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A B S T R A C T   

Background: Isolated rapid eye movement sleep behavior disorder (iRBD) is a clinically important parasomnia 
syndrome preceding α-synucleinopathies, thereby prompting us to develop methods for evaluating latent brain 
states in iRBD. Resting-state functional magnetic resonance imaging combined with a machine learning-based 
classification technology may help us achieve this purpose. 
Methods: We developed a machine learning-based classifier using functional connectivity to classify 55 patients 
with iRBD and 97 healthy elderly controls (HC). Selecting 55 HCs randomly from the HC dataset 100 times, we 
conducted a classification of iRBD and HC for each sampling, using functional connectivity. Random forest 
ranked the importance of functional connectivity, which was subsequently used for classification with logistic 
regression and a support vector machine. We also conducted correlation analysis of the selected functional 
connectivity with subclinical variations in motor and non-motor functions in the iRBDs. 
Results: Mean classification performance using logistic regression was 0.649 for accuracy, 0.659 for precision, 
0.662 for recall, 0.645 for f1 score, and 0.707 for the area under the receiver operating characteristic curve (p <
0.001 for all). The result was similar in the support vector machine. The classifier used functional connectivity 
information from nine connectivities across the motor and somatosensory areas, parietal cortex, temporal cortex, 
thalamus, and cerebellum. Inter-individual variations in functional connectivity were correlated with the sub-
clinical motor and non-motor symptoms of iRBD patients. 
Conclusions: Machine learning-based classifiers using functional connectivity may be useful to evaluate latent 
brain states in iRBD.   
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1. Introduction 

Rapid eye movement (REM) sleep behavior disorder (RBD) is a 
parasomnia characterized by dream enactment behavior and REM sleep 
without atonia. RBD may be diagnosed alone as isolated RBD (iRBD). 
RBD is defined secondary when it co-exists with Parkinson’s disease 
(PD) and related disorders. iRBD may accompany mood symptoms, 
cognitive impairment, and autonomic dysfunctions, and, moreover, may 
prelude α-synucleinopathies including PD. Indeed, over 70 % of patients 
with iRBD develop PD, dementia with Lewy bodies (DLB), or multiple 
system atrophy (MSA) within 12 years [1], all of which are α-synuclei-
nopathies from the perspective of molecular pathology. Therefore, in 
older adults, the early diagnosis of iRBD roughly equates to that of 
prodromal α-synucleinopathies [2,3], opening opportunities to develop 
early interventions. Currently, a diagnosis of iRBD is made with over-
night polysomnography (PSG). Although PSG provides rich electroen-
cephalographic information about cortical dynamics and autonomic 
nervous system, more information is needed for studying prodromal 
α-synucleinopathies involving the subcortical regions such as the basal 
ganglia and cerebellum. Thus, methodological development is needed to 
evaluate latent functional changes of the brain in iRBD as 
α-synucleinopathy. 

Magnetic resonance imaging (MRI) is used widely as a tool for 
medical diagnosis and evaluation including the exclusion of RBD 
following organic lesions in the brainstem (e.g. Ref. [4]). Although 
currently available structural MRI contrasts cannot differentiate iRBD 
from other medical conditions without organic lesions, functional MRI 
(fMRI) may help us retrieve information about latent brain functions in 
patients with iRBD. Many fMRI studies have already been conducted in 
patients with RBD, using a task [5] or resting-state fMRI (rsfMRI) [6–8]. 
Most rsfMRI studies analyzed functional connectivity (FC), which rep-
resents the correlation of spontaneous rsfMRI signal fluctuations be-
tween remote brain regions [9]. Those rsfMRI studies have suggested 
that FC contains information that characterizes the network abnormal-
ities of iRBD. 

Given the possibility of retrieving useful information from FC, 
building a classifier to identify individuals with iRBD according to FC 
may be plausible. Herein, a classifier refers to software that can learn 
from previous data to adequately weight a set of FC values relevant to 
differentiating between people with and without iRBD. The classifier 
can determine whether an individual should be labeled as iRBD when it 
is provided with rsfMRI-derived FC information. Notably, however, the 
number of FC values amounts to ~8500 when computed from a set of 
volumes of interest, e.g., the Automated Anatomical Labeling system 

[10]. Therefore, to select and compute adequate weights on relevant FC 
values, machine learning (ML) technology with an adequate dimension 

reduction method is required. 
Here we aimed to develop an FC-based ML classifier of people with 

iRBD, using single-site data registered in the Japan-Parkinson’s Disease 
Progressive Markers Initiative (J-PPMI) cohort [11]. We used a random 
forest for dimensionality reduction and feature selection, and a support 
vector machine (SVM) or a logistic regression for supervised classifica-
tion. First, we hypothesized that the FC-based ML classifier would be 
able to differentiate between iRBD patients and healthy controls (HCs), 
by selecting a set of FC value changes associated with latent α-synu-
cleinopathies. This was a hypothesis-free process about the specific FCs. 
Second, we hypothesized that the FC values selected by the ML classifier 
would correlate with the subclinical motor symptoms and cognitive al-
terations of patients with iRBD. Such FC should involve the primary and 
higher motor areas, somatosensory areas, basal ganglia, thalamus, and 
cerebellum as previously reported in FC studies in iRBD [6–8]. If such 
FCs can be retrieved from rsfMRI by ML, then the utility of ML-based 
rsfMRI may be suggested as a method to evaluate latent functional 
changes underlying subclinical symptoms of prodromal 
α-synucleinopathies. 

2. Methods 

2.1. Participants 

Fifty-five patients with iRBD (aged 69.6 ± 5.8 years; age range 
60–83 years; 39 men) were recruited at the National Center of 
Neurology and Psychiatry (NCNP) site of the J-PPMI cohort (Table 1). 
The inclusion and exclusion criteria of the J-PPMI cohort were described 
previously [11]. In brief, the J-PPMI cohort recruited patients with 
iRBD. The diagnosis of iRBD was made by sleep specialists according to 
the International Classification of Sleep Disorders criteria, 3rd revision. 
Overnight PSG with electromyography over the chin and tibialis ante-
rior muscles confirmed REM sleep without atonia in accordance with the 
American Academy of Sleep Medicine criteria 2007 [12]. Co-existence 
of PD/DLB, MSA, dementia, and severe depression was excluded by 
expert physicians at the NCNP. All iRBD participants provided written 
informed consent, and the study protocol was approved by the NCNP 
ethics committee (A2014-127). 

To serve as a control, we retrieved data from our MRI database 
approved by the NCNP ethics committee (A2018-056) [7,13]. The 
original inclusion criterion of this database was healthy adults aged >20 
years old without any previous history of neuro-psychiatric disorders. 

Abbreviations 

REM rapid eye movement 
RBD REM sleep behavior disorder 
iRBD isolated RBD 
PD Parkinson’s disease 
DLB dementia with Lewy bodies 
MSA multiple system atrophy 
MRI magnetic resonance imaging 
fMRI functional MRI 
rsfMRI resting-state fMRI 
FC functional connectivity 
ML machine learning 
J-PPMI Japan-Parkinson’s Disease Progressive Markers Initiative 
SVM support vector machine 
HC healthy control 

NCNP National Center of Neurology and Psychiatry 
RBDSQ-J Japanese edition of the RBD screening questionnaire 
ESS Epworth Sleepiness Scale 
MDS-UPDRS Movement Disorder Society-sponsored revision of the 

Unified Parkinson’s Disease Rating Scale 
MoCA-J Japanese version of the Montreal Cognitive Assessment 
TR repetition time 
TE echo time 
FA flip angle 
ICA independent component analysis 
cAIC corrected Akaike’s information criteria 
AUC area under the receiver operating characteristic curve 
TP true positive 
TN true negative 
FP false positive 
FN false negative  
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None of the HCs had organic brain lesions as confirmed with structural 
MRIs. In all but one HCs, cognitive states were assessed using the 
mini-mental state examination (MMSE) to exclude dementia (exclusion 
criteria, MMSE<24). The HCs did not undergo PSG. For the present 
study, we retrieved data of 97 registered participants (aged 66.3 ± 8.7 
years; age range 41–83 years; 47 men) from the database. Between the 
iRBD patients and HCs, there were group-wise differences in age (t =
2.56, p < 0.01) and sex (χ2 = 7.24, p < 0.007) (Table 1), which required 
caution while building the classifier. 

Some of the data (50 iRBD patients and 70 HCs) have been used in 
our previous rsfMRI study in iRBD [7]. Among the 55 patients with 
iRBD, 35 patients received medication at the enrollment after PSG. Six 
patients received low-dose pramipexole (0.125–0.25 mg/day), 24 pa-
tients received clonazepam (0.125–2.5 mg/day), and two patients 
received ramelteon (4–8 mg/day). Two patients were taking both clo-
nazepam and ramelteon, and one patient was taking all three 
medications. 

2.2. Data acquisition 

2.2.1. Clinical and neuropsychological assessments in iRBD 
In the iRBD patients, RBD symptoms were screened at the enrollment 

by the Japanese edition of the RBD screening questionnaire (RBDSQ). 
Daytime sleepiness was assessed using the Epworth Sleepiness Scale 
(ESS). The Movement Disorder Society-sponsored revision of the Unified 
Parkinson’s Disease Rating Scale (MDS-UPDRS) Part I and III scores 
were acquired by qualified movement disorder specialists. A higher 
score indicated more severe non-motor and motor symptoms associated 
with PD. Patients also completed the Japanese version of the Montreal 
Cognitive Assessment (MoCA) to assess cognitive functions and the 
Geriatric Depression Assessment to assess mood changes. In these scores 
except MoCA, higher scores indicate greater severity. The MoCA scores 
in iRBD were converted into MMSE scores [14] for statistical compari-
son between the groups. 

2.2.2. MRI data acquisition 
All participants were scanned on a 3-T MRI scanner with a 32-chan-

nel phased array head coil (MAGNETOM Verio Dot, Siemens Medical 
Systems, Erlangen, Germany). RsfMRI data were acquired using a 
gradient-echo echo planar imaging sequence for 10 min: repetition time 
(TR) = 2500 ms, echo time (TE) = 30 ms, flip angle (FA) = 80◦, voxel 

size = 3.3 × 3.3 × 3.2 mm3 (with a 0.8-mm inter-slice gap), 40 axial 
slices, and 240 volumes. During rsfMRI, participants were asked to stay 
awake, clear their minds, and pay attention to a central fixation cross 
presented on a screen. A double-echo gradient-echo sequence was used 
to acquire field-map MRI data in the same space and spatial resolution: 
TR = 488 ms, TE1 = 4.92 ms, TE2 = 7.38 ms, FA = 60◦. Structural MRI 
data were acquired using a three-dimensional T1-weighted 
magnetization-prepared rapid gradient-echo sequence: TR = 1900 ms, 
TE = 2.52 ms, inversion time = 900 ms, FA = 90◦, 192 sagittal slices, and 
voxel size = 0.98 × 0.98 × 1 mm3. 

2.3. Data analysis 

2.3.1. Preprocessing of MRI data 
For image preprocessing, we used the FMRIB Software Library [15] 

and CONN toolbox [16] implemented in MATLAB (MathWorks, Natick, 
MA, USA). We performed the following spatial and temporal pre-
processing steps: realignment, distortion correction using field-map 
images, slice-time correction, spatial normalization, and smoothing 
with a full-width at half-maximum of 6 mm. The preprocessed rsfMRI 
data were denoised using Component-based Noise Correction [17], 
followed by further denoising using single-session independent 
component analysis (ICA) and FMRIB’s manually-trained ICA-based 
Xnoiseifier. 

After the intensive preprocessing, the whole brain was segmented 
into a set of 132 vol of interest based on the Automated Anatomical 
Labeling system. A set of FC values was computed for each participant as 
a correlation matrix, yielding a set of 8646 Pearson’s correlation co-
efficients, which were subsequently converted into z-scores using 
Fisher’s r-to-z transformation. To deal with the difference in age and sex 
between the groups, these z-scores were then corrected for the effects of 
age and sex, using general linear models (GLM). These corrected FC 
values are referred simply to as FC(s) hereafter. 

2.3.2. Supervised ML algorithm 
The original features were 8646 FCs from each of the 152 partici-

pants. To classify iRBD patients and HCs, we constructed an ML classi-
fication pipeline (Fig. 1), using scikit-learn version 1.1.1 and Python 
version 3.8.2. Briefly, we first dealt with the unbalanced sample size of 
the datasets between the iRBD patients (n = 55) and HCs (n = 97). We 
randomly selected 55 datasets out of the pool of 97 HC datasets and 
created HC subsamples iteratively 100 times. For each HC subsample, 
stratified 10-fold cross-validation was performed to yield balanced 
sample sizes between iRBD patients and HCs for both the training data 
and test data in each fold (k = 10). We did not perform hyperparameter 
tuning for the random forest or classification algorithms because unbi-
ased hyperparameter tuning requires a larger dataset using another 
validation scheme (e.g., nested cross-validation). 

2.3.3. Feature selection 
We used the random forest (RandomForestClassifier in scikit-learn) for 

feature selection and sorting relevance of each FC for classification. The 
random forest sampled data with replacements from the training data to 
produce sub-datasets of the features. The decision trees were then con-
structed using each feature sub-dataset. Each decision tree randomly 
selected a feature from each sub-dataset, and the feature that minimized 
data variance was considered important. The importance of a feature 
was determined by the degree of data variance reduction due to the 
inclusion of the feature. The random forest used a majority vote from the 
decision trees for the final output. Five thousand initial decision trees 
were generated with a random state of 1. For each training dataset, we 
applied the random forest to compute the contribution of each FC to the 
classification of iRBD and HC labels, which provided a combination of 
each FC and its weight. 

Table 1 
Profile of study participants.   

RBD (N =
55) 

HC (N =
97) 

statistics 

Demographic Data 
Age (years) 69.6 ± 5.8 66.3 ± 8.7 t = 2.56, p < 0.01 
Sex (Male/ 
Female) 

39/16 47/50 χ2 = 7.24, p < 0.007 

Clinical and neuropsychological assessment 
RBDSQ-J 7.6 ± 2.9 NA  
ESS 5.2 ± 3.1 NA  
MDS-UPDRS I 4.6 ± 3.4 NA  
MDS-UPDRS III 1.7 ± 1.9 NA  
MMSE 28.5 ± 1.3* 28.9 ± 1.1 F = 1.16, p = 0.28 by 

ANCOVA 
MoCA-J 24.9 ± 2.9 NA  
GDS 2.0 ± 2.0 NA  

Data shown are the mean ± SD. RBD, rapid eye movement sleep behavior dis-
order; HC, healthy control; SD, standard deviation; RBDSQ-J, Japanese edition 
of RBD screening questionnaire; ESS, Epworth Sleepiness Scale. MDS-UPDRS, 
Movement Disorder Society-sponsored revision of the Unified Parkinson’s Dis-
ease Rating Scale; MMSE, mini-mental state examination; MoCA-J, Japanese 
version of Montreal Cognitive Assessment; GDS, Geriatric Depression Assess-
ment; MoCA-J scores are adjusted for years of education; *converted from 
MoCA-J; NA, not available; For the comparison of MMSE, ANCOVA (analysis of 
covariance) was used to remove the effects of age. 
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2.3.4. Dimensional reduction and classification 
We conducted a logistic regression to classify iRBD patients and HCs, 

using FCs passed from the random forest module. Logistic regression 
(scikit-learn) was run, using a default regularization parameter of C = 1 
and liblinear for parameter selection. To train the logistic regression 
model, we increased the number of features (FCs passed from the 
random forest) one at a time, starting with the feature with the highest 
weight. We then determined the final logistic regression model with the 
corrected Akaike’s information criteria (cAIC) to select the model and 
reduce the dimension. Namely, we computed cAIC for each model and 
then selected the model with the minimum cAIC. This process effectively 
reduced the data dimension. We selected the final model for each fold to 
classify iRBD patients and HCs. The performance of the classification 
was evaluated as the average of the performance measures across the 10 
folds for each of the 100 downsampling procedures. 

For the validation of the classification results with logistic regression, 
we also conducted classification with a SVM (scikit-learn) using the 
following parameters: rbf (Gaussian kernel) with the default gamma 
value (1/[number of features × variance of the FCs]), the default reg-
ularization parameter of C = 1, and the ‘probability = true’ for 
computing the cAIC. 

2.3.5. Evaluation of performance 
To evaluate classification performance, we computed accuracy, 

precision, recall, f1, and the area under the receiver operating charac-
teristic curve (AUC) using the number of true positives (TPs), true 
negatives (TNs), false positives (FPs), and false negatives (FNs) as fol-
lows: 

accuracy =
TP + TN

TP + TN + FP + FN

precision =
TP

TP + FP

recall =
TP

TP + FN

f 1 =
2 × precision × recall

precision + recall

(1)  

2.3.6. Statistics 
Age and sex were compared between iRBD and HCs, using a t-test 

and a chi-square test, respectively. MMSE was compared between the 
groups, with an analysis of covariance using age as a confounding factor. 

We computed a surrogate marker for the distribution of classification 
performance. We shuffled the labels for iRBD and HC and ran the clas-
sification using the same pipeline 1000 times (10-fold cross-validation 

for each of the 100 downsampling procedures). T-tests were used to 
compare the classification performance (i.e., accuracy, precision, recall, 
f1, and AUC) between the truly labeled data and the randomly labeled 
data. We used p < 0.05 after Bonferroni correction for multiple com-
parisons for significance. 

We counted the number of times the random forest selected each FC 
during the 1000 iterations. The repeatedly selected FCs were considered 
to contain clinically relevant information. We retrieved these frequently 
selected FCs and tested whether they differed between the iRBD patients 
and HCs using a t-test (p < 0.05 after Bonferroni correction for multiple 
comparisons). 

Finally, we tested whether the selected FCs for the classification 
could correlate with the behavioral or clinical parameters (MDS-UPDRS 
Part I, MDS-UPDRS Part III, MoCA-J, ESS, and RBDSQ-J scores) in pa-
tients with iRBD. The effects of age and sex were regressed out from the 
original correlation coefficients from the iRBD individuals, using a 
dedicated GLM including age, sex, and each clinical parameter. We used 
stepwise regression with the FCs and the power of each FC as explana-
tory variables and did cAIC for model selection. An F-test was used to 
test the statistical inference of the stepwise regression after Bonferroni 
correction for multiple comparisons for the number of models tested. 

3. Results 

3.1. Clinical and neuropsychological assessments 

The results from the clinical and neuropsychological assessments in 
iRBD were as follows (Table 1): RBDSQ-J = 7.6 ± 2.9, ESS = 5.2 ± 3.1, 
MDS-UPDRS part I = 4.6 ± 3.4, MDS-UPDRS part III = 1.7 ± 1.9, MoCA 
= 24.9 ± 2.9, GDS = 2.0 ± 2.0. These values were subsequently used for 
the correlation analysis with FCs. 

In HCs, the MMSE scores were 28.9 ± 1.1 (n = 96), which were not 
different from the converted MMSE scores (28.5 ± 1.3) in iRBD (F =
1.16, p = 0.28 after the removal of age effects by analysis of covariance). 

3.2. Classification performance 

The logistic regression model yielded classification performance of 
~65%–70 % consistently across the different performance measures: 
accuracy = 0.649 ± 0.004, precision = 0.659 ± 0.005, recall = 0.662 ±
0.006, f1 = 0.645 ± 0.005, and AUC = 0.707 ± 0.005 (Fig. 2). These 
performance measures were significant according to t-tests (Bonferroni 
corrected p < 0.001) as compared with the surrogate markers (i.e., 
classification performance with the disease label randomly shuffled). 
Classification performance of the SVM was comparable and also 

Fig. 1. The workflow of the classification. Classification was performed using 10-fold cross-validation for each down-sampling of HC datasets. The number of FC 
values was determined by the corrected Akaike information criteria (cAIC) for both logistic regression and support vector machine (SVM). 
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significant (accuracy of 0.651 ± 0.004, precision of 0.659 ± 0.005, 
recall of 0.668 ± 0.006, f1 of 0.649 ± 0.005, and AUC of 0.699 ± 0.005; 
Bonferroni corrected p < 0.001). When we re-ran the classification be-
tween the iRBD patients and HCs >60 years (n = 83, age 68.9 ± 5.8 
years), the performance was also comparable as follows: accuracy =
0.664 ± 0.004, precision = 0.671 ± 0.005, recall = 0.688 ± 0.006, f1 =
0.666 ± 0.005, and AUC = 0.723 ± 0.005. This analysis confirmed that 
after the removal of the effects with GLM, the performance was not 
likely affected by the group-wise difference in age. 

3.3. Functional connectivity selected for classification 

The median and interquartile range of the number of features (i.e., 
FCs) used for the classification were 9 and 7–11, respectively. Fig. 3 and 
Table 2 showed the nine most frequently used functional pathways, 
among which five positive and one negative FC values were significantly 
stronger in iRBD patients while two positive and one negative FCs were 
weaker. Most of these FCs involved the motor and somatosensory areas 
and the cerebellum. Five FCs were cortico-cerebellar connections, and 
one was intra-cerebellar connection. The anterior cingulate cortex, 
parahippocampal gyrus, anterior middle temporal gyrus and thalamus 
were also involved. 

3.4. Correlation between functional connectivity and clinical and 
behavioral scores 

In the stepwise multiple regression analysis, the FCs were correlated 
with MDS-UPDRS Part III (F [2,18] = 5.326, p = 0.039), and MoCA-J 
scores (F [2,18] = 6.057, p = 0.022), but not with MDS-UPDRS Part I, 
ESS or RBDSQ-J scores (Table 3). Sensorimotor-temporal, and 
sensorimotor-cerebellar FCs were correlated with the MDS-UPDRS Part 
III score. Sensorimotor-cerebellar and intra-cerebellar FCs were 

correlated with the MoCA-J score. 

4. Discussion 

We developed ML-based technology to classify between patients 
with iRBD and HCs. To our knowledge, this is the first report to use ML 
and rsfMRI-derived FC for classifying iRBD patients. Recently, an 
increasing number of studies have applied ML-based classification to 

Fig. 2. (a) ROC for logistic regression yielded an AUC of 0.707 ± 0.005 (mean ± standard error). (b) The ROC for the SVM yielded an AUC of 0.699 ± 0.005.  

Fig. 3. (Color in print). The thickness of the lines represents the frequency of selection of the nine pathways. The red and blue lines indicate higher and lower FC, 
respectively, in iRBD patients relative to HCs. Refer to Table 3 for the nomenclature of FC. (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 

Table 2 
Functional connectivity used for classification.  

No. FC  RBD 
(mean 
± std) 

HC 
(mean 
± std) 

p 
value 

ROI 1 ROI 2 

1 Lt. Postcentral 
Gyrus 

Rt. Cerebellum 4/5 0.294 
± 0.172 

0.120 ±
0.245 

0.0001 

2 Cingulate Gyrus 
anterior division 

Rt. Thalamus 0.325 
± 0.200 

0.192 ±
0.229 

0.0044 

3 Lt. Cerebellum 4/ 
5 

Vermis 8 0.247 
± 0.177 

0.398 ±
0.209 

0.0001 

4 Lt. Precentral 
Gyrus 

Rt. Cerebellum 6 0.309 
± 0.288 

0.133 ±
0.210 

0.0003 

5 Lt. Precentral 
Gyrus 

Rt. Cerebellum 4/5 0.331 
± 0.171 

0.161 ±
0.230 

0.0000 

6 Rt. 
Supplementary 
Motor Area 

Rt. posterior 
Parahippocampal 
Gyrus 

0.053 
± 0.129 

− 0.047 
± 0.196 

0.0091 

7 Lt. Postcentral 
Gyrus 

Cingulate Gyrus 
posterior division 

0.030 
± 0.179 

− 0.108 
± 0.207 

0.0006 

8 Rt. Anterior 
Middle Temporal 
Gyrus 

Rt. Cerebellum 9 0.129 
± 0.179 

0.254 ±
0.197 

0.0015 

9 Lt. Postcentral 
Gyrus 

Lt. Cerebellum 4/5 0.206 
± 0.200 

0.058 ±
0.206 

0.0003 

Std, standard deviation; Lt, left; Rt, right. 
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structural connectivity [19], gait parameters [20], and olfaction testing 
[21] to discriminate iRBD patients from HCs. This rise in ML research 
reflects the recent recognition of iRBD as a prodromal stage of α-synu-
cleinopathies [22]. With a validation procedure, the classification per-
formance of these previous studies substantially varies (sensitivity of 
0.65–0.88 and specificity of 0.55–1.00) 19–21, depending on the fea-
tures and ML methods. The classification performance of the present 
approach was statistically significant yet modest (sensitivity of 
0.67–0.69 and specificity of 0.66–0.67). Notably, however, the selected 
FCs were correlated with clinical scores (MDS-UPDRS Part III and 
MoCA-J scores), supporting that the present ML method retrieved clin-
ically relevant information from FCs. Although further research is 
needed to make the proposed method relevant to clinical practice, our 
findings suggest that ML-based analysis of rsfMRI data can retrieve 
latent functional changes in iRBD. 

4.1. Classification technology combining machine learning and functional 
connectivity 

Despite statistical significance against the surrogate marker, the 
performance of the classifier was modest. There are several possible 
reasons for this modest performance. First, our disease label was not 
perfectly precise because of the heterogeneity of individuals with iRBD 
who may develop different phenotypes of α-synucleinopathies in due 
course. Many previous studies reported that patients with iRBD are later 
phenoconverted to either PD, DLB or MSA [1,23–26] and alterations of 
FCs vary considerably among these diseases [27,28]. Although it is 
important to understand the differences between the phenotypes of 
α-synucleinopathy during the prodromal stage [29], differences in FC 
have not yet been determined. Additionally, the present iRBD patients 
should include various stages of prodromal α-synucleinopathies, which 
may be manifested soon or after a decade. To characterize FCs 
depending on the difference in the phenotypes and the prodromal 
stages, longitudinal studies of iRBD cohorts with the follow-up of out-
comes are required. Indeed, the J-PPMI has followed up the present 
iRBD patients and will provide valuable data in the future to build a 
classifier that can take differences in the phenotypes and the prodromal 
stages into account. Second, although both iRBD patients and HCs were 
scanned using the same imaging protocol on the same MRI scanner, the 
rsfMRI data of HCs were obtained from our imaging database. It should 
be noted that the HCs did not undergo assessments such as PSG to 
exclude the presence of iRBD. Because iRBD is exhibited only during 
sleep, it often goes unrecognized unless the individual is explicitly 
questioned [30]. Therefore, we were unable to exclude the possibility 
that some of our HCs had iRBD. However, because the prevalence of 
iRBD in the general population is 0.4–1% [31,32], only one out of our 
97 HCs might statistically have had unrecognized iRBD. Thus, the lack of 
screening PSG in HCs would not have strongly impacted the results. 

Another reason for the modest performance of the classifier is that 
we considered the generalizability of the study inferences. We tried to 
minimize the use of noise in the rsfMRI data in the classification. RsfMRI 
data are notorious for the contamination of physical and physiological 

noise because of the low contrast-to-noise ratio. Nevertheless, numerous 
previous studies have shown high classification accuracy with a mini-
mum amount of preprocessing. However, it has become apparent that 
ML classification may yield high classification performance by fitting to 
noise [33]. Therefore, we removed both spatial distortions and temporal 
noise from the rsfMRI data via rigorous preprocessing to minimize the 
risk of using noise information for the classification (e.g., one group had 
specific head motion patterns within the scanner). Moreover, we per-
formed random downsampling of the HC data to obtain balanced 
training and test datasets between iRBD patients and HCs for 
cross-validation to reduce classifier bias. Indeed, a classifier classifying 
all participants as HCs can achieve high performance when using un-
balanced datasets [33]. 

4.2. Interpretation of functional connectivity 

In previous rsfMRI studies, iRBD patients were characterized by 
altered cortical FC in motor and somatosensory [7,8], prefrontal [7], 
visual [34], and parietal and temporal association networks [35]. 
Furthermore, the subcortical networks involving the basal ganglia [6,7, 
36,37] and cerebellum [8] have been shown to be distorted in iRBD. 

To gain insight into these network abnormalities, we assessed the 
nine FCs that were most frequently selected by the classifier. In terms of 
the subcortical nodes, our classifier did not select FCs involving the basal 
ganglia, even though previous studies have reported FC abnormalities in 
the basal ganglia. The reason for this may be that less than half of our 
patients with iRBD showed a loss in dopamine terminals as measured by 
dopamine transporter scans [11]. 

Our classifier selected several FCs involving the cerebellum, which 
has been implicated in the pathogenesis of PD [38] following the dis-
covery of the anatomical pathways connecting between the basal 
ganglia and the cerebellum. Of the cortico-cerebellar pathways in our 
results, four connected the primary somatosensory and motor areas with 
the cerebellum. Consistently, Yamada et al. [8] reported higher motor 
and somatosensory-cerebellar FC in iRBD patients with mild motor 
impairment than in those without. We also identified altered FC between 
the cerebellum and temporal cortex, which is compatible with the 
findings of a study in PD patients with RBD [39]. Although abnormal FC 
between cerebellar subregions has not previously been reported, our 
finding agrees with the report of abnormal regional homogeneity in the 
cerebellum [40]. However, whether abnormal cerebellar activity or 
connectivity in patients with PD or prodromal PD is pathogenic or 
compensatory remains unclear. 

The FC between the right supplementary motor area and the right 
parahippocampal gyrus was stronger in iRBD. To our knowledge, an 
alteration of this network has not been reported in iRBD. In a few 
studies, however, these regions were reported to show alterations of 
structural connectivity [40,41] or neural activity [42] in PD. The rostral 
part of the supplementary motor area (pre-supplementary motor area) 
[43] and the parahippocampal gyrus are both anatomically connected 
with the medial parietal lobe [44]. Indeed, these regions are often 
coactivated during various tasks [45,46]. Together, our results indicated 

Table 3 
Functional pathways used in the stepwise regression.  

FC  coefficient std error T value p value 

ROI 1 ROI 2 

MDS-UPDRS Part III 
Rt. Supplementary Motor Area Rt. posterior Parahippocampal Gyrus − 0.716 0.266 − 2.690 0.010 
Lt. Precentral Gyrusa Rt. Cerebellum 4/5a 0.727 0.266 2.734 0.009 

MoCA 
Lt. Postcentral Gyrus Rt. Cerebellum 4/5 − 1.184 0.364 − 3.250 0.002 
Lt. Cerebellum 4/5 Vermis 8 0.529 0.364 1.451 0.153 

Lt, left; Rt, right. 
a Squared functional connectivity. 
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that functional integration between the pre-supplementary motor area 
and the parahippocampal gyrus, which may be mediated by the medial 
parietal lobe, is a network involved in the pathophysiology of α-synu-
cleinopathy even at its prodromal stage. 

The FC between the thalamus and the anterior cingulate cortex was 
stronger in iRBD. The subnuclei of the thalamus, the anterior nucleus of 
the thalamus in particular, belong to the limbic system and have 
reciprocal connections with the anterior cingulate cortex [47,48]. 
Structural and metabolic alterations of the thalamus and the anterior 
cingulate cortex have been reported to be responsible for psychiatric 
symptoms in PD [49–51]. Interestingly, the gray matter volume of these 
regions was smaller in PD with RBD than in those without [52]. We thus 
presumed that this FC alteration might reflect the RBD-related symptom 
on the top of α-synucleinopathy. 

4.3. Correlation analysis between functional connectivity and behavioral 
scores 

The present patients with iRBD did not exhibit overt motor symp-
toms. However, the inter-individual variance of subclinical motor 
symptoms assessed by the MDS-UPDRS Part III score was correlated with 
those of the cortico-cortical and sensorimotor-cerebellar FCs. Because 
these FCs involve motor-related cortices, these findings from the cor-
relation analysis were considered reasonable. Because both FCs were 
stronger in iRBD than HC, these FC alterations could reflect a compen-
satory reorganization of motor-related brain networks [5]. Our result 
suggests that FC analysis has the potential to uncover subclinical motor 
symptoms in α-synucleinopathy. 

The correlation analysis also revealed that the inter-individual var-
iations of sensorimotor-cerebellar and intra-cerebellar FCs correlated 
with those of the MoCA-J score. MoCA-J is a comprehensive cognitive 
battery for global cognitive functions. Various brain regions networks 
were reported to be correlated to the score of MoCA-J in α-synucleino-
pathies [18,53]. A recent study reported that the sensorimotor network 
was also related to the MoCA-J score [54]. Our result suggested that the 
sensorimotor network may also underlie cognitive impairment in iRBD 
patients. 

Our interpretation was that the present FC alteration was more likely 
related to α-synucleinopathy than sleep disorders because the FCs 
retrieved by ML were correlated with sub-clinical parkinsonism and 
cognitive decline, not with RBDSQ-J or ESS. However, we cannot 
completely exclude the possibility that the altered FCs and cognitive 
disturbance were also the consequence of sleep disturbance. 

4.4. Study limitations 

This study had limitations. First, as already discussed, the lack of the 
formal control data is one of the major limitations of the J-PPMI cohort, 
which requires an external database for comparison with the healthy 
population. Ideally, a more strictly controlled group should have been 
collected, potentially reducing the uncontrolled variance across the 
groups. For example, a screening procedure for sleep disturbance with 
RBDSQ-J should have been performed. Note, however, that current ML- 
based technology requires large datasets, which make it impractical to 
collect study-specific control data for each study. We retrieved the 
control data from our own database [7,13], in which the MRIs were 
previously acquired using the same MRI protocol on the same scanner 
with that for the iRBD participants. The demographic data such as age 
and sex differed between the iRBD patients and HCs. To mitigate the 
confounding effects of the group-wise differences in age and sex on the 
classification, we used a GLM with covariates of age and sex before 
conducting the ML-based classification. The classifier had similar per-
formance when we only used the data from participants over 60 years of 
age; hence, we considered the effects of age difference were minimal. In 
our opinion, it will be increasingly important to develop a method to 
take advantage of existing databases in the coming era of study 

efficiency, sustainability, and ML/artificial intelligence. 
Second, the spatial resolution of the present rsfMRI was not fine 

enough to fully capture the latent network alteration of small brain 
structure. Indeed, the selected FCs were not correlated with the sleep- 
related symptoms (RBDSQ-J and ESS scores) of patients with iRBD, 
despite parasomnia being the only clinically robust symptom of partic-
ipants with iRBD. This negative finding may be attributed to the limi-
tation of current rsfMRI technology to capture the functional alterations 
of networks involving small brainstem structures that regulate REM 
sleep [55,56]. 

Third, the present study was a single-center, cross-sectional study. 
Because data of an external validation cohort were not available at the 
time of analysis, we cannot guarantee the generalization of the classi-
fication to other iRBD cohorts. For the same reason, the number of 
participants was not large enough for developing a fully generalizable 
ML classifier although this is one of the largest rsfMRI studies in the 
iRBD literature. A larger sample size will allow us to tune hyper-
parameters for ML, which may hopefully lead to better performance. To 
this end, we have started to analyze the longitudinal data from the 
multiple J-PPMI sites, by taking differences in scanners and protocols 
into account. Therefore, we hope to overcome the present limitations in 
the near future. 

Finally, many iRBD patients received medications including prami-
pexole, ramelteon and clonazepam. Administration of dopamine ago-
nists can reduce FC in the sensory-motor network, default mode 
network, and cerebellar-thalamic-cortical pathway in patients with PD 
[57] while their effects on FC in prodromal PD or healthy population are 
not known. The effects of ramelteon or clonazepam on FC are not 
established, but antiepileptic drugs such as valproate and levetiracetam 
may reduce regional homogeneity of rsfMRI data, thereby potentially 
influencing FC [58]. Overall, although the potential influence of medi-
cation on FC cannot be completely ruled out, the effects would be minor, 
considering the number of patients on medication, and the heteroge-
neity of the medication and their potential effects on FC. 

5. Conclusions 

We developed an ML-based classifier using rsfMRI-derived FC to 
discriminate between iRBD patients and HCs. The selected FC values 
explained the subclinical motor and non-motor symptoms of iRBD pa-
tients, which indicated that they carried clinically relevant information. 
And usefulness of ML-based analysis of FC for evaluating latent brain 
states in iRBD. Despite its potentials, the present classification technol-
ogy has not yet reached the point where the method is suitable as a 
diagnostic tool. Technical development and data accumulation should 
be continued to make the rsfMRI-based classification of iRBD and 
α-synucleinopathies relevant to clinical practice. 
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