Admissible homomorphisms and equivariant relations between weighted projective lines

Hongxia Zhang

Osaka University, hxzhangxmu@163.com

- $\mathbf{p} = (p_1, p_2, \cdots, p_t)$: a sequence consisting of positive integers, $p = \text{l.c.m.}(p_1, \cdots, p_t)$.
- $\blacksquare \mathbb{L}(\mathbf{p}) = \langle \vec{x}_1, \vec{x}_2, \cdots, \vec{x}_t | p_1 \vec{x}_1 = p_2 \vec{x}_2 = \cdots = p_t \vec{x}_t \rangle.$
- $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_t)$: a sequence of pairwise distinct points on the projective line $\mathbb{P}^1_{\mathbf{k}}$, normalized such that $\lambda_1 = \infty, \lambda_2 = 0, \lambda_3 = 1$.
- $S(\mathbf{p}; \boldsymbol{\lambda}) = \mathbf{k}[X_1, X_2, \dots, X_t]/I$, where the ideal I is generated by $X_i^{p_i} (X_2^{p_2} \lambda_i X_1^{p_1})$ for $3 \le i \le t$. $S(\mathbf{p}; \boldsymbol{\lambda})$ is $\mathbb{L}(\mathbf{p})$ -graded by means of $\deg X_i = \vec{x}_i$ for $1 \le i \le t$.
- By [Geigle-Lenzing], there has an equivalence

$$\frac{\operatorname{mod}^{\mathbb{L}(\mathbf{p})} - S(\mathbf{p}; \boldsymbol{\lambda})}{\operatorname{mod}_0^{\mathbb{L}(\mathbf{p})} - S(\mathbf{p}; \boldsymbol{\lambda})} \xrightarrow{\sim} \operatorname{coh-}\mathbb{P}^1_{\mathbf{k}}(\mathbf{p}; \boldsymbol{\lambda}).$$

Trichotomy for WPLs

- dualizing element of $\mathbb{L}(\mathbf{p})$: $\vec{\omega} = (t-2)\vec{c} \sum_{i=1}^t \vec{x}_i$;
- \blacksquare a group homomorphism: $\delta \colon \mathbb{L}(\mathbf{p}) \to \mathbb{Z}; \quad \vec{x}_i \mapsto \frac{p}{p_i}$.

Then we have the following trichotomy for WPLs according to $\delta(\vec{\omega}) < 0, = 0$ or > 0 respectively:

- **domestic:** $(), (p), (p_1, p_2), (2, 2, p_3), (2, 3, 3), (2, 3, 4), (2, 3, 5);$
- **tubular**: (2,3,6), (3,3,3), (2,4,4), (2,2,2,2);
- wild: all other weight types.

Motivation

- $\operatorname{\mathsf{Aut}}(\operatorname{coh-}\mathbb{P}^1_{\mathbf{k}}(\mathbf{p};\boldsymbol{\lambda}))$: the automorphism group of $\operatorname{coh-}\mathbb{P}^1_{\mathbf{k}}(\mathbf{p};\boldsymbol{\lambda})$;
- $\operatorname{\mathsf{Aut}}(\mathbb{P}^1_{\mathbf{k}}(\mathbf{p};\boldsymbol{\lambda}))$: the subgroup of $\operatorname{\mathsf{Aut}}(\operatorname{coh-}\mathbb{P}^1_{\mathbf{k}}(\mathbf{p};\boldsymbol{\lambda}))$ fixing the structure sheaf.

By [Lenzing-Meltzer], there is a split-exact sequence

$$1 \to \mathbb{L}(\mathbf{p}) \to \operatorname{Aut}(\operatorname{coh-}\mathbb{P}^1_{\mathbf{k}}(\mathbf{p}; \boldsymbol{\lambda})) \to \operatorname{Aut}(\mathbb{P}^1_{\mathbf{k}}(\mathbf{p}; \boldsymbol{\lambda})) \to 1.$$

According to [Lenzing], there is a dominance graph for domestic type

■ For each $1 \le i \le t$, define

$$\pi_i \colon \mathbb{L}(\mathbf{p}) \to \mathbb{Z}/p_i\mathbb{Z}; \ \vec{x}_j \mapsto \delta_{i,j}\overline{1}.$$

An infinite subgroup $H \subseteq \mathbb{L}(\mathbf{p})$ is effective if $\pi_i(H) = \mathbb{Z}/p_i\mathbb{Z}$ for each i.

■ For each element $\vec{x} = \sum_{i=1}^{t} l_i \vec{x}_i + l\vec{c}$ in its normal form, that is $0 \le l_i < p_i$ and $l \in \mathbb{Z}$, set $\text{mult}(\vec{x}) := \max\{l+1,0\}.$

Definition ([Chen-Chen]). A group homomorphism $\pi\colon \mathbb{L}(\mathbf{p})\to \mathbb{L}(\mathbf{q})$ is admissible provided that the following conditions are satisfied

- 1 the subgroup $\mathrm{im}\pi\subseteq\mathbb{L}(\mathbf{q})$ is effective;
- 2 for each $\vec{z} \in \text{im}\pi$, we have $\sum_{\vec{x} \in \pi^{-1}(\vec{z})} \text{mult}(\vec{x}) = \text{mult}(\vec{z})$.

A finite subgroup H of $\mathbb{L}(\mathbf{p})$ is called of *Cyclic type* if

$$H = \langle \frac{p_i}{n} \vec{x}_i - \frac{p_j}{n} \vec{x}_j \rangle;$$
 for some $i \neq j$ and $n \mid \text{g.c.d.}(p_i, p_j);$

it is called of *Klein type* if

$$H = \langle \frac{p_i}{2} \vec{x}_i - \frac{p_j}{2} \vec{x}_j, \frac{p_i}{2} \vec{x}_i - \frac{p_k}{2} \vec{x}_k \rangle; \text{ for some pairwise distinct } i, j, k.$$

Main Theorem

Let H be a finite subgroup of $\mathbb{L}(\mathbf{p})$. Then the following statements are equivalent:

- (1) there exists an admissible homomorphism $\pi \colon \mathbb{L}(\mathbf{p}) \to \mathbb{L}(\mathbf{q})$ with $\ker \pi = H$.
- (2) for any parameter sequence λ , there exists a parameter sequence μ , s.t.

$$(\operatorname{coh-}\mathbb{P}^1_{\mathbf{k}}(\mathbf{p};\boldsymbol{\lambda}))^H \xrightarrow{\sim} \operatorname{coh-}\mathbb{P}^1_{\mathbf{k}}(\mathbf{q};\boldsymbol{\mu}).$$

Moreover, $\ker \pi$ in (1) is either of *Cyclic type* or of *Klein type*. More precisely, up to a permutation isomorphism, one of the following holds:

- $\ker \pi = \langle \frac{p_1}{n} \vec{x}_1 - \frac{p_2}{n} \vec{x}_2 \rangle$ with $n \mid \text{g.c.d.}(p_1, p_2)$; in this case,

$$\mathbf{q} = (\frac{p_1}{n}, \frac{p_2}{n}, \underbrace{p_3, \cdots, p_3}_{n \text{ times}}, \cdots, \underbrace{p_t, \cdots, p_t}_{n \text{ times}});$$

- $\ker \pi = \langle \frac{p_1}{2} \vec{x}_1 - \frac{p_2}{2} \vec{x}_2, \frac{p_1}{2} \vec{x}_1 - \frac{p_3}{2} \vec{x}_3 \rangle$ with p_1, p_2, p_3 even; in this case,

$$\mathbf{q} = (\frac{p_1}{2}, \frac{p_1}{2}, \frac{p_2}{2}, \frac{p_2}{2}, \frac{p_3}{2}, \frac{p_3}{2}, \underbrace{p_4, \cdots, p_4}_{\text{4 times}}, \cdots, \underbrace{p_t, \cdots, p_t}_{\text{4 times}}).$$

Admissible homomorphisms between domestic types

p	q	$\ker \pi$	$\pi(\vec{x}_1,\vec{x}_2,\cdots,\vec{x}_t)$
(nq_1,nq_2)	(q_1,q_2)	$\langle q_1 \vec{x}_1 - q_2 \vec{x}_2 \rangle$	$(ec{z}_1,ec{z}_2)$
$(2,2,p_3)$	(p_3,p_3)	$\langle \vec{x}_1 - \vec{x}_2 \rangle$	$(ec{d},ec{d},ec{z}_1+ec{z}_2)$
$(2,2,2p_3)$	$(2,2,p_3)$	$\langle \vec{x}_2 - p_3 \vec{x}_3 \rangle$	$(ec{z}_1+ec{z}_2,ec{d},ec{z}_3)$
$(2,2,2p_3)$	(p_3,p_3)	$\langle \vec{x}_1 - \vec{x}_2, \vec{x}_1 - p_3 \vec{x}_3 \rangle$	$(2\vec{d}, 2\vec{d}, \vec{z}_1 + \vec{z}_2)$
(2,3,3)	(2,2,2)	$\langle \vec{x}_2 - \vec{x}_3 \rangle$	$(\vec{z}_1+\vec{z}_2+\vec{z}_3,\vec{d},\vec{d})$
(2,3,4)	(2,3,3)	$\langle \vec{x}_1 - 2\vec{x}_3 \rangle$	$(\vec{d}, \vec{z}_2 + \vec{z}_3, \vec{z}_1)$

Equivariant relations between domestic types

Here, a weight symbol (a,b,c) stands for the (isoclass of the) weighted projective line $\mathbb{P}^1_{\mathbf{k}}(a,b,c)$; an arrow $\mathbb{P}^1_{\mathbf{k}}(\mathbf{p}) \stackrel{H}{\longrightarrow} \mathbb{P}^1_{\mathbf{k}}(\mathbf{q})$ stands for an equivalence $(\operatorname{coh-}\mathbb{P}^1_{\mathbf{k}}(\mathbf{p}))^H \stackrel{\sim}{\longrightarrow} \operatorname{coh-}\mathbb{P}^1_{\mathbf{k}}(\mathbf{q})$; and the symbol C_m (resp. $C_2 \times C_2$) stands for a finite subgroup of $\mathbb{L}(\mathbf{p})$ of Cyclic type with order m (resp. of Klein type).

Admissible homomorphisms between tubular types

p	\mathbf{q}	$\ker \pi$	$\pi(\vec{x}_1, \vec{x}_2, \cdots, \vec{x}_t)$	
(2, 2, 2, 2)	$(2\ 2\ 2\ 2)$	$\langle \vec{x}_1 - \vec{x}_2 \rangle$	$(\vec{d}, \vec{d}, \vec{z}_1 + \vec{z}_2, \vec{z}_3 + \vec{z}_4)$	
		$\langle \vec{x}_1 - \vec{x}_2, \vec{x}_1 - \vec{x}_3 \rangle$	$(2\vec{d}, 2\vec{d}, 2\vec{d}, \vec{z}_1 + \vec{z}_2 + \vec{z}_3 + \vec{z}_4)$	
(3, 3, 3)	(3, 3, 3)	$\langle \vec{x}_1 - \vec{x}_2 \rangle$	$(\vec{d}, \vec{d}, \vec{z_1} + \vec{z_2} + \vec{z_3})$	
	(4,4,2)	$\langle 2\vec{x}_1 - \vec{x}_3 \rangle$	$(ec{z}_3,ec{z}_1+ec{z}_2,ec{d})$	
		$\langle \vec{x}_1 - \vec{x}_2 \rangle$	$(\vec{d}, \vec{d}, \vec{z}_1 + \vec{z}_2 + \vec{z}_3 + \vec{z}_4)$	
(4,4,2)	(2, 2, 2, 2)	$\langle 2\vec{x}_1 - 2\vec{x}_2 \rangle$	$(\vec{z}_1, \vec{z}_2, \vec{z}_3 + \vec{z}_4)$	
		$\langle 2\vec{x}_1 - 2\vec{x}_2, 2\vec{x}_1 - \vec{x}_3 \rangle$	$(\vec{z}_1 + \vec{z}_2, \vec{z}_3 + \vec{z}_4, 2\vec{d})$	
(6, 3, 2)	(3, 3, 3)	$\langle 3\vec{x}_1 - \vec{x}_3 \rangle$	$(ec{z}_1,ec{z}_2+ec{z}_3,ec{d})$	
	(2, 2, 2, 2)	$\langle 2\vec{x}_1 - \vec{x}_2 \rangle$	$(\vec{z}_1, \vec{d}, \vec{z}_2 + \vec{z}_3 + \vec{z}_4)$	

Equivariant relations between tubular types

Assume $\mathbb{L}(\mathbf{p})$ and $\mathbb{L}(\mathbf{q})$ are both of tubular type. Let H be a finite subgroup of $\mathbb{L}(\mathbf{p})$. Then all the equivalences of the form $(\mathrm{coh}\text{-}\mathbb{P}^1_\mathbf{k}(\mathbf{p};\boldsymbol{\lambda}))^H \stackrel{\sim}{\longrightarrow} \mathrm{coh}\text{-}\mathbb{P}^1_\mathbf{k}(\mathbf{q};\boldsymbol{\mu})$ for some $\boldsymbol{\lambda},\boldsymbol{\mu}$ are classified as the following table.

$(\mathbf{p}; \boldsymbol{\lambda})$	$(\mathbf{q}; \boldsymbol{\mu})$	H	μ
		$\left \langle ec{x}_1 - ec{x}_2 angle ight.$ or $\left\langle ec{x}_3 - ec{x}_4 angle ight.$	$\Gamma\left(\left(\frac{\sqrt{\lambda}+1}{\sqrt{\lambda}-1}\right)^2\right)$
		$ \langle ec{x}_1 - ec{x}_3 angle ext{ or } \langle ec{x}_2 - ec{x}_4 angle $	$\Gamma\left(\left(\frac{\sqrt{1-\lambda}+1}{\sqrt{1-\lambda}-1}\right)^2\right)$
$(2,2,2,2;\lambda)$	$(2, 2, 2, 2; \mu)$	$\left \langle ec{x}_1 - ec{x}_4 angle ight.$ or $\left\langle ec{x}_2 - ec{x}_3 angle ight.$	$\Gamma\left(\left(\frac{\sqrt{\lambda}+\sqrt{\lambda-1}}{\sqrt{\lambda}-\sqrt{\lambda-1}}\right)^2\right)$
		$\langle \vec{x}_i - \vec{x}_j, \vec{x}_i - \vec{x}_k \rangle$	$\Gamma(\lambda)$
(3, 3, 3)	(3, 3, 3)	$\langle \vec{x}_i - \vec{x}_j \rangle$	
	(4, 4, 2)	$\langle 2\vec{x}_1 - \vec{x}_3 \rangle, \langle 2\vec{x}_2 - \vec{x}_3 \rangle$	
		$\langle \vec{x}_1 - \vec{x}_2 \rangle$	
(4,4,2)	$(2, 2, 2, 2; \mu)$	$\langle 2\vec{x}_1 - 2\vec{x}_2 \rangle$	$\Gamma(-1)$
		$\sqrt{2\vec{x}_1 - 2\vec{x}_2, 2\vec{x}_1 - \vec{x}_3}$	
	(3, 3, 3)	$\langle 3\vec{x}_1 - \vec{x}_3 \rangle$	
(6, 3, 2)	$(2, 2, 2, 2; \mu)$	$\langle 2\vec{x}_1 - \vec{x}_2 \rangle$	$\Gamma(\omega)$

Here, $\Gamma(\lambda)=\{\lambda,\frac{1}{\lambda},1-\lambda,\frac{1}{1-\lambda},\frac{\lambda}{\lambda-1},\frac{\lambda-1}{\lambda}\},\,\omega=\frac{1+\sqrt{-3}}{2}$

References

[Geigle-Lenzing] W. Geigle, and H. Lenzing. A class of weighted projective curves arising in representation theory of finite dimensional algebras, in: Singularities, Representations of Algebras and Vector Bundles, Lecture Notes in Math. **1273**, 265–297, Springer, 1987.

[Lenzing-Meltzer] H. Lenzing, and H. Meltzer. The automorphism group of the derived category for a weighted projective line. Communications in Algebra, 2000, 28(4):1685–1700.

[Lenzing] H. Lenzing. Weighted projective lines and Riemann surfaces, in: Proc. of the 49th Symposium on Ring Theory and Representation Theory, 67–79, Symp. Ring Theory Represent. Theory Organ. Comm., Shimane, 2017.

[Chen-Chen] J.M. Chen, and X.W. Chen. Weighted projective lines of tubular type and equivariantization, J. Algebra **470** (2017), 77–90.

November 3, 2023 hxzhangxmu@163.com