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Phase plane analysis for p-ultradiscrete system:

infinite types of branching conditions

By

Shin Isojima ∗ and Seiichiro Suzuki ∗∗

Abstract

The p-ultradiscrete procedure (ultradiscretization with parity variables) enables to ultra-

discretize an equation with subtraction. Its feature is that a solution may have an infinite

branches under certain conditions. Recently, an “approximative” technique by which such infi-

nite branches may reduce to finite ones is proposed. In this article, a complicated situation for

solutions of the p-ultradiscrete hard-spring equation is investigated, in which an infinite types

of branching conditions appear. The approximative technique fairly summarizes the solutions

and extends an understanding of the structure of solutions.

§ 1. Introduction

Ultradiscretization (UD) is a limiting procedure which transforms a given difference

equation into a piecewise linear equation [1]. If we write a dependent variable of the

given equation as xn, we first replace it by

xn = eXn/ε,(1.1)

where Xn is a new dependent variable and ε > 0 is a parameter. Then, we apply ε log

to both sides of the equation and take the limit ε → +0. By using a key formula

lim
ε→+0

ε log
(
e

X
ε + e

Y
ε

)
= max(X,Y ),(1.2)
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addition, multiplication, and division for xn are replaced with max operation, addition,

and subtraction for Xn, respectively. Namely, the resulting piecewise linear equation

is written in max-plus algebra [2]. If we assign integer values to initial values and

system parameters for the resulting equation, its dependent variable takes integer values

only. Therefore, it can be regarded as time evolution rule of a cellular automaton [3].

Hence, UD may be a procedure which transforms a difference equation into a cellular

automaton. The procedure of UD has been applied to many difference equation and

its solutions and the constructed cellular automata have been studied. Also, various

applications have been reported (for example, [4]–[14]). From this perspective, UD

acts as a mediator between continuous (differential or difference equation) and discrete

(cellular automaton) mathematics. Since cellular automata have good compatibility

with digital computers, UD may be a field with high future growth potential.

However, UD has a strong restriction called “negative difficulty.” That is, a given

difference equation must be subtraction-free for taking the limit (1.2). Solutions must be

positive for applying (1.1). Some attempts have been reported to solve this issue [15]–

[18]. The UD with parity variables (pUD, p-ultradiscretization) is one of such attempts

[19]. In this method, the “parity (sign)” and “amplitude” variables are introduced. The

method enables us to treat a difference equation with subtraction or negative-valued

solutions. Its review will be given in the next section. This method has been applied

some equations and studied sequentially unlike other ones (for example, [20], [21]). In

this meaning, pUD is one of the active methods to aiming to solve the negative difficulty.

A feature of pUD is appearance of an “indeterminate solution.” That is, uniqueness

of solution may be lost in a specific situation, in exchange for handling subtraction in

a equation or negative values for its solution. For example, the successive solution

Xn+1 is just restricted by an inequality such as Xn+1 ≤ F (Xn, Xn−1), which can be

take an arbitrary value as long as it satisfies this inequality. As a result, the solution

has an infinite number of branches at indeterminate step. As might be expected, such

indeterminacy makes analysis of a solution difficult. On the other hand, it is necessary

for capturing all solutions of the p-ultradiscrete system. For example, the p-ultradiscrete

analog of the Airy function is constructed through a specific choice of indeterminate

solutions [22]. For this usefulness, we cannot discard indeterminate solutions at all.

Hence, it is an important problem how to express the indeterminate solutions. Recently,

a new approximative expression for indeterminate solutions casts light on this problem

in [23]. In this method, a kind of coarse graining is introduced. That is, a p-ultradiscrete

system is reinterpreted as the mapping which maps a set on the phase plane to the other.

By this method, an infinite number of branches can be reduced to a finite number of

branches, and indeterminate solutions are efficiently understood than before. In this

article, we shall report additional contents for [24], which gives another application of
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the approximative method to p-ultradiscrete analog of the hard-spring equation [25].

The remainder of this article is organized as follows. In Section 2, we review the

hard-spring equation and its p-ultradiscrete analog. We express the p-ultradiscrete

equation in the conditional explicit forms which include indeterminate cases. Then,

in Section 3, we illustrates the transition of the amplitude on the phase plane. A

complicated situation is mainly discussed, which was omitted in [24]. Although the

indeterminate solutions still have an infinite number of branches after approximative

expression, its complexness is relieved. Finally, we give concluding remarks in Section

4.

§ 2. Ultradiscrete hard-spring equation with parity variables

We consider the hard-spring equation

(2.1)
d2x

dt2
+ kx+ lx3 = 0,

where x = x(t) and k, l > 0 are constants. This equation has the conserved quantity

(2.2) H(t) =
1

2

(
dx

dt

)2

+
1

2
kx2 +

1

2
lx4 = 0.

Therefore, (2.1) is an integrable equation. Its integrable discrete analog is presented in

the Japanese book [26] as

(2.3) xn+1−2xn+xn−1+2c1δ
2 (xn+1 + xn−1)+4c2δ

2xn+2c3δ
2x2

n (xn+1 + xn−1) = 0.

This difference equation (2.3) is also integrable because it has the conserved quantity

(2.4) Hn =
xn

2 − 2xnxn−1 + xn−1
2

2δ2
+ c1(xn

2 + xn−1
2) + 2c2xnxn−1 + c3xn

2xn−1
2.

See [26] for details.

We shall ultradiscretize (2.3) with parity variables. We introduce the sign variable

ξn and the “amplitude” variable Xn for xn by

ξn =
xn

|xn|
, e

Xn
ε = |xn|.(2.5)

We define a function s as

s(ξ) =

1 (ξ = +1)

0 (ξ = −1),
(2.6)
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and we replace xn with

xn = ξne
Xn
ε =

(
s(ξn)− s(−ξn)

)
e

Xn
ε .(2.7)

We transform the positive parameters ci and δ by

e
αi
ε = ci (i = 1, 2, 3), e

∆
ε = δ.(2.8)

If we substitute (2.7) and (2.8) into (2.3), we have

(2.9)(
s(ξn+1)− s(−ξn+1)

)
e

Xn+1
ε − 2

(
s(ξn)− s(−ξn)

)
e

Xn
ε +

(
s(ξn−1)− s(−ξn−1)

)
e

Xn−1
ε

+ 2e
α1+2∆

ε

{(
s(ξn+1)− s(−ξn+1)

)
e

Xn+1
ε +

(
s(ξn−1)− s(−ξn−1)

)
e

Xn−1
ε

}
+ 4e

α2+2∆
ε 2

(
s(ξn)− s(−ξn)

)
e

Xn
ε

+ 2e
α3+2∆+2Xn

ε

{(
s(ξn+1)− s(−ξn+1)

)
e

Xn+1
ε +

(
s(ξn−1)− s(−ξn−1)

)
e

Xn−1
ε

}
= 0.

For simplicity of notation, we write Xn+1, Xn, Xn−1 as X+, X, X−, respectively, and

put αi + 2∆ = α̂i. Then, we move the negative terms to the other side of the equation

and take the limit ε → +0. Here, we shall utilize a formula

lim
ε→+0

ε log
(
s(ξ)e

A
ε + e

B
ε

)
= max(S(ξ) +A,B),(2.10)

where a function S is defined by

S(ξ) =

0 (ξ = +1)

−∞ (ξ = −1).
(2.11)

The resulting equation

max
[
S(ξn+1) +X+, S(ξn+1) + α̂1 +X+, S(ξn+1) + α̂3 + 2X +X+,

S(−ξn) +X, S(ξn) + α̂2 +X,

S(ξn−1) +X−, S(ξn−1) + α̂1 +X−, S(ξn−1) + α̂3 + 2X +X−
]

= max
[
S(−ξn+1) +X+, S(−ξn+1) + α̂1 +X+, S(−ξn+1) + α̂3 + 2X +X+,

S(ξn) +X, S(−ξn) + α̂2 +X,

S(−ξn−1) +X−, S(−ξn−1) + α̂1 +X−, S(−ξn−1) + α̂3 + 2X +X−
]

(2.12)

has the implicit form of max[. . . ] = max[. . . ]. We shall rewrite this form into explicit

forms with introducing some cases. Here, we consider only the case α̂2 > 0, which we

are focusing in this article, and give the result only (See [24] for details). We introduce

notations

(2.13) a = max
[
0, α̂1, α̂3 + 2X

]
,
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which includes the dependent variable X, and
Cg : X + α̂2 > X− + a

Ce : X + α̂2 = X− + a

Cℓ : X + α̂2 < X− + a,

(2.14)

which are used to describe the condition for each case. These notations are convenient to

illustrate the cases for the amplitude on X−v.s. X plane (See Figure 1). The amplitude

of the next step X+ is calculated from ξn−1, ξn, Xn−1 and Xn as follows.

(i) ξn−1 = ξn = ξn+1: a solution does not exist.

(ii) ξn−1 = ξn = −ξn+1: we have the following amplitude.

X+ =


X + α̂2 − a (Cg)

X− (Ce)

X− (Cℓ)

(2.15)

(iii) −ξn−1 = ξn = ξn+1: we have the following amplitude including indeterminate

solutions.

X+ ≤ X− (Ce)(2.16)

X+ = X− (Cℓ)(2.17)

(iv) ξn−1 = −ξn = ξn+1: we have the following amplitude including indeterminate

solutions.

X+ = X + α̂2 − a (Cg)(2.18)

X+ ≤ X− (Ce)(2.19)

We comment that we need further cases to obtain the expression without max in a:

a =



max
[
0, α̂1

] (
X <

max
[
0, α̂1

]
− α̂3

2

)
max

[
0, α̂1

]
= α̂3 + 2X

(
X =

max
[
0, α̂1

]
− α̂3

2

)
α̂3 + 2X

(
X >

max
[
0, α̂1

]
− α̂3

2

)
.

(2.20)

Because of this, X+ = X + α̂2 − a is not a line but a polygonal line on the phase plane:

X+ =



X + α̂2 −max [0, α̂1]

(
X <

max
[
0, α̂1

]
− α̂3

2

)
−max

[
0, α̂1

]
+ α̂3

2 + α̂2

(
X =

max
[
0, α̂1

]
− α̂3

2

)
−X + α̂2 − α̂3

(
X >

max
[
0, α̂1

]
− α̂3

2

)
.

(2.21)
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Based on this evolution rule, we analyze solutions on the phase plane for the amplitude.

Each condition appears on the phase plane as a domain, for example, {(X−, X) | Cg}
(see Figure 1 (a)). Note that the polygonal line which gives the boundary draws the

shape “>.” The coordinate of the indifferentiable point P1 is

P1

(
−max[0, α̂1] + α̂3

2
+ α̂2,

max[0, α̂1]− α̂3

2

)
.(2.22)

Then, we calculate X+ and examine the mapped domain {(X,X+)}. Here, mirror-

image domains about the line X = X− become important on the X v.s. X+ plane.

Such domains are shown in Figure 1 (b). The boundary is observed as the polygonal

line of the shape “∧” whose indifferentiable point P2 is

P2

(
max[0, α̂1]− α̂3

2
,−max[0, α̂1] + α̂3

2
+ α̂2

)
.(2.23)

(a) (b)

Figure 1. (a) conditions Cg, Ce, Cℓ and domains (b) mirror-image domains

By the result in [24], the positional relationship between “>” and “∧” is quite

important to classify the behavior of solutions. In this article, we focus on the “overlap-

ping” type of relationship as shown in Figure 2. It was found in [24] that this positional

type appears if and only if α̂2 > 0 and α̂2 > α̂1.

Note that we discuss only the amplitude variables on the above phase plane. For

including information of the sign variables, in [24], four amplitude phase planes which

correspond to the four pairs of signs (ξn, ξn+1) = (+,+), (+,−), (−,+), (−,−), respec-

tively, were introduced. If we use the (ξne
Xn) v.s. (ξn+1e

Xn+1) coordinates, and place

the four planes on the corresponding quadrants (See Fig. 8 in [24]), we can discuss the

global dynamics of the solutions. However, in this article, we mainly discuss the am-

plitude phase plane, because the behavior of solutions for “overlapping” type becomes

rather complicated on the (ξne
Xn) v.s. (ξn+1e

Xn+1) plane.
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Figure 2. “overlapping” type of domains

§ 3. Transition on the amplitude phase plane

§ 3.1. Notation

For explanation in this section, we define some objects on the amplitude phase

plane. We shall use (x, y) as the generic coordinate for the phase plane. We denote the

midpoint between P1 and P2 as P0, whose coordinate is

P0

(
α̂2 − α̂3

2
,
α̂2 − α̂3

2

)
.(3.1)

We define points P (2k− 1) (k = 1, 2, 3, . . . ) whose coordinate (P (2k− 1)x, P (2k− 1)y)

is given by

P (2k − 1)x =
max[0, α̂1]− α̂2

2
(k − 1)− max[0, α̂1] + α̂3

2
+ α̂2,(3.2)

P (2k − 1)y =
max[0, α̂1]− α̂2

2
(k − 1) +

max[0, α̂1]− α̂3

2
(3.3)

and P (2k) (k = 1, 2, 3, . . . ) whose coordinate is (P (2k − 1)y, P (2k − 1)x). Note that

{P (2k− 1)} and {P (2k)} are on L4 and L5 (defined by (3.15) and (3.14)), respectively,

and that P (2k) and P (2k − 1) for a fixed k are symmetric about y = x. Note that

we may omit the round brackets for P if we substitute a specific value to k. For

example, P (2k − 1)
∣∣
k=1

= P1, P (2k)
∣∣
k=1

= P2, which are consistent with (2.22),

(2.23), respectively.
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We further define “open” half lines

LP (2k−1) = {(x, y) | x = P (2k − 1)x, y < P (2k − 1)y} ,(3.4)

LP (2k) = {(x, y) | x < P (2k)x, y = P (2k)y} .(3.5)

Here, “open” means that each half line does not include its end point. Moreover, we

define open segments

P (2k − 1)P (2k + 1) = {(x, y) ∈ L4 | P (2k + 1)x < x < P (2k − 1)x} ,(3.6)

P (2k)P (2k + 2) = {(x, y) ∈ L5 | P (2k + 2)x < x < P (2k)x} .(3.7)

These objects are illustrated in Figure 3.

Figure 3. Points, half lines, and “open segments”
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Finally, we define the following domains.

S1 = {(x, y) | y > x, y > −x+ α̂2 − α̂3}(3.8)

S2 = {(x, y) | y > P2y, y < −x+ α̂2 − α̂3}(3.9)

S5 = {(x, y) | x > P1x, y < −x+ α̂2 − α̂3}(3.10)

S6 = {(x, y) | y < x, y > −x+ α̂2 − α̂3}(3.11)

L1 = {(x, y) | y = x}(3.12)

L2 = {(x, y) | y = −x+ α̂2 − α̂3, x < P2x}(3.13)

L5 = {(x, y) | y = x−max[0, α̂1] + α̂2, x < P1y}(3.14)

L4 = {(x, y) | y = x+max[0, α̂1]− α̂2, x < P1x}(3.15)

L7 = {(x, y) | y = −x+ α̂2 − α̂3, x > P1x}(3.16)

P0P1 =

{
(x, y) | y = −x+ α̂2 − α̂3,

α̂2 − α̂3

2
< x < P1x

}
(3.17)

P0P2 =

{
(x, y) | y = −x+ α̂2 − α̂3, P1x < x <

α̂2 − α̂3

2

}
(3.18)

See Figure 4 in which these domains are illustrated. In the approximative method, we

trace the time evolution of the amplitude as transition among these domains, not among

points. Its detail is explained in the following subsections.

Figure 4. domains
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§ 3.2. ξn−1 = ξn = ξn+1

This case has no solution in the “overlapping” relationship.

§ 3.3. ξn−1 = ξn = −ξn+1

Transition of the amplitude on the X− v.s. X phase plane is given in Table 3 of

[24]. First, we study the case Cℓ : X < X− + a− α̂2 (a = max
[
0, α̂1, α̂3 + 2X

]
). Such

points are on the right of “>” (see Figure 1 (a)). In this case, we have Xn+1 = X−,

and therefore the unique mapping (X−, X) 7→ (X,X−), which is the reflection about

the line X = X−, is obtained. Therefore, the right of “>” is mapped to the upper of

“∧.” As specific cases, LP (2k−1) is mapped to LP (2k).

Second, we study the case Ce : X = X− + a − α̂2. Such points are on L4 ∪
L2 ∪ P0P1 ∪ P0P2 ∪ P0 ∪ P1 ∪ P2. We again have the unique reflection about the

line X = X−. As preparation to discuss other cases, we illustrate the approximative

method in terms of (3.6) and (3.7). In this method, the mapping is considered to map

a set on the phase plane to the other. By (3.6) and (3.7), L4 7→ L5 is segmentalized as

P (2k−1)P (2k+1) 7→ P (2k)P (2k+2) (k = 1, 2, 3, . . . ). We shall need this segmentation

in later cases. We also obtained P (2k − 1) 7→ P (2k). Moreover, we obtain P0P1 7→
P0P2, P0P2 7→ P0P1, P1 7→ P2, and P2 7→ P1, which are bijections. Finally, P0 is a

fixed point.

Third, we study the case Cg : X > X− + a − α̂2. Such points are on the left of

“>.” In this case, we have Xn+1 = X−a+ α̂2, and therefore the non-injective mapping

(X−, X) 7→ (X,X − a+ α̂2) ∈ L5 ∪ L7, which is independent in X−, is obtained. If we

introduce horizontal band domains (see Figure 5)

HBk = {(x, y) | (X̃, Ỹ ) ∈ P (2k − 1)P (2k + 1), x < X̃, y = Ỹ },(3.19)

any points (X−, X) ∈ HBk, that is, (X−, Ỹ ) is mapped to the point (Ỹ , Ỹ − a+ α̂2) on

P (2k)P (2k+2). This mapping can be visually understood as follows. The point (X−, Ỹ )

is temporally mapped to a mirror image about X = X−, and the mirror image is further

projected to vertical direction onto P (2k)P (2k + 2). We often use this “reflection and

projection” hereafter. By the approximative method, we have HBk 7→ P (2k)P (2k+2).

If we further introduce

HB′
1 = {(x, y) | (X̃, Ỹ ) ∈ P0P1, x < X̃, y = Ỹ },(3.20)

we obtain the approximative mapping HB′
1 7→ P0P2. Similarly, introducing

HB′
2 = {(x, y) | (X̃, Ỹ ) ∈ P0P2, x < X̃, y = Ỹ },(3.21)

we obtain HB′
2 7→ P0P1.
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Now, we have traced the image of all points on the X− v.s. X plane for ξn−1 =

ξn = −ξn+1.

(a) (b)

Figure 5. (a) “horizontal band” domains (b) “vertical band” domains

§ 3.4. −ξn−1 = ξn = ξn+1

First, we check the case Cℓ : X < X− + a − α̂2. As a consequence, we have the

same results as the first case in Subsection 3.3.

Second, we consider the case Ce : X = X− + a − α̂2. In this case, we have the

indeterminate solution X+ ≤ X−. We firstly consider a point on L4. If we take a

point on a open segment P (2k − 1)P (2k + 1), it can be mapped on the open segment

P (2k)P (2k+2) by reflection and projection or on the vertical-band domains (see Figure

5 (b))

V Bk = {(x, y) | (X̃, Ỹ ) ∈ P (2k)P (2k + 2), x = X̃, y < Ỹ }.(3.22)

By approximative method, P (2k − 1)P (2k + 1) 7→ P (2k)P (2k + 2) ∪ V Bk. Secondly, a

point on P0P1 is mapped on P0P2 by reflection and projection or V B′
2 defined by

V B′
2 = {(x, y) | (X̃, Ỹ ) ∈ P0P2, x = X̃, y < Ỹ }.(3.23)

Points P0 and P1 are respectively mapped on P0 ∪ P3 ∪ P0P3 ∪ LP3 and P0 ∪ P5 ∪
P2P5 ∪ LP5, where we define open segments

P (2k)P (2k + 3) = {(x, y) | x = P (2k)x, P (2k + 3)y < y < P (2k)y},(3.24)

and P0P3 and P2P5 are obtained their specific cases for k = 0, 1. Thirdly, a point on

P0P2 is mapped on P0P1 by reflection and projection or V B′
1 defined by

V B′
1 = {(x, y) | (X̃, Ỹ ) ∈ P0P1, x = X̃, y < Ỹ }.(3.25)
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Similarly, a point on P2 is mapped on P1 ∪ LP1. Fourthly, we consider a point on the

half line L2. It is mapped on L7 by reflection and projection or on S5.

§ 3.5. ξn−1 = −ξn = ξn+1

First, we check the case Ce. We have the same results as the second case in

Subsection 3.4.

Second, we check the case Cg. We have the same results as the third case in

Subsection 3.3.

§ 3.6. Examples of solutions

In this section, some examples of solutions are illustrated. When ξn−1 6= ξn and

(X−, X) ∈ L4∪L2∪P0P1∪P0P2∪P0∪P1∪P2, we encounter indeterminate solutions.

By choosing a possible pair of sign and amplitude, the successive solutions are calcu-

lated. However, we may encounter indeterminate solutions again. Its indeterminacy

may generally be different from the first one.

We use notation Zn = (ξn−1, ξn, Xn−1, Xn) for representing a pair of successive

two points. Here, we assign initial values and study the initial value problem. In

the first example, we do not encounter any indeterminate solution. We start from

Z1 = (+,+, X0, X1) and (X0, X1) ∈ S1. We obtain the following transition:

Z1 7→ Z2 = (+,−, X1, X0), (X1, X0) ∈ S6,

7→ Z3 = (−,−, X0, X1), (X0, X1) ∈ S1,

7→ Z4 = (−,+, X1, X0), (X1, X0) ∈ S6,

7→ Z5 = (+,+, X0, X1) = Z1.

Note that these transitions are unique. In “approximative method” which was pro-

posed in [24], information on a domain in the phase plane to which a pair of amplitude

(Xn−1, Xn) belongs is more important than values of amplitudes. Therefore, we rein-

terpret this mapping that from a domain to another one, not from a point to another.

For convenience, we introduce further short expression, “Zn ∈ (ξn−1, ξn, domain).” For

example, the above examples are written as

Z1 ∈ (+,+, S1) 7→ Z2 ∈ (+,−, S6),

7→ Z3 ∈ (−,−, S1),

7→ Z4 ∈ (−,+, S6),

7→ Z5 ∈ (+,+, S1).

In the concept of approximative method, this transition should be expressed as

(+,+, S1) 7→ (+,−, S6) 7→ (−,−, S1) 7→ (−,+, S6) 7→ (+,+, S1) · · · .
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We combine use of the original form Zn = (ξn−1, ξn, Xn−1, Xn) and the short form

Zn ∈ (ξn−1, ξn, domain) for understanding the discussion. Since all evolutions are

unique in this example, advantage of this approximation is not clear. However, it is

convenient to understand indeterminate solutions as shown in the next example.

The authors comment that they expressed the information of two signs (ξn−1, ξn)

by some shapes in [24]. That is, a pair of signs (+,+) is represented by a white

circle, (+,−) by a black circle, (−,−) by a black-painted diamond, and (−,+)

by a white-painted diamond. The information of the amplitudes is represented

by writing the set which a pair of two amplitudes belongs into the shape. For

example, the above Z1–Z4 are represented as follows.

Z1 : Z2 : Z3 : Z4 :

Moreover, by using these shapes, the transition diagrams were drawn in [24].

In the second example, we encounter a infinite number of indeterminate solutions

but they are just two types. We start from Z1 = (+,−, X0, X1) and (X0, X1) ∈ L2.

Note that this initial value belongs to the domain (+,−, L2), and that actually X1 =

−X0 + α̂2 − α̂3 holds. At the next step, we encounter indeterminate solutions. Hence,

in the usual sense, an infinite number of pairs of sign and amplitude can be chosen.

However, we classify such solutions into four types as

Z2 = (−,+, X1, X0), (X1, Y2) ∈ L7,(3.26)

Z ′
2 = (−,+, X1,Y2), (X1,Y2) ∈ S5 (Y2 < −X1 + α̂2 − α̂3),(3.27)

Z ′′
2 = (−,−, X1,Y2), (X1,Y2) ∈ S5,(3.28)

Z ′′′
2 = (−,−, X1, X0), (X1, X0) ∈ L7.(3.29)

Here, Y2 denotes a chosen value for X2 which is less than −X1 + α̂2 − α̂3. Note that

X2 = −X1+α̂2−α̂3 = X0 holds in (3.26) and (3.29). We calculate successive evolutions

for each type. The results are as follows.

(i) When we choose Z2,

Z2 7→ Z3 = (+,+, X0, X1), (X0, X1) ∈ L2,

7→ Z4 = (+,−, X1, X0), (X1, X0) ∈ L7,

7→ Z5 = (−,−, X0, X1), (X0, X1) ∈ L2,

7→ Z6 = Z2.
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(ii) When we choose Z ′
2,

Z ′
2 7→ Z ′

3 = (+,+,Y2, X1), (Y2, X1) ∈ S2,

7→ Z ′
4 = Z4,

7→ Z ′
5 = Z5,

7→ Z ′
6 = Z6 = Z2.

(iii) When we choose Z ′′
2 ,

Z ′′
2 7→ Z ′′

3 = (−,+,Y2, X1), (Y2, X1) ∈ S2,

7→ Z ′′
4 = Z4,

7→ Z ′′
5 = Z5,

7→ Z ′′
6 = Z6 = Z2.

(iv) When we choose Z ′′′
2 ,

Z ′′′
2 7→ Z ′′′

3 = (−,+, X0, X1), (X0, X1) ∈ L2,

7→ Z ′′′
4 becomes indeterminate.

We again classify indeterminate solutions into four types as

Ẑ4 = (+,+, X1, X0), (X1, X0) ∈ L7,

Ẑ ′
4 = (+,−, X1, X0), (X1, X0) ∈ L7,

Ẑ ′′
4 = (+,+, X1, Ŷ2), (X1, Ŷ2) ∈ S5,

Ẑ ′′′
4 = (+,−, X1, Ŷ2), (X1, Ŷ2) ∈ S5.

Here, Ŷ2 denotes a chosen value for X4 which is less than −X1 + α̂2 − α̂3 and may be

different from Y2. If we choose Z ′′′
4 = Ẑ4, we obtain the following evolution:

Z ′′′
4 = Ẑ4,

7→ Z ′′′
5 = (+,−, X0, X1), (X0, X1) ∈ L2,

which is identical to the initial value Z1. For the other cases, we obtain

Z ′′′
4 = Ẑ ′

4(= Z4),

7→ Ẑ ′
5 = Z5,

7→ Ẑ ′
6 = Z2,

and

Z ′′′
4 = Ẑ ′′

4 ,

7→ Ẑ ′′
5 = (+,−, Ŷ2, X1), (Ŷ2, X1) ∈ S2,

7→ Ẑ ′′
6 = Z2,
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and

Z ′′′
4 = Ẑ ′′′

4 ,

7→ Ẑ ′′′
5 = (−,−, Ŷ2, X1), (Ŷ2, X1) ∈ S2,

7→ Ẑ ′′′
6 = Z2.

Note that the domains L2, L7, S2, and S5 appear with all pair of signs (ξn−1, ξn).

This means that these solution-orbits are closed in these domains. The behavior of this

solution is summarized by the transition diagram in Figure 6. Four arrows which mean

the indeterminate solutions leave from (+,−, L2) and (−,+, L2). Note that, although

Y2 and Ŷ2 denote an infinite number of values in usual sense, they are expressed by

one domain S5 or S2.

(+,−, 𝐿𝐿𝐿)(−, +, 𝐿𝐿𝐿)

(−, +, 𝑆𝑆𝑆)

(−,−, 𝑆𝑆𝑆)

(−,−, 𝐿𝐿𝐿)

(+, +, 𝐿𝐿𝐿)

(+,−, 𝐿𝐿𝐿)

(+, +, 𝐿𝐿𝐿)

(+, +, 𝑆𝑆𝐿)

(−, +, 𝑆𝑆𝐿)

(−, +, 𝐿𝐿𝐿)
(+, +, 𝐿𝐿𝐿)

(+, +, 𝑆𝑆𝑆)

(+,−, 𝑆𝑆𝑆)

(+,−, 𝑆𝑆𝐿)

(−,−, 𝑆𝑆𝐿)

Figure 6. Example of transition diagram

In the third example, we study the most complicated case. We study the transition

for the domain on the amplitude phase plane

{(x, y) | y < P2y, y ≤ −x+ α̂2 − α̂3, x < P1x} ,(3.30)

whose discussion has been omitted in [24]. Note that we have already introduced some

subsets included in (3.30). We first consider the horizontal-band domains defined by

(3.19), (3.20), and (3.21). If we start from a point (X0, X1) ∈ HBk, we obtain

(±,±,HBk), (±,∓,HBk) 7→ (±,∓, P (2k)P (2k + 2)), (∓,±, P (2k)P (2k + 2))

7→ (∓,±, P (2k − 4)P (2k − 2)), (±,∓, P (2k − 4)P (2k − 2))

7→ · · · .

If we put it into words, a horizontal band is mapped to the corresponding open segment,

and after this, goes up to every other open segment in order, and reach P2P4 or P4P6.
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Note that both HB′
1 and P4P6 are mapped to P0P2, and similarly, both HB′

2 and

P2P4 are mapped to P0P1. Moreover, the solution (ξn−1, ξn, Xn−1, Xn) on an open

segment has different signs, that is, ξn−1ξn = −1. Therefore, a point (X0, X1) ∈ HBk

will be eventually included in one of (±,∓, P0P1), (±,∓, P0P2). Then, at the next

step, we encounter indeterminate solutions.

Next, we define the “bottom” part of each vertical band by

B(V Bk) = {(x, y) | (X̃, Ỹ ) ∈ P (2k)P (2k + 2), x = X̃, y < X̃ +max[0, α̂1]− α̂2},
(3.31)

B(V B′
1) = {(x, y) | (X̃, Ỹ ) ∈ P0P1, x = X̃, y < X̃ +max[0, α̂1]− α̂2},

(3.32)

B(V B′
2) = {(x, y) | (X̃, Ỹ ) ∈ P0P2, x = X̃, y < X̃ +max[0, α̂1]− α̂2}.

(3.33)

Then, we start from a point (X0, X1) ∈ B(V Bk). We obtain

(±,±, B(V Bk)), (±,∓, B(V Bk)) 7→ (±,∓,HBk), (∓,±,HBk),

and (X0, X1) ∈ B(V B′
k) (k = 1, 2) are also mapped to the corresponding horizontal

bands, respectively. The transition hereafter is reduced to the case of starting from the

horizontal band, which we have already discussed.

If we start from a point on the half line LP (2k−1), LP (2k) (k = 2, 3, 4, . . . ), the

solution shows similar behavior to starting from the next horizontal or vertical band.

This result is similar if a starting point is on the (vertical) open segments P (2k)P (2k+3)

defined by (3.24) or (horizontal) open segments P (2k − 1)P (2k + 4) defined by

P (2k − 1)P (2k + 4) = {(x, y) | P (2k + 4)x < x < P (2k − 1)x, y = P (2k − 1)y}(3.34)

or the points P (2k) (k = 2, 3, 4, . . .). (To be exact, some segments have intersection

points and such points are discussed with overlapping. However, it is not essential to

understand the behavior of the solutions.)

The domains P0P1, P0P2, P0, P1, P2 and L4 have not been discussed. We start

from (+,−, P0P2) or (+,−, X0, X1). The next step becomes indeterminate solutions.

All candidates are (−,±, X1, Y ) where Y ≤ −X1 + α̂2 − α̂3. In this example, we

choose (−,+, P1P3) (or (−,+, X1, X1 + max[0, α̂1] − α̂2) ), because this is one of the

candidates which have not been discussed yet. Then, we again encounter indeterminate

solutions and choose (+,−, P5P7). In this way, we can choose “the open segment

two leftward,” that is (±,∓, P (2k − 1)P (2k + 1)) 7→ (∓,±, P (2k + 3)P (2k + 5)), and

encounter new types of indeterminate solutions in infinitely many times (Note that

such solutions were classified as “indeterminate type with unbounded diagram” in [25]).
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This is a remarkable feature of the “overlapping” positional relationship, since it is

not observed in the other positional relationship. If we choose another value as an

indeterminate solution, we obtain unique evolution for some steps. However, the solution

orbit shall definitely pass (±,∓, P0P1) or (±,∓, P0P2) after several steps and the

next step becomes indeterminate solutions. Hence, we cannot avoid re-encountering

indeterminate solutions.

§ 4. Concluding Remarks

This article is a continuation of [24] in which the “approximative method [23]”

was applied to the p-ultradiscrete hard-spring equation [25]. In general p-ultradiscrete

equations, uniqueness of the solution may be lost under certain specific conditions.

Namely, indeterminate solutions with an infinite number of branches appear. However,

approximative method makes it possible to reduce an infinite number of branches to

some finite number of ones. As a result, the behavior of ultradiscrete solutions was

summarized by finite size of transition diagrams.

In this article, we have focused on the “overlapping” case, which comes from the

positional relationship between two characteristic polygonal lines on the phase plane.

Analysis of this case was omitted in [24] because it is rather complicated. If we con-

trast this case with the results in [25], it corresponds the situation that infinitely many

branching conditions which are independent from the initial values appear. In a way,

this is a local perspective. Even by using approximative method, it is impossible to draw

the transition diagram with finite size. However, the phase plane analysis provides us a

global perspective and we have found that the behavior of solutions is rather organized.

Since a mechanism of appearance of infinite branching conditions was unclear in [25],

this study has moved toward a deeper understanding of the ultradiscrete solutions.

We believe that the approximative method is effective for other p-ultradiscrete

systems. It is a future problem to study other p-ultradiscrete equation by means of this

technique.
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