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Abstract
Individual	age	can	be	used	to	design	more	efficient	and	suitable	management	plans	in	
both	in	situ	and	ex	situ	conservation	programmes	for	targeted	wildlife	species.	DNA	
methylation is a promising marker of epigenetic ageing that can accurately estimate 
age from small amounts of biological material, which can be collected in a minimally 
invasive	manner.	In	this	study,	we	sequenced	five	targeted	genetic	regions	and	used	
8–23	selected	CpG	sites	to	build	age	estimation	models	using	machine	learning	meth-
ods at only about $3–7 per sample. Blood samples of seven Felidae species were 
used, ranging from small to big, and domestic to endangered species: domestic cats 
(Felis catus, 139 samples), Tsushima leopard cats (Prionailurus bengalensis euptilurus, 
84 samples) and five Panthera	 species	 (96	 samples).	 The	models	 achieved	 satisfac-
tory accuracy, with the mean absolute error of the most accurate models recorded 
at	1.966,	1.348	and	1.552 years	in	domestic	cats,	Tsushima	leopard	cats	and	Panthera 
spp.	respectively.	We	developed	the	models	in	domestic	cats	and	Tsushima	leopard	
cats, which were applicable to individuals regardless of health conditions; therefore, 
these models are applicable to samples collected from individuals with diverse char-
acteristics,	which	is	often	the	case	in	conservation.	We	also	showed	the	possibility	of	
developing universal age estimation models for the five Panthera spp. using only two 
of	the	five	genetic	regions.	We	do	not	recommend	building	a	common	age	estimation	
model for all the target species using our markers, because of the degraded perfor-
mance of models that included all species.
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1  |  INTRODUC TION

Age	 information	 is	 important	 for	both	ex	situ	and	 in	situ	wildlife	
conservation, as it is relevant to individual behaviour, health, 
reproductive	 capacity	 and	 mortality	 (Blomqvist	 &	 Sten,	 1982; 
Kirkwood	&	Austad,	2000;	Nussey	et	al.,	2013; Youn et al., 2022; 
Zhao et al., 2019).	Age	estimation	can	help	determine	demographic	
characteristics and predict current and future extinction risks for 
wildlife populations (Lacy, 2019;	Oli	&	Dobson,	2003).	Age	esti-
mation in injured or dead wild individuals also helps examine the 
relationships between age and the causes of injury or mortality 
(Conroy et al., 2019; Thorel et al., 2020); when certain age groups 
are found to have particularly high mortality rates, the causes 
of mortality can be deduced and preventive measures taken. 
Knowing	 the	 age	 of	 rescued	wild	 individuals	 would	 help	 inform	
appropriate	 health	 care	 and	 enrichment	 activities	 that	maximize	
the welfare of individuals of different age classes and thereby im-
prove the efficiency of a breeding programme (Caselli et al., 2022; 
Eskelinen et al., 2015;	Hecht,	2021).

Age	 estimation	methods	 have	 been	 conducted	 based	 on	mor-
phological observations or measurements and mark–recapture, such 
as longtime tracking and direct observation in primates (Mori, 1979), 
mark–recapture	 in	 bats	 (Wilkinson	 &	 Brunet-	Rossinni,	 2009) and 
scar/speckle-	counting	 in	 cetaceans	 (Hartman	 et	 al.,	 2016; Yagi 
et al., 2023).	However,	these	methods	are	difficult	to	implement	for	
species that are hard to observe or recapture or do not show prom-
inent	 age-	related	 changes	 in	 appearance.	Age	estimation	of	mam-
mals can also be done via measuring the development and eruption 
of teeth and bones (Chevallier et al., 2017;	White	et	al.,	2016), but 
this	requires	either	carcasses	or	long-	term	restraint	of	captured	live	
animals.

Molecular ageing markers have been highlighted as new, less 
invasive age estimation tools that can determine individuals' ages 
by sampling and analysing small amounts of biological materials 
(Bocklandt et al., 2011;	Gruber	et	al.,	2021;	Petkovich	et	al.,	2017; Xia 
et al., 2017).	DNA	methylation	is	one	of	the	most	accurate	age	mark-
ers	(Horvath,	2013; Li et al., 2018;	Paoli-	Iseppi	et	al.,	2017;	Stubbs	
et al., 2017).	It	is	an	epigenetic	process	in	which	5-	methylcytosine	is	
formed via transfer of a methyl group, usually onto the C5 position 
of	cytosine	in	the	cytosine–guanine	dinucleotide	(CpG)	sites	in	mam-
mals	 (Bogdanović	 &	 Veenstra,	 2009). Recently, epigenetic clocks 
have	 been	 developed	 based	 on	 the	mammalian	DNA	methylation	
array	HorvathMammalMethylChip40	 (Arneson	et	al.,	2022), which 
provides	more	than	37,000	highly	conserved	CpGs	with	high	cover-
age; they have been used to accurately estimate age in mammalian 
species	 such	 as	plains	 zebras	 (Equus quagga) (Larison et al., 2021), 
roe deer (Capreolus capreolus) (Lemaître et al., 2022), beluga whales 
(Delphinapterus leucas) (Bors et al., 2021) and naked mole- rats 
(Heterocephalus glaber)	 (Horvath	et	al.,	2022).	However,	high	costs	
(approximately	 $160/sample),	 requirement	 of	 large	 quantities	 of	
DNA	(ideally	more	than	250 ng/sample)	and	relatively	complex	data	
processing still limit its wide application to conservation projects, 
especially	those	with	limited	budgets	and	few	good-	quality	samples.	

Such	projects	will	benefit	more	from	a	study	design	that	uses	only	a	
few target genes selected from previous studies of related species.

Felids have received much conservation attention, however, few 
studies have focused on improving their age assessment for conser-
vation implications. Recent publications for tigers (Panthera tigris) 
and lions (P. leo)	 were	 still	 based	 on	 teeth	 measurement	 (Sharma	
et al., 2022;	White	 et	 al.,	 2016).	 DNA	methylation-	based	 age	 es-
timation that can be conveniently implemented for live felid indi-
viduals is still lacking, except for two studies focusing primarily on 
domestic cats (Felis catus) (Qi et al., 2021; Raj et al., 2021).	Previously	
(Qi et al., 2021), we estimated domestic cat age with mean abso-
lute	error	(MAE)	at	3.83 years	using	a	cost-	effective	RT-	PCR-	based	
method	based	on	 two	gene	 regions.	We	also	 tried	 to	build	a	pilot	
age estimation model for snow leopards (n = 11),	and	the	MAE	was	
2.10 years.	 Raj	 et	 al.	 (2021) successfully developed high- accuracy 
models	for	domestic	cats	using	the	HorvathMammalMethylChip40,	
achieving	MAE = 0.79 years,	the	most	accurate	value	achieved	by	an	
epigenetic	clock	for	cats,	with	34	CpGs	from	about	10	gene	regions	
(the gene regions used in the clock were not specified). The domes-
tic cat clock developed by Raj et al. (2021) was also tested on some 
samples	of	other	felid	species:	MAE = 1.65,	1.41	and	3.01 years	for	
cheetahs (Acinonyx jubatus, n = 14),	lions	(n = 7)	and	tigers	(n = 8),	re-
spectively.	 Although	 the	 HorvathMammalMethylChip40	 provided	
accurate values, developing low- cost epigenetic clocks can facilitate 
wider	application	in	conservation.	Additionally,	a	larger	sample	size	
of other felid species will not only help develop more convincing epi-
genetic clocks for each species but also allow us to study whether 
the same age estimation models could be employed across multi-
ple	 felid	 species.	 Although	 the	 body	 size	 and	 living	 environments	
of felids are varied, the genetic distance among cat families is rel-
atively small; felid genomes show strong collinearity and recent ge-
netic divergence (Cho et al., 2013;	Davis	et	al.,	2009;	Wurster-	Hill	
&	Centerwall,	1982). The occurrences of interspecific hybrids in big 
and	small	cats	in	captivity	(Gray,	1972) also supported this genome 
collinearity. These include many Panthera hybrids: ligers (male lions 
and female tigers), tigons (male tigers and female lions), jaglions (male 
jaguars and female lions), tipards (male tigers and female leopards) 
and leopon (male leopards and female lions); and domestic cat breeds 
that	are	interspecific	hybrids,	such	as	the	Bengal	and	Savannah.

In	the	present	study,	we	aimed	to	construct	easily	applicable	age	
estimation models for conservation applications that yield accept-
able accuracies using only a few gene regions and lower- cost tar-
geted	bisulphite	sequencing.	We	compared	the	differences	in	DNA	
methylation profiles of different felid species and discussed the pos-
sibility of constructing common age estimation models across mul-
tiple felid species.

Our	target	species	comprised	small	and	big	cat	species.	The	do-
mestic cat (F. catus) and Tsushima leopard cat (Prionailurus bengalen-
sis euptilurus) were the target small cat species. The domestic cat is a 
beloved companion and model animal for other small felines. The age 
estimation model developed for the domestic cat can be used as a ref-
erence	for	other	endangered	small	felines	for	which	adequate	sample	
sizes	are	difficult	to	obtain.	Alternatively,	the	Tsushima	leopard	cat	is	a	
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critically	endangered	species	that	requires	age	estimation	for	improved	
conversation strategies. The Tsushima leopard cat is an isolated pop-
ulation	of	the	Amur	leopard	cat	(Pr. bengalensis euptilurus) found only 
on	Tsushima	Island	in	Japan,	with	about	100	wild	and	30	captive	indi-
viduals	 (Inoue,	2021). Rescue and breeding programmes have begun 
since	1999,	and	over	time,	many	samples	have	been	collected.	We	also	
included five Panthera	spp.	that	require	urgent	conservation—jaguars	
(Panthera onca),	Amur	leopards	(P. pardus orientalis),	African	lions	(P. leo 
leo), snow leopards (P. uncia)	and	Amur	tigers	(P. tigris altaica).

In	the	models,	we	also	assessed	the	influence	of	sex	and	health	
conditions, which may contribute to epigenetic ageing (Bors 
et al., 2021; Qi et al., 2021).	 Age	 estimation	models	 developed	 in	
previous studies focused only on healthy individuals, necessitating 
revalidation before the models can be applied to diseased animals, 
which	is	common	in	wildlife	conservation.	In	the	present	study,	we	
overcame this shortcoming by including numerous samples from dis-
eased	individuals	during	model	building.	High	applicability	of	models	
is important in the conservation context because rescued individu-
als have varied conditions.

2  |  MATERIAL S AND METHODS

2.1  |  Ethics statement

All	methods	were	carried	out	in	accordance	with	relevant	guidelines	
and regulations. The study was performed in compliance with the 
ARRIVE	guidelines.	All	experimental	protocols	were	approved	by	the	
ethical	committee	of	Wildlife	Research	Center	of	Kyoto	University,	
and all sample collection and experiments were conducted with 
permission	 from	 the	 ethical	 committee	 (approval	 numbers:	WRC-	
2019&2020-	012A,	WRC-	2021&2022-	013A	and	WRC-	2023-	010A).	
All	domestic	cat	samples	were	obtained	with	the	consent	of	the	cat	
owners.	Other	Felidae	species	samples	were	collected	with	the	ap-
proval	of	each	zoo/conservation	centre.	Approval	from	the	Ministry	
of	the	Environment	Japan	was	also	obtained	for	the	Tsushima	leop-
ard cat samples.

2.2  |  Sample collection

2.2.1  |  Domestic	cat	samples

A	 total	 of	 139	 residual	 blood	 samples	 were	 obtained	 from	 clinical	
health	check-	ups	of	105	domestic	cats	from	July	to	September	2020	
from	the	Kyoto	Medical	Center,	Daktari	Animal	Hospital	and	Anicom	
Specialty	Medical	Institute,	Inc.	The	information	recorded	by	the	vet-
erinarians on age, breed, neuter status, sex and health condition was 
provided	by	the	institutions.	All	domestic	cat	samples	were	stored	at	
−80°C	for	less	than	1 month	before	DNA	extraction.	The	ages	of	the	
cats	ranged	between	0.41	and	21.04 years,	and	the	female-	to-	male	sex	
ratio	 (F:M)	was	50:55 = 10:11.	Most	 domestic	 cat	 samples	were	 ob-
tained from mixed- breed individuals (n = 65).	The	remaining	individuals	

(n = 40)	were	purebred	cats.	As	few	samples	were	available	for	each	
cat breed (n ≤ 8),	the	influence	of	breed	was	not	considered.	Most,	ex-
cept	six	of	the	112	adult	individuals	over	3.5 years	old	were	neutered,	
while	only	one	out	of	15	individuals	under	2 years	old	were	neutered.	
Because of the extreme disparity in age distributions between neu-
tered and un- neutered individuals, similar- age individuals from the two 
groups could not be found. Therefore, we did not investigate the effect 
of	neutering	on	the	accuracy	of	age	estimation.	Health	conditions	and	
other information are provided in Table 1	and	Appendix	S1.

2.2.2  |  Tsushima	leopard	cat	samples

Tsushima leopard cat blood samples were collected during health 
checks	 in	 Tsushima	 Wildlife	 Conservation	 Center	 and	 zoos	 from	
2006	to	2021.	These	samples	were	stored	at	−20°C	for	0–1 year	or	
−80°C	for	0–15 years.	We	included	84	samples	of	known	age	from	19	
captive-	born	 individuals	 (age	 ranged	 0.50–15.32 years;	 F:M = 9:10;	
Table 1) and 15 samples from four rescued wild- born individuals of 
unknown	age	 (F:M = 3:1;	Table 1).	Health	conditions	and	other	de-
tailed	information	can	be	found	in	Appendix	S2.

2.2.3  |  Panthera spp. samples

A	 total	 of	 96	 blood	 samples	 from	 35	 individuals	 (age:	 0.26–
23.74 years,	 F:M = 16:19)	 of	 Panthera	 spp.	 including	 jaguars,	 Amur	
leopards,	 African	 lions,	 snow	 leopards	 and	Amur	 tigers,	were	 col-
lected	 during	 routine	 health	 checks	 in	 Japanese	 zoos	 from	 2001	
to	 2022	 and	 stored	 at	 −80°C	 for	 0–21 years.	 The	 sample	 size	 for	
each	species	is	summarized	in	Table 1.	Health	conditions	and	other	
detailed	 information	 can	 be	 found	 in	 Appendix	 S3. Considering 
the	 small	 sample	 sizes	of	 each	 species,	 small	 genetic	 distances	 (Li	
et al., 2016)	 and	 similar	 lifespans	 (e.g.	 maximum	 age = 25 years	 in	
Japanese	zoos)	(Animal	Lifespan,	2017), we merged all Panthera spp. 
samples	into	one	dataset	for	all	subsequent	analyses.

2.3  |  DNA extraction and bisulphite conversion

Genomic	DNA	of	all	samples	was	extracted	using	the	DNeasy	Blood	
&	Tissue	Kit	(QIAGEN	GmbH,	Hilden,	Germany),	followed	by	bisul-
phite	 conversion	 using	 the	 EZ	 DNA	 Methylation-	Gold	 Kit	 (Zymo	
Research,	Irvine,	CA,	USA)	according	to	the	manufacturer's	protocol.

2.4  |  Gene regions, primer design and PCR  
conditions

We	targeted	five	DNA	regions	adjacent	to	five	genes,	namely,	TCF21 
(Transcription factor 21), PRMT8	(Protein	Arginine	Methyltransferase	
8), DLX5	(Distal-	less	homeobox	5),	RALYL	(RALY	RNA	binding	protein	
like) and ELOVL2	(ELOVL	fatty	acid	elongase	2).	Previously,	we	found	
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that RALYL and ELOVL2 were significantly correlated with chrono-
logical age in domestic cats and snow leopards (Qi et al., 2021); 
however, the accuracy of the two- marker age estimation model 
can	 be	 improved	 (domestic	 cat:	 MAE = 3.83 years,	 snow	 leopard:	
MAE = 2.10 years).	In	the	present	study,	we	included	three	more	can-
didate genes: TCF21, PRMT8 and DLX5, which showed age- related 
methylation rate changes in dogs, which like felids, fall under the 
order Carnivora (Lowe et al., 2018). These five genes are involved 
in many housekeeping/essential pathways, and their abnormal gene 
expression levels are detected in several types of cancer tissues 
(Safran	et	al.,	2021;	Stelzer	et	al.,	2016).	Homogeneous	gene	regions	
were searched against the reference genomes of each target species 
using	BLAST+	 2.11.0	 (Altschul	et	 al.,	1990; Camacho et al., 2009) 
provided	 by	 the	 National	 Centre	 for	 Biotechnology	 Information	
(NCBI).	The	reference	genomes	that	were	used	are	as	follows:	do-
mestic	 cat—F.catus_Fca126_mat1.0	 (GCF_018350175.1),	 Tsushima	
leopard	 cat—Fcat_Pben_1.1_paternal_pri	 (GCF_016509475.1),	 jag-
uar—PanOnc_v1_BIUU	 (GCA_004023805.1),	 leopard—Panpar1.0	
(GCF_001857705.1),	 lion	 –	 P.leo_Ple1_pat1.1	 (GCF_018350215.1),	
snow	 leopard—Puncia_PCG_1.0	 (GCF_023721935.1)	 and	 tiger—P.
tigris_Pti1_mat1.1	 (GCF_018350195.1).	 The	 target	 regions	 are	 lo-
cated in the gene bodies of the target genes, except for ELOVL2, 
which	is	located	in	the	promoter/enhancer	region.	Bisulphited	DNA	
was	subjected	to	PCR	amplification	with	TaKaRa	EpiTaq™	HS	(Takara	
Bio,	Shiga,	Japan),	using	the	primers	and	PCR	conditions	provided	in	
Table 2	 (the	sequence	 information	on	NCBI	 for	each	target	 region	
and each species is listed in Table S1).	The	singleplex	PCR	reactions	
were prepared separately for each primer pair at a final volume of 
20 μL,	 containing	 2 μL	 of	 bisulphited	 DNA	 (5–10 ng),	 0.5 U	 TaKara	
EpiTaq	HS,	1×	EpiTaq	PCR	Buffer	(Mg2+	free),	2.5 mM	MgCl2,	0.3 mM	
dNTP	mixture	and	500 nM	each	of	forward	and	reverse	primers.

2.5  |  Next- generation sequencing

NEBNext	Multiplex	Oligos	 for	 Illumina	 (Dual	 Index	 Primers	 Set	 1	
and	 Set	 2,	 for	 sample	 indices)	 and	NEBNext	Ultra	 II	DNA	 Library	
Prep	Kit	for	Illumina	(for	adaptor	ligation	and	PCR	enrichment)	(New	
England	Biolabs,	Ipswich,	MA,	USA)	were	used	to	generate	MiSeq-	
compatible	barcoded	DNA	sequencing	 libraries	 for	each	gene	am-
plicon and sample following the manufacturer's protocol. Barcoded 
libraries	were	pooled	together	in	equimolar	amounts	to	make	a	single	
pooled library after concentration measurement using Tapestation 
D1000	(Agilent,	Santa	Clara,	CA,	USA).	Next-	generation	sequencing	
was	performed	using	Illumina	MiSeq	with	the	MiSeq	Reagent	Kit	v2	
(500 cycles)	(Illumina,	San	Diego,	CA,	USA).

2.6  |  Methylation data organizing

Quality	 check	 and	 trimming	 of	 sequence	 data	 were	 performed	
using	 fastp	 v0.20.1	with	 base	 quality	 threshold	 -	q	 set	 to	 20.	 The	
quality-	filtered	sequences	were	aligned	to	the	bisulphite-	converted	TA
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reference genome of respective species using these parameters: 
-	-	score_min	 L,	 0,	 -	0.4,	 -	-	non_directional	 in	 Bismark	 v0.22.3.	 The	
bisulphite- converted reference genomes were generated with bis-
mark_genome_preparation.	The	count	of	methylated	CpG	sites	and	
total	coverage	was	output	in	cov.gz	files	with	bismark_methylation_
extractor	(−-	comprehensive)	and	processed	using	the	bsseq	1.26.0.	
package	(Hansen	et	al.,	2012) in R 4.0.5 (R Core Team, 2021).	CpG	
sites with coverage lower than 100 for DLX5 and 1000 for other 
regions were excluded from further analysis. DLX5 had lower cover-
age	(ranging	from	42	to	1660,	mean = 406);	therefore,	we	set	a	lower	
threshold. The most often commonly used threshold in targeted bi-
sulphite	sequencing	 is	1000× (Leitão et al., 2018), but 100× could 
also be found in some studies (Chen et al., 2017).	Samples	with	ex-
tremely lower coverage than others (0–2 samples per species) were 
not	 counted	 for	 sample	 collection	 (as	 detailed	 in	 Section	2.2) and 
were also excluded from the analysis.

2.7  |  Age estimation model

2.7.1  |  Data	splitting

We	designated	four	groups	of	samples	to	be	included	in	our	analy-
sis (Figure 1).	Domestic	cats,	Tsushima	leopard	cats	and	Panthera 
spp. each constituted a group, and the fourth group contained 
samples	 from	all	 the	 species	 (ALL	dataset).	 For	 the	ALL	dataset,	
unlike in the other three groups, relative age was used instead of 
age. Relative age is individual age relative to the maximum lifes-
pan	of	its	species	and	ranges	between	0	and	1	(Appendix	S4) (Lu 
et al., 2023; Raj et al., 2021).	According	to	the	global	animal	age	
database	 and	 records	 of	 Japanese	 zoos,	 the	maximum	 lifespans	
are	30,	20	and	25 years	for	domestic	cats,	Tsushima	leopard	cats	
and Panthera	spp.,	respectively	(AnAge:	Animal	Lifespan,	2017; de 
Magalhães et al., 2007).

The	workflow	of	our	analysis	is	summarized	in	Figure 1. The data 
were	first	split	into	training	and	test	datasets.	To	select	CpGs	that	were	
stably selected across different datasets and also evaluate model per-
formance more comprehensively, we prepared five sets of training and 
test data through one- time data splitting with stratified k- fold (k = 5,	
similar	 age	 and	 species	 distribution	 across	 folds)	 using	 the	 Python	
package	scikit-	learn	1.2.0	(Pedregosa	et	al.,	2011)	with	StratifiedKFold	
and	MultilabelStratifiedKFold	functions	in	Python	3.8.8	(Van	Rossum	
&	Drake,	2009).	In	rotation,	each	fold	was	used	as	the	test	data	and	
the remaining as training data for the following procedures of model 
building.	 The	 methods	 of	 feature/CpG	 selections	 are	 described	 in	
Section	2.7.3. Finally, we evaluated model performance on an ensem-
ble of predictions conducted across the five test datasets.

2.7.2  |  Data	preprocessing

CpGs	with	 zero	 or	 near-	zero	 variance	 and	 those	 that	were	 highly	
correlated	(Pearson	correlation	≥.8)	were	excluded	from	the	training	TA
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6 of 15  |     QI et al.

data.	Before	model	tuning,	methylation	rates	of	the	remaining	CpGs	
in	training	and	test	were	standardized.	The	dataset	was	further	pro-
cessed	 using	 the	 R	 package	 caret	 6.0–94	 (Kuhn,	2008) and dplyr 
1.1.3	(Hadley	et	al.,	2023) in R 4.3.1 (R Core Team, 2021), following 
the	method	described	by	Anastasiadi	and	Piferrer	(2023).

2.7.3  | Model	tuning

We	 first	 used	 elastic	 net	 regression	 to	 tune	 our	 models,	 as	 the	
method is a mix of ridge and lasso regression which performs au-
tomatic feature shrinkage (i.e. feature selection) together with 
regression.	 Elastic	 net	 regression	 is	widely	 adopted	 in	many	DNA	
methylation- based age estimation studies (Bors et al., 2021; Lu 
et al., 2023;	 Nakamura	 et	 al.,	 2023; Raj et al., 2021; Thompson 
et al., 2017;	Vidaki	et	al.,	2021).

Additionally,	 we	 conducted	 stepwise	 model	 tunings,	 that	 is,	
selecting features first and then conducting regression, to check 
whether	model	performances	could	be	improved	further.	We	per-
formed feature selection via two methods. First, we adopted the 
most	 frequently	 used	 feature	 selection	method;	 selecting	 CpGs	
based on correlations between their methylation and chronologi-
cal age (the mean correlation of training data over five runs), with 
Pearson	 correlation	 coefficients	 over	 .5	 or	 .7	 as	 the	 thresholds	
(Figure 1).	 Second,	 we	 used	 the	 elastic	 net	 regression	 to	 select	
features	before	 later	 regression,	which	 is	not	 frequently	 seen	 in	
age estimation studies but has been done in other machine learn-
ing	 studies	 (Topuz	 et	 al.,	2018).	We	 considered	CpGs	 that	were	
selected in the elastic net- based feature selection in over four of 
all five training sets (over 80%) as explanatory variables in later re-
gression	models.	As	shown	in	Figure 1, after feature selection, we 
created regression models with elastic net regression and support 

F I G U R E  1 Workflow	for	model	building.	Data	were	first	split	into	training	(20%)	and	test	sets	(80%)	in	five	runs,	followed	by	model	tuning	
using five different methods in the order of feature selection and regression. Cross- validations were conducted to find the best model in 
each	model-	tuning	method	in	training	data	(leave-	one-	individual-	out	cross-	validation	[LOIOCV]	for	each	study	group,	additional	leave-	one-	
species-	out	cross-	validation	[LOSOCV]	for	Panthera	spp.	and	ALL	dataset).	Finally,	predictions	and	model	performance	on	test	data	were	
evaluated.	SVMr,	support	vector	machine	radial.

Methylation data
A. Domestic cat
B. Tsushima leopard cat
C. Panthera spp.
D. ALL dataset (A+B+C)

Model tuning
(run in each training data with five methods in five runs)

Test Training Data splitting*
(split into five folds, each fold used
as test data in rotation in five runs)

Prediction**

Feature selection

Regression
Elastic net

Elastic net

Elastic net

Elastic net

SVMr

20% samples 80% samples

Cor > 0.5 or
Cor > 0.7

Elastic net

Cor > 0.5 or
Cor > 0.7

SVMr

Run 5Run 4Run 3Run 2Run 1
traintraintraintraintest

Data
(five
folds)

traintraintraintesttrain
traintraintesttraintrain
traintesttraintraintrain
testtraintraintraintrain

Data splitting* Prediction**

Run 5Run 4Run 3Run 2Run 1
testtesttesttesttestData

Predicted age

Evaluation of model performance

(predict the age of each test data in five runs &
evaluate the model performance on the ensemble)
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    |  7 of 15QI et al.

vector	machine	 radial	 (SVMr)	 in	 the	 training	 data.	 SVMr,	 similar	
to elastic net regression, has been found to produce high estima-
tion	accuracy	(Krivonosov	et	al.,	2022;	Nakamura	et	al.,	2023; Qi 
et al., 2021; Xu et al., 2015).

Model evaluation and parameter tuning based on leave- one- 
individual-	out	 cross-	validations	 (LOIOCV)	 were	 conducted	 in	 fea-
ture	 selection	 (elastic	 net-	based)	 and	 regression.	 In	 LOIOCV,	 data	
from one individual are excluded for validation at each iteration 
of	 analysis.	 Additionally,	 leave-	one-	species-	out	 cross-	validations	
(LOSOCV)	were	performed	for	Panthera	spp.	and	the	ALL	dataset	to	
check species influence.

We	 performed	 elastic	 net	 regression	 and	 its	 hyperparame-
ter tuning with cv.glmnet in the R package glmnet 4.1- 8 (Friedman 
et al., 2010).	Optimized	alpha	and	 lambda	were	determined	under	
cross- validations based on the smallest mean absolute difference 
between	predicted	age	and	chronological	age	(MAE).	For	SVMr,	we	
used	the	Python	package	scikit-	learn	1.2.0	(Pedregosa	et	al.,	2011) 
with	GridsearchCV	and	SVR	functions	to	find	the	best	gamma	in	the	
range of 2−15 to 26 and the best cost in the range of 2−5 to 216, under 
cross-	validations	based	on	MAE,	as	with	elastic	net	regression.

2.7.4  |  Age	prediction	and	evaluation	of	model	
performance on test data

We	 predicted	 age	 from	 test	 data	 and	 evaluated	 model	 precision	
with	MAE,	median	absolute	error	(MedAE),	root	mean	square	error	
(RMSE)	and	squared	correlation	between	predicted	age	and	chrono-
logical age (R2).	Model	 accuracy	was	 evaluated	 using	 the	 Pearson	
correlation between predicted age and chronological age (r).	MAE,	
MedAE	and	RMSE	in	ALL	dataset	models	are	measured	based	on	rel-
ative age (percentages) and are not directly comparable with those 
of other study groups based on age (years).

2.8  |  Factors affecting the deviation of predicted 
age from chronological age

To investigate what variables influenced ΔAge	(difference	between	
predicted age and chronological age) and |ΔAge|	 (absolute	 differ-
ence between predicted age and chronological age) in each group 
(i.e. domestic cats, Tsushima leopard cats, Panthera	 spp.	 and	 ALL	
dataset),	 we	 applied	 linear	 mixed	 models	 with	 individual	 ID	 as	 a	
random	 effect	 using	 the	 R	 package	 lmerTest	 3.1.3	 (Kuznetsova	
et al., 2017). Chronological age, sex (female and male) and health 
condition (healthy and diseased) were used as explanatory variables 
for all study groups. For groups comprising more than one species, 
the Panthera	spp.	and	the	ALL	dataset,	‘species’	was	used	as	an	ad-
ditional	 explanatory	 variable.	 In	 Panthera spp., the snow leopard 
was	used	 as	 the	 standard	 in	 the	 variable	 ‘species’,	 because	of	 the	
large	sample	size	(n = 33)	and	relatively	wide	and	even	age	distribu-
tion	(minimum	age = 0.93,	maximum	age = 17.66,	average	age = 7.77,	
Table 1).	In	the	ALL	dataset,	domestic	cats	were	used	as	the	standard.	

The	Akaike's	information	criterion	(AIC)	of	models	was	used	to	de-
termine whether interactions among each factor pair must be in-
cluded—if	including	interactions	made	AIC	smaller,	then	interactions	
were	added	as	additional	explanatory	variables.	Domestic	cats	had	
the	 largest	 sample	 size;	 for	 the	 variable	 ‘health	 condition’,	we	not	
only compared healthy (n = 34)	versus	diseased	conditions	(n = 105),	
but also used detailed disease categories as the explanatory varia-
bles: healthy (n = 34),	cancer	(n = 13),	chronic	kidney	disease	(n = 48),	
diabetes (n = 23),	digestive	disease	(n = 9)	and	other	diseases	(n = 33).	
Note	 that	 several	 individuals	had	multiple	diseases;	 therefore,	 the	
sum	of	the	health	categories	was	larger	than	the	total	sample	size.	
The	small	sample	sizes	for	each	disease	category	in	Tsushima	leop-
ard cats and Panthera spp. made separate analyses of disease groups 
statistically	less	plausible;	therefore,	we	simply	categorized	samples	
into	 healthy	 and	 diseased—Tsushima	 leopard	 cats	 comprised	 47	
healthy and 37 diseased individuals, and Panthera spp. eighty- three 
healthy and 13 diseased individuals.

3  |  RESULTS

3.1  |  Correlation between methylation rates and 
chronological age

Over	100	CpGs	were	detected	in	domestic	cats	(n = 106),	Tsushima	
leopard cats (n = 108)	and	Panthera spp. (n = 105).	CpGs	found	in	at	
least	one	group	were	listed	with	their	NCBI	position	of	each	species	
in	Appendix	S5, of which 80.8% (97 out of 120) were found in all spe-
cies.	Pearson	correlation	coefficients	between	CpG	methylation	rate	
and	age	in	the	training	data	ranged	from	−0.12	to	0.77	(mean = 0.29)	
for	domestic	cats,	−0.18	to	0.77	(mean = 0.23)	for	Tsushima	leopard	
cats,	−0.14	to	0.92	(mean = 0.43)	for	Panthera	spp.	and	−0.04	to	0.68	
(mean = 0.24)	for	ALL	dataset.

3.2  |  Age estimation model

The	 CpGs	 included	 in	 the	 best	model	 determined	 for	 each	 study	
group are shown in Figure 2	(see	Appendix	S5 for detailed results). 
Overall,	 for	 all	 study	 groups,	 the	 workflow	 of	 elastic	 net	 feature	
selection	followed	by	SVMr	regression	produced	the	best	models.	
Table 3 shows the model performances evaluated by five indexes 
(i.e.	MAE,	MedAE,	RMSE,	R2 and r). Model performances of all fea-
ture	selection–regression	methods	are	summarized	in	Table S2. The 
correlations between chronological age and the methylation rate of 
the	CpGs	selected	by	elastic	net	feature	selection	were	not	limited	
to high values (>.5, Figure 2).	Selected	CpGs	of	Panthera	spp.—eight	
CpGs	under	LOIOCV	and	four	CpGs	under	LOSOCV—were	only	lo-
cated in two regions, DLX5 and ELOVL2, which were different from 
domestic cats and Tsushima leopard cats (Figure 2). For domestic 
cats, all five targeted gene regions contributed to the best model 
(composed	of	23	CpGs);	for	Tsushima	leopard	cats,	14	CpGs	in	four	
regions, excluding TCF21,	 yielded	 the	 best	 models.	 For	 the	 ALL	
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8 of 15  |     QI et al.

dataset,	the	best	LOIOCV	model	is	composed	of	many	more	CpGs	
(31	CpGs)	in	all	five	targeted	gene	regions,	while	the	best	LOSOCV	
model	only	contained	eight	CpGs	from	DLX5, RALYL and ELOVL2.

Excluding	 the	 ALL	 dataset,	 Pearson	 correlation	 coefficients	
between predicted and chronological age (r) under the best mod-
els were higher than .890, and R2	values	were	larger	than	.80.	MAE	
was	 1.966	 for	 domestic	 cats;	 1.348	 for	 Tsushima	 leopard	 cats;	
1.552	(under	LOIOCV)	and	1.582	(under	LOSOCV)	for	Panthera spp. 
and	  .086	 (under	 LOIOCV)	 and	 .086	 (under	 LOSOCV)	 for	 the	ALL	
dataset.	Larger	prediction	errors	(i.e.	MAE,	MedAE	and	RMSE)	and	
lower R2 and age correlations were obtained when adopting the best 
ALL	dataset	model	in	other	data	groups	(i.e.	domestic	cats,	Tsushima	
leopard cats and Panthera spp.) (Table S3).	Plots	of	the	best	age	esti-
mation models are shown in Figure 3. Changes in the predicted age 
of individuals with multiple samples are shown in Figures S1–S3 for 
all study groups.

As	a	 large	sample	size	of	diseased	domestic	cats	was	available	
(n = 105),	we	also	attempted	age	prediction	for	the	healthy	domestic	
cats by using the diseased samples as training data and the healthy 
samples (n = 34)	as	test	data.	Very	similar	results	(diseased	[training]:	
MAE = 1.521,	r = .907;	healthy	[test]:	MAE = 1.971,	r = .902,	Table S4) 
were obtained compared to previous domestic cat models that in-
cluded all samples (Table 4). This indicates that health conditions did 
not influence model performance.

3.3  |  Factors affecting the deviation of predicted 
age from chronological age

The results of mixed linear regression for investigating the factors 
influencing ΔAge	 are	 summarized	 in	Table 4 and Table S5.	 Older	
samples had a younger predicted age compared to chronological age 

F I G U R E  2 Selected	CpGs	of	five	targeted	gene	regions	in	the	best	model	for	each	study	group.	Coloured	bars	represent	CpG	sites	that	
were selected and show correlation coefficients <0.2 between methylation rates and chronological ages (green), 0.2–0.5 (yellow), 0.5–0.7 
(orange) and >0.7 (red).

Panthera spp.

ALL dataset

Domestic cat

Tsushima leopard cat

TCF21 PRMT8 DLX5

RALYL ELOVL2

CpG site
Cor ≤ 0.2
0.2 < Cor ≤ 0.5
0.5 < Cor ≤ 0.7
Cor > 0.7

Panthera spp.

ALL dataset

Domestic cat

Tsushima leopard cat

Target region
Gene

Panthera spp. (LOSOCV)

ALL dataset (LOSOCV)

ALL dataset (LOSOCV)

Panthera spp. (LOSOCV)

MAE MedAE RMSE R2 r

Domestic	cat 1.966 1.595 2.514 .808 .899

Tsushima leopard cat 1.348 0.984 1.902 .805 .897

Panthera spp. 1.552 1.279 1.997 .873 .934

Panthera	spp.	(LOSOCV) 1.582 1.222 1.983 .875 .936

ALL	dataset 0.086 0.071 0.110 .737 .859

ALL	dataset	(LOSOCV) 0.086 0.074 0.110 .735 .857

Note:	MAE,	MedAE	and	RMSE	in	ALL	dataset	models	are	measured	based	on	relative	age	
(percentages) and are not directly comparable with those of other study groups based on age 
(years).
Abbreviations:	LOSOCV,	leave-	one-	species-	out	cross-	validation;	MAE,	mean	absolute	error;	
MedAE,	median	absolute	error;	r,	Pearson	correlation	between	predicted	age	and	chronological	
age (p- values of r were all less than .001); R2,	squared	correlation	between	predicted	age	and	
chronological	age;	RMSE,	root	mean	square	error.

TA B L E  3 Accuracy	and	precision	of	the	
best models.

 17550998, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.13928 by C

ochrane Japan, W
iley O

nline L
ibrary on [13/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  9 of 15QI et al.

in all groups (p < .001).	Sex	did	not	contribute	to	ΔAge	in	any	group.	
Health	 conditions	did	not	affect	ΔAge	 in	domestic	 cats,	Tsushima	
leopard	cats	and	the	ALL	dataset	(Table 4; Table S5).	However,	the	
diseased samples showed smaller ΔAge	 than	 healthy	 samples	 in	
Panthera spp. (p = .005,	Table 4).

Older	Tsushima	leopard	cats	tended	to	have	smaller	ΔAge	in	the	
best	ALL-	dataset	models	regardless	of	the	cross-	validation	methods	
used	 (i.e.	LOIOCV	or	LOSOCV,	p < .001),	while	older	Panthera spp. 
(especially lion, snow leopard and tiger, Table S5) tended to have 
larger ΔAge	 under	 LOSOCV	 (p < .001,	Table 4). For Panthera spp. 

F I G U R E  3 Best	age	estimation	models	for	(a)	domestic	cats,	(b)	Tsushima	leopard	cats,	(c)	Panthera spp., (d) Panthera	spp.	(LOSOCV),	
(e)	ALL	dataset	and	(f)	ALL	dataset	(LOSOCV).	Detailed	model	accuracy	and	precision	are	summarized	in	Table 3.	In	the	ALL	dataset,	age	
is converted to relative age (individual age relative to the maximum lifespan of its species). The solid lines and dashed lines represent the 
regression and identity lines (y = x)	respectively.	MAE	in	ALL	dataset	models	are	measured	based	on	relative	age	(percentages)	and	are	not	
directly	comparable	with	those	of	other	study	groups	based	on	age	(years).	MAE,	mean	absolute	error;	R2,	squared	correlation	between	
predicted age and chronological age; r,	Pearson	correlation	between	predicted	age	and	chronological	age.

Domestic cat
MAE = 1.966 yr
R2 = 0.808
r = 0.899

Tsushima leopard cat
MAE = 1.348 yr
R2 = 0.805
r = 0.897

Panthera spp.
MAE = 1.552 yr
R2 = 0.873
r = 0.934

Panthera spp. (LOSOCV)
MAE = 1.582 yr
R2 = 0.875
r = 0.936

ALL dataset
MAE = 0.086
R2 = 0.737
r = 0.859

ALL dataset (LOSOCV)
MAE = 0.086
R2 = 0.735
r = 0.857

(a) (b)

(c) (d)

(e) (f)
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10 of 15  |     QI et al.

models, a larger ΔAge	was	found	in	jaguars	than	the	other	spp.	under	
LOIOCV	(p = .032,	Table 4).

The results of mixed linear regression for investigating the fac-
tors influencing |ΔAge|	 are	 summarized	 in	Table S6. Male domes-
tic cats had larger |ΔAge|	in	the	best	domestic	cat	model	(p = .028).	
Older	Panthera had slightly larger |ΔAge|	 in	the	best	Panthera spp. 

models,	regardless	of	whether	under	LOIOCV	(p = .0497)	or	LOSOCV	
(p = .037).	Samples	of	male	individuals	(p = .007)	and	Tsushima	leop-
ard cats (p < .001)	had	larger	|ΔAge|	in	the	best	ALL	dataset	model	
under	 LOIOCV.	Older	 samples	 (p = .035)	 and	 samples	 of	 Tsushima	
leopard cats (p = .0013)	 had	 larger	 |ΔAge|	 in	 the	best	ALL	dataset	
model	under	LOSOCV.

3.4  |  Age prediction for wild samples of Tsushima 
leopard cats

The predicted ages of wild- born Tsushima leopard cats of unknown 
age	 are	 summarized	 in	 Table 5. Excluding the two samples from 
Leocat_w3,	the	estimated	epigenetic	ages	of	others	were	consistent	
with the ages estimated from morphological observation. The esti-
mated ages of the samples taken at short intervals, such as within 
1 year,	also	showed	variation	to	some	extent	(e.g.	individual	Leocat_
w1,	 mean = 10.438 years,	 SD = 0.556 years;	 individual	 Leocat_w4,	
mean = 10.144 years,	SD = 1.269 years).

4  |  DISCUSSION

From the performance of the age estimation models developed for 
domestic cats, Tsushima leopard cats and Panthera spp., age estima-
tion in these species appeared to be successful with high accuracy 
using	 8–23	 CpGs	 from	 only	 2–5	 gene	 regions,	 cross-	validated	 by	
LOIOCV	(Pearson	correlation	coefficient	between	predicted	age	and	
chronological	age	[r] > .890,	MAE	ranging	1.348–1.966 years;	Table 3). 
The	 cost	 for	 next-	generation	 sequencing	 analysis	 per	 sample	was	
approximately $7 based on five markers for a total of 334 samples, 
which	 was	 less	 than	 one-	tenth	 of	 HorvathMammalMethylChip40	
($160/sample).	Therefore,	the	method	presented	in	this	study	is	cost-	
effective and practical for conservation applications. To the best of 
our knowledge, this study is also the first to analyse several Felidae 
species, from small to big cat species (Panthera spp.), with appre-
ciable	sample	sizes.	We	also	acknowledge	that	model	performance	
could be further improved by applying more age- correlated mark-
ers. For example, SLC12A5, as demonstrated by Raj et al. (2021), was 
highly related to the age of domestic cats and is a strong candidate.

DLX5 and ELOVL2 were the two gene regions selected across all 
the targeted species that indicate possible usefulness as age estima-
tion	markers	for	other	unstudied	Felidae	species.	As	was	mentioned	
in	Section	2.6, the coverage of DLX5 was lower than other regions. 
We	suspect	that	the	skewed	distribution	of	the	number	of	reads	for	
target regions is because during library preparation, all target regions 
were	pooled	per	 sample	and	 tagged	using	a	PCR-	based	approach;	
although	the	starting	mixture	was	adjusted	to	be	equimolar,	the	lon-
gest regions (DLX5)	were	the	least	amplified.	Although	the	less	cov-
erage may have resulted in a larger deviation of DLX5 methylation 
rates (Roeh et al., 2018), resulting in less correlation with age, the 
region is still found to be important for all species (Figure 2). RALYL 
showed	considerable	age-	related	methylation	changes	of	 its	CpGs	

TA B L E  4 Coefficients	and	p- values for the mixed linear 
regression of ΔAge	in	the	best	age	estimation	models	of	Panthera 
spp.	and	the	ALL	dataset.

Estimate p- value

Panthera spp.
Marginal 

R2 = .311
Conditional 

R2 = .532

(Intercept) 1.736 .009**

Chronological age −0.147 .0011**

Sex	(Male) −0.336 .512

Health	condition	(Diseased) −2.294 <.001***

Species	(Jaguar) 2.390 .032*

Species	(Leopard) 0.100 .877

Species	(Lion) 0.738 .343

Species	(Tiger) 0.576 .474

Panthera spp. 
(LOSOCV)

Marginal 
R2 = .274

Conditional 
R2 = .633

(Intercept) 1.778 .013*

Chronological age −0.161 <.001***

Sex	(Male) 0.028 .961

Health	condition	(Diseased) −1.635 .005**

Species	(Jaguar) 1.229 .292

Species	(Leopard) −0.204 .778

Species	(Lion) 0.837 .335

Species	(Tiger) 0.286 .753

ALL	dataset
Marginal 

R2 = .391
Conditional 

R2 = .416

(Intercept) 0.085 <.001***

Chronological relative age −0.224 <.001***

Sex	(Male) −0.002 .864

Health	condition	(Diseased) 0.007 .576

Species	(Tsushima	leopard	
cat)

0.098 <.001***

Species	(Panthera spp.) −0.026 .303

Age × Species	(Tsushima	
leopard cat)

−0.301 <.001***

Age × Species	(Panthera 
spp.)

0.048 .413

ALL	dataset	
(LOSOCV)

Marginal 
R2 = .477

Conditional 
R2 = .568

(Intercept) 0.128 <.001***

Chronological relative age −0.367 <.001***

Sex	(Male) −0.002 .888

Health	condition	(Diseased) 0.000 .994

Species	(Tsushima	leopard	
cat)

0.067 .007**

Species	(Panthera spp.) −0.092 <.001***

Age × Species	(Tsushima	
leopard cat)

−0.215 .0011**

Age × Species	(Panthera 
spp.)

0.220 <.001***

Note: Results of the remaining study groups are presented in Table S5.
*p < .05.	**p < .01.	***p < .001.
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    |  11 of 15QI et al.

for Panthera spp. (i.e. most of the correlation coefficients were larger 
than	.5,	Appendix	S5), which was consistent with the observations 
made in Qi et al. (2021).	However,	RALYL was not the first choice 
in age estimation model building for Panthera spp. PRMT8 appears 
to be an important gene for domestic cats and Tsushima leopard 
cats,	because	 the	methylation	changes	of	 its	CpGs	were	 found	 to	
be highly correlated with age, and about one- third of the sites were 
selected in the best models of these two small feline species.

We	also	built	common	models	across	all	targeted	felid	species.	
However,	 the	model	performance	was	not	 as	 good	as	 the	 species	
group- specific models (Table S3). This is especially so for Tsushima 
leopard	cats,	as	the	MAE	increased	drastically	from	1.348	to	2.388	
(under	 LOIOCV)	 and	 2.468	 (under	 LOSOCV).	 Younger	 Tsushima	
leopard cats tended to have an older predicted age, while older 
samples tended to have a younger predicted age, compared to 
their chronological age (Figure 3e,f).	 Although	 the	 selected	 CpGs	
in	 the	 ALL	 dataset	 LOIOCV	model	 covered	 most	 of	 the	 CpGs	 in	
the Tsushima leopard cat- specific model (Figure 2), the contribu-
tion	of	CpGs	was	assumed	 to	be	 largely	different	 (SVMr	 is	a	non-	
linear model, so the actual feature contribution was not extracted). 
Additionally,	the	increased	complexity	of	the	ALL	dataset	LOIOCV	
model	(i.e.	larger	sets	of	CpGs,	that	is,	31	CpGs	were	used)	and	sig-
nificant species difference observed in both ΔAge	 and	 |ΔAge|	 of	
the	best	LOSOCV	model	(Table 4; Tables S5 and S6) implies that, at 
least for the five genomic regions explored in this study, combining 
all samples to construct a common age estimation model for felids 
seems not advisable.

A	 common	 age	 estimation	 model	 for	 Panthera spp. seems 
plausible, which is supported by the high prediction accuracy 
(MAE = 1.582 years)	 maintained	 in	 the	 Panthera	 LOSOCV	 model	
(Table 3; Figure 3f). The closer genetic distance among Panthera 
spp. could be the reason for the relatively high estimation accuracy 

(Li et al., 2016). Because only two regions (DLX5 and ELOVL2) were 
used to construct the age estimation model for Panthera spp., the 
cost	 could	 be	 reduced	 to	 half—only	 about	 $3	 per	 DNA	 sample.	
Nevertheless,	 species	 differences	 were	 observed	 to	 some	 extent	
in	 the	LOIOCV	model.	 The	difference	between	 the	predicted	and	
chronological age of jaguars tended to be larger than the other spe-
cies	in	the	LOIOCV	model	(Table 4); however, a definite conclusion 
cannot be made as only four samples of jaguars were available. The 
performance of the developed models with regard to some Panthera 
spp.,	especially	jaguars,	African	lions	and	Amur	tigers,	cannot	be	as-
certained	due	to	the	low	sample	size.	The	samples	of	Panthera spp. 
were	obtained	from	captive	individuals	in	Japanese	zoos,	which	in-
evitably included some individuals with close or distant blood rela-
tions and a relatively uniform living environment, which may also be 
one	of	the	reasons	for	the	small	model	deviation.	In	the	future,	this	
should	be	addressed	using	a	 larger	sample	size	 from	more	diverse	
parentage and environment for constructing a more reliable com-
mon model for Panthera spp. and separate models for each species, 
to further investigate whether a common model or separate models 
is best suited for the Panthera genus.

Stepwise	 elastic	 net	 feature	 selection-	SVMr	 regression	 yielded	
the	best	models	in	our	study.	In	these	models,	some	CpGs	with	a	low	
correlation (Figure 2) between the methylation rate and chronologi-
cal	age	were	selected.	This	suggests	that	CpGs	must	not	be	selected	
based	solely	on	the	correlation	coefficients.	Sources	of	variation	for	
the	correlation	between	CpGs	and	age	are	 limited	when	few	genes	
are	used.	Furthermore,	in	some	cases,	CpGs	that	are	highly	correlated	
with age are likely to cluster at a limited number of gene locations, fo-
cusing only on the magnitude of the correlation coefficients with bias 
towards	selecting	only	CpGs	with	a	similar	correlation	with	age.	This	
results in a low diversity of explanatory variables in age estimation 
models	and	consequently,	low	accuracy	in	the	age	estimates.

TA B L E  5 Predicted	age	and	sample	information	of	wild-	born	Tsushima	leopard	cats.

Individual ID Sex Rescued date Sampling date
Predicted age/age stage at the time of 
sampling (morphology)

Predicted age (years) 
(DNA methylation)

Leocat_w1 F 2005/3/4 2013/5/23 11 years 10.306

Leocat_w1 F 2005/3/4 2013/6/21 11 years 11.048

Leocat_w1 F 2005/3/4 2013/7/28 11 years 9.961

Leocat_w2 M 2010/8/6 2015/3/12 6 years 6.044

Leocat_w2 M 2010/8/6 2021/1/11 12 years 13.138

Leocat_w3 F 2015/12/26 2018/2/13 Old 10.437

Leocat_w3 F 2015/12/26 2020/6/9 Old 6.166

Leocat_w4 F 2020/5/13 2020/6/28 Adult/Old 10.139

Leocat_w4 F 2020/5/13 2020/10/15 Adult/Old 8.636

Leocat_w4 F 2020/5/13 2020/11/19 Adult/Old 10.013

Leocat_w4 F 2020/5/13 2020/12/6 Adult/Old 9.057

Leocat_w4 F 2020/5/13 2020/12/16 Adult/Old 9.807

Leocat_w4 F 2020/5/13 2021/1/14 Adult/Old 9.448

Leocat_w4 F 2020/5/13 2021/6/22 Adult/Old 12.257

Leocat_w4 F 2020/5/13 2021/10/23 Adult/Old 11.796
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12 of 15  |     QI et al.

Unlike most previous studies, we included both healthy samples 
and	 samples	with	 a	 variety	 of	 diseases.	 In	 the	 context	 of	wildlife	
conservation, rescued individuals of unknown age may be healthy or 
diseased; therefore, an age estimation model that could be applied 
with sufficient accuracy on individuals with varied health conditions 
would	 be	 required.	 Our	 models	 for	 domestic	 cats	 and	 Tsushima	
leopard cats did not find significant estimation differences between 
the healthy and unhealthy samples (Tables S5 and S6). For domestic 
cats, further evidence was provided by the very similar performance 
in the model trained on all samples and that trained on the diseased 
samples	 to	 predict	 the	 age	 of	 healthy	 samples.	 Consequently,	 it	
suggests that our models for the two small cat species are robust 
enough to estimate ages in samples whose health conditions are var-
ied or unknown.

We	noticed	a	better	estimation	accuracy	in	the	diseased	samples	
of Panthera spp. compared to that of the healthy samples (Table 4). 
Most of these diseased samples were from individuals between the 
ages	of	10	and	20 years	(Appendix	S3), which may still be relatively 
healthy considering their relative ages to the species' maximum life 
spans, and thus expressed a young epigenetic age. Moreover, cur-
rent disease diagnosis methods for Panthera spp. are not as exten-
sive	 as	 those	 used	 for	 domestic	 cats.	 Some	 individuals	who	were	
unhealthy and displayed shifted epigenetic age, may have been mis-
diagnosed	as	healthy	individuals,	or	vice	versa.	Nevertheless,	only	a	
few diseased samples (n = 13)	were	included	compared	to	the	healthy	
samples (n = 83)	in	the	Panthera spp. group (Table 1). Therefore, the 
effect of disease on age estimation cannot be accurately estimated 
based on the samples included in this study.

Similar	 to	 the	 results	 of	 many	 previous	 studies	 (El	 Khoury	
et al., 2019;	Prado	et	al.,	2021; Raj et al., 2021), the developed models 
tended	to	underestimate	the	age	of	older	individuals.	As	suggested	
by	El	Khoury	et	al.	(2019), one explanation could be the saturation 
of	methylation	rates	of	targeted	CpGs,	that	 is,	CpGs	already	reach	
either full methylation or complete de- methylation before the indi-
viduals	age	further.	Another	assumption	is	that	long-	lived	individuals	
are biologically younger and have a younger predicted epigenetic 
age than their chronological age.

We	used	LOIOCV	for	the	age	estimation	models	built	on	captive	
Tsushima leopard cats to reduce the influence of different sample 
sizes	 in	different	 individuals;	however,	 future	sampling	should	be	
improved	further.	We	only	had	a	small	number	of	samples	except	
for	the	age	classes	2–6 years	old,	and	most	samples	over	6 years	old	
came	from	only	two	individuals	(Leocat_3	and	Leocat_5;	Figure S2). 
We	 also	 predicted	 the	 ages	 of	 several	 wild-	born	 Tsushima	 leop-
ard cats of unknown age (Table 5), including both newly rescued 
(Leocat_w4)	 and	 those	 who	 lived	 long	 in	 a	 captive	 environment	
(Leocat_w1,	Leocat_w2,	Leocat_w3).	The	estimation	 results	were	
satisfactory, which implied that this model, which was developed 
using captive individuals, can potentially also be applied to wild 
individuals.

Importantly,	 the	estimation	variation	existed	even	among	sam-
ples	that	were	collected	within	1 year	from	the	same	individual	(see	
within- individual age change plot, Figures S1–S3). Therefore, for all 

species, we recommend multiple sampling within a 1- year window 
or less to obtain an average predicted age as the final predicted age. 
Environmental	 effects	 are	 also	 associated	 with	 DNA	 methylation	
change and age acceleration. To investigate the accuracy of age esti-
mation on wild populations, a larger sample of wild- born individuals 
with known age, especially subadult and young adult individuals, is 
required.

In	 conclusion,	 we	 successfully	 developed	 epigenetic	 clocks	
using	8–23	CpGs	from	2	to	5	gene	regions	with	satisfactory	accu-
racy	 for	 domestic	 cats	 (MAE = 1.966 years),	 Tsushima	 leopard	 cats	
(MAE = 1.348 years)	 and	 Panthera	 spp.	 (MAE = 1.552 years),	 using	
cost-	effective	 next-	generation	 sequencing	 and	 multiple	 machine-	
learning	 algorithms.	 Our	 models	 for	 domestic	 cats	 and	 Tsushima	
leopard cats are applicable to individuals of varying healthy con-
ditions.	We	do	not	 recommend	building	a	common	age	estimation	
model	 for	 all	 the	 target	 species	 using	 our	 markers.	 Alternatively,	
we showed the possibility of developing a common model for five 
Panthera spp. The changes in predicted age for the same individual 
implied that multiple sampling within a 1- year window to obtain the 
mean of predicted age as the final predicted age is advisable for fu-
ture applications.
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