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Abstract. We present methods of dealing with non-commutative rational
functions in free probability theory. First, we upgrade the convergence in ∗-
distribution of non-commutative random variables to the convergence in distri-
bution of spectral measures of self-adjoint non-commutative rational functions.

Second, we show equivalence between the rationality of operators generated

by free semicircles and finite rank commutators with right annihilation (as
well as creation) operators, which is a free probabilistic analog of the conjec-

ture by Connes in the context of non-commutative geometry that is solved

by Duchamp and Reutenauer. Aiming to extend the second result for other
tuples of operators, we prove the existence of dual and conjugate systems

characterized by the adjoint of non-commutative derivatives. For the further

analysis of q-Gaussians, we show a strong convergence result of q-Gaussians
for −1 < q < 1. This is the thesis for the author’s Ph.D. course at Kyoto

University.
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1. Introduction

Free probability has been successfully developed since Dan Voiculescu estab-
lished this theory with his seminal results on random matrices [84, 88]. The orig-
inal motivation of free probability is to study free products of operator algebras
from a probabilistic viewpoint, and the free analog of independence, so-called free
independence, plays a significant role in this theory. Moreover, phenomenons of as-
ymptotic freeness enable us to connect free probability theory with Random Matrix
Theory, which has made this theory more attractive. Typical examples of asymp-
totic freeness are independent Haar unitary random matrices and Gaussian Unitary
Ensemble (GUE), which converge in joint distribution to free Haar unitaries and
respectively free semicircles. From the aspect of operator algebras, reduced free
group C∗-algebras C∗

red(Fd) and free group von Neumann algebras L(Fd) are typ-
ical examples of operator algebras generated by freely independent distributions,
which have not been fully understood yet (e.g. isomorphism problem of free group
von Neumann algebras). Voiculescu showed some properties of such von Neumann
algebras by introducing the notion of free entropy [87], which is also one of the ap-
plications of free probability. Nowadays, free probability has been applied to many
fields; operator algebra, Random Matrix, combinatorics, random graphs, quantum
information, deep learning,...etc.

Our starting point of the study is the relation between free probability and non-
commutative rational functions which are the generalization of rational functions
in a non-commutative setting. From convergence in non-commutative distribution,
we can see that spectral measures of self-adjoint non-commutative polynomials
also converge in distribution, but it is not straightforward that we can replace
non-commutative polynomials with non-commutative rational functions. This is
because operators obtained by non-commutative rational functions are often un-
bounded and might not be well-defined. Well-definedness of evaluations of any
non-commutative rational functions is discussed in Mai-Speicher-Yin [60]. They
proved the equivalent conditions for well-defined evaluations which involve maxi-
mality of the free entropy dimension and more generally the quantity ∆ defined in
Connes-Shlyakhtenko [29], and they also proved that this evaluation induces the
embedding of non-commutative rational functions into affiliated operators. This
embedding question was affirmatively answered long ago in [56], whose goal was
to provide an answer to the Atiyah conjecture for some groups including the free
groups. The first main result of this thesis focuses on how to see convergence in
distribution of non-commutative rational functions evaluated in given operators in
a finite von Neumann algebra. In particular, we deal with the convergence of the
empirical eigenvalue distribution of random matrices. Let us also mention that
there are many natural random matrix models involving the inverse operation and



RATIONAL FUNCTIONS AND q-DEFORMATION 3

that this is an important topic nowadays, see e.g. [36, 58]. One goal of Section 3
is to provide a unified approach to the study of the limiting spectral distribution
under such generality. Therefore, the natural questions are:

• can we make sense of random matrix models involving inverses?
• do they converge towards their natural limiting candidates, whose proper-
ties have been unveiled recently?

These questions have been phrased by Speicher during a meeting at MFO in 2019,
[80]. Partial answers have been given under some assumptions such as bounded
evaluation and specific random matrix models, cf. [93, 36, 94].

Theorem 1.1 (Theorem 3.10). Let XN = (XN
1 , . . . , XN

d1
) be a d1-tuple of determin-

istic self-adjoint matrices and let UN = (UN
1 , . . . , UN

d2
) be a d2-tuple of deterministic

unitary matrices. Further, let R be a non-degenerate square (matrix-valued) non-
commutative rational expression in d = d1 + d2 variables which is self-adjoint of
type (d1, d2) in the sense of Definition 2.34. Suppose that the following conditions
are satisfied:

(i) (XN , UN ) converges in ∗-distribution towards a d-tuple of non-commutative
random variables (x, u) in some tracial W ∗-probability space (M, τ) satis-
fying ∆(x, u) = d.

(ii) For N large enough R(XN , UN ) is well-defined, i.e., there exists N0 ∈ N
such that (XN , UN ) ∈ domMN (C)(R) for all N ≥ N0.

Then (x, u) ∈ domM̃(R), so that R(x, u) is well-defined, and the empirical measure

of R(XN , UN ) converges in law towards the analytic distribution of R(x, u).

For a more concrete analysis of non-commutative rational functions, Helton-
Mai-Speicher [44] established analysis of non-commutative rational functions via
operator-valued Cauchy transform. Arizmendi-Cébron-Speicher-Yin [2] showed
how to compute atoms of spectral measures of non-commutative rational functions
evaluated in freely independent distribution and show free independence gives the
minimal weight of atoms (i.e. unavoidable atoms) when each distribution is given.
Hoffmann-Mai-Speicher [46] developed a way to compute the inner rank of matrices
in non-commutative random variables by using free probability.

These studies give us reasonable motivations to find further connections between
free probability and non-commutative rational functions. As the next step, we focus
on a characterization of non-commutative rational functions in terms of Hankel
operators. Such attempts are classically known as Kronecker’s theorem [52]. In
terms of functional analysis, this theorem says that a L∞-function f on the unit
circle is a rational function if and only if [P, f ] is a finite rank operator for the
Riesz projection P (i.e. the projection on to the Hardy space). A non-commutative
analog of this theorem was conjectured by Connes in his book [28]. In this book,
he constructed a counterpart of P (denoted by F ) from the action of free groups
on trees. With a K-theoretic application of the operator F , he also asserted that
an operator a in the free group C∗-algebra is in a kind of rational closure of the
free group algebra if and only if [F, a] is a finite rank operator. His conjecture was
proved by Duchamp and Reutenauer[34] based on the theory of non-commutative
rational series. Their result is also extended to the unbounded case by Linnell [57].

In the second main result, we show an analog of Duchamp-Reutenauer [34] for
free semicircle distributions. While independent Gaussian distributions are funda-
mental distributions in classical probability theory, free semicircle distributions are
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the objects of center in free probability theory. This can be seen in the free central
limit theorem, the free analog of the Wick formula, and characterizations by free
cumulants and free difference quotients. In particular, as well as independent Gaus-
sians are represented on the symmetric Fock space, free semicircle distributions can
be represented as sums of left creation and annihilation operators on the full Fock
space. Then the right annihilation (as well as creation) operators r∗1 , . . . , r

∗
d play

a similar role as the operator F . Namely, we have the following theorem for free
semicircles:

Theorem 1.2 (Theorem 4.1). Let a be in a von Neumann algebra W∗(s) generated
by free semicircles s = (s1, . . . , sd). Then {[r∗i , a]}di=1 are finite rank operators on
F0(H) if and only if a ∈ Cdiv(s). In addition, we have

Cdiv(s) = Crat(s) ⊂ C⟨s⟩

where C⟨s⟩ is the norm closure of non-commutative polynomials C⟨s⟩ in W∗(s).

In this theorem, we consider two notions of rationality based on the argument in
Duchamp-Reutenauer, division closure Cdiv(s) and rational closure Crat(s) of C⟨s⟩
in W∗(s) (see Definition 2.42). We can also show an analog of Linnell’s result for
unfounded non-commutative rational functions in free semicircle.

In free probability, we see r∗1 , . . . , r
∗
d as a dual system for free semicircles. A

dual system for a given tuple (X1, . . . , Xd) of non-commutative random variables
is defined as a tuple (D1, . . . , Dd) of operators such that [Di, Xj ] = δi,jP1 where
P1 is the projection onto the cyclic vector in the GNS representation. The notion
of dual systems is introduced by Voiculescu [89] with the closely related notion of
conjugate systems which are defined by a tuple of vectors (∂∗

1 (1 ⊗ 1), . . . , ∂∗
d(1 ⊗

1)) in the GNS representation where ∂1, . . . , ∂d are the free (partial) difference
quotients. Both notions characterize how close given non-commutative distributions
are to free semicircle distributions, and they are used to define non-microstate free
entropy. Based on the motivation to study dual systems and non-commutative
rational functions, we tried to investigate examples of dual systems and conjugate
systems, and we focused on the q-deformation of free semicircles.

The q-defomation of free semicircle distributions is known as q-Gaussians (or
q-semicircle distributions), which are introduced by Frisch-Bourret [38] and later
represented as operators and the vacuum state on the q-defomed Fock space by
Bożejko-Kümmerer-Speicher [11]. More precisely, they can be written as Ai = li+l∗i
where {li}di=1 are left creation operators that satisfy q-Canonical Commutation
Relations (q-CCR, see [9]):

l∗i lj − qlj l
∗
i = δi,jI.

One of the interesting objects to this topic is the von Neumann algebras generated
by the q-Gaussians A = (A1, . . . , Ad), so-called q-Gaussian von Neumann algebras.
The q-Gaussian von Neumann algebras have been studied for many years. One of
the basic questions is whether and how those algebras depend on q. The extreme
cases q = 1 and q = −1 are easy to understand and they are in any case different
from the q in the open interval −1 < q < 1. The central case q = 0 is generated
by free semicircular elements and free probability tools give easily that this case is
isomorphic to the free group factor. So the main question is whether the q-Gaussian
algebras are, for −1 < q < 1, isomorphic to the free group factor.

Over the years it has been shown that these algebras share many properties with
the free group factors. For instance, for all −1 < q < 1 the q-Gaussian algebras are
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II1-factors, non-injective, prime, and have strong solidity. Here is an incomplete
list of papers proving these properties [11], [78], [75], [67], [73], [3]. There are also
some random matrix models for q-Gaussians in [77], and [72].

A partial answer to the isomorphism problem was achieved by A. Guionnet and
D. Shlyakhtenko [39], who proved that the q-Gaussian algebras are isomorphic to
the free group factors for small |q| (where the size of the interval depends on d
and goes to zero for d → ∞). However, it is still open whether this is true for all
−1 < q < 1.

In the third main result of this thesis, we compute a dual system and from this
also a conjugate system for q-Gaussians:

Theorem 1.3. Let d ∈ N be finite and −1 < q < 1 and consider corresponding
q-Gaussians A = (A1, . . . , Ad). Then there exists a normalized dual system and
thus also a conjugate system for the q-Gaussians A = (A1, . . . , Ad). Furthermore,
the conjugate system is Lipschitz conjugate.

Let us point out that the existence of a conjugate system for the q-Gaussians
was shown for small |q| by Y. Dabrowski [31], and Guionnet and Shlyakhtenko
proved their isomorphism by using this result and the free monotone transport.
We remark that they consider right annihilation operators as a different version of
dual systems, which are operators such that their commutators with q-Gaussians
are equal to certain Hilbert-Schmidt operators. On the other hand, our approach
starts by finding the concrete formula for dual systems which are operators whose
commutators with q-Gaussians are exactly the orthogonal projection onto the vac-
uum vector. Our argument is based on the recursion induced by the definition of
dual systems, and it allows us to give a precise combinatorial formula involving
crossing partitions. We want to call the attention of the reader to the fact that
our formulas for the dual system and the conjugate operators contain a factor of
the form qm(m−1)/2 as coefficients for elements in the m-particle space, in contrast
to previous works where such coefficients were usually of the form qm. Since all
other exponents arising from norm estimates are only linear in m, this quadratic
exponent in m is in the end responsible for the fact that our estimates work for all
q in the interval (−1, 1).

Having the existence of conjugate systems for all q with −1 < q < 1 has then, by
general results, many consequences for all such q; like, for any −1 < q < 1, non-Γ of
q-Gaussian algebras, by [31], or that any non-constant self-adjoint rational function
over q-Gaussians has no atom in its distribution, by [59], [60]. In Lemma 37 of [31],
algebraic freeness of non-commutative power series over q-Gaussians is proved.

There are also quite some applications of the fact that our conjugate system is
Lipschitz conjugate. By [31], the existence of a Lipschitz conjugate system and
Connes embeddability (which is given for our q-Gaussians, for all q) imply the
maximality of the micro-states free entropy dimension. As a consequence of this
or a direct application of Theorem 1.3 in [33], we can recover the fact that W∗(A)
has no Cartan subalgebra for any −1 < q < 1, which has been already shown by S.
Avsec [3] by other methods. Furthermore, the paper by M. Banna and T. Mai [4]
gives us Hölder continuity of cumulative distribution functions of non-commutative
polynomials in the q-Gaussians.

Let us collect in the following corollary the most important consequences of our
result.
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Corollary 1.4. For all −1 < q < 1 we have the following properties.
1) The division closure of the q-Gaussians in the unbounded operators affili-

ated to W∗(A1, . . . , Ad) is isomorphic to the free field. This implies that any non-
commutative rational function r in d non-commuting variables can be applied to the
q-Gaussians, yielding a (possibly unbounded) operator r(A1, . . . , Ad). If r is not the
zero rational function, then this operator has trivial kernel; i.e., for any self-adjoint
r which is different from a constant the corresponding distribution has no atoms.

2) There is no non-zero non-commutative power series
∑

w∈[d]∗ αwA
w of radius

of convergence R > ∥Ai∥ such that
∑

w∈[d]∗ αwA
w = 0.

3) For any self-adjoint non-commutative polynomial Y = p(A1, . . . , Ad) over
A1, . . . , Ad, the cumulative distribution function FY of the distribution Y is Hölder
continuous with exponent 1

2degY −1
where degY is the degree of p.

4) The q-Gaussian operators have finite non-microstates free Fisher information
and maximal microstates free entropy dimension,

Φ∗(A1, . . . , Ad) < ∞, and δ0(A1, . . . , Ad) = d.

5) W∗(A1, . . . , Ad) does not have property Γ, i.e., there is no non-trivial central
sequence.

6) W∗(A1, . . . , Ad) does not have a Cartan subalgebra.

We also remark that the existence of a conjugate system for q-Gaussians was
extended to the non-tracial and twisted cases by Kumar-Skalski-Wasilewski [53],
Kumar [54] and Yang [92] , which were applied to show the factoriality of q and
twisted Araki-Woods algebra.

Now, we go back to the convergence of non-commutative random variables in
joint distribution. It is obvious that as q → q0, q-Gaussians converge to q0-
Gaussians in joint distribution. In fact, it can be upgraded to so-called strong
convergence, which is the fourth main result of the thesis. The concept of strong
convergence has attracted substantial attention in the fields of free probability and
Random Matrix Theory. This interest is largely driven by the tendency of particu-
lar multiple random matrices (for instance, independent GUE [42] and Haar unitary
[24]) to demonstrate strong convergence to free random variables when their size
goes to infinity. Recently, it has also been possible to involve systematically the
composition with smooth functions, even at the level of strong convergence, cf.
[26, 69].

As an example of applications, once we can show strong convergence, we can es-
timate the operator norm of a polynomial in random matrices with sufficiently large
sizes by computing that of their limit, which can be applied to show additivity viola-
tion of the minimum output entropy in quantum information [25]. Moreover, strong
convergence of random matrices has applications to operator algebras. An early ap-
plication is due to Haagerup and Thorbjørnsen [42] who prove that Ext(C∗

red(F2))
is not a group. Another application was found by Hayes [43] to reformulate the
Peterson-Thom conjecture for free group factors, and it was subsequently proved
by Belinschi-Capitaine [5], and Bordenave-Collins [14].

Strong convergence also appears in group and quantum group theory. In particu-
lar, Brannan [16] proved strong convergence of the free orthogonal quantum groups.
His idea is to prove the Haagerup-type inequality which is also known as RD (Rapid
Decay) property and to combine it with convergence in non-commutative distribu-
tion.
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Now, we state our main result of strong convergence of q-Gaussians.

Theorem 1.5 (Theorem 6.1). For any −1 < q0 < 1, strong convergence of q-

Gaussians A(q) = (A
(q)
1 , . . . , A

(q)
d ) holds at q0, i.e. for any non-commutative poly-

nomial P ,

lim
q→q0

τ [P (A(q))] = τ [P (A(q0))],

lim
q→q0

∥P (A(q))∥ = ∥P (A(q0))∥.

Thanks to strong convergence and functional calculus, we can also show the con-
vergence of spectrums in the Hausdorff distance. We can generalize our result in
a more general setting where operators satisfy “uniform RD property” and conver-
gence in non-commutative ∗-distribution. Let us mention that this theorem also
holds if we replace non-commutative polynomials with bounded non-commutative
rational functions evaluated in the limit operators A(q). This follows from the result
of Yin [93] saying that once we have strong convergence, we can extend it to the
level of non-commutative rational functions.

We conclude the introduction with remarks on future perspectives. Here, we list
possible questions on the main results of the thesis:

• Does Theorem 4.1 hold for other tuples of operators with dual systems?
Possible candidates are q-Gaussians. However, solving this problem is
technically hard since the combinatorial methods for q-Gaussians are much
more difficult than for free semicircles.

• Is there any characterization of an operator a ∈ W∗(s) such that [r∗i , a] is
a compact operator or Schatten class operator for each i ∈ {1, . . . , d}? In
terms of the theory of Hakel operators, we can say this operator belongs
to a kind of Vanishing Mean Oscillation (VMO) or Besov spaces.

• When the number of generators is finite and q moves in (−1, 1), are all
q-Gaussian von Neumann algebras isomorphic? Unfortunately, we are not
able to use our result to add anything to the isomorphism problem. How-
ever, the fact that the free entropy dimension is maximal for all q in the
whole interval is another indication that they might all be isomorphic to
the free group factor.

This thesis is separated into the preliminary part and the main results. In the
preliminary part, we introduce fundamental facts for the proof of the main results.
Subsequently, we prove our main results introduced in this section.
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2. Preliminaries

2.1. Free probability.

2.1.1. Free independence and free semicircle distribution. We start with the def-
inition of non-commutative probability spaces which are fundamental spaces to
deal with non-commutative probability. We refer to several standard textbooks
[85, 68, 61] for the basic knowledge of this area. The key observation is that classi-
cal random variables are determined by their joint moments in some cases, including
the case when they have bounded support (Riesz-Markov-Kakutani representation
theorem). The idea of non-commutative probability is to extract the information of
joint distribution as a linear functional on non-commutative ∗-polynomials. Non-
commutative ∗-polynomials are polynomials over C in non-commutative formal
variables x1, . . . , xd and x∗

1, . . . , x
∗
d. If we define the operation ∗ by (x∗

i )
∗ = xi, then

this ∗ can be extended to the involution (i.e. anti-linear, idempotent, (ab)∗ = b∗a∗)
of the unital algebra of non-commutative ∗-polynomials C⟨x1, . . . , xd, x

∗
1, . . . , x

∗
d⟩.

Thus it turns out to be natural to consider a unital ∗-algebra with a state as the
framework of non-commutative probability.

Definition 2.1. A (non-commutative) ∗-probability space (A, ϕ) is a couple of a
unital ∗-algebra A and state ϕ, which is a linear map ϕ : A → C such that ϕ(1) = 1
and ϕ(a∗a) ≥ 0 for any a ∈ A. Non-commutative ∗-probability spaces (A, ϕ) are
differently called in the following contexts.

• C∗-probability space: A is a unital C∗-algebra and ϕ is a state on A.

• W∗-probability space: A is a von Neumann algebra and ϕ is a state on A
that is normal, i.e. W∗-continuous on the unit ball {a ∈ A; ∥a∥ ≤ 1}.

We often assume the following two properties on the state, which hold in many
examples.

Definition 2.2. A state ϕ on a ∗-algebra A is faithful if ϕ(a∗a) > 0 for any a ̸= 0,
and ϕ is tracial if ϕ(ab) = ϕ(ba) for any a, b ∈ A.
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Example 2.3. Here, we give two examples of (C∗ or W∗) non-commutative proba-
bility spaces with faithful normal traces. The first example is the matrix algebra
Mn(C), and the faithful trace is given by normalized trace:

trA =
1

n

n∑
i=1

aii, A = (aij) ∈ Mn(C).

The second example is the operator algebra constructed from a group. Let G be a
discrete group with the unit e and consider l2-space l2(G). We define the unitary
operator λ(g) on l2(G) by

λ(g)δh = δgh

where {δh}h∈G is the canonical basis on l2(G). This induces ∗-representation of
the group G and we call this representation the left regular representation of G.
We obtain C∗-algebra C∗

red(G) by taking a norm closure of the image of the group
algebra λ(C[G]) and call it reduced group C∗-algebra of G. Moreover, if we take the
weak closure (or double commutant) of λ(C[G]), we obtain von Neumann algebra
L(G) and we call it the group von Neumann algebra of G. Both operator algebras
have the same canonical faithful trace τe defined by

τe(X) = ⟨Xδe, δe⟩.

As well as classical probability theory, the convergence of random variables
is an important phenomenon in non-commutative probability theory. In a non-
commutative setting, we have a state instead of a probability measure and see the
convergence in distribution as the convergence in moments.

Definition 2.4. Let (An, ϕn)n∈N and (A∞, ϕ∞) be ∗-probability spaces, andX(n) =

(X
(n)
1 , . . . , X

(n)
d )n∈N andX(∞) = (X

(∞)
1 , . . . , X

(∞)
d ) be d-tuples of non-commutative

random variables (not necessarily self-adjoint) in An and A∞. Then, we say
X(n) converges in ∗-distribution (or joint distribution) to X(∞) if for any non-
commutative ∗-polynomial P , we have

lim
n→∞

ϕn[P (X(n))] = ϕ∞[P (X∞)].

Now, we define free independence which is a crucial notion in free probability.

Definition 2.5. For a ∗-probability space (A, ϕ), a family of unital ∗-subalgebras
{Ai}i∈I are freely independent if for any n ∈ N and ak ∈ Aik with ik ̸= ik+1

(k = 1, . . . , n), we have

ϕ

[
n∏

k=1

åk

]
= 0

where å = a − ϕ(a). In particular, we say that a set of elements {xi}i∈I ∈ A are
freely independent if ∗-subalgebras generated by each xi are freely independent.

Example 2.6. The definition of free independence above is derived from the free
product of groups. To see this, let {Gi}i∈I be discrete groups and ei be the identity
of Gi for each i ∈ I. We define the free product ∗i∈IGi of Gi’s by

∗i∈IGi = {e} ∪ {g1g2 · · · gn;n ∈ N, gk ∈ Gik \ {eik}, ik ̸= ik+1 for any k},

where e is the identity of ∗i∈IGi. A multiplication of ∗i∈IGi is defined by connecting
as words and reducing them according to the group structure of Gi’s (see chapter
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1 in [85]). Then one can see that {L(Gi)}i∈I are freely independent in a W∗-
probability space (L(∗i∈IGi), τe) since a trace of any reduced word except for the
identity is always 0.

There are several important non-commutative distributions. If we take the free
group Fd with generators g1, . . . , gd, then the unitary operators λ(g1), . . . , λ(gd) be-
have as freely independent Haar distributions in theW∗-probability space (L(Fd), τe).
In this thesis, we focus on another important distribution, so-called the semicircle
distribution.

Definition 2.7. The probability measure on R whose density function is given by

1

2π

√
4− x2 1[−2,2]dx,

is called the (standard) semicircle distribution.

Remark 2.8. The odd moments of the standard semicircle distribution are zero
since the density is an even function and the 2n-th moment is given by the n-th
Catalan number:

Cn =
1

n+ 1

(
2n

n

)
.

Note that Catalan numbers satisfy the following recursion:

C0 = 1, C1 = 1, Cn+1 =

n∑
k=0

CkCn−k.

In free probability, the semicircle distribution behaves like the Gaussian distri-
bution. One of the reasons for this is that we have a free probabilistic analog of
the central limit theorem as follows

Theorem 2.9. Let (A, ϕ) be a ∗-probability space and {ai}∞i=1 be a sequence of
non-commutative real random variables a∗i = ai which are identically distributed,
i.e. ϕ(an1 ) = ϕ(ani ) for any i ∈ N, and ai satisfies ϕ(ai) = 0 and ϕ(a2i ) = 1. We set

sN =
1√
N

N∑
i=1

ai.

Then we have the convergence in moments of sN to the semicircle distribution, i.e.
for each k ∈ N

lim
N→∞

ϕ(skN ) =
1

2π

∫
R
xk
√

4− x2 1[−2,2]dx.

2.1.2. Free semicircles and Non-crossing partitions. In many parts of this thesis,
we focus on freely independent semicircle distributions (or merely free semicircles).
From a combinatorial point of view, free probability is deeply connected with non-
crossing partitions (c.f. free cumulants), and in particular joint moments of free
semicircles can be computed by counting non-crossing pair partitions. Here, we give
the definition of partitions and how to compute joint moments of free semicircles.

Definition 2.10. A partition π on the vertex set [n] = {1, . . . , n} is a family of

subsets {Vk}lk=1 such that
⊔l

k=1 Vk = [n] (disjoint union). We say that each Vk is
a block of π. If all blocks of π have two elements, we say π is a pair partition.

Let P (n) (and P2(n)) denote a set of partitions (resp. pair partitions) on [n].
We define a notion of crossings in a partition.
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Definition 2.11. A crossing of a partition π is a tuple of vertices a < b < c < d
such that there exist different blocks Vk and Vl with a, c ∈ Vk and b, d ∈ Vl. If π
has no crossings, we say π is non-crossing.

Let NC(n) (and NC2(n)) denote a set of non-crossing partitions (resp. non-
crossing pair partitions) on [n]. In the following, we give examples of partitions
and non-crossing partitions.

Example 2.12. We consider two partitions on [6], π1 = {{1, 3, 4}, {2, 6}, {5}} and
π2 = {{1, 6}, {2, 3}, {4, 5}}. By arranging n-vertices in increasing order and con-
necting vertices in the same block of a given partition with appropriate height, we
can draw a partition and count the number of crossings in the drawing. For two
examples π1, π2, we can draw them as follows:

1 2 3 4 5 6

and

1 2 3 4 5 6

Then the number of crossings is 2 for π1 and 0 for π2. Also, π2 is a non-crossing
pair partition, i.e. π2 ∈ NC2(6).

Remark 2.13. By the combinatorial argument (using the recursion, for example),
we can see that the number of non-crossing partitions is given by Catalan numbers:

#NC(n) = #NC2(2n) = Cn.

Now, we consider a tuple of freely independent semicircles s = (s1, . . . , sd) in
a ∗-probability space (A, τ). In fact, the joint distribution of free semicircles is
characterized by non-crossing pair partitions.

Theorem 2.14. For any k ∈ N and i1, . . . , ik ∈ {1, . . . , d}, we have

τ [si1si2 · · · sin ] =
∑

π∈NC2(n)

∏
(k,l)∈π

δik,il .

One can check this theorem by free cumulants or an analog of the Wick formula
of which we will see the q-version.

We have another characterization of free semicircles. Recall that the joint dis-
tribution of independent Gaussians can be computed recursively by integration
by part. Similarly, the joint distribution of free semicircles can be computed re-
cursively by a kind of integration by part with respect to free partial difference
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quotients. We define free partial difference quotients ∂1, . . . , ∂d by linear operators
from C⟨x1, . . . , xd⟩ to C⟨x1, . . . , xd⟩⊗2 such that for each monomial P , we have

∂iP =
∑

P=AxiB

A⊗B

where the sum is taken over all possible decomposition of P = AxiB. Note that
free partial difference quotients satisfy a kind of Leibniz rule:

∂i(PQ) = (P ⊗ 1)∂iQ+ (∂iP )(1⊗Q).

Then we have a kind of integration by part for free semicircles, which is one of the
basic observations to introduce non-microstate free entropy.

Theorem 2.15. For any non-commutative polynomial P , we have

τ [siP (s)] = (τ ⊗ τ)[∂iP (s)].

We will see a q-version of this theorem in Section 5. In terms of operator algebra,
free semicircles generate free group von Neumann algebra, which can be generalized
as the following theorem.

Theorem 2.16 (cf. Theorem 6 in [61]). Let (M, τ) be a tracial W∗-probability
space and X = (X1, . . . , Xd) be a tuple of self-adjoint operators on M. If X
satisfies

• Each spectral distribution Xi with respect to τ has no atom,

• X are freely independent with respect to τ ,

then W∗(X) is isomorphic to the free group von Neumann algebra L(Fd).

2.1.3. Asymptotic freeness. We explain the asymptotic freeness by taking the Gauss-
ian Unitary ensemble as an example. A random matrix is a matrix whose entries
are random variables.

λ1 ≥ λ2 ≥ · · · ≥ λN .

Then the empirical eigenvalue distribution of X is defined as a random measure,

1

N

N∑
i=1

δλi
,

where δa is a Dirac measure on a for a ∈ R.

Definition 2.17. Let N ∈ N and xij(1 ≤ i ≤ j ≤ N), yij(1 ≤ i < j ≤ N) are
independent random variables which are identically distributed with the standard
normal distribution. Put zii = xii for i ∈ {1, . . . , N} and zij =

1√
2
(xij + iyij) = zji

for 1 ≤ i < j ≤ N . Then Z(N) = 1√
N
(zij) is called a GUE (Gaussian Unitary

Ensemble) random matrix.

Voiculescu proved the following convergence result for independent GUE random
matrices which is the foundation of the connection between free probability and
Random Matrix Theory.

Theorem 2.18 (Theorem 3.3 in [84]). Independent GUE random matrices Z
(N)
1 , . . . , Z

(N)
d

satisfy

lim
N→∞

E ◦ tr[Z(N)
i1

· · ·Z(N)
in

] = τ(si1 · · · sin),

where s1, . . . , sd are free semicircular elements with respect to τ .
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Remark 2.19. When d = 1 the above theorem tells us that the average of the em-
pirical eigenvalue distribution µZ(N) of a GUE random matrix converges in distri-
bution to the semicircular distribution. In other words, we have for any compactly
supported continuous function on R,

lim
N→∞

E[

∫
R
fdµZ(N) ] =

1

2π

∫
R
f(x)

√
4− x21[−2,2]dx,

where E is the expectation for Z(N). It is known as Wigner’s semicircle law that
this can be improved in almost sure convergence (see [81, Theorem 2.4.2]).

Remark 2.20. We identify Z1
N , . . . , Zd

N with elements in a non-commutative prob-
ability space (MN (L), E ◦ trN ), where L =

⋂
p≥1 L

p(Ω) for a probability space

(Ω,F , µ). Then the behavior of Z
(N)
1 , . . . , Z

(N)
d with respect to E ◦ tr gets closer to

that of freely independent elements with respect to their state. Such phenomenon
is known as asymptotic freeness. More precisely, asymptotic freeness can be stated
as follows. Let (AN , ϕN ) be a non-commutative probability space for each N ∈ N
and {a(N)

i }i∈I ⊂ AN . Then {a(N)
i }i∈I is asymptotically free as N → ∞ if there

exists a non-commutative probability space (A, ϕ) and {ai}i∈I ⊂ A such that {ai}
are freely independent and that we have

lim
N→∞

ϕN (a
(N)
i1

a
(N)
i2

· · · a(N)
im

) = ϕ(ai1ai2 · · · aim),

for any m ∈ N and i1, . . . .im ∈ I.

Since independent GUE random matrices behave like freely independent semi-
circles and are constructed by independent Gaussian random variables, one might
expect that there is a kind of integration by part for independent GUE random vari-
ables. Indeed, such a formula exists and is called the Dyson-Schwinger equation.
It can be stated as follows.

Theorem 2.21 (cf. [40]). Let Z(N) = (Z
(N)
1 , . . . , Z

(N)
d ) be a tuple of independent

GUE random matrices. Then for any non-commutative polynomial P , we have

E ◦ tr[Z(N)
i P (Z(N))] = E ◦ (tr⊗ tr)[∂iP (Z(N))].

2.1.4. Conjugate system and free Fisher information. In this section, we deal with
a tracial W∗-probability space (M, τ) where τ is faithful, and define dual systems
and conjugate systems for tuples of self-adjoint operators.

For a von Neuman subalgebra A of M, we consider the Hilbert space L2(A, τ)
which is the completion of a pre-Hilbert space A with the inner product defined by

⟨x, y⟩ = τ(x∗y).

Recall that joint moments of free semicircles are characterized by a kind of
integration by part with respect to free difference quotients. We use this character-
ization to see how close given non-commutative real random variables are to free
semicircles.

Definition 2.22 (Definition 3.1 in [89]). For a tuple of self-adjoint operators X =
(X1, . . . , Xd) ∈ Md, a tuple of vectors (ξ1, . . . , ξd) ∈ L2(W∗(X), τ)d is called a
conjugate system for X if ξ = ∂∗

i (1⊗ 1) for all i, in other words, ξi’s satisfy for any
non-commutative polynomial P , we have

⟨P (X), ξ⟩ = ⟨∂iP (X), 1⊗ 1⟩.
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There is a similar notion as conjugate systems, so-called dual systems which are
a bit easier to compute than conjugate systems.

Definition 2.23. For a tuple of operators X = (X1, . . . , Xd) ∈ Md, a tuple of
densely defined operators (D1, . . . , Dd) on L2(W∗(X), τ) is called a normalized
dual system for X if C⟨X⟩ ⊂ dom(Di), and Di1 = 0, and 1 ∈ domD∗

i , and
[Di, Xj ] = δi,jP1 for all i, j where P1 is the one rank projection onto the trace
vector 1 ∈ L2(W∗(X), τ).

In the above definition, we use “normalized” for the condition Di1 = 0 because
this is an additional condition on the original definition by Voiculescu. Conjugate
systems and dual systems are closely related by the following theorem by Shlyakht-
enko.

Theorem 2.24 (Theorem 1 in [76]). For self-adjoint elements X = (X1, . . . , Xd) ∈
Md, the existence of a conjugate system (ξ1, . . . , ξd) is equivalent to the existence
of a normalized dual system (D1, . . . , Dd). In this case we have for each i ∈ [d]

ξi = D∗
i 1.

Proof. For the reader’s convenience, let us give a proof of this theorem. Let us
compute

τ(Xjn · · ·Xj1D
∗
i 1) = ⟨Xjn · · ·Xj1D

∗
i 1, 1⟩

for jn, . . . , j1 ∈ [d]. Note that X1, . . . , Xd are self-adjoint, and we have

⟨Xjn · · ·Xj1D
∗
i 1, 1⟩ = ⟨1, DiXj1 · · ·Xjn⟩

= ⟨1, Xj1DiXj2 · · ·Xjn⟩+ δij1τ(Xj2 · · ·Xjn)

= · · ·

=

n∑
k=1

δijkτ(Xj1 · · ·Xjk−1
)τ(Xjk+1

· · ·Xjn) + ⟨1, Xj1 · · ·XjnDi1⟩

=

n∑
k=1

δijkτ(Xjn · · ·Xjk+1
)τ(Xjk−1

· · ·Xj1) + ⟨1, Xj1 · · ·XjnDi1⟩,

where the last term is equal to 0 since we required Di1 = 0. This implies that
(D∗

11, . . . , D
∗
d1) forms the conjugate system.

For the converse direction, we consider the unbounded operators D1, . . . , Dd

defined by Di = (id⊗ τ)∂i. We can check for any non-commutative polynomial Q

[Di, Xj ]Q = DiXjQ−XjDiQ

= δi,jτ(Q) +Xj(id⊗ τ)∂iQ−XjDiQ

= δi,jP1(Q)

where we use the Leibniz rule of ∂i at Xj .
Then the existence of the conjugate system implies 1⊗1 ∈ dom ∂∗

i and therefore
1 ∈ domD∗

i . □

We remark that the condition 1 ∈ dom(D∗
i ) implies that C⟨X⟩ ⊂ dom(D∗

i ) and
hence that Di is a closable operator. This can be seen by a similar computation as
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above, for Q(X) ∈ C⟨X⟩ and jn, . . . , j1 ∈ [d]:

⟨DiQ(X), Xjn · · ·Xj1⟩ = ⟨DiXj1 · · ·XjnQ(X), 1⟩

−
n∑

k=1

τ(Xj1 · · ·Xjk−1
)⟨P1Xjk+1

· · ·XjnQ(X), 1⟩

where each term is a bounded operator with respect to Q(X), since X ∈ Md and
1 ∈ dom(D∗

i ). Thus C⟨X⟩ ⊂ dom(D∗
i ). We also consider an analytic condition on

a conjugate system, the so-called Lipschitz condition introduced by Dabrowski.

Definition 2.25. We say the conjugate system (ξ1, . . . , ξd) is Lipschitz conju-
gate (see Definition 1 in [31] or Section 2.4 in [4]) if ξi ∈ dom(∂j) and ∂jξi ∈
W∗(X)⊗W∗(X) for any i, j ∈ [d], where ∂j is the closure of ∂j and we consider a
von Neumann algebra tensor product for W∗(X)⊗W∗(X).

The existence of a Lipschitz conjugate system for given self-adjoint operators
X1, . . . , Xd implies analytic properties of not only distributions but also generated
von Neumann algebra W∗(X1, . . . , Xd). Here, we give a list of those properties (the
properties 1), 2), 3) hold without the Lipschitz condition):

1) The division closure of the X1, . . . , Xd in the unbounded operators affiliated
to W∗(X1, . . . , Xd) is isomorphic to the free field. This implies that any non-
commutative rational function r in d non-commuting variables can be applied to
the X1, . . . , Xd, yielding a (possibly unbounded) operator r(X1, . . . , Xd). If r is
not the zero rational function, then this operator has a trivial kernel; i.e., for any
self-adjoint r which is different from a constant the corresponding distribution has
no atoms (see [59], [60]).

2) There is no non-zero non-commutative power series
∑

w∈[d]∗ αwX
w (see Sec-

tion 2.3 for notations) of radius of convergenceR > ∥Xi∥ (i.e.
∑∞

n=0

∑
|w|=n |αw|Rn <

∞) such that
∑

w∈[d]∗ αwX
w = 0 (See Lemma 37 [32]).

3) W∗(X1, . . . , Xd) does not have property Γ, i.e., there is no non-trivial central
sequence (see [31]).

3) For any self-adjoint non-commutative polynomial Y = p(X1, . . . , Xd) over
X1, . . . , Xd, the cumulative distribution function FY of the distribution Y is Hölder
continuous with exponent 1

2degY −1
where degY is the degree of p. Even if we don’t

assume the Lipschitz condition, we have Hölder continuity with exponent 2
3(2degY −1)

(see [4]).
4) If W∗(X1, . . . , Xd) is Connes embeddable, the operators X1, . . . , Xd have the

maximal microstates free entropy dimension

δ0(X1, . . . , Xd) = d,

and W∗(X1, . . . , Xd) does not have a Cartan subalgebra (see [32], [33]).

2.2. Non-commutative rational functions and evaluation in operators. In
this section, we introduce the notion of non-commutative rational functions and
their linearization which we use in Section 3. We also explain the fundamental
theorem for non-commutative rational power series which we use in Section 4.

2.2.1. Non-commutative rational functions. We start from the notion of non-commutative
rational expression. Let x = (x1, . . . , xd) be a tuple of non-commutative formal vari-
ables. We define non-commutative rational expressions (over C) as possible combi-
nations of addition, multiplication, inversion of C variables in x with parentheses
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which determine the order of operations. At this stage, we just consider symbolic
expressions. For example, (2x1x2 + x−1

3 )x1 and (x1 − x1)
−1 are non-commutative

rational expressions, although (x1 − x1)
−1 is not well-defined if we evaluate it in

any tuple of unital algebra.
One can also define matrix-valued non-commutative rational expressions; see

Definition 2.1 in [49]. Those are possible combinations of symbols A⊗1 and A⊗xj

for j = 1, . . . , d, for each rectangular matrix A over C of arbitrary size, with +,
·, −1, and (), where the operations are required to be compatible with the matrix
sizes. Notice that ⊗ has only symbolic meaning here, but will turn into the ordinary
tensor product (over C) under evaluation as will be defined below.

Let us enumerate the rules which allow to recursively compute for every matrix-
valued non-commutative rational expression R the domain domA(R) of R for every
unital complex algebra A and evaluations R(X) of R at any point X ∈ domA(R);
note that the evaluation R(X) of a p× q matrix-valued non-commutative rational
expression R and every point X ∈ domA(R) belongs to Mp×q(C)⊗A ∼= Mp×q(A).

• If R = A ⊗ 1 for some A ∈ Mp×q(C), then R is a p × q matrix-valued
non-commutative rational expression with domA(R) := Ad and R(X) :=
A⊗ 1A for every X ∈ Ad.

• If R = A ⊗ xj for some A ∈ Mp×q(C) and 1 ≤ j ≤ d, then R is a p × q
matrix-valued non-commutative rational expression with domA(R) := Ad

and R(X) := A⊗Xj for every X = (X1, . . . , Xd) ∈ Ad.
• If R1, R2 are p × q matrix-valued non-commutative rational expressions,
then R1+R2 is a p×q matrix-valued non-commutative rational expression
with domA(R1 + R2) := domA(R1) ∩ domA(R2) and (R1 + R2)(X) :=
R1(X)+AR2(X) for every X ∈ domA(R1+R2), where +A stands for the
addition Mp×q(A)×Mp×q(A) → Mp×q(A).

• If R1, R2 are p × q respectively q × r matrix-valued non-commutative ra-
tional expressions, then R1 ·R2 is a p× r matrix-valued non-commutative
rational expression with domA(R1 · R2) := domA(R1) ∩ domA(R2) and
(R1 · R2)(X) := R1(X) ·A R2(X) for every X ∈ domA(R1 · R2), where ·A
stands for the matrix mutliplication Mp×q(A)×Mq×r(A) → Mp×r(A).

• If R is a p× p matrix-valued non-commutative rational expression, then

domA(R
−1) := {X ∈ domA(R) | R(X) is invertible in Mp(A)}

and R−1(X) := R(X)−1 for every X ∈ domA(R
−1).

Note that the (scalar-valued) non-commutative rational expressions which we
have introduced before belong to the strictly larger class of 1 × 1 matrix-valued
non-commutative rational expressions; see Remark 2.11 in [49].

For the reader’s convenience, we introduce two types of matrix-valued non-
commutative rational expressions which are important in a practical sense.

• A non-commutative rational expression evaluated in formal tensor prod-
ucts of matrices and formal variables like as

R = r(A1 ⊗ x1, A2 ⊗ x2, . . . , Ad ⊗ xd)

where r is a (scalar-valued) non-commutative rational expression and Ai ∈
Mp(C) for 1 ≤ i ≤ d. In other words, in this case we amplify formal vari-
ables by matrices and then consider their (scalar-valued) rational expres-
sion.
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• A matrix which consists of (scalar-valued) non-commutative rational ex-
pressions

R = (rij)1≤i≤p,1≤j≤q.

This can be seen as a p × q matrix-valued non-commutative rational ex-
pression by identifying with

∑
ij(ai ⊗ 1)rij(bj ⊗ 1) where ai ∈ Mp×1(C)

and bj ∈ M1×q(C) are standard basis of Cp and Cq. We will implicitly use
this viewpoint later (for example, in the proof of Proposition 3.4).

A class of matrix-valued non-commutative polynomial expressions are affine lin-
ear pencils. An affine linear pencil (in d variables with coefficients from Mk(C)) is
a k × k matrix-valued non-commutative polynomial expression of the form

A = A0 ⊗ 1 +A1 ⊗ x1 + · · ·+Ad ⊗ xd

with coefficient matrices A0, A1, . . . , Ad belonging to Mk(C). Notice, once again,
that we omit the parentheses for better readability as each syntactically valid place-
ment of parentheses will produce the same result under evaluation. IfA is any unital
complex algebra and X ∈ Ad, then

A(X) = A0 ⊗ 1A +A1 ⊗X1 + · · ·+Ad ⊗Xd ∈ Mk(C)⊗A ∼= Mk(A).

Of particular interest are matrix-evaluations. To collect meaningful rational
expressions, we consider the evaluation of rational expressions in square matrices
of all sizes. For each matrix-valued non-commutative rational expression R, we put

domM(C)(R) :=

∞∐
N=1

domMN (C)(R),

i.e., domM(C)(R) is the subset of all square matrices over C where evaluation of R
is well-defined. A matrix-valued non-commutative rational expression R is said to
be non-degenerate if it satisfies domM(C)(R) ̸= ∅. In the sequel, we will make use
of the following important fact.

Theorem 2.26 (Remark 2.3 in [49]). Let R be a non-degenerate matrix-valued
non-commutative rational expression. Then there exists some N0 = N0(R) ∈ N
such that domMN (C)(R) ̸= ∅ for all N ≥ N0.

Two non-degenerate matrix-valued non-commutative rational expressions R1, R2

are called M(C)-evaluation equivalent if the condition R1(X) = R2(X) is satisfied
for all X ∈ domM(C)(R1) ∩ domM(C)(R2).

One can construct a skew field by evaluating (scalar-valued) non-commutative ra-
tional expressions in scalar-valued matrices. For a non-degenerate non-commutative
rational expression r, we denote by [r] its equivalence class of non-commutative ra-
tional expressions with respect to M(C)-evaluation equivalence. We endow the set
of all such equivalence classes with the arithmetic operations + and · defined by
[r1]+ [r2] := [r1+r2] and [r1] · [r2] := [r1 ·r2]. Notice that the arithmetic operations
are indeed well-defined as one has domM(C)(r1)∩domM(C)(r2) ̸= ∅ for any two non-
degenerate scalar-valued non-commutative rational expressions r1 and r2; see the
footnote on page 52 of [50], for instance. It is known (see Proposition 2.2 in [50])
that the set of all equivalence classes of non-commutative rational expressions with
respect to M(C)-evaluation equivalence endowed with the arithmetic operations +
and · forms a skew field, so-called the free field C (<x1, . . . , xd )> which was originally
introduced by Amitsur [1].



18 AKIHIRO MIYAGAWA

2.2.2. Linearization of non-commutative rational functions. Let us recall the fol-
lowing terminology that was introduced in [44, Definition 4.10].

Definition 2.27 (Formal linear representation). Let R be a p × q matrix-valued
non-commutative rational expression in the variables x1, . . . , xd. A formal linear
representation ρ = (u,A, v) of R (of dimension k) consists of an affine linear pencil

A = A0 ⊗ 1 +A1 ⊗ x1 + · · ·+Ad ⊗ xd

in d variables and with coefficients A0, A1, . . . , Ad from Mk(C) and matrices u ∈
Mp×k(C) and v ∈ Mk×q(C), such that the following condition is satisfied: for every
unital complex algebra A, we have that domA(R) ⊆ domA(A

−1) and for each
X ∈ domA(R) it holds true that R(X) = uA(X)−1v, where A(X) ∈ Mk(A).

Note that we use here a different sign convention by requiring R(X) = uA(X)−1v
instead of R(X) = −uA(X)−1v; this, however, does not affect the validity of the
particular results that we will take from [44]. Furthermore, as we will exclusively
work with formal linear representations for matrix-valued non-commutative rational
expressions, we will go without specifying them as matrix-valued formal linear
representations like it was done in [44].

It follows from [44, Theorem 4.12] that indeed every matrix-valued non-commutative
rational expression R admits a formal linear representation ρ = (u,A, v). For the
reader’s convenience, we include with Theorem 2.28 the precise statement as well
as its constructive proof. In doing so, we will see that Algorithm 4.11 in [44], on
which the proof of Theorem 4.12 in the same paper relies, provides a formal linear
representation ρ = (u,A, v) of the p × q matrix-valued non-commutative rational
expression R with the additional property that the dimension k of ρ is larger than
max{p, q} and that both u and v have maximal rank; we will call such ρ proper.
Note that if R is a scalar-valued rational expression, then a proper formal linear
representation ρ simply means that u and v are non-zero vectors. In general, due
to the restriction k ≥ max{p, q}, we have that the rank of u is p and the rank of v
is q for any proper formal linear representation ρ = (u,A, v) of R. This notion of
proper formal linear representation will be important in the sequel.

Theorem 2.28 (Theorem 4.12 in [44]). Every matrix-valued non-commutative ra-
tional expression admits a formal linear representation in the sense of Definition
2.27 which is also proper.

Proof. Here, we give the algorithm which inductively builds a proper linear repre-
sentation of any matrix-valued non-commutative rational expression. For R = A⊗1
or R = A⊗ xj for some A ∈ Mp×q(C) and 1 ≤ j ≤ d we have

R(X) =
(
Ip 0p×q

)( Ip ⊗ 1A −R(X)
0q×p Iq ⊗ 1A

)−1(
0p×q

Iq

)
where Ip ∈ Mp(C) is an identity matrix. Clearly, we obtain a proper formal linear
representation in this way.

If the p×q matrix-valued non-commutative expressions R1 and R2 admit proper
formal linear representations (u1, A1, v1) and (u2, A2, v2) then we have

(R1 +R2)(X) =
(
u1 u2

)( A1(X) 0k1×k2

0k2×k1
A2(X)

)−1(
v1
v2

)
.
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This gives us a proper formal linear representation since (u1 u2), resp. (v1 v2)
T is

of rank p, resp. q.
If R1, R2 are p × q, resp. q × r matrix-valued non-commutative rational ex-

pressions and admit formal linear representations (u1, A1, v1), resp. (u2, A2, v2) of
dimension k1, resp. k2 then we have

(R1 ·R2)(X) =
(
u1 0p×k2

)( A1(X) −v1u2

0k2×k1
A2(X)

)−1(
0k1×r

v2

)
.

We obtain a proper formal linear representation since (u1 0p×k2
), resp. (0k1×r v2)

T

is of rank p, resp. q.
If R is a p× p matrix-valued non-commutative rational expression which admits

a formal linear representation (u,A, v) of dimension k, then we have

R−1(X) =
(
Ip 0p×k

)( 0p×p u
v A(X)

)−1( −Ip
0k×p

)
,

where X belongs to an appropriate domain for each step. It is clear that this gives
us a proper formal linear representation.

Finally, since all matrix-valued non-commutative rational expressions can be rep-
resented by finitely many of the above steps, any matrix-valued non-commutative
rational expression has such a formal linear representation which is proper. □

In the non-degenerate case, formal linear representations are connected with the
concept of representations for non-commutative rational functions which is used,
for instance, in [21, 22]; this will be addressed in Remark 2.30 and Remark 2.33.
Before, we need to recall the following terminology.

Definition 2.29 (Inner rank and fullness). Let R be a ring. For A ∈ Mn×m(R)
we define the inner rank ρR(A) by

ρR(A) = min{r ∈ N | A = BC, B ∈ Mn×r(R), C ∈ Mr×m(R)},

and ρR(0) = 0. In addition we call A full if ρR(A) = min{n,m}.

Remark 2.30. (i) Let A be a matrix over non-commutative polynomials in a
tuple x = (x1, . . . , xd) of formal variables. According to Theorem 7.5.13 in
[23] (see also A.2 in [59]), we have

ρC⟨x⟩(A) = ρC (<x )>(A).

For this reason, we just say A is full, for a square matrix A over the non-
commutative polynomials, without mentioning which algebra we consider.

(ii) Let A be an affine linear pencil in x with coefficients taken from Mk(C). We
may view A as an element in Mk(C) ⊗ C⟨x⟩ ∼= Mk(C⟨x⟩), i.e., A = A(x)
is considered as a matrix over the ring C⟨x⟩. We notice that if there exists
a tuple X ∈ MN (C)d such that A(X) is invertible in Mk(C) ⊗ MN (C) ∼=
MkN (C), or equivalently, if domM(C)(A

−1) ̸= ∅, then A must be full. In
fact, if A is not full, then any factorization A = BC with B ∈ Mk×r(C⟨x⟩)
and C ∈ Mr×k(C⟨x⟩) for r = ρ(A) < k yields under evaluation A(X) =
B(X)C(X) at any point X ∈ MN (C)d, so that A(X) is never invertible.

On the other hand, if A is full, then A is invertible as a matrix over C (<x )>.
Indeed, fullness and invertibility are equivalent for any skew field (see Lemma
5.20 in [59]).
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(iii) Now, let R be a non-degenerate matrix-valued non-commutative rational ex-
pression. From Theorem 2.28, we know that there exists a formal linear
representation ρ = (u,A, v); in particular, we have that

domM(C)(R) ⊆ domM(C)(A
−1)

=

∞∐
N=1

{X ∈ MN (C)d | A(X) invertible in MkN (C)}.

Since R is non-degenerate, we find X ∈ domM(C)(R); from the aforemen-
tioned inclusion and (ii), we infer that A is a full matrix.

(iv) Suppose that R is a non-degenerate p × p matrix-valued non-commutative
rational expression such that R−1 is non-degenerate as well. Let ρ = (u,A, v)
be a formal linear representation of R; we associate to ρ the affine linear pencil

Ã :=

(
0p×p u
v A

)
.

We claim that both A and Ã are full. For A, we already know from (iii) that

this is true. To check fullness of Ã, we use that R−1 is non-degenerate, which
guarantees the existence of some X ∈ domM(C)(R

−1). Since in particular
X ∈ domM(C)(R), we get as ρ is a formal linear representation of R that

A(X) is invertible and R(X) = uA(X)−1v. Because X ∈ domM(C)(R
−1), we

know that R(X) is invertible. Hence, by the Schur complement formula, it

follows that the matrix Ã(X) is invertible. Thanks to (ii), this implies that

the affine linear pencil Ã is full.

The following lemma explains that non-degenerate matrix-valued non-commutative
rational expressions induce in some very natural way matrices over the free field.

Lemma 2.31. Let R be a p×q matrix-valued non-commutative rational expression
in d formal variables. If R is non-degenerate, then x = (x1, . . . , xd) ∈ domC (<x1,...,xd )>(R)
and consequently R(x) ∈ Mp×q(C (<x )>).

Proof. Let us denote byR0 the set of all non-degenerate matrix-valued non-commutative
rational expressions R which have the property x ∈ domC (<x )>(R). We want to show
that R0 consists of all non-degenerate matrix-valued non-commutative rational ex-
pressions. In order to verify this assertion, we proceed as follows. Firstly, we notice
that both R1 + R2 and R1 · R2 belong to R0 whenever we take R1, R2 ∈ R0 for
which the respective arithmetic operation is defined. Secondly, we consider some
R ∈ R0 which is of size p × p and has the property that R−1 is non-degenerate.
By Theorem 2.28, there exists a formal linear representation ρ = (u,A, v) of R, say
of dimension k, and according to Remark 2.30 (iv) we have that both A and the
associated affine linear pencil

Ã :=

(
0p×p u
v A

)
are full, i.e., A(x) ∈ Mk(C⟨x⟩) and Ã(x) ∈ Mk+p(C⟨x⟩) become invertible as ma-
trices over the free field C (<x )>. Since x ∈ domC (<x )>(R) as R ∈ R0, we get R(x) =
uA(x)−1v, because ρ is a formal linear representation of R. Putting these observa-
tions together, the Schur complement formula yields that R(x) ∈ Mp(C (<x )>) must
be invertible, i.e., x ∈ domC (<x )>(R

−1) and thus R−1 ∈ R0, as desired. □
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Remark 2.32. With arguments similar to the proof of Lemma 2.31 as based on
Remark 2.30 (iv), one finds that if R1, R2 are non-degenerate matrix-valued non-
commutative rational expressions satisfying R1(x) = R2(x), then R1 ∼M(C) R2. In
other words, matrix identities over C (<x )> are preserved under well-defined matrix
evaluations.

Remark 2.33. In the scalar-valued case, the conclusion of Lemma 2.31 can be
strengthened slightly. For that purpose, it is helpful to denote the formal vari-
ables out of which the non-commutative rational expressions are built by χ1, . . . , χd

in order to distinguish them from the variables x1, . . . , xd of the free skew field
C (<x1, . . . , xd )>; note that accordingly xj = [χj ] for j = 1, . . . , d. Now, if r
is any scalar-valued non-commutative rational expression in the formal variables
χ1, . . . , χd, then Lemma 2.31 tells us that x ∈ domC (<x )>(r) and r(x) ∈ C (<x )>.
Moreover, we have the equality r(x) = [r]. This can be shown with a recursive
argument similar to the proof of Lemma 2.31; notice that if a non-degenerate
rational expression r satisfies r(x) = [r] and has the additional property that
r−1 is non-degenerate, then r(x) = [r] is invertible in C (<x )>, which implies x ∈
domC (<x )>)(r

−1) with r−1(x) = [r]−1 = [r−1].
This has the consequence that every formal linear representation ρ = (u,A, v) of

r satisfies [r] = r(x) = uA(x)−1v. In the language of [21, 22], this means that the
formal linear representation ρ of r induces a (pure and linear) representation of the
corresponding non-commutative rational function [r].

2.2.3. Self-adjointness for matrix-valued non-commutative rational expressions. When
evaluations of matrix-valued non-commutative rational expressions R at pointsX =
(X1, . . . , Xd) ∈ domA(R) for ∗-algebras A are considered, it is natural to ask for
conditions which guarantee that the result R(X) is self-adjoint, i.e., R(X)∗ = R(X).
Those conditions shall concern the matrix-valued non-commutative rational expres-
sion R itself, but depending on the particular type of its the arguments X1, . . . , Xd.
The case when X1, . . . , Xd are all self-adjoint was discussed in [44, Section 2.5.7].
The following definition generalizes the latter to matrix-valued non-commutative
rational expressions in self-adjoint and unitary variables.

Recall that an element X in a complex ∗-algebra A with unit 1A is called self-
adjoint if X∗ = X, and U ∈ A is said to be unitary if U∗U = 1A = UU∗.

Definition 2.34 (Self-adjoint matrix-valued non-commutative rational expressions).
Let R be a square matrix-valued non-commutative rational expression in d1 + d2
formal variables which we denote by x1, . . . , xd1

, u1, . . . , ud2
. We say that R is

self-adjoint of type (d1, d2), if for every unital complex ∗-algebra A and all tu-
ples X = (X1, . . . , Xd1) and U = (U1, . . . , Ud2) of self-adjoint respectively unitary
elements in A, the following implication holds:

(X,U) ∈ domA(R) =⇒ R(X,U)∗ = R(X,U)

One comment on this definition is in order. The reader might wonder why the
matrix-valued non-commutative rational expressions do not explicitly involve fur-
ther variables u∗

1, . . . , u
∗
d2

serving as placeholder for the adjoints of u1, . . . , ud2 . In
fact, for (scalar-valued) non-commutative rational expressions such an approach
was presented, for instance, in the appendix of [36] (a version for non-commutative
polynomials appears also in [83]); more precisely, non-commutative rational ex-
pressions in collections of self-adjoint variables x, non-self-adjoint variables y, and
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their adjoints y∗ were considered. For our purpose, however, this has the slight dis-
advantage that non-degenerate non-commutative rational expressions of this kind
(take r(y, y∗) = (yy∗ − 1)−1, for example) may have no unitary elements in their
domain. On the other hand, there are non-commutative rational expressions (or
even non-commutative polynomial expressions such as yyy∗+y∗yy∗) which are not
self-adjoint on their entire domain but self-adjoint on unitaries.

The following example illustrates Definition 2.34 and highlights the effect of
having two types of variables.

Example 2.35. x1+x−1
2 , i(u1−u−1

1 ) and u−1
1 x−1

1 u1 are self-adjoint non-commutative
rational expressions since we have for self-adjoint elements X1, X2 and a unitary
U1 in their domain,

(X1 +X−1
2 )∗ = X∗

1 + (X∗
2 )

−1 = X1 +X−1
2

[i(U1 − U−1
1 )]∗ = −i(U∗

1 − (U∗
1 )

−1) = i(U1 − U−1
1 )

(U−1
1 X−1

1 U1)
∗ = U∗

1 (X
∗
1 )

−1(U∗
1 )

−1 = U−1
1 X−1

1 U1.

However, u1+u−1
2 , i(x1−x−1

1 ) and x−1
1 u−1

1 x1 are not self-adjoint in our definition.
So we need to be careful to the roles of formal variables when we consider self-
adjoint rational expressions. For the matrix-valued case, the 2 × 2 respectively
1× 1 matrix-valued non-commutative rational expressions(

x−1
1 u1

u−1
1 x−1

2

)
and

(
u1 x1 + iu2

)( 1 −iu1

iu−1
1 x2

)−1(
u−1
1

x1 − iu−1
2

)
are self-adjoint of type (2, 1) and (2, 2), respectively.

Like in [44, Definition 4.13] for the case of self-adjoint arguments, we can intro-
duce self-adjoint formal linear representations; see also [36, Definition A.5] for the
scalar-valued case.

Note that in order to make the machinery of self-adjoint linearizations ready for
further applications, we will switch from now on to a more general situation.

Definition 2.36 (Self-adjoint formal linear representation). Let R be a p × p
matrix-valued non-commutative rational expression in d formal variables x1, . . . , xd.
A tuple ρ = (Q,w) consisting of an affine linear pencil

Q = A0 ⊗ 1 +

d∑
j=1

(
Bj ⊗ xj +B∗

j ⊗ x∗
j

)
in the formal variables x1, . . . , xd and x∗

1, . . . , x
∗
d, with coefficients being (not neces-

sarily self-adjoint) matrices B1, . . . , Bd in Mk(C) for some k ∈ N, some self-adjoint
matrix A0 ∈ Mk(C) and some matrix w ∈ Mk×p(C) is called a self-adjoint formal
linear representation of R (of dimension k) if the following condition is satisfied:
for every unital complex ∗-algebra A and all tuples X = (X1, . . . , Xd) of (not
necessarily self-adjoint) elements in A, one has

X ∈ domA(R) =⇒ (X,X∗) ∈ domA(Q
−1)

and for every X ∈ domA(R) for which R(X) is self-adjoint, it holds true that

R(X) = w∗Q(X,X∗)−1w.
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We point out that in contrast to the related concept introduced in [44, Definition
4.13] the existence of a self-adjoint formal linear representation in the sense of the
previous Definition 2.36 does not enforce R to be self-adjoint at any distinguished
points in its domain. In fact, we have the following theorem which says that every
square matrix-valued non-commutative rational expression admits a self-adjoint
formal linear representation; this is analogous to [44, Theorem 4.14].

Like for formal linear representations, we will say that a self-adjoint formal linear
representation ρ = (Q,w) of a self-adjoint p × p matrix-valued non-commutative
rational expression R is proper if the dimension k of ρ is larger than p and if w has
full rank (i.e., the rank of w is p).

Theorem 2.37. Every square matrix-valued non-commutative rational expression
in d formal variables admits a self-adjoint formal linear representation in the sense
of Definition 2.36 which is proper.

Proof. Let ρ = (v,Q,w) be a formal linear representation of R in the variables
x1, . . . , xd with the affine linear pencil Q being of the form

Q = A0 ⊗ 1 +

d∑
j=1

Bj ⊗ xj .

We consider ρ̃ = (Q̃, w̃) with the affine linear pencil

Q̃ = Ã0 ⊗ 1 +

d∑
j=1

(
B̃j ⊗ xj + B̃∗

j ⊗ x∗
j

)
in the variables x1, . . . , xd, x

∗
1, . . . , x

∗
d given by

Ã0 :=

(
0 A∗

0

A0 0

)
, B̃j :=

(
0 0
Bj 0

)
, and w̃ :=

(
1
2v

∗

w

)
.

One verifies that ρ̃ = (Q̃, w̃) is a self-adjoint formal linear representation of R which
is moreover proper whenever ρ is proper. □

Notice that if R is a p × p matrix-valued non-commutative rational expression
in d1 + d2 formal variables x1, . . . , xd1

, u1, . . . , ud2
which is self-adjoint of type

(d1, d2), then each self-adjoint formal linear representation of R can be brought
into the simplified form ρ = (Q,w) with an affine linear pencil

Q = A0 ⊗ 1 +

d1∑
j=1

Aj ⊗ xj +

d2∑
j=1

(
Bj ⊗ uj +B∗

j ⊗ u∗
j

)
in the formal variables x1, . . . , xd1

, u1, . . . , ud2
, u∗

1, . . . , u
∗
d2

with coefficients be-
ing self-adjoint matrices A0, A1, . . . , Ad1

and (not necessarily self-adjoint) matrices
B1, . . . , Bd2 in Mk(C) for some k ∈ N and some matrix w ∈ Mk×p(C); indeed Theo-
rem 2.37 yields a self-adjoint formal linear representation of R with an affine linear
pencil in the formal variables x1, . . . , xd1

, x∗
1, . . . , x

∗
d1

and u1, . . . , ud2
, u∗

1, . . . , u
∗
d2
,

from which we obtain Q of the asserted form by replacing x∗
1, . . . , x

∗
d1

by x1, . . . , xd1

and merging their coefficients. In particular, we have

(X,U) ∈ domA(R) =⇒ (X,U,U∗) ∈ domA(Q
−1)

and for every (X,U) ∈ domA(R) it holds true that

R(X,U) = w∗Q(X,U,U∗)−1w.
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Example 2.38. We return to the self-adjoint non-commutative rational expressions
presented in Example 2.35. Let us construct a self-adjoint formal linearization of
x1+x−1

2 . Using the algorithm from [44] which we recalled in the proof of Theorem
2.28, we obtain first a formal linear representation

X1 +X−1
2 =

(
1 0 1

) 1 −X1 0
0 1 0
0 0 X2

−1 0
1
1

 .

Out of the latter, we construct with the help of Theorem 2.37 the self-adjoint formal
linear representation

X1+X−1
2 =

(
1
2 0 1

2 0 1 1
)


0 0 0 1 0 0
0 0 0 −X1 1 0
0 0 0 0 0 X2

1 −X1 0 0 0 0
0 1 0 0 0 0
0 0 X2 0 0 0



−1

1
2
0
1
2
0
1
1

 .

The second example is u1 + u−1
1 . Since we have for unitary U1 in any ∗-algebra

U1 + U−1
1 =

(
1 0 1

) 1 −U1 0
0 1 0
0 0 U2

−1 0
1
1

 ,

we have a formal self-adjoint linearization

U1 +U−1
1 =

(
1
2 0 1

2 0 1 1
)


0 0 0 1 0 0
0 0 0 −U∗

1 1 0
0 0 0 0 0 U∗

1

1 −U1 0 0 0 0
0 1 0 0 0 0
0 0 U1 0 0 0



−1

1
2
0
1
2
0
1
1

 .

2.2.4. Unbounded random variables. In this subsection, we set (M, τ) to be a tracial
W ∗-probability space (i.e., a von Neumann algebra M that is endowed with a
faithful normal tracial state τ : M → C). The condition that τ is a trace is necessary
since we are going to consider closed and densely defined operators affiliated with
the von Neumann algebra M. We will simply call these operators unbounded
operators. In general, unbounded operators might not well-behave under either
addition or composition. However, in the case of tracial W ∗-probability space,

they form a ∗-algebra, denoted by M̃, which provides us a framework in which one
has well-defined evaluations of rational expressions.

In a language of probability, this framework allows us to consider random vari-
ables that may not have compact support or even finite moments. For a normal
random variable X in a W ∗-probability space (M, τ), we know that X has finite
moments of all orders and its analytic distribution µX determined by the moments
(i.e., the probability measure associated to X by a representation theorem of Riesz)

has a compact support. For an (unbounded) operatorX in M̃, it may not have finite
moments. But we could still associate a probability measure to X via the spectral
theorem. We refer the interested reader to [66, 8] for more details on unbounded
operators (which are also known as measurable operators as the non-commutative
analogue of measurable functions, cf. [82]).
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Let P(M) denote the set of self-adjoint projections in M and let M̃sa be the

set of self-adjoint elements in M̃. Given an element X ∈ M̃sa, for a Borel set B
on R, we denote by 1B(X) ∈ P(M) the spectral projection of X on B given by
the spectral theorem (see, for example, [30]). Then we can associate a probability
measure µX to X as follows.

Definition 2.39. For X ∈ M̃sa, we define its analytic distribution µX by

µX(B) := τ(1B(X)), for all Borel sets B ⊆ R.

Furthermore, we define the cumulative distribution function of X as the function
FX : R → [0, 1] given by,

FX(t) :=

∫ t

−∞
1dµX(s) = τ(1(−∞,t](X)).

In particular, if we take M = L∞(Ω,P) and τ = E for some probability measure

space (Ω,P), then M̃ is the ∗-algebra consisting of all measurable functions, i.e.,
classical random variables. Moreover, the analytic distribution and cumulative
distribution defined above coincide with their classical counterparts.

Recall that for a probability measure µ on R. A number λ ∈ R is called an atom

of µ if µ({λ}) ̸= 0. Thus for a random variable X in M̃sa, we say that λ ∈ R is an
atom for X if λ is an atom for µX . Moreover, we see that X has an atom λ ∈ R
if and only if pker(λ−X) ̸= 0, where pker(λ−X) ∈ P(M) is the orthogonal projection

onto the kernel of λ−X (in the Hilbert space L2(M, τ)). For an atom λ of X, we
have

µX({λ}) = τ(pker(λ−X)).

A closely related notion is a rank defined via the image. That is, we define

rk(X) := τ(pimX),

where pimX is the orthogonal projection onto the closure of the image of X. The
following alternative description of this rank will be needed later:

(1) rk(X) = inf{τ(r) | r ∈ P(M), rX = X}.

Clearly, since p
im(X)

X = X, we have inf{τ(r) | r ∈ P(M), rX = X} ≤ τ(p
im(X)

) =

rk(X). To see it is an equality, note that for any r ∈ P(M) satisfying rX = X,
im(X) ⊆ im(r), which implies that p

im(X)
≤ r.

2.2.5. The quantity ∆. The regularity condition which we impose in Theorem
3.10 on the limit of the considered random matrix model involves the quantity
∆ which was introduced by Connes and Shlyakhtenko in [29]. We briefly recall
the definition. Let (M, τ) be a tracial W ∗-probability space and consider a tuple
x = (x1, . . . , xd) of (not necessarily self-adjoint) non-commutative random vari-
ables in M. We denote by F(L2(M, τ)) the ideal of all finite rank operators on
L2(M, τ) and by J Tomita’s conjugation operator, i.e., the conjugate-linear map
J : L2(M, τ) → L2(M, τ) that extends isometrically the conjugation x 7→ x∗ on
M. We then put

∆(x) := d− dimM⊗Mop

{
(T1, . . . , Td) ∈ F(L2(M, τ))d

∣∣∣∣ d∑
j=1

[Tj , Jx∗
jJ ] = 0

}HS

,



26 AKIHIRO MIYAGAWA

where the closure is taken with respect to the Hilbert-Schmidt norm. Note that
in contrast to [29], we do not require the set {x1, . . . , xd} to be closed under the
involution ∗; see also [60]. Despite this slight deviation from the setting of [29], the
following result remains true.

Theorem 2.40 (Theorem 3.3 (e) in [29]). Let 1 ≤ k < d and suppose that the sets
{x1, . . . , xk} and {xk+1, . . . , xd} are freely independent, then

∆(x1, . . . , xd) = ∆(x1, . . . , xk) + ∆(xk+1, . . . , xd).

Further, we recall from [60, Corollary 6.4] that ∆(u) = d for every d-tuple u of
freely independent Haar unitary elements in (M, τ).

In the particular case of a d-tuple x consisting of self-adjoint operators in M,
Corollary 4.6 in [29] says that d ≥ ∆(x) ≥ δ(x), where δ(x) denotes the so-called
microstates free entropy dimension which was introduced by Voiculescu in [86,
Definition 6.1]. Now, if the x1, . . . , xd are freely independent, then Proposition 6.4
in [86] tells us that

δ(x) = d−
d∑

j=1

∑
t∈R

µxj
({t})2,

where µxj
is the analytic distribution of the operator xj in the sense of Definition

2.39. We infer that ∆(x1, . . . , xd) = d if x1, . . . , xd are self-adjoint, freely indepen-
dent and their individual analytic distributions µx1 , . . . , µxd

are all non-atomic. For
reference, we summarize these observations by the following corollary.

Corollary 2.41. Let x = (x1, . . . , xd1
) be a d1-tuple of self-adjoint and freely in-

dependent elements in (M, τ) with µx1
, . . . , µxd1

being non-atomic. Further, let

u = (u1, . . . , ud2
) be a d2-tuple of freely independent Haar unitary elements in

(M, τ). Suppose that x and u are freely independent. Then ∆(x, u) = d1 + d2.

2.3. Non-commutative rational power series and the fundamental theo-
rem. For d ∈ N, [d]∗ denotes the set of words that consist of letters in [d] with the
empty word Ω. In other words, [d]∗ is the free semigroup with generators [d] and
the identity Ω.

We consider the algebra C⟨⟨X1, . . . Xd⟩⟩ of non-commutative formal power series
with formal (non-commutative) variables {Xi}i∈[d] like as∑

v∈[d]∗

αvX
v

whereXv = Xv1Xv2 · · ·Xvn for v = v1v2 · · · vn ∈ [d]∗ andXΩ = 1. Let C⟨X1, . . . , Xd⟩
denote the subalgebra of non-commutative polynomials.

To define the notion of rational series, we give two definitions of rationality in a
setting of unital algebras (over C) as follows (see [7, Definition 6] or [60, Definition
4.6 and 4.8]).

Definition 2.42. Let A be a unital algebra and B ⊂ A be a unital subalgebra of
A. We define the division closure of B in A as the smallest unital subalgebra C of
A such that C contains B and satisfies

x ∈ C is invertible in A =⇒ x−1 ∈ C.
In addtion, we define the rational closure of B in A as the smallest (unital) subal-
gebra D of A such that D contains B and satisfies for any n ∈ N,

X ∈ Mn(D) is invertible in Mn(A) =⇒ X−1 ∈ Mn(D).
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Obviously, the division closure of any subalgebra is always contained in the
rational closure of the same subalgebra, however, the converse is not necessarily
true (Exercise 7.1.3 in [23]).

We will use facts for non-commutative rational series specialized for our nota-
tions. The proofs of these results can be found in [7, Chapter 1].

Definition 2.43. Let Z =
∑

v∈[d]∗ αvX
v ∈ C⟨⟨X1, . . . Xd⟩⟩. We say Z is recog-

nizable if there exists m ∈ N and a linear representation (λ, µ, γ) of dimension m
which consists of a multiplicative map µ : [d]∗ → Mm(C) (i.e. µ(vw) = µ(v)µ(w)
for any v, w ∈ [d]∗) and λ, γ ∈ Cm such that for any v ∈ [d]∗

αv = tλµ(v)γ.

Let us say Z is rational if Z belong to the division closure of C⟨X1, . . . , Xd⟩ in
C⟨⟨X1, . . . Xd⟩⟩. Then the following theorem, known as the fundamental theorem,
is crucial in this paper.

To state the fundamental theorem, we introduce two operations on [d]∗, which
correspond with right and left annihilation operators (see Section 2.4).

Definition 2.44. Let 0 be a new letter. For v ∈ [d]∗ ⊔ {0} and w ∈ [d]∗, we define

vw−1 =

{
v′ if v = v′w, v′ ∈ [d]∗

0 otherwise

and also define

w−1v =

{
v′ if v = wv′, v′ ∈ [d]∗

0 otherwise.

For non-commutative power series, we define X0 = 0. Then the following result
is called the Fundamental theorem, which is a collection of several works by Fliess,
Jacobi, Kleene, and Schützenberger.

Theorem 2.45 (Corollary 1.5.4 and Theorem 1.7.1 in [7]). Let Z =
∑

v∈[d]∗ αvX
v ∈

C⟨⟨X1, . . . Xd⟩⟩. Then the following are equivalent.

(i) A C-vector subspace of C⟨⟨X1, . . . Xd⟩⟩ generated by
∑

v∈[d]∗ αvX
vw−1

(w ∈
[d]∗) is finitely generated.

(ii) A C-vector subspace of C⟨⟨X1, . . . Xd⟩⟩ generated by
∑

v∈[d]∗ αvX
w−1v (w ∈

[d]∗) is finitely generated.

(iii) Z is recognizable.

(iv) Z is rational.

Moreover, if a non-commutative formal power series is recognizable and its linear
representation (λ, µ, γ) has the minimal dimension, then µ is determined by its
coefficients. This can be stated as follows.

Theorem 2.46 (Corollary 2.2.3 in [7]). Suppose Z =
∑

v∈[d]∗ αvX
v ∈ C⟨⟨X1, . . . Xd⟩⟩

is recognizable with a linear representation (λ, µ, γ) which has the minimal dimen-
sion m. Then there exist {uk}Kk=1, {wl}Ll=1 ⊂ [d]∗ and cklij ∈ C such that for any
v ∈ [d]∗ and 1 ≤ i, j ≤ m

µ(v)ij =
∑
kl

cklijαukvwl
.
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In addition, we use an operation between non-commutative formal power se-
ries. For Z1 =

∑
v∈[d]∗ αvX

v, Z2 =
∑

v∈[d]∗ βvX
v ∈ C⟨⟨X1, . . . Xd⟩⟩, we define the

Hadamard product Z1 ⊙ Z2 by

Z1 ⊙ Z2 =
∑

v∈[d]∗

αvβvX
v.

One of the connections between the Hadamard product and rationality can be
stated as follows.

Theorem 2.47 (Theorem 1.5.5 in [7]). If Z1, Z2 ∈ C⟨⟨X1, . . . Xd⟩⟩ are rational,
then Z1 ⊙ Z2 is also rational.

2.3.1. Kronecker’s theorem. We need to recall Kronecker’s theorem which basically
tells us the equivalence between bounded rational functions and finite rank Hankel
operators.

Let {αn}∞n=0 ⊂ C. We call a bounded operator H on l2(Z≥0) the Hankel operator
with respect to {αn}∞n=0 if H satisfies

⟨Hem, en⟩ = αm+n

for any m,n ∈ Z≥0 where {em}∞m=0 is the standard orthonormal basis of l2(Z≥0).
The following theorem is known as Kronecker’s theorem for the studies of Hankel
operators (see [52] and [70, Theorem 3.11]).

Theorem 2.48. Let {αn}∞n=0 ⊂ C. Then a formal Laurent series (in z−1) a(z) =∑∞
n=0 αnz

−n−1 is a rational function (i.e. a(z) = P (z)
Q(z) for some polynomials

P (z), Q(z)) such that all poles of a(z) are contained in {z ∈ C | |z| < 1} if and
only if {αn}∞n=0 determines a finite rank Hankel operator. In this case, the number
of poles on f is equal to the rank of the Hankel operator.

Here, we explain a related recursion and estimate in Theorem 2.48 in order to
explain Corollary 2.49, which we will use in the proof of Corollary 4.6. Indeed, if
a(z) =

∑∞
n=0 αnz

−n−1 is rational and the denominator of a(z) written as Q(z) =∑m
k=0 λkz

k (λm ̸= 0), then we have the following recursion for {αn}∞n=0

m∑
k=0

λkαn+k = 0,

where {αn}m−1
n=0 are determined by the numerator of a(z). This recursion is char-

acterized by the poles of a(z), and if we additionally assume limn→∞ αn = 0, we
can see that all poles of a(z) are contained in {z ∈ C | |z| < 1} (see the proof of
[70, Theorem 3.11]). Moreover, this implies |αn| is bounded above by Mcn where
M > 0 and c = max{|p| | p is a pole of a(z)}.

By replacing a(z) by za(z−1), we obtain the following estimate from the above
observation, which is used in the proof of [34, Lemma 10].

Corollary 2.49. Let a(z) =
∑∞

n=0 αnz
n be a formal power series with

∑∞
n=0 |αn|2 <

∞. If a(z) is rational, then there exists M > 0 and 0 < c < 1 such that we have
for any n ∈ N

|αn| ≤ Mcn.

2.4. q-CCR and related operators.
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2.4.1. q-CCR and q-Gaussians. Let HR be a real Hilbert space and HC denote its
amplification HC = HR ⊕ iHR. We start from the algebraic Fock space Falg(HC)
defined by

Falg(HC) =

∞⊕
k=0

H⊗k
C ,

where H⊗0
C = CΩ with ∥Ω∥ = 1 and the direct sum means all finite linear spans of

H⊗k
C ’s.
Let q be a parameter in [−1, 1]. We introduce q-inner product ⟨·, ·⟩q into Falg(HC)

defined by

⟨ξ1 ⊗ · · · ⊗ ξm, η1 ⊗ · · · ⊗ ηn⟩q = δm,n

∑
π∈Sm

qinv(π)
m∏
i=1

⟨ξi, ηπ(i)⟩HC

where Sm is the symmetric group with degree m and inv(π) = #{(i, j) ∈ [m]2; i <
j, π(i) > π(j)} is the number of inversions in π. Actually, we can see that this
inner product satisfies positivity.

Theorem 2.50 (Proposition 1 in [9]). For −1 ≤ q ≤ 1 and ξ ∈ Falg(HC), ⟨ξ, ξ⟩q ≥
0. Moreover, when −1 < q < 1, ⟨ξ, ξ⟩q > 0 for ξ ̸= 0.

By completing Falg(HC) with respect to this q-inner product after dividing it
out by the kernel of the seminorm, we obtain a Hilbert space Fq(HC), so-called
q-Fock space.

For ξ ∈ HC, we define left creation operator l(ξ) by

l(ξ)ξ1 ⊗ · · · ⊗ ξn = ξ ⊗ ξ1 ⊗ · · · ⊗ ξn.

We can also compute the adjoint operator l(ξ)∗ (annihilation operators).

l(ξ)∗ξ1 ⊗ · · · ⊗ ξn =

n∑
k=1

qk−1⟨ξk, ξ⟩ξ1 ⊗ · · · ⊗ ξ̌k ⊗ · · · ⊗ ξn

where ξ̌k means omission of this tensor component. Note that these operators
satisfy q-Canonical Commutation Relations (q-CCR):

l(ξ)∗l(η)− ql(η)l(ξ)∗ = ⟨η, ξ⟩I (ξ, η ∈ HC).

We state a basic property of left creation operators.

Theorem 2.51 (Lemma 4 in [9]). For −1 ≤ q < 1 and ξ ∈ HC, l(ξ) ∈ B(Fq(HC))
and we have

∥l(ξ)∥ =
∥ξ∥√
1− q

(0 ≤ q < 1)

∥l(ξ)∥ = ∥ξ∥ (−1 ≤ q ≤ 0).

Remark 2.52. Dykema and Nica [35] showed that for |q| < 0.44 and dimHR <
∞, the C∗-algebra Tq(HR) generated by left creation operators l(ξ) (ξ ∈ HR) is
isomorphic to T0(HR) which is called the Cuntz-Toeplitz algebra (cf. Kuzmin [55]).

We can also consider the right version of these operators. Namely, we define the
right creation operator r(ξ) by

r(ξ)ξ1 ⊗ · · · ⊗ ξn = ξ1 ⊗ · · · ⊗ ξn ⊗ ξ.
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Then the right creation operators also satisfy q-CCR and commute with the left
creation operators.

One of the main objects of the thesis is q-Gaussian operators defined by

A(q)(ξ) = l(ξ) + l(ξ)∗,

and the von Neumann algebra, so-called the q-Gaussian von Neumann algebra
defined by the double commutant,

Γq(HR) =
{
A(q)(ξ) ; ξ ∈ HR

}′′
.

This von Neumann algebra admits a faithful normal tracial state τ (called the
vacuum state or the Fock state) defined by

τ(X) = ⟨XΩ,Ω⟩q.

The fact that τ is a trace on Γq(HR) can be checked by the q-analog of Wick formula

Theorem 2.53 ([38]). For ξ1, . . . , ξn ∈ HC,

τ
[
A(q)(ξ1) · · ·A(q)(ξ1)

]
=

∑
π∈P2(n)

qcr(π)
∏

(k,l)∈π
k<l

⟨ξl, ξk⟩HC ,

where cr(π) is the number of crossings in the pair partition π.

Since we take ξi from real Hilbert space HR, we can see ⟨ξl, ξk⟩HC = ⟨ξk, ξl⟩HC .
The traciality of τ follows from this property and the observation that cr(π) does not
change by replacing vertices cyclically. As a consequence, the couple (Γq(HR), τ)

forms a tracial W∗ probability space. In addition, Γq(HR) is generated by A(q) =

{A(q)(ei)}i∈I where {ei}i∈I is a orthonormal basis of HR. From this viewpoint,
we also use the notation W∗(A(q)) for the q-Gaussian von Neumann algebra. Note
that when q = 0, A(0) is a family of free semicircle distributions due to the q-Wick
formula and this implies W∗(A(0)) is isomorphic to the free group von Neumann
algebra.

The basic question on the factoriality of Γq(HR) was initially studied by Bożko-
Kümmerer-Speicher [11] and Sniady [78], and subsequently, Ricard [73] answered
this question in full generality (−1 < q < 1 and dimHR ≥ 2). Moreover, it is
known that they share several properties with free group von Neumann algebras.
In particular, Guionnet and Shlyakhtenko [39] proved by using a free probabilistic
technique (free transport) that they are actually isomorphic to the free group von
Neumann algebras under certain conditions.

Theorem 2.54 ([39]). Assume dimHR < ∞ and |q| is sufficiently small (the range
depends on dimHR). Then Γq(HR) is isomorphic to Γ0(HR).

In the above theorem, the condition dimHR < ∞ is necessary. In fact, we have
the following theorem.

Theorem 2.55 ([15], [19]). When dimHR = ∞, Γq(HR) is not isomorphic to
Γ0(HR) for any q ̸= 0.

Remark 2.56. To prove Theorem 2.55, they checked the invariant, so-called Akemann-
Ostrand (AO) property for q-Gaussian von Neumann algebras. In fact, when
dimHR = ∞, Γq(HR) (q ̸= 0) does not have AO property, while Γ0(HR) has
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this property. When dimHR < ∞, it is known that all Γq(HR) have AO prop-
erty, and therefore it is still open whether Γq(HR) is isomorphic to Γ0(HR) for any
−1 < q < 1 or not.

2.4.2. q-Wick polynomials and Haagerup type estimates for q-Gaussians. In a non-
commutative probabilistic framework, we would like to analyze the joint moments
of q-Gaussians, and in principle, it is a study of combinatorics on crossing partitions.
However, Fock representations and functional analysis often give us good control
of joint moments without computing them explicitly.

Here, we explain one of such phenomenons, Bożejko’s Haagerup-type inequal-
ity. The key observation is the isomorphism D between the GNS Hilbert space
L2(W∗(A(q)), τ) and the q-Fock space Fq(HC) which is the extension of

L2(W∗(A(q)), τ) ⊃ W∗(A(q)) ∋ x 7→ xΩ ∈ Fq(HC).

Note that D is an isometry by definition of the vacuum state (we will see soon the
surjectivity).

Let us assume d = dimHR < ∞ and we take an orthonormal basis {e1, . . . , ed}
on HR which also forms an orthonormal basis on HC. We associate the word [d]∗

with a basis {ew}w∈[d]∗ on Falg(HC) by defining

eΩ = Ω,

ew1···wn = ew1 ⊗ · · · ⊗ ewn .

By applying the isomorphism D∗, we obtain e
(q)
w = D∗(ew) ∈ L2(W∗(A(q)), τ).

Actually, for each w ∈ [d]∗, e
(q)
w is a (non-commutative) polynomial in q-Gaussians

Ai = A(ei), which are determined by the recursion:

e
(q)
Ω = 1,

e(q)w1
= Aw1

,

e
(q)
wn+1wn···w1 = Awn+1

e
(q)
wn···w1 −

n∑
k=1

qn−kδwn+1,wk
e
(q)
wn···ŵk···w1

.

Note that this recursion comes from the definition of q-Gaussian operator A and

the formula of l and l∗. {e(q)w }w∈[d]∗ are called q-Wick polynomials.

Example 2.57. When q = 1, e
(1)
w is a product of Hermite polynomials in commuta-

tive variables A1, . . . , Ad. In fact, for each w, we have

e(1)w = Hk1
(A1) · · ·Hkd

(Ad)

where kl (l = 1, . . . , d) is the number of the letter l in w and Hn(x) is a (normalized)
Hermite polynomial defined by

H0(x) = 1, H1(x) = x, Hn+1(x) = xHn(x)− nHn−1(x).

When q = 0, e
(0)
w is a product of Chebyshev polynomials in non-commutative

variables A1, . . . , Ad. In this case, for each w, we write w = ik1
1 · · · ikn

n with ij ̸= ij+1

(j = 1, . . . , n− 1) and kj ≥ 1, and we have

e(0)w = Uk1
(Ai1) · · ·Ukn

(Ain)

where Un(x) is the (normalized) Chebyshev polynomials of the second kind defined
by

U0(x) = 1, U1(x) = x, Un+1(x) = Un(x)− Un−1(x).
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To emphasize Chebyshev polynomials, we will use the notation Uw instead of e
(0)
w

in the subsequent sections. When q = −1, e
(q)
w is 0 if w has the same latter. If

w = w1 · · ·wn consists of different letters, then e
(−1)
w is just a product of anti-

commutative variables A1, . . . , Ad with the same order as w, i.e.

e(−1)
w = Aw1 · · ·Awn .

Let ∥ · ∥ is the operator norm on B(Fq(H)) and ∥ · ∥Fq(H) (or simply ∥ · ∥q)
is the norm defined by

√
⟨ξ, ξ⟩q for ξ ∈ Fq(H). Now, we state the Bożejoko’s

Haagerup-type inequality for q-Gaussians with −1 < q < 1.

Theorem 2.58 (Proposition 2.1 in [13]). For each k ∈ N and −1 < q < 1, we have∥∥∥∥∥∥
∑
|w|=k

αwe
(q)
w

∥∥∥∥∥∥ ≤ (k + 1)C
3
2

|q|

∥∥∥∥∥∥
∑
|w|=k

αwe
(q)
w

∥∥∥∥∥∥
Fq(HC)

where αw ∈ C and C−1
|q| =

∏∞
m=1(1− |q|m).

Here, we revisit a proof of this inequality in the case q = 0 for the reader’s
convenience since this argument also appears in general q and it is crucial in the
section.

Lemma 2.59 (Haagerup inequality). Let m ∈ Z≥0 and {αv}|v|=m be a family of
complex numbers. Then we have∥∥∥∥∥∥

∑
|v|=m

αvUv

∥∥∥∥∥∥ ≤ (m+ 1)

∥∥∥∥∥∥
∑

|v|=m

αvÛv

∥∥∥∥∥∥
F0(H)

,

Proof. First, we show

max


∥∥∥∥∥∥
∑

|v|=m

αvlv

∥∥∥∥∥∥ ,
∥∥∥∥∥∥
∑

|v|=m

αvl
∗
v

∥∥∥∥∥∥
 ≤

∥∥∥∥∥∥
∑

|v|=m

αvÛv

∥∥∥∥∥∥
F0(H)

where lv = lv1 lv2 · · · lvm , l∗v = l∗v1 l
∗
v2 · · · l

∗
vm with lvi = l(evi) for v = v1v2 · · · vm.

Since we have for ξ ∈ H⊗n

∥∥∥∥∥∥
∑

|v|=m

αvlvξ

∥∥∥∥∥∥
2

F0(H)

=

∥∥∥∥∥∥
∑

|v|=m

αv(ev ⊗ ξ)

∥∥∥∥∥∥
2

F0(H)

=
∑

|v|=m

|αv|2∥ξ∥2F0(H)

and
∑

|v|=m αvlv(ξ) and
∑

|v|=m αvlv(η) are orthogonal for ξ ∈ H⊗n and η ∈
H⊗n′

, n ̸= n′, we have ∥
∑

|v|=m αvlv∥ ≤ ∥
∑

|v|=m αvÛv∥F0(H). Moreover, by
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taking involution, we have∥∥∥∥∥∥
∑

|v|=m

αvl
∗
v

∥∥∥∥∥∥ =

∥∥∥∥∥∥
 ∑

|v|=m

αvl
∗
v

∗∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑

|v|=m

αvlv∗

∥∥∥∥∥∥
≤

√ ∑
|v|=m

|αv∗ |2

=

∥∥∥∥∥∥
∑

|v|=m

αvÛv

∥∥∥∥∥∥
F0(H)

.

In order to prove this lemma, we use the following characterization of Uv for v =
v1 · · · vm ∈ [d]∗, vi ∈ [d] (see Proposition 2.7 in [11])

Uv =

m∑
k=0

lv1 · · · lvk l∗vk+1
· · · l∗vm .

From this formula, we rewrite
∑

|v|=m αvUv by
∑m

k=0 F
(k) where F (k) denotes∑

|u|=k
|v|=m−k

αuvlul
∗
v

for k = 0, . . . , n. We will show ∥F (k)∥ ≤ ∥
∑

|v|=m αvÛv∥F0(H) for any k. Since we

have already proved this for k = 0,m in the previous argument, we fix k = 1, . . . , n−
1. In addition, since F (k)(ξ) and F (k)(η) are orthogonal when ξ ∈ H⊗n, η ∈ H⊗n′

where n ̸= n′, it suffices to show that ∥F (k)(ξ)∥F0(H) ≤ ∥
∑

|v|=m αvÛv∥F0(H)∥ξ∥2
for ξ ∈ H⊗n where n ≥ m− k (note that F (k)(ξ) = 0 when n < m− k). Then we
have

∥F (k)ξ∥2F0(H) = ⟨
∑

|u1|=k
|u2|=n−k

αu1u2
lu1

l∗u2
ξ,

∑
|v1|=k

|v2|=n−k

αv1v2 lv1
l∗v2ξ⟩0

=
∑

|u1|=|v1|=k
|u2|=|v2|=n−k

αu1u2
αv1v2⟨lu1 l

∗
u2
ξ, lv1 l

∗
v2ξ⟩0

=
∑

|u1|=|v1|=k
|u2|=|v2|=n−k

αu1u2αv1v2⟨eu1 , ev1⟩F0(H)⟨l∗u2
ξ, l∗v2ξ⟩0.

Since {ev}v∈[d]∗ is an orthonormal basis of F0(H), the last term is equal to∑
|u|=k

|u2|=|v2|=n−k

αuu2
αuv2⟨l∗u2

ξ, l∗v2ξ⟩0 =
∑
|u|=k

⟨
∑

|u2|=n−k

αuu2
l∗u2

ξ,
∑

|v2|=n−k

αuv2
l∗v2ξ⟩0

=
∑
|u|=k

∥∥∥∥∥∥
∑

|v|=n−k

αuvl
∗
vξ

∥∥∥∥∥∥
2

F0(H)

.
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Since we have
∥∥∥∑|v|=n−k αuvl

∗
v

∥∥∥ ≤
√∑

|v|=n−k |αuv|2, we obtain

∥F (k)ξ∥22 ≤
∑
|u|=k

∑
|v|=n−k

|αuv|2∥ξ∥2F0(H) =

∥∥∥∥∥∥
∑

|v|=m

αvÛv

∥∥∥∥∥∥
2

F0(H)

∥ξ∥2F0(H).

Thus we conclude∥∥∥∥∥∥
∑

|v|=m

αvUv

∥∥∥∥∥∥ =

∥∥∥∥∥
m∑

k=0

F (k)

∥∥∥∥∥
≤

m∑
k=0

∥F (k)∥

≤ (m+ 1)

∥∥∥∥∥∥
∑

|v|=m

αvÛv

∥∥∥∥∥∥
F0(H)

.

□

Remark 2.60. We remark that this inequality corresponds with the Haagerup in-
equality for free Haar unitaries,∥∥∥∥∥∥∥∥

∑
g∈Fd

|g|=k

αgλ(g)

∥∥∥∥∥∥∥∥ ≤ (k + 1)

∥∥∥∥∥∥∥∥
∑
g∈Fd

|g|=k

αgλ(g)

∥∥∥∥∥∥∥∥
l2(Fd)

.

2.4.3. Generalization: twisted relations and Araki-Woods algebras. Here, we briefly
explain generalizations of q-CCR and q-Gaussian von Neumann algebra. To gener-
alize q-CCR, we go back to the definition of the q-inner product

⟨ξ1 ⊗ · · · ⊗ ξm, η1 ⊗ · · · ⊗ ηn⟩q = δm,n

∑
π∈Sm

qinv(π)
m∏
i=1

⟨ξi, ηπ(i)⟩.

We see this inner product as the following form

⟨ξ1 ⊗ · · · ⊗ ξm, η1 ⊗ · · · ⊗ ηn⟩q = ⟨ξ1 ⊗ · · · ⊗ ξm, P (n)(η1 ⊗ · · · ⊗ ηn)⟩0,

where the operator P (n) : H⊗n
C → H⊗n

C is defined by P (n) =
∑

π∈Sn
qinv(π)Uπ and

Uπ is the unitary operator (with respect to 0-inner product) onH⊗n
C which permutes

tensor components according to π, i.e. Uπη1 ⊗ · · · ⊗ ηn = ηπ(1) ⊗ · · · ⊗ ηπ(n). Note
that we have the following identity in the group algebra of the Symmetric group,∑
π∈Sn

qinv(π)π = (1+T1)(1+T2+T2T1) · · · (1+Tn−1+Tn−1Tn−2+ · · ·+Tn−1 · · ·T1)

where Tk = q(k, k + 1). We identify Uπ with π, and then Tk is identified with

Id⊗k−1
HC

⊗ qF ⊗ Id⊗n−1−k
HC

where F ∈ B(HC ⊗ HC) is the flip operator F (ξ ⊗ η) = η ⊗ ξ. From the formula
above, we have

P (n) = (1 + T1)(1 + T2 + T2T1) · · · (1 + Tn−1 + Tn−1Tn−2 + · · ·+ Tn−1 · · ·T1).
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Now, we replace the operator qF by a self-adjoint operator T = T ∗ ∈ B(HC ⊗
HC) and define Tk, P (n), and the sesqui-linear form ⟨x, y⟩T = ⟨x,⊕∞

n=0P
(n)y⟩0

in the same way. The problem is the positivity of the sesqui-linear form ⟨·, ·⟩T ,
i.e. ⟨x, x⟩T ≥ 0 for any x ∈ Falg(HC). The sufficient condition was proved by
Boźejko-Speicher [10] and Jorgensen-Schmitt-Werner [48].

Theorem 2.61. If T = T ∗ ∈ B(HC ⊗ HC) satisfies ∥T∥ ≤ 1 and Yang-Baxter
relation

(T ⊗ IdHC)(IdHC ⊗ T )(T ⊗ IdHC) = (IdHC ⊗ T )(T ⊗ IdHC)(IdHC ⊗ T ),

then the sesqui-linear form ⟨·, ·⟩T satisfies the positivity condition. Moreover, if
∥T∥ < 1, then we have strict positivity, i.e. ⟨x, x⟩T > 0 for any x ̸= 0.

If the sesqui-linear form ⟨·, ·⟩T satisfies the positivity, we obtain the Hilbert space
FT (HC) by completing Falg(HC), the so-called twisted Fock space. We consider the
left creation operator l(ξ) for ξ ∈ HC by putting ξ⊗ from the left. In particular, if
we take an orthonormal basis {ei}i∈I on HC, {li = l(ei)}i∈I satisfy twisted CCR,

l∗i lj −
∑
r,s∈I

tirjslrl
∗
s = δi,jI,

where I is the identity operator and tirjs ∈ C is determined from T by

tirjs = ⟨Tej ⊗ es, ei ⊗ er⟩H⊗2
C

.

Of course, this twisted CCR contains q-CCR, and it also contains mixed qij-CCR

l∗i lj − qij lj l
∗
i = δi,jI.

We also remark that q-Gaussian operators A(q)(ξ) produce not only q-Gaussian
von Neumann algebra Γq(HR) but also non-tracial von Neumann algebra by con-
sidering the double commutant

Γq(H) = {A(q)(ξ) : ξ ∈ H}′′

where H ⊂ HC is a standard subspace of HC, in other words H is a real Hilbert
subspace of HC and satisfies

• H is closed as a real Hilbert subspace of (HC,Re⟨·, ·⟩HC),

• H + iH is dense in HC,

• H ∩ iH = {0}.
Since ⟨x, y⟩HC ̸= ⟨y, x⟩HC for x, y ∈ H in general, the vacuum state is not necessary
a trace on Γq(H) and Γq(H) can be non-tracial von Neumann algebra. For general
H, Γq(H) is called q-Araki-Wodds algebra introduced in Hiai [45], which is a q-
deformation of the free Araki-Woods algebra introduced by Shlyakhtenko [74]. We
can apply the same construction of q-Araki-Woods algebra to twisted CCR, and
we call it a twisted Araki-Woods algebra. When |q| < 1 and more generally ∥T∥ <
1, the factoriality of q-Araki-Woods algebra, mixed q-Araki-Woods algebra and
twisted Araki-Woods algebra was recently solved by Kumar-Skalski-Wasilewski [53],
Kumar [54] and Yang [92] by proving the existence of the conjugate system as in
Section 5 in the thesis.We won’t go further on the non-tracial case since it is not
the main object of this thesis.
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3. Convergence for non-commutative rational functions evaluated
in random matrices

This section is a part of the paper [27]. The main result of this section is to show
the convergence in distribution of spectral measures of non-commutative rational
functions evaluated in given non-commutative random matrices and to see how it
works for random matrices. First, we consider the well-definedness of evaluations
of non-commutative rational functions in random matrices.

3.1. Evaluations of non-degenerate matrix-valued non-commutative ra-
tional expressions. By definition, every non-degenerate matrix-valued non-commutative
rational expression has a non-empty domain when evaluations in matrices of suffi-
ciently large size are considered. In this section, we show that actually much more
is true. Namely, we establish that the assumptions of Theorem 3.10 are satisfied in
very general situations.

3.2. Evaluations in random matrices. The following result asserts, loosely spo-
ken, that one can almost surely evaluate every non-degenerated matrix-valued non-
commutative rational expression in “absolutely continuous” random matrix models,
provided that their size is large enough. The precise statement reads as follows.

Theorem 3.1. Let R be a matrix-valued non-commutative rational expression in
d = d1 + d2 formal variables which is non-degenerate. Suppose that µN

d1,d2
is a

probability measure on MN (C)d1
sa × UN (C)d2 which is absolutely continuous with

respect to the product measure of the Lebesgue measure on MN (C)sa and the Haar
measure on UN (C). If (XN , UN ) is a tuple of random matrices in MN (C)d1

sa ×
UN (C)d2 with law µN

d1,d2
, then there exists some N0 ∈ N such that almost surely

(XN , UN ) ∈ domMN (C)(R) for all N ≥ N0.

Remark 3.2. For the validity of Theorem 3.1, it is essential to work over the field of
complex numbers. In order to see this, consider the scalar-valued non-commutative
rational expression r = (x1x2−x2x1)

−1. Note that there are real matricesX1, X2 at
which one can evaluate r, but inMN (R) forN odd there cannot exist symmetric real
matrices X1, X2 at which evaluation r(X1, X2) would be defined, since necessarily
det(X1X2 −X2X1) = 0 because

det(X1X2 −X2X1) = det
(
(X1X2 −X2X1)

T
)
= −det(X1X2 −X2X1).

It is consistent with this observation that the proof of Proposition 3.3, on which
Theorem 3.1 relies, will make use of complex analysis techniques.

One can also see an algebraic description of the existence of a symmetric matrix
in a domain of non-commutative rational expression in [90, Remark 6.7].

The proof of Theorem 3.1 relies on a study of evaluations of affine linear pencils.
The first step is the following proposition, which requires some notation. Consider
an affine linear pencil

(2) Q = A0 ⊗ 1 +

d1∑
j=1

Aj ⊗ xj +

d2∑
j=1

Bj ⊗ uj

in the variables x = (x1, . . . , xd1
) and u = (u1, . . . , ud2

), say with coefficients
A0, A1, . . . , Ad1

and B1, . . . , Bd2
taken from Mk(C). We regard Q as an element in

Mk(C)⊗ C⟨x, u⟩ ∼= Mk(C⟨x, u⟩).
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Given an d-tuple Z = (Z ′, Z ′′) of matrices in MN (C), we consider the evaluation
of Q at Z which is given by

Q(Z) := A0 ⊗ 1 +

d1∑
j=1

Aj ⊗ Z ′
j +

d2∑
j=1

Bj ⊗ Z ′′
j ,

where Q(Z) lies in Mk(C)⊗MN (C) ∼= MkN (C). Building on such evaluations, we
associate to Q functions

ϕ
(N)
Q : MN (C)d −→ C, Z 7−→ det(Q(Z))

for every N ∈ N. Notice that ϕ
(N)
Q is a holomorphic commutative polynomial in

the dN2 complex matrix entries appearing in the tuple Z. This allows us to use

the complex analysis machinery in order to relate ϕ
(N)
Q and its restriction to the

real space MN (C)d1
sa × UN (C)d2 .

Proposition 3.3. Let Q be an affine linear pencil of the form (2) in Mk(C) ⊗
C⟨x, u⟩ and let N ∈ N. If ϕ

(N)
Q |

MN (C)d1sa ×UN (C)d2 ≡ 0, then ϕ
(N)
Q ≡ 0.

Proof. Fix any Z = (Z ′, Z ′′) ∈ MN (C)d1 × MN (C)d2 and suppose that the d2-
tuple Z ′′ consists of invertible matrices. We write Z ′ = X + iY with the tuples
X = (X1, . . . , Xd1), Y = (Y1, . . . , Yd1) ∈ MN (C)d1

sa that are given by Xj := ℜ(Z ′
j)

and Yj := ℑ(Z ′
j) for j = 1, . . . , d1. Further, for j = 1, . . . , d2, we consider the polar

decomposition Z ′′
j = PjUj of Z ′′

j with a positive definite matrix Pj ∈ MN (C) and
Uj ∈ UN (C). As the matrices P1, . . . , Pd2

are positive definite, we can define a
holomorphic function f : C → C by

f(z) := ϕ
(N)
Q

(
X1 + zY1, . . . , Xd1 + zYd1 ,

exp(−iz log(P1))U1, . . . , exp(−iz log(Pd2))Ud2

)
for z ∈ C. Due to the assumption that ϕ

(N)
Q |

MN (C)d1sa ×UN (C)d2 ≡ 0, we have that

f |R ≡ 0. Thus, by the identity principle, it follows that f vanishes identically on C.
In particular, ϕ

(N)
Q (Z) = f(i) = 0. This shows that ϕ

(N)
Q vanishes on all d-tuples

Z = (Z ′, Z ′′) ∈ MN (C)d1 ×MN (C)d2 satisfying the condition that Z ′′ consists of
invertible matrices. Since those are dense in MN (C)d, the assertion follows. □

With the help of Proposition 3.3, we see that fullness of affine linear pencils Q
can be detected by evaluations of Q at points in MN (C)d1

sa × UN (C)d2 .

Proposition 3.4. Let Q be an affine linear pencil of the form (2) in Mk(C) ⊗
C⟨x, u⟩ which is full. Then there exists N0 ∈ N with the following property: for

each N ≥ N0, we have that ϕ
(N)
Q |

MN (C)d1sa ×UN (C)d2 ̸≡ 0, i.e., one can find some

d-tuple (XN , UN ) ∈ MN (C)d1
sa ×UN (C)d2 for which Q(XN , UN ) becomes invertible

in MkN (C).

Proof. First, we note that there exists some N0 ∈ N such that ϕ
(N)
Q ̸≡ 0 for all

N ≥ N0. This fact is well-known (see Proposition 2.4 in [91], for instance), but
we include the argument for the sake of completeness. Since Q is full, Q(x) is
invertible as a matrix over the free skew field C (<x, u )>; see Remark 2.30 (ii). Its
inverseQ(x)−1 ∈ Mk(C (<x, u )>) is represented by some non-degenerate k×k matrix-
valued non-commutative rational expression R, i.e., we have Q−1(x) = R(x); this
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follows by applying Remark 2.33 entrywise. From Theorem 2.26, we know that
there exists some N0 ∈ N such that domMN (C)(R) ̸= ∅ for all N ≥ N0. Thanks to
Remark 2.32, the identity Q(x, u)R(x, u) = Ik over C (<x, u )> continues to hold on

domM(C)(R), and by applying determinants, we infer that ϕ
(N)
Q ̸≡ 0 for all N ≥ N0,

as desired.
Having this, Proposition 3.3 guarantees that ϕ

(N)
Q does not vanish identically on

all of MN (C)d1
sa × UN (C)d2 , as we wished to show. □

In the next step, we involve the concrete random matrix model that we want to
consider.

Proposition 3.5. Let Q be an affine linear pencil of the form (2) in Mk(C) ⊗
C⟨x, u⟩ which is full. For N ∈ N, let (XN , UN ) be a random matrix in MN (C)d1

sa ×
UN (C)d2 with an absolutely continuous law µN

d1,d2
like in Theorem 3.1. Then there

exists N0 ∈ N such that almost surely Q(XN , UN ) is invertible in Mk(C)⊗MN (C) ∼=
MkN (C) for all N ≥ N0.

Proof. Thanks to Proposition 3.4, since Q is supposed to be full, there is an N0 ∈
N such that none of the functions ϕ

(N)
A |

MN (C)d1sa ×UN (C)d2 for N ≥ N0 can vanish

identically. Notice that MN (C)d1
sa × UN (C)d2 is a real manifold of dimension dN2.

In suitable local charts, we see that ϕ
(N)
Q |

MN (C)d1sa ×UN (C)d2 induces a real analytic

function on an open subset of RdN2

and can therefore vanish only on a set of
Lebesgue measure 0. Due to the choice of µN

d1,d2
, we conclude that, for eachN ≥ N0,

the random matrix Q(XN , UN ) is almost surely invertible in MkN (C). □

Proof of Theorem 3.1. We define the set R0 of all non-degenerate matrix-valued
non-commutative rational expressions R for which the conclusion of Theorem 3.1
is true, i.e., there exists N0 ∈ N such that almost surely (XN , UN ) ∈ domMN (C)(R)
for all N ≥ N0. We have to prove that R0 consists in fact of all non-degenerate
matrix-valued non-commutative rational expressions.

Notice that obviously, all matrix-valued non-commutative polynomial expres-
sions belong to R0. Further, it is easily seen that both R1 + R2 and R1 · R2 are
in R0 whenever we take R1, R2 ∈ R0 for which the respective arithmetic operation
makes sense. Therefore, it only remains to prove that if R ∈ R0 is square and enjoys
the property that R−1 is non-degenerate, then necessarily R−1 ∈ R0. In order to
verify this, we take any square matrix-valued non-commutative rational expression
R belonging to R0 for which R−1 is non-degenerate. Further, let ρ = (v,Q,w) be
a formal linear representation of R in the sense of Definition 2.27, say of dimension
k; see Theorem 2.28.

By assumption, we have thatR−1 is a non-degenerate matrix-valued non-commutative
rational expression. Thus, Remark 2.30 (iv) gives us that the affine linear pencil in
d variables with coefficients from Mk+p(C) which is given by

Q̃ :=

(
0p×p v
w Q

)
is full. Therefore, Proposition 3.5 tells us that an N0 ∈ N exists such that almost
surely Q̃(XN , UN ) is invertible in M(k+p)N (C) for all N ≥ N0. Since R ∈ R0, we
may suppose that (after enlarging N0 if necessary) that at the same time almost
surely (XN , UN ) ∈ domMN (C)(R) for all N ≥ N0. Because ρ is a formal linear
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representation, the latter implies that almost surely Q(XN , UN ) is invertible and
R(XN , UN ) = vQ(XN , UN )−1w for all N ≥ N0. Putting these observations to-
gether, we see, again with the help of the Schur complement formula, that almost
surely R(XN , UN ) is invertible for all N ≥ N0. In other words, we have almost
surely that (XN , UN ) ∈ domMN (C)(R

−1) for all N ≥ N0. The latter means that

R−1 ∈ R0, as desired. □

3.3. Evaluation in operators with maximal ∆. It follows from [60, Theorem
1.1] that for any d-tuple X = (X1, . . . , Xd) of (not necessarily self-adjoint) opera-
tors in some W ∗-probability space (M, τ) which satisfy the “regularity condition”
∆(X) = d, where ∆ stands for a quantity that was introduced in [29] and which
we discussed in Section 2.2.5, then the canonical evaluation homomorphism

evX : C⟨x1, . . . , xd⟩ → M
which is determined by 1 7→ 1 and xj 7→ Xj for j = 1, . . . , d extends to an injective
homomorphism

EvX : C (<x1, . . . , xd )> → M̃
into the ∗-algebra M̃ of all closed and densely defined operators affiliated with M;
see Section 2.2.4.

While the result of [60] addresses evaluations of non-commutative rational func-
tions, it leaves open the question whether also all non-degenerate rational expres-
sions can be evaluated; indeed, this is not immediate as the domain of a rational
function is larger than the domain of any of its representing non-degenerate non-
commutative rational expressions. This question is answered to the affirmative by
the next theorem, which gives the conclusion even in the matrix-valued case. For
that purpose, we will consider the canonical amplifications

Ev•X : M•(C (<x1, . . . , xd )>) → M•(M̃).

Theorem 3.6. Let X = (X1, . . . , Xd) be a d-tuple of (not necessarily self-adjoint)
operators in some tracial W ∗-probability space (M, τ) satisfying ∆(X) = d. Then,
for every non-degenerate matrix-valued non-commutative rational expression R, we
have that X ∈ domM̃(R) and R(X) = Ev•X(R(x)), where R(x) is the matrix over
C (<x1, . . . , xd )> associated to R via Lemma 2.31.

Proof. The proof is similar to the proof of Theorem 3.1. Here, we consider the
set R0 of all non-degenerate matrix-valued non-commutative rational expressions
r for which the conclusion of Theorem 3.6 is true, i.e., we have X ∈ domM̃(R)
and R(X) = Ev•X(R(x)). We want to show that R0 consists of all non-degenerate
matrix-valued non-commutative rational expressions. This can be done in almost
the same way as in Theorem 3.1, except some slight modification in the last step.
Suppose that R ∈ R0 is of size p × p and has the property that R−1 is non-
degenerate. Consider a formal linear representation ρ = (u,A, v) of r, say of di-
mension k. Like in the proof of Theorem 3.1, we deduce from Remark 2.30 (iv)
that the associated affine linear pencil

Ã :=

(
0 u
v A

)
is full. Now, by applying [60, Theorem 5.6] instead of Proposition 3.5, we get that

Ã(X) is invertible. Having this, we can proceed again like in the proof of Theorem
3.1 and we arrive at X ∈ domM̃(R−1). Moreover, since R(X) = Ev•X(R(x)) by the
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assumption R ∈ R0, we further get that R−1(X) = R(X)−1 = Ev•X(R(x))−1 =
Ev•X(R(x)−1) = Ev•X(R−1(x)); notice that R(x) is invertible because Lemma 2.31
guarantees that x ∈ domC (<x )>(R

−1) as R−1 was assumed to be non-degenerate. In
summary, we see that R−1 ∈ R0. □

3.4. Convergence in law of the spectral measure.

3.5. Estimate on the cumulative distribution function of the spectral
measure of self-adjoint operators. In this subsection, we simply list and prove
a few properties that we need in the next subsection to prove Theorem 3.10 about
the convergence of the empirical measure of a self-adjoint non-degenerate matrix-
valued non-commutative rational expression evaluated in matrices towards the an-
alytic distribution of the limiting operator.

Lemma 3.7 (Lemma 3.2 in [6]). For X ∈ M̃sa and t ∈ R we have

FX(t) = max{τ(p) | p ∈ P(M), p(t−X)p ≥ 0}.

The crux of the proof of Theorem 3.10 lies in the following two lemmas.

Lemma 3.8. Let X,Y ∈ M̃sa, then

sup
t∈R

|FX(t)−FX+Y (t)| ≤ rk(Y ).

Proof. We fix t ∈ R. Let r ∈ P(M) be such that rY = Y and q ∈ P(M) such that
q(t−X)q ≥ 0. Then if we set p = q ∧ (1− r), we have pY = 0 and pq = p, thus

p(t−X − Y )p = p(t−X)p = pq(t−X)qp ≥ 0.

Consequently
FX+Y (t) ≥ τ(p) ≥ τ(q)− τ(r).

By taking the supremum over q and the infimum over r we get that

FX+Y (t) ≥ FX(t)− rk(Y ).

Now let’s assume that q is such that q(t − X − Y )q ≥ 0, then similarly with
p = q ∧ (1− r),

p(t−X)p = p(t−X − Y )p = pq(t−X − Y )pq ≥ 0.

Hence
FX(t) ≥ τ(p) ≥ τ(q)− τ(r).

And once again by taking the supremum over q and the infimum over r we get that

FX(t) ≥ FX+Y (t)− rk(Y ).

Hence the conclusion. □

The authors are indebted to Mikael de la Salle for indicating them the following
lemma.

Lemma 3.9. Let p ∈ P(M), X ∈ M̃sa, then rk(pXp) ≤ rk(X).

Proof. Let q ∈ P(M) be such that qX = X, r = p ∧ (1− q), then r+ 1− p is such
that

(r + 1− p)pXp = rpXp = rXp = rqXp = 0.

Consequently (p−r)pXp = pXp. And since p ≥ r, p−r is a self-adjoint projection,
hence

rk(pXp) ≤ τ(p− r) ≤ τ(q).
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Hence the conclusion by taking the infimum over q. □

3.6. Main result. This subsection focuses on proving the convergence in law of
the empirical measure of matrix-valued non-commutative rational expressions eval-
uated in matrices satisfying some assumptions. Theorem 3.10 is for deterministic
matrices, but it can easily be extended to random matrices by applying this result
almost surely.

Theorem 3.10. Let XN = (XN
1 , . . . , XN

d1
) be a d1-tuple of deterministic self-

adjoint matrices and let UN = (UN
1 , . . . , UN

d2
) be a d2-tuple of deterministic unitary

matrices. Further, let R be a non-degenerate square matrix-valued non-commutative
rational expression in d = d1 + d2 variables which is self-adjoint of type (d1, d2) in
the sense of Definition 2.34. Suppose that the following conditions are satisfied:

(i) (XN , UN ) converges in ∗-distribution towards a d-tuple of non-commutative
random variables (x, u) in some tracial W ∗-probability space (M, τ) satis-
fying ∆(x, u) = d.

(ii) For N large enough R(XN , UN ) is well-defined, i.e., there exists N0 ∈ N
such that (XN , UN ) ∈ domMN (C)(R) for all N ≥ N0.

Then (x, u) ∈ domM̃(R), so that R(x, u) is well-defined, and the empirical measure

of R(XN , UN ) converges in law towards the analytic distribution of R(x, u).

The fact that (x, u) ∈ domM̃(R) holds was established already in Theorem
3.6. Accordingly, the main statement of Theorem 3.10 is the convergence of the
empirical measure of R(XN , UN ) towards the spectral measure of R(x, u). This
convergence result actually holds in a more general setting than the above theorem.
We summarize it as the following proposition.

Proposition 3.11. For each N ∈ N, let XN = (XN
1 , . . . , XN

d ) be a d-tuple of non-

commutative random variables in some tracial W ∗-probability space (M(N), τ (N)).
Further, let XN converge in ∗-distribution towards a d-tuple X = (X1, . . . , Xd)
of non-commutative random variables in some tracial W ∗-probability space (M, τ).
Let R be a square matrix-valued non-commutative rational expression in d variables
such that, for all N ∈ N which are sufficiently large,

(i) XN ∈ domM̃(N)(R) and X ∈ domM̃(R),

(ii) R(XN ) and R(X) are self-adjoint.

Then the analytic distribution of R(XN ) converges in law towards the analytic
distribution of R(X).

Once Proposition 3.11 is shown, the statement on the convergence in Theorem
3.10 follows immediately. Indeed, the condition formulated in Item (i) of Proposi-
tion 3.11 is satisfied as we have (XN , UN ) ∈ domMN (C)(R) for all N ≥ N0 by Item
(ii) of Theorem 3.10 and (x, u) ∈ domM̃(R) by Theorem 3.6; further, we have that

R(XN , UN ) for all N ≥ N0 and R(x, u) are self-adjoint thanks to Definition 2.34
as R is supposed to be self-adjoint of type (d1, d2), so that the condition in Item
(ii) of Proposition 3.11 is fulfilled as well.

Let us provide an outline of the proof of Proposition 3.11. Let ρ = (Q,w) be a
self-adjoint formal linear representation of R in the sense of Definition 2.36 which
is moreover proper as given by Theorem 2.37. Thanks to Lemma 3.8, we can ignore
the singularity in 0 of Q(X,X∗)−1. More precisely, as long as the spectral measure
of Q(X,X∗) has no atom at 0, we can use Lemma 3.8 to prove that the cumulative
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distribution function of w∗Q(X,X∗)−1w is close to the one of w∗fε(Q(XN , XN∗))w
where fε is a continuous function which is equal to t 7→ t−1 outside of a neighbor-
hood of 0 of size ε. Then we can use the convergence in ∗-distribution of XN to
show that the cumulative distribution function of w∗fε(Q(XN , XN∗))w converges
towards the correct limit when we let N go to infinity and ε go to 0.

It is important to note that in this subsection, by convergence in ∗-distribution of
XN of non-commutative random variables XN = (XN

1 , . . . , XN
d ), we mean that the

trace of any non-commutative ∗-polynomial P evaluated in XN converges towards
the trace of P (X,X∗) where X is a d-tuple of non-commutative random variables
in some tracial W ∗-probability space. In particular, this does not exclude the case
where the operator norm of XN

i is not bounded over N . This forces us to do
a few more computations since the convergence in law of the analytic measure of
P (XN , XN∗) towards the analytic measure of the limiting operator, while still true,
is not immediate anymore.

Proof of Proposition 3.11. Let ρ = (Q,w) be a proper self-adjoint formal linear
representation (of dimension k) of R. If p ∈ N is the size of R, then since k ≥ p
and w has full rank, there exists a matrix T ∈ GLk(C) such that w = Tw0 where
w0 ∈ Mk×p(C) is the rectangular matrix whose diagonal coefficients are all 1, and
non-diagonal coefficients are all 0. By replacing Q by T ∗QT , one can assume
without loss of generality that w = w0.

Notice that by assumption QN := Q(XN , XN∗) is invertible in M̃(N) and
R(XN ) = w∗Q−1

N w. Further, we have also that Q∞ := Q(X,X∗) is invertible

in M̃ and R(X) = w∗Q−1
∞ w. To prove the convergence in law, we need to prove

that Fw∗Q−1
N w(t) converges towards Fw∗Q−1

∞ w(t) for t ∈ R such that the function

s 7→ Fw∗Q−1
∞ w(s) is continuous in t. To do so, let g : t 7→ t−1 and fε : R → R be

a continuous function such that on the complementary set of [−ε, ε], fε = g. We
have for any t ∈ R,∣∣∣Fw∗Q−1

N w(t)−Fw∗Q−1
∞ w(t)

∣∣∣ ≤ ∣∣Fw∗fε(QN )w(t)−Fw∗fε(Q∞)w(t)
∣∣

+
∣∣∣Fw∗Q−1

N w(t)−Fw∗fε(QN )w(t)
∣∣∣

+
∣∣∣Fw∗Q−1

∞ w(t)−Fw∗fε(Q∞)w(t)
∣∣∣ .

Thus thanks to Lemma 3.8,∣∣∣Fw∗Q−1
N w(t)−Fw∗Q−1

∞ w(t)
∣∣∣ ≤ ∣∣Fw∗fε(QN )w(t)−Fw∗fε(Q∞)w(t)

∣∣
+ rk(w∗(fε − g)(QN )w)

+ rk(w∗(fε − g)(Q∞)w).

Since w = w0, we have that for any X ∈ Mp(M̃),

rk(wXw∗) = rk

(
X 0p×(k−p)

0(k−p)×p 0k−p

)
=

p

k
rk(X).

This implies that

rk(w∗(fε − g)(Q∞)w) =
k

p
× rk(ww∗(fε − g)(Q∞)ww∗) ≤ k

p
× rk((fε − g)(Q∞)),
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where in the last inequality we used Lemma 3.9. Besides 1[−ε,ε](Q∞) is a self-adjoint
projection such that 1[−ε,ε](Q∞)(fε − g)(Q∞) = (fε − g)(Q∞). Consequently with
Trk the non-renormalized trace on Mk(C) and τ the trace on M,

rk(w∗(fε − g)(Q∞)w) ≤ 1

p
Trk ⊗τ( 1[−ε,ε](Q∞) ).

Let hε be a continuous function which takes value 1 on [−ε, ε], 0 outside of [−2ε, 2ε]
and in [0, 1] elsewhere, then

(3) rk(w∗(fε − g)(Q∞)w) ≤ 1

p
Trk ⊗τ( hε(Q∞) ).

Hence with similar computations we get∣∣∣Fw∗Q−1
N w(t)−Fw∗Q−1

∞ w(t)
∣∣∣ ≤ ∣∣Fw∗fε(QN )w(t)−Fw∗fε(Q∞)w(t)

∣∣
+

1

p
Trk ⊗τ( hε(Q∞) )

+
1

p
Trk ⊗τ (N)( hε(QN ) ).

In order to use the Portmanteau theorem, we want to prove that the analytic dis-
tribution of w∗fε(QN )w converges towards the analytic distribution of w∗fε(Q∞)w.
However, since this self-adjoint operator is uniformly bounded over N , we simply
need to prove the convergence of the moments. That is, that

lim
N→∞

1

p
Trp ⊗τ (N)

(
(w∗fε(QN )w)l

)
=

1

p
Trp ⊗τ

(
(w∗fε(Q∞)w)l

)
for any l. The strategy consists in approximating fε by a polynomial then use the
convergence in ∗-distribution of XN . However, the fact that we did not assume
the operator norm of the matrices XN

i to be bounded over N , forces us to make
additional estimates.

Let C = ∥Q∞∥ + 1, and h be a non-negative continuous function which takes
value 0 on [−C,C], 1 outside of [−C − 1, C + 1] and in [0, 1] elsewhere. Let Pm be
a polynomial such that ∥fε − Pm∥C0([−C−1,C+1]) ≤ 1/m. We set

BN :=
(
fε(QN )−Pm(QN )

)
(1−h(QN )) and CN :=

(
fε(QN )−Pm(QN )

)
h(QN ),

then

1

p
Trp ⊗τ (N)

(
(w∗fε(QN )w)l

)
− 1

p
Trp ⊗τ (N)

(
(w∗Pm(QN )w)l

)
=

l∑
i=1

1

p
Trp ⊗τ (N)

(
(w∗fε(QN )w)i−1w∗(BN + CN )w(w∗Pm(QN )w)l−i

)
.
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Thanks to the Cauchy-Schwarz inequality, we have for any i,∣∣∣∣1p Trp ⊗τ (N)
(
(w∗fε(QN )w)i−1w∗(BN + CN )w(w∗Pm(QN )w)l−i

)∣∣∣∣
≤
(√

1

p
Trp ⊗τ (N) (w∗BNww∗BNw) +

√
1

p
Trp ⊗τ (N) (w∗CNww∗CNw)

)
×
√

1

p
Trp ⊗τ (N)

(
(w∗Pm(QN )w)2(l−i)(w∗fε(QN )w)2(i−1)

)
≤
(√

Trk ⊗τ (N) ((BN )2) +
√

Trk ⊗τ (N) ((CN )2)

)
×
(
1

p
Trp ⊗τ (N)

(
(w∗Pm(QN )w)4(l−i)

))1/4

×
(
1

p
Trp ⊗τ (N)

(
(w∗fε(QN )w)4(i−1)

))1/4

.

Since fε is bounded by a constant K, we have that

1

p
Trp ⊗τ (N)

(
(w∗fε(QN )w)4(i−1)

)
≤ K4(i−1).

Thanks to the convergence in ∗-distribution ofXN , and since the expression w∗Pm(QN )w
is a matrix of polynomials in XN , we have

lim
N→∞

1

p
Trp ⊗τ (N)

(
(w∗Pm(QN )w)4(l−i)

)
=

1

p
Trp ⊗τ

(
(w∗Pm(Q∞)w)4(l−i)

)
,

which means that

lim
N→∞

1

p
Trp ⊗τ (N)

(
(w∗Pm(QN )w)4(l−i)

)
≤ (K + 1/m)4(l−i).

We also have

Trk ⊗τ (N)
(
(BN )2

)
≤ k

m2
.

Finally since fε is bounded, there exists an integer g such that for any t ∈ R,
|fε(t)− Pm(t)| ≤ (1 + t2)g, thus for any r ≥ 0,

Trk ⊗τ (N)
(
(CN )2

)
≤

Trk ⊗τ (N)
(
(CN )2Q2r

N

)
C2r

≤
Trk ⊗τ (N)

(
(1 +Q2

N )2gQ2r
N

)
C2r

.

And so for any r ≥ 0,

lim
N→∞

Trk ⊗τ (N)
(
(CN )2

)
≤

Trk ⊗τ
(
(1 +Q2

∞)2gQ2r
∞
)

C2r

≤ k
∥∥(1 +Q2

∞)2g
∥∥ (C − 1)2r

C2r
.

So by letting r go to infinity, we get

lim
N→∞

Trk ⊗τ (N)
(
(CN )2

)
= 0.
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By combining those results, we obtain

lim sup
N→∞

∣∣∣∣1p Trp ⊗τ (N)
(
(w∗fε(QN )w)l

)
− 1

p
Trp ⊗τ

(
(w∗fε(Q∞)w)l

)∣∣∣∣ = O(1/m).

Thus, by letting m go to infinity we get the convergence of the moments. This
implies that the analytic distribution of w∗fε(QN )w converges towards the analytic
distribution of w∗fε(Q∞)w. Thanks to Portmanteau’s theorem and Lemma 3.7, we
have

Fw∗fε(Q∞)w(t) ≥ lim sup
N→∞

Fw∗fε(QN )w(t)

≥ lim inf
N→∞

Fw∗fε(QN )w(t) ≥ lim
s→t,s<t

Fw∗fε(Q∞)w(s).

Consequently,

lim sup
N→∞

∣∣∣Fw∗Q−1
N w(t)−Fw∗Q−1

∞ w(t)
∣∣∣

≤ lim
s→t,s<t

∣∣Fw∗fε(Q∞)w(t)−Fw∗fε(Q∞)w(s)
∣∣+ 2

p
Trk ⊗τ( hε(Q∞) ),

where we used the convergence in ∗-distribution of XN once again in the last line,
coupled with an argument similar to the one which let us prove the convergence of
the moments of w∗fε(QN )w. But by using Lemma 3.8 one more time we have∣∣Fw∗fε(Q∞)w(t)−Fw∗fε(Q∞)w(s)

∣∣
≤
∣∣∣Fw∗Q−1

∞ w(t)−Fw∗Q−1
∞ w(s)

∣∣∣+ 2 rk(w∗(fε − g)(Q∞)w).

Hence by using equation (3), we have that

lim sup
N→∞

∣∣∣Fw∗Q−1
N w(t)−Fw∗Q−1

∞ w(t)
∣∣∣

≤ lim
s→t,s<t

∣∣∣Fw∗Q−1
∞ w(t)−Fw∗Q−1

∞ w(s)
∣∣∣+ 4

p
Trk ⊗τ( hε(Q∞) ).

Now, we assume that t is a point of continuity of the function s 7→ Fw∗Q−1
∞ w(s).

Then, we have that lims→t,s≤t

∣∣∣Fw∗Q−1
∞ w(t)−Fw∗Q−1

∞ w(s)
∣∣∣ = 0. Besides, by the

dominated convergence theorem, limε→0 Trk ⊗τ(hε(Q∞)) = Trk ⊗τ(1{0}(Q∞)),
which is equal to 0 since otherwise the distribution of Q∞ would have an atom
in 0, in contradiction to the invertibility of Q∞; indeed, analogous to the proof of
[60, Corollary 5.13], we notice that Q∞1{0}(Q∞) = 0 and conclude from the latter

that since Q∞ is invertible over M̃ we necessarily have that 1{0}(Q∞) = 0 and

hence µQ∞({0}) = 1
k Trk ⊗τ(1{0}(Q∞)) = 0. □

4. A characterization of rationality in free semicircular operators

This section is a part of the paper [63]. We fix an integer d ∈ N, and we will
focus on freely independent semicircle distributions s = (s1, . . . , sd) represented
on the full Fock space F0(H) where H is a d-dimensional Hilbert space with an
orthonormal basis e1, . . . , ed (i.e. si = l(ei) + l(ei)

∗ in Section 2.4). Our main
interest in this section is commutators [r∗1 , · ], . . . [r∗d, · ] with the right annihilation
operators r∗i = r(ei)

∗.
Recall that there exists polynomials {Uw}w∈[d]∗ in s1, . . . , sd which forms an

orthonormal basis on L2(W∗(s), τ) since {ew}w∈[d]∗ is an orthonormal basis on
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F0(H). For a ∈ W∗(s), we use the notation â ∈ L2(W∗(s), τ) for the canonical
embedding W∗(s) ⊂ L2(W∗(s), τ). Namely, we identify Uw as a operator in W∗(s)

and Ûw with a vector in L2(W∗(s), τ). We put U0 = 0. One should be careful
that we use the same notation U0 for U0 = 0 and U0(x) = 1 in the definition of
the Chebyshev polynomials (U0(x) corresponds with UΩ in our definition). Then
by using the above notations and via the isomorphism between L2(W∗(s), τ) and
F0(H), we can see for each i ∈ [d]

l∗i (Ûv) = Ûi−1v and r∗i (Ûv) = Ûvi−1 , v ∈ [d]∗.

4.1. A semicircle analog of Duchamp-Reutenauer’s chracterization. Let
Cdiv(s) denote the division closure of C⟨s⟩ in W∗(s) and Crat(s) denote the rational
closure of C⟨s⟩ in W∗(s).

Let us state our main theorem again.

Theorem 4.1. Let a ∈ W∗(s). Then {[r∗i , a]}di=1 are finite rank operators on
F0(H) if and only if a ∈ Cdiv(s). In addition, we have

Cdiv(s) = Crat(s) ⊂ C⟨s⟩

where C⟨s⟩ is the norm closure of C⟨s⟩ in W∗(s).

We basically follow the proof by G. Duchamp and C. Reutenauer [34]. The
following two lemmas have important roles in proving our main theorem.

Lemma 4.2. For any i, j ∈ [d] and k ∈ N, we have

[r∗i , Uk(sj)] = δi,j

k∑
l=1

Ul−1(sj)PΩUk−l(sj)

where PΩ is the orthogonal projection onto ÛΩ = Ω.

Proof. This lemma is easily deduced from the property of Chebyshev polynomi-
als (see [61, Exercise 10 in Section 8.8]) and a dual system (see [89, Semicircular
Example 5.13]). However, we give a proof of this lemma for the purpose of self-
containment.

First, we show for any i, j ∈ [d]

[r∗i , sj ] = δi,jPΩ.

For any v ∈ [d]∗ we have

[r∗i , sj ]Ûv = [r∗i , l
∗
j + lj ]Ûv

= r∗i (l
∗
j + lj)Ûv − (l∗j + lj)r

∗
i Ûv

= Û(j−1v)i−1 + Û(jv)i−1 − Ûj−1(vi−1) − Ûj(vi−1).

Note that [r∗i , sj ]Ûv = 0 except for v = Ω and in this case we have

[r∗i , sj ]ÛΩ = Ûji−1 = δi,jÛΩ.

Then we can compute [r∗i , Uk(sj)] by induction since by the Leibniz rule we have

[r∗i , Uk+1(sj)] = [r∗i , sjUk(sj)]− [r∗i , Uk−1(sj)]

= [r∗i , sj ]Uk(sj) + sj [r
∗
i , Uk(sj)]− [r∗i , Uk−1(sj)]

= δi,jPΩUk(sj) + sj [r
∗
i , Uk(sj)]− [r∗i , Uk−1(sj)]
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and also have by the recursion formula of Uk

sj

k∑
l=1

Ul−1(sj)PΩUk−l(sj) =

k∑
l=1

Ul(sj)PΩUk−l(sj) +

k∑
l=2

Ul−2(sj)PΩUk−l(sj)

=

k+1∑
l=2

Ul−1(sj)PΩUk+1−l(sj) +

k−1∑
l=1

Ul−1(sj)PΩUk−1−l(sj).

By multiplying by δi,j and using the induction hypothesis,

sj [r
∗
i , Uk(sj)] = δi,j

k+1∑
l=2

Ul−1(sj)PΩUk+1−l(sj) + [r∗i , Uk−1(sj)],

which gives the asserted formula for [r∗i , Uk+1(sj)]. □

Lemma 4.3. For v, w ∈ [d]∗ and i ∈ [d], we have

[r∗i , Uv]Ûw = Ûv(iw∗)−1

where w∗ is the transpose of w, in other words w∗ = ikn
n i

kn−1

n−1 · · · ik1
1 when w =

ik1
1 ik2

2 · · · ikn
n .

Proof. By Lemma 4.2 and the fact that [r∗i , ·] is a derivation, we have for v =

ik1
1 ik2

2 · · · ikn
n ,

[r∗i , Uv]Ûw

=

(
n∑

m=1

Uk1
(si1) · · ·Ukm−1

(sim−1
)[r∗i , Ukm

(sim)]Ukm+1
(sim+1

) · · ·Ukn
(sin)

)
Ûw

=

n∑
m=1

km∑
j=1

δi,imUk1
(si1) · · ·Ukm−1

(sim−1
)Uj−1(sim)PΩUkm−j(sim)Ukm+1

(sim+1
) · · ·Ukn

(sin)Ûw

=

n∑
m=1

km∑
j=1

δi,imU
i
k1
1 ···ij−1

m
PΩUikm−j

m ···ikn
n
Ûw.

Since we have

PΩUikm−j
m ···ikn

n
Ûw = ⟨Uikm−j

m ···ikn
n
Ûw,Ω⟩F0(H)Ω

= ⟨Ûw, Ûikn
n ···ikm−j

m
⟩F0(H)Ω

and {Ûw}w∈[d]∗ is an orthonormal basis, we conclude

[r∗i , Uv]Ûw =

n∑
m=1

km∑
j=1

δi,im⟨Ûw, Ûikn
n ···ikm−j

m
⟩F0(H)Ûi

k1
1 ···ij−1

m

= Ûv(iw∗)−1 .

□

Next we associate elements
∑

v∈[d]∗ αvÛv in F0(H) with non-commutative formal

power series
∑

v∈[d]∗ αvX
v. Since UvUw ̸= Uvw in general, we cannot directly

connect Uv with Xv while keeping a multiplicative structure. However, we can
connect them by using a matrix representation, which may help us to prove our
main theorem.
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Lemma 4.4. For each i ∈ [d], we put

Si = Eii ⊗
(
si −1
1 0

)
+
∑
j ̸=i

Eji ⊗
(
si −1
0 0

)
∈ Md(C)⊗M2(W

∗(s))

where Eji ∈ Md(C) is a matrix whose (j, i) entry is 1 and other entries are 0. Then

for v = ik1
1 ik2

2 · · · ikn
n ∈ [d]∗(i1 ̸= i2 ̸= · · · ̸= in) we have

Uv =
(
1 0

)
(te1 ⊗ I2) S

k1
i1
Sk2
i2

· · ·Skn
in

(e⊗ I2)

(
1
0

)
where I2 is the identity matrix and {ei}i∈[d] ⊂ Cd is the standard basis of Cd, and

we put e =
∑d

i=1 ei.

Proof. Since Chebyshev polynomials Un(X) satisfy for n ∈ N(
Un(X)

Un−1(X)

)
=

(
X −1
1 0

)(
Un−1(X)
Un−2(X)

)
,

we can show that (
X −1
1 0

)n

=

(
Un(X) −Un−1(X)

Un−1(X) −Un−2(X)

)
.

In particular, we have for any i ∈ [d] and n ∈ Z≥0

Uin =
(
1 0

)(si −1
1 0

)n(
1
0

)
.

Then we have for v = ik1
1 ik2

2 · · · ikn
n

Uv = U
i
k1
1
U
i
k2
2

· · ·Uikn
n

=

n∏
l=1

(
1 0

)(sil −1
1 0

)kl
(
1
0

)

=
(
1 0

) [ n∏
l=1

P

(
sil −1
1 0

)kl

P

](
1
0

)

where we put P =

(
1 0
0 0

)
. Note that P

(
si −1
1 0

)
=

(
si −1
0 0

)
. Since we have

Sn
i = Eii ⊗

(
si −1
1 0

)n

+
∑
j ̸=i

Eji ⊗ P

(
si −1
1 0

)n

,

we obtain for i1 ̸= i2 ̸= · · · ̸= in

Sk1
i1
Sk2
i2

· · ·Skn
in

=

n∏
l=1

Eilil ⊗
(
sil −1
1 0

)kl

+
∑
j ̸=il

Ejil ⊗ P

(
sil −1
1 0

)kl


= Ei1in ⊗

[(
si1 −1
1 0

)k1 n∏
l=2

P

(
sil −1
1 0

)kl
]

+
∑
j ̸=i1

Ejin ⊗

[
n∏

l=1

P

(
sil −1
1 0

)kl
]
.
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Thus we conclude (note that
(
1 0

)
P =

(
1 0

)
),

(
1 0

)
(te1 ⊗ I2) S

k1
i1
Sk2
i2

· · ·Skn
in

(e⊗ I2)

(
1
0

)
=

(
1 0

) [ n∏
l=1

P

(
sil −1
1 0

)kl

P

](
1
0

)
= Uv.

□

Next step is to show convergence of
∑

w∈[d]∗ αvS
v under certain assumptions.

In order to estimate the operator norm of
∑

w∈[d]∗ αvS
v, we use the Haagerup type

inequality for the full Fock space which was proved by M. Bozėjko [13] in terms of
the q-deformed Fock space.

Lemma 4.5. Let us take S1, . . . , Sd ∈ Md(C)⊗M2(W
∗(s)) as in Lemma 4.4. Then

we have for any m ∈ Z≥0∥∥∥∥∥∥
∑

|v|=m

αvS
v

∥∥∥∥∥∥ ≤ 4d2(m+ 1)

∥∥∥∥∥∥
∑

|v|=m

αvÛv

∥∥∥∥∥∥
F0(H)

.

Proof. When m = 0, 1, one can easily derive the above inequality from Lemma 4.4
and Lemma 2.59. Thus we may suppose from now on that m ≥ 2. Recall from the
proof of Lemma 4.4 that we have for v = ik1

1 ik2
2 · · · ikn

n

Sv = Ei1in⊗

[(
si1 −1
1 0

)k1 n∏
l=2

P

(
sil −1
1 0

)kl
]
+
∑
j ̸=i1

Ejin⊗

[
n∏

l=1

P

(
sil −1
1 0

)kl
]
.

Since we have(
si1 −1
1 0

)k1 n∏
l=2

P

(
sil −1
1 0

)kl

=

(
U
i
k1
1

0

U
i
k1−1
1

0

)(
n−1∏
l=2

U
i
kl
l

)(
Uikn

n
−Uikn−1

n

0 0

)

=

(
Uv −Uvi−1

n

Ui−1
1 v −Ui−1

1 vi−1
n

)
,

Sv can be written as the following form,

Sv = Ei1in ⊗
(

Uv −Uvi−1
n

Ui−1
1 v −Ui−1

1 vi−1
n

)
+
∑
j ̸=i1

Ejin ⊗
(
Uv −Uvi−1

n

0 0

)
.

Thus we have∑
|v|=m

αvS
v

=
∑

i,j∈[d]

∑
|v|=m−2

αivj

Eij ⊗
(
Uivj −Uiv

Uvj −Uv

)
+
∑
k ̸=i

Ekj ⊗
(
Uivj −Uiv

0 0

)
=
∑

i,j∈[d]

Eij ⊗
(∑

k∈[d]

∑
|v|=m−2 αkvjUkvj −

∑
k∈[d]

∑
|v|=m−2 αkvjUkv∑

|v|=m−2 αivjUvj −
∑

|v|=m−2 αivjUv

)

=
∑

i,j∈[d]

Eij ⊗
(∑

|v|=m−1 αvjUvj −
∑

|v|=m−1 αvjUv∑
|v|=m−2 αivjUvj −

∑
|v|=m−2 αivjUv

)
.
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Note that all entries of
∑

|v|=m αvS
v are sums of Uv (|v| = m, m−1, m−2) whose

coefficients are subsequences of {αv}|v|=m. Therefore by Lemma 2.59, operator

norms of all entries of
∑

|v|=m αvS
v are bounded by (m + 1)∥

∑
|v|=m αvÛv∥F0(H)

and we obtain a desired estimate by the triangle inequality. □

By the same argument in the Lemma 10 of [34], we have the following corollary.

Corollary 4.6. Let {αv}v∈[d]∗ be a family of complex numbers such that
∑

v∈[d]∗ |αv|2 <

∞ and
∑

v∈[d]∗ αvX
v is rational as a non-commutative formal power series. We

put am =
∑

|v|=m αvS
v ∈ Md(C) ⊗M2(W

∗(s)). Then
∑∞

m=0 am converges in the
operator norm.

Proof. Note that
∑

v∈[d]∗ αvX
v is also rational (i.e. recognizable) by taking a com-

plex conjugate of each entry of a linear representation of the recognizable series∑
v∈[d]∗ αvX

v. Since the Hadamard product of two rational series is also ratio-

nal by Lemma 2.47,
∑

v∈[d]∗ |αv|2Xv is also rational as a non-commutative formal

power series. By evaluating X1, X2 . . . , Xd in one variable z (i.e. X1 = X2 = · · · =
Xd = z), we can use the argument of Kronecker (see Corollary 2.49) for the formal
power series

∞∑
m=0

 ∑
|v|=m

|αv|2
 zm.

Thus there exists M > 0 and 0 < c < 1 such that∑
|v|=m

|αv|2 ≤ Mcm.

By using Lemma 2.59, we can estimate the operator norm of am as

∥am∥ ≤ 4d2(m+ 1)

√ ∑
|v|=m

|αv|2 ≤ M ′(m+ 1)c′m

for some constant M ′ > 0 and 0 < c′ < 1. Thus
∑∞

m=0 am converges in operator
norm. □

We also use the following technical lemma.

Lemma 4.7 (Lemma 11 in [34]). Let n ∈ N and A be a Banach algebra. If
x ∈ Mn(A) satisfies limm→∞ ∥xm∥ = 0, then we have

(i)
∑∞

m=0 x
m converges in the operator norm to (1− x)−1 ∈ Mn(A).

(ii) All entries of (1 − x)−1 belong to the division closure of the subalgebra
generated by all entries of x in A.

Proposition 4.8. Let a ∈ W∗(s). If {[r∗i , a]}di=1 are finite rank operators on
F0(H), then a ∈ Cdiv(s).

Proof. Let â =
∑

v∈[d]∗ αvÛv be the expansion of â and M be a C-submodule of

C⟨⟨X1, . . . Xd⟩⟩ generated by
∑

v∈[d]∗ αvX
vw−1

(w ∈ [d]∗). Thanks to Lemma 4.3,

we have for each i ∈ [d]

[r∗i , a]Ûw =
∑

v∈[d]∗

αvÛv(iw∗)−1 .
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Note that the linear map from F0(H) to C⟨⟨X1, . . . Xd⟩⟩ which maps Ûv to Xv

for each v ∈ [d]∗ is injective. Therefore M is finitely generated if {[r∗i , a]}di=1 are
finite rank operators. Thus the non-commutative formal power series

∑
v∈[d]∗ αvX

v

is a recognizable series by Theorem 2.45. In other words, there exists a linear
representation which consists of a multiplicative morphism µ : [d]∗ → Mm(C)
and vectors λ, γ ∈ Cm such that αv = tλµ(v)γ. Moreover by choosing a linear
representation such that its dimension is minimal, we may assume from Theorem
2.46 that there exists {uk}Kk=1, {wl}Ll=1 ⊂ [d]∗ such that

µ(v)ij =
∑
kl

cklijαukvwl

for any v ∈ [d]∗ and 1 ≤ i, j ≤ m. We put V (X) =
∑

i∈[d] µ(i)Xi. Note that since

µ is multiplicative, V (X) satisfies

V (X)m =
∑

|v|=m

µ(v)Xv

and, on the level of formal power series, we have∑
v∈[d]∗

αvX
v = tλ

[ ∞∑
m=0

V (X)m

]
γ

= tλ[1− V (X)]−1γ.

We evaluate X = (X1, . . . , Xd) in S = (S1, . . . , Sd), where the Si’s are defined like
in Lemma 4.4. Then we can see that

∑∞
m=0 V (S)m ∈ Mm(C)⊗Md(C)⊗M2(W

∗(s))
converges in the operator norm from Corollary 4.6 since all entries of µ(v) are given
by finite linear spans of αuvw for some words u,w. Thus we can conclude∑

v∈[d]∗

αvÛv =
(
1 0

)
(te1 ⊗ I2)

∑
v∈[d]∗

αvS
v(e⊗ I2)

(
1
0

)
Ω

=
(
1 0

)
(te1 ⊗ I2)

tλ[1− V (S)]−1γ(e⊗ I2)

(
1
0

)
Ω.

Note that limm→∞ ∥V (S)m∥ = 0, and we can apply Lemma 4.7 to V (S). Since Ω
is a separating vector for W∗(s), we conclude a ∈ Cdiv(s). □

Proof of Theorem 4.1. Let A be a subset of W∗(s) such that {[r∗i , a]}di=1 are finite
rank operators on F0(H) for any element a ∈ A. We will show A is a subalgebra
of W∗(s) which contains C⟨s⟩ and satisfies for any n ∈ N,

X ∈ Mn(A) is invertible in Mn(W
∗(s)) =⇒ X−1 ∈ Mn(A).

Note that si ∈ A for any i ∈ [d] since [r∗i , sj ] = δi,jPΩ is a finite rank operator for
any i, j ∈ [d]. If a, b ∈ A, then the following operators

[r∗i , a+ b] = [r∗i , a] + [r∗i , b]

[r∗i , ab] = [r∗i , a]b+ a[r∗i , b]

are finite rank operators for each i ∈ [d]. ThusA is a subalgebra of W∗(s) which con-
tains C⟨s⟩. Let n ∈ N be given and assume X ∈ Mn(A) is invertible in Mn(W

∗(s)).
Then we have for any i ∈ [d] and 1 ≤ j, k ≤ n

[r∗i ,
tejX

−1ek] = tej [In ⊗ r∗i , X
−1]ek

= −tejX
−1[In ⊗ r∗i , X]X−1ek
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where In ⊗ r∗i ∈ Mn(C) ⊗ B(F0(H)) ∼= Mn(B(F0(H))) is the operator such that
all diagonal entries are r∗i and other entries are zero. Since X ∈ Mn(A), all entries
of [In ⊗ r∗i , X] are finite rank operators and therefore X−1 ∈ Mn(A). Since Crat(s)
is the smallest subalgebra satisfying above properties, we obtain Crat(s) ⊂ A.

Moreover, we have A ⊂ Cdiv(s) ⊂ C⟨s⟩ by Proposition 4.8 and thus Crat(s) =

Cdiv(s) = A ⊂ C⟨s⟩. □

Remark 4.9. Let us see what happens when we take ri and consider [ri, a] instead
of [r∗i , a] for a ∈ W∗(s). Indeed, for any i ∈ [d], [ri, a] is a finite rank operator if
and only if [r∗i , a] is also a finite rank operator since [ri + r∗i , a] = 0 and therefore
[ri, a] = −[r∗i , a] for any a ∈ W∗(s). This is deduced from the commutativity of the
left multiplication with the right multiplication. One can also see this directly via
the following equalities

[ri + r∗i , sj ] = [ri, sj ] + [r∗i , sj ]

= −([r∗i , sj ])
∗ + δi,jPΩ

= −δi,jP
∗
Ω + δi,jPΩ = 0.

for any i, j ∈ [d] where we use [a, b]∗ = b∗a∗−a∗b∗ = −[a∗, b∗] and [r∗i , sj ] = δi,jPΩ.
Then we have [ri + r∗i , a] = 0 for any a ∈ C⟨s⟩ and thus for any a ∈ W∗(s).

Remark 4.10. We remark that a tuple of operators (r∗1 , r
∗
2 , . . . , r

∗
d) is known as a

dual system which is introduced by D. Voiculescu in [89].
In our setting, (D1, . . . , Dd) ∈ B(F0(H)) is called a dual system for s if we have

for any i, j ∈ [d]

[Di, sj ] = δi,jPΩ.

From the proof of Lemma 4.2, (r∗1 , r
∗
2 , . . . , r

∗
d) is obviously a dual system and we

have

[Di, a] = [r∗i , a]

for each i ∈ [d] and a ∈ W∗(s). Thus Theorem 4.1 holds if we change {r∗i }di=1 by
any dual system for s.

One can also see that (D1, . . . , Dd) ∈ B(F0(H)) is a dual system for s if and
only if r∗i −Di belongs to W∗(s)′ for each i ∈ [d] where W∗(s)′ is the commutant
of W∗(s).

We have not proved Theorem 4.1 for a general tuple of operators with a dual
system yet and we leave it for future works.

4.2. Rationality criterion for affiliated operators. In this section, we extend
our main result in the previous section to affiliated operators, which follows results

of Linnell [57]. Let us denote by W̃∗(s) the ∗-algebra of closed densely defined
(unbounded) linear operators affiliated with W∗(s). Note that any element u ∈
W̃∗(s) can be written as u = f−1a = bg−1 by using some a, b, f, g ∈ W∗(s) where
f, g are nonzero divisors (i.e. fx, gx ̸= 0 for any x ∈ W∗(s)\{0}) and thus invertible

in W̃∗(s). For example, we can take f = (1+uu∗)−1, a = (1+uu∗)−1u, b = u(1+
u∗u)−1, g = (1+u∗u)−1. We focus on bounded operators {fr∗i b−ar∗i g}di=1 instead
of commutators {[r∗i , u]}di=1. Note that we have formally fr∗i b − ar∗i g = f [r∗i , u]g
since u = f−1a = bg−1.

The following lemma tells us that we can find a common denominator of two
affiliated operators.
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Lemma 4.11. Let u1, u2 ∈ W̃∗(s). Then there exist a1, a2, b1, b2 ∈ W∗(s) and
f, g ∈ W∗(s) such that u1 = f−1a1 = b1g

−1 and u2 = f−1a2 = b2g
−1.

Proof. Let uk = f−1
k ak = bkg

−1
k for k = 1, 2 where ak, bk, fk, gk ∈ W̃∗(s). Then

we can write f1f
−1
2 = x−1y for some x, y ∈ W∗(s). Note that f−1

1 = (yf2)
−1x

and f−1
2 = (xf1)

−1y and xf1 = yf2. We put f = xf1 = yf2. Then we have
u1 = f−1xa1 and u2 = f−1ya2. Similarly by representing g−1

1 g2 = xy−1 for some
x, y ∈ W∗(s), we have u1 = b1xg

−1 and u2 = b2yg
−1 where g = g1x = g2y. □

We also use the following lemmas for bounded operators and affiliated operators
(see [57]).

Lemma 4.12 (Lemma 2.1 in [57]). Let θ : H → K and ϕ : K → H be bounded
linear maps between Hilbert spaces.

(i) If kerϕ = {0} and ϕθ has finite rank, then θ also has finite rank.

(ii) If Im θ is dense in K and ϕθ has a finite rank, then ϕ also has a finite
rank.

The following lemma is proved in Lemma 2.2 in [57] in terms of the free group,
and the proof can be also applied to our setting.

Lemma 4.13 (Lemma 2.2 in [57]). Let θ ∈ W∗(s). If θ is a nonzero divisor, then
ker θ = {0} and Im θ is dense in F0(H).

We define R(s) and R′(s) as subsets of W̃∗(s). We say u ∈ R(s) if {fr∗i b −
ar∗i g}di=1 are finite rank operators for any expression u = f−1a = bg−1 where
a, b, f, g ∈ W∗(s). We say u ∈ R′(s) if we can write u = f−1a = bg−1 for some
a, b, f, g ∈ W∗(s) such that {fr∗i b − ar∗i g}di=1 are finite rank operators. Note that
we have R(s) ⊂ R′(s) by definition.

To define rationality, we consider the division closure D(s) of C⟨s⟩ in W̃∗(s).
From the results in [60], D(s) forms the free skew field of fractions of C⟨s⟩. Note

that the rational closure of C⟨s⟩ in W̃∗(s) coincides with D(s) since D(s) is a skew
field (see [60, Proposition 4.9]).

Remark 4.14. Let i ∈ [d] and u = f−1a = bg−1 ∈ W̃∗(s) where a, b, f, g ∈ W∗(s)
and assume fr∗i a− br∗i g is a finite rank operator. Then thanks to Remark 4.9, we
have

f(r∗i + ri)b− a(r∗i + ri)g = (fb− ag)(r∗i + ri) = 0

for any i ∈ [d] where we use fb = ag. Thus frib−arig is also a finite rank operator.

Let us state the main theorem in this section.

Theorem 4.15. We have R(s) = R′(s) = D(s) and D(s) ∩ W∗(s) = Cdiv(s).
Moreover, for any u ∈ D(s), there exists a, b, f, g ∈ Cdiv(s) such that u = f−1a =
bg−1.

In order to prove this theorem, first we show R(s) = R′(s).

Lemma 4.16. Let u ∈ W̃∗(s) and assume u = f−1a = bg−1. If {fr∗i b− ar∗i g}di=1

are finite rank operators, then u ∈ R(s). In other words, we have R(s) = R′(s).
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Proof. Let u = f−1
1 a1 = b1g

−1
1 where a1, b1, f1, g1 ∈ W∗(s). We need to show

f1r
∗
i b1 − a1r

∗
i g1 is a finite rank operator for any i ∈ [d]. First we note that there

exist x, y ∈ W∗(s) such that ff−1
1 = x−1y. We infer that xf = yf1 and ya1 =

xff−1
1 a1 = xff−1a = xa. Thus we obtain

y(f1r
∗
i b1 − a1r

∗
i g1) = yf1r

∗
i b1 − ya1r

∗
i g1 = x(fr∗i b1 − ar∗i g1).

On the other hand, since there exist some x′, y′ ∈ W∗(s) such that g−1g1 = x′y′−1,
we obtain in the same way as before that

(fr∗i b1 − ar∗i g1)y
′ = (fr∗i b− ar∗i g)x

′.

By combining them, we have

y(f1r
∗
i b1 − a1r

∗
i g1)y

′ = x(fr∗i b1 − ar∗i g1)y
′

= x(fr∗i b− ar∗i g)x
′.

Since fr∗i b − ar∗i g is a finite rank operator for any i ∈ [d] and y, y′ are non-zero
divisors, f1r

∗
i b1 − a1r

∗
i g1 is also a finite rank operator for any i ∈ [d] by Lemmas

4.12 and 4.13; hence, we see that u ∈ R(s). This shows R′(s) ⊂ R(s) and thus we
conclude R(s) = R′(s). □

Remark 4.17. If u ∈ R(s)∩W∗(s), since we can write u = u1−1 = 1−1u, {[r∗i , u]}di=1

are finite rank operators. Thanks to Theorem 4.1, we have u ∈ Cdiv(s). On the
other hand, if u ∈ Cdiv(s), then {[r∗i , u]}di=1 are finite rank operators, and thus
u ∈ R′(s) by the same theorem. By using Lemma 4.16, we have

R(s) ∩W∗(s) = R′(s) ∩W∗(s) = Cdiv(s).

We will prove four lemmas in order to deduce that R(s) is a ∗-subalgebra which
is closed under taking inverse.

Lemma 4.18. If u1, u2 ∈ R(s), then u1 + u2 ∈ R(s).

Proof. By Lemma 4.11, we can write uk = f−1ak = bkg
−1 for k = 1, 2. Then

u1 + u2 = f−1(a1 + a2) = (b1 + b2)g
−1. Since u1, u2 ∈ R(s) and for any i ∈ [d]

fr∗i (b1 + b2)− (a1 + a2)r
∗
i g = (fr∗i b1 − a1r

∗
i g) + (fr∗i b2 − a2r

∗
i g),

we see that fr∗i (b1 + b2) − (a1 + a2)r
∗
i g is a finite rank operator for any i ∈ [d].

Therefore u1 + u2 ∈ R(s) by Lemma 4.16. □

Lemma 4.19. If u1, u2 ∈ R(s), then u1u2 ∈ R(s).

Proof. Let us write uk = f−1
k ak = bkg

−1
k where ak, bk, fk, gk ∈ W∗(s) for k = 1, 2.

Let a1f
−1
2 = x−1y and g−1

1 b2 = pq−1 where p, q, x, y ∈ W∗(s). Then u1u2 =
f−1
1 a1f

−1
2 a2 = (xf1)

−1ya2 and u1u2 = b1g
−1
1 b2g

−1
2 = b1p(g2q)

−1. Since xa1 = yf2
and g1p = b2q, we have

xf1r
∗
i b1p− ya2r

∗
i g2q = x(f1r

∗
i b1 − a1r

∗
i g1)p+ y(f2r

∗
i b2 − a2r

∗
i g2)q.

Since u1, u2 ∈ R(s), this operator is a finite rank operator for any i ∈ [d], and thus
u1u2 ∈ R(s) by Lemma 4.16. □

Lemma 4.20. If u ∈ R(s) is invertible, then u−1 ∈ R(s).

Proof. If u ∈ R(s), then we can write u = f−1a = bg−1 and fr∗i b−ar∗i g has a finite
rank for any i ∈ [d]. In addition if u is invertible, we have u−1 = a−1f = gb−1.
Since ar∗i g − fr∗i b = −(fr∗i b− ar∗i g) for each i ∈ [d], u ∈ R(s) by Lemma 4.16. □
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Lemma 4.21. If u ∈ R(s), then u∗ ∈ R(s).

Proof. If u ∈ R(s), then we can write u = f−1a = bg−1 and fr∗i b− ar∗i g is a finite

rank operator for any i ∈ [d]. Since u∗ = g∗−1b∗ = a∗f∗−1, we need to check that
g∗r∗i a

∗ − b∗r∗i f
∗ is a finite rank operator.

Since T ∗ is a finite rank operator if T is a finite rank operator on a Hilbert
space and frib− arig is a finite rank operator by Remark 4.14, g∗r∗i a

∗ − b∗r∗i f
∗ =

−(frib − arig)
∗ is also a finite rank operator for any i ∈ [d]. Thus we conclude

u∗ ∈ R(s) by Lemma 4.16. □

Proof of Theorem 4.15. By Lemmas 4.18, 4.19, 4.20, we see that R(s) is a sub-

algebra of W̃∗(s) which contains C⟨s⟩ and is closed under taking inverse. Thus
D(s) ⊂ R(s).

Now, let u ∈ R(s). Since R(s) is also closed under the involution by Lemma
4.21, a = (1+ uu∗)−1u and f = (1+ uu∗)−1 belong to R(s)∩W∗(s) = Cdiv(s) (see
Remark 4.17) and therefore u = f−1a belongs to the division closure of Cdiv(s)

in W̃∗(s). Since D(s) is the division closed subalgebra of W̃∗(s) which contains

Cdiv(s), it also contains the division closure of Cdiv(s) in W̃∗(s) (both coincide
actually). Thus u ∈ D(s). □

In Theorem 4.15, we show an equivalent condition to u ∈ D(s) by using bounded
operators {fr∗i b − ar∗i g}di=1 instead of commutators {[r∗i , u]}di=1. As we remark at
the beginning of Section 4.2, both operators fr∗i b − ar∗i g and [r∗i , u] are formally
connected by fr∗i b− ar∗i g = f [r∗i , u]g.

In the following proposition, we give another characterization of u ∈ D(s) by
using commutators {[r∗i , u]}di=1, which is an analogue of Proposition 1.2 in [57].

Proposition 4.22. Let u ∈ W̃∗(s). Then u ∈ D(s) if and only if there exists a
linear subspace M of finite codimension in F0(H) such that M ∩

⋂
i∈[d] dom(ur∗i ) =

M ∩dom(u) and r∗i u = ur∗i on M ∩dom(u) for each i ∈ [d], where dom(u) denotes
the domain of u.

Proof. We use the well-known fact that for any subspace M of finite codimension
in a linear space H and for any linear map T on H, the preimage T−1(M) is also a
subspace of finite codimension in H (since T induces an injective linear map from
the quotient subspace H/T−1(M) to H/M which is finite-dimensional).

In addition, an intersection M1 ∩ M2 of two subspaces M1,M2 of finite codi-
mension in H is also a subspace of finite codimension (since (M1 + M2)/M2 is
isomorphic to M1/(M1 ∩M2) and the two quotient spaces H/M1, (M1 +M2)/M2

are finite-dimensional).
Now we suppose M is a subspace of finite codimension such that r∗i u = ur∗i

on M ∩ dom(u) = M ∩
⋂

i∈[d] dom(ur∗i ) for any i ∈ [d]. We can write u as u =

f−1a = bg−1 where a, b, f, g ∈ W∗(s). Note that N = g−1(M) is a subspace of
finite codimension in F0(H) such that gN ⊂ M ∩ dom(u) = M ∩

⋂
i∈[d] dom(ur∗i ).

Thus we have for any ξ ∈ N

(fr∗i b− ar∗i g)ξ = f(r∗i ugξ − ur∗i gξ) = 0.

Since N has a finite codimension in F0(H), fr∗i b − ar∗i g is a finite rank operator
for each i ∈ [d] and thus u ∈ D(s) by Theorem 4.15.
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On the other hand, if u ∈ D(s), then by Theorem 4.15 there exists a, f ∈ Cdiv(s)
such that u = f−1a. Note that f−1a forms a closed operator even though we
see it as a composition of unbounded operators (we do not have to take closure).
Thus we can write dom(u) = {ξ ∈ F0(H); aξ ∈ fF0(H)}. Since a, f ∈ Cdiv(s),
[r∗i , f ], [ri, f ], [r∗i , a] are finite rank operators for each i ∈ [d]. Then kernels of
these operators have finite codimensions. We put for each i ∈ [d]

Ni = ker[r∗i , f ] ∩ ker[ri, f ]

and define N as

N =
⋂
i∈[d]

Ni.

Note thatN is a subspace of finite codimension in F0(H) and there exists a subspace
M1 of finite codimension in F0(H) such that

M1 ∩ fF0(H) ⊂ fN.

For example, we can take M1 as a direct sum of fN and a complementary subspace
of fF0(H) ⊂ F0(H). Since rifN = friN for each i ∈ [d], there exists a subspace
M i

2 of finite codimension in F0(H) for each i ∈ [d] such that

M i
2 ∩ rifF0(H) ⊂ fF0(H).

We can take M i
2 either as a direct sum of rifN and complementary subspace of

fF0(H) ⊂ F0(H) as above, or as (r∗i )
−1(M1). Then we put M by

M = a−1[(CΩ)⊥] ∩ a−1(M1) ∩
⋂
i∈[d]

ker[r∗i , a] ∩
⋂
i∈[d]

(rir
∗
i a)

−1(M i
2).

Then M is obviously a subspace of finite codimension in F0(H).
Let us show M ∩

⋂
i∈[d] dom(ur∗i ) = M ∩ dom(u). If ξ ∈ M ∩ dom(u), then

aξ = fη for η ∈ N since aξ ∈ M1 ∩ fF0(H) ⊂ fN . Since ξ ∈ ker[r∗i , a] and
η ∈ N , we obtain ar∗i ξ = fr∗i η which implies ξ ∈ dom(ur∗i ) for any i ∈ [d]. On
the other hand, if ξ ∈ M ∩

⋂
i∈[d] dom(ur∗i ), then r∗i aξ = ar∗i ξ ∈ fF0(H) for each

i ∈ [d]. By multiplying by ri, we have rir
∗
i aξ ∈ M i

2 ∩ rifF0(H) ⊂ fF0(H) for each
i ∈ [d]. Then there exists ηi ∈ F0(H) for each i ∈ [d] such that rir

∗
i aξ = fηi. Since

aξ ∈ (CΩ)⊥, we have

aξ =
∑
i∈[d]

rir
∗
i aξ = f

∑
i∈[d]

ηi

which implies ξ ∈ dom(u). Therefore we have M ∩
⋂

i∈[d] dom(ur∗i ) = M ∩dom(u).

In order to see ur∗i = r∗i u on M ∩ dom(u), we take ξ ∈ M ∩ dom(u). Then, as
shown above, there exists η ∈ N such that aξ = fη; hence r∗i uξ = r∗i η for each
i ∈ [d]. Moreover since ar∗i ξ = fr∗i η, as shown above, we conclude ur∗i ξ = r∗i η =
r∗i uξ. □

Remark 4.23. The proof of Proposition 4.22 also works when we take {ri}i∈[d]

instead of {r∗i }i∈[d]. In this case, we can say that there exists a subspace of finite
codimension in F0(H) such that M ∩ dom(u) = M ∩ dom(uri) and uri = riu on
M ∩ dom(u) for each i ∈ [d].
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5. A dual and conjugate system for q-Gaussians for all q

This section is a part of the paper [64]. In this section, we consider q-Gaussians
A1, . . . , Ad (Ai = l(ei) + l∗(ei)) acting on the q-deformed Fock space Fq(H) where
H is a d-dimensional Hilbert space with an orthonormal basis e1, . . . , ed. We ab-
breviate the upper index (q) for the notation of q-Gaussians A(q) as well q-Wick

polynomials e
(q)
w because we fixed −1 < q < 1 now.

One of the key to proving the existence of a dual and conjugate system is the
free right annihilation operators (R∗

1, . . . , R
∗
d) which are defined by R∗

i ewj = δijew
(w ∈ [d]∗, j ∈ [d]) and R∗

i eΩ = 0. Note that, only if we consider the full Fock space
F0(H), they are adjoint operators of the right creation operator which maps ew
to ewi for w ∈ [d]∗. In the case q ̸= 0, they are not adjoints of the right creation
operators. For this reason, we use the notation R∗

i instead of r∗i in this section.
The operators li, l

∗
i behave quite differently than the operators Ri = (R∗

i )
∗, R∗

i ; in
particular, the latter is not the right version of the former. Whereas our operators
li and l∗j satisfy the q-commutation relations, this is not true for Ri and R∗

j ; also
there is no nice concrete formula for the action of R∗

j on the basic vectors ejnjn−1···j1
(though, it is at least obvious that the n-particle space H⊗n is mapped into the
(n+1)-particle space H⊗(n+1)). Thus it is not directly clear how to determine the
operator norm of those operators. However, by relying on the results of Bożejko,
we are able to give an estimate for this in the following lemma.

Lemma 5.1. For −1 < q < 1, the free right annihilation operators R∗
1, . . . , R

∗
d are

bounded on Fq(H) with

∥R∗
i ∥ ≤ 1√

w(q)
, where w(q)2 = (1− |q|2)−1

∞∏
k=1

(1− |q|k)(1 + |q|k)−1.

Proof. Since R∗
i respects the orthogonality between different tensor powers in the

algebraic Fock space, it suffices to restrict for the norm estimate to a fixed tensor
power m + 1 ∈ N; R∗

i connects then elements in H⊗(m+1) with elements in H⊗m.
By Theorem 1 in [12], we have

P (m) ⊗ 1 ≤ w(q)−1P (m+1)

and we can estimate

∥R∗
i

∑
|w|=m+1

αwew∥2q = ⟨
∑

|u|=m

αuieu, P
(m)

∑
|v|=m

αviev⟩H⊗m

=
∑

|v|=m

∑
π∈Sm

απ(v)iαviq
|π|

= ⟨
∑

|u|=m+1

αueu, (P
(m) ⊗Qi)

∑
|v|=m+1

αvev⟩H⊗m+1

where Qi ∈ B(H) is the orthogonal projection onto Cei.
Then we have P (m) ⊗Qi ≤ P (m) ⊗ 1 ≤ w(q)−1P (m+1) and

∥R∗
i

∑
|w|=m+1

αwew∥2q ≤ w(q)−1∥
∑

|w|=m+1

αwew∥2q.

□
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5.1. One variable case. Consider first the case where H = Ce with a unit vector
e. Then {en}∞n=0 defined by

e0 = eΩ = Ω, en = e⊗ e⊗ · · · ⊗ e = e⊗n

forms an orthonormal basis of Falg(H). Then the q-deformed inner product is
determined by ⟨en, em⟩q = δnm[n]q! where

[n]q =
1− qn

1− q
, [n]q! = [n]q · [n− 1]q · · · [2]q · [1]q.

Note that our q-Gaussian A satisfies

Aen = en+1 + [n]qen−1.

We would like to find an operator D such that De0 = 0 and [D,A] = P (0).
Then D needs to satisfy for n ≥ 1

DAen = ADen,

and then we have

Den+1 = −[n]qDen−1 +ADen.

Thus we obtain a recursion for Den where De0 = 0 and De1 = e0.

Example 5.2. For example, from this recursion, we can compute

De2 = e1

De3 = e2 − qe0

De4 = e3 − q(1 + q)e1

De5 = e4 − q(1 + q + q2)e2 + q3(1 + q)e0

De6 = e5 − q(1 + q2 + q3)e3 + q3(1 + q)(1 + q + q2)e1.

Remark 5.3. In the case q = −1, we cannot define a linear operator D by using the
recursion, since e2 = 0 in F−1(H) while De2 = e1 ̸= 0.

Those examples suggest the following general explicit formula for Den.

Proposition 5.4. We define an unbounded operator D with the domain Falg(H)
by linear extension of De0 = 0 and

Den =

⌈n
2 ⌉∑

k=1

(−1)k−1q
k(k−1)

2 Pq(n− k, k − 1)en−2k+1

for n ∈ N, where ⌈x⌉ is the ceiling function and Pq(n, k) =
[n]q !

[n−k]q !
. Then D satisfies

[D,A] = P (0) on Falg(H).
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Proof. We prove this by induction of n. Suppose we have the formula for n =
2m− 2, 2m− 1. then we compute

−[2m− 1]qDe2m−2 +ADe2m−1

= −[2m− 1]q

m−1∑
k=1

(−1)k−1q
k(k−1)

2 Pq(2m− k − 2, k − 1)e2m−2k−1

+

m∑
k=1

(−1)k−1q
k(k−1)

2 Pq(2m− k − 1, k − 1)Ae2m−2k

=

m∑
k=1

(−1)k−1q
k(k−1)

2 {−[2m− 1]qPq(2m− k − 2, k − 1)

+ [2m− 2k]qPq(2m− k − 1, k − 1)}e2m−2k−1

+

m∑
k=1

(−1)k−1q
k(k−1)

2 Pq(2m− k − 1, k − 1)e2m−2k+1

We also have

− [2m− 1]qPq(2m− k − 2, k − 1) + [2m− 2k]qPq(2m− k − 1, k − 1)

= (−[2m− 1]q[2m− 2k]q + [2m− k − 1]q[2m− 2k]q)Pq(2m− k − 2, k − 2)

= −q2m−k−1[k]q[2m− 2k]qPq(2m− k − 2, k − 2).

Thus we have

−[2m− 1]qDe2m−2 +ADe2m−1

=

m−1∑
k=1

(−1)kq
k(k+1)

2 q2m−2k−1[k]q[2m− 2k]qPq(2m− k − 2, k − 2)e2m−2k−1

+

m∑
k=1

(−1)k−1q
k(k−1)

2 Pq(2m− k − 1, k − 1)e2m−2k+1

= e2m−1 +

m∑
k=2

(−1)k−1q
k(k−1)

2 {Pq(2m− k − 1, k − 1)

+q2m−2k+1[k − 1]q[2m− 2k + 2]qPq(2m− k − 1, k − 3)}e2m−2k+1.

This is equal to De2m since we have

Pq(2m− k − 1, k − 1) + q2m−2k+1[k − 1]q[2m− 2k + 2]qPq(2m− k − 1, k − 3)

= ([2m− 2k + 2]q[2m− 2k + 1]q + q2m−2k+1[k − 1]q[2m− 2k + 2]q)Pq(2m− k − 1, k − 3)

= [2m− 2k + 2]q[2m− k]qPq(2m− k − 1, k − 3)

= Pq(2m− k, k − 1).

Similarly, we obtainDe2m+2 = −[2m+1]qDe2m+ADe2m+1, which implies [D,A]en =

P (0)en □
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Since ⟨Den, e0⟩q is (−1)m−1q
m(m−1)

2 [m − 1]q! when n = 2m − 1, and 0 when
n = 2m, we can formally compute D∗e0 as

D∗e0 =

∞∑
m=1

(−1)m−1q
m(m−1)

2
[m− 1]q!

[2m− 1]q!
e2m−1,

and the square of its Hilbert norm is

∥D∗e0∥2 =

∞∑
m=1

|q|m(m−1) ([m− 1]q!)
2

[2m− 1]q!

which is finite for −1 < q ≤ 1 by the ratio test. This implies e0 ∈ dom(D∗). Let us
collect this in the following corollary.

Corollary 5.5. For all −1 < q < 1, the vacuum vector e0 = Ω is in the domain
of the adjoint of the normalized dual operator, and the conjugate variable for the
q-Gaussian is given by

ξ = D∗e0 =

∞∑
m=1

(−1)m−1q
m(m−1)

2
[m− 1]q!

[2m− 1]q!
e2m−1.

Remark 5.6. We remark that the polynomial corresponding to en is the nth q-
Hermite polynomial, Q[en] = Hn(x|q). There is a relation between q-Hermite
polynomials and the Chebyshev polynomials Un of the second kind, which is the
q = 0 version of q-Hermite. This can be stated as follows (for example, see Lemma
5.57 in [20]),

Un(x
√

1− q) =

⌊n/2⌋∑
k=0

(−1)kq
(k+1)k

2

(
n− k

k

)
q

√
1− q

n−2k
Hn−2k(x|q)

where (
n− k

k

)
q

=
[n− k]q!

[k]q![n− 2k]q!
.

In particular, by computing the coefficient of H0(x|q) = 1, we have

τq(U2n(A
√
1− q)) = (−1)nq

(n+1)n
2

and τq(U2n−1(A
√
1− q)) = 0 for any n ∈ N.

In the one-variable case, there is actually a general formula for the conjugate
variable ξ in terms of Chebyshev polynomials (provided this sum converges), namely
(see Exercise 8.12 in [61])

ξ =

∞∑
n=1

τ(Un−1(X))Cn(X)

where Cn(X) is the Chebyshev polynomial of the first kind. If we apply this formula
to X = A

√
1− q and recall that a rescaling of the random variable by a factor α

results in the rescaling of the conjugate variable by a factor 1/α, then we obtain
from this general formula the following expression for the conjugate variable of the
q-Gaussian: √

1− q

∞∑
n=0

(−1)nq
(n+1)n

2 C2n+1(A
√

1− q).
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We can transform this formula into the sum of q-Hermite polynomials by using
C1(X) = U1(X) = X, Cn(X) = Un(X)−Un−2(X) for n ≥ 2 and the relation from
above between Un and Hn(x|q), resulting after some reformulations in

∞∑
m=0

(−1)mq
(m+1)m

2 (1− q)m+1
∞∑

n=m

q(n+1)(n−m)(1 + qn+1)

(
n+m+ 1

n−m

)
q

e2m+1.

By using the non-trivial identity

(1− q)m+1
∞∑

n=m

q(n+1)(n−m)(1 + qn+1)

(
n+m+ 1

n−m

)
q

=
[m]q!

[2m+ 1]q!

for all m ∈ Z≥0, we recover thus indeed our formula from Cor. 5.5.

5.2. Multi-variable case. A similar reduction gives us a formula for the multi-
variable case. Let us consider the q-deformed Fock space Fq(H) of a d-dimensional
Hilbert space H with orthonormal basis e1, . . . , ed. Let {Ai}di=1 be q-Gaussians
with respect to {ei}di=1.

Then the equation [Di, Aj ] = δijP
(0), together with Dieω = 0, allows us to

determine Di inductively.

Example 5.7. Since we have ejw = Ajew − l∗j ew for j ∈ [d] and w ∈ [d]∗, we have

by applying Di and [Di, Aj ] = δijP
(0),

Diejw = DiAjew −Dil
∗
j ew = AjDiew + δijP

(0)ew −Dil
∗
j ew.

This gives the recursion for Diew with DieΩ = 0. For example, we have for
i, j1, j2, j3 ∈ [d],

Diej1 = Aj1DieΩ + δij1P
(0)eΩ = δij1eΩ

Diej2j1 = Aj2Diej1 − δj2j1DieΩ = δij1ej2

Diej3j2j1 = Aj3Diej2j1 − δj3j2Diej1 − qδj3j1Diej2

= δij1Aj3ej2 − δj3j2δij1eΩ − qδj3j1δij2eΩ

= δij1ej3j2 − qδij2δj3j1eΩ.

Similarly, we obtain the following formulas for j4, j5, j6 ∈ [d],

Diej4j3j2j1 = δij1ej4j3j2 − q2δij2δj4j1ej3 − qδij2δj3j1ej4

Diej5j4j3j2j1 = δij1ej5j4j3j2 − δij2(q
3δj5j1ej4j3 + q2δj4j1ej5j3 + qδj3j1ej5j4)

+δij3(q
4δj5j1δj4j2 + q3δj5j2δj4j1)eΩ

Diej6j5j4j3j2j1 = δij1ej6j5j4j3j2

−δij2(q
4δj6j1ej5j4j3 + q3δj5j1ej6j4j3 + q2δj4j1ej6j5j3 + qδj3j1ej6j5j4)

+δij3(q
6δj6j1δj5j2ej4 + q5δj6j1δj4j2ej5 + q5δj6j2δj5j1ej4

+q4δj6j2δj4j1ej5 + q4δj5j1δj4j2ej6 + q3δj5j2δj4j1ej6).

Remark 5.8. As in Remark 5.3, we cannot define a linear operator Di in the case
q = −1. But now the case q = 1 also has to be excluded if d ≥ 2. For example, we
have e1 ⊗ e2 − e2 ⊗ e1 = 0 in F1(H), but

D1(e1 ⊗ e2 − e2 ⊗ e1) = −e2 ̸= 0.

For −1 < q < 1, on the other hand, we can define Di since the operator
⊕∞

n=0 P
⊗n

is strictly positive (see Section 2) and {ew}w∈[d]∗ forms a linear basis of Falg(H) ⊂
Fq(H).
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From these examples, we can guess that the general formula for Diejn···j1 is
characterized by partitions of n+ 1 vertices n > n− 1 > · · · > 1 > i and counting
their crossings. However, the usual definition of crossings does not work in this
setting.

Example 5.9. In the examples above, we pick in Diej5j4j3j2j1 the term

q4δij3δj5j1δj4j2 .

This corresponds to the partition {(i, 3), (1, 5), (2, 4)}. Since (1, 5) has no crossing
with (2, 4), the number of crossings is 2, while the coefficient above is q4.

This phenomenon also happens for the other terms

q6δij3δj6j1δj5j2ej4 , q5δij3δj6j1δj4j2ej5 , q4δij3δj5j1δj4j2ej6

in Diej6j5j4j3j2j1 .

We need to change the rules of counting crossings for the precise formula ofDiew.
Here we list the rules of drawing partitions that are compatible with the formula.
We remark that a similar method of counting crossings appears in Definition 3.13
in [3].

(i) Consider n+ 1 vertices n > n− 1 > · · · > 1 > 0.

(ii) 0 must be connected to some k ∈ {1, . . . , n} with height 1.

(iii) l ∈ {1, . . . , k − 1} must be coupled with one of {k + 1, . . . , n} with height
l + 1.

(iv) Vertices which are not coupled with {1, . . . , k − 1} should be singletons
and are drawn with straight lines to the top.

We define B(n + 1) as a set of partitions that satisfy the above rules. For π ∈
B(n+1), we denote by p(π) the set of parings in π and by s(π) the singletons in π

Example 5.10. Let us see what happens with the number of crossings if we follow
the drawing rules from above. The term q4δij3δj5j1δj4j2 from Example 5.9 is now
represented by the following crossing partition:

5 4 3 2 1 0

Note that the number of crossings in the picture above is now indeed 4, correspond-
ing to the factor q4. Similarly, the factors in the contributions q6δij3δj6j1δj5j2ej4 ,
q5δij3δj6j1δj4j2ej5 and q4δij3δj5j1δj4j2ej6 are accounted for correctly by the following
partitions:



RATIONAL FUNCTIONS AND q-DEFORMATION 63

6 5 4 3 2 1 0

q6δij3δj6j1δj5j2ej4

6 5 4 3 2 1 0

q5δij3δj6j1δj4j2ej5

6 5 4 3 2 1 0

q4δij3δj5j1δj4j2ej6

We identify 0 with the index of a dual system and k ∈ {1, . . . , n} with a letter
jk ∈ [d] for a given word jnjn−1 · · · j1. Then our examples from above motivate the
following formula for Di.

Proposition 5.11. For i, j1, . . . , jn ∈ [d], we define densely defined unbounded
operators D1, . . . , Dd, whose domains are the algebraic Fock space F0(H)alg, by
linear extension of

DieΩ = 0, Diejn···j1 =
∑

π∈B(n+1)

(−1)π(0)−1qcross(π)δp(π)es(π)

where cross(π) is the number of crossings of π according to our drawing rules and
where δp(π) =

∏
(k,l)∈π δjkjl with j0 = i and es(π) = ejks ···jk1

for s(π) = {ks > · · · >
k1}.
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Then we have

[Di, Aj ] = δijP
(0)

on the domain Falg(H).

Proof. We have to show that

[Di, Aj ]eΩ = δijP
(0)eΩ = δijeΩ

and

[Di, Aj ]ejn···j1 = δijP
(0)ejn···j1 = 0

for all n > 0 and j1, . . . , jn ∈ [d]. The first formula is easy to check, so let us
concentrate on the second one. We will there rename j to jn+1 and for better
legibility we will also write sometimes [jn · · · j1] for ejn···j1 .

Then we can compute on one hand

Ajn+1Diejn···j1

=
∑

σ∈B(n+1)

(−1)σ(0)−1qcross(σ)δp(σ)Ajn+1
es(σ)

=
∑

σ∈B(n+1)

(−1)σ(0)−1qcross(σ)δp(σ)ejn+1s(σ)

+
∑

σ∈B(n+1)

|s(σ)|∑
k=1

(−1)σ(0)−1qcross(σ)+|s(σ)|−kδjn+1js(σ)k
δp(σ)[s(σ)|s(σ)| · · · ˇs(σ)k · · · s(σ)1].

On the other hand, we have

DiAjn+1
ejn···j1 = Diejn+1jn···j1 +

n∑
l=1

δjn+1jlq
n−lDi[jn · · · ǰl · · · j1]

= Diejn+1jn···j1

+

n∑
l=1

∑
π∈B(n)

(−1)π(0)−1qcross(π)+n−lδjn+1jlδp(π)es(π),

where ǰl means to omit jl. Note that all partitions π ∈ B(n) act on n − 1 letters
jn, . . . , ǰl, . . . , j1 in the sum above.

Let us first see that all terms in the last sum of Ajn+1Diejn···j1 show also up as
terms in DiAjn+1ejn···j1 .

To see this, let us consider the contribution corresponding to σ ∈ B(n + 1)
and k ∈ {1, . . . , |s(σ)|}. Since s(σ)k is a singleton, we can remove it and obtain a
partition π ∈ B(n). We also take l so that l = s(σ)k. Then for these σ, π, k, l we
have

δjn+1jlδp(π)es(π) = δjn+1js(σ)k
δp(σ)[s(σ)|s(σ)| · · · ˇs(σ)k · · · s(σ)1]

where π acts on jn, . . . , ǰl, . . . , j1.
For example, if we take σ ∈ B(8) represented by
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7 6 5 4 3 2 1 0

and k = 1, then we take l = 4 and π ∈ B(7) represented by

6 5 4 3 2 1 0

where we ignore the dashed line.
Note that we have also π(0) = σ(0) since we removed s(σ)k which is on the left

of σ(0). By definition, the difference between σ and π is only the singleton s(σ)k
and the difference between cross(σ) and cross(π) is the number of crossing points
on the line of s(σ)k. Recall that for π ∈ B(n+1) the vertices that are not singletons
must be coupled. Therefore the number of crossing points on the line of s(σ)k is
equal to the number of vertices which are on the left of s(σ)k and not a singleton,
which is equal to (n− l)− (|s(σ)| − k); thus we have

cross(π) + n− l = cross(σ) + |s(σ)| − k.

This implies that the contribution corresponding to σ and k in the second sum
of Ajn+1Diejn···j1 shows also up as a contribution corresponding to π and l in
DiAjn+1

ejn···j1
Next, we need to identify the remaining terms of the last sum. Note that the

(π, l) which we can get under the above identification from (σ, k) can be identified
with partitions π′ of n + 2 vertices n + 1 > n > · · · > 1 > 0 such that n + 1 is
coupled with some n + 1 > k > π′(0) and π′ \ (n + 1, k) belongs to B(n) in an
order preserving way. Thus the l ∈ {1, . . . , n} and π ∈ B(n) such that l > π(0) are
exactly those terms corresponding to all possible (σ, k).
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So we have

− [Di, Ajn+1
]ejn···j1 =

∑
σ∈B(n+1)

(−1)σ(0)−1qcross(σ)δp(σ)ejn+1s(σ) −Diejn+1jn···j1

+

n∑
l=1

∑
π∈B(n)
π(0)≥l

(−1)π(0)qcross(π)+n−lδjn+1jlδp(π)es(π).

In order to see that this is actually equal to zero, we need now to understand the
condition l ≤ π(0) in the last sum.

In this case, we can associate the term δjn+1jlδp(π)es(π) to a partition π′ in
B(n+2); π′ is given by coupling n+1 with l ≤ π(0) and requiring that π′ \(n+1, l)
is equal to π. We have then

π(0) + 1 = π′(0),

since l ≤ π(0) is inserted into π′. Moreover the difference between cross(π′) and
cross(π) is the number of crossing points on the pair (n + 1, l). Note that in our
definitions, crossing points on (n + 1, l) consist of the coupling with π′(0) > j > l
(double count) and the coupling with l > j ≥ 0 (single count) and also singletons
of π (single count). Therefore, this difference is equal to n− l and we have

cross(π′) = cross(π) + n− l.

For example, take π ∈ B(8) represented by

7 6 5 4 3 2 1 0

and take l = 2. Then π′ ∈ B(10) is represented by

9 8 7 6 5 4 3 2 1 0
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Here we have

π′(0) = 4, π(0) = 3 : 3 + 1 = 4

and

cross(π′) = 13, cross(π) = 7 n = 8, l = 2 : 13 = 7 + (8− 2).

By combining these results we obtain

−[Di, Ajn+1 ]ejn···j1 +Diejn+1jn···j1

=
∑

σ∈B(n+1)

(−1)σ(0)−1qcross(σ)δp(σ)ejn+1s(σ)

+

n∑
l=1

∑
π∈B(n)
π(0)≥l

(−1)π(0)qcross(π)+n−lδjn+1jlδp(π)es(π)

=
∑

σ∈B(n+1)

(−1)σ(0)−1qcross(σ)δp(σ)ejn+1s(σ)

+
∑

π′∈B(n+2)
π′(n+1) is not a singleton

(−1)π
′(0)−1qcross(π

′)δp(π′)es(π′)

=
∑

π′∈B(n+2)

(−1)π
′(0)−1qcross(π

′)δp(π′)es(π′)

= Diejn+1jn···j1 ,

and thus [Di, Ajn+1
]ejn···j1 = 0, which proves our assertion. □

In the following, we want to use this proposition to conclude that eΩ lies in the
domain of D∗

i and actually also derive a formula for D∗
i eΩ.

Theorem 5.12. For any −1 < q < 1, there exists a normalized dual system and
thus a conjugate system for q-Gaussians A = (A1, . . . , Ad).

Proof. By Theorem 2.24, it suffices to see that D∗
i eΩ exists in Fq(H). In order

to see that eΩ is in the domain of D∗
i , we have to show that the linear functional

⟨Di · , eΩ⟩q is bounded on the algebraic Fock space.
Let us take

∑
w∈[d]∗ αwew ∈ Falg(H). Note that we can compute ⟨Diew, eΩ⟩q

by counting summands without singletons by Proposition 5.11 and in that case the
word length |w| must be odd and π ∈ B(2m) must connect 0 to m for |w| = 2m−1.
Thus we have

⟨Di

∑
w∈[d]∗

αwew, eΩ⟩q =

∞∑
m=1

∑
|w|=2m−1

∑
π∈B(2m)
π(0)=m

αw(−1)m−1qcross(π)δp(π)w

=

∞∑
m=1

∑
π∈B(2m)
π(0)=m

∑
|w|=2m−1

αw(−1)m−1qcross(π)δp(π)w.

Note that we write now δp(π)w for δp(π) =
∏

(k,l)∈π δjkjl in order to make the

dependency on w = j2m−1 · · · j1 explicit. For each π ∈ B(2m), let us consider
words w with |w| = 2m − 1 such that δp(π)w = 1. Such words can be represented
by πp(w)iw where w is any word with |w| = m−1 and πp ∈ Sm−1 is a permutation
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such that δp(π)πp(w)iw = 1. Note that there is a one-to-one correspondence between
π and πp. For example, the partition π in B(8) represented by

7 6 5 4 3 2 1 0

induces the element πp in S3 represented by

3 2 1

7 6 5

The important observation is that we have

cross(π) =
m(m− 1)

2
+ |πp|

where |πp| is the number of inversions of πp. Actually, when we take, for 1 ≤ k ≤
m−1, the pair (k, π(k)) ∈ π , then this pair crosses with k pairs (0,m), (1, π(1)), . . .,
(k−1, π(k−1)) on the right area (m > m−1 > · · · > 0), which implies the number

of crossings in the right area is
∑m−1

k=1 k = m(m−1)
2 . In addition, (k, π(k)), (l, π(l))

(k < l ∈ {1, . . . ,m− 1}) are crossing in the left area (2m− 1 > 2m− 2 > · · · > m)
if and only if π(l) < π(k), which implies the number of crossings in the left area is
|πp|.

Thus we can continue our calculation as follows:

⟨Di

∑
w∈[d]∗

αwew, eΩ⟩q =

∞∑
m=1

∑
π∈B(2m)
π(0)=m

∑
|w|=2m−1

αw(−1)m−1qcross(π)δp(π)w

=

∞∑
m=1

(−1)m−1q
m(m−1)

2

∑
πp∈Sm−1

∑
|w|=m−1

απp(w)iwq
|πp|

=

∞∑
m=1

(−1)m−1q
m(m−1)

2

∑
|w|=m−1

∑
πp∈Sm−1

∑
|v|=m−1

δvπp(w)αviwq
|πp|

=

∞∑
m=1

(−1)m−1q
m(m−1)

2

∑
|w|=m−1

∑
|v|=m−1

∑
πp∈Sm−1

⟨ev, eπp(w)⟩αviwq
|πp|

=

∞∑
m=1

(−1)m−1q
m(m−1)

2

∑
|w|=m−1

⟨
∑

|v|=m−1

αviwev, ew⟩q.
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By the triangle inequality, we have

|⟨Di

∑
w∈[d]∗

αwew, eΩ⟩q| ≤
∞∑

m=1

|q|
m(m−1)

2

∑
|w|=m−1

|⟨
∑

|v|=m−1

αviwev, ew⟩q|

≤
∞∑

m=1

|q|
m(m−1)

2

∑
|w|=m−1

∥
∑

|v|=m−1

αviwev∥q · ∥ew∥q.

Note that ∥ew∥2q ≤
∑

π∈Sm−1
|q||π| = [m− 1]|q|!.

On the other hand, we can write∑
|v|=m−1

αviwev = R∗
iw

∑
|v|=m−1

αviweviw = R∗
iw

∑
|v|=2m−1

αvev

where R∗
w = R∗

w1
· · ·R∗

wn
for w = w1 · · ·wn is the free right annihilation operator

of the word w.
By Lemma 5.1, the free right annihilation operators R∗

1, . . . , R
∗
d are bounded and

their operator norms are less than C =
√
w(q)

−1
where w(q) is a positive constant

which appears in [12]. Since R∗
iw is in our case a product of m such free right

annihilation operators, we have ∥R∗
iw∥ ≤ Cm and thus

∥
∑

|v|=m−1

αviwev∥q ≤ Cm∥
∑

|v|=2m−1

αvev∥q ≤ Cm∥
∑

w∈[d]∗

αwew∥q.

So, finally, we have the following estimate:

|⟨Di

∑
w∈[d]∗

αwew, eΩ⟩q| ≤ ∥
∑

w∈[d]∗

αwew∥q
∞∑

m=1

|q|
m(m−1)

2

∑
|w|=m−1

Cm
√

[m− 1]|q|!

= ∥
∑

w∈[d]∗

αwew∥q
∞∑

m=1

|q|
m(m−1)

2 dm−1Cm
√

[m− 1]|q|!

and, by the ratio test, we can check that

∞∑
m=1

|q|
m(m−1)

2 dm−1Cm
√

[m− 1]|q|! < ∞.

This implies that the linear functional ⟨Di · , eΩ⟩q is bounded and therefore eΩ ∈
dom(D∗

i ). □

Corollary 5.13. Let (D1, . . . , Dd) be the normalized dual system of the q-Gaussian
operators, as defined in Proposition 5.11. Then the corresponding conjugate system
(ξ1, . . . , ξd) is given by

ξi = D∗
i eΩ =

∑
w∈[d]∗

(−1)|w|q
(|w|+1)|w|

2 Rw∗iew

where Ri is the adjoint of free right annihilation operator Ri = (R∗
i )

∗ and Rw∗i =
Rwn

· · ·Rw1
Ri for w = w1 · · ·wn. Moreover, the series for ξi is not only convergent

with respect to the Hilbert space norm ∥ · ∥q, but also with respect to the operator
norm ∥ · ∥, if we identify operators in W∗(A) with elements in the Fock space.
Thus ξi = XieΩ, where Xi is contained in the norm closure of non-commutative
polynomials C⟨A⟩; i.e., in particular Xi ∈ W∗(A).
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Proof. In the proof of Theorem 2.22, we have seen that

⟨Di

∑
v∈[d]∗

αvev, eΩ⟩q =

∞∑
m=1

(−1)m−1q
m(m−1)

2

∑
|w|=m−1

⟨
∑

|v|=2m−1

R∗
iwαvev, ew⟩q

=

∞∑
m=1

(−1)m−1q
m(m−1)

2 ⟨
∑

|v|=2m−1

αvev,
∑

|w|=m−1

Rw∗iew⟩q.

Note that

⟨
∑

|v|=2m−1

αvev,
∑

|w|=m′−1

Rw∗iew⟩q = 0, if m ̸= m′

since Rw∗i maps ew (with |w| = m′ − 1) to the subspace spanned by {ev}|v|=2m′−1.
This also implies

⟨
∑

|v|=2m

αvev,
∑

|w|=m′−1

Rw∗iew⟩q = 0, for any m,m′.

Thus we obtain

∞∑
m=1

(−1)m−1q
m(m−1)

2 ⟨
∑

|v|=2m−1

αvev,
∑

|w|=m−1

Rw∗iew⟩q

= ⟨
∑

v∈[d]∗

αvev ,

∞∑
m=1

∑
|w|=m−1

(−1)m−1q
m(m−1)

2 Rw∗iew⟩q.

For the operator norm, we can estimate by the triangle inequality

∥D∗
i eΩ∥ ≤

∞∑
m=0

∑
|w|=m

|q|
m(m+1)

2 ∥Rw∗iew∥.

Now, we use Bożejko’s Haagerup type inequality [13], which tells us for |w| = m

∥Rw∗iew∥ ≤ (2m+ 2)C
3
2

|q|∥Rw∗iew∥q,

where C−1
q =

∏∞
m=1(1− qm). Since ∥Rw∗i∥ ≤

√
w(q)

−(m+1)
and ∥ew∥q ≤

√
[m]|q|!

(see the proof of Theorem 2.22), we have

∞∑
m=0

∑
|w|=m

|q|
m(m+1)

2 ∥r∗iwew∥ ≤
∞∑

m=0

∑
|w|=m

|q|
m(m+1)

2 (2m+ 2)C
3
2

|q|

√
w(q)

−(m+1)
√

[m]|q|!

=

∞∑
m=0

dm|q|
m(m+1)

2 (2m+ 2)C
3
2

|q|

√
w(q)

−(m+1)
√
[m]|q|!,

which is finite by the ratio test. Since ew can be represented by non-commutative
polynomials over q-Gaussians, D∗

i eΩ belongs to the norm closure of C⟨A⟩. □

Remark 5.14. We can recover the results in Section 5.1 for the case of one variable
from Proposition 5.11 and Corollary 5.13 by considering d = 1 and identifying e1m

with em. In particular, we have then

R1em =
1

[m+ 1]q
em+1,
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and

Rm+1
1 em =

1

[m+ 1]q[m+ 2]q · · · [2m+ 1]q
e2m+1 =

[m]q!

[2m+ 1]q!
e2m+1

and

ξ1 =

∞∑
m=0

(−1)mq
(m+1)m

2 Rm+1
1 em =

∞∑
m=0

(−1)mq
(m+1)m

2
[m]q!

[2m+ 1]q!
e2m+1,

which recovers, by replacing m by m − 1, the formula for ξ = D∗eΩ in Corollary
5.5.

5.3. Lipschitz conjugate. Let us check that the conjugate system (ξ1, . . . , ξd) for
the q-Gaussian variables are Lipschitz conjugate variables, namely, for each i ∈ [d],
ξi = D∗

i eΩ ∈ dom(∂j) and ∂jξi ∈ W∗(A)⊗W∗(A) for each j ∈ [d]. For this, we need
to know ∂jew and this has a similar combinatorial formula to that of a normalized
dual system. Again we have to consider a special set of partitions, consisting just
of singletons and pairs, and draw them in a specific way to count their crossings.

(i) Consider n+ 1 vertices n > · · · > 1 > 0.

(ii) The vertex 0 must be coupled with some k ∈ {1, . . . , n} with height 1.

(iii) Each l ∈ {1, . . . , k− 1} is a singleton or coupled with one of {k+1, . . . , n}
with height l + 1.

(iv) Vertices which are not coupled with one of {1, . . . , k− 1} should be single-
tons and are drawn with straight lines to the top.

Let C(n+1) be the set of partitions defined by the rules above. For each π ∈ C(n+
1), we define sl(π) and sr(π) as the set of singletons in the left area n ≥ k > π(0)
and in the right area π(0) > k ≥ 1, respectively. As before, we use the notation
cross(π) for the number of crossings in the drawing according to these rules.

For each w ∈ [d]∗, we identify ew with the non-commutative polynomial Q[w]
over q-Gaussians. We give now the combinatorial formula for ∂iejn···j1 identifying
each index jk with a vertex of k (where we put j0 = i).

Proposition 5.15. For each i ∈ [d], n ∈ N and j1, . . . , jn ∈ [d], we have

∂iejn···j1 =
∑

π∈C(n+1)

(−1)|p(π)|−1qcross(π)−|sr(π)|δp(π)esl(π) ⊗ esr(π)

As before, we denote by p(π) the set of parings in π and the factor δp(π) ensures
that π has to pair the same indices.

Proof. We will prove the formula by induction over n. For n = 1, it says that
∂iej = δijeΩ ⊗ eΩ, which is clearly true. Assume now that the formula is true for
n ≥ 1 and let us show it for n + 1. By the definition of q-Gaussians, we have the
recursion for non-commutative polynomials ew

ejn+1···j1 = Ajn+1
ejn···j1 −

n∑
k=1

δjn+1jkq
n−k[jn · · · ǰk · · · j1],
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which induces

∂iejn+1···j1 = δijn+1
1⊗ ejn···j1 + (Ajn+1

⊗ 1) · ∂iejn···j1

−
n∑

k=1

δjn+1jkq
n−k∂i[jn · · · ǰk · · · j1].

By using the induction assumption, we can compute

(Ajn+1
⊗ 1) · ∂iejn···j1 =

∑
π∈C(n+1)

(−1)|p(π)|−1qcross(π)−|sr(π)|δp(π)Ajn+1
esl(π) ⊗ esr(π)

=
∑

π∈C(n+1)

(−1)|p(π)|−1qcross(π)−|sr(π)|δp(π)ejn+1sl(π) ⊗ esr(π)

+
∑

π∈C(n+1)

(−1)|p(π)|−1×

×
{|sl(π)|∑

m=1

qcross(π)−|sr(π)|+|sl(π)|−mδp(π)δjn+1jsl(π)m
[sl(π)|sl(π)| · · · ˇsl(π)m · · · sl(π)1]⊗ esr(π)

}
.

On the other hand, we can compute
∑n

k=1 δjn+1jkq
n−k∂i[jn · · · ǰk · · · j1] as

n∑
k=1

∑
σ∈C(n)

δjn+1jk(−1)|p(σ)|−1qcross(σ)−|sr(σ)|+n−kδp(σ)esl(σ) ⊗ esr(σ)

where σ acts on the word jn · · · ǰk · · · j1. By the same argument as in Proposi-
tion 5.11, we can see that the last sum of (Ajn+1

⊗ 1) · ∂iejn···j1 is canceled by

−
∑n

k=1 δjn+1jkq
n−k∂i[jn · · · ǰk · · · j1]. Indeed, for each π ∈ C(n + 1) and m ∈

{1, . . . , |sl(π)|}, we take k = sl(π)m and σ = π \ sl(π)m ∈ C(n). Then |p(π)| =
|p(σ)|. By counting the crossing points on the line sl(π)m, we have

cross(π)− cross(σ) = n− k − (|sl(π)| −m)

Since we have |sr(π)| = |sr(σ)|, we have

cross(π)− |sr(π)|+ |sl(π)| −m = cross(σ)− |sr(σ)|+ n− k

For example, we take π ∈ C(7) represented by

6 5 4 3 2 1 0

and take m = 1. Then, we take k = 4 and σ ∈ C(6) represented by



RATIONAL FUNCTIONS AND q-DEFORMATION 73

5 4 3 2 1 0

In this case, we have

|p(π)| = |p(σ)| = 2, |sl(π)| = 2, |sr(π)| = |sr(σ)| = 1

and thus

cross(π)−|sr(π)|+|sl(π)|−m = 5−1+2−1 = 5 = 4−1+6−4 = cross(σ)−|sr(σ)|+n−k.

The remaining terms in −
∑n

k=1 δjn+1jkq
n−k∂i[jn · · · ǰk · · · j1], which are character-

ized by σ ∈ C(n) and k ≤ σ(0), are corresponding to partitions σ′ ∈ C(n+2) which
connect n+ 1 to k and satisfy σ′ \ (n+ 1, k) = σ. Then |p(σ′)| = |p(σ)|+ 1 and by
counting the crossing points on (n+ 1, k) we have

cross(σ′)− cross(σ) = n− k.

We also have |sr(σ′)| = |sr(σ)|, and thus

cross(σ′)− |sr(σ′)| = cross(σ)− |sr(σ)|+ n− k.

For example, consider σ ∈ C(7) represented by

6 5 4 3 2 1 0

and take k = 2. Then we obtain σ′ ∈ C(9) represented by

8 7 6 5 4 3 2 1 0
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In this case,

|p(σ′)| = 3 = |p(σ)|+ 1, cross(σ′)− cross(σ) = 9− 4 = 5 = 7− 2.

The term δijn+1
1 ⊗ ejn···j1 is given by the partitions in C(n + 2) which connect 0

to n+ 1. The sum∑
π∈C(n+1)

(−1)|p(π)|−1qcross(π)−|sr(π)|δp(π)ejn+1sl(π) ⊗ esr(π)

is given by the partitions in C(n + 2) such that n + 1 is a singleton. Therefore
∂iejn+1···j1 is given by the partitions in C(n + 2) and we have proved the claimed
formula for n+ 1. □

Example 5.16. For n = 3, the proposition tells us

∂iej3j2j1 = δij31⊗ ej2j1 + δij2ej3 ⊗ ej1 + δij1ej3j2 ⊗ 1− qδij2δj3j11⊗ 1.

The following four partitions characterize each term.

3 2 1 0 3 2 1 0

3 2 1 0 3 2 1 0

Corollary 5.17. The conjugate system of q-Gaussians is Lipschitz conjugate for
−1 < q < 1.

Proof. Let i, j ∈ [d]. We will check that the following sum

∂jξi =
∑

w∈[d]∗

(−1)|w|q
(|w|+1)|w|

2 ∂jRw∗iew

converges in the operator norm of B(Fq(H)⊗2). Since Rw∗iew is a linear span of
{ev}|v|=2m+1 for each |w| = m, we can write Rw∗iew =

∑
|v|=2m+1 αvev. (Note that

αv depends on w, but since the following estimates do not depend on w we will
suppress this in the notation.) Note that αveΩ = R∗

vRw∗iew and we can estimate

|αv| = ∥R∗
vRw∗iew∥q ≤

√
w(q)

−3m−2
√

[m]|q|!.

Therefore we can estimate, by the triangle inequality,

∥∂jRw∗iew∥ ≤
∑

|v|=2m+1

√
w(q)

−3m−2
√

[m]|q|! ∥∂jev∥.

By Proposition 5.15 and Bożejko’s Haagerup type inequality [13], we obtain

∥∂jev∥ ≤
∑

π∈C(2m+2)

∥esl(π)∥ · ∥esr(π)∥ ≤ C3
|q|(2m+ 1)2[2m]|q|! |C(2m+ 2)|
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where |C(2m+2)| is the cardinality of C(2m+2). Since we can regard C(2m+2) as
a subset of the symmetric group of degree 2m+2, we obtain |C(2m+2)| ≤ (2m+2)!.
Therefore we have

∑
w∈[d]∗

∥(−1)|w|q
(|w|+1)|w|

2 ∂jRw∗iew∥ ≤
∞∑

m=0

∑
|w|=m

|q|
(m+1)m

2 ∥∂jr∗iwew∥

≤
∞∑

m=0

∑
|w|=m

|q|
(m+1)m

2

∑
|v|=2m+1

√
w(q)

−3m−2
√

[m]|q|! ∥∂jev∥

≤ C3
|q|

∞∑
m=0

∑
|w|=m

|q|
(m+1)m

2 ×

×
∑

|v|=2m+1

√
w(q)

−3m−2
√

[m]|q|!(2m+ 1)2[2m]|q|!(2m+ 2)!

= C

∞∑
m=0

|q|
(m+1)m

2 (2m+ 1)2(2m+ 2)!

(
d√
w(q)

)3m√
[m]|q|! [2m]|q|!.

where

C = (dC3
|q|)/w(q)

is a constant which is independent of m and the last sum is convergent by the ratio
test. This implies ξi ∈ dom(∂j) and ∂jξi ∈ W∗(A)⊗W∗(A). □

Remark 5.18. It is likely that one can extend our results to more general deforma-
tions of Gaussian algebras; in particular, the case of mixed qij-Gaussians is quite
straightforward. In this case the q-commutation relations l∗i lj − qlj l

∗
i = δij are re-

placed by l∗i lj − qi,j lj l
∗
i = δij , where the parameters (qij)1≤i,j≤d just have to satisfy

−1 ≤ qij = qji ≤ 1 and we are still looking on the von Neumann algebra generated
by all Ai := li + l∗i . As for the q-case there exists a representation of these opera-
tors as creation or annihilation operators on the Fock space [79, 10, 48]. The main
difference is that in all formulas the factor q for a crossing has to be replaced by
qij , where i and j are the indices of the two crossing strings (where one should note
that we only get a non-vanishing contribution from a pairing if it pairs the same
indices). To be more precise, the left creation operators are defined in the same
way as in Section 2, but the left annihilation operators are defined by

l∗i ejnjn−1···j1 =

n∑
k=1

δijkqijnqijn−1 · · · qijk+1
ejn···ǰk···j1 .

This induces the same combinatorial structure for Diejnjn−1···j1 as in Proposition
5.11 as well as for ∂iejnjn−1···j1 as in Proposition 5.15, if one replaces q by the
appropriate qij for crossings according to our drawings in Section 5.2 and Section
5.3. For example, for the drawing
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5 4 3 2 1 0 ,

the corresponding term in Diej5j4j3j2j1 is given by

q2j1j2qij2qij1δij3δj1j5δj2j4eΩ.

This is equal to q2j5j4qij4qij5δij3δj1j5δj2j4eΩ and q2j2j1qj2iqj1iδij3δj1j5δj2j4eΩ since
δij is the Kronecker’s delta and (qij)1≤i,j≤d is symmetric. Therefore this term

depends only on the crossings. For each π ∈ B(n + 1), we denote by qcross(π)δp(π)
the coefficient as above. Then we have the same formula for a normalized dual
system for mixed qij-Gaussians as in Proposition 5.11. Similarly, ∂iejnjn−1···j1 is
characterized by C(n + 1) in Section 5.3 and we count crossings as above, except
for crossings of right singletons and the pair that includes 0.

We can also derive the conjugate system of mixed qij-Gaussians from this combi-
natorics. As in the proof of Theorem 2.22, we separate the crossings into two sets,
the left area and the right area. Moreover, crossings in the left area correspond
to the number of inversions of permutations which are induced by pair partitions,
while crossings in the right area are independent of the choices of the pair parti-
tions. By the same arguments as in the q-case we get the following formula for the
conjugate system (ξ1, . . . , ξd) for mixed qij-Gaussians (A1, . . . , Ad):

ξi =
∑

w∈[d]∗

(−1)|w|q(w)Rw∗iew,

where

q(w) =
∏

1≤k≤m
0≤l≤k−1

qjkjl for w = jm · · · j1.

Moreover, we can extend Lemma 5.1 to the qij-setting since Theorem 1 in [12]
includes the qij-case. We also have Haagerup’s inequality for the qij-setting, ac-
cording to Theorem 26 in [51].

The factor q(w) replaces now the factor qm(m+1)/2, which was in the end respon-
sible for the uniform convergence of all appearing power series expansions. As a
consequence, if maxi,j∈[d] |qij | < 1, then all our estimates work in the same way and
we get thus that also the Lipschitz conjugate system for the mixed qij-Gaussians
exists.

5.4. Power series expansions of the conjugate variables and free Gibbs
potential. Finally, we also want to address estimates for the conjugate system
in terms of non-commutative power series in the operators. This is relevant if we
want to find a potential, such that our q-distribution is the corresponding free Gibbs
state.

In order to write the conjugate system as such non-commutative power series, we
need to represent Rw∗iew (i ∈ [d] and w ∈ [d]∗) as a non-commutative polynomial.
In Theorem 3.1 of [37], one can find the concrete formula of Q[w] (see Section 2
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for the definition of Q[w]). Here, we present this formula, actually its extension for
mixed qij-Gaussians, by using our combinatorics.

Let D(n) be the set of partitions on n vertices n > n−1 > · · · > 1 which consist
of either singletons or pair partitions. We count crossings of π ∈ D(n) by using
hight as in Sections 5.2 and 5.3.

Proposition 5.19. Consider the setting and the notations for the qij-Gaussians
as in Remark 5.18. Then, for j1, . . . , jn ∈ [d], we have

ejn···j1 =
∑

π∈D(n)

(−1)|p(π)|qcross(π)δp(π)A
s(π)eΩ

where As(π) = Ajks
· · ·Ajk1

for s(π) = {ks > · · · > k1}.

Proof. We prove this formula by induction on n. For n = 1 it just says ej =
(−1)0q0AjeΩ, which is clearly true. So assume we know it for n ≥ 1 and let us
prove it for n+ 1. We have

ejn+1···j1 = Ajn+1
ejn···j1 −

n∑
k=1

δjn+1jkqjn+1jn · · · qjn+1jk+1
ejn···ǰk···j1

=
∑

π∈D(n)

(−1)|p(π)|qcross(π)δp(π)A
jn+1s(π)eΩ

−
n∑

k=1

δjn+1jk

∑
σ∈D(n−1)

qjn+1jn · · · qjn+1jk+1
(−1)|p(σ)|qcross(σ)δp(σ)A

s(σ)eΩ,

where σ ∈ D(n−1) acts on jn · · · ǰk · · · j1. The first term corresponds to π̃ ∈ D(n+1)
such that π̃(n+1) is a singleton. For the second term we take, for each k ∈ {1, . . . , n}
and σ ∈ D(n − 1), the σ̃ ∈ D(n + 1) such that n + 1 is connected to k and
σ̃ \ (n+ 1, k) = σ. Then we have

|p(σ̃)| = |p(σ)|+ 1 and qcross(σ̃)δp(σ̃) = qjn+1jn · · · qjn+1jk+1
qcross(σ)δp(σ)δjn+1jk .

Thus the second term corresponds to such σ̃ ∈ D(n+ 1) and we have

ejn+1···j1 =
∑

π̃∈D(n+1)
π̃(n+1) is a singleton

(−1)|p(π̃)|qcross(π̃)δp(π̃)A
s(π̃)eΩ

+
∑

σ̃∈D(n+1)
σ̃(n+1) is not a singleton

(−1)|p(σ̃)|qcross(σ̃)δp(σ̃)A
s(σ̃)eΩ

=
∑

π∈D(n+1)

(−1)|p(π)|qcross(π)δp(π)A
s(π)eΩ.

□

Using this we can rewrite our conjugate variables as non-commutative power
series in A1, . . . , Ad. (In the following we will, for simplicity, again restrict to the
q-case, though the qij-case can be treated in the same way.) The main point will
be to see that we have good estimates for the operator norms of the summands in
these series; this will be similar to the proof of Corollary 5.17. Let us fix i ∈ [d].
For each w ∈ [d]∗ with |w| = m, we write Rw∗iew =

∑
|v|=2m+1 αvev (as before

we suppress in the notation for αv the dependency on w). Recall that we have
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|αv| ≤
√
w(q)

−3m−2√
[m]q! for any |v| = 2m+ 1 (see the proof of Corollary 5.17).

Moreover, by Proposition 5.19, we have

ev =
∑

π∈D(2m+1)

(−1)|p(π)|qcross(π)δp(π)A
s(π)eΩ.

Then we have

ξi =

∞∑
m=0

(−1)mq
m(m+1)

2

∑
|w|=m

Rw∗iew

=

∞∑
m=0

(−1)mq
m(m+1)

2

∑
|w|=m

∑
|v|=2m+1

αvev

=

∞∑
m=0

(−1)mq
m(m+1)

2

∑
|w|=m

∑
|v|=2m+1

αv

∑
π∈D(2m+1)

(−1)|p(π)|qcross(π)δp(π)A
s(π)eΩ.

This is our “concrete” realization for the ξi as a non-commutative power series in
A1, . . . , Ad. We claim that these power series have an infinite radius of convergence.
We set A = maxi∈[d] ∥Ai∥ > 1. Then we can estimate the operator norm as follows:

∥ξi∥ ≤
∞∑

m=0

|q|
m(m+1)

2

∑
|w|=m

∑
|v|=2m+1

|αv|
∑

π∈D(2m+1)

|qcross(π)δp(π)|∥As(π)∥

≤
∞∑

m=0

|q|
m(m+1)

2

∑
|w|=m

∑
|v|=2m+1

|αv|(2m+ 1)!A2m+1

≤
∞∑

m=0

|q|
m(m+1)

2

∑
|w|=m

∑
|v|=2m+1

√
w(q)

−3m−2
√
[m]q!(2m+ 1)!A2m+1

=

∞∑
m=0

|q|
m(m+1)

2

(
d√
w(q)

)3m+2√
[m]q!(2m+ 1)!A2m+1

where we use |D(2m+1)| ≤ (2m+1)!, since all partitions in D(2m+1) have blocks
of size either 1 or 2 and can thus be identified with permutations in the symmetric
group of degree 2m+ 1.

By the ratio test, this sum converges for any A and thus this implies that the
conjugate system is a d-tuple of non-commutative power series which are uniformly
convergent with a radius of convergence equal to ∞.

A free Gibbs potential (see Section 1.2 in [39]) for q-Gaussians is an operator
V ∈ W∗(A1, . . . , Ad) which satisfies DiV = ξi for all i ∈ [d] where Di’s are the
cyclic derivatives defined by Di = mflip ◦ ∂i (mflip is defined by mflip(a ⊗ b) =
ba). When we write the conjugate system as non-commutative power series ξi =∑

w∈[d]∗ α(w, i)A
w, this potential V is formally given by (see the proof of Corollary

4.3 in [39])

V =
1

2
N−1

(
d∑

i=1

Aiξi + ξiAi

)
=

d∑
i=1

∑
w∈[d]∗

α(w, i)

2(1 + |w|)
(Aiw +Awi)
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where N is the number operator which maps Aw to |w|Aw. Estimates as above tell
us the uniform convergence of the non-commutative power series on the right hand
side, yielding the existence of a free Gibbs potential.

Proposition 5.20. A free Gibbs potential exists for the q-Gaussians, for any −1 <
q < 1.

6. Strong convergence of q-Gaussians

This section is a part of the paper [65]. Here, we recall the main result of this
section.

Theorem 6.1. For any −1 < q0 < 1, strong convergence of q-Gaussians A(q) =

(A
(q)
1 , . . . , A

(q)
d ) holds at q0, i.e. for any non-commutative polynomial P ,

lim
q→q0

∥P (A(q))∥ = ∥P (A(q0))∥.

The key fact for the proof is the Haagerup-type inequality of q-Gaussians proved
by Bożejko [13]. Thanks to this inequality, we can apply Brannan’s approach to
show strong convergence from convergence in non-commutative distribution. This
kind of argument also appears in Pisier’s paper [71, Section 1 and Section 4].

Proof. Since we have

∥P (A(q))∥2n = τ
[
(P ∗P )n(A(q))

] 1
2n ≤ ∥P (A(q))∥,

it is obvious from convergence in non-commutative distribution that

∥P (A(q0))∥ ≤ lim inf
q→q0

∥P (A(q))∥.

For the other direction, we will apply Brannan’s approach [16] with Bożejko’s
Haagerup-type inequality in Theorem 2.58. Let P be any non-commutative poly-

nomial of degree m. Then we can write P (A(q)) =
∑m

k=0

∑
|w|=k αwe

(q)
w , and we

have

∥P (A(q))∥ ≤
m∑

k=0

∥
∑
|w|=k

αwe
(q)
w ∥

≤
m∑

k=0

(k + 1)C
3
2

|q|

∥∥∥∥∥∥
∑
|w|=k

αwe
(q)
w

∥∥∥∥∥∥
2

≤ (m+ 1)C
3
2

|q|

m∑
k=0

∥∥∥∥∥∥
∑
|w|=k

αwe
(q)
w

∥∥∥∥∥∥
2

≤ (m+ 1)
3
2C

3
2

|q|

∥∥∥∥∥∥
m∑

k=0

∑
|w|=k

αwe
(q)
w

∥∥∥∥∥∥
2

= (m+ 1)
3
2C

3
2

|q|∥P (A(q))∥2.
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where we use orthogonality of e
(q)
w with respect to word length. Now, we apply this

inequality to (P ∗P )n which has a degree 2mn. Then we have

∥(P ∗P )n(A(q))∥ = ∥P (A(q))∥2n ≤ (2mn+ 1)
3
2C

3
2

|q|∥(P
∗P )n(A(q))∥2.

By taking a limit q → q0 after taking the power of 1
2n in both sides, we have from

the convergence in non-commutative distribution,

lim sup
q→q0

∥P (A(q))∥ ≤ (2mn+ 1)
3
4nC

3
4n

|q0|∥(P
∗P )n(A(q0))∥

1
2n
2 →

n→∞
∥P (A(q0))∥.

Thus we have strong convergence of q-Gaussians. □

Remark 6.2. When q0 = ±1, our proof does not work. Actually, the 1-Gaussian
is the standard Gaussian, which is unbounded. The (−1)-Gaussian is the discrete
measure which takes ±1 with probability 1

2 . For −1 < q < 1, it is known that

the q-Gaussian has a density function which is supported on [− 2√
1−q

, 2√
1−q

] (cf.

Theorem 1.10 in [11]). Since limq→−1
2√
1−q

=
√
2, we don’t have strong convergence

at q0 = −1.

As a corollary of the main theorem, we obtain the convergence of spectrums of
a self-adjoint polynomial in the Hausdorff distance.

Corollary 6.3. For any −1 < q0 < 1 and any self-adjoint polynomial P , we have

lim
q→q0

dH(σ[P (A(q))], σ[P (A(q0))]) = 0

where σ[P (A(q))] is the spectrum of P (A(q)) and dH(·, ·) is the Hausdorff distance.

Proof. Let ϵ > 0 be given. Since σ[P (A(q0))] is compact, we can take {xk}mk=1 ⊂
σ[P (A(q0))] such that σ[P (A(q0))] ⊂

⋃m
k=1 N ϵ

2
(xk) whereN ϵ

2
(xk) is the

ϵ
2 -neighborhood

of xk. For each k = 1, . . . ,m, we take a continuous function fk on R such that
0 ≤ fk ≤ 1 and fk(xk) = 1 and fk|N ϵ

2
(xk)c = 0. Since ∥fk(P (A(q0)))∥ = 1 for all k,

we also have ∥fk(P (A(q)))∥ > 0 if |q− q0| is sufficiently small by Stone–Weierstrass
theorem and strong convergence (actually, convergence in non-commutative distri-
bution is enough for this claim). This implies N ϵ

2
(xk) ∩ σ[P (A(q))] ̸= ∅ for each k

and we have

σ[P (A(q0))] ⊂
m⋃

k=1

N ϵ
2
(xk) ⊂ σ[P (A(q))] + (−ϵ, ϵ).

On the other hand, we take a continuous function g on R such that 0 ≤ g ≤ 1
and g = 0 on σ[P (A(q0))] and g = 1 on the complement of σ[P (A(q0))] + (−ϵ, ϵ).
Since g(P (A(q0))) = 0, we similarly have ∥g(P (A(q)))∥ < 1 if |q − q0| is sufficiently
small, which implies

σ[P (A(q))] ⊂ σ[P (A(q0))] + (−ϵ, ϵ).

Therefore, we obtain dH(σ[P (A(q))], σ[P (A(q0))]) < ϵ if |q− q0| is sufficiently small.
□

This kind of argument actually holds for any tuples of operators in C∗-algebras
with faithful states which satisfy “uniform RD property” and convergence in non-
commutative ∗-distribution.
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Proposition 6.4. Let (An, ϕn)n∈N and (A∞, ϕ∞) be couples of a C∗-algebra An,A∞

and a faithful state ϕn, ϕ∞. Let X(n) = (X
(n)
1 , . . . , X

(n)
d ) be a d-tuple of operators

(not necessarily self-adjoint) in An for each n ∈ N∪{∞}. Assume (X(n))n∈N∪{∞}
satisfy the following two properties

• “uniform RD property”: there exist constants C,D > 0 such that for any
n ∈ N and non-commutative ∗-polynomial P ,

∥P (X(n))∥ ≤ C(degP + 1)D∥P (X(n))∥2.

where degP is the degree of P .

• convergence in non-commutative ∗-distribution: for any non-commutative
∗-polynomial P ,

lim
n→∞

ϕn[P (X(n))] = ϕ∞[P (X(∞))].

Then, X(n) strongly converges to X(∞); for any ∗-polynomial P ,

lim
n→∞

∥P (X(n))∥ = ∥P (X(∞))∥.

We also have for any self-adjoint ∗-polynomial P ,

lim
n→∞

dH(σ[P (X(n))], σ[P (X(∞))]) = 0.

Proof. As well as the proof of the main theorem, we can estimate ∥(P ∗P )k(X(n))∥
by using “uniform RD property”. Since limk→∞[(2k · degP + 1)D]

1
2k = 1, we

obtain strong convergence from convergence in non-commutative ∗-distribution.
By a similar argument in the proof of Corollary 6.3, we also obtain the convergence
of spectrums in the Hausdorff distance. □

Remark 6.5. In [16], Brannan showed that the normalized standard generators of
free orthogonal quantum groups O+

N satisfy both two assumptions where the degree
function is replaced by a suitable length function. As a consequence, he proved these
normalized generators strongly converge to a free semicircular system as N → ∞.
For more general free orthogonal quantum groups O+

F , RD type estimate fails for
all non-Kac, non-amenable free orthogonal quantum groups, see e.g. [17].

Remark 6.6. We conclude with a remark on the spectral radius r[P (X(n))] for a
non-self-adjoint polynomial P . For the same reason that the infimum of continuous
functions is upper semi-continuous, we can say by strong convergence (note that

r(T ) = infk ∥T k∥ 1
k for a bounded operator T ),

lim sup
n→∞

r[P (X(n))] ≤ r[P (X(∞))].

In particular, the spectral radius r[P (A(q))] is upper semi-continuous with respect
to q. We were not able to show the lower semi-continuity. For this problem, a
quantitative estimate for the difference between ∥P (A(q))k∥ 1

k and ∥P (A(q′))k∥ 1
k

with different q, q′ ∈ (−1, 1) should be helpful. By the Haagerup-type inequal-

ity, it is enough to see the difference between ∥P (A(q))k∥
1
k
2 and ∥P (A(q′))k∥

1
k
2 for

sufficiently large k. We leave it for future work.
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[77] P. Śniady. Gaussian Random Matrix Models for q-deformed Gaussian Variables. Commun.
Math. Phys. 216, 515–537 (2001).
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Mexicanos en el Mundo”, Centro de Investigación en Matemáticas, Guanajuato, Mexico, De-
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