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Summary of Thesis:
Theoretical Study of Invertible States Using Matrix Product States

Shuhei Ohyama

Quantum mechanical phase degrees of freedom are known to have an interesting interplay with topology
[1, 2]. A canonical example is the Dirac monopole where the presence of a magnetic monopole prevents
quantum mechanical wave functions from being defined uniquely over the entire space. Instead, following
the work by Wu and Yang [3], wave functions can be defined by introducing multiple patches, and at
the intersection of two patches, wave functions from different patches are related by a transition function.
The (large) gauge invariance results in the quantization of magnetic charges in units of the inverse of the
fundamental charge. A magnetic monopole also arises in the context of the Berry phase, where a diabolic
point of the Hamiltonian plays the role of the Dirac monopole of the Berry connection in a parameterized
quantum system where the wave function |ψ(x)⟩ depends smoothly on some adiabatic parameter(s) x taken
from a parameter space X. The mathematical structure underlying these situations is a principle U(1) bundle
over the parameter space X. Such bundles are characterized and classified by a topological invariant, the
first Chern class taking its value in the second cohomology group of X, H2 (X;Z).

In recent years, it has been recognized that there are many-body systems where the regular notion of the
Berry phase fails to capture topological properties. Specifically, a family of invertible many-body quantum
states that depends on some parameter x ∈ X, which we shall call invertible states over X for short, has been
discussed [4–12]. Such a family can be topologically non-trivial and can be considered as a generalization
of the Thouless pump. It can also be considered as a generalization of regular gapped phases (SPT phases)
which can be regarded as a special case where the parameter space is a single point. For example, it is known
that there is a non-trivial family of (d + 1)-dimensional systems with U(1) symmetry parameterized over
Sd [5]. We however cannot use the ordinary Berry phase to detect its non-triviality in general. A cursory
explanation is that the Berry connection and Berry curvature measure the non-triviality of H2 (X;Z), so
for example when d = 3, they cannot be non-trivial on S3. Even worse, if not introduced carefully, the
Berry connection and curvature may be ill-defined in many-body quantum systems in the first place: For
example, if we consider a chain of spins that are weakly interacting with each other and are each coupled
to an adiabatically time-evolving magnetic field, the 1st Chern number diverges in the thermodynamic limit
since each spin contributes independently.
Against this backdrop, Kapustin and Spodyneiko defined a quantity that generalizes Berry curvature for

many-body Hamiltonians on a d-dimensional lattice[4, 13, 14]. This is called the higher Berry curvature. The
formulation by Kapustin and Spodyneiko is applicable to a broad class of gapped lattice systems, making
it promising for formulating various topological invariants of many-body systems. Indeed, Kapustin and
Spodyneiko used this formulation for generalizing the Thouless pump and for applications to the thermal
Hall effect[5, 15]. Analysis using field theory[16] also suggests its usefulness in characterizing quantum phase
transition points. However, there are some issues with the Kapustin-Spodyneiko formulation:

• Problem 1: It is difficult to formalize higher Berry phases. The invariants constructed by Kapustin-
Spodyneiko are integer-valued and can be seen as a generalization of Berry curvature. On the other
hand, the existence of topological phases classified by higher Berry phases is also expected from field
theory analysis. However, the Kapustin-Spodyneiko method cannot define higher Berry phases, making
it insufficient as a topological invariant. This is due to the Hamiltonian-based formulation of the
Kapustin-Spodyneiko method, which cannot handle gauge-dependent quantities like Berry connections.

• Problem 2: It is difficult to compute invariants using numerical calculations. To calculate the higher
Berry curvature based on the Kapustin-Spodyneiko formulation, it is necessary to compute the Green’s
function for the many-body Hamiltonian, which is computationally expensive. For regular Berry phases,
there are Hamiltonian-based and quantum state-based formulations. While theoretically equivalent,
using the quantum state-based formulation is known to allow for low-cost computation of Berry phases
[17], known as the Fukui-Hatsugai-Suzuki method.

The above issues are primarily due to the fact that Kapustin-Spodyneiko’s method is a Hamiltonian-based
formulation. Therefore, it is expected that providing a formulation of higher Berry phases based on quantum
states will address Problems 1 and 2.
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In order to reach these problems, it has been realized that a ”higher” generalization of the Berry phase
itself, which takes its value in the higher cohomology group, Hd+2 (X;Z), is important [5, 11, 18]. Motivated
by these developments, the purpose of this paper is to extend the ordinary Berry phase to (1+1)-dimensional
quantum many-body systems and construct a topological invariant that takes its value in H3 (X;Z). In this
paper, based on [11, 19, 20], we formulate the higher Berry phases for 1+ 1-dimensional many-body systems
using the matrix product states representations, and provide their physical and geometric understanding.
See also [21].
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