# Fano 4-folds with nef tangent bundle in positive characteristic

Yuta Takahashi (Chuo University) joint work with Kiwamu Watanabe (Chuo University)

### 1. Introduction

The positivity of the tangent bundle imposes strong restrictions on the geometry of varieties (cf. Hartshorne Conjecture [2]). We study Fano variety with positive tangent bundle, in particular study the Campana-Peternell Conjecture.

Campana-Peternell Conjecture [3]

### 3. Methods

Since  $\rho(X) > 1$  and NE(X) is simplicial, contraction of extremal ray  $\varphi_1$  and  $\varphi_2$  exist. By (2) and (3), target  $Y_i$  and fiber  $F_i$  of  $\varphi_i$  are restricted to classification results up to dimension 3. Moreover, since  $\rho(F_i) = 1$ ,  $F_i$  only is  $\mathbb{P}^1$ ,  $\mathbb{P}^2$ ,  $\mathbb{P}^3$ or  $Q^3$ .

Any complex smooth Fano variety X with nef tangent bundle is a homogeneous variety.

Campana-Peternell conjecture holds for varieties of • dim  $X \leq 5$ ,

• others (e.g. a toric variety...etc [4]).

Our purpose of this work is to give a classification of Fano 4-folds with nef tangent bundle and Picard number greater than one in positive characteristic [1].

#### Notation :

 $T_X$ : tangent bundle of X,  $\mathbb{P}^n$ : projective *n*-space  $\rho(X)$  : Picard number,  $Q^n$  : quadric hypersurface in  $\mathbb{P}^{n+1}$ 

#### Main Theorem

Let X be a smooth Fano 4-fold over k = k. If  $T_X$  is nef and  $\rho(X) > 1$ , then X is isomorphic to one of the



To determine the structure of the manifold, it is examined using FT-manifolds.

#### FT-manifold

Let X be a smooth projective variety with nef  $T_X$ . X is <u>an FT-manifold</u> if every extremal contraction of X is a  $\mathbb{P}^1$ -bundle.

#### Example of an FT-manifold

 $\mathbb{P}^1$ ,  $Q^2$ ,  $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$  and  $\mathbb{P}(T_{\mathbb{P}^2})$  are FT-manifolds.

following:

(i)  $\mathbb{P}^3 \times \mathbb{P}^1$ , (ii)  $Q^3 \times \mathbb{P}^1$ , (iii)  $\mathbb{P}^2 \times \mathbb{P}^2$ , (iv)  $\mathbb{P}^2 \times \mathbb{P}^1 \times \mathbb{P}^1$ , (v)  $\mathbb{P}(T_{\mathbb{P}^2}) \times \mathbb{P}^1$ , (vi)  $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$ , (vii)  $\mathbb{P}(\mathcal{N})$ . ( $\mathcal{N}$  is a null-correlation bundle on  $\mathbb{P}^3$  cf. [1])

## 2. Known results

To give a classification of Fano varieties with  $\rho(X) > 1$ , it is common to study extremal contractions. If  $T_X$  is nef, there exists an extremal contraction in positive characteristic.

Existence of contractions in positive characteristic [5]

Let X be a smooth Fano variety over k = k (char k > 0) with nef  $T_X$ . Let  $R \subset NE(X)$  be an extremal ray. Then the contraction  $f: X \to Y$  of R exists and the following hold:

#### Structure theorem onto an FT-manifold [1], [7]

Let X be a smooth Fano variety with nef  $T_X$ . Assume that  $f: X \to Y$  is an extremal contraction onto an FT-manifold Y. Then  $X \simeq Y \times Z$ . (Z : variety)

According to the above result, all that remains are the cases where a smooth Fano 4-fold X with nef  $T_X$  admits a  $\mathbb{P}^2$ bundle structure on  $\mathbb{P}^2$  or  $\mathbb{P}^1$ -bundle structure on  $\mathbb{P}^3$  and  $Q^3$ .

Results of special cases [1, Proposition 3.1, 3.3]

• X admits 
$$\mathbb{P}^2$$
-bundle on  $\mathbb{P}^2 \Rightarrow X \simeq \mathbb{P}^2 \times \mathbb{P}^2$ ,  
• X admits  $\mathbb{P}^1$ -bundle on  $\mathbb{P}^3 \Rightarrow X \simeq \mathbb{P}^1 \times \mathbb{P}^3$  or  $\mathbb{P}(\mathcal{N})$ .

As a consequence, the only remaining case is that X admits two  $\mathbb{P}^1$ -bundle structure on  $Q^3$ .

Another  $\mathbb{P}^1$ -bundle structure on  $Q^3$  [1, Proposition 3.4]

#### (1) f is smooth,

### (2) any fiber F of f is a smooth Fano with nef $T_F$ , (3) Y is a smooth Fano with nef $T_Y$ , (4) $\rho(X) = \rho(Y) + 1$ and $\rho(F) = 1$ .

Classification results up to three dimensions [6]

Let X be a smooth Fano n-fold over k = k with nef  $T_X$ . If  $n \leq 3$ , then X is isomorphic to one of the following: (i)  $\mathbb{P}^n$ , (ii)  $Q^n$ , (iii)  $\mathbb{P}^2 \times \mathbb{P}^1$ , (iv)  $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$ , (v)  $\mathbb{P}(T_{\mathbb{P}^2})$ .

Assume that  $\varphi_1: X \to Q^3$  is a  $\mathbb{P}^1$ -bundle. Then X doesn't admit another  $\mathbb{P}^1$ -bundle structure on  $Q^3$ .

#### Refernces :

[1]Y. Takahashi, K. Watanabe, Preprint, arXiv:2210.17055 [2]S. Mori, Projective manifolds with ample tangent bundles, 1979. [3] Frédéric Campana and Thomas Peternell, Projective manifolds whose tangent bundles are numerically effective, 1991.

[4]Roberto Muñoz, Gianluca Occhetta, Luis E. Solá Conde, K. Watanabe and J. A. Wiśniewski, A survey on the Campana-Peternell conjecture, 2015.

[5]A.Kanemitsu,K.Watanabe, Projective varieties with nef tangent bundle in positive characteristic,2023. [6]K.Watanabe, Low-dimensional projective manifolds with nef tangent bundle in positive characteristic, 2017. 7]Roberto Muñoz, Gianluca Occhetta, Luis E. Solá Conde, and K. Watanabe, Rational curves, Dynkin diagrams and Fano manifolds with nef tangent bundle, 2015.