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Abstract
We propose a definition of deformed symmetrizable generalized Cartanmatrices with several
deformation parameters, which admit a categorical interpretation by graded modules over
the generalized preprojective algebras in the sense of Geiß–Leclerc–Schröer. Using the cat-
egorical interpretation, we deduce a combinatorial formula for the inverses of our deformed
Cartan matrices in terms of braid group actions. Under a certain condition, which is satisfied
in all the symmetric cases or in all the finite and affine cases, our definition coincides with
that of the mass-deformed Cartan matrices introduced by Kimura–Pestun in their study of
quiver W-algebras.

Keywords Deformed Cartan matrices · Braid group actions · Generalized preprojective
algebras · Categorifications

Mathematics Subject Classification 16G20 · 17B37 · 16W50 · 17B67 · 81R50

1 Introduction

In their study of the deformed W-algebras, Frenkel–Reshetikhin [12] introduced a certain
2-parameter deformation C(q, t) of the Cartan matrix of finite type. In the previous work
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[15], the present authors gave a categorical interpretation of this deformed Cartan matrix
C(q, t) in terms of bigraded modules over the generalized preprojective algebras in the sense
of Geiß–Leclerc–Schröer [20]. More precisely, we have shown that the entries of the matrix
C(q, t) and its inverse ˜C(q, t) can be expressed by the Euler–Poincaré pairings of certain
bigraded modules.

The definition of the generalized preprojective algebra is given in a generality of arbitrary
symmetrizable Kac–Moody type by Geiss et al. [20], and it admits a Weyl group symmetry
[2, 20] and a geometric realization of crystal bases [21]. As a sequel of Fujita and Murakami
[15], the main purpose of the present paper is to propose a categorification of a several param-
eter deformation of arbitrary symmetrizable generalized Cartan matrix (GCM for short) by
considering multi-graded modules over the generalized preprojective algebra. In the context
of theoretical physics, Kimura–Pestun [29, 30] introduced the mass-deformed Cartan matrix,
a deformation of GCM with several deformation parameters, in their study of (fractional)
quiverW-algebras,which is a generalization of Frenkel-Reshetikhin’s deformedW-algebras.
Our deformation essentially coincides with Kimura–Pestun’s mass-deformed Cartan matrix
under a certain condition which is satisfied in all the symmetric cases or in all the finite and
affine cases (see Sect. 4.1).

To explain our results more precisely, let us prepare some kinds of terminology. Let C =
(ci j )i, j∈I be a GCMwith a symmetrizer D = diag(di | i ∈ I ).We put gi j := gcd(|ci j |, |c ji |)
and fi j := |ci j |/gi j for i, j ∈ I with ci j < 0. Associated with these data, we have the
generalized preprojective algebra � defined over an arbitrary field (see Geiss et al. [20]
for the precise definition or Sect. 3.3 for our convention). We introduce the (multiplicative)
abelian group � generated by the elements

{q, t} ∪
{

μ
(g)
i j | (i, j, g) ∈ I × I × Z, ci j < 0, 1 ≤ g ≤ gi j

}

which subject to the relations

μ
(g)
i j μ

(g)
j i = 1 for all i, j ∈ I with ci j < 0 and 1 ≤ g ≤ gi j .

These elements play the role of deformation parameters. Here, we introduced the parameters
μ

(g)
i j in addition to q and t inspired by Kimura and Pestun [29, 30], where the counterparts are

called mass-parameters. We endow a certain �-grading on the algebra � as in (3.1) below.
We can show that this grading on � is universal under a reasonable condition, see Sect. 4.2.
With the terminology, we give the following definition of (q, t, μ)-deformationC(q, t, μ) of
GCM C , and propose a categorical framework which organizes some relevant combinatorics
in terms of the �-graded �-modules:

Definition and Claim We define the Z[�]-valued I × I -matrix C(q, t, μ) by the formula

Ci j (q, t, μ) =

⎧

⎪

⎨

⎪

⎩

qdi t−1 + q−di t if i = j;
−[ fi j ]qdi

∑gi j
g=1 μ

(g)
i j if ci j < 0;

0 otherwise,

(1.1)

where [k]q = (qk − q−k)/(q − q−1) is the standard q-integer. We establish the following
statements:

(1) Each entry ofC(q, t, μ)and its inverse˜C(q, t, μ) can be expressed as theEuler–Poincaré
paring of certain �-graded �-modules (Sect.3.5).

(2) Moreover, when C is of infinite type, the formal expansion at t = 0 of each entry of
˜C(q, t, μ) coincides with the �-graded dimension of a certain �-module, and hence its
coefficients are non-negative (Corollary 3.15).
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(3) For general C, the formal expansion at t = 0 of ˜C(q, t, μ) admits a combinatorial
expression in terms of a braid group symmetry (Sects.2.5 and 3.6).

Note that if we consider the above (3) for each finite type and some specific reduced
words, then it recovers the combinatorial formula obtained by Hernandez and Leclerc [24]
and Kashiwara and Oh [27] after some specialization. We might see our generalization as a
kind of aspects of the Weyl/braid group symmetry of � about general reduced expressions
(e.g. [13, 34]). When C is of finite type, these results are essentially same as the results in
our previous work [15].

When C is of infinite type, the algebra � is no longer finite-dimensional. In this case, we
find it suitable to workwith the category of�-gradedmodules which are bounded from below
with respect to the t-grading, and its completed Grothendieck group. Then, the discussion is
almost parallel to the case of finite type. Indeed, we give a uniform treatment which deals
with the cases of finite type and of infinite type at the same time.

In the case of finite type, the above combinatorial aspects of the deformed Cartan matrices
play an important role in the representation theory of quantum loop algebras, see our previous
work [15] and references therein. We may expect that our results here on the deformed GCM
are also useful in the study of quiver W-algebras and the representation theory of quantum
affinizations of Kac–Moody algebras in the future.

This paper is organized as follows. In Sect. 2, after fixing our notation, we discuss com-
binatorial aspects (i.e., a braid group action in Sect. 2.3 and the formula for ˜C(q, t, μ) using
it in Sect. 2.5) of our deformed Cartan matrices. The proofs of several assertions require the
categorical interpretation and hence are postponed to the next section. In Sect. 3, we discuss
the categorical interpretation of our deformed GCM in terms of the graded modules over
the generalized preprojective algebras. The final Sect. 4 consists of three remarks, which
are logically independent from the other parts of the paper. In Sect. 4.1, we compare our
deformed GCM with the mass-deformed Cartan matrix in the sense of Kimura–Pestun [29].
In Sect. 4.2, we show that our �-grading on � is universal among the gradings valued at
free abelian groups. In Sect. 4.3, we briefly discuss the t-deformed GCM, which is obtained
from our C(q, t, μ) by evaluating all the deformation parameters except for t at 1, and its
categorical interpretation by the classical representation theory of modulated graphs in the
sense of Dlab–Ringel [11].

Conventions
Throughout this paper, we use the following conventions.

• For a statement P, we set δ(P) to be 1 or 0 according that P is true or false. We often use
the abbreviation δx,y := δ(x = y) known as Kronecker’s delta.

• For a group G, let Z[G] denote the group ring and Z[[G]] the set of formal sums
{∑g∈G agg | ag ∈ Z}. Note that Z[[G]] is a Z[G]-module in the natural way. If Z[G] is
a commutative integral domain, we write Q(G) for its fraction field.

2 Deformed Cartanmatrices

In this section, we introduce a novel definition of multiple parameter deformation of the sym-
metrizable generalized Cartan matrix, inspired by studies of the quiver W-algebra [29, 30].
Additionally, relevant combinatorial materials associated with this deformed Cartan matrix
(including the deformation of root lattice, the braid group action, and their combinatorial for-
mulas) are introduced, motivated by several contexts in the representation theory of quantum
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affine algebra. These various objects are examined in a unified manner from the viewpoint
of representation theory of a certain graded algebra in the next Sect. 3.

2.1 Notation

Let I be a finite set. Recall that a Z-valued I × I -matrix C = (ci j )i, j∈I is called a sym-
metrizable generalized Cartan matrix if the following conditions are satisfied:

(C1) cii = 2, ci j ∈ Z≤0 for all i, j ∈ I with i �= j , and ci j = 0 if and only if c ji = 0,
(C2) there is a diagonal matrix D = diag(di | i ∈ I ) with di ∈ Z>0 for all i ∈ I such that

the product DC is symmetric.

We call the diagonal matrix D in (C2) a symmetrizer of C . It is said to be minimal when
gcd(di | i ∈ I ) = 1. For i, j ∈ I , we write i ∼ j when ci j < 0. We say that a symmetrizable
generalized Cartan matrixC is irreducible if, for any i, j ∈ I , there is a sequence i1, . . . , il ∈
I satisfying i ∼ i1 ∼ · · · ∼ il ∼ j . In this case, a minimal symmetrizer of C is unique, and
any symmetrizer of C is a scalar multiple of it. From now on, by a GCM, we always mean
an irreducible symmetrizable generalized Cartan matrix. We say that C is of finite type if it
is positive definite, and it is of infinite type otherwise.

Throughout this section, we fix aGCMC = (ci j )i, j∈I with its symmetrizer D = diag(di |
i ∈ I ). For any i, j ∈ I with i ∼ j , we set

gi j := gcd(|ci j |, |c ji |), fi j := |ci j |/gi j , di j := gcd(di , d j ).

By definition, we have gi j = g ji , di j = d ji and fi j = d j/di j . Let r := lcm(di | i ∈ I ).
We note that the transpose tC = (c ji )i, j∈I is also a GCM, whose minimal symmetrizer is
r D−1 = diag(r/di | i ∈ I ). Following [20], we say that a subset � ⊂ I × I is an acyclic
orientation of C if the following conditions are satisfied:

• {(i, j), ( j, i)} ∩ � �= ∅ if and only if i ∼ j ,
• for any sequence (i1, i2, . . . , il) in I with l > 1 and (ik, ik+1) ∈ � for all 1 ≤ k < l, we

have i1 �= il .

LetQ = ⊕

i∈I Zαi be the root lattice of the Kac–Moody algebra associated withC , where
αi is the i-th simple root for each i ∈ I . We write si for the i-th simple reflection, which is an
automorphism ofQ given by siα j = α j −ci jαi for j ∈ I . TheWeyl groupW is defined to be
the subgroup of Aut(Q) generated by all the simple reflections {si }i∈I . The pair (W , {si }i∈I )
forms a Coxeter system.

2.2 Deformed Cartanmatrices

Let � be the (multiplicative) abelian group defined in Introduction. As an abelian group,
� is free of finite rank. Let μZ denote the subgroup of � generated by all the elements in

{μ(g)
i j | i, j ∈ I , i ∼ j, 1 ≤ g ≤ gi j }. Then we have � = qZ × tZ × μZ, where xZ := {xk |

k ∈ Z}. If we choose an acyclic orientation � of C , we have μZ = ∏

(i, j)∈�

∏gi j
g=1(μ

(g)
i j )Z.

In particular, the rank of � is 2+∑

(i, j)∈� gi j . Consider the group ring Z[�] of �. Given an
acyclic orientation � of C , it is identical to the ring of Laurent polynomials in the variables
q, t and μ

(g)
i j with (i, j) ∈ �.

We define the deformed generalized Cartan matrix (deformed GCM for short) C(q, t, μ)

to be theZ[�]-valued I×I -matrixwhose (i, j)-entryCi j (q, t, μ) is givenby the formula (1.1)
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in Introduction. We often evaluate all the parameters μ
(g)
i j at 1 and write C(q, t) for the

resulting Z[q±1, t±1]-valued matrix. More explicitly, its (i, j)-entry is given by

Ci j (q, t) := δi, j (q
di t−1 + q−di t) − δ(i ∼ j)gi j [ fi j ]qdi .

Werefer to thematrixC(q, t) as the (q, t)-deformedGCM.Note thatwehave [di ]qCi j (q, t) =
gi j [di fi j ]q whenever i �= j , and hence the matrix ([di ]qCi j (q, t))i, j∈I is symmetric.

Remark 2.1 When the GCM C is of finite type, the matrix C(q, t) coincides with the (q, t)-
deformed Cartan matrix considered in Frenkel and Reshetikhin [12]. A deformed GCM of
general type is also considered in Kimura and Pestun [29, 30], called the mass deformed
Cartan matrix. We discuss the difference between our definition and the definition in Kimura
and Pestun [29] in Sect. 4.1.

Let �0 := qZ × μZ ⊂ �. Since � = tZ × �0, we have Z[�] = Z[�0][t±1]. Letting
q±D := diag(q±di | i ∈ I ), we can write

C(q, t, μ) = (id − t X)t−1qD, (2.1)

for some Z[�0][t]-valued matrix X . In particular, the matrix C(q, t, μ) is invertible as a
Z[�0]((t))-valued matrix and its inverse ˜C(q, t, μ) = (˜Ci j (q, t, μ)) is given by

˜C(q, t, μ) = q−Dt

(

id +
∑

k>0

Xktk
)

.

Example 2.2 Even if we begin with a non-invertible GCM C , we obtain C(q, t, μ) as an
invertible matrix. For example, if we take

C =
(

2 −2
−2 2

)

and D = diag(1, 1),

then we obtain

C(q, t, μ) =
(

qt−1 + q−1t −(μ
(1)
12 + μ

(2)
12 )

−(μ
(1)
21 + μ

(2)
21 ) qt−1 + q−1t

)

. (2.2)

Since detC(q, t, μ) = q2t−2 − (μ
(1)
12 μ

(2)
21 +μ

(1)
21 μ

(2)
12 )+q−2t2 ∈ Z[�0]((t))×, ourC(q, t, μ)

is invertible.

Theorem 2.3 When C is of infinite type, the matrix ˜C(q, t, μ) has non-negative coefficients,

namely we have ˜Ci j (q, t, μ) ∈ Z≥0[�0][[t]] for any i, j ∈ I .

A proof will be given in the next section (see Corollary 3.15 (2) below).

Remark 2.4 If we evaluate all the deformation parameters except for q at 1 in (2.2), we get
a q-deformed Cartan matrix C(q), which is different from the naive q-deformation C ′(q),
where

C(q) =
([2]q −2

−2 [2]q
)

, C ′(q) =
( [2]q [−2]q

[−2]q [2]q
)

.

Note that C(q) is invertible, while C ′(q) is not invertible. See also Remark 4.4 below for a
related discussion on q-deformed Cartan matrices. In the context of the representation theory
of quantum affinizations, the choice of q-deformation of GCM affects the definition of the
algebra. For the quantum affinization of ̂sl2, the matrix C(q) was used by Nakajima [35,
Remark 3.13] and also adopted by Hernandez [23]. See [23, Remark 4.1].
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2.3 Braid group actions

Let Q(�) denote the fraction field of Z[�]. Let φ be the automorphism of the group � given
by φ(q) = q , φ(t) = t , and φ(μ

(g)
i j ) = μ

(g)
j i for all possible i, j ∈ I and g. It induces the

automorphisms of Z[[�]] and Q(�), for which we again write φ. We often write aφ instead
of φ(a).

Consider the Q(�)-vector space Q� given by

Q� := Q(�) ⊗Z Q =
⊕

i∈I
Q(�)αi .

We endow Q� with a non-degenerate φ-sesquilinear hermitian form (−,−)� by

(αi , α j )� := [di ]qCi j (q, t, μ)

for each i, j ∈ I . Here the term “φ-sesquilinear hermitian" means that it satisfies

(ax, by)� = aφb(x, y)�, (x, y)� = (y, x)φ�

for any x, y ∈ Q� and a, b ∈ Q(�). Let {α∨
i }i∈I be another basis of Q� defined by

α∨
i := q−di t[di ]−1

q αi .

It is thought of a deformation of simple coroots. We have

(α∨
i , α j )� = q−di tCi j (q, t, μ)

for any i, j ∈ I . Let {�∨
i }i∈I denote the dual basis of {αi }i∈I with respect to (−,−)� . We

also consider the element �i := [di ]q�∨
i for each i ∈ I . With these conventions, we have

αi =
∑

j∈I
C ji (q, t, μ)� j , α∨

i = q−di t
∑

j∈I
Ci j (q, t, μ)φ�∨

j . (2.3)

For each i ∈ I , we define a Q(�)-linear automorphism Ti of Q� by

Ti x := x − (α∨
i , x)�αi (2.4)

for x ∈ Q� . In terms of the basis {αi }i∈I , we have
Tiα j = α j − q−di tCi j (q, t, μ)αi . (2.5)

Thus, the action (2.4) can be thought of a deformation of the i-th simple reflection si . Note
that our Q(�)-linear automorphisms Ti (i ∈ I ) of Q� recover the braid group actions that
were introduced in Chari [8] and Bouwknegt and Pilch [5] for finite type cases after certain
specializations (see [15, Section 1.3]).

Proposition 2.5 The operators {Ti }i∈I define an action of the braid group associated to the
Coxeter system (W , {si }i∈I ), i.e., they satisfy the braid relations:

Ti Tj = Tj Ti if ci j = 0,

Ti Tj Ti = Tj Ti Tj if ci j c ji = 1,

(Ti Tj )
k = (Tj Ti )

k if ci j c ji = k with k ∈ {2, 3}.
A proof will be given in Sect. 3.6 below (after Lemma 3.18).
Givenw ∈ W ,we choose a reduced expressionw = si1si2 · · · sil and setTw := Ti1Ti2 · · · Til .

By Proposition 2.5, Tw does not depend on the choice of reduced expression.
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2.4 Remark on finite type

In this subsection, we assume that C is of finite type. Since we always have gi j = 1 in this

case, we write μi j instead of μ
(1)
i j . For any (i, j) ∈ I , we define μi j := μi,i1μi1,i2 · · · μik , j ,

where (i1, . . . , ik) is any finite sequence in I such that i ∼ i1 ∼ i2 ∼ · · · ∼ ik ∼ j .
Note that the element μi j ∈ � does not depend on the choice of such a sequence. Let
[−]μ=1 : Z[�] → Z[q±1, t±1] denote the map induced from the specialization μZ → {1}.
Recall Ci j (q, t) = [Ci j (q, t, μ)]μ=1 by definition.

Lemma 2.6 When C is of finite type, for any i, j ∈ I and a sequence (i1, . . . , ik), we have

(�∨
i , Ti1 · · · Tikα j )� = μi j [(�∨

i , Ti1 · · · Tikα j )�]μ=1.

Proof By definition, we haveCi j (q, t, μ) = μi jCi j (q, t) for any i, j ∈ I . Then the assertion
follows from (2.5). ��

Letw0 ∈ W be the longest element. It induces an involution i �→ i∗ of I byw0αi = −αi∗ .
We consider theQ(�)-linear automorphism ν ofQ� given by ν(αi ) = μi∗iαi∗ for each i ∈ I .
It is easy to see that ν is involutive and the pairing (−,−)� is invariant under ν. In particular,
we have ν(�∨

i ) = μi i∗�∨
i∗ for each i ∈ I . Denote the Coxeter and dual Coxeter numbers

associated with C by h and h∨ respectively.

Proposition 2.7 Assume that C is of finite type. We have Tw0 = −q−rh∨
thν.

Proof We know that the assertion holds when μ = 1 [15, Theorem 1.6]. It lifts to the desired
formula thanks to Lemma 2.6. ��

2.5 Combinatorial inversion formulas

Let C be a GCM of general type.
Let (ik)k∈Z>0 and ( jk)k∈Z>0 be two sequences in I . We say that (ik)k∈Z>0 is commutation-

equivalent to ( jk)k∈Z>0 if there is a bijection σ : Z>0 → Z>0 such that iσ(k) = jk for all
k ∈ Z>0 and we have cik ,il = 0 whenever k < l and σ(k) > σ(l).

Theorem 2.8 Let (ik)k∈Z>0 be a sequence in I satisfying the following condition:

(1) if C is of finite type, (ik)k∈Z>0 is commutation-equivalent to another sequence ( jk)k∈Z>0

such that the subsequence ( j1, . . . , jl) is a reduced word with l being the length of the
longest element w0 ∈ W and we have jk+l = j∗k for all k ∈ Z>0;

(2) if C is of infinite type, the subsequence (i1, i2, . . . , ik) is a reduced word for all k ∈ Z>0,
and we have |{k ∈ Z>0 | ik = i}| = ∞ for each i ∈ I .

Then, for any i, j ∈ I , we have

˜Ci j (q, t, μ) = q−d j t
∑

k∈Z>0;ik= j

(�∨
i , Ti1 · · · Tik−1α j )�. (2.6)

Proof of Theorem 2.8 for finite type Note that the RHS of (2.6) is unchanged if we replace
the sequence (i1, i2, . . .) with another commutation-equivalent sequence thanks to Proposi-
tion 2.5. When C is of finite type, we know that the equality (2.6) holds at μ = 1 by Fujita
and Murakami [15, Proposition 3.16]. Since we have ˜Ci j (q, t, μ) = μi j˜Ci j (q, t) for any
i, j ∈ I , we can deduce (2.6) for general μ thanks to Lemma 2.6. ��
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A proof when C is of infinite type will be given in Sect. 3.6 below (after Corollary 3.19).
In the remaining part of this section, we discuss the special case of the above inversion

formula (2.6) when the sequence comes from a Coxeter element and deduce a recursive
algorithm to compute ˜C(q, t, μ). Fix an acyclic orientation � of C . We say that a total
ordering I = {i1, . . . , in} is compatible with � if (ik, il) ∈ � implies k < l. Taking a
compatible total ordering, we define the Coxeter element τ� := si1 · · · sin . The assignment
� �→ τ� gives a well-defined bijection between the set of acyclic orientations ofC and the set
of Coxeter elements ofW . In what follows, we abbreviate T� := Tτ� . Letting I = {i1, . . . , in}
be a total ordering compatible with �, for each i ∈ I , we set

β�
i := (1 − T�)�i = q−di tTi1Ti2 · · · Tik−1αik if i = ik . (2.7)

Note that the resulting element β�
i is independent of the choice of the compatible ordering.

Proposition 2.9 Let � be an acyclic orientation of C. For any i, j ∈ I , we have

˜Ci j (q, t, μ) =
∞
∑

k=0

(�∨
i , T k

�β�
j )�. (2.8)

Proof Choose a total ordering I = {i1, . . . , in} compatible with �. Then we have T� =
Ti1 · · · Tin . We extend the sequence (i1, . . . , in) to an infinite sequence (ik)k∈Z>0 so that
ik+n = ik for all k ∈ N. When C is of infinite type, this sequence satisfies the condition in
Theorem 2.8 by Speyer [39], and hence we obtain (2.8). When C is of finite type, we know
that the subsequence (i1, . . . , i2l) = (i1, . . . , in)h is commutation-equivalent to a sequence
( j1, . . . , j2l) such that ( j1, . . . , jl) is a reduced word (adapted to �) for the longest element
w0 and jk+l = j∗k for all 1 ≤ k ≤ l. Indeed, when C is of simply-laced type, it follows

from Bédard [4]. When C is of non-simply-laced type, we simply have τ
h/2
� = w0 and

(i1, . . . , in)h/2 is a reduced word for w0. Therefore Theorem 2.8 again yields (2.8). ��
Lemma 2.10 For each i ∈ I and k ∈ N, we have

qdi t−1T k+1
� β�

i + q−di tT k
�β�

i +
∑

j∼i

C ji (q, t, μ)T k+δ(( j,i)∈�)
� β�

j = 0. (2.9)

Proof For any i, j ∈ I , we have

Ti� j =
{

−q−2di t2�i − q−di t
∑

i ′∼i Ci ′i (q, t, μ)�i ′ if i = j,

� j if i �= j

by definition. Using this identity, we obtain

qdi tT��i = −q−di t�i −
∑

j∼i

C ji (q, t, μ)T δ(( j,i)∈�)
� � j .

Applying T k
�(1 − T�) yields (2.9). ��

Once we fix a total ordering I = {i1, . . . , in} compatible with �, the equalities (2.7) and
(2.9) compute the elements T k

�β�
i for all (k, i) ∈ Z≥0× I recursively along the lexicographic

total ordering of Z≥0 × I . Thus, together with (2.8), we have obtained a recursive algorithm
to compute ˜Ci j (q, t, μ).

We say that a GCMC is bipartite if there is a function ε : I → Z/2Z such that ε(i) = ε( j)
implies i � j .WhenC is bipartite, we can simplify the above recursive formula by separating
the parameter t as explained below.
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For each i ∈ I , we consider a Q(�)-linear automorphism T̄i of Q� obtained from Ti by
evaluating the parameter t at 1. More precisely, it is given by

T̄iα j = α j − q−di Ci j (q, 1, μ)αi

for all j ∈ I . The operators {T̄i }i∈I define another action of the braid group, under which the
Q(�0)-subspace Q�0 := ⊕

i∈I Q(�0)αi of Q� is stable.

Definition 2.11 A function ξ : I → Z is called a height function (for C) if

|ξ(i) − ξ( j)| = 1 for all i, j ∈ I with i ∼ j .

A height function ξ gives an acyclic orientation �ξ of C such that we have (i, j) ∈ �ξ if
i ∼ j and ξ( j) = ξ(i) + 1. When i ∈ I is a sink of �ξ , in other words, when ξ(i) < ξ( j)
holds for all j ∈ I with j ∼ i , we define another height function siξ by

(siξ)( j) := ξ( j) + 2δi, j .

Remark 2.12 There exists a height function for C if and only if C is bipartite.

Given a function ξ : I → Z, we define a linear automorphism tξ of Q� by

tξ αi := tξ(i)αi

for each i ∈ I . When ξ : I → Z is a height function and i ∈ I a sink of�ξ , a straightforward
computation yields tξTi = T̄i t si ξ , from which we deduce

tξT�ξ = T̄�ξ t
ξ+2. (2.10)

Definition 2.13 Let ξ : I → Z be a height function. Define a map �ξ : I × Z → Q�0 by

�ξ(i, u) :=
{

T̄ k
�ξ

(1 − T̄�ξ )�i if u = ξ(i) + 2k for some k ∈ Z≥0,

0 else.

The next proposition is a consequence of Proposition 2.9 and (2.10).

Proposition 2.14 Let ξ : I → Z be a height function. For any i, j ∈ I , we have

˜Ci j (q, t, μ) =
∞
∑

u=ξ( j)

(

�∨
i ,�ξ ( j, u)

)

�
tu−ξ(i)+1. (2.11)

Now, Lemma 2.10 specializes to the following.

Lemma 2.15 Let ξ : I → Z be a height function. For any (i, u) ∈ I × Z with u > ξ(i), we
have

q−di �ξ(i, u − 1) + qdi �ξ(i, u + 1) +
∑

j∼i

C ji (q, 1, μ)�ξ ( j, u) = 0. (2.12)

In particular, (2.12) enables us to compute recursively all the �ξ(i, u) starting from

�ξ(i, ξ(i)) = (1 − T̄�ξ )�i = q−di T̄i1 · · · T̄ik−1αi for all i ∈ I ,

where I = {i1, . . . , in} is a total ordering compatible with �ξ and ik = i .

Thus, Proposition 2.14 combined with Lemma 2.15 gives a simpler recursive algorithm
to compute ˜Ci j (q, t, μ) when C is bipartite.
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Remark 2.16 When C is of finite type, the formula (2.11) recovers the formulas in [24,
Proposition 2.1] (type ADE) and [27, Theorem 4.7] (type BCFG) after the specialization
�0 → {1}.

Remark 2.17 WhenC is of finite type, the above algorithm can be used to compute ˜C(q, t, μ)

(or ˜C(q, t)) completely. For example, let us give an explicit formula of ˜C(q, t) for type F4.We
use the convention I = {1, 2, 3, 4} with 1 ∼ 2 ∼ 3 ∼ 4 and (d1, d2, d3, d4) = (2, 2, 1, 1).
Then, for any i ≤ j , we have

˜Ci j (q, t) = fi j (q, t) + fi j (q−1, t−1)

q9t−6 + q−9t6

where fi j = fi j (q, t) is given by

f11 = q7t−5 + qt−1, f12 = q5t−4 + q3t−2 + q,

f13 = q4t−3 + q2t−1, f14 = q3t−2,

f22 = q7t−5 + (q5 + q3)t−3 + (q3 + 2q)t−1, f23 = q6t−4 + (q4 + q2)t−2 + 1,

f24 = q5t−3 + qt−1, f33 = q8t−5 + (q6 + q4)t−3 + (2q + 1)t−1,

f34 = q7t−4 + q3t−2 + q, f44 = q8t−5 + q2t−1.

For the other case i > j , we can use the relation [di ]q˜Ci j (q, t) = [d j ]q˜C ji (q, t).
When C is of type ABCD, an explicit formula of ˜C(q, t) is given in [12, Appendix

C]. When C is of type ADE, we have ˜C(q, t) = ˜C(qt−1, 1) and an explicit formula of
˜C(q) = ˜C(q, 1) is given in [18, Appendix A] (see also [27, Sections 4.4.1, 4.4.2]).

3 Generalized preprojective algebras

In this section, we present a categorical characterization of the combinatorial objects that we
introduced in Sect. 2. Our interpretation permits the translation of several unproven combina-
torial properties of these objects (including Theorem 2.3, Proposition 2.5, and Theorem 2.8)
into well-established categorical properties from the vantage point of the representation the-
ory of generalized preprojective algebras [20].

Throughout this section, we fix an arbitrary field k. Unless specified otherwise, vector
spaces and algebras are defined over k, and modules are left modules.

3.1 Conventions

Let Q be a finite quiver. We understand it as a quadruple Q = (Q0, Q1, s, t), where Q0

is the set of vertices, Q1 is the set of arrows and s (resp. t) is the map Q1 → Q0 which
assigns each arrow with its source (resp. target). For a quiver Q, we set kQ0 := ⊕

i∈Q0
kei

and kQ1 := ⊕

α∈Q1
kα. We endow kQ0 with a k-algebra structure by ei · e j = δi j ei for

any i, j ∈ Q0, and kQ1 with a (kQ0, kQ0)-bimodule structure by ei · α = δi,t(α)α and
α · ei = δi,s(α)α for any i ∈ Q0 and α ∈ Q1. Then the path algebra of Q is defined to be the
tensor algebra kQ := TkQ0(kQ1).

Let G be a multiplicative abelian group with unit 1. By a G-graded quiver, we mean a
quiver Q equipped with a map deg : Q1 → G. We regard its path algebra kQ as a G-graded
algebra in the natural way.
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We say that a G-graded vector space V = ⊕

g∈G Vg is locally finite if Vg is of finite
dimension for all g ∈ G. In this case, we define its graded dimension dimG V to be the
formal sum

∑

g∈G dimk(Vg)g ∈ Z[[G]]. For a G-graded vector space V and an element
x ∈ G, we define the grading shift xV = ⊕

g∈G(xV )g by (xV )g = Vx−1g . More generally,
for a = ∑

g∈G agg ∈ Z≥0[[G]], we set V⊕a := ⊕

g∈G(gV )⊕ag . When V⊕a happens to be
locally finite, we have dimG V⊕a = a dimG V .

3.2 Preliminary on positively graded algebras

Let tZ denote a free abelian group generated by a non-trivial element t . In what fol-
lows, we consider the case when G is a direct product G = G0 × tZ, where G0 is
another abelian group. Our principal example is the group � = tZ × �0 in Sect. 2.2. For
G-graded vector space V = ⊕

g∈G Vg and n ∈ Z, we define the G0-graded subspace
Vn ⊂ V by Vn := ⊕

g∈G0
Vtng . By definition, we have V = ⊕

n∈Z Vn . We use the notation
V≥n := ⊕

m≥n Vm and V>n := ⊕

m>n Vm .
We consider a G-graded algebra � satisfying the following condition:

(A) � = �≥0 and dimk �n < ∞ for each n ∈ Z≥0.

In particular, �0 is a G0-graded finite dimensional algebra. Let {S j } j∈J be a complete
collection of G0-graded simple modules of �0 up to isomorphism and grading shift. It also
gives a complete collection ofG-graded simple modules of�. For aG-graded�-module M ,
the subspace M≥n ⊂ M is a�-submodule for each n ∈ Z. Let�-mod≥n

G denote the category
of G-graded �-modules M satisfying M = M≥n and dimk Mm < ∞ for all m ≥ n, whose
morphisms are G-homogeneous �-homomorphisms. This is a k-linear abelian category. Let
�-mod+

G := ⋃

n∈Z �-mod≥n
G . Note that�-mod+

G contains all the finitely generatedG-graded
�-modules, because it contains their projective covers by the condition (A).

Lemma 3.1 Given n ∈ Z and M ∈ �-mod≥n
G , there is a surjection P � M from a projective

�-module P belonging to �-mod≥n
G .

Proof For each m ≥ n, let Pm � Mm be a projective cover of Mm regarded as a G0-graded
�0-module. Then consider the G-graded projective �-module P :=� ⊗�0

⊕

m≥n t
m Pm ,

which carries a natural surjection P � M . This P belongs to �-mod≥n
G because dimG P is

not greater than dimG � · ∑m≥n t
m dimG0 Pm which belongs to Z[G0][[t]]tn . ��

For an abelian category C, we denote by K (C) its Grothendieck group. We regard
K (�-mod≥n

G ) as a subgroup of K (�-mod+
G) via the inclusion for any n ∈ Z. Then, the

collection of subgroups {K (�-mod≥n
G )}n∈Z gives a filtration of K (�-mod+

G). We define the

completed Grothendieck group K̂ (�-mod+
G) to be the projective limit

K̂ (�-mod+
G) := lim←−

n

K (�-mod+
G)/K (�-mod≥n

G ).

Note that K̂ (�-mod+
G) carries a natural Z[G0]((t))-module structure given by a[M] =

[M⊕a+] − [M⊕a−], where we choose a+, a− ∈ Z≥0[G0]((t)) so that a = a+ − a−.

Lemma 3.2 The Z[G0]((t))-module K̂ (�-mod+
G) is free with a basis {[S j ]} j∈J .
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63 Page 12 of 27 R. Fujita, K. Murakami

Proof For any n ∈ Z and M ∈ �-mod≥n
G , we have a unique expression

[M] =
∑

j∈J

(

∑

m≥n

[Mm : S j ]G0 t
m

)

[S j ]

in K̂ (�-mod+
G), where [Mm : S j ]G0 ∈ Z[G0] denotes the G0-graded Jordan-Hölder multi-

plicity of S j in the finite length G0-graded �0-module Mm . This proves the assertion.
��

3.3 Generalized preprojective algebras

We fix a GCM C = (ci j )i, j∈I and its symmetrizer D = diag(di | i ∈ I ) as in Sect. 2.1.
Recall the free abelian group � in Sect. 2.2. We consider the quiver ˜Q = (˜Q0, ˜Q1, s, t) given
as follows:

˜Q0 = I , ˜Q1 =
{

α
(g)
i j | (i, j, g) ∈ I × I × Z, i ∼ j, 1 ≤ g ≤ gi j

}

∪ {εi | i ∈ I },
s(α(g)

i j ) = j, t(α(g)
i j ) = i, s(εi ) = t(εi ) = i .

We equip the quiver ˜Q with a �-grading by

deg(α(g)
i j ) = q−di fi j tμ(g)

i j , deg(εi ) = q2di . (3.1)

Let � be an acyclic orientation of C . We define the associated potential W� ∈ k˜Q by

W� =
∑

i, j∈I ;i∼ j

gi j
∑

g=1

sgn�(i, j)α(g)
i j α

(g)
j i ε

fi j
i , (3.2)

where sgn�(i, j) := (−1)δ(( j,i)∈�). Note that W� is homogeneous of degree t2. We define
the �-graded k-algebra ˜� to be the quotient of k˜Q by the ideal generated by all the cyclic
derivations of W�. In other words, the algebra ˜� is the quotient of k˜Q by the following two
kinds of relations:

(R1) ε
fi j
i α

(g)
i j = α

(g)
i j ε

f j i
j for any i, j ∈ I with i ∼ j and 1 ≤ g ≤ gi j ;

(R2)
∑

j∈I : j∼i

gi j
∑

g=1

fi j−1
∑

k=0

sgn�(i, j)εki α
(g)
i j α

(g)
j i ε

fi j−1−k
i = 0 for each i ∈ I .

Remark 3.3 Although the definition of the algebra ˜� depends on the choice of acyclic orien-
tation �, it is irrelevant. In fact, a different choice of � gives rise to an isomorphic �-graded
algebra.Moreover, onemay define˜�withmore general orientation (i.e., without acyclic con-
dition, as in Sect. 4.1 below). Even if we do so, the resulting �-graded algebra is isomorphic
to our ˜�.

For a positive integer � ∈ Z>0, we define the �-graded algebra �(�) to be the quotient

�(�) = ˜�/(ε�),

where ε := ∑

i∈I ε
r/di
i . Note that ε is homogeneous and central in ˜�. In other words, it is

the quotient of k˜Q by the three kinds of relations: (R1), (R2), and

(R3) ε
r�/di
i = 0 for each i ∈ I .
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Remark 3.4 The algebra �(�) is identical to the generalized preprojective algebra
�(tC, �r D−1,�) in the sense of Geiss et al. [20].

Lemma 3.5 For any � ∈ Z>0, the algebra �(�) satisfies the condition (A) in Sect. 3.2.

Proof The fact �(�)≥0 = �(�) is clear from the definition (3.1). For any n ∈ Z≥0, thanks
to the relation (R3), the vector space �(�)n is spanned by a finite number of vectors in

{εm0
i0

α
(g1)
i0,i1

ε
m1
i1

α
(g2)
i1,i2

· · · εmn−1
in−1

α
(gn)
in−1,in

ε
mn
in

| ik ∈ I , 0 ≤ mk < r�/dik , 1 ≤ gk ≤ gik−1,ik }.
Therefore, we have dimk �(�)n < ∞. ��

In what follows, we fix � ∈ Z>0 and write � for �(�) for the sake of brevity.
By the definition, we have

�0 ∼=
∏

i∈I
Hi , where Hi := k[εi ]/(εr�/dii ).

In particular, for each M ∈ �-mod+
� and n ∈ Z, the subspace ei Mn is a finite-dimensional

Hi -module for each i ∈ I . We say that M is locally free if ei Mn is a free Hi -module for any
n ∈ Z and i ∈ I , or equivalently Mn is a projective �0-module for any n ∈ Z. In this case,
we set ranki M := dim� ei (M/εi M) ∈ Z[�0]((t)).
Theorem 3.6 (Geiss et al. [20, Section 11]) As a (left) �-module, � is locally free in itself.

For each i ∈ I , let Pi := �ei be the indecomposable projective �-module associated
to the vertex i and Si its simple quotient. Consider the two-sided ideal Ji := �(1 − ei )�.
We have �/Ji ∼= Hi as �-graded algebras. We write Ei for �/Ji when we regard it as a
�-graded left �-module. This is a locally free �-module characterized by rank j Ei = δi, j .
In K̂ (�-mod+

� ), we have

[Ei ] = 1 − q2r�

1 − q2di
[Si ]. (3.3)

There is the anti-involution φ : � → �op given by the assignment

φ(ei ) := ei , φ(α
(g)
i j ) := α

(g)
j i , φ(εi ) := εi .

Recall the automorphism of the group � also denoted by φ in Sect. 2.3. By definition, if
x ∈ � is homogeneous of degree γ ∈ �, then φ(x) is homogeneous of degree φ(γ ). For
a left �-module M , let Mφ be the right �-module obtained by twisting the original left
�-module structure by the opposition φ. If M is �-graded, Mφ is again �-graded by setting
(Mφ)γ := Mφ(γ ). In particular, for M ∈ �-mod+

� , we have dim�(Mφ) = (dim� M)φ .

3.4 Projective resolutions

Following [20, Section 5.1], for each i, j ∈ I with i ∼ j , we define the bigraded (Hi , Hj )-
bimodule i H j by

i H j :=
gi j
∑

g=1

Hiα
(g)
i j H j ⊂ �.

123



63 Page 14 of 27 R. Fujita, K. Murakami

It is free as a left Hi -module and free as a right Hj -module. Moreover, the relation (R1)
gives the following:

i H j =
f j i−1
⊕

k=0

gi j
⊕

g=1

Hi

(

α
(g)
i j εkj

)

=
fi j−1
⊕

k=0

gi j
⊕

g=1

(

εki α
(g)
i j

)

Hj .

In particular, we get the following lemma.

Lemma 3.7 For i, j ∈ I with i ∼ j , we have two isomorphisms

Hi (i H j ) ∼= H
⊕(−q−d j tC ji (q,t,μ)φ)

i , (i H j )Hj
∼= H

⊕(−q−di tCi j (q,t,μ))

j

as �-graded left Hi -modules and as �-graded right Hj -modules respectively.

Consider the following sequence of �-graded (�,�)-bimodules:

⊕

i∈I
q−2di t2�ei ⊗i ei�

ψ−→
⊕

i, j∈I :i∼ j

�e j ⊗ j j Hi ⊗i ei�
ϕ−→

⊕

i∈I
�ei ⊗i ei� → � → 0,

(3.4)

where ⊗i := ⊗Hi and the morphisms ψ and ϕ are given by

ψ(ei ⊗ ei ) :=
∑

j∼i

gi j
∑

g=1

∑

k,l≥0,
k+l= fi j−1

sgn�(i, j)
(

εki α
(g)
i j ⊗ α

(g)
j i εli ⊗ ei + ei ⊗ εki α

(g)
i j ⊗ α

(g)
j i εli

)

,

ϕ(e j ⊗ x ⊗ ei ) := x ⊗ ei + e j ⊗ x .

The other arrows
⊕

i∈I �ei ⊗i ei� → � → 0 are canonical. The relation (R2) ensures that
the sequence (3.4) forms a complex. For each i ∈ I , applying (−) ⊗� Ei to (3.4) yields the
following complex of �-graded (left) �-modules:

q−2di t2Pi
ψ(i)

−−→
⊕

j∼i

P
⊕(−q−di tCi j (q,t,μ)φ)

j
ϕ(i)

−−→ Pi → Ei → 0. (3.5)

Here we used Lemma 3.7.

Theorem 3.8 (Geiss et al. [20, Proposition 12.1 and Corollary 12.2], Fujita and Murakami
[15, Theorem 3.3]) The complexes (3.4) and (3.5) are exact. Moreover, the followings hold.

(1) When C is of infinite type, we have Kerψ = 0 and Kerψ(i) = 0 for all i ∈ I .
(2) When C is of finite type, we have Kerψ(i) ∼= q−rh∨

thμi∗i Ei∗ for each i ∈ I .

3.5 Euler–Poincaré pairing

For a�-graded right�-moduleM and a�-graded left�-module N , the vector spaceM⊗�N
is naturally �-graded. Let tor�k (M, N ) denote the k-th left derived functor of M �→ M⊗� N
(or equivalently, that of N �→ M ⊗� N ).

Lemma 3.9 If M ∈ �op-mod≥m
� and N ∈ �-mod≥n

� , we have

tor�k (M, N ) ∈ k-mod≥m+n
� for any k ∈ Z≥0.
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Proof We see that dim�(M ⊗� N ) is not grater than dim� M · dim� N which belongs to
Z[�0][[t]]tm+n under the assumption. This proves the assertion for k = 0. The other case
when k > 0 follows from this case and Lemma 3.1. ��

We consider the following finiteness condition for a pair (M, N ) of objects in �-mod+
� :

(B) For each γ ∈ �, the space tor�k (Mφ, N )γ vanishes for k � 0.

If (M, N ) satisfies the condition (B), their Euler–Poincaré (EP) pairing

〈M, N 〉� :=
∞
∑

k=0

(−1)k dim� tor�k (Mφ, N ).

is well-defined as an element of Z[[�]]. The next lemma is immediate from the definition.

Lemma 3.10 Let M, N ∈ �-mod+
� .

(1) If (M, N ) satisfies (B), the opposite pair (N , M) also satisfies (B) and we have
〈N , M〉� = 〈M, N 〉φ� .

(2) If (M, N ) satisfies (B), the pair (M⊕a, N⊕b) also satisfies (B) for any a, b ∈ Z≥0[�]
and we have 〈M⊕a, N⊕b〉� = aφb〈M, N 〉� .

(3) Suppose that there is an exact sequence 0 → M ′ → M → M ′′ → 0 in �-mod+
� , and

the pairs (M ′, N ) and (M ′′, N ) both satisfy (B). Then the pair (M, N ) also satisfies (B)
and we have 〈M, N 〉� = 〈M ′, N 〉� + 〈M ′′, N 〉�.

Proposition 3.11 For any i, j ∈ I , the pair (Si , S j ) satisfy the condition (B) and we have

〈Ei , S j 〉� =

⎧

⎪

⎨

⎪

⎩

q−di t
(

Ci j (q, t, μ) − q−rh∨
thμi i∗Ci∗ j (q, t, μ)

)

1 − q−2rh∨ t2h
if C is of finite type,

q−di tCi j (q, t, μ) otherwise,

(3.6)

〈Si , S j 〉� = 1 − q2di

1 − q2r�
〈Ei , S j 〉�. (3.7)

Here we understand (1 − γ )−1 = ∑

k≥0 γ k ∈ Z[[�]] for γ ∈ �\{1}.
Proof The former formula (3.6) directly follows from Theorem 3.8. The latter (3.7) follows
from Theorem 3.8 and the fact that Si has an Ei -resolution of the form:

· · · → q2r�+2di Ei → q2r�Ei → q2di Ei → Ei → Si → 0.

See the proof of Fujita and Murakami [15, Proposition 3.11] for some more details. ��
Corollary 3.12 For any M, N ∈ �-mod+

� , the pair (M, N ) satisfies the condition (B). More-
over, the EP pairing induces a φ-sesquilinear hermitian form on the Z[�0]((t))-module
K̂ (�-mod+

� ) valued at Z[�0][(1 − q2r�)−1]((t)).
Proof Given M, N ∈ �-mod+

� , we shall show that (M, N ) satisfies the condition (B).

Without loss of generality, we may assume that M, N ∈ �-mod≥0
� . For γ ∈ � fixed,

take n ∈ Z such that γ /∈ �0tZ>n . By Lemma 3.9, we have tor�k (Mφ
>n, N )γ = 0

and therefore tor�k (Mφ, N )γ � tor�k (Mφ/Mφ
>n, N )γ for any k ∈ Z≥0. Similarly, we

have tor�k (Mφ/Mφ
>n, N )γ � tor�k (Mφ/Mφ

>n, N/N>n)γ and hence tor�k (Mφ, N )γ �
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tor�k (Mφ/Mφ
>n, N/N>n)γ for any k ∈ Z≥0. By Lemma 3.10 and Proposition 3.11, we know

that the condition (B) is satisfied for any finite-dimensional modules. Therefore, for k large
enough, we have tor�k (Mφ/Mφ

>n, N/N>n)γ = 0. Thus, the pair (M, N ) satisfies the condi-
tion (B).Now, byLemma3.10 (3) andProposition 3.11, theEPpairing induces a pairing on the
Grothendieck group K (�-mod+

G) valued atZ[�0][(1−q2r�)−1]((t)). Lemma 3.9 tells us that
this is continuous with respect to the topology given by the filtration {K (�-mod≥n

G )}n∈Z.
Therefore, it descends to a pairing on the completion K̂ (�-mod+

� ) satisfying the desired
properties. ��

Let F be an algebraic closure of the fieldQ(�0)((t)). We understand thatQ(�) is a subfield
of F by considering the Laurent expansions at t = 0. By Corollary 3.12 above, the EP pairing
linearly extends to a φ-sesquilinear hermitian form, again written by 〈−,−〉� , on

K̂ (�-mod+
� )F := K̂ (�-mod+

� ) ⊗Z[�0]((t)) F

valued at F. Note that the set {[Ei ]}i∈I forms an F-basis of K̂ (�-mod+
� )F by Lemma 3.2 and

(3.3), and that, if M ∈ �-mod+
� is locally free, we have [M] = ∑

i∈I (ranki M)[Ei ].
It is useful to introduce the module P̄i := Pi/Piεi = (�/�εi )ei for each i ∈ I . We can

easily prove the following (see [15, Lemma 2.5]).

Lemma 3.13 If M ∈ �-mod+
� is locally free, we have 〈P̄i , M〉� = ranki M. In particular,

we have 〈P̄i , E j 〉� = δi, j and ranki Pj = (dim� e j P̄i )φ for any i, j ∈ I .

On the other hand, we consider the F-vector space Q� ⊗Q(�) F, on which the pairing
(−,−)� extends linearly. Let � be the F-linear automorphism of Q� ⊗Q(�) F given by

� :=

⎧

⎪

⎨

⎪

⎩

(1 + q−rh∨
thν)−1 = id − q−rh∨

thν

1 − q−2rh∨ t2h
if C is of finite type,

id otherwise.

Here ν is the linear operator onQ� given by ν(αi ) = μi∗iαi∗ , which we have already defined
in Sect. 2.3. Let us choose an element κ� ∈ F satisfying κ2

� = qr�[r�]q t−1.

Theorem 3.14 The assignment [Ei ] �→ κ�α
∨
i (i ∈ I ) gives an F-linear isomorphism

χ� : K̂ (�-mod+
� )F → Q� ⊗Q(�) F

satisfying the following properties:

(1) For any i ∈ I , we have χ�[Si ] = κ−1
� αi .

(2) For any x, y ∈ K̂ (�-mod+
� )F, we have 〈x, y〉� = (�χ�(x), χ�(y))�.

(3) For any i ∈ I , we have �∨
i = κ−1

� �χ�[Pi ] and �i = q−di tκ��χ�[P̄i ].
Proof As the set {[Ei ]}i∈I forms an F-basis of K̂ (�-mod+

� )F, the linear map χ� is an isomor-
phism. The properties (1) and (2) follow from the identities (3.3), (3.6) and (3.7). Since the
basis {[Pi ]}i∈I (resp. {[P̄i ]}i∈I ) is dual to the basis {[Si ]}i∈I (resp. {[Ei ]}i∈I by Lemma 3.13),
the property (3) follows from the property (2). ��
Corollary 3.15 Let i, j ∈ I .

(1) When C is of finite type, we have

˜Ci j (q, t, μ) = q−di t

1 − q−2rh∨ t2h

(

dim�(ei P̄j ) − q−rh∨
thμi i∗ dim�(ei∗ P̄j )

)

.
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(2) When C is of infinite type, we have

˜Ci j (q, t, μ) = q−d j t dim�(ei P̄j ).

Proof It follows from Theorem 3.14 and the inversion of (2.3). ��
In particular, Corollary 3.15 (2) proves Theorem 2.3.

Remark 3.16 Since 〈Pi , P̄j 〉� = dim�(ei P̄j ), Corollary 3.15 interprets the matrix ˜C(q, t, μ)

in terms of the EP pairing between the bases {[Pi ]}i∈I and {[P̄i ]}i∈I . In this sense, Corol-
lary 3.15 is dual to (3.6) in Proposition 3.11.

Remark 3.17 In the previous paper [15], we dealt with GCMs of finite type and finite dimen-
sional (q, t)-graded �-modules. Therein, we used the modules Īi := D(P̄φ

i ) and the graded
extension groups extk�, where D is the graded k-dual functor, instead of the modules P̄i
and the graded torsion groups tor�k . Note that the two discussions are mutually equiva-
lent thanks to the usual adjunction (cf. [3, Section A.4 Proposition 4.11]), i.e., we have
D(tor�k (D(M), N )) � extk�(N , M) for M, N ∈ �-mod+

� . In this sense, our discussion here
is a slight generalization of that in Fujita and Murakami [15] with the additional μ-grading.

3.6 Braid group action

In this subsection, we interpret our braid group symmetry on the deformed root lattice Q�

(see Sect. 2) as a�-graded counterpart of the categorical braid group symmetry on themodule
category over � and its Grothendieck group [1, 7, 13, 25], etc. via our argument in Sect. 3.5.
In particular, we establish Proposition 2.5 and Theorem 2.8 as corollaries of these categorical
symmetries.

Recall the two-sided ideal Ji = �(1− ei )�. For any M ∈ �-mod+
� and k ∈ Z≥0, we see

that tor�k (Ji , M) also belongs to�-mod+
� . WhenC is of infinite type, Jφ

i = Ji has projective

dimension at most 1. In particular, the derived tensor product Ji
L⊗� M is an object in the

bounded derived categoryDb(�-mod+
� ) for eachM ∈ �-mod+

� . By the natural identification
K (Db(�-mod+

� )) ∼= K (�-mod+
� ) and the canonical map K (�-mod+

� ) → K̂ (�-mod+
� ), it

gives the element

[Ji
L⊗� M] =

∞
∑

k=0

(−1)k[tor�k (Ji , M)] =
∑

j∈I
〈Ji e j , M〉�[S j ], (3.8)

of K̂ (�-mod+
� ), where the second equality follows since Jφ

i = Ji . When C is of finite type,

we define the element [Ji
L⊗� M] of K̂ (�-mod+

� ) by (3.8). Recalling the relation Ei = �/Ji ,
we have [Ji e j ] = [Pj ] − δi, j [Ei ] for each j ∈ I , and hence

[Ji
L⊗� M] = [M] − 〈Ei , M〉�[Si ].

Sending this equality by the isomorphism χ� in Theorem 3.14, we get

χ�[Ji
L⊗� M] = χ�[M] − (�α∨

i , χ�[M])�αi . (3.9)

In particular, we obtain the following analogue of Amiot et al. [1, Proposition 2.10].
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Lemma 3.18 When C is of infinite type, we have

χ�[Ji
L⊗� M] = Tiχ�[M] for any M ∈ �-mod+

� and i ∈ I .

Proof WhenC is of infinite type, we have� = id by definition. Thus, the Eq. (3.9) coincides
with the defining Eq. (2.5) of Ti in this case. ��
Proof of Proposition 2.5 When C is of finite type, we can reduce the proof to the case of
affine type since the collection {Ti }i∈I can be extended to the collection {Ti }i∈I∪{0} of the
corresponding untwisted affine type. Hence, it suffices to consider the case when C is of
infinite type. In this case, the braid relations for {Ti }i∈I follow from Lemma 3.18 and the fact
that the ideals {Ji }i∈I satisfy the braid relations with respect to multiplication, which is due
to Fu and Geng [13, Theorem 4.7]. For example, when ci j c ji = 1, we have

Ji
L⊗� J j

L⊗� Ji � Ji ⊗� J j ⊗� Ji � Ji J j Ji

= J j Ji J j � J j ⊗� Ji ⊗� J j � J j
L⊗� Ji

L⊗� J j ,

which implies the desired braid relation Ti Tj Ti = Tj Ti Tj . ��
Corollary 3.19 Let M ∈ �-mod+

� with tor�1 (Ji , M) = 0 for i ∈ I . We have

χ�[Ji ⊗� M] = Tiχ�[M].
Moreover, if we assume that M is locally free, so is Ji ⊗� M.

Proof The first assertion is a direct consequence of Lemma 3.18. For C of infinite type,
since projective dimension of Ji is at most 1 by Theorem 3.8, our involution φ yields that

tor�k (Ji , M) = 0 also for k ≥ 2. This shows [Ji ⊗� M] = [Ji
L⊗� M] when C is of infinite

type. When C is of finite type, our assertion follows easily from the exact embedding to
the corresponding untwisted affine type �̂. Namely, we have an isomorphism Ji ⊗� M �
Ĵi ⊗

�̂
M , where Ĵi := �̂(1− ei )�̂. The last assertion is just an analogue of Geiss et al. [20,

Proof of Proposition 9.4]. ��
Proof of Theorem 2.8 whenC is of infinite type Assume thatC is of infinite type. Let (ik)k∈Z>0

be a sequence in I satisfying the condition (2) in Theorem 2.8.We have a filtration� = F0 ⊃
F1 ⊃ F2 ⊃ · · · of (�,�)-bimodules given by Fk := Ji1 Ji2 · · · Jik . This filtration {Fk}k≥0

is exhaustive, i.e.,
⋂

k≥0 Fk = 0. Indeed, since the algebra � satisfies the condition (A), its
radical filtration {Rk}k≥0 as a right�-module is exhaustive. Note that, for any right�-module
M and i ∈ I , the right moduleM/MJi is the largest quotient ofM such that (M/MJi )e j �= 0
for j �= i . Thanks to this fact and our assumption on the sequence (ik)k∈Z>0 , we can find
for each k > 0 a large integer K such that FK ⊂ Rk . Thus, we have

⋂

k Fk = ⋂

k Rk = 0.
Moreover, by Murakami [33, Proposition 3.8], we have

Fk−1/Fk � Ji1 Ji2 · · · Jik−1 ⊗� Eik as �-graded left �-modules

for each k ≥ 1.Note thatwe have an equality tor�1 (Ji1 , Ji2 · · · Jik−1⊗�Eik ) = 0 byMurakami
[33, Proof of Proposition 3.8]. This yieldsχ�[Ji1 Ji2 · · · Jik−1 ⊗�Eik ] = κ�Ti1 , Ti2 · · · Tik−1α

∨
ik

inductively by Corollary 3.19.
The filtration {Fk}k≥0 induces an exhaustive filtration {Fkei }k≥0 of the projective module

Pi such that

Fk−1ei/Fkei �
{

Ji1 · · · Jik−1 ⊗� Ei if ik = i,

0 otherwise
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for each k ≥ 1. Therefore, in K̂ (�-mod+
� ), we have

[Pi ] =
∞
∑

k=1

[Fk−1ei/Fkei ] =
∑

k : ik=i

[Ji1 · · · Jik−1 ⊗� Ei ].

Applying the isomorphism χ� in Theorem 3.14 to this equality, we obtain

�∨
i =

∑

k : ik=i

Ti1 · · · Tik−1α
∨
i .

This is rewritten as

�i = q−di t
∑

k : ik=i

Ti1 · · · Tik−1αi .

Since ˜Ci j (q, t, μ) = (�∨
i ,� j )� by (2.3), we obtain the desired equality (2.6) from this. ��

Remark 3.20 In Iyama and Reiten [25], they proved that the ideal semigroup 〈Ji | i ∈ I 〉
gives the set of isoclasses of classical tilting�-modules for any symmetric affine typeC with
D = id. In our situation, our two-sided ideals are �-graded tilting objects whose �-graded
endomorphismalgebras are isomorphic to�whenC is of infinite type by arguments in [7, 13].
In particular, our braid group symmetry on K̂ (�-mod+

� ) is induced from auto-equivalences
on the derived category (cf. [31, Section 2]).

4 Remarks

4.1 Comparison with Kimura–Pestun’s deformation

In their study of (fractional) quiver W-algebras, Kimura–Pestun Kimura and Pestun [29]
introduced a deformation of GCM called the mass-deformed Cartan matrix. In this subsec-
tion, we compare their mass-deformed Cartan matrix with our deformed GCM C(q, t, μ).

Let Q be a quiver without loops and d : Q0 → Z>0 be a function. Following
[29, Section 2.1], we call such a pair (Q, d) a fractional quiver. We set di := d(i) and
di j := gcd(di , d j ) for i, j ∈ Q0. Let C = (ci j )i, j∈I be a GCM. We say that a fractional
quiver (Q, d) is of type C if Q0 = I and the following condition is satisfied:

ci j = 2δi, j − (d j/di j )|{e ∈ Q1 | {s(e), t(e)} = {i, j}}| for any i, j ∈ I . (4.1)

In this case, D = diag(di | i ∈ I ) is a symmetrizer of C and we have

gi j = |{e ∈ Q1 | {s(e), t(e)} = {i, j}}|, fi j = d j/di j when i ∼ j .

SeeSect. 2.1 for the definitions. For a given fractional quiver (Q, d)of typeC , Kimura–Pestun
introduced a matrix CKP = (CKP

i j )i, j∈I , whose (i, j)-entry CKP
i j is a Laurent polynomial in

the formal parameters q1, q2 and μe for each e ∈ Q1 given by

CKP
i j := δi, j (1 + q−di

1 q−1
2 ) − 1 − q

−d j
1

1 − q
−di j
1

⎛

⎝

∑

e : i→ j

μ−1
e +

∑

e : j→i

μeq
−di j
1 q−1

2

⎞

⎠ . (4.2)

The parameters μe are called mass-parameters. If we evaluate all the parameters to 1, the
matrix CKP coincides with the GCM C by (4.1).
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Now we fix a function g : Q1 → Z>0 whose restriction induces a bijection between
{e ∈ Q1 | {s(e), t(e)} = {i, j}} and {g ∈ Z | 1 ≤ g ≤ gi j } for each i, j ∈ I with i ∼ j .
Then consider the monomial transformation Z[q±1

1 , q±1
2 , μ±1

e | e ∈ Q1] → Z[�] given by

q1 �→ q2, q2 �→ t−2, μe �→ qdi j t−1μ
(g(e))
i j , (4.3)

where i = t(e) and j = s(e). Note that it induces an isomorphism if we formally add the
square roots of q1 and q2. Under this monomial transformation, for any i, j ∈ I , we have

CKP
i j �→ q−d j t

⎛

⎝δi, j (q
di t−1 + q−di t) − δ(i ∼ j)[ fi j ]qdi j

gi j
∑

g=1

μ
(g)
i j

⎞

⎠ . (4.4)

Proposition 4.1 Under the monomial transformation (4.3), the matrix CKP corresponds to
the matrix C(q, t, μ)q−Dt if and only if the following condition is satisfied:

For any i, j ∈ I with i ∼ j, we have fi j = 1 or f ji = 1. (4.5)

Proof Compare (4.4) with (1.1) and note that we have [ fi j ]qdi j = [ fi j ]qdi for any i, j ∈ I
with i ∼ j if and only if the condition (4.5) is satisfied. ��

Example 4.2 If we take our GCM C and its symmetrizer D as

C =
(

2 −6
−9 2

)

and D = diag(3, 2),

not satisfying (4.5), then the image of CKP under (4.3) is
(

1 + q−6t2 −(q−1 + q−3)t(μ(1)
12 + μ

(2)
12 + μ

(3)
12 )

−(q−1 + q−3 + q−5)t(μ(1)
21 + μ

(2)
21 + μ

(3)
21 ) 1 + q−4t2

)

,

which is different from

C(q, t, μ)q−Dt

=
(

1 + q−6t2 −(q + q−5)t(μ(1)
12 + μ

(2)
12 + μ

(3)
12 )

−(q + q−3 + q−7)t(μ(1)
21 + μ

(2)
21 + μ

(3)
21 ) 1 + q−4t2

)

.

Remark 4.3 The condition (4.5) is satisfied for all finite and affine types. It is also satisfied
when C is symmetric (i.e., tC = C). This (4.5) also appears in Nakajima and Weekes [36,
Section C(iv)] as a condition for two possible mathematical definitions of Coulomb branches
of quiver gauge theories with symmetrizers to coincide with each other as schemes.

Remark 4.4 When (4.5) is satisfied, we can assure that the evaluation at t = 1 makes sense in
the inversion formulas. More precisely, assuming (4.5), we see that the matrix X in (2.1) is
written in the form X = q−1X ′ with X ′ being aZ[μZ][q−1, t]-valuedmatrix (see the proof of

Fujita and Oh [16, Lemma 4.3]), and hence we have ˜Ci j (q, t, μ) ∈ Z[μZ][q−1, t][[(q−1t)]]
for any i, j ∈ I . Thus, under (4.5), the evaluation at t = 1 gives a well-defined element
˜Ci j (q, 1, μ) of Z[μZ][[q−1]].
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4.2 Universality of the grading

In this subsection, we briefly explain how one can think that our grading (3.1) on the algebra
˜� is universal. It is stated as follows.

We keep the notation in Sect. 3.3. Let ˜G be the (multiplicative) abelian group generated
by the finite number of formal symbols {[a] | a ∈ ˜Q1} subject to the relations

[α(g1)
i1 j1

][α(g1)
j1i1

][εi1 ] fi1 j1 = [α(g2)
i2 j2

][α(g2)
j2i2

][εi2 ] fi2 j2 (4.6)

for any ik, jk ∈ I with ik ∼ jk and 1 ≤ gk ≤ gik jk (k = 1, 2). Let ˜G � ˜G f be the quotient by
the torsion subgroup. By construction, for any free abelian groupG, giving a homomorphism
deg : ˜G f → G is equivalent to giving ˜Q a structure of G-graded quiver deg : ˜Q1 → G such
that the potential W� is homogeneous. In this sense, we can say that the tautological map
˜Q1 → ˜G f gives a universal grading on the algebra ˜�.

Now recall our fixed symmetrizer D = diag(di | i ∈ I ) and set d := gcd(di | i ∈ I ). Let
�′ ⊂ � be the subgroup generated by {deg(a) | a ∈ ˜Q1}. Note that �′ is a free abelian group
with a basis {q2d , t2} ∪ {q−di fi j tμ(g)

i j | (i, j) ∈ �, 1 ≤ g ≤ gi j }.

Proposition 4.5 The degree map (3.1) gives an isomorphism deg : ˜G f � �′.

Proof Choose integers {ai }i∈I satisfying
∑

i∈I ai di = d . Let e and w be the elements of
˜G f given by e := ∏

i∈I [εi ]ai and w = [α(g)
i j ][α(g)

j i ][εi ] fi j respectively. Note that w does
not depend on the choice of i, j ∈ I with i ∼ j and 1 ≤ g ≤ gi j by (4.6). We define a

group homomorphism ι : �′ → ˜G f by ι(q2d) := e, ι(t2) := w and ι(q−di fi j tμ(g)
i j ) := [α(g)

i j ]
for (i, j) ∈ �, 1 ≤ g ≤ gi j . It is easy to see deg ◦ι = id. Now we shall prove ι ◦ deg = id.
First, we observe that [εi ] fi j = [ε j ] f j i when i ∼ j by (4.6). Since fi j = d j/di j , we have

[εi ]r/di = ([εi ] fi j )rdi j /di d j = ([ε j ] f j i )rdi j /di d j = [ε j ]r/d j

for any i, j ∈ I with i ∼ j . Since C is assumed to be irreducible, it follows that [εi ]r/di =
[ε j ]r/d j for any i, j ∈ I . Furthermore, since ˜G f is torsion-free, we get

[εi ]d j /d = [ε j ]di /d for any i, j ∈ I . (4.7)

Using (4.7), for each i ∈ I , we find

ι(deg[εi ]) = edi /d =
∏

j∈I
[ε j ]a j di /d =

∏

j∈I
[εi ]a j d j /d = [εi ].

The equality ι(deg[α(g)
i j ]) = [α(g)

i j ] is obvious. Thus we conclude that ι ◦ deg = id holds. ��

In particular, we have the isomorphism of group rings Z[˜G f ] � Z[�′]. Using the nota-
tion in the above proof, we consider the formal roots e1/d and w1/2. Then we obtain the
isomorphism Z[˜G f ][e1/d , w1/2] � Z[�]. This means that our deformed GCM C(q, t, μ)

can be specialized to any other deformation ofC which arises from a grading of the quiver ˜Q
respecting the potential W� (formally adding roots of deformation parameters if necessary).

4.3 t-Cartanmatrices and representations of modulated graphs

In this subsection, we discuss the t-Cartan matrix C(1, t), which is obtained from our (q, t)-
deformedGCMC(q, t)by evaluating the parameterq at 1.Note that this kindof specialization
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is also studied by Kashiwara–Oh [27] in the case of finite type very recently. Here we give
an interpretation of the t-Cartan matrix from the viewpoint of certain graded algebras arising
from an F-species.

First, we briefly recall the notion of acyclic F-species over a base field F [17, 37]. Let
I = {1, . . . , n}. By definition, an F-species (Fi , i Fj ) over F consists of

• a finite dimensional skew-field Fi over F for each i ∈ I ;
• an (Fi , Fj )-bimodule i Fj for each i, j ∈ I such that F acts centrally on i Fj and dimF i Fj

is finite;
• There does not exist any sequence i1, . . . , il , il+1 = i1 such that ik Fik+1 �= 0 for each

k = 1, . . . , l.

For i Fj �= 0, we write Fi (i Fj ) � F
⊕−ci j
i and (i Fj )Fj � F

⊕−c ji
j . If we put cii = 2 and

ci j = 0 for i Fj = 0 = j Fi , the matrixC := (ci j )i, j∈I is clearly a GCMwith left symmetrizer
D = diag(dimF Fi | i ∈ I ). We have an acyclic orientation � of this GCM determined by
the conditions i Fj �= 0. Following our convention in Sect. 2.1, we write dimF Fi = di .
For our F-species (Fi , i Fj ), we set S := ∏

i∈I Fi and B := ⊕

(i, j)∈� i Fj . Note that B is an
(S, S)-bimodule. We define a finite dimensional hereditary algebra T = T (C, D,�) to be
the tensor algebra T := TS(B). Note that we use the same convention for T (C, D,�) as that
in Geiß–Leclerc–Schröer [19], unlike our dual convention for the algebra �(�).

We can also define the preprojective algebra (see [11] for details). For (i, j) ∈ �, there
exists a Fj -basis {x1, . . . , x|c ji |} of i Fj and a Fj -basis {y1, . . . , y|c ji |} of HomFj (i Fj , Fj )

such that for every x ∈ i Fj we have x = ∑|c ji |
i=1 yi (x)xi . We have the canonical element

ci j = ∑|c ji |
i=1 xi ⊗Fi yi ∈ i Fj ⊗Fj HomFi (i Fj , Fi ) which does not depend on our choice of

basis {xi } and {y j }. Letting j Fi := HomFj (i Fj , Fj ) for (i, j) ∈ �, we can also define the

similar canonical element c j i ∈ j Fi ⊗Fi i Fj . We put B := ⊕

(i, j)∈�(i Fj ⊕ j Fi ), and define
the preprojective algebra �T = �T (�) of the algebra T as

TS(B)/〈
∑

(i, j)∈�

sgn�(i, j)ci j 〉.

Let PT
i (resp. P�T

i ) denote the indecomposable projective T -module (resp. �T -module)
associatedwith i , and τT theAuslander–Reiten translation for (left) T -modules. Note that this
algebra �T satisfies P�T

i = ⊕

k≥0 τ−k
T PT

i by an argument on the preprojective component
of the Auslander–Reiten quiver of T similar to Söderberg [38, Proposition 4.7]. Note that
our F-species (Fi , i Fj ) is nothing but a modulated graph associated with (C, D,�) in the
sense of Dlab–Ringel [11], although we will work with these algebras along with a context
of a deformation of C .

Although there is obviously no nontrivial Z-grading on S by the fact Fi is a finite dimen-
sional skew-field, we can nevertheless endow T and �T with a tZ-grading induced from
their tensor algebra descriptions. Each element of i Fj has degree t . We remark that if we
specifically choose a decomposition of each i Fj like F((ε))-species H̃ in Geiß et al. [22,
Section 4.1] and define its preprojective algebra, then we can also endow these algebras with
naturalμZ-gradings and homogeneous relations by using [11, Lemma 1.1]. But we only con-

sider the tZ-grading here since our aim is to interpret the t-Cartan matrix. By our tZ-grading,
our algebra �T satisfies the condition (A) in Sect. 3.2 (with k = F).

We have the following complex of t-graded modules for each simple module Fi :
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Lemma 4.6 The complex

t2P�T
i

ψ(i)

−−→
⊕

j∼i

(P�T
j )⊕(−tC ji (1,t)) → P�T

i → Fi → 0. (4.8)

is exact. Moreover, the followings hold.

(1) When C is of infinite type, Kerψ(i) = 0 for all i ∈ I . In particular, each object in
�T -mod

+
tZ

has projective dimension at most 2.

(2) When C is of finite type, we have Kerψ(i) ∼= th Fi∗ for each i ∈ I .

Proof The statement (1) is deduced from the Auslander–Reiten theory for T (e.g. [2, Propo-
sition 7.8]). The statement (2) follows from Söderberg [38, Section 6]. Note thatC is of finite
type if and only if �T is a self-injective finite dimensional algebra and its Nakayama permu-
tation can be similarly computed as Theorem 3.8 by an analogue of Mizuno [32, Section 3]
(see Remark 4.8). ��
Corollary 4.7 For any i, j ∈ I , the followings hold.

(1) When C is of finite type, we have

di˜Ci j (1, t) = t

1 − t2h

(

dimtZ(ei P
�T
j ) − th dimtZ(ei∗ P

�T
j )

)

.

(2) When C is of infinite type, we have

di˜Ci j (1, t) = t dimtZ(ei P
�T
j ).

Here dimtZ denotes the graded dimension of tZ-graded F-vector spaces.

Proof The equality [P�T
j ] = ∑

i∈I (dimtZ(ei P
�T
j )/ dimF Fi )[Fi ] in K̂ (�T -modtZ) and an

equality dimtZ ei�T ⊗�T Fj = δi j di immediately yield our assertion by Lemma 4.6 with
arguments similar to the case of the generalized preprojective algebras in Sect. 3.5. ��
Remark 4.8 In the case of our algebra �T , the two-sided ideal Ji :=�T (1 − ei )�T and the
ideal semi-group 〈J1, . . . , Jn〉 also gives the Weyl group symmetry on its module category
analogously to Iyama and Reiten [25], Buan et al. [7], Mizuno [32] (see [2, Section 7.1]).
Even if we consider the algebra �T and tZ-homogeneous ideal Ji , we can also establish the
similar braid group symmetry as Sect. 3.6 after the specialization q → 1 and μ → 1 by
Lemma 4.6.

Remark 4.9 The algebra �T is a Koszul algebra for non-finite types and (h − 2, h)-almost
Koszul algebras for finite types in the sense of Brenner et al. [6] with our tZ-gradings. Thus
Corollary 4.7 might be interpreted in the context of Brenner et al. [6, Section 3.3].

As a by-product of this description, we have the following generalization of the formula
in Hernandez and Leclerc [24, Proposition 2.1] and Fujita [14, Proposition 3.8] for any
bipartite symmetrizable Kac–Moody type. For a t-series f (t) = ∑

k fk tk ∈ Z[[t, t−1]], we
write [ f (t)]k := fk for k ∈ Z.

Proposition 4.10 Assume that C is bipartite and take a height function ξ for C such that
�ξ = � (see Sect.2.5). Let (Fi , i Fj ) be a modulated graph associated with (C, D,�)
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as above. Let M � τ−k
T PT

i and N � τ−l
T PT

j be any two indecomposable preprojective
T -modules. When C is of infinite type, we have

dimF Ext1T (M, N ) = [

di˜Ci j (1, t)
]

(ξ(i)+2k)−(ξ( j)+2l)−1 . (4.9)

When C is of finite type, the equality (4.9) still holds provided that

1 ≤ (ξ(i) + 2k) − (ξ( j) + 2l) − 1 ≤ h − 1. (4.10)

Otherwise, we have Ext1T (M, N ) = 0.

Proof We may deduce the assertion by a combinatorial thought using the formula (2.11) as
in Hernandez and Leclerc [24] or Fujita [14]. But, here we shall give another proof using the
algebra �T .

For any tZ-graded T -module M , we have a decomposition M = ⊕

u∈Z M [u], where
M [u] := ⊕

i∈I ei Mu−ξ(i). Note that each M [u] is an T -submodule of M , since ξ is a height
function satisfying �ξ = �. We have the following isomorphism

T (P�T
i )[u] ∼=

{

τ−k
T PT

i if u = ξ(i) + 2k for k ∈ Z≥0,

0 otherwise
(4.11)

as (ungraded) T -modules. Now, we have for each M � τ−k
T PT

i and N � τ−l
T PT

j

dimF Ext1T (M, N ) = dimF Ext1T (τ−k
T PT

i , τ−l
T PT

j )

= dimF e jτ
(k−l−1)
T PT

i

(cf. [3, Section IV 2.13])

= dimF e j (P
�T
i )[ξ(i)+2(k−l−1)] (4.11)

= dimF (e j P
�T
i )(ξ(i)+2k)−(ξ( j)+2l)−2.

When C is of infinite type, we deduce the desired Eq. (4.9) from Corollary 4.7 (2). When
C is of finite type, we can find that (e j P

�T
i )(ξ(i)+2k)−(ξ( j)+2 l)−2 is non-zero only if the

condition (4.10) is satisfied by an analogue of Fujita and Murakami [15, Corollary 3.9].
When (4.10) is satisfied, we get (4.9) by Corollary 4.7 (1). ��
Remark 4.11 In Geiss et al. [20], they also introduced the 1-Iwanaga–Gorenstein algebra H
over any field k associated with a GCM C , its symmetrizer D, and an orientation �. The
algebra H has quite similar features to our algebra T , and we can also show a version of
Proposition 4.10 for the algebra H with tZ-graded structure of the corresponding generalized
preprojective algebra in a similar way. These algebras H and T have the following common
dimension property of extension groups due to Geiß et al. [19, Proposition 5.5]:

We keep the convention in Proposition 4.10. Let X � τ−k
H PH

i and Y � τ−l
H PH

j be any
two indecomposable preprojective H -modules. Then we have

dimk Ext
1
H (X , Y ) = dimF Ext1T (M, N ).

Thanks to this common dimension property between the algebras H and T , Corollary 3.15
specializes to Corollary 4.7 after the specialization q → 1 and μ → 1 with Remark 3.4.

Remark 4.12 When the authors almost finished writing this paper, a preprint [26] by
Kashiwara–Oh appeared in arXiv, which shows that the t-Cartan matrix of finite type is
closely related to the representation theory of quiver Hecke algebra. Combining their main
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theoremwith Proposition 4.10 above,wefind a relationship between the representation theory
of the modulated graphs and that of quiver Hecke algebras, explained as follows.

Let C be a Cartan matrix of finite type, and let g denote the simple Lie algebra associated
with C . Let R be the quiver Hecke algebra associated with C and its minimal symmetrizer
D, which categorifies the quantized enveloping algebra Uq(g). We are interested in the
Z≥0-valued invariant d(S, S′) defined by using the R-matrices, which measures how far
two “affreal" R-modules S and S′ are from being mutually commutative with respect to
the convolution product (or parabolic induction). Given an (acyclic) orientation � of C , we
have an affreal R-module S�(α) for each positive root α of g, called a cuspidal module. See
Kashiwara and Oh [26] for details.

On the other hand, we have a generalization of the Gabriel theorem for F-species (see
[9, 10, 37]). In particular, for each positive root α of g, there exists an indecomposable
module M�(α) over the algebra T = T (C, D,�) satisfying

∑

i∈I (dimFi ei M�(α))αi = α,
uniquely up to isomorphism. Note that every indecomposable T -module is a preprojective
module when C is of finite type.

Then, Kashiwara andOh [26,Main Theorem] and Proposition 4.10 tell us that the equality

d (S�∗(α), S�∗(β)) = dimF Ext1T (M�(α), M�(β)) + dimF Ext1T (M�(β), M�(α))

(4.12)

holds for any positive roots α and β, where �∗ denotes the orientation of C opposite to �.
In particular, (4.12) implies that the following three conditions are mutually equivalent for
any positive roots α and β:

• The convolution product S�∗(α) ◦ S�∗(β) is simple;
• We have an isomorphism S�∗(α) ◦ S�∗(β) � S�∗(β) ◦ S�∗(α) of R-modules;
• We have Ext1T (M�(α), M�(β)) = Ext1T (M�(β), M�(α)) = 0.

Note that an analogous statement in the case of fundamental modules over the quantum loop
algebra of type ADE is obtained in Fujita [14].
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