 2018) constructed a deep-learning classification
model that resembled the structure and dependencies between GO
classes to refine features on each distinction present in the GO.
Another tool, DEEPred (Sureyya Rifaioglu et al., 2019), applied a
stack of multi-task feed-forward networks according to the inherit-
ance relationships of the GO system for protein function prediction.
DeeProtGO (Merino et al., 2022), which is a feed-forward deep
neural network for predicting GO terms, integrated the GO know-
ledge represented by means of normalized co-occurrence vectors.
Meanwhile, DeepGOZero (Kulmanov and Hoehndorf, 2022) com-
bined a model-theoretic approach for learning ontology embedding,
using the axioms of the GO to constrain function prediction. TALE
(Cao and Shen, 2021) employed a transformer-based deep-learning
model with a joint embedding of sequence inputs and hierarchical
function labels. While it remains a great challenge regarding how to
effectively capture the GO term inter-relationships, a recent study
(Duong et al., 2020) shows that incorporating the hierarchical struc-
ture of GO graphs can enable the annotation model to emphasize on
the GO label distribution, thereby benefitting the final prediction.

In this article, we propose a novel, attention-based approach,
termed PFresGO, for protein function annotation by leveraging
both protein residual-level representations and GO architecture.
PFresGO uses sequence information of the query proteins as input;
it takes the protein sequence embedding encoded by the pre-trained
language model as well as GO terms embedding as inputs and deliv-
ers a probability of protein function by calculating the correlation
between protein features and individual GO terms via an attention
mechanism. Our findings show that PFresGO performs better than
existing methods across all GO categories and benefits markedly
from the incorporation of GO hierarchical structure information.
The interpretation of annotation results is enhanced through the lo-
cation of functionally relevant residues/domains in protein sequen-
ces via the analysis of attention weights.

2 Materials and methods

2.1 Functional annotation data and GO graphs
We employed the curated dataset from the study of DeepFRI—a
graph convolutional network (Gligorijevic et al., 2021). This dataset
of 36 641 protein sequences provided the coverage of 2752 GO
terms across MF (n¼489 terms), BP (1943) and CC (320), with

each GO term linked to >50 non-redundant Protein Data Bank
(PDB) chains. This dataset was further divided into training (�80%;
29 902 sequences), validation (�10%; 3323 sequences) and test
(�10%; 3416 sequences) datasets for the training, optimization and
evaluation of the model, respectively. For the test dataset, only pro-
teins with at least one trusted functional annotation in each of the
three GO categories was selected. All annotations represented in the
test dataset were experimentally validated, and the maximum length
of protein chains was limited to 1000. CD-HIT (Fu et al., 2012) was
applied to ensure that there were no redundant PDB chains between
training and test datasets using varying sequence identity thresholds.
The relationship among GO terms was illustrated as a DAG. A fil-
tered version (based on the dataset) of the GO.obo format file
describing the hierarchical related structure of GO terms was down-
loaded from the GO resource website (http://geneontology.org/;
data version: 1 June 2020) (Day-Richter et al., 2007), which ensures
consistency in annotation with previous works for impartial
comparisons.

2.2 Input features
2.2.1 Protein sequence embedding

Given a protein sequence S with l residues, we first used one-hot
embedding to represent the protein sequence S. Specifically, each
residue in the protein sequence was embedded into a 26-dimension
vector (including the 20 standard amino acids, 5 non-standard
amino acids and 1 padding symbol). The one-hot encoding proced-
ure was followed by a fully connected layer with hidden dimension
d0 to generate an embedding matrix E1 2 Rl�d0 . We also utilized a
deep-learning language model ProtT5 (Elnaggar et al., 2021), which
had been pre-trained on datasets comprising 393 billion amino
acids, to encode the protein sequence S with l residues into the
residue-level protein sequence feature embedding E2 2 Rl�d1 , where
d1 is 1024 by default. The encoded residue-level feature vector com-
prises the information of individual residue and its immediate con-
text, and constraints of protein global structure and protein
function.

2.2.2 GO term embedding

Gene ontology (GO) is a commonly used classification scheme in
terms of annotating protein functions. Here, we applied the pre-
trained model Anc2vec (Edera et al., 2022) to generate the compact
GO term embedding as the initial input of PFresGO. Anc2vec is a
neural network-based protocol that considers the preservation of
ontological uniqueness, ancestors’ hierarchy and sub-ontology mem-
bership to embed GO terms. More specifically, each GO term Gi is
embedded into a d0 dimensional label representation vector, where
d0 is the predefined hidden dimension.

2.3 The autoencoder module
The autoencoder module (Ng, 2011) was used to reduce the high-
dimension residue-level protein data to feature vectors of hidden di-
mension d0. The module comprises two submodules, including an
encoder submodule and a decoder submodule; each is composed of
two layers of neurons. The encoder submodule transfers the high-
dimension input data into a low-dimensional latent space, while the
decoder submodule converts the low-dimensional vector back to the
original space, reversely. The dimension-reduced feature vector in
the latent space is represented as compressed low-dimension embed-
ding of the original input.

The output of the encoder submodule can be computed using

Ziþ1
en ¼ ReLU Wiþ1

en �Zi
en þ biþ1

en

� �
; (1)

where Wiþ1
en and biþ1

en denote the learned weights and the bias of iþ
1 th encoder layer. The rectified linear unit (ReLU) is a non-linear
activate function ReLU ¼ maxðx;0Þ. The output of the previous en-
coder layer Zi

en serves as the input of the following iþ 1 th encoder
layer. Specifically, the initial input to the encoder submodule is the
residue-level protein sequence features, i.e. Z0

en ¼ E2 2 Rl�d1 , where
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d1 ¼ 1024. The number of neurons in the second encoder layer is
the predefined hidden dimension d0.

The decoder submodule takes the reduced dimension embedding
Z2

en as input and aims to recover the embedded feature vector into
the original dimension. The output of the decoder submodule can be
computed as:

Ziþ1
de ¼ ReLU Wiþ1

de �Zi
de þ biþ1

de

� �
; (2)

where Wiþ1
de and biþ1

de represent the learned weights and the bias of
iþ 1th decoder layer, respectively. The decoder module consists of
two neural network layers. The output of the previous decoder layer
Z1

de is used as the input of the following decoder layer. The final op-
timization goal of the autoencoder is to minimize the reconstruction
error (squared error) between the initial encoder input and the
reconstructed decoder output:

loss ¼
X

n

X
d

jjZ0
en n;dð Þ �Z2

deðn;dÞjj
2: (3)

Given the protein feature vector E2 2 Rl�d, we computed the en-
coder submodule output E2 2 Rl�d0 as the compressed residue-level
embedding, which is then added with E1 2 Rl�d0 for the final pro-
tein residue-level embedding E 2 Rl�d0 .

2.4 The multi-head attention module
The functional annotation of proteins is a multi-label classification
task. The prediction algorithm should, therefore, consider the relation-
ships among GO terms. Theoretically, proteins perform specific bio-
logical functions relying on spatially aggregated functional residues,
such as ligand-binding sites of proteins and catalytic residues in
enzymes (Lichtarge et al., 1996). We then expect PFresGO to be able
to dynamically focus on functional residues to capture the relationship
among GO terms and key functional regions within protein sequences,
thereby enabling the final predictions of protein functions. With this
goal in mind, we integrated two multi-head attention operations to en-
able PFresGO to simultaneously capture relevant feature projections
from multi-subspaces. The main principle of the multi-head attention
mechanism is to calculate the scaled dot-product attention as follows:

Attention Q;K;Vð Þ ¼ softmax
Q� KTffiffiffiffiffiffi

dK

p
 !

V; (4)

where Q, K and V refer to the query, key and value matrix trans-
formed from the attention layer input, respectively, and
dK represents a constant of the key dimension as a scalar factor.

The first multi-head attention operation encourages the model to
automatically capture the correlations between GO terms and then
update the GO term embedding accordingly. Given an input of GO
term embedding G 2 Rm�d0 , the updated GO term embedding G
can be calculated as

headi ¼ AttentionðGW
Q
i ;GWK

i ;GWV
i Þ; (5)

G1 ¼ Contact head1; . . . ;headnð ÞWO; (6)

G ¼ LN G1 þGð Þ; (7)

where headi indicates the ith attention head, with n heads in total.
The learned weights W

Q
i 2 Rd0�dk , WK

i 2 Rd0�dk and WV
i 2 Rd0�dV

are used to project the input GO term embedding G 2 Rm�d0 into
the corresponding query matrix Q 2 Rm�dk , the key matrix
K 2 Rm�dk , and the value matrix V 2 Rm�dV , respectively. The n at-
tention matrix computed based on Q, K and V are then concaten-
ated and multiplied for the final output matrix WO

i 2 RndV�d0 , to
obtain the updated GO term embedding G1 2 Rm�d0 . Then, a re-
sidual connection as well as a layer normalization procedure, was
applied to obtain G 2 Rm�d0 .

Another multi-head attention mechanism was applied, where the
model takes GO terms as a query to detect specific protein features

important for protein function annotation. The protein embedding is
zero-padded if the protein chain consists of <1000 residues. Given a
zero-padded protein feature embedding E 2 RL�d0 ðL ¼ 1000Þ, we
first calculated the attention between the protein feature and GO
labels:.

headi ¼ AttentionðGWQ
i ;GWK

i ;GWV
i Þ; (8)

G2 ¼ Contact head1; . . . ;headnð ÞWO; (9)

Ĝ ¼ LN G2 þG
� �

; (10)

where headi indicates the ith attention head, with n heads in total.
Similarly, the learned weights WQ

i 2 Rd0�dk , WK
i 2 Rd0�dk and

WV
i 2 Rd0�dV are used to project the input GO term embedding G 2
Rm�d0 into the corresponding query matrix Q 2 Rm�dk , and project
the residue-level protein feature embedding E 2 RL�d0 into the key
matrix K 2 RL�dk , and the value matrix V 2 RL�dV , respectively.
The n attention matrix computed based on Q, K and V were then
concatenated and multiplied for the final output matrix
WO 2 RndV�d0 , to obtain the updated GO term embedding
G2 2 Rm�d0 . Again, a residual connection and layer normalization
were applied to acquire Ĝ 2 Rm�d0 . A feed-forward layer is fol-
lowed to take the d0 dimensional embedding Ĝ as input and per-
form two point-wise dense layers to obtain FFðĜÞ 2 Rm�d:

FF Ĝð Þ ¼ ReLU ĜW1 þ b1

� �
W2 þ b2; (11)

where W1, W2, b1 and b2 are learnable weights and biases of two
dense layers, respectively. Here, we linked two multi-head attention
modules for MF and CC protein function annotation. For BP term,
only one multi-head attention module is applied considering the
memory limitation.

2.5 The GO term prediction module
This module computes the probability of each GO term. It formu-
lates the multi-label task of protein function annotation as a binary
classification task. Specifically, it projects the individual GO term
embedding feature into a probability value. In the first step, we per-
formed a global pooling on the resulted vector FF Ĝð Þ by summing
over the last dimension:

hpool ¼
Xd̂

i¼1

FFðĜÞ: (12)

We then computed the final probability distribution utilizing a
fully connected layer with the sigmoid activation function from this
pooled representation. The m-dimension output vector stands for
the predicted probability of m GO terms:

Y ¼ sigmoidðW � hpool þ bÞ: (13)

Given the true protein function GO label and the predicted prob-
abilities, we minimized the binary cross-entropy loss to optimize the
above process:

L ¼ � 1

N

XN
i¼1

XGOj j

j¼1

yijlog ŷij

� �
; (14)

where N represents the total number of protein chains, jGOj is the
total number of GO terms, yij and ŷij represents the true value and
the predicted probability of GO term j for protein chain i.

3 Results

3.1 PFresGO annotates protein function using GO term

inter-relationships
First, we describe how PFresGO performs function annotations for
a query protein. In brief, PFresGO contains three critical
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mechanisms to facilitate protein function prediction using GO
terms, including a pre-trained protein language model, a GO inter-
relationship self-attention model and a multi-head cross-attention
mechanism. The architecture of PFresGO is illustrated in Figure 1.
We utilized a pre-trained protein language model, ProtT5 (Elnaggar
et al., 2021), to encode informative protein sequence embedding,
which is a novel natural-language-based model trained on >390 bil-
lion amino acids. We learned a compact representation for
embedded protein vectors using an autoencoder to reduce these vec-
tors to a hidden dimension, which was then added with the pro-
jected one-hot embedding of protein sequences as the final protein
feature representation at the amino acid residue level.

To learn the inter-relationships of GO terms, we initially applied
the deep-learning-based Anc2vec algorithm (Edera et al., 2022) to
generate a compact GO term embedding, according to the hierarch-
ical structure of the GO graph. A multi-head self-attention operation
was then used to capture the inherent semantic relations of GO
terms automatically and to update the GO term embedding accord-
ingly. An ‘Add and Norm’ operation was then conducted to facili-
tate and stabilize the algorithm training process. We then applied a
multi-head cross-attention operation to project residue-level protein
representations and GO embedding into a common latent space,
where GO terms act as a query to detect the global protein sequence
patterns as well as local functional residues. The resultant vectors
were processed by the ‘Add and Norm’ operation and then fed into
a feed-forward module constituting two fully connected layers. The
final dense layer, in which the number of neurons equals the number
of GO term labels, serves as the output layer and computes the prob-
ability of each protein function term. A detailed description of
PFresGO implementation and optimization is provided in
Supplementary Material.

3.2 PFresGO outperforms existing methods across all

GO categories
We compared PFresGO to six previously proposed approaches: one
sequence identity-based search method BLAST (Ye et al., 2006), one
protein domain-based function transfer approach FunFams (Das
et al., 2015) and four state-of-the-art deep-learning-based
approaches DeepGO (Kulmanov et al., 2018), DeepFRI
(Gligorijevic et al., 2021), TALEþ (Cao and Shen, 2021) and
DeepGOZero (Kulmanov and Hoehndorf, 2022). Of these, BLAST

has been extensively applied as the ‘standard’ sequence-based
method in many studies. In addition, DeepFRI was applied for
structure-based comparison of the text dataset. Supplementary
Sections S2 and S4 describe details regarding performance measures
and the comparison of distinct approaches.

The performance comparison results are provided in Table 1.
Compared with the other methods assessed, PFresGO achieved a re-
markable performance with Fmax values of 0.6917, 0.5678 and
0.6737 for MF, BP and CC, respectively, while DeepGOZero (i.e.
0.7191) outperformed the other methods in terms of Fmax for MF.

Fig. 1. The architecture of PFresGO. The pre-trained language model (Elnaggar et al., 2021) encodes amino acid sequences into protein feature embedding. An autoencoder

module reduces the protein embedding to the hidden dimension d0, which adds with the projected one-hot sequence embedding to produce the residue-level protein representa-

tion. A self-attention operation is utilized to explore the relationships between GO term representations generated by Anc2vec (Edera et al., 2022), a deep neural network for

constructing GO term embedding and further updates the representations accordingly. A cross-attention operation is used to detect the correlation between the protein features

and protein functions by taking gene ontology embedding as a query to detect related protein information, which is followed by linear layers to output the final GO term

probability

Table 1. Performance comparison of PFresGO and state-of-the-art

methods for protein function prediction on the independent test

dataset

Method GO category Fmax AUPRC AUROC Smin

BLAST MF 0.3282 0.1357 0.7114 5.5119

BP 0.3358 0.0674 0.6450 49.0130

CC 0.4478 0.0973 0.6650 6.4769

DeepGO MF 0.5772 0.3911 0.8599 4.1592

BP 0.4934 0.1821 0.8080 44.4762

CC 0.5941 0.2627 0.8617 5.6486

FunFams MF 0.5721 0.3671 0.7506 3.8517

BP 0.4997 0.2600 0.7091 38.9009

CC 0.6265 0.2882 0.7677 4.7833

DeepFRI MF 0.6246 0.4949 0.9147 3.7344

BP 0.5402 0.2612 0.8578 41.9820

CC 0.6126 0.2744 0.8837 5.4917

TALEþ MF 0.6624 0.5642 0.8844 3.2205

BP 0.5539 0.3021 0.8105 39.9229

CC 0.6099 0.3251 0.8486 5.3235

DeepGOZero MF 0.7191 0.6144 0.8925 3.0187

BP 0.5645 0.2944 0.7682 40.9241

CC 0.5341 0.3146 0.7381 5.4340

PFresGO MF 0.6917 0.6017 0.9247 3.5600

BP 0.5678 0.2934 0.8394 41.3265

CC 0.6737 0.3612 0.8841 5.1916

Note: The best performance on MF, BP and CC categories has been

bolded.
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In relation to AUPRC, PFresGO performed favorably compared
with the other methods, achieving values of 0.6017, 0.2934 and
0.3612 for MF, BP and CC, compared with 0.1357, 0.0674 and
0.0973 for BLAST, respectively. PFresGO consistently outper-
formed other methods in terms of AUROC for MF and CC, and
achieved a comparable AUROC value (0.8394) to that of DeepFRI
(i.e. 0.8578) for BP. As for Smin, FunFams outperformed the compet-
ing methods for BP and CC, while PFresGO was the top three best
predictor for MF and CC. Taken together, the performance values
in Table 1 show the effectiveness of the proposed deep-learning
strategy in PFresGO for the annotation of protein function.

3.3 Incorporating GO term inter-relationships improves

functional annotation
The inter-relationships of GO terms are incorporated into PFresGO
via two attention-based operations: the first operation automatically
captures hierarchical information about GO graphs and updates the
embedding accordingly; the second operation takes the embedding
of each GO term as a query to explore potentially important protein
features in the same latent space for the prediction of individual pro-
tein function terms.

To thoroughly delineate the effectiveness of incorporating GO
terms inter-relationships, we built PFresGO_Seq by only feeding the
extracted protein feature representation into a dense output layer.
We compared the AUPRC values of PFresGO_Seq and PFresGO, as
well as the other two baseline deep-learning methods—DeepGO and
DeepFRI—across all GO categories on the test dataset (Fig. 2).
Although PFresGO_Seq had a comparable performance to DeepGO
for BP and to DeepFRI for CC ontology, PFresGO significantly out-
performed all other methods assessed for all three GO categories
(MF, BP and CC). These results show that PFresGO largely benefits
from the strategy of incorporating GO term inter-relationships to
functionally annotate proteins.

3.4 PFresGO shows superior performance in annotating

protein function with different sequence identities and

GO specificities
Here, we initially evaluated the ability of PFresGO to predictive
using protein sequences with different identities, especially in the
case of novel protein sequences with low sequence identities com-
pared to the training dataset. We split the test dataset into five dif-
ferent groups with varying sequence identity thresholds: 30%, 40%,
50%, 70% and 95%, which are the maximum identity values of test
sequences compared to the training dataset. We compared PFresGO
with other models, including BLAST, DeepGO, FunFams, TALEþ
and DeepFRI, using Fmax and AUPRC on the same test datasets, split
by sequence identity thresholds.

As shown in Figure 3a and b, the Fmax values of all methods
improved with increased sequence identity for all three GO catego-
ries, while PFresGO consistently outperformed other methods,

regardless of the sequence identity. PFresGO also has higher
AUPRC values for both MF and CC for all sequence identity thresh-
olds, even when the test proteins shared �30% identity with the
training dataset. Although FunFams achieved a higher AUPRC value
for BP for proteins sharing <40% identity to the training dataset,
PFresGO outperformed other methods, achieving a higher AUPRC
score for sequence identities ranging from 50% to 95%.

Subsequently, we investigated the performance of PFresGO
when annotating GO terms with a high specificity. Here, we eval-
uated the specificity of GO terms according to their Shannon
Information Content (IC).

IC GOið Þ ¼ �log2ProbðGOiÞ: (15)

A higher IC value of the GO term corresponds to a higher specifi-
city (i.e. a rarer occurrence). We separately stratified the GO terms
within the MF, BP and CC categories into three groups according to
their IC values and then compared the performance of PFresGO with
that of other methods using these GO terms with distinct IC values.
We recorded the AUPRC values of different methods across all IC cut-
offs (Fig. 3c). Although all methods consistently showed sound per-
formance when predicting protein GO terms for lower IC values, the
high AUPRC value of PFresGO provided evidence of a marked advan-
tage of integrating GO term relationships in the training process.
PFresGO outperformed other methods in terms of AUPRC for GO
terms, with high specificity (i.e. IC >10) for MF and CC branches; its
performance was comparable with FunFams for GO terms with high
specificity (IC >10) on the BP branch. PFresGO showed strong scal-
ability and generalizability for functional annotation of novel query
proteins with a limited sequence identity to those in training sets, and
usually for annotation of GO terms with high specificity.

Furthermore, we analyzed the performance of PFresGO in cases
where the proteins in test set did not share any homologous domains
with those in training set. More specifically, we applied the ECOD
classifier (file: ‘ecod.latest.domains.txt’, version: ‘20221014’)
(Schaeffer et al., 2017) to rigorously divide the training and test sets
to eliminate most if not all evolutionary relationships (i.e. the H
level). Please refer to the Supplementary Section S9 for detailed
results. It can be seen that the performance of PFresGO dropped
across all GO branches, indicating the use of protein domains as
analytic units could improve the protein function annotation.

3.5 PFresGO locates residues linked to protein function

annotation
As it has been reported that spatially aggregated functional residues
play critical roles in protein functions (Lichtarge et al., 1996), we
assessed the ability of PFresGO to infer the location(s) of residues
linked to protein function. Our hypothesis here is that PFresGO is
capable of focusing more on protein residues that make more im-
portant contributions to protein function annotation with higher at-
tention weights, and accordingly, such functionally important

Fig. 2. Precision-recall curves of methods DeepGO, DeepFRI, PFresGO and PFresGO_Seq on MF, BP and CC terms
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resides can be identified via the analysis of attention weights assigned
by PFresGO. In Figure 4a, we illustrate an example of the visualiza-
tion of averaged attention weights, which indicates that PFresGO cor-
rectly identified the sites in rat a-parvalbumin (PDB: 1S3P; Chain A)
linked to ‘calcium ion binding’ (GO: 0005509). The grey line corre-
sponds to the varying attention weights along the protein sequence,
while the red dots represent the experimentally validated calcium-
binding sites annotated in BioLip (Yang et al., 2013). In Figure 4b, we
provide another example where PFresGO correctly identified most
sites of lactose operon repressor (PDB: 2PE5, Chain B) associated
with DNA binding (GO: 0003677). We plotted the ROC curves for
four examples of proteins with known functional residues to measure
the consistency between important residues identified by PFresGO
with the genuine protein functional residues annotated in BioLip in
Figure 4c. Specifically, we calculated the attention weights of the pro-
teins rat a-parvalbumin (PDB: 1S3P; Chain A), lactose operon repres-
sor (PDB: 2PE5; Chain B), glutathione S-transferase (PDB: 2J9H;
Chain A) and a putative cytochrome (PDB: 4RM4; Chain A) for the
terms ‘calcium ion binding’ (GO: 0005509), ‘DNA binding’ (GO:
0003677), ‘glutathione transferase activity’ (GO: 0004364) and
‘heme binding’ (GO: 0020037), and compared them with the binary
representation of function sites retrieved from BioLip. Despite the
lack of functionally active sites or related information in the training
process, the functional sites inferred by the attention weights and
those within BioLip are highly correlated (Fig. 4c).

To explore how the attention weights of every head align with
known protein functional residues, we defined the following func-
tion to compute the percentage of high-confidence attentions that
are indicative of protein functional residues:

Pa fð Þ ¼
PjXj

i¼1 f ðiÞ � Aai>hPjXj
i¼1 Aai>h

; (16)

where f ðiÞ is an indicator function that returns 1 if the ith residue
in the protein sequence X is annotated as a functional site in the
BioLip database; otherwise returns 0, h (h ¼ 0) represents a thresh-
old used for filtering out the high-confidence residues, and Aai>h

indicates the attention weights of the high-confidence residues
(ai > h).

Figure 4d shows the proportion of attention weights for protein
rat a-parvalbumin for two attention layers of PFresGO. The first
head in attention layer 1 almost paid all of its attention to the func-
tional residues and ignored other general residues. Further, the fifth
head in attention Layer 1 and the eighth head in attention Layer 2
paid > 80% of attention to functional residues. Please refer to the
Supplementary Material for the attention percentage analysis on
other cases. Considering that functional sites of protein are often
evolutionarily conserved to sustain function across the tree-of-life,
our analysis demonstrates that PFresGO can accurately infer protein
function at a residue level.

Fig. 3. Performance comparison of (a) Fmax, (b) AUPRC on varying sequence identity and (c) distributions of AUPRC scores on varying IC across MF, BP and CC categories

among different methods: Blast, DeepGO, FunFams, DeepFRI, TALEþ and PFresGO
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4 Discussion and conclusion

In this study, we established PFresGO—an attention-based deep-
learning method to tackle the multi-label protein function annota-
tion challenge utilizing both the protein sequence information and
hierarchical GO structures. PFresGO requires no information other
than protein sequences for functional annotation, which is particu-
larly convenient for newly identified proteins. Our evaluation of an
independent test dataset showed that PFresGO achieved a superior
prediction performance compared with current, ‘state-of-the-art’
sequence-based methods, and importantly, structure-guided
approaches for all GO categories, indicating that the incorporation
of hierarchical structures of GO graphs for the prediction of protein
functions is effective. Importantly, PFresGO functionally annotates
proteins with no requirement for multiple sequence alignment
(MSA) (Edgar and Batzoglou, 2006). Although MSA has been rou-
tinely used to support protein structure and functional modeling, the
inference of protein homology through sequence alignment alone is
not feasible on a genome-wide scale. Circumventing the computa-
tional bottleneck imposed by MSA, PFresGO annotates proteins by
identifying sequence patterns and functional residues, and the find-
ings here show that PFresGO consistently achieves confident anno-
tation results.

We demonstrated the effectiveness of integrating a pre-trained
deep-learning language model and the hierarchical structure of GO
terms for function annotation. On the other hand, there is a caveat
when engaging the attention-based mechanism, the use of which can
result in substantial memory consumption, which can further limit
the number of GO terms that can be annotated; however, the anno-
tation performance using GO terms of high specificity significantly
benefits from the integration of structure information from GO
graphs. Significantly, PFresGO can also infer functional sites in pro-
tein by assessing the attention weightings of individual amino acid
residues. A case study showed that the distribution of attention
weights along a protein sequence is readily interpretable in relation
to functionally relevant amino acid residues or domains. We con-
ducted a multiple attention analysis of the functions of select pro-
teins and illustrated that important residues identified by PFresGO

with high attention weights accord well experimental data in the
BioLip database. Based on these findings, we expect that PFresGO
will serve as a useful tool for the functional annotation of proteins
and the identification of functional sites in proteins, which will be
beneficial given the ever-expanding genomic, proteomic and tran-
scriptomic datasets.
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