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Abstract 

Background  Polygenic risk score (PRS) analysis is used to predict disease risk. Although PRS has been shown to have 
great potential in improving clinical care, PRS accuracy assessment has been mainly focused on European ancestry. 
This study aimed to develop an accurate genetic risk score for knee osteoarthritis (OA) using a multi-population PRS 
and leveraging a multi-trait PRS in the Japanese population.

Methods  We calculated PRS using PRS-CS-auto, derived from genome-wide association study (GWAS) summary 
statistics for knee OA in the Japanese population (same ancestry) and multi-population. We further identified risk 
factor traits for which PRS could predict knee OA and subsequently developed an integrated PRS based on multi-trait 
analysis of GWAS (MTAG), including genetically correlated risk traits. PRS performance was evaluated in participants of 
the Nagahama cohort study who underwent radiographic evaluation of the knees (n = 3,279). PRSs were incorporated 
into knee OA integrated risk models along with clinical risk factors.

Results  A total of 2,852 genotyped individuals were included in the PRS analysis. The PRS based on Japanese knee 
OA GWAS was not associated with knee OA (p = 0.228). In contrast, PRS based on multi-population knee OA GWAS 
showed a significant association with knee OA (p = 6.7 × 10−5, odds ratio (OR) per standard deviation = 1.19), whereas 
PRS based on MTAG of multi-population knee OA, along with risk factor traits such as body mass index GWAS, dis-
played an even stronger association with knee OA (p = 5.4 × 10−7, OR = 1.24). Incorporating this PRS into traditional 
risk factors improved the predictive ability of knee OA (area under the curve, 74.4% to 74.7%; p = 0.029).

Conclusions  This study showed that multi-trait PRS based on MTAG, combined with traditional risk factors, and using 
large sample size multi-population GWAS, significantly improved predictive accuracy for knee OA in the Japanese 
population, even when the sample size of GWAS of the same ancestry was small. To the best of our knowledge, 
this is the first study to show a statistically significant association between the PRS and knee OA in a non-European 
population.

Trial registration  No. C278.

Keywords  Polygenic risk score, Knee osteoarthritis, Genetics, Multi-population, Multi-traits

*Correspondence:
Hiromu Ito
hiromu@kuhp.kyoto-u.ac.jp
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13075-023-03082-y&domain=pdf


Page 2 of 12Morita et al. Arthritis Research & Therapy          (2023) 25:103 

Background
Knee osteoarthritis (OA) is a common multifactorial 
disease that causes major public health problems and 
is a large economic burden on society [1, 2]. The preva-
lence of knee OA is approximately 35% in individuals 
over 65 years of age and has been increasing over the past 
decades [3, 4]. The conventional risk factors for knee OA 
include sex (women), obesity, and knee injury [5]. More-
over, knee OA has also been shown to be influenced by 
genetic factors.

The genetic contribution to OA has been demonstrated 
in twin studies reporting 45–60% heritability estimates 
for knee OA [6–8]. Moreover, genome-wide association 
studies (GWAS) have revealed independent susceptibil-
ity loci, including rs143384 in the GDF5 gene, for knee 
OA [9–16]. A previous extensive GWAS meta-analysis 
for knee OA in 826,690 participants identified 100 inde-
pendent OA-associated variants and explained up to 11% 
of the total heritability of knee OA [17, 18]. The discov-
ery of new variants enables a polygenic risk assessment 
[19], revealing the polygenic architecture of knee OA 
[20–22]. A polygenic risk score (PRS) is a practical tool 
that enhances disease risk prediction by aggregating the 
effects of various common variants [19]. Applications 
to clinical practice or screening programs in society by 
stratifying populations into risk groups are currently 
being explored. There has been intense research on the 
prediction of knee OA using the PRS [18, 23]. However, 
PRS accuracy remains moderate (odds ratio [OR] of 1.3 
per SD for the risk of knee OA and an OR of 1.1 per SD 
for the risk of knee replacement), and its assessment is 
limited to the European population. The reason for lower 
PRS accuracy for the non-European population com-
pared to that for the European population is because of 
the dearth of well-conducted studies in globally diverse 
populations [24].

This study aimed to investigate the predictive accuracy 
of PRS based on OA GWAS summary statistics in the 
Japanese population and to improve the predictive abil-
ity using multi-population and multi-trait PRSs based on 
multi-trait analysis of GWAS (MTAG) [25].

Materials and methods
Study population
We used phenotypic and genotypic data from the Naga-
hama Cohort for Comprehensive Human Bioscience, a 
community-based prospective cohort study. The Naga-
hama study included 11,645 middle-aged to older adults 
recruited from 2007 to 2010 and 2016 as the general 
population living in Nagahama City, a rural city located 
in central Japan. A total of 8,559 study individuals par-
ticipated in the first follow-up from 2012 to 2015. Details 
of participant recruitment have been previously reported 

[26]. This study was conducted following the principles 
of the Declaration of Helsinki and was approved by the 
ethics committee of Kyoto University Graduate School of 
Medicine and Nagahama Municipal Review Board (no. 
278). Written informed consent was obtained from all 
participants.

Radiographic evaluation of knee OA
Of the total participants, those aged ≥ 60 years (n = 5,018) 
from 2012 to 2016 were included in the first surveil-
lance and subjected to further radiographic evaluation 
of the knees; 1,739 participants declined and the remain-
ing 3,279 participants (65.3%) who agreed to participate 
were included in the present study. The anteroposte-
rior radiography of the knee joints in a fully extended 
weight-bearing position was evaluated by a registered 
orthopedic surgeon and a trained examiner using the 
Kellgren–Lawrence classification (K–L grade) [27]. Knee 
OA was defined as a K–L grade ≥ 2.

Genotyping and sequencing
Genomic DNA was extracted from peripheral blood 
samples using standard laboratory procedures. Our 
genotype data comprised two data sets: genotyping data 
sets obtained by single-nucleotide polymorphism (SNP) 
arrays (9,077 samples, regardless of the knee OA pheno-
types) and whole genome sequencing (WGS) data (1,322 
samples). Genotyping by the SNP arrays was conducted 
using a series of four BeadChip microarrays (Illumina, 
San Diego, CA, USA), namely Asian Screening Array-
24v1-0 (ASA; 5,249 samples), HumanOmni2.5-4v1 (2.5–
4; 1,261 samples), HumanOmni5Exome-4v1 (5Exome; 
725 samples), and HumanCoreExome-12v1 (CoreExome; 
1,842 samples). WGS of 1,322 samples was conducted 
using an Illumina HiSeq X Ten sequencer (Illumina). 
Genotype calling was performed with 1,826 other Japa-
nese samples based on the GATK best practice [28] using 
the GRCh37 human reference genome.

Genotype quality control
Genotype quality control for SNP arrays was performed 
for each series of BeadChip arrays. Initially, we excluded 
a total of 120 samples by discordant sex information 
(n = 3), ethnic background other than Japanese (n = 21), 
and low sample call rate < 99% (n = 96). Then, SNPs with 
low SNP call rate (< 0.99), discordance from the Hardy–
Weinberg equilibrium (HWE; p < 1 × 10–6), and low minor 
allele count (MAC; < 5) in each array were excluded. 
Finally, we obtained 5,162 samples and 491,997 SNPs for 
ASA; 1,239 samples and 1,219,577 SNPs for 2.5–4; 723 
samples and 1,714,166 SNPs for 5Exome; and 1,833 sam-
ples and 249,717 SNPs for CoreExome. The total number 
of samples that satisfied the quality control (QC) metrics 
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was 8,957. The details are presented in Supplementary 
Fig. S1a. Genotype QC for WGS was performed as 
described above for the SNP array. Initially, we obtained 
41,888,202 autosomal biallelic SNPs that were marked as 
PASS by GATK (bcftools -f PASS -v SNP -M 2). Then, we 
performed sample QC by removing the high discordance 
rate to the SNP array (> 0.9), ethnic background other 
than Japanese, high heterozygosity (> 0.05), singleton 
(> 0.001), and missing rates for at least one chromosome 
(> 0.1). Only one sample was excluded from the Naga-
hama study because of a high missing rate, and 12 were 
removed from the other Japanese samples for miscella-
neous reasons. We then excluded 1,974,460 SNPs with a 
low call rate (< 0.95), 55,712 SNPs that deviated from the 
HWE (p < 1 × 10–6), and 18,818,084 SNPs with low MAC 
(< 2). Finally, we obtained 3,135 samples, including 1,321 
samples from the Nagahama cohort, of 21,039,946 SNPs 
(Supplementary Fig. S1b).

Genotype imputation for the SNP array data
Imputation of the quality-controlled SNP genotypes of 
the array dataset was performed using SHAPEIT2 and 
Minimac4 [29] in each SNP array using 3,135 quality-
controlled WGS samples as a reference panel. SNPs with 
low imputation quality metrics (r2 < 0.8) and low minor 
allele frequency (MAF; < 0.01) in at least one array were 
excluded from the imputation datasets. The 1,321 over-
lapping samples were excluded from the imputed geno-
type dataset, and the genotype of WGS was used instead. 
Finally, we constructed a genotype dataset of 4,693,074 
SNPs from 8,957 samples for further analysis.

Sample extraction for PRS calculation
Of the 3,269 individuals with radiographic data of the 
knees, we excluded subjects with a history of rheumatoid 
arthritis (n = 76), outliers in principal component analysis 
who were defined as more than three interquartile ranges 
in the first and second principal components (n = 89), 
and encrypted first-degree relatedness (Pi-Hat > 0.25, 
n = 252) [30] (Supplementary Fig. S1c).

Genotype QC for extracted samples
PRS was calculated for the merged imputation and 
WGS datasets after QC as follows: (1) SNPs with impu-
tation quality metrics r2 < 0.8 (12,250,404 SNPs for 
ASA; 11,074,943 SNPs for 2.5–4; 11,324,741 SNPs for 
5Exome; and 13,920,025 SNPs for CoreExome). There-
after those with MAF < 0.01 (2,947,830 SNPs for ASA; 
3,554,382 SNPs for 2.5–4; 3,324,770 SNPs for 5Exome; 
and 1,784,244 SNPs for CoreExome) were excluded 
from imputation datasets; and (2) SNPs with MAF < 0.01 
(13,985,443 SNPs) were excluded from WGS dataset. We 
obtained 1,644 samples and 5,841,712 SNPs for ASA; 186 

samples and 6,410,621 SNPs for 2.5–4; 119 samples and 
6,390,435 SNPs for 5Exome; 274 samples and 5,335,677 
SNPs for CoreExome; and 629 samples and 7,054,503 
SNPs for WGS dataset. Finally, 4,693,074 variants com-
mon to all imputation and WGS datasets were extracted 
from each dataset to avoid bias due to the different num-
ber of variants in the datasets, and all datasets were 
merged (Supplementary Fig. S1d). Data management 
and analyses were performed using PLINK 2.0, and data 
merging was performed using PLINK 1.07 [31].

PRS calculation based on single traits
We calculated PRS as the sum of alleles associated with 
a trait weighted by the effect size determined by a pre-
vious GWAS using PRS-CS [32] with East Asian link-
age disequilibrium (LD) score reference panels from 
the 1000 Genome Project. We used the ‘auto’ mode of 
PRS-CS to derive model parameters from a fully Bayes-
ian approach without a validation dataset. The PRS of 
each individual was calculated based on best-guess gen-
otypes, and only the SNPs found at HapMap3 sites were 
included to contribute to the score to reduce the com-
putational cost [32, 33].

A flowchart of the PRS analysis is shown in Fig.  1. In 
the OA PRS calculation, the Japanese knee OA PRS was 
computed by obtaining the largest Japanese knee OA 
GWAS summary statistics that identified two genome-
wide significant SNPs in the human leukocyte antigen 
class II/III locus associated with susceptibility to knee 
OA using 4,800 Japanese participants [9]. To calculate for 
the larger sample size OA PRS and summary statistics of 
extensive GWAS meta-analysis for OA (10 different OA 
phenotypes [17] and knee pain GWAS summary statis-
tics [34]) in 826,690 participants across 13 cohorts world-
wide (encompassing Japanese knee OA GWAS [9]) were 
obtained.

To identify the risk factors for knee OA, GWAS sum-
mary statistics of 62 quantitative traits were obtained 
from the Biobank Japan (BBJ) Project [35–38], and the 
Japanese single-ancestry PRSs were calculated. We cal-
culated the multi-population PRS [39–41] of the corre-
sponding traits in the MTAG of Japanese single-ancestry 
GWAS using GWAS summary statistics published in the 
UK biobank (Pan-UKB team. https://​pan.​ukbb.​broad​insti​
tute.​org. 2020.; Supplementary Table S1). Before analy-
sis, SNPs with MAF < 0.01 and imputation quality met-
rics r2 < 0.8 were excluded from the GWAS summary 
statistics.

We also calculated PRSs using LDpred2-auto [42] 
for Japanese knee OA and traits that were suggested as 
risk factors for knee OA (PRS-CS analysis, p < 0.05). 
For LDpred2-auto, only the SNPs found at HapMap3 
sites were included, and the posterior effect size was 

https://pan.ukbb.broadinstitute.org
https://pan.ukbb.broadinstitute.org


Page 4 of 12Morita et al. Arthritis Research & Therapy          (2023) 25:103 

computed using 30 initial values for the proportion of 
causal variants from 1 × 10–4 to 0.2 equally spaced on 
the log scale. The initial heritability value was obtained 
using constrained LD score regression. After filtering the 
outlier predictions (> 3 median absolute deviations from 
their median), we used the mean of the remaining predic-
tions as the final PRS.

PRS calculation based on multi‑traits
We selected GWAS for traits suggested as risk fac-
tors for knee OA (PRS analysis, p < 0.05). We identified 
traits that were genetically correlated with each other 
in the selected traits using the linkage disequilibrium 
score regression [43]. Traits with a genetic correlation 
p-value < 0.05 were identified as suitable for inclusion 
in the MTAG. Of these, the traits that were only geneti-
cally correlated with each other we incorporated into 
traits associated with knee OA in the PRS analysis using 
MTAG (version 1.0.7). East Asian LD score reference 
panels from the 1000 Genome Project were used for all 
the analyses.

Statistical analysis
Statistical analyses were performed using the R statisti-
cal software version 4.0.4 (R Foundation for Statistical 
Computing, Vienna, Austria). The association between 
PRSs and knee OA in the Nagahama study participants 
was evaluated using a logistic regression model. We cal-
culated adjusted OR per SD and 95% confidence inter-
val (CI) for the risk of knee OA. Age, sex, 10 principal 
components, and the type of dataset to which the sample 

belongs (SNP array or WGS dataset) were included as 
covariates. Disease liability explained by PRS was esti-
mated by the conversion of observed PVE to the R2 on 
the liability scale using a linear model with disease preva-
lence in the Nagahama study participants (37.1%) [44]. 
To evaluate the ability of PRS in case/control discrimi-
nation, receiver operating characteristic (ROC) analyses 
were performed by plotting the true- against the false-
positive rate. The area under the curve (AUC) was calcu-
lated using a non-parametric method [45]. In addition, 
to assess the clinical usefulness of the PRS in the predic-
tion of knee OA, the PRS was combined with a currently 
known clinical risk score and differences in model perfor-
mance were evaluated. The first model (MODEL I) was 
constructed using only the clinical risk score of individu-
als, including sex, age, and body mass index (BMI) [46]. 
The second model (MODEL II) was generated by incor-
porating the PRS into MODEL I (sex, age, and BMI). To 
test the improvement in model performance by incorpo-
rating PRS, the AUC test (Delong method) [47] and net 
reclassification improvement (NRI) analysis [48] were 
performed. We compared the AUC (c statistic) generated 
from the full model with the values generated from the 
model, with each factor removed, to evaluate the relative 
contribution of each factor to the model. In a sensitiv-
ity analysis, we explored whether additional adjustment 
for excluding statin users would change our findings on 
lipid traits PRS, high- and low-density lipoprotein cho-
lesterol (HDL-C and LDL-C), total cholesterol, and tri-
glyceride. To assess the ability of PRS in case/control 
discrimination and its correlation with disease severity, 

Fig. 1  Polygenic risk score analysis flow chart. PRS, polygenic risk score; GWAS, genome-wide association study; OA, osteoarthritis; TKR, total knee 
replacement; BMI, body mass index; BP, blood pressure; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; Ca, 
calcium; TJR, total knee and/or hip joint replacement; UKB, UK Biobank; MTAG, multi-trait analysis of genome-wide association
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the Jonckheere–Terpstra trend test was used to compare 
the distributions of radiographic knee OA severity (K-L 
grade) between different quintiles of PRS. All polygenic 
scores were standardized to facilitate interpretability. For 
knee OA risk factor screening to identify traits to include 
in MTAG, we applied a nominal threshold of p = 0.05. We 
applied the Bonferroni correction for multiple compari-
sons (number of PRS tested N = 19), considering as sig-
nificant a p-value < 0.0026 (0.05/19) in risk factors PRS 
analysis based on single and multi traits. In a sensitivity 
analysis excluding statin users, a p-value < 0.0125 (0.05/4) 
was considered significant.

Results
Of the 2,852 individuals (1,776 women and 1,076 men) 
included in our final genetic analysis. Among these 
2,852 individuals, 1,059 (37.1%) had knee OA and the 
mean age was 68.2 years ([SD] = 5.3; range, 60–80 years; 

Table  1). Although the Nagahama cohort study was 
conducted on volunteers from a rural area in Japan, the 
prevalence of knee OA was almost perfectly consistent 
with that of previous studies in other countries [49, 50].

Performance of PRSs derived from OA GWAS
We first evaluated the ancestry-specific PRS derived 
from a Japanese knee OA GWAS (Supplementary Table 
S1). The PRS was not associated with risk for knee 
OA (p = 0.228). We then evaluated PRS performance 
based on multi-cohort OA GWAS because increasing 
evidence has demonstrated larger sample size multi-
ancestry PRS improved performance [32, 39–41]. We 
selected the largest multi-population OA GWAS [17] 
and found that PRSs derived from multi-population 
GWAS of knee OA, knee and/or hip OA, OA, total 
knee replacement (TKR), total knee and/or hip joint 
replacement (TJP), and knee pain showed nominal 
associations (p < 0.05) with knee OA (Table  2). The 
strongest association was observed for multi-popula-
tion knee OA PRS (p = 6.7 × 10–5, OR per SD increase 
1.19 [95% CI 1.09–1.29]). The adjusted OR and R2 on 
the liability scale ranged between 1.10–1.19 and 0.14–
0.52%, respectively.

Table 1  Demographic data of participants

SD Standard deviation

Sex (female / male) 1776 / 1076

Mean age (years) 68.2 (SD 5.3, 60 to 80)

Mean body mass index (kg/m2) 22.5 (SD 3.1, 12.8 to 40)

Kellgren-Lawrence grade 0:110 / 1:1683 / 2:805 / 3:230 / 4:24

Table 2  PRS analysis summary of traits that showed association with knee OA

PRS Polygenic risk score, OA Osteoarthritis, OR Odds ratio, AUC​ Area under the curve, NRI Net reclassification improvement, GWAS Genome-wide association study, UKB 
UK Biobank

P-values were evaluated using a logistic regression model. Adjusted OR per standard deviation and 95% confidence intervals of risk of knee OA were calculated using 
a logistic regression model including age, sex, 10 principal components, and a dummy variable for the array type used in genotyping as covariates. Disease liability 
explained by the PRS was estimated by the conversion of observed PVE to R2 on the liability scale using a linear model. The AUC test (Delong method) and net 
reclassification improvement analysis were performed to compare MODEL I (only clinical information, including sex, age, and BMI) and MODEL II (incorporating PRS 
into MODEL I)
* Significant after Bonferroni correction

Traits p-value Adjusted OR
(95% CI)

R2 (%) AUC​ AUC test p-value NRI (p-value)

OA PRS analysis
Multi-population GWAS
  Knee OA 6.70E-05* 1.19 (1.09–1.29) 0.520 0.540 0.034 0.081 (0.036)

  Knee and/or hip OA 9.90E-04* 1.15 (1.06–1.25) 0.421 0.534 0.059 0.054 (0.161)

  All OA 0.014 1.11 (1.02–1.21) 0.330 0.530 0.067 0.027 (0.486)

  Total knee replacement 0.008 1.12 (1.03–1.22) 0.165 0.523 0.120 0.067 (0.085)

  Total knee and/or hip replacement 0.025 1.10 (1.01–1.19) 0.144 0.524 0.197 0.068 (0.079)

  Knee pain 0.026 1.10 (1.01–1.19) 0.211 0.527 0.254 0.092 (0.017)

Risk trait PRS analysis
Biobank Japan GWAS
  Body mass index 4.57E-06* 1.22 (1.12–1.32) 0.689 0.548 0.272 0.054 (0.162)

  Calcium 0.021 0.91 (0.83–0.99) 0.072 0.514 0.264 0.086 (0.027)

  High-density-lipoprotein cholesterol 6.94E-04* 0.87 (0.80–0.94) 0.434 0.539 0.118 0.116 (0.003)

Multi-population GWAS
  UKB-body mass index 0.002* 1.14 (1.05–1.24) 0.523 0.540 0.361 -0.017 (0.658)
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Performance of PRSs derived from GWAS of the risk factors 
for OA
We evaluated the association between the PRS of quan-
titative traits using the summary statistics of BBJ and 
knee OA to identify potential risk factor traits that may 
share genetic components with knee OA to be included 
in the MTAG. High PRS scores for BMI and low scores 
for HDL-C and calcium (Ca) were nominally asso-
ciated (p < 0.05) with an increased risk of knee OA 
(Table  2). BMI PRS displayed the strongest association 
with knee OA (p = 4.6 × 10−6, OR per SD increase 1.22 
[95% CI 1.12–1.32]) and outperformed multi-popula-
tion knee OA PRS, highlighting the known risk of BMI 
for knee OA as well as the currently explained herit-
ability of BMI GWAS in contrast to that of OA GWAS. 
HDL-C PRS showed the second strongest correlation 
with knee OA (p = 6.9 × 10−4, OR per SD increase 0.87 
[95% CI 0.80–0.94]), suggesting a shared genetic back-
ground of knee OA with lipid metabolism. In a sensi-
tivity analysis for lipid traits PRS, 916 statin users were 
excluded, and 1,936 individuals (683 knee OA patients; 
35.3%) were analyzed. After Bonferroni correction, only 
HDL-C PRS showed significant associations (p = 0.004, 
OR per SD increase of 0.86 [95% CI 0.78–0.95]; Sup-
plementary Table S2). Ca PRS was inversely associated 
with knee OA (p = 6.9 × 10−4, OR per SD increase 0.91 
[95% CI 0.83–0.99]). We obtained UKB-GWAS data for 
the above-mentioned quantitative traits and calculated 
the PRSs. We observed that, despite the larger sample 
size, multi-ancestry PRSs of the risk factors performed 
worse than those of the BBJ traits and only the UKB BMI 
PRS showed nominal associations (p = 0.002, OR per 
SD increase of 1.14 ([95% CI: 1.05–1.24]; Supplemen-
tary Table S1). A comprehensive analysis of risk factors 
suggested that BMI, HDL-C, and Ca have a genetic risk 
effect on knee OA. The correlation with BMI was par-
ticularly strong and remained strong even in the UKB-
BMI PRS, which excluded the Japanese population. PRSs 
estimated using LDpred 2-auto are shown in Supplemen-
tary Table  3. The results revealed slightly lower perfor-
mance in the PRSs computed using LDpred 2-auto than 
those computed using PRScs; nevertheless, both PRSs 
using PRScs and LDpred 2-auto showed similar trends. 
The multi-population knee OA PRS and BBJ BMI PRS 
were significant after Bonferroni correction in both PRS 
analyses using PRScs and LDpred2-auto.

Improved prediction of the knee OA risk using 
MTAG‑based PRS
MTAG can increase the statistical power by appropriately 
incorporating the information in GWAS estimates for 
other genetically correlated traits [25]. We first selected 
traits that showed nominal association with knee OA risk 

in the single-trait PRS analysis to develop MTAG-based 
PRSs for a better prediction model. We selected 10 traits 
from the GWAS summary statistics, including six multi-
ancestry OA-related traits, three single-ancestry risk fac-
tor traits, and a multi-ancestry BMI. Next, we evaluated 
genetic correlations among the 10 traits (Supplementary 
Fig. S2) and incorporated traits that were genetically 
correlated with each other into all 10 traits (Fig.  1). All 
MTAG-based PRS showed significant associations with 
knee OA after Bonferroni correction (p < 0.0026). Most 
MTAG-based PRS yielded stronger risk effects with knee 
OA (Fig.  2) and outperformed R2 on the liability scale 
compared to the corresponding single-trait PRS, with 
an average of 2.0-fold (Table  3). The PRS with the best 
performance was the MTAG-based multi-population 
knee OA PRS, calculated by incorporating BBJ GWAS 
of BMI, multi-population GWAS of the knee and/or hip 
OA, all OA, TKR, TJP, and knee pain, and UKB-GWAS 
of BMI into multi-population knee OA GWAS using 
MTAG (p = 5.4 × 10−7, OR per SD increase 1.24 [95% CI 
1.14–1.35]).

To evaluate whether adding the PRS to a clinical risk 
model improves the overall model performance, we 
compared MODEL I (constructed with only the clinical 
risk score of individuals, including sex, age, and BMI) to 
MODEL II (incorporating PRS into MODEL I; Tables  2 
and 3). The model incorporating MTAG-based multi-
population knee OA PRS into MODEL I showed the 
best improvement in AUC (AUC 74.4–74.7%, AUC test 
p = 0.029) and a significant NRI value of 0.105 (95% CI 
0.030–0.181, p = 0.006). The contributions of each factor 
were 9.0, 3.6, 3.3, and 0.3% for sex, age, BMI, and MTAG-
multi-population knee OA PRS, respectively (Fig.  3). 
The MTAG-based multi-population knee OA PRS was 
also correlated with radiographic severity; we observed 
a strong association between MTAG-based multi-
population knee OA PRS and severe OA (K-L 3 and 4; 
p = 1.3 × 10−5, OR per SD increase 1.35 [95% CI 1.18–
1.55]) and increasing radiographic knee OA severity 
(high K–L grade) in increasing quintiles of MTAG-based 
multi-population knee OA PRS (The Jonckheere–Terp-
stra trend test p-value = 3.1 × 10−7; Fig. 4).

Discussion
Knee OA is a multifactorial disorder with a polygenic 
genetic architecture. Therefore, understanding the 
genetic etiology of knee OA is challenging. The largest 
OA GWAS to date performed by the Genetics of OA 
(GO) consortium, including two East Asian and 11 Euro-
pean cohorts, explained 11% of the genetic risk for knee 
OA [17]. In the European population, there have been a 
few previous attempts to predict OA using PRS, and a 
modest discriminatory ability of knee OA was reported, 
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with an estimated risk effect of the OR of 1.2 for radio-
graphic knee OA [18]. However, the PRS assessment of 
knee OA has been mostly limited to the European popu-
lation and the prediction accuracy of PRS in non-Euro-
peans remains limited [24]. In this study, we observed 
an OR of 1.19 per SD increase in multi-population knee 

OA PRS in the Japanese population. The slightly higher 
OR of 1.30 for severe radiographic knee OA shown in 
the Rotterdam Study [18] was also replicated in the 
Japanese population (OR per SD increase 1.32 [95% CI 
1.15–1.52]). Moreover, the present study demonstrates 
that the predictive performance of the knee OA PRS 

Fig. 2  Adjusted odds ratios of single-trait and MTAG-based PRSs of traits with correlations with knee OA. Adjusted odds ratios per standard 
deviation and 95% confidence intervals of the risk of knee OA were calculated using a logistic regression model, including age, sex, 10 principal 
components, and a dummy variable for the array type used in genotyping as covariates. PRS, polygenic risk score; MTAG, multi-trait analysis of 
genome-wide association; OA, osteoarthritis; GWAS, genome-wide association study; TKR, total knee replacement; TJR, total knee and/or hip joint 
replacement; BMI, body mass index; HDL-C, high-density lipoprotein cholesterol; UKB, UK Biobank; CI, confidence interval

Table 3  MTAG-based PRS analysis summary

MTAG​ Multi-trait analysis of genome-wide association study, PRS Polygenic risk score, OA Osteoarthritis, OR Odds ratio, AUC​ Area under the curve, NRI Net 
reclassification improvement, GWAS Genome-wide association study, UKB UK Biobank

P-values were evaluated using a logistic regression model. Adjusted OR per standard deviation and 95% confidence intervals of risk of knee OA were calculated using 
a logistic regression model including age, sex, 10 principal components, and a dummy variable for the array type used in genotyping as covariates. Disease liability 
explained by the PRS was estimated by the conversion of observed PVE to R2 on the liability scale using a linear model. The AUC test (Delong method) and net 
reclassification improvement analysis were performed to compare MODEL I (only clinical information, including sex, age, and BMI) and MODEL II (incorporating PRS 
into MODEL I)
* Significant after Bonferroni correction

Traits p-value Adjusted OR
(95% CI)

R2 (%) AUC​ AUC test p-value NRI
(p-value)

OA PRS analysis
Multi-population GWAS
  Knee OA 5.42E-07* 1.24 (1.14–1.35) 0.967 0.559 0.029 0.105 (0.006)

  Knee and/or hip OA 3.84E-06* 1.22 (1.12–1.32) 0.837 0.553 0.038 0.089 (0.022)

  All OA 1.62E-04* 1.17 (1.08–1.28) 0.598 0.543 0.090 0.060 (0.121)

  Total knee replacement 8.61E-07* 1.23 (1.14–1.34) 0.907 0.557 0.041 0.085 (0.028)

  Total knee and/or hip replacement 1.22E-05* 1.20 (1.11–1.31) 0.740 0.550 0.049 0.097 (0.012)

  Knee pain 4.92E-04* 1.16 (1.07–1.26) 0.407 0.535 0.042 0.062 (0.110)

Risk trait PRS analysis
Biobank Japan GWAS
  Body mass index 4.65E-06* 1.21 (1.12–1.32) 0.776 0.554 0.212 0.051 (0.189)

  High-density-lipoprotein cholesterol 9.84E-06* 0.83 (0.76–0.90) 0.741 0.551 0.083 0.087 (0.025)

Multi-population GWAS
  UKB body mass index 5.07E-06* 1.21 (1.12–1.32) 0.882 0.559 0.177 0.059 (0.130)
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can be improved by using multi-population OA GWAS 
with increased statistical power due to a larger sample 
size and multi-trait PRS using MTAG, including risk fac-
tor traits of knee OA, even when the Japanese knee OA 
GWAS population is small. The improved performance 
by multi-population OA GWAS could either be due to 

a multi-population nature or an increased sample size. 
In most cases, the MTAG-based PRS outperformed 
their corresponding single-trait PRSs in predicting knee 
OA, and our prediction model combining the MTAG-
based multi-population knee OA PRS and established 
clinical risk factors showed better predictive ability than 

Fig. 3  Receiver operating characteristic curves for identifying patients with knee OA using PRSs and clinical data. Line plot showing receiver 
operating characteristic curves of PRSs and models, including clinical data. MODEL I integrated risk models using clinical data, including sex, age, 
and BMI; MODEL II integrated risk models using clinical data, including sex, age, and BMI, and MTAG-based multi-population knee OA PRS. OA, 
osteoarthritis; PRS, polygenic risk score; BMI, body mass index; MTAG, multi-trait analysis of genome-wide association

Fig. 4  Distribution of K-L grade per quintile of MTAG-based multi-population knee OA PRS. K-L, Kellgren–Lawrence grade; MTAG, multi-trait analysis 
of genome-wide association; OA, osteoarthritis; PRS, polygenic risk score
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that of clinical risk factors only. PRS calculations were 
performed using PRScs which assumes the continuous 
shrinkage priors and LDpred2-auto which assumes a 
point-normal mixture distribution for SNP effect sizes 
[32]. Both methods with different concepts in PRS calcu-
lations yielded the same results, suggesting the accuracy 
of the results of this study.

In the present study, the PRS generated based on the 
GWAS of the Japanese population knee OA (single Japa-
nese ancestry) with a limited sample size was not asso-
ciated with the prevalence of knee OA, supporting the 
current concern regarding the difficulty in implementing 
equitable genomic medicine across non-European popu-
lations [24]. In these cases, the use of multi-population 
and/or multi-trait analysis can improve the predictive 
ability of PRS. The present study is the first to investi-
gate the increase in the predictive performance of PRS 
for knee OA in non-European populations. The PRS 
from a multi-population knee OA GWAS was observed 
to be moderately accurate in the Japanese population 
(AUC = 0.540). PRS accuracy and predictive power 
depend on the power of the base GWAS data, and the 
multi-population OA GWAS may have increased the 
predictive accuracy because it represents a meta-analysis 
study that included the Japanese knee OA GWAS [9, 17] 
and overwhelmingly increased the sample size, reflecting 
the multifactorial genetic etiology of knee OA and the 
additive effect of genes associated with knee OA. More-
over, our results showed that compared to single-trait 
PRS, multi-trait PRS using MTAG improved the predic-
tive performance by approximately 2.0 times as in R2 on 
the liability scale. The PRS approach is expected to pro-
vide insights into genetic etiology, free from confound-
ing bias [24]. Unlike actual measurements, genetic scores 
do not vary with time and can be evaluated universally; 
therefore, PRS effectively identifies individuals at a high 
risk of knee OA. Highly accurate risk prediction allows 
for focused prevention strategies such as weight reduc-
tion, biomechanical interventions such as knee braces, 
and exercise for high-risk groups [51]. Furthermore, the 
statistically significant improvements in the predictability 
of the model by integrating clinical information and PRS 
suggest its potential clinical applications.

In the present study, PRS analysis using nationwide 
biobank GWASs of the same population [24] suggested a 
genetic overlap with knee OA for several traits, including 
novel traits. The influence of high BMI on the develop-
ment of knee OA has been reported for both the biome-
chanical [5, 52] and genetic pathways [14, 53, 54]. In our 
study, the genetic relationship between high BMI and OA 
of the knee and weight-bearing joints was consistent and 
robust. Moreover, a previous epidemiological study has 
reported that serum HDL-C levels were low in patients 

with knee OA [55] and that HDL-C levels in the synovial 
fluid were negatively correlated with cartilage damage 
and the severity of knee OA [56]. Although the genetic 
relationship between HDL-C and knee OA is unclear 
[53, 57], in the present study, HDL-C PRS was strongly 
negatively correlated with knee OA, second to BMI PRS. 
A previous Mendelian randomization study for OA has 
reported a causal relationship between low LDL-C and 
OA and the potential role of statin in OA pathogenesis 
[53]. We performed a sensitivity analysis excluding sta-
tin users, but only HDL-C PRS was significant after the 
Bonferroni correction. It is possible that the sample size 
was limited and the significance of other lipid traits PRSs 
was not shown. An epidemiological case–control study 
has reported a negative direct association between serum 
Ca concentration and knee OA through the physiological 
and pathological processes of chondrocytes [58]. There-
fore, these previous and present study findings support 
the idea of a genetic overlap between decreased Ca levels 
and knee OA.

This study had several limitations. First, the sample size 
was small. Second, the R2 on the liability scale of each 
PRS was insufficiently high. This might be because the 
current PRSs may only partially capture the heritability of 
knee OA. Third, multiple array datasets were merged and 
analyzed; therefore, there is a risk of bias due to an imbal-
ance in sample size and knee OA prevalence. However, 
when we evaluated the OR of knee OA of the MTAG-
multi-population knee OA PRS for each array dataset 
and WGS data, we found a consistent contribution to 
knee OA (Supplementary Fig. S3).

In conclusion, this study showed that multi-trait PRS 
based on MTAG using multi-population GWAS with a 
large sample size was significantly associated with knee 
OA in the Japanese population, even when the sample 
size of GWAS of the same ancestry was small. To our 
knowledge, this is the first study to show a statistically 
significant association between PRS and knee OA in a 
non-European population.

Abbreviations
AUC​	� Area under the curve
BBJ	� Biobank Japan
BMI	� Body mass index
Ca	� Calcium
CI	� Confidence interval
GO	� Genetics of osteoarthritis
GWAS	� Genome-wide association study
MAC	� Minor allele count
MAF	� Minor allele frequency
HDL-C	� High-density lipoprotein cholesterol
QC	� Quality control
HWE	� Hardy-Weinberg equilibrium
K–L	� Kellgren–Lawrence
LD	� Linkage disequilibrium
MTAG​	� Multi-trait analysis of genome-wide association



Page 10 of 12Morita et al. Arthritis Research & Therapy          (2023) 25:103 

NRI	� Net reclassification improvement
OA	� Osteoarthritis
OR	� Odds ratio
PRS	� Polygenic risk score
ROC	� Receiver operating characteristic
SD	� Standard deviation
SNP	� Single-nucleotide polymorphism
TKR	� Total knee replacement
TJR	� Total knee and/or hip joint replacement
WGS	� Whole genome sequencing

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13075-​023-​03082-y.

Additional file 1: Supplementary Fig. 1. Flowchart of the genotype 
quality control and sample extraction for PRS calculation. Supplemen‑
tary Fig. 2. Significant genetic correlation coefficient calculated using 
LDSC between each risk factor trait. Supplementary Fig. 3. Forest plot 
of adjusted odds ratios of MTAG-based multi-population knee OA PRS 
for each genotyping array and whole genome sequence data. Supple‑
mentary Table 1. Correlation between PRSs and knee OA in single-PRS 
analysis. Supplementary Table 2. Summary of the PRS analysis of lipid 
traits in the sensitivity analysis excluding statin users. Supplementary 
Table 3. Summary of the PRS analysis of traits that showed association 
with knee OA using LDpred2-auto.

Acknowledgements
We are grateful to Dr. Yoshihiko Kotoura for his tremendous help with clinical 
measurements and to the Nagahama City Office and the Zeroji Club, a non-
profit organization, for their assistance in conducting this study. We would like 
to acknowledge the Pan-UK and UK Biobanks for making publicly available 
data GWAS.

Authors’ contributions
YK, HI, FM, and SM designed this study. YM, YK, HI, and TK wrote the 
manuscript. YM, YK, HI, TK, SK, MT, SI, CT, and FM collected the data and 
information of the participants. YM, YK, and TK performed the statistical 
analyses. HI and SM verified the data. HI, SI, FM, and SM obtained funding. 
FM and SM supervised this study. All authors have read and approved the 
final manuscript.

Funding
The Nagahama study was supported by a university grant, The Center of 
Innovation Program, The Global University Project, and a Grant-in-Aid for 
Scientific Research (25293141, 26670313, 26293198, 17H04182, 17H04126, 
17H04123, 18K18450) from the Ministry of Education, Culture, Sports, Science 
and Technology of Japan; the Practical Research Project for Rare/Intractable 
Diseases (ek0109070, ek0109070, ek0109196, ek0109348); the Comprehen-
sive Research on Aging and Health Science Research Grants for Dementia 
R&D (dk0207006, dk0207027), the Program for an Integrated Database of 
Clinical and Genomic Information (kk0205008);the Practical Research Project 
for Lifestyle-related Diseases including Cardiovascular Diseases and Diabetes 
Mellitus (ek0210066, ek0210096, ek0210116); the Research Program for 
Health Behavior Modification by Utilizing IoT (le0110005) from Japan Agency 
for Medical Research and Development (AMED); the Takeda Medical Research 
Foundation; the Mitsubishi Foundation; the Daiwa Securities Health Founda-
tion; and the Sumitomo Foundation. YM was supported by Grant of The Japa-
nese Orthopaedic Society of Knee, Arthroscopy and Sports Medicine, 2019. 
HI, YK, CT, SI, MT, FM, and SM received the Japanese Orthopaedic Association 
subsidized Science Project Research Grant 2019–2021 from the Japanese 
Orthopaedic Association. SI was supported by a Grant-in-Aid for Scientific 
Research (22H03207) from the Ministry of Education, Culture, Sports, Science, 
and Technology of Japan.

Availability of data and materials
The datasets used and/or analyzed during the current study are available from 
the corresponding author upon reasonable request.

Declarations

Ethics approval and consent to participate
This study was conducted following the principles of the Declaration of Hel-
sinki and was approved by the ethics committee of Kyoto University Graduate 
School of Medicine and Nagahama Municipal Review Board (No. C278). Writ-
ten informed consent was obtained from all participants.

Consent for publication
Not applicable.

Competing interests
YM received a research grant from the Japanese Orthopedic Society of Knee, 
Arthroscopy, and Sports Medicine. HI, YK, CT, SI, MT, FM, and SM received a 
research grant from the Japanese Orthopaedic Association. SI, TK, SK, KN, SN, 
SK, and YT declare no conflicts of interest. The sponsors were not involved 
in the study design, data collection or recruitment, analysis, interpretation of 
data, writing of the manuscript, or decision to submit the article for publica-
tion. The authors, their immediate families, and any research foundations to 
which they are affiliated have not received any financial payments or other 
benefits from any commercial entity related to the subject of this article.

Author details
1 Department of Orthopedic Surgery, Kyoto University Graduate School 
of Medicine, Kyoto, Japan. 2 Center for Genomic Medicine, Kyoto University 
Graduate School of Medicine, Kyoto, Japan. 3 Department of Orthopedic 
Surgery, Kurashiki Central Hospital, Kurashiki, Japan. 4 Laboratory for Bone 
and Joint Diseases, Center for Genomic Medicine, RIKEN, Tokyo, Japan. 5 Labo-
ratory for Statistical and Translational Genetics, RIKEN Center for Integrative 
Medical Sciences, Yokohama, Japan. 6 Department of Orthopedic Surgery, Shi-
mane University Faculty of Medicine, Izumo, Japan. 7 Graduate School of Public 
Health, Shizuoka Graduate University of Public Health, Aoi‑Ku, Shizuoka, Japan. 

Received: 9 May 2023   Accepted: 1 June 2023

References
	1.	 Yoshimura N, Muraki S, Oka H, Mabuchi A, En-Yo Y, Yoshida M, et al. Preva-

lence of knee osteoarthritis, lumbar spondylosis, and osteoporosis in 
Japanese men and women: the research on osteoarthritis/osteoporosis 
against disability study. J Bone Miner Metab. 2009;27:620–8. https://​doi.​
org/​10.​1007/​s00774-​009-​0080-8.

	2.	 Weinstein AM, Rome BN, Reichmann WM, Collins JE, Burbine SA, Thornhill 
TS, et al. Estimating the burden of total knee replacement in the United 
States. J Bone Joint Surg Am. 2013;95:385–92. https://​doi.​org/​10.​2106/​
JBJS.L.​00206.

	3.	 Jordan JM, Helmick CG, Renner JB, Luta G, Dragomir AD, Woodard J, et al. 
Prevalence of hip symptoms and radiographic and symptomatic hip 
osteoarthritis in African Americans and Caucasians: the Johnston County 
Osteoarthritis Project. J Rheumatol. 2009;36:809–15. https://​doi.​org/​10.​
3899/​jrheum.​080677.

	4.	 Deshpande BR, Katz JN, Solomon DH, Yelin EH, Hunter DJ, Messier SP, 
et al. Number of persons with symptomatic knee osteoarthritis in the 
US: impact of race and ethnicity, age, sex, and obesity. Arthritis Care Res. 
2016;68:1743–50. https://​doi.​org/​10.​1002/​acr.​22897.

	5.	 Silverwood V, Blagojevic-Bucknall M, Jinks C, Jordan JL, Protheroe J, 
Jordan KP. Current evidence on risk factors for knee osteoarthritis in older 
adults: a systematic review and meta-analysis. Osteoarthritis Cartilage. 
2015;23:507–15. https://​doi.​org/​10.​1016/j.​joca.​2014.​11.​019.

	6.	 Neame RL, Muir K, Doherty S, Doherty M. Genetic risk of knee osteoarthri-
tis: a sibling study. Ann Rheum Dis. 2004;63:1022–7. https://​doi.​org/​10.​
1136/​ard.​2003.​014498.

	7.	 Spector TD, Macgregor AJ. Risk factors for osteoarthritis: genetics. Osteo-
arthritis Cartilage. 2004;12(Suppl A):S39-44. https://​doi.​org/​10.​1016/j.​joca.​
2003.​09.​005.

	8.	 Magnusson K, Scurrah K, Ystrom E, Ørstavik RE, Nilsen T, Steingrímsdót-
tir ÓA, et al. Genetic factors contribute more to hip than knee surgery 
due to osteoarthritis – a population-based twin registry study of joint 

https://doi.org/10.1186/s13075-023-03082-y
https://doi.org/10.1186/s13075-023-03082-y
https://doi.org/10.1007/s00774-009-0080-8
https://doi.org/10.1007/s00774-009-0080-8
https://doi.org/10.2106/JBJS.L.00206
https://doi.org/10.2106/JBJS.L.00206
https://doi.org/10.3899/jrheum.080677
https://doi.org/10.3899/jrheum.080677
https://doi.org/10.1002/acr.22897
https://doi.org/10.1016/j.joca.2014.11.019
https://doi.org/10.1136/ard.2003.014498
https://doi.org/10.1136/ard.2003.014498
https://doi.org/10.1016/j.joca.2003.09.005
https://doi.org/10.1016/j.joca.2003.09.005


Page 11 of 12Morita et al. Arthritis Research & Therapy          (2023) 25:103 	

arthroplasty. Osteoarthritis Cartilage. 2017;25:878–84. https://​doi.​org/​10.​
1016/j.​joca.​2016.​12.​015.

	9.	 Nakajima M, Takahashi A, Kou I, Rodriguez-Fontenla C, Gomez-Reino JJ, 
Furuichi T, et al. New sequence variants in HLA Class II/III region associ-
ated with susceptibility to knee osteoarthritis identified by genome-wide 
association study. PLoS One. 2010;5:e9723. https://​doi.​org/​10.​1371/​journ​
al.​pone.​00097​23.

	10.	 Evangelou E, Valdes AM, Kerkhof HJM, Styrkarsdottir U, Zhu YY, Meulen-
belt I, et al. Meta-analysis of genome-wide association studies confirms 
a susceptibility locus for knee osteoarthritis on chromosome 7q22. Ann 
Rheum Dis. 2011;70:349–55. https://​doi.​org/​10.​1136/​ard.​2010.​132787.

	11.	 Miyamoto Y, Shi D, Nakajima M, Ozaki K, Sudo A, Kotani A, et al. Common 
variants in DVWA on chromosome 3p24.3 are associated with susceptibil-
ity to knee osteoarthritis. Nat Genet. 2008;40:994–8. https://​doi.​org/​10.​
1038/​ng.​176.

	12.	 Day-Williams AG, Southam L, Panoutsopoulou K, Rayner NW, Esko T, 
Estrada K, et al. A variant in MCF2L is associated with osteoarthritis. Am J 
Hum Genet. 2011;89:446–50. https://​doi.​org/​10.​1016/j.​ajhg.​2011.​08.​001.

	13	 arcOGEN Consortium, arcOGEN Collaborators, Zeggini E, Panoutsopoulou 
K, Southam L, Rayner NW, et al. Identification of new susceptibility loci 
for osteoarthritis (arcOGEN): a genome-wide association study. Lancet. 
2012;380:815–23. https://​doi.​org/​10.​1016/​S0140-​6736(12)​60681-3.

	14.	 Zengini E, Hatzikotoulas K, Tachmazidou I, Steinberg J, Hartwig FP, 
Southam L, et al. Genome-wide analyses using UK Biobank data provide 
insights into the genetic architecture of osteoarthritis. Nat Genet. 
2018;50:549–58. https://​doi.​org/​10.​1038/​s41588-​018-​0079-y.

	15.	 Tachmazidou I, Hatzikotoulas K, Southam L, Esparza-Gordillo J, Haberland 
V, Zheng J, et al. Identification of new therapeutic targets for osteoar-
thritis through genome-wide analyses of UK Biobank data. Nat Genet. 
2019;51:230–6. https://​doi.​org/​10.​1038/​s41588-​018-​0327-1.

	16.	 Gill D, Karhunen V, Malik R, Dichgans M, Sofat N. Cardiometabolic traits 
mediating the effect of education on osteoarthritis risk: a Mendelian 
randomization study. Osteoarthritis Cartilage. 2021;29:365–71. https://​doi.​
org/​10.​1016/j.​joca.​2020.​12.​015.

	17.	 Boer CG, Hatzikotoulas K, Southam L, Stefánsdóttir L, Zhang Y, de Almeida 
RC, et al. Deciphering osteoarthritis genetics across 826,690 individuals 
from 9 populations. Cell. 2021;184:4784-4818.e17. https://​doi.​org/​10.​
1016/j.​cell.​2021.​11.​003.

	18.	 Sedaghati-Khayat B, Boer CG, Runhaar J, Bierma-Zeinstra SMA, Broer L, 
Ikram MA, et al. Risk assessment for hip and knee osteoarthritis using 
polygenic risk scores. Arthritis Rheumatol. 2022;74:1488–96. https://​doi.​
org/​10.​1002/​art.​42246.

	19.	 Chatterjee N, Shi J, García-Closas M. Developing and evaluating poly-
genic risk prediction models for stratified disease prevention. Nat Rev 
Genet. 2016;17:392–406. https://​doi.​org/​10.​1038/​nrg.​2016.​27.

	20.	 Warner SC, Valdes AM. Genetic association studies in osteoarthritis: is it 
fairytale? Curr Opin Rheumatol. 2017;29:103–9. https://​doi.​org/​10.​1097/​
BOR.​00000​00000​000352.

	21.	 Gonzalez A. Osteoarthritis year 2013 in review: genetics and genomics. 
Osteoarthritis Cartilage. 2013;21:1443–51. https://​doi.​org/​10.​1016/j.​joca.​
2013.​07.​001.

	22.	 van Meurs JBJ. Osteoarthritis year in review 2016: genetics, genomics and 
epigenetics. Osteoarthritis Cartilage. 2017;25:181–9. https://​doi.​org/​10.​
1016/j.​joca.​2016.​11.​011.

	23.	 Lacaze P, Wang Y, Polekhina G, Bakshi A, Riaz M, Owen A, et al. Genomic 
risk score for advanced osteoarthritis in older adults. Arthritis Rheumatol. 
2022;74:1480–7. https://​doi.​org/​10.​1002/​art.​42156.

	24.	 Martin AR, Kanai M, Kamatani Y, Okada Y, Neale BM, Daly MJ. Clinical use 
of current polygenic risk scores may exacerbate health disparities. Nat 
Genet. 2019;51:584–91. https://​doi.​org/​10.​1038/​s41588-​019-​0379-x.

	25.	 Turley P, Walters RK, Maghzian O, Okbay A, Lee JJ, Fontana MA, et al. Multi-
trait analysis of genome-wide association summary statistics using MTAG. 
Nat Genet. 2018;50:229–37. https://​doi.​org/​10.​1038/​s41588-​017-​0009-4.

	26.	 Setoh K, Matsuda F. Cohort profile: the Nagahama prospective genome 
cohort for comprehensive human bioscience (The Nagahama Study). In: 
Yano M, Matsuda F, Sakuntabhai A, Hirota S, editors. Socio-Life Sci and the 
COVID-19 Outbreak. Singapore: Economics, Law, and Institutions in Asia 
Pacific. Springer; 2022. p. 127–43.

	27.	 Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann 
Rheum Dis. 1957;16:494–502. https://​doi.​org/​10.​1136/​ard.​16.4.​494.

	28.	 van der Auwera GA, O’Connor BD. Genomics in the cloud: using Docker, 
GATK, and WDL in. Terra. O’Reilly Media; 2020.

	29.	 McLaren W, Pritchard B, Rios D, Chen Y, Flicek P, Cunningham F. Deriving 
the consequences of genomic variants with the Ensembl API and SNP 
Effect Predictor. Bioinformatics. 2010;26:2069–70. https://​doi.​org/​10.​1093/​
bioin​forma​tics/​btq330.

	30.	 Terao C, Ota M, Iwasaki T, Shiokawa M, Kawaguchi S, Kuriyama K, et al. 
IgG4-related disease in the Japanese population: a genome-wide asso-
ciation study. Lancet Rheumatol. 2019;1:e14-22. https://​doi.​org/​10.​1016/​
S2665-​9913(19)​30006-2.

	31.	 Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. 
PLINK: A tool set for whole-genome association and population-based 
linkage analyses. Am J Hum Genet. 2007;81:559–75. https://​doi.​org/​10.​
1086/​519795.

	32	 Ge T, Chen CY, Ni Y, Feng Y-CA, Smoller JW. Polygenic prediction via 
Bayesian regression and continuous shrinkage priors. Nat Commun. 
2019;10:1776. https://​doi.​org/​10.​1038/​s41467-​019-​09718-5.

	33.	 Pirruccello JP, Di Achille P, Nauffal V, Nekoui M, Friedman SF, Klarqvist 
MDR, et al. Genetic analysis of right heart structure and function in 
40,000 people. Nat Genet. 2022;54:792–803. https://​doi.​org/​10.​1038/​
s41588-​022-​01090-3.

	34.	 Meng W, Adams MJ, Palmer CNA, The 23andMe Research Team, Shi J, 
Auton A, et al. Genome-wide association study of knee pain identifies 
associations with GDF5 and COL27A1 in UK Biobank. Commun Biol. 
2019;2:321. https://​doi.​org/​10.​1038/​s42003-​019-​0568-2.

	35.	 Akiyama M, Okada Y, Kanai M, Takahashi A, Momozawa Y, Ikeda M, et al. 
Genome-wide association study identifies 112 new loci for body mass 
index in the Japanese population. Nat Genet. 2017;49:1458–67. https://​
doi.​org/​10.​1038/​ng.​3951.

	36.	 Kanai M, Akiyama M, Takahashi A, Matoba N, Momozawa Y, Ikeda M, et al. 
Genetic analysis of quantitative traits in the Japanese population links cell 
types to complex human diseases. Nat Genet. 2018;50:390–400. https://​
doi.​org/​10.​1038/​s41588-​018-​0047-6.

	37.	 Matoba N, Akiyama M, Ishigaki K, Kanai M, Takahashi A, Momozawa Y, 
et al. GWAS of smoking behaviour in 165,436 Japanese people reveals 
seven new loci and shared genetic architecture. Nat Hum Behav. 
2019;3:471–7. https://​doi.​org/​10.​1038/​s41562-​019-​0557-y.

	38.	 Akiyama M, Ishigaki K, Sakaue S, Momozawa Y, Horikoshi M, Hirata M, 
et al. Characterizing rare and low-frequency height-associated variants in 
the Japanese population. Nat Commun. 2019;10:4393. https://​doi.​org/​10.​
1038/​s41467-​019-​12276-5.

	39.	 Cavazos TB, Witte JS. Inclusion of variants discovered from diverse 
populations improves polygenic risk score transferability. HGG Adv. 
2021;2:100017. https://​doi.​org/​10.​1016/j.​xhgg.​2020.​100017.

	40.	 Sordillo JE, Lutz SM, Jorgenson E, Iribarren C, McGeachie M, Dahlin A, 
et al. A polygenic risk score for asthma in a large racially diverse popula-
tion. Clin Exp Allergy. 2021;51:1410–20. https://​doi.​org/​10.​1111/​cea.​
14007.

	41.	 Wu K-HH, Douville NJ, Konerman MC, Mathis MR, Scott HL, Wolford BN, 
et al. Polygenic risk score from a multi-ancestry GWAS uncovers suscepti-
bility of heart failure. medRxiv. Published online 2021. https://​doi.​org/​10.​
1101/​2021.​12.​06.​21267​389.

	42.	 Privé F, Arbel J, Vilhjálmsson BJ. LDpred2: better, faster, stronger. Bioinfor-
matics. 2020;36:5424–31. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btaa1​
029.

	43.	 Zheng J, Erzurumluoglu AM, Elsworth BL, Kemp JP, Howe L, Haycock PC, 
et al. LD Hub: a centralized database and web interface to perform LD 
score regression that maximizes the potential of summary level GWAS 
data for SNP heritability and genetic correlation analysis. Bioinformatics. 
2017;33:272–9. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btw613.

	44.	 Lee SH, Goddard ME, Wray NR, Visscher PM. A better coefficient of deter-
mination for genetic profile analysis. Genet Epidemiol. 2012;36:214–24. 
https://​doi.​org/​10.​1002/​gepi.​21614.

	45.	 Zweig MH, Campbell G. Receiver-operating characteristic (ROC) 
plots: a fundamental evaluation tool in clinical medicine. Clin Chem. 
1993;39:561–77. https://​doi.​org/​10.​1093/​clinc​hem/​39.4.​561.

	46.	 Kerkhof HJM, Bierma-Zeinstra SMA, Arden NK, Metrustry S, Castano-
Betancourt M, Hart DJ, et al. Prediction model for knee osteoarthritis 
incidence, including clinical, genetic and biochemical risk factors. 
Ann Rheum Dis. 2014;73:2116–21. https://​doi.​org/​10.​1136/​annrh​
eumdis-​2013-​203620.

https://doi.org/10.1016/j.joca.2016.12.015
https://doi.org/10.1016/j.joca.2016.12.015
https://doi.org/10.1371/journal.pone.0009723
https://doi.org/10.1371/journal.pone.0009723
https://doi.org/10.1136/ard.2010.132787
https://doi.org/10.1038/ng.176
https://doi.org/10.1038/ng.176
https://doi.org/10.1016/j.ajhg.2011.08.001
https://doi.org/10.1016/S0140-6736(12)60681-3
https://doi.org/10.1038/s41588-018-0079-y
https://doi.org/10.1038/s41588-018-0327-1
https://doi.org/10.1016/j.joca.2020.12.015
https://doi.org/10.1016/j.joca.2020.12.015
https://doi.org/10.1016/j.cell.2021.11.003
https://doi.org/10.1016/j.cell.2021.11.003
https://doi.org/10.1002/art.42246
https://doi.org/10.1002/art.42246
https://doi.org/10.1038/nrg.2016.27
https://doi.org/10.1097/BOR.0000000000000352
https://doi.org/10.1097/BOR.0000000000000352
https://doi.org/10.1016/j.joca.2013.07.001
https://doi.org/10.1016/j.joca.2013.07.001
https://doi.org/10.1016/j.joca.2016.11.011
https://doi.org/10.1016/j.joca.2016.11.011
https://doi.org/10.1002/art.42156
https://doi.org/10.1038/s41588-019-0379-x
https://doi.org/10.1038/s41588-017-0009-4
https://doi.org/10.1136/ard.16.4.494
https://doi.org/10.1093/bioinformatics/btq330
https://doi.org/10.1093/bioinformatics/btq330
https://doi.org/10.1016/S2665-9913(19)30006-2
https://doi.org/10.1016/S2665-9913(19)30006-2
https://doi.org/10.1086/519795
https://doi.org/10.1086/519795
https://doi.org/10.1038/s41467-019-09718-5
https://doi.org/10.1038/s41588-022-01090-3
https://doi.org/10.1038/s41588-022-01090-3
https://doi.org/10.1038/s42003-019-0568-2
https://doi.org/10.1038/ng.3951
https://doi.org/10.1038/ng.3951
https://doi.org/10.1038/s41588-018-0047-6
https://doi.org/10.1038/s41588-018-0047-6
https://doi.org/10.1038/s41562-019-0557-y
https://doi.org/10.1038/s41467-019-12276-5
https://doi.org/10.1038/s41467-019-12276-5
https://doi.org/10.1016/j.xhgg.2020.100017
https://doi.org/10.1111/cea.14007
https://doi.org/10.1111/cea.14007
https://doi.org/10.1101/2021.12.06.21267389
https://doi.org/10.1101/2021.12.06.21267389
https://doi.org/10.1093/bioinformatics/btaa1029
https://doi.org/10.1093/bioinformatics/btaa1029
https://doi.org/10.1093/bioinformatics/btw613
https://doi.org/10.1002/gepi.21614
https://doi.org/10.1093/clinchem/39.4.561
https://doi.org/10.1136/annrheumdis-2013-203620
https://doi.org/10.1136/annrheumdis-2013-203620


Page 12 of 12Morita et al. Arthritis Research & Therapy          (2023) 25:103 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	47.	 DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas 
under two or more correlated receiver operating characteristic curves: a 
nonparametric approach. Biometrics. 1988;44:837–45. https://​doi.​org/​10.​
2307/​25315​95.

	48.	 Hayden JA, van der Windt DA, Cartwright JL, Côté P, Bombardier 
C. Assessing bias in studies of prognostic factors. Ann Intern Med. 
2013;158:280–6. https://​doi.​org/​10.​7326/​0003-​4819-​158-4-​20130​
2190-​00009.

	49.	 Jordan JM, Linder GF, Renner JB, Fryer JG. The impact of arthritis in rural 
populations. Arthritis Care Res. 1995;8:242–50. https://​doi.​org/​10.​1002/​
art.​17900​80407.

	50.	 Cui A, Li H, Wang D, Zhong J, Chen Y, Lu H. Global, regional prevalence, 
incidence and risk factors of knee osteoarthritis in population-based 
studies. EClinicalmedicine. 2020;29–30:100587. https://​doi.​org/​10.​1016/j.​
eclinm.​2020.​100587.

	51.	 Roos EM, Arden NK. Strategies for the prevention of knee osteoarthritis. 
Nat Rev Rheumatol. 2016;12:92–101. https://​doi.​org/​10.​1038/​nrrhe​um.​
2015.​135.

	52.	 Messier SP, Mihalko SL, Legault C, Miller GD, Nicklas BJ, DeVita P, et al. 
Effects of intensive diet and exercise on knee joint loads, inflammation, 
and clinical outcomes among overweight and obese adults with knee 
osteoarthritis: the IDEA randomized clinical trial. JAMA. 2013;310:1263–73. 
https://​doi.​org/​10.​1001/​jama.​2013.​277669.

	53.	 Hindy G, Åkesson KE, Melander O, Aragam KG, Haas ME, Nilsson PM, et al. 
Cardiometabolic polygenic risk scores and osteoarthritis outcomes: A 
Mendelian randomization study using data from the Malmö diet and 
cancer study and the UK Biobank. Arthritis Rheumatol. 2019;71:925–34. 
https://​doi.​org/​10.​1002/​art.​40812.

	54.	 Panoutsopoulou K, Metrustry S, Doherty SA, Laslett LL, Maciewicz RA, 
Hart DJ, et al. The effect of FTO variation on increased osteoarthritis 
risk is mediated through body mass index: a Mendelian randomisation 
study. Ann Rheum Dis. 2014;73:2082–6. https://​doi.​org/​10.​1136/​annrh​
eumdis-​2013-​203772.

	55.	 Karvonen-Gutierrez CA, Sowers MR, Heeringa SG. Sex dimorphism in the 
association of cardiometabolic characteristics and osteophytes-defined 
radiographic knee osteoarthritis among obese and non-obese adults: 
NHANES III. Osteoarthritis Cartilage. 2012;20:614–21. https://​doi.​org/​10.​
1016/j.​joca.​2012.​02.​644.

	56.	 Zhang K, Ji Y, Dai H, Khan AA, Zhou Y, Chen R, et al. High-density lipo-
protein cholesterol and apolipoprotein A1 in synovial fluid: potential 
predictors of disease severity of primary knee osteoarthritis. Cartilage. 
2021;13:1465S-S1473. https://​doi.​org/​10.​1177/​19476​03521​10079​19.

	57.	 Funck-Brentano T, Nethander M, Movérare-Skrtic S, Richette P, Ohlsson C. 
Causal factors for knee, hip, and hand osteoarthritis: a Mendelian rand-
omization study in the UK Biobank. Arthritis Rheumatol. 2019;71:1634–41. 
https://​doi.​org/​10.​1002/​art.​40928.

	58.	 Li H, Zeng C, Wei J, Yang T, Gao SG, Li YS, et al. Serum calcium concen-
tration is inversely associated with radiographic knee osteoarthritis: a 
cross-sectional study. Medicine. 2016;95:e2838. https://​doi.​org/​10.​1097/​
MD.​00000​00000​002838.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.2307/2531595
https://doi.org/10.2307/2531595
https://doi.org/10.7326/0003-4819-158-4-201302190-00009
https://doi.org/10.7326/0003-4819-158-4-201302190-00009
https://doi.org/10.1002/art.1790080407
https://doi.org/10.1002/art.1790080407
https://doi.org/10.1016/j.eclinm.2020.100587
https://doi.org/10.1016/j.eclinm.2020.100587
https://doi.org/10.1038/nrrheum.2015.135
https://doi.org/10.1038/nrrheum.2015.135
https://doi.org/10.1001/jama.2013.277669
https://doi.org/10.1002/art.40812
https://doi.org/10.1136/annrheumdis-2013-203772
https://doi.org/10.1136/annrheumdis-2013-203772
https://doi.org/10.1016/j.joca.2012.02.644
https://doi.org/10.1016/j.joca.2012.02.644
https://doi.org/10.1177/19476035211007919
https://doi.org/10.1002/art.40928
https://doi.org/10.1097/MD.0000000000002838
https://doi.org/10.1097/MD.0000000000002838

	Improved genetic prediction of the risk of knee osteoarthritis using the risk factor-based polygenic score
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 
	Trial registration 

	Background
	Materials and methods
	Study population
	Radiographic evaluation of knee OA
	Genotyping and sequencing
	Genotype quality control
	Genotype imputation for the SNP array data
	Sample extraction for PRS calculation
	Genotype QC for extracted samples
	PRS calculation based on single traits
	PRS calculation based on multi-traits
	Statistical analysis

	Results
	Performance of PRSs derived from OA GWAS
	Performance of PRSs derived from GWAS of the risk factors for OA
	Improved prediction of the knee OA risk using MTAG-based PRS

	Discussion
	Anchor 25
	Acknowledgements
	References


