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Abstract

The eigenstate thermalization hypothesis (ETH) is a successful framework providing criteria for

thermalization in isolated quantum systems. The ETH for an operator ensures thermalization for

the operator, i.e., its expectation value equilibrate to its thermal average. Although numerical and

theoretical analyses support the ETH as a fundamental mechanism for explaining thermalization in

diverse systems, it remains a challenge to analytically identify whether particular systems satisfy the

ETH. In quantum many-body systems and quantum field theories (QFTs), phenomena that violate

the ETH are expected to imply nontrivial thermalization processes, and are gathering increasing

attention.

In this thesis, we elucidate how the existence of higher-form symmetries influences the dynamics

of thermalization in isolated quantum systems. Under reasonable assumptions, we analytically

show that a p-form symmetry in a (d+ 1)-dimensional QFT leads to the breakdown of the ETH for

many nontrivial (d − p)-dimensional observables. In the case of discrete higher-form (i.e., p ≥ 1)

symmetry, this indicates the absence of thermalization for observables that are non-local but much

smaller than the entire system size even though the system has no local conserved quantities. We

provide numerical evidence for this argument for the (2+1)-dimensional Z2 lattice gauge theory.

While local observables such as the plaquette operator thermalize even for mixed symmetry sectors,

the non-local observable such as the one exciting a magnetic dipole instead relaxes to the generalized

Gibbs ensemble that takes account of the Z2 1-form symmetry.

The assumptions of the ETH-violation above include the mixing of symmetry sectors within a

given energy shell. This condition is rather challenging to verify because it requires information

on the eigenstates in the middle of the spectrum. In the subsequent chapter, we further reconsider

this assumption from the viewpoint of the projective phase to alleviate this difficulty. In the case of

ZN symmetries, we can circumvent the difficulty by considering ZN × ZN -symmetric theories with

a mixed ’t Hooft anomaly, and then perturbing the Hamiltonian while preserving one of the ZN
symmetries of interest. Additionally, we carry out numerical analyses for (1 + 1)-dimensional spin

chains and the (2 + 1)-dimensional Z2 lattice gauge theory to demonstrate this scenario.
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Chapter 1

Introduction

1.1 Thermalization through unitary time evolution

Conceptual and practical foundation of thermalization in many-body system has been a subject

of great interest and tackled from various aspects over a century. Thermalization process, which

appears irreversible, frequently emerges even in systems microscopically governed by deterministic

and reversible laws. For quantum systems, these setups are characterized by the unitary time

evolution of pure states. It is somewhat counterintuitive for generic pure states to evolve into thermal

states since the density matrix remains that of pure states, but pure states can indeed thermalize in

the modern understanding. Such processes takes place in high energy physics, regarding the unitary

time evolution of closed universe or highly excited dynamics of quantum field theories; in nuclear

physics, where phenomena such as heavy-ion collisions and quark-gluon plasma become of concern;

and needless to say, in isolated quantum many-body systems including spin chains in the context

of condensed matter physics.

Attempts to formulate thermalization in isolated quantum systems were initiated by J. von Neu-

mann [1], proving the so-called quantum ergodic theorem, which states that a majority of systems

undergo thermalization in terms of macroscopic variables. Although his work can be regarded as a

pioneering achievement for thermalization in isolated quantum systems, its claim is rather restric-

tive in the following sense: Firstly, the quantum ergodic theorem asserts thermalization for majority

of Hamiltonians obtained by unitary transformations to a reference Hamiltonian, and it does not

give any implications to individual systems. In particular, most of Hamiltonians constructed in

this manner are unphysical ones that include highly non-local interactions. As a second point, von

Neumann’s work does not consider thermalization of microscopic quantities. The recent theoretical

4



5 1. Introduction

and experimental studies support the fact that almost all pure states with subextensive energy fluc-

tuations is locally indistinguishable from the microcanonical ensemble in sufficiently large systems.

It implies that even local observables rather than macroscopic ones may exhibit thermalization. In

this scenario, quantum entanglement plays an essential role and there are no classical counterpart

for the local thermalization.

To deal with these difficulties, we first have to characterize “thermal equilibrium” as a realized

final state since thermalization is the process where a generic initial state equilibrate to a thermal

stationary state. The notion of thermal equilibrium is closely linked with that of typicality. Roughly

speaking, typicality in the context of statistical mechanics means that the vast majority of “typical”

states cannot be distinguished by physical observables in many-body systems, and thereby defin-

ing thermal equilibrium. Corresponding to the arguments in the last paragraph, we can introduce

two types of typicality: thermal(/macroscopic) typicality whose characterizing observables should

be macroscopic; and canonical(/microscopic) typicality where even microscopic quntities such as

the entanglement entropy cannot distinguish the typical states. Based on thermal and canonical

typicality, we can define the macroscopic thermal equilibrium (MATE) and the microscopic ther-

mal equilibrium (MITE), respectively. MATE is a natural analog of Boltzmann’s idea in classical

systems, but for quantum systems, MITE offers a more fundamental characterization particularly

in relatively small, say, ten-site spin systems.

One of the most celebrated criteria for thermalization in isolated quantum systems is the eigen-

state thermalization hypothesis (ETH) [2–4] (for reviews, see e.g., [5]). The statement of the ETH is

phrased as “all of the energy eigenstates can be regarded as thermal”. As we will discuss in Chapter

2, the ETH provides a sufficient condition of microsocpic thermalization for arbitrary initial condi-

tions in an energy shell. Supported by many numerical theoretical analyses, the ETH is considered

as a basic mechanism to explain thermalization in various systems [4, 6–33], while providing a rig-

orous proof of the ETH remains a significant challenge. Indeed, some exotic counterexamples have

been identified such as integrable systems, quantum many-body scars, Hilbert space fragmentation,

and so on. These special but physically intriguing systems are attracting considerable attention,

highlighting the need for systematic ways to diagnose the applicability of the ETH.

In quantum field theories, we have to appropriately regularize the degrees of freedom to examine

the validity of the ETH, because the ETH is mainly formulated for systems with discrete spectra. For

conformal field theories, this procedure can be carried out by truncating heavy states, which make
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the ETH tractable in holographic setups [34–41]. We can also consider perturbations that explicitly

break the conformal symmetry, and the ETH is verified for such perturbed theories [42–45]. Another

approach is lattice regularization with truncation of the local degrees of freedom. Lattice quantum

field theories accommodate rich structures such as quantum scars relevant to the ETH [46–49], and

is the main focus of this thesis.

1.2 Symmetry and thermalization

In the field of statistical mechanics, symmetries play a significant role. When a system has local con-

served quantities resulting from symmetries, the statistical ensemble is supposed to include these

quantities appropriately. This observation has drawn much attention in recent research on how

isolated quantum many-body systems reach thermal equilibrium [50–56]. While non-integrable sys-

tems without any symmetries are typically expected to relax locally to the canonical ensemble, the

existence of symmetries can influence the dynamics of the systems in some cases [57–63]. For exam-

ple, integrable systems, which have many symmetries, do not achieve thermalization in the standard

way but rather approach the generalized Gibbs ensemble (GGE) [64–73], which incorporates the

(quasi-)local conserved quantities.

With this in mind, the existence of symmetries are also expected to affect the validity of the ETH

since it gives sufficient conditions of thermalization. Indeed, local conserved quantities originated

from, e.g., continuous global symmetry or integrability, violate the ETH with respect to the entire

Hilbert space, and in this case, the ETH can be recovered after fixing the values of conserved

quantities [58, 62, 68]. In contrast, the effect of non-local conserved quantities arising from e.g.,

discrete symmetries, is more subtle. This is because they do not typically break the (diagonal) ETH,

and thermalization of local observables is not influenced even when we consider mixed symmetry

sectors [58, 74, 75]. This fact is indeed surprising since the existence of conserved quantities can be

sometimes related to non-ergodicity [76–94].

Recently, the notion of higher-form symmetry has emerged in the context of quantum field

theory, offering a framework for analyzing the phase structures [95–108] (for recent reviews, see

Ref. [109–115] including applications to condensed matter physics). Higher-form symmetry is re-

garded as a generalization of conventional global symmetries, and characterized by topological sym-

metry operators, whose correlation functions remain invariant under their continuous deformations.
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This generalization involves the dimensionality of both charged objects and symmetry operators:

in a (d+ 1)-dimensional spacetime, p-form symmetries incorporates p-dimensional charged objects,

with symmetry operators being (d − p)-dimensional. In the case of p ≥ 1, we refer to that p-form

symmetry as a higher-form symmetry. This is in contrast to conventional global symmetries, which

are identified as 0-form symmetries.

Despite extensive research on the static aspects of higher-form symmetry, its dynamic implica-

tions remain largely unexplored. Higher-form symmetries are intrinsically present in gauge theories,

such as Yang-Mills theories, which have attracted considerable attention in both condensed matter

and atomic-molecular-optical physics contexts [116–133], as well as in high energy physics. While

there are a few studies that discuss thermalization dynamics in specific models with these gener-

alized symmetries [134–138], general implications of higher-form symmetry have seldom been fully

uncovered.

As mentioned above, in many cases, it is believed that systems with local conserved quantities

such as integrable models satisfy the ETH only if all of the symmetry sectors for the conserved

quantities are resolved, while the ETH does not hold with the mixed symmetry sector. The result

of our work [139] indeed provides a general proof to the violation of the ETH in the presence of

higher-form symmetry. We stress that it is also applicable even to the case of non-local conserved

quantities since discrete symmetries typically give rise to them.
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1.3 Organization of the thesis

The remainder of this thesis is organized as follows. Chapter 2 provides the review of thermalization

in isolated quantum systems. We first introduce the notion of typicality and characterize thermal

equilibrium. The ETH is then implemented as sufficient conditions of the thermal equilibrium.

In Chapter 3, we discuss the relation between the ETH and higher-form symmetry based on our

work [139]. We analytically show that the ETH for the (d− p)-dimensional operator are broken in

presence of p-dimensional quantum field theories. As a consequence of the ETH-violation, we also

propose the generalized Gibbs ensemble (GGE) for discrete p-form symmetries as a realized thermal

equilibrium. In Chapter 4, based on our work [140], we revisit the precise condition of the ETH-

violation from the perspective of projective phases or ’t Hooft anomaly of p-form symmetry. From

this viewpoint, we can derive the ETH-violation without any direct reference to the eigenstates in

the middle of spectrum of our interest. Chapter 5 is devoted to the conclusion and discussion. We

there summarize the main results of this thesis and discuss outlook to possible future directions.



Chapter 2

Thermalization in isolated quantum
systems

In this chapter, we review the notion of thermalization in isolated quantum systems, and introduce

the eigenstate thermalization hypothesis (ETH), a widely recognized criterion that give sufficient

conditions for thermalization. For more detailed reviews, see [55].

2.1 Thermal equilibrium

In order to discuss the thermalization and its sufficient conditions, we first consider how thermal

equilibrium is characterized. In the following, we focuses on lattice systems, such as quantum spins,

bosons, or fermions. To adopt quantum field theories, we thus should lattice-regularize the space

manifold. If you need the finite Hilbert space, it can be obtained by further truncating the local

Hilbert space. Here, the notion of locality can be naturally introduced since we consider a Hilbert

space of the form

HM :=
⊗
i∈M

Hi, (2.1.1)

where Hi are local Hilbert spaces, and M denotes the lattice-regularized d-dimensional space man-

ifold. Each microstate of the system is identified by a state vector in the Hilbert space HM. The

Hamiltonian of the system is denoted by H, with its eigenstates and eigenvalues represented as |Eα⟩

and Eα, i.e, H|Eα⟩ = Eα|Eα⟩. We also define a subspace that is constrained to have an almost

definite macroscopic energy value E, denoted by

HM,E := span{|Eα⟩ ∈ HM | Eα ∈ [E,E + ∆E]} (⊂ HM), (2.1.2)

9
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with ∆E being an energy range small on a macroscopic scale but large microscopically. We refer to

HM,E as the energy shell of the quantum system. The dimension of HM,E is denoted by

DM,E := dim(HM,E). (2.1.3)

In the following discussion, we deal with a set of operators

O := {O1,O2, . . . ,On}, (2.1.4)

where Oi are operators acting on the Hilbert space HM . The support of each operator Supp(Oi) is

defined as the minimal set Xi ⊂ M such that the operator is expressed as Oi = OXi ⊗ 1Xc
i
. Here,

1Xc
i

is the identity operator acting on ⊗i∈Xc
i
Hi, where Xc

i is the complement of Xi. The support

for the set O

Supp O :=
⋃

Oi∈O

SuppOi . (2.1.5)

If an operator Oi satisfies the scaling Vol(SuppOi)/Vol(M) → 0 as Vol(M) → ∞, the operator Oi

is said to be local, where Vol(M) denotes the volume of the manifold M.

In many cases, quantum many-body Hamiltonians H of our interest in the context of thermal-

ization are represented as a sum of local operators, which are referred to as local Hamiltonians.

Along this line, we also introduce local conserved quantities. Among conserved quantities Q with

[H,Q] = 0, Q that can be expressed as a sum of local operators, is called a local conserved quantity,

and otherwise we call it a non-local conserved quantity. In the thermodynamic limit Vol(M) → ∞,

local conserved quantities are expected to behave as extensive variable since they take the form

Q ≃
∫
M
dxO(x) in this limit.

2.1.1 Macroscopic/microscopic thermal equilibrium

As an analogy to classical many-body systems, we can consider the following as a characterization

of thermal equilibrium [1,141,142]: given a set of macroscopic observables M = {M1,M2, . . . ,Mj},

these operators (M1, . . . ,Mj) take particular value (M1,thermal, . . . ,Mj,thermal) in the thermodynamic

limit, and such states specify the thermal equilibrium. We shall elaborate more on what ”macro-

scopic observable” means. Dividing the space manifold as M = ∪kΛk such that Λk ∩ Λk′ = ϕ for

any k ̸= k′, we say Mi ∈ M is a macroscopic observable iff the support of Mi is one of Λk or their

unions (including M).
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This characterization is referred to as macroscopic thermal equilibrium (MATE), and it is sup-

ported by the supposition called thermodynamic typicality, described as

∃γ > 0, 1 −
DMeq

DM,E
< exp(−γVol(M)). (2.1.6)

where DM,E is the dimension of the Hilbert space HM,E , and DMeq is the one of its subspace with

(M1, . . . ,Mj) ≃ (M1,thermal, . . . ,Mj,thermal) .

There is another notion of thermal equilibrium intrinsic to quantum systems (i.e., with no

analogs in classical many-body systems) called microscopic thermal equilibrium (MITE). The notion

of MITE is motivated by introduction of canonical typicality [143–145]. In order to explain canonical

typicality, we divide the space M into a small subset X and its complement Xc, where Xc is regarded

as the “bath” with respect to X. The claim of canonical typicality is as follows: For almost all state

|ψ⟩ ∈ HE,M, there exists a density matrix ρeq such that

trXc |ψ⟩⟨ψ| ≃ trXc ρeq, (2.1.7)

where trXc denotes the partial trace with respect to Xc . We can elaborate on this relation utilizing

the inequality [144]

P|ψ⟩

[∣∣∣∣ trXc |ψ⟩⟨ψ| − trXc ρeq
∣∣∣∣
1
≥ η

]
≤ η′, (2.1.8)

η = ϵ+

√
DX

Denv
, η′ = 4 exp

(
− ϵ2

18π3
DM,E

)
, ϵ > 0, (2.1.9)

DX := dim

(⊗
i∈X

Hi

)
, (2.1.10)

where P|ψ⟩[condition] is the probability such that the condition holds for uniformly distributed

|ψ⟩ ∈ HM,E , and || · ||1 denotes the trace norm

||ρ||1 := trX
√
ρ†ρ . (2.1.11)

The constant Denv is the effective dimension of the Hilbert space supported by Xc1. For Vol(M) ≫

Vol(X), the effective dimension behaves as Denv ≃ DM,E/DX . One can show the relation (2.1.8)

by utilizing Levy’s lemma for general quantum systems [144].

1The precise definition of Denv is given by

Denv := 1
/

trX

(
trXc

1M,E

DM,E

)2

, (2.1.12)

where 1M,E is the identity matrix whose entries have nonzero value for the components of HM,E . If we consider the
situation where ∆E is large enough, i.e., HM,E = HM, Denv is equal to DM,E/DX .



2.1 Thermal equilibrium 12

The most significant case is when the volumes satisfy Vol(M) ≫ Vol(X) . For example, this

relation holds if X has lower dimensional support compared to the total space M, and this is

exactly the case in Chapter 3 and Chapter 4. We define the “system size” ℓ with the dimension of

length, and then the dimensions of the Hilbert spaces are given by DM,E = eO(ℓd) and DX = eO(ℓd−p)

for a (d− p)-dimensional X. We then consider the situation DM,E ≫ DX ≫ 1, and set ϵ suitably,

say ϵ = D
−1/3
M,E . Recalling the relation (2.1.9), we have

η ≃ D
−1/3
M,E +

√
D2
X

DM,E
= e−O

(
ℓmin{d,p}

)
, η′ = 4 exp

(
− 1

18π3
eO(ℓd)

)
. (2.1.13)

In the ℓ→ ∞ limit, both of the constants η and η′ tends to zero as long as p ≥ 1 . This result shows

that the canonical typicality (2.1.7) holds in the thermodynamic limit ℓ→ ∞ with sufficiently large

bath (in the context of (2.1.13), p ≥ 1). We stress that the canonical typicality does NOT require

the locality of X.

Remarkably, the canonical typicality (2.1.7) is valid regardless of the existence of conserved

quantities. The standard lore states that if a system has a conserved quantities, the relevant thermal

ensemble should take account of it (e.g., introducing a suitable chemical potential). Indeed, the

density matrix is not necessarily the one of the canonical ensemble, and one can expect that the

resulting thermal equilibrium is a grand canonical-like ensemble in presence of conserved quantities.

We lastly comment on the relation between MITE and MATE. In particular, MITE and MATE

are neither sufficient nor necessary condition to each other, and MITE makes sense even in small

systems while MATE does not. For a system in MATE, the quantum fluctuations of macroscopic

observables is small. In contrast, MITE claims small fluctuations only for observables O with a

small support X, and the ones of macroscopic observables are not necessarily small since they are

sum of O. In this sense, MATE can be considered stronger than MITE. On the other hand, MITE

indicates the system can not be distinguished even microscopically, although this property does not

necessarily hold for MATE, and this fact make us feel that MITE is stronger than MATE.

The inequality (2.1.8) implies that the notion of MITE is applicable if DM,E ≫ D2
X and DM,E ≫

1. For example, this condition can be satisfied setting d = 2, p = 1, and ℓ = 4 since the dimension of

the Hilbert spaces scales as DM,E = eO(ℓd) and DX = e2O(ℓd−p). The notion of MATE is meaningful

only for large systems such that γVol(M) ≫ 1 so that the fluctuation of macroscopic observables

should be small.
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2.1.2 Thermal equilibrium for operator sets

In the spirit of MITE, even microscopic subsystems realize thermal equilibriums characterized by

“canonically typical” states. This fact is intrinsic to quantum systems and will be the main focus

in the remainder of this thesis. The notion of MITE motivate us to consider thermal average even

for local operators and non-extensive observables with a support X . When a state |ψ⟩ is in MITE

(2.1.7), we can see

⟨ψ|O|ψ⟩ ≃ tr(Oρeq) =: ⟨O⟩eq (2.1.14)

for an operator O with the support X . This relation suggests that a single pure state can reproduce

the result of the microcanonical ensemble. In [145–147], the following relation is indeed shown:

P|ψ⟩

[
⟨ψ|O|ψ⟩ − ⟨O⟩eq ≥ ϵ

]
≤ ||O||2

ϵ2DM,E
, (2.1.15)

where || · || denotes the operator norm

||O|| := sup
ψ∈HM:⟨ψ|ψ⟩=1

√
⟨ψ|O†O|ψ⟩ . (2.1.16)

With the discussion above in mind, we now sort out the concepts of MITE and thermal equi-

librium for operators. We here say a pure state |ψ⟩ ∈ HM,E is in MITE for X iff∣∣∣∣∣∣ trXc |ψ⟩⟨ψ| − trXc ρeq

∣∣∣∣∣∣
1
→ 0 , as Vol(M) → ∞. (2.1.17)

On the other hand, we define the thermal equilibrium with respect to an operator set O (such that

Supp O = X) by

max
Oi∈O

∣∣∣∣⟨ψ|Oi|ψ⟩ − trM(ρeqOi)

∆Oi

∣∣∣∣→ 0 , as Vol(M) → ∞, (2.1.18)

where ∆Oi
is the spectral width of the operator Oi defined by

∆Oi
:= max

k
λk − min

k
λk , Oi =

∑
k

λk |λk⟩⟨λk| (:spectral decomposition). (2.1.19)

Note here that the operators Oi ∈ O are hermitian operators.

In the following, we show that

|ψ⟩ ∈ HM,E is in thermal equilibrium with respect to Õ := {∀O | SuppO = X}

⇐⇒ |ψ⟩ ∈ HM,E is in MITE for X.
(2.1.20)
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To this end, we consider the quantity

max
Oi∈Õ

∣∣∣∣⟨ψ|Oi|ψ⟩ − trM(ρeqOi)

∆Oi

∣∣∣∣
= max

Oi∈Õ

∣∣∣∣trM( Oi

∆Oi

(ρ− ρeq)

)∣∣∣∣ (
ρ := |ψ⟩⟨ψ|

)
= max

Oi∈Õ

∣∣∣∣trX ( Oi

∆Oi

(
trXc(ρ) − trXc(ρeq)

))∣∣∣∣
=
∣∣∣∣∣∣ trXc(ρ) − trXc(ρeq)

∣∣∣∣∣∣
1

/
2 . (2.1.21)

In the last equality, we utilized the relation

max
A

tr

(
A

∆A

B

)
=

||B||1
2

. (2.1.22)

This can be easily shown because for a Hermitian matrix B =
∑

k bk |bk⟩⟨bk|, the || · ||1 norm just

reduces to ||B||1 =
∑

k |bk| . In the relation (2.1.21), the vanishing left-hand as Vol(M) → ∞ leads

to the vanishing right-hand side, and vice versa. Thus, we can immediately realize that the left-hand

side of (2.1.20) is equivalent to the right-hand side.

After all, we conclude that even pure states can be regarded as thermal equilibrium in the sense

of (2.1.17) and (2.1.18). Because thermal equilibrium for operator sets (2.1.18) makes sense, we

can further delve into a question “what is the natural choice for O?” Obviously, the most strong

characterization for a given X is realized when you set O = Õ := {∀O | SuppO = X}. However,

it is also plausible that some operator O1 such that Supp(O1) = X is in thermal equilibrium while

another operator O2 with the same support is not. This subtleties actually one of major interests

in the following chapters.

2.1.3 Entanglement entropy in thermal equilibrium

We now consider the entanglement entropy for a pure state |ψ⟩, which is defined by

S(|ψ⟩) = SvN
(

trXc |ψ⟩⟨ψ|
)

:= − trX
[(

trXc |ψ⟩⟨ψ|
)

log
(

trXc |ψ⟩⟨ψ|
)]
. (2.1.23)

If the state |ψ⟩ in MITE (2.1.7), we can naively expect

S(|ψ⟩) ≃ SvN
(

trXc ρmc

)
= − trX

[(
trXc ρmc

)
log
(

trXc ρmc

)]
. (2.1.24)

Here, we assumed the equilibrium is given by the microcanonical ensemble, so that the system is

supposed to have no extra structures such as symmetries. We note that although the relation (2.1.24)
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seems plausible, it is quite nontrivial whether this relation holds true precisely up to subextensive

quantity.

Once we suppose the expression (2.1.24), the equivalence of thermal ensemble leads to

S(|ψ⟩) ≃ SvN
(

trXc ρmc

)
≃ SvN

(
ρcan,X

)
, (2.1.25)

if the subsystem X satisfies Vol(M) ≫ Vol(X) ≫ 1. The matrix ρcan,X denote the density matrix

of the canonical ensemble:

ρcan,X :=
1

trX e−βHX
e−βHX , (2.1.26)

where HX is the Hamiltonian of the subsystem X2, and the temperature β can be defined by

β := ∂Smc(E,Vol(M))/∂E . After all, we can reasonably believe the entanglement entropy for |ψ⟩

with respect to X tends to the thermal entropy in the thermodynamic limit if the relation (2.1.24)

holds. This fact is often used as a criterion to determine whether a given state |ψ⟩ is a thermal

state in some literature.

2.2 Sufficient conditions for thermalization

The concept of typicality in thermal equilibrium suggests that thermalization is the process where

a system transitions from an atypical non-equilibrium initial state to a typical state representing

thermal equilibrium. This typicality-based reasoning, however, falls short in explaining why certain

systems undergo thermalization while others do not. Notably, some many-body systems do not

achieve thermalization despite the typicality of thermal equilibrium being applicable. Therefore,

to gain a deeper understanding, it is essential to establish specific criteria that can determine the

occurrence or lack of thermalization in individual systems.

2.2.1 Equilibration and thermalization

The most naive way to define thermalization with respect to O for an initial |ψ⟩ is as follows:

∃trelax,
∀t > trelax,

∀Oi ∈ O such that ⟨ψ(t)|Oj |ψ(t)⟩ ≃ tr(Oiρeq), but this characterization clearly

fails due to the quantum recurrence theorem [148, 149]. In isolated quantum systems with unitary

time evolution, we can not avoid the quantum recurrence theorem stating

∀ϵ > 0, ∃tn, (n = 1, 2, . . . ),
∣∣∣∣ |ψ(tn)⟩ − |ψ(0)⟩

∣∣∣∣ ≤ ϵ, (2.2.1)

2We here assume the Hamiltonian for the subsystem X can be defined by cutting the boundary interactions
appropriately, since the interactions included in the Hamiltonian are local.
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where || · || denotes the standard Euclidean norm

∣∣∣∣ |ψ⟩ ∣∣∣∣ :=
√

⟨ψ|ψ⟩ . (2.2.2)

In light of 2.2.1, the “relaxation time” in this sense does not exists, and thus we need more refined

formulation of thermalization.

A natural refinement is requiring ⟨ψ(t)|Oi|ψ(t)⟩ ≃ tr(Oiρeq) for almost all time t > 0. To make

this statement more precise, we repeatedly utilize the time average

⟨O⟩ := lim
T→∞

∫ T

0
dt ⟨ψ(t)|O|ψ(t)⟩ . (2.2.3)

The key ideas are classified into the following two ingredients:

Equilibration

We first require the fluctuation of observables with respect to time average to be small for

almost all time. This statement can be phrased as

max
Oi∈O

σtime(Oi)

∆Oi

→ 0 as Vol(M) → ∞, (2.2.4)

σ2time(O) :=
(
⟨ψ(t)|O|ψ(t)⟩ − ⟨O⟩

)2
. (2.2.5)

Thermalization

If a system equilibrate, the time average of the observable should tend to the thermal average3,

i.e.,

max
Oi∈O

∣∣⟨ψ(t)|Oi|ψ(t)⟩ − ⟨Oi⟩mc (E)
∣∣

∆Oi

→ 0 as Vol(M) → ∞, (2.2.6)

⟨O⟩mc (E) := tr(Oρmc(E)) , ρmc(E) :=
∑

|Eα⟩∈HM,E

|Eα⟩⟨Eα|
DM,E

. (2.2.7)

For a given initial state |ψ⟩ ∈ HM,E , we say |ψ⟩ is thermalized with respect to O iff it satisfies (2.2.4)

and (2.2.6) under the unitary time evolution |ψ(t)⟩ = e−iHt |ψ(0)⟩ . The notion of equilibration and

thermalization is schematically depicted in Fig. 2.1.

3We here adopt the microcanonical ensemble since the realized thermal ensemble is expected to be the microcanon-
ical ensemble without any special reason such as symmetries, Hilbert space fragmentation, and so on.
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Figure 2.1: Schematics of equilibration and thermalization. Equilibration (2.2.4) indicates the fluctuation with
respect to time average is small, and thermalization (2.2.6) ensures the equilibrated value of ⟨O⟩ tends to its micro-
canonical average.

Recalling Chebyshev’s inequality4, we obtain the expression

Pt∈[0,∞)

[∣∣ ⟨ψ(t)|Oi|ψ(t)⟩ − ⟨Oi⟩
∣∣

∆Oi

≥ ϵ

]
≤ σ2time(Oi)

ϵ2∆2
Oi

(2.2.9)

⇒ Pt∈[0,∞)

[
max
Oi∈O

(∣∣ ⟨ψ(t)|Oi|ψ(t)⟩ − ⟨Oi⟩
∣∣

∆Oi

)
≥ ϵ

]

= Pt∈[0,∞)

 ∨
Oi∈O

(∣∣ ⟨ψ(t)|Oi|ψ(t)⟩ − ⟨Oi⟩
∣∣

∆Oi

≥ ϵ

)
≤
∑
Oi∈O

σ2time(Oi)

ϵ2∆2
Oi

≤ |O| max
Oi∈O

σ2time(Oi)

ϵ2∆2
Oi

, (2.2.10)

where Pt∈[0,∞) is the probability for uniformly distributed t ∈ [0,∞)5. We then notice that the

(2.2.4) leads to

Pt∈[0,∞]

[
max
Oi∈O

(∣∣ ⟨ψ(t)|Oi|ψ(t)⟩ − ⟨Oi⟩
∣∣

∆Oi

)
≥ ϵ

]
→ 0 (2.2.12)

4Chebyshev’s inequality is given by

PX

[
|X − X̄| ≥ ϵ

]
≤ σ2

X

ϵ2
, (2.2.8)

where X̄ and σ2
X is the expectation value and the variance with respect to probability distribution of X .

5More precisely Pt∈[0,∞) should be defined by

Pt∈[0,∞) := lim
T→+∞

Pt∈[0,T ] . (2.2.11)



2.2 Sufficient conditions for thermalization 18

for an appropriately chosen ϵ such that

1

ϵ2
max
Oi∈O

σ2time(Oi)

∆2
Oi

→ 0 as Vol(M) → ∞. (2.2.13)

Note that we here fixed the number of elements of O. This result indeed matches the intuitive

characterization of equilbration, where ⟨ψ(t)|Oi|ψ(t)⟩ ≃ ⟨Oi⟩ ≃ tr(Oiρeq) for almost all time.

2.2.2 Eigenstate thermalization hypothesis

We now consider when equilibration (2.2.4) and thermalization (2.2.6) undergo for a given initial

state. In the following, we work on the unitary time evolution |ψ(t)⟩ = e−iHt |ψ(0)⟩ under the

Hamiltonian H with H |Eα⟩ = Eα |Eα⟩, suppose that the energy has no degeneracy: Eα = Eβ ⇒

α = β; and no resonance: Eα−Eβ = Eγ−Eδ ̸= 0 ⇒ α = γ, β = δ for simplicity. The non-resonance

condition means that there is no degeneracy of energy gaps. Given an initial pure state

|ψ(0)⟩ =
∑

|Eα⟩∈HM,E

cα |Eα⟩ , cα = ⟨Eα|ψ(0)⟩ , (2.2.14)

the expectation value of an operator O reads

⟨O(t)⟩ := ⟨ψ(t)|O|ψ(t)⟩ =
∑
α,β

c∗αcβe
i(Eα−Eβ)t ⟨Eα|O|Eβ⟩ , (2.2.15)

⇒ ⟨O(t)⟩ =
∑

|Eα⟩∈HM,E

|cα|2 ⟨Eα|O|Eα⟩ (2.2.16)

because of non-degeneracy condition. The variance with respect to time average can be also obtained

as

σ2time(O) =
(
⟨O(t)⟩ − ⟨O⟩

)2
=

( ∑
α ̸=β

|Eα⟩,|Eβ⟩∈HM,E

c∗αcβe
i(Eα−Eβ)t ⟨Eα|O|Eβ⟩

)2

=
∑

α ̸=β, γ ̸=δ
c∗αcβc

∗
γcδe

i(Eα−Eβ+Eγ−Eδ) ⟨Eα|O|Eβ⟩ ⟨Eγ |O|Eδ⟩

=
∑

α ̸=β, γ ̸=δ
c∗αcβc

∗
γcδ δαδδβγ ⟨Eα|O|Eβ⟩ ⟨Eγ |O|Eδ⟩

=

∑
α ̸=β

|Eα⟩,|Eβ⟩∈HM,E

|cα|2|cβ|2
∣∣⟨Eα|O|Eβ⟩∣∣2. (2.2.17)

In the third line of (2.2.17), we utilized the non-resonance condition. We notice that the expectation

(2.2.16) and the variance (2.2.17) only involve the diagonal part and the off-diagonal part of the

matrix elements, respectively. Comparing these expressions with (2.2.4) and (2.2.6), one can present
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sufficient conditions for thermalization and equilibration, which is commonly known as the eigenstate

thermalization hypothesis (ETH).

Diagonal ETH

A sufficient for thermalization (2.2.6) with respect to O is given by6

∀Oi ∈ O, max
|Eα⟩∈HM

∣∣ ⟨Eα|Oi|Eα⟩ − ⟨Oi⟩mc (Eα)
∣∣

∆Oi

→ 0 as Vol(M) → ∞. (2.2.18)

Off-diagonal ETH

The off-diagonal part provides a sufficient condition for equilibration (2.2.4) as

∀Oi ∈ O, max
|Eα⟩,|Eβ⟩∈HM

α ̸=β

∣∣ ⟨Eα|Oi|Eβ⟩ ∣∣
∆Oi

→ 0 as Vol(M) → ∞. (2.2.19)

The diagonal-ETH can be phrased as “all energy eigenstates are thermal” in light of the definition

of thermal equilibrium (2.1.18). (See Fig. 2.2.) Unless otherwise noted, the term “ETH” will be

used to refer solely to the diagonal ETH throughout this thesis. Compared to the weak ETH, which

we will mention later in this section, the diagonal ETH is called the strong ETH as well.

Figure 2.2: Schematic illustrations of the diagonal ETH. The red points denote the plots of energy eigenstates,
and the blue line is the microcanonical average. In the left figure, the variance of the expectation values are small
and tend to zero in the thermodynamic limit, which indicates the diagonal ETH hold for O. In the right figure, the
diagonal ETH is not satisfied since the variance remains finite after taking the thermodynamic limit.

Let us confirm the diagonal ETH (2.2.18) and the off-diagonal ETH (2.2.19) indeed suffice

to thermalization (2.2.6) and equilibration (2.2.4) for generic systems. Noting the normalization

6Although we here take eigenvectors |Eα⟩ from the entire Hilbert space HM, the prime interest in the context of
thermalization is states in the middle of spectrum. It is thus sufficient to formulate the ETH (2.2.18) for eigenstates
|Eα⟩ with sufficiently excited states such that Eα ∈ [E1, E2] for some E1, E2. This argument is applied to the
off-diagonal ETH (2.2.19).
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condition
∑

α |cα|2, we now evaluate the left hand side of (2.2.6).∣∣⟨ψ(t)|Oi|ψ(t)⟩ − ⟨Oi⟩mc (E)
∣∣

∆Oi

=

∣∣∑
|Eα⟩∈HM,E

|cα|2 ⟨Eα|O|Eα⟩ − ⟨Oi⟩mc (E)
∣∣

∆Oi

=

∣∣∑
|Eα⟩∈HM,E

|cα|2
(
⟨Eα|O|Eα⟩ − ⟨Oi⟩mc (Eα) + ⟨Oi⟩mc (Eα)

)
− ⟨Oi⟩mc (E)

∣∣
∆Oi

≤

∑
|Eα⟩∈HM,E

|cα|2
∣∣∣⟨Eα|O|Eα⟩ − ⟨Oi⟩mc (Eα)

∣∣∣
∆Oi

+

∑
|Eα⟩∈HM,E

|cα|2
∣∣∣⟨Oi⟩mc (Eα) − ⟨Oi⟩mc (E)

∣∣∣
∆Oi

≤
max|Eα⟩∈HM,E

∣∣∣⟨Eα|O|Eα⟩ − ⟨Oi⟩mc (Eα)
∣∣∣

∆Oi

+
max|Eα⟩∈HM,E

∣∣∣⟨Oi⟩mc (Eα) − ⟨Oi⟩mc (E)
∣∣∣

∆Oi

.

(2.2.20)

The second term in the last line should vanish as Vol(M) → ∞ if we assume that ⟨Oi⟩mc (E) is

a continuous function of E/Vol(M) and the energy shell scales as o(Vol(M)). This supposition

seems reasonable for generic systems, and it is indeed encapsulated into Srednicki’s ansatz [150] to

be discussed later in this section. The first term of (2.2.20) converges to zero as well because of

the diagonal ETH (2.2.18). Since the discussion here holds for arbitrary Oi ∈ O, we can conclude

that the initial state |ψ(0)⟩ is thermalized in the sense of (2.2.6). We then check the equilibration

argument as

σ2time(Oi)

∆2
Oi

=

∑
α ̸=β

|Eα⟩,|Eβ⟩∈HM,E

|cα|2|cβ|2
| ⟨Eα|Oi|Eβ⟩ |2

∆2
Oi

≤

(
max
α ̸=β

|Eα⟩,|Eβ⟩∈HM,E

| ⟨Eα|Oi|Eβ⟩ |2

∆2
Oi

) ∑
α ̸=β

|Eα⟩,|Eβ⟩∈HM,E

|cα|2|cβ|2

≤ max
α ̸=β

|Eα⟩,|Eβ⟩∈HM,E

| ⟨Eα|Oi|Eβ⟩ |2

∆2
Oi

(2.2.21)

Since the left hand side tends to zero as Vol(M) → ∞, the left hand side also vanishes in the

thermodynamic limit for arbitrary Oi ∈ O. The off-diagonal ETH (2.2.19) leads to the vanishing

right hand side, and we can see the initial state |ψ⟩ is equilibrated as desired.

We note that equilibration can be achieved without imposing the off-diagonal ETH if only the

initial state is “random” enough, which is quantified as

Deff :=
( ∑

|Eα⟩∈HM,E

|cα|4
)−1

→ ∞ as Vol(M) → ∞. (2.2.22)
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The effective dimension Deff is regarded as a measure of delocalization, which equals to 1 if cα = δαβ̃

with some β̃, or Deff = eO(Vol(M)) for uniformly random cα. If we suppose (2.2.22), the variance

reads

σ2time(Oi) =

∑
α ̸=β

|Eα⟩,|Eβ⟩∈HM,E

|cα|2|cβ|2| ⟨Eα|Oi|Eβ⟩ |2

≤ 1

2

∑
|Eα⟩∈HM,E

|cα|4 ⟨Eα|O2
i |Eα⟩ +

1

2

∑
|Eβ⟩∈HM,E

|cβ|4 ⟨Eβ|O2
i |Eβ⟩

=
∑

|Eα⟩∈HM,E

|cα|4 ⟨Eα|O2
i |Eα⟩

≤
∑

|Eα⟩∈HM,E

|cα|4 sup
|Eα⟩∈HM,E

⟨Eα|O2
i |Eα⟩

≤
∑

|Eα⟩∈HM,E

|cα|4||Oi||2
(
∵ sup

|Eα⟩∈HM,E

⟨Eα|O2
i |Eα⟩ ≤ sup

|Eα⟩∈HM

⟨Eα|O2
i |Eα⟩ = ||Oi||2

)

=
||Oi||2

D2
eff

≤
∆2

Oi

D2
eff

. (2.2.23)

In the second line, we utilized the inequality about the arithmetic and geometric mean

|cα|2|cβ|2 ≤
1

2

(
|cα|4 + |cβ|4

)
. (2.2.24)

The inequality in the last line of (2.2.23) holds iff the maximum and minimum value of the eigen-

values of Oi are nonnegative and nonpositve, respectively. Without loss of generality, we can always

shift the operator Oi by a constant so that this condition is satisfied. Comparing the relation

(2.2.23) with the delocalization condition (2.2.22), we have σ2time(Oi) → 0 in the thermodynamic

limit Vol(M) → ∞.

In the discussion so far, we focused on the (strong) ETH. We next sort out the relevant termi-

nologies associated with the ETH. In formulating the ETH (2.2.18), we dealt with all of the energy

eigenstates in the energy shell HM,E , although it is too strict to prove in general systems. A more

tractable framework called the weak ETH was proposed in [7]. The weak ETH is expressed as

P|Eα⟩∈HM,E

[
max
Oi∈O

∣∣ ⟨Eα|Oi|Eα⟩ − ⟨Oi⟩mc

∣∣
∆Oi

≤ ϵ
]
→ 0 as Vol(M) → ∞ (2.2.25)

for sufficently small ϵ > 0, i.e., ϵ = o(Vol(M)). It can be paraphrased as the total number of “rare”

states are much smaller than the dimension of the energy shell. In contrast to the strong ETH, the

weak ETH does not indicate thermalization for all of initial states in the energy shell. In particular,



2.2 Sufficient conditions for thermalization 22

the weak ETH has been demonstrated even for integrable systems, where thermalization is often

absent. For systems where only the weak ETH is satisfied, we can deduce thermalization for initial

states without substantial overlaps with rare states. Therefore, in such systems, we have to tackle

with a highly nontrivial problem: determining whether physically a realistic initial state, such as

one prepared by a quantum quench, has a substantial overlap with rare states or not.

Srednicki’s ansatz

Along the line of the postulate such that a generic many-body Hamiltonian behaves similar to a

random matrix, Srenicki [150] conjectured that matrix elements in the energy basis take the form

⟨Eα|O|Eβ⟩ = O(Ē)δαβ + e−Smc(Ē)/2fO(Ē, ω)Rαβ, (2.2.26)

where O(Ē) and fO(Ē, ω) are smooth functions of Ē := (Eα + Eβ)/2 and ω := Eα − Eβ. Complex

numerical factors Rαβ are treated as independent random variables with zero means and unit

variances. The microcanonical entropy is denoted by Smc(Ē) := logDM,E , and it scales as Smc(Ē) =

O(Vol(M)).

One can notice that Srednicki’s ansatz (2.2.26) is a stronger assumption than the diagonal ETH

(2.2.18) and the off-diagonal ETH (2.2.19). Since off-diagonal elements only appear in the second

term of (2.2.26), they are exponentially dumping as e−O(Vol(M)) in the thermodynamic limit, which

suffices to the off-diagonal ETH. In this limit, the remaining matrix elements are the first term of

(2.2.26), and thus we obtain

O(Ē) ≃ ⟨O⟩mc (Ē) (2.2.27)

with a sufficiently narrow energy shell since O(Ē) is assumed to be a smooth function.

The small off-diagonal part of the matrix elements immediately indicates small fluctuations

with respect to time, i.e., σtime(O) = e−O(Vol(O)) = O(D
−1/2
M,E ) since we have the relation (2.2.17). In

addition, Srednicki’s ansatz allows us to evaluate the accuracy of the microcanonical ensemble for

finite systems [151].



Chapter 3

Violation of the ETH in QFTs with
higher-form symmetry

In this chapter, we discuss how the existence of higher-form symmetry affects thermalization based

on our work [139]. We analytically show that nontrivial observables break the ETH when higher-

form symmetries are present under certain assumptions (Fig. 3.1). In the case of discrete symmetry

groups, the breakdown of the ETH is caused by non-local conserved quantities. For a p-form

symmetry, such ETH-breaking operators become (d− p)-dimensional, which are non-local but have

a much smaller size than the entire system for p ≥ 1. We demonstrate this statement for the

two-dimensional Z2 lattice gauge theory with Z2 1-form symmetry1. Furthermore, while local

observables relax to the canonical ensemble, the non-local operator exciting a magnetic dipole

instead relaxes to the GGE that considers the higher-form symmetry. Our results indicate that

symmetries cause nontrivial thermalization processes revealed by non-local observables, which go

beyond conventional statistical mechanics.

3.1 Higher-form symmetry

We consider quantum field theories in a (d + 1)-dimensional spacetime, M × R, where M is a

connected d-dimensional space manifold. Let G be an abelian group, and the system is supposed

to have a G p-form symmetry, i.e., there exists a (d − p)-dimensional topological operator Uα(C)

(α ∈ G), where C ⊂ M× R denotes a (d− p)-dimensional closed surface. Here, an operator Uα(C)

1Note that several studies [46, 152–155] investigated thermalization and its breakdown for gauge theories. For
example, Refs. [156–158] considered disorder-free localization with mixed super-selection sectors defined from the
gauge symmetries. However, our scope is distinct since we focus on the single physical sector satisfying the Gauss
law [159].

23
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Figure 3.1: Schematics of p-form symmetry and its influence on the eigenstate thermalization hypothesis
(ETH) [139]. The figure is for M = T 2 (d = 2). The blue and red regions respectively denote the areas where
U(γ̄) and U(γ) nontrivially act, and the symmetry operator is given by U(C̃) = U(γ̄)U(γ). If U(γ) satisfies the ETH
with a non-vanishing thermal average, the ETH for U(γ̄) is broken. (Left) The case with higher-form symmetry. The
ETH-breaking operator U(γ̄) is (d− p)-dimensional (p = 1 is shown) and has a support much smaller than the size of
the “bath” M\γ̄. (Right) The case with the conventional symmetry (p = 0), where the support of U(γ̄) is comparable
with the size of M.

is said to be topological if and only if the transition amplitude satisfies

⟨f |T(Uα(C)e−i
∫ tf
ti

Hdt)|i⟩ = ⟨f |T(Uα(C′)e−i
∫ tf
ti

Hdt)|i⟩ (3.1.1)

for arbitrary initial and final states |i⟩ and |f⟩, and homotopically equivalent closed surfaces C′ ⊂

M×R, where T denotes the time-ordering. For p-dimensional closed manifold Č ⊂ M×R, a charged

operator under the p-form symmetry then satisfies

⟨f |T(W (Č)Uα(C)e−i
∫ tf
ti

Hdt . . . )|i⟩ = eiqα link(Č,C)⟨f |T(W (Č)e−i
∫ tf
ti

Hdt . . . )|i⟩, (3.1.2)

where qα ∈ R is the charge of the operator W (Č), and link(Č,C) denotes the linking number of the

closed surfaces Č and C. (See Fig. 3.2.)

We specifically consider the symmetry operator Uα(C) lying in the space for each fixed time, i.e.,

C ⊂ M. Then, the topological property of Uα(C) leads to [Uα(C), e−iHδt] = 0 for an infinitesimal

time slice δt, and thus [H,Uα(C)] = 0. Importantly, Uα(C) has a (d − p)-dimensional support C,

which is non-local but much smaller than the entire d-dimensional system for p ≥ 1. This contrasts

with conventional 0-form symmetries, whose symmetry operator is d-dimensional, i.e., its support is

comparable to the entire system (Fig. 3.1). While the following discussion holds both for continuous

and discrete symmetries, we especially focus on discrete symmetry, which typically entails non-local

conserved quantities alone.

Under this setting, the Hamiltonian is block-diagonalized by Uα(C). Then, the ETH for Uα(C)

trivially breaks down for the entire Hilbert space within the energy shell, where symmetry sectors are
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Figure 3.2: The properties of the topological operator. The blue and red line denote the support of the operators
Uα(C) and W (Č), respectively. (a) When we unlink the topological operator from the charged operator, the correlation
function is multiplied by eiqα with the charge qα of W (Č). (b) The charged operator and symmetry operator lying to
the spacial direction. In this configuration, the relation (3.1.2) just reduces to U†WU = eiqαW , which is referred to
as a space-like symmetry [160].

mixed. However, this does not necessarily indicate the breakdown of the ETH for other nontrivial

observables since Uα(C) does not necessarily provide a local conserved quantity. Indeed, there

are several evidences [58, 74, 75] that the ETH holds for local observables despite the existence

of the discrete symmetry, especially the 0-form symmetry. In that case, eigenstate expectation

values of those observables can be the same even for different symmetry sectors. For example,

the transverse-field Ising model HTFIM =
∑

R,R′∈M JR,R′σ3(R)σ3(R′) +
∑

R∈M gRσ
1(R) has a Z2

0-form symmetry U(C = M) =
∏

R∈M σ1(R), where σ1,2,3(R) denote the Pauli matrices acting on

the vertices R. While we have two symmetry sectors with U = ±1, they will not lead to distinct

eigenstate expectation values for typical local observables, say σ1(R), in the thermodynamic limit.

3.2 Breakdown of the ETH for nontrivial operators

We now state our main result: higher-form symmetry of a non-degenerate Hamiltonian leads to the

breakdown of the ETH even for many nontrivial (d − p)-dimensional operators. For this purpose,

we require the following reasonable assumptions: i) the operator Uα(C̃) can be decomposed as

Uα(C̃) = Uα(γ)Uα(γ̄), where we have introduced a (d− p)-dimensional submanifold γ (⊂ C̃) and its

complement γ̄ := C̃\γ, both of which have boundaries. ii) For at least one nontrivial closed surface,

say C̃ (⊂ M), the energy shell contains eigenstates in different symmetry sectors defined by Uα(C̃).
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iii) The microcanonical average ⟨Uα(γ)⟩∆Emc (E) defined from the energy shell [E,E + ∆E] takes a

nonzero value in the thermodynamic limit.

Under the above assumptions, we show that either Uα(γ) or Uα(γ̄) necessarily breaks the ETH2

within the energy shell [E,E + ∆E] (see Appendix A for a proof). Our result indicates that, while

the discrete symmetry and topology may not affect the thermalization of conventional local observ-

ables, their effect significantly emerges in the dynamics of (d − p)-dimensional non-local objects.

We stress that, while such non-local observables go beyond conventional statistical mechanics, they

have actively been studied since they play an essential physical role in gauge theory [110,161]. Fur-

thermore, non-local operators have become accessible in state-of-the-art experiments using artificial

quantum systems [162–164].

Let us point out the notable aspect of our results for higher-form symmetry with p ≥ 1, although

our results provide a hitherto unknown consequence even for the conventional symmetry p = 0.

For p = 0, the ETH-breaking operators (say, Uα(γ̄)) are d-dimensional, and the volume of their

support, Vγ̄ , is comparable with the volume of the “bath” VM\γ̄ for large system-size limit, i.e.,

Vγ̄/VM\γ̄ → finite (see Fig. 3.1, right). For the example of HTFIM,
∏

R∈M\γ σ
1(R) breaks the

ETH if
∏

R∈γ σ
1(R) satisfies it. Thus, the breakdown of the ETH might also be attributed to the

smallness of the bath. In contrast, for higher-form symmetry with p ≥ 1, we have Vγ̄/VM\γ̄ → 0 in

the thermodynamic limit (Fig. 3.1, left). Thus, the higher-form symmetry hinders thermalization

even when the bath is regarded as much larger than the support of the observable of our interest.

Our main claim is generalized to an operator U(γ̄)A(g)†, where A(g) is an operator defined on

an arbitrary region g (⊂ M) satisfying g∩ γ̄ = ϕ. That is, A(g)U(γ) or A(g)†U(γ̄) violates the ETH

if we impose an assumption iii)’ ⟨A(g)U(γ)⟩∆Emc (E) ̸= 0 instead of iii). This generalization indicates

that for a fixed γ, we have many ETH-violating operators corresponding to the choice of g and

A(g). Note that, while g ⊆ γ for 0-form symmetries, g may not be included in (or have even larger

dimension than) γ for higher-form symmetries.

Finally, the symmetry can, in turn, ensure the ETH3 for certain operators. Indeed, the so-

called charged operators W , for which Uα(C)WU−1
α (C) = eiαwW holds with some charge w, satisfy

2Note that Uα(γ) and Uα(γ̄) are in general non-Hermitian. However, the breakdown of the ETH for these operators
leads to that of certain Hermitian operators as well. Indeed, if Uα(γ̄) breaks the ETH, we can show that either of the
Hermitian operators Uα(γ̄) + U†

α(γ̄) or i(Uα(γ̄)− U†
α(γ̄)) breaks the ETH.

3In this thesis, we only consider the diagonal ETH and do not discuss the off-diagonal ETH [165], which states
that the off-diagonal matrix elements with respect to the energy eigenstates vanish in the thermodynamics limit.
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⟨En|W |En⟩ = 0 for all n when eiαw ̸= 1. Then, W satisfies the ETH, and the long-time average of

⟨W (t)⟩ becomes zero. For HTFIM with 0-form symmetry, W = σ3(R) satisfies this condition. For

the higher-form symmetry, the Wilson line in the lattice gauge theory discussed later satisfies this

condition.

3.3 Z2 lattice gauge theory

We demonstrate the general discussion above using the (2+1)-dimensional Z2 lattice gauge theory

on a square lattice forming a 2-torus M = T 2. The Hamiltonian HZ2 is given by [159,166,167]

HZ2 = −
∑
r

Jr,xyσ
3
r,xσ

3
r+ex,yσ

3
r+ey ,xσ

3
r,y −

∑
r,j

σ1r,j , (3.3.1)

where σ1,2,3r,j denote the Pauli matrices acting on the link (r, j), which is specified by the coordinate

of vertices r and the direction j = x, y (For the relation with the path integral formulation, see

Appendix D. This system has a Z2 1-form symmetry, and the spatial symmetry operators are

characterized by H1(T
2,Z2) = Z2 ⊕ Z2 [168]. Indeed, the system has two independent symmetry

operators corresponding to the x-cycle and y-cycle.

Figure 3.3: Schematic diagram of our lattice model (Nx = 4 and Ny = 3 are shown) under the
periodic boundary condition [140]. The solid and green lines denote the lattice and the dual lattice,
respectively. We illustrate examples of the operators Qv, U(C∗

x),W (Cx), U(γ̄x), and Bp, where the
Pauli matrices σ3 and σ1 respectively act on the red and blue links.

To remove the residual gauge redundancies after the temporal gauge-fixing [159], we project

the entire Hilbert space onto the physical one. Here, spatial gauge transformation is generated by

the local operator

Qv :=
∏

b: spatial link,b∋v
σ1b , (3.3.2)
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Figure 3.4: Expectation values for energy eigenstates in the 5 × 3 lattice [139]. (a) The local
observable U(γx) satisfies the ETH. (b) The observable with a one-dimensional support U(γ̄x)
violates the ETH. The expectation values are separated into two sectors classified by the value of
1-form symmetry, i.e., U(C∗

x) = ±1. (c) System-size dependence of the ETH measure ∆∞. The
decay for U(γ̄x) with the total symmetry sectors (Case II) is much slower than the other cases,
which indicates that the ETH is hindered. The fitting parameters are shown in Appendix B.

where v denotes the vertex. The operator Qv satisfies Q2
v = 1, [HZ2 , Qv] = 0. Then, the physical

Hilbert space is given by [159] span
{
|ψ⟩

∣∣ Qv|ψ⟩ = +|ψ⟩, ∀v : vertices
}
, where the constraint can

be regarded as the Z2 analog of the Gauss law. After this projection, the expectation value of a

non-gauge invariant operator for physical states |ψ⟩ always vanishes.

We next define the ’t Hooft and Wilson operators on the spatial directions as [169–171]

U(C∗) :=
∏
b∗∈C∗

σ1b∗ = U−1(C∗), (3.3.3)

W (C) :=
∏
b∈C

σ3b = W−1(C). (3.3.4)

Here, C and C∗ are closed loops on the lattice and dual lattice, respectively (see Fig. 3.3). Both

U(C∗) and W (C) commute with the operator Qv and thus are gauge invariant.

The ’t Hooft operator U(C∗) serves as the Z2 1-form symmetry operator of this model, satisfying

[HZ2 , U(C∗)] = 0. This operator is topological since it satisfies U(C∗
1 )|ψ⟩ = U(C∗

2 )|ψ⟩ if C∗
1 and

C∗
2 are homotopically equivalent. It follows that U(C∗)|ψ⟩ = |ψ⟩ if the dual closed loop C∗ is

topologically trivial, i.e., it can be continuously deformed to a point.

The ’t Hooft operator U(C∗) measures the “electric” charge of the Wilson operator. We define

closed loops on the lattice winding around the x-/y-cycle by Cx and Cy (and similarly the loops

on the dual lattice by C∗
x and C∗

y ). Then, the operators W and U satisfy U(C∗
i )W (Cj)U

−1(C∗
i ) =

(−1)δij+1W (Cj), which is operator-realization of the electric Z2 1-form symmetry [118].
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3.3.1 ETH breaking by Z2 1-form symmetry

Let us demonstrate the violation of the ETH for the Z2 lattice gauge theory. We take the coupling

constants Jr,xy in (3.3.1) to be weakly random (i.e., Jr,xy is uniformly chosen from [0.7, 0.8]) to avoid

unwanted degeneracy and integrability. We consider the Nx ×Ny 2-torus and define x/y-cycles for

the lattice and dual lattice as Cx/y and C∗
x/y, respectively (Fig. 3.3).

We calculate the eigenstate expectation values of local operators U(γx), Bp, and nonlocal one-

dimensional observable U(γ̄x). Here, γx is just one link included in C∗
x, and γ̄x := C∗

x\γx. The

operators U(γx) and U(γ̄x) represent a magnetic dipole excitation residing at the endpoints of

γx [159]. The plaquette operator Bp is defined by

Bp :=
∏

b∈plaquette p
σ3b . (3.3.5)

Figure 3.4(a) shows that the local observable U(γx) satisfies the ETH. In contrast, Fig. 3.4(b) demon-

strates that the non-local one-dimensional observable U(γ̄x) has two branches of the eigenstate-

expectation values, indicating the breakdown of the ETH owing to the general mechanism ex-

plained above. The ETH is recovered when we consider eigenstates within the symmetry sector

for U(C∗
x) = 1 or −1, even without separating the sector for U(C∗

y ). The result for Bp is given in

Appendix B.

To test the ETH more quantitatively, we perform the finite-size scaling analysis. We define the

deviation measure for an observable O [25] by

∆∞(O) := max
n,En∈[E,E+δE]

∣∣∣⟨En|O|En⟩ − ⟨O⟩δEmc(En)
∣∣∣ , (3.3.6)

where En = ⟨En|HZ2 |En⟩ is an energy eigenvalue. The strong ETH corresponds to ∆∞ → 0 in

the thermodynamic limit. Furthermore, ∆∞ is expected to decay exponentially ∼ e−s(E)N/2 for a

fully chaotic system, where s(E) is the entropy density at energy E [25, 54]. Figure 3(c) shows the

system-size dependence of the disorder-averaged measure E[∆∞(O)], which is fitted with a function

e−aN+b. First, the local observables Bp and U(γx) (irrespective of whether we resolve the symmetry

sector) and the non-local observable U(γ̄x) after resolving the symmetry sector exhibit sufficiently

fast exponential decay with a relatively similar rate. This indicates the ETH for these observables.

In contrast, U(γ̄x) for the total symmetry sector decays much slower than the other cases, though

it keeps decreasing due to the finite-size effect. Combining the general argument and the ETH for

U(γx), we conclude that the ETH for U(γ̄x) breaks down due to the higher-form symmetry.
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Note that the Wilson line always satisfies ⟨En|W (Cx/y)|En⟩ = 0 for all n, because of the general

discussion for the charged operator discussed previously. Consequently, the long-time average of

the Wilson operator always vanishes.

3.3.2 GGE with Z2 1-form symmetry

We next argue that the stationary value of an observable that is non-local in the x-direction but

local in the y-direction (e.g., U(γ̄x)) is described by the GGE that takes account of the Z2 1-form

symmetry. That is, we have ⟨O⟩GGE = Tr[O ρGGE(β, λx, µx)] with

ρGGE =
1

ZGGE
e−βHZ2−λxU(C∗

x)−µxU(C∗
x)HZ2 , (3.3.7)

where “chemical potentials” λx and µx are uniquely determined from the initial values of the

conserved quantities HZ2 , U(C∗
x), and U(C∗

x)HZ2 , and ZGGE is the normalization constant4. Our

GGE is justified as the stationary state if we assume the restricted ETH for each U(C∗
x)-symmetry

sector for the observable O (See Appendix C).

Figure 3.5 shows time evolutions of O = U(γx) and U(γ̄x). For U(γx), the stationary value is

well described by the canonical ensemble ρcan = Z−1
cane

−βcanHZ2 , where Tr[U(γx)ρ(t)] ≃ Tr[U(γx)ρcan]

holds for most of the time. In contrast, the canonical ensemble fails for U(γ̄x). Instead, Tr[U(γ̄x)ρ(t)] ≃

Tr[U(γ̄x)ρGGE] holds for most of the time. We stress that ρGGE works well even though we do not

consider the effect of U(C∗
y ), probably because U(γ̄x) is local in the y-direction.

Note that the GGE suitable for a general finite Abelian group G is obtained by assuming the

restricted ETH for each symmetry sector as ρGGGE = e−β
GH−

∑
j λ

G
j Pj−

∑
j µ

G
j PjH , where Pi are the

projections to each symmetry sector. For symmetry sectors defined by U(C∗
x) with G = Z2, this

ensemble is indeed equivalent to (3.3.7) after redefinitions of the chemical potentials.

3.4 Summary of Chapter 3

We analytically show that the existence of a p-form symmetry leads to the ETH-violation of many

(d−p)-dimensional observables in the form of Uα(γ̄) under certain assumptions. A significant feature

4To adopt operators extended to the y-direction as well, we should include at most seven chemical potentials in
total as

ρ̃GGE =
1

Z̃GGE

exp

(
−βHZ2 −

∑
i=x,y

λiU(C∗
i )−

∑
i=x,y

µiU(C∗
i )HZ2 − αU(C∗

x)U(C∗
y )− α′U(C∗

x)U(C∗
y )HZ2

)
. (3.3.8)
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Figure 3.5: Time evolution of the expectation values of U(γx) and U(γ̄x) for the 4× 3 lattice [139].
The blue and green lines indicate the prediction of the GGE in Eq. (3.3.7) and the standard canonical
ensemble, respectively. For the local observable U(γx) (left), the stationary state is described by the
canonical ensemble, which is almost overlapping with the GGE result. In contrast, the stationary
value of U(γ̄x) (right) differs from the canonical ensemble and is described by the GGE. The initial
states are random superpositions of eigenstates of U(γx) (left) or U(γ̄x) (right) with the eigenvalue
+1, whose energy expectations lie within [−5.0,−3.0].

of this statement is that the ETH-violating observable has a non-local but lower-dimensional support

rather than the whole d-dimensional space manifold for p ≥ 1. This implies that such objects can

be described by the suitable GGE instead of the canonical ensemble. We use the Z2 lattice gauge

theory to demonstrate the above statements. The discussion on the breakdown of the ETH can

be applied to systems with p-form symmetries, e.g., various quantum field theories such as SU(N)

Yang-Mills theory with center symmetries.

Our results indicate that symmetries cause nontrivial thermalization dynamics for non-local

observables, which go beyond conventional statistical mechanics. We stress that this ETH-violation

stably holds even under local perturbations to the Hamiltonians because the higher-form symmetry

is robust against them.



Chapter 4

Effects of projective phase on the
ETH

In this chapter, we reconsider the ETH-violation from the viewpoint of projective phase and ’t Hooft

anomaly for higher-form symmetries based on our work [140]. As discussed in Chapter 3 a (d+ 1)-

dimensional system with p-form symmetry is shown to accommodate many (d−p)-dimensional ETH-

violating observables other than the symmetry operator itself under some reasonable assumptions.

The assumptions consist of i) the endability of the symmetry operator, ii) mixture of symmetry

sectors in a given energy shell, and iii) nonvanishing microcanonical average of the operator of our

interest. The outcome of these conditions is applicable to general nondegenerate Hamiltonians with

p-form symmetry even when the system exhibits a discrete symmetry with a nonlocal conserved

quantity.

Higher-form symmetries often appear accompanied by the ’t Hooft anomaly. The ’t Hooft

anomaly is defined as an obstruction to promote global symmetry to local gauge symmetry, and

known to constrain the infrared theories of systems with conventional symmetries [172–177] or

generalized symmetries [95–97,99,178]. One of the significant consequence of the ’t Hooft anomaly

for discrete symmetries is degeneracies of the ground state. In the operator formalism, the ’t Hooft

anomaly is realized as projective representation on the Hilbert space. From this point of view, we

see that the degeneracy exist not only for the ground states but for all the energy eigenstates [179].

The purpose of this chapter is to reconsider the sufficient conditions for the ETH-breakdown

by p-form symmetry. Specifically, the condition ii) above involves detailed information about the

eigenstates in the middle of the energy spectrum, and thus it is rather challenging to verify this

condition without explicit numerical calculations in general. The main idea here is to utilize the

32
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mixed ’t Hooft anomaly involving the ZN p-form symmetry under consideration. In this paper, we

employ a G = ZN ×ZN symmetry with a mixed ’t Hooft anomaly, and perturb the Hamiltonian to

explicitly break one of the ZN symmetries. By choosing the perturbation parameter λ appropriately,

we obtain a theory with the ZN p-form symmetry, which satisfies the condition ii). Since the broken

symmetry is expected not to affect the thermal ensemble in the thermodynamic limit, the system just

reduces to have the (d− p)-dimensional ETH-violating operators eventually. It is remarkable that

along this construction, we do not need any direct reference to the details of the energy eigenstates

in the middle of the spectrum.

In the subsequent sections of this chapter, we begin by revisiting the ETH violation induced

by p-form symmetry, in the context of ’t Hooft anomaly, in Section 4.1. Section 4.2 focuses on

the degeneracies resulting from a ZN × ZN mixed ’t Hooft anomaly and introduces a symmetry-

breaking perturbation that fulfills the conditions for ETH violation. This is followed by a numerical

analysis in Section 4.3 to demonstrate our argument, featuring models such as (1 + 1)-dimensional

Z2-symmetric/Z3-symmetric spin chains and a (2 + 1)-dimensional Z2 lattice gauge theory. Finally,

Section 4.4 is dedicated to summarizing the key findings of the chapter.

4.1 Conditions for the ETH-violation by p-form symmetry

In this section, we briefly review how the ETH is broken due to the p-form symmetry, and sort out

its sufficient conditions in [139]. We consider a (d+ 1)-dimensional manifold M× R, where M is a

d-dimensional space manifold. Let the system have a G p-form symmetry with (d− p)-dimensional

topological symmetry operator, where G is an Abelian group. Throughout this paper, symmetry

operators extend to the spatial directions, and they are represented as unitary operators Uα(C̃)

with the support C̃ ⊂ M.

The main claim in [139] states that higher-form symmetry of a non-degenerate Hamiltonian

leads to the breakdown of the ETH for nontrivial (d − p)-dimensional operators. To show this

statement, we assume the following:

i) The symmetry operator Uα(C̃) can be decomposed as Uα(C̃) = Uα(γ)Uα(γ̄) for an arbitrary

(d−p)-dimensional submanifold γ(⊂ C̃) and the complement γ̄ := C̃\γ (see Fig. 4.1 (a)). This

implies the operator with boundaries U(γ) and U(γ̄) are well-defined (not-null) operators.

ii) An energy shell [E,E + δE] contains eigenstates in different symmetry sectors defined by
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Uα(C̃), i.e., for at least one nontrivial closed surface, say C̃ (⊂ M), there exist energy eigen-

states |En⟩, |Em⟩ with En, Em ∈ [E,E + δE] such that ⟨En|Uα(C̃)|En⟩ ≠ ⟨Em|Uα(C̃)|Em⟩.

iii) Given an energy shell [E,E + δE], the microcanonical average ⟨Uα(γ)⟩δEmc(E) takes a nonzero

value in the thermodynamic limit.

It follows that either Uα(γ) or Uα(γ̄) necessarily breaks the ETH within the energy shell [E,E+∆E]

under the above condition It can be shown as follows (the proof for more general case can be found

in Appendix A). We first consider a (d − p)-dimensional surface γ with boundary, which satisfies

the property iii). In the case where Uα(γ) does not satisfy the ETH, our claim holds in the first

place; we thus suppose Uα(γ) satisfies the ETH, i.e.,

⟨En|Uα(γ)|En⟩ ≃ ⟨Em|Uα(γ)|Em⟩ ≃ ⟨Uα(γ)⟩∆Emc (E). (4.1.1)

The Hamiltonian H is assumed to have no degeneracy, and thus its eigenstates |En⟩, |Em⟩ are

eigenstates of Uα(C̃) as well. Since the group G is Abelian, the eigenvalues are expressed as

Uα(C̃)|En⟩ = eiαqn |En⟩, Uα(C̃)|Em⟩ = eiαqm |Em⟩, (4.1.2)

where qn, qm ∈ R. The assumption ii) now indicates that |En⟩ and |Em⟩ belong to different sectors,

i.e., eiαqn ̸= eiαqm . The definition of γ̄ leads to

⟨En|U−1
α (γ̄)|En⟩ = ⟨En|Uα(γ)Uα(C̃)−1|En⟩ = e−iαqn⟨En|Uα(γ)|En⟩ (4.1.3)

and ⟨Em|U−1
α (γ̄)|Em⟩ = e−iαqm⟨Em|Uα(γ)|Em⟩. Recalling iii) and the supposition of the ETH, i.e.,

⟨En|Uα(γ)|En⟩ ≃ ⟨Em|Uα(γ)|Em⟩ ≃ ⟨Uα(γ)⟩∆Emc (E) ̸= 0, (4.1.4)

we obtain the relation

⟨En|U−1
α (γ̄)|En⟩ ≠ ⟨Em|U−1

α (γ̄)|Em⟩ ⇒ ⟨En|Uα(γ̄)|En⟩ ≠ ⟨Em|Uα(γ̄)|Em⟩. (4.1.5)

After all, we see that Uα(γ̄) violates the ETH, and the claim has been proven.

Note here that symmetries do not automatically lead to the degeneracy of the spectrum and

the mixing of the symmetry sectors. As a simple example, we can consider a Hamiltonian H =

diag(1, 1,−1,−2) and a charge Q = diag(1, 1, 1,−1). The operators H and Q commute each other,

but there are energy eigenstates without degeneracy, and the eigenstates with H = 1 do not ex-

hibit the mixing of the symmetry sectors. However, in the presence of symmetries with the ’t
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Hooft anomaly, we can always obtain the degeneracies and the mixture of the symmetry sectors as

discussed in Section 4.2, and this is a key to the following discussion.

Let us comment on the volume of the “bath” for the ETH-breaking observables (say, Uα(γ̄)).

Let Vγ̄ and VM\γ̄ denote the volume of γ̄ and M\γ̄, respectively. For the operator Uα(γ̄) with the

(d − p)-dimensional support, the d-dimensional complements M\γ̄ can be regarded as the bath.

If we consider a 0-form symmetry, the ratio Vγ̄/VM\γ̄ remains finite in the thermodynamic limit

V := Vγ̄ ∪ VM\γ̄ → ∞, and thus the breakdown of the ETH may be attributed to the smallness of

the bath. In contrast, for higher-form symmetry with p ≥ 1, the volumes scales as Vγ̄/VM\γ̄ → 0 in

the thermodynamic limit since γ̄ and M\γ̄ are (d− p)-dimensional and d-dimensional, respectively.

Thus, the higher-form symmetry hinders thermalization even when the support of the observable

is much smaller than its bath.

Figure 4.1 (b) shows the numerical result for the (2 + 1)-dimensional Z2 gauge theory, which is

described in detail in Section 4.3.2. The 1-dimensional operator U(γ̄) := U1(γ̄) violates the ETH

while the ETH for the local operator U(γ) holds. Although the conditions i), ii) and iii) are indeed

satisfied in this case, it is generally challenging to confirm whether the conditions, especially ii),

are satisfied without explicit numerical calculation. In the following sections, we show that the

condition ii) is satisfied when the system has a mixed ’t Hooft anomaly between the symmetry of

interest and an auxiliary symmetry which is to be broken by perturbations for the Hamiltonian.

Figure 4.1: (a) Schematics of γ and γ̄ for M = T 2. The union of γ and γ̄ constitutes a closed manifold C̃ [140].
(b)(c) The expectation values of the operator U(γ̄) and U(γ) with respect to the energy eigenstates for the Z2 gauge
theory [140]. The ETH for U(γ̄) can be seen violated because there are deviations for a fixed energy E, while the
ETH for U(γ) holds.

We comment on a related framework referred to as the subsystem eigenstate thermalization

hypothesis (ETH) [180]. The subsystem ETH claims energy eigenstates can be regarded as the

microscopic thermal equilibrium (MITE) [141, 142], which claims the reduced density tends to the
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microcanonical density matrix in the thermodynamic limit. This condition is stronger than the ETH

for operators with a given small support. Thus, the violation of the ETH for U(γ̄) also indicates

the breakdown of the subsystem ETH with respect to the conventional microcanonical ensemble.

4.2 Projective representation for Abelian group

In this section, we show that the condition ii) can be always satisfied if a ZN × ZN symmetry

with a mixed ’t Hooft anomaly is explicitly broken by perturbations. Before delving into such

perturbations, we first discuss the degeneracy due to projective representations.

4.2.1 Degeneracy by projective representation

Let G and be an Abelian group and the theory have a G symmetry. In the operator formalism, ’t

Hooft anomalies are interpreted as projective representation of the symmetry, given by

Ug1Ug2 = eiϕ(g1,g2)Ug1g2 , g1, g2 ∈ G.

Ug1Ug2 = eiϕ(g1,g2)−iϕ(g2,g1)Ug2Ug1 ,
(4.2.1)

where Ug1 , Ug2 are unitary operators, and ϕ : G×G→ R is the projective phase. Since the theory

has the G symmetry, the Hamiltonian H commutes with the unitary operators [H,Ug] = 0, ∀g ∈ G.

The non-vanishing projective phase with exp(i(ϕ(g1, g2) − ϕ(g2, g1))) ̸= 1 immediately leads to the

degeneracy of arbitrary eigenstates of the Hamiltonian. This is because if you have a simultaneous

eigenstate s.t. H |E⟩ = E |E⟩ and Ug1 |E⟩ = eiα |E⟩ , α ∈ R, we obtain

⟨E|Ug2 |E⟩ = ⟨E|U †
g1Ug2Ug1 |E⟩ = e−(iϕ(g1,g2)−iϕ(g2,g1)) ⟨E|Ug2 |E⟩ ⇒ ⟨E|Ug2 |E⟩ = 0. (4.2.2)

Since |E⟩ and Ug2 |E⟩ are orthogonal to each other, they are degenerate energy eigenstates with the

eigenvalue E. Note that |E⟩ and Ug2 |E⟩ belong to different symmetry sector of Ug1 :

Ug1(Ug2 |E⟩) = eiϕ(g1,g2)−iϕ(g2,g1)eiα(Ug2 |E⟩), (4.2.3)

where α is the charge for the state |E⟩.

We define simultaneous eigenstates of the Hamiltonian H and Ug1 by

H |E,α⟩ = E |E,α⟩ , H |E, β⟩ = E |E, β⟩ , (4.2.4)

Ug1 |E,α⟩ = eiα |E,α⟩ , Ug1 |E, β⟩ = eiβ |E, β⟩ , (4.2.5)
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The charged operator under the symmetry G can be also introduce as

U †
g1WqUg1 = eiqg1Wq, U †

g2WqUg2 = eiqg2Wq. (4.2.6)

Now we consider the matrix elements of the charged operator Wq. The diagonal part satisfies

⟨E,α|Wq |E,α⟩ = ⟨E,α|U †
g1WqUg1 |E,α⟩ e−iqg1 = ⟨E,α|Wq |E,α⟩ e−iqg1 ,

⇒ ⟨E,α|Wq |E,α⟩ = 0, (4.2.7)

if the operator Wq is nontrivially charged under the action of g1, i.e., e−iqg1 ̸= 1. On the other

hand, the operator with trivial charge under g1, but charged under g2, i.e., e−iqg2 ̸= 1 can have

the nonvanishing expectation value in this basis while the off-diagonal part with α ̸= β necessarily

vanishes:

⟨E,α|Wq |E, β⟩ = ⟨E,α|U †
g1WqUg1 |E, β⟩ = ei(β−α) ⟨E,α|Wq |E, β⟩ ,

⇒ ⟨E,α|Wq |E, β⟩ = 0. (4.2.8)

We stress that all of the properties discussed here can be applied not only to the ground states but

also to arbitrary energy eigenstate, although topological robustness of degeneracy does not hold for

general eigenstates since the gaps are exponentially small.

4.2.2 Symmetry violating perturbation

We now discuss a consequence of weak breaking of symmetries with ’t Hooft anomaly. To this end,

let G1 and G2 be Abelian groups and the group G = G1 × G2 projectively acts on the Hilbert

space of the theory. The corresponding unitary operator is given by Ug1 and Ũg2 for G1 and G2,

respectively. We consider a situation such that each of the symmetry does not have a ’t Hooft

anomaly, but they have nontrivial projective phases between them: Ug1Ũg2 = eiϕ(g1,g2)Ũg2Ug1 . We

perturb the Hamiltonian by adding a term
∑

siteWq, where Wq is a charged operator under G2 but

trivially transforms under G1, i.e.,

U †
g1WqUg1 = Wq, Ũ †

g2WqŨg2 = eiqg2Wq, g1 ∈ G1, g2 ∈ G2. (4.2.9)

Here, we assume the the operator Wq is a local operator.

In the following, we focus on the system with a discrete spectrum realized by appropriate

regularizations. For brevity, we specify G1 = G2 = ZN as the symmetry groups and thus the charge
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of Wq is simply given by qm = qm for m ∈ G2 = ZN . As explained in the previous subsection,

arbitrary energy eigenstates are degenerate, and then we work with the simultaneous eigenbasis of

the unperturbed Hamiltonian H and Ug1 (∀g1 ∈ G1 = ZN ), i.e., H |E,α⟩ = E |E,α⟩, Ug1 |E,α⟩ =

eiα |E,α⟩. Note that the number of the degeneracy of each energy eigenstate is at least N as long

as exp(i(ϕ(g1, g2) − ϕ(g2, g1))) ̸= 1 with ∀g1 ∈ G1,
∀g2 ∈ G2, since Ũm |E,α⟩ (m ∈ G2 = ZN )

are eigenstates of Ug1 with different eigenvalues, and ⟨E,α| Ũ †
mŨn |E,α⟩ = ⟨E,α| Ũn−m |E,α⟩ = 0

for n ̸= m. Although extra degeneracies are possible in general, such accidental degeneracies can

be removed by deforming the Hamiltonian while preserving the ZN × ZN symmetry. We thus

assume that all of the energy eigenstates are N -fold degenerate in the following discussion. The

degenerate subspace H(E) := span{|E,α⟩ |α = 0, 1, . . . , N − 1} is also expressed as H(E) =

span{Ũg2 |E,α⟩ , ∀g2 ∈ G2}.

The perturbed Hamiltonian is defined by

H̃(λ) := H + λH1, H1 :=
∑
j: site

Wq(j) +Wq(j)
†

2
, (4.2.10)

where λ is the perturbation parameter. After this perturbation, the system with H̃(λ) only exhibits

G1 symmetry since the operator Wq(j) has a trivial charge under G1. The perturbation part H1

is diagonalized by |E,α⟩ basis in the subspace H(E) since the off-diagonal part ⟨E,α|Wq |E, β⟩

(α ̸= β) always vanishes as in (4.2.8). In order to estimate the energy modification, we utilize the

Hellmann-Feynman theorem for degenerate spectra [181–186]. Once the operator dH̃(λ)/dλ = H1

is diagonalized in the subspace H(E), we can obtain

dE(α;λ)

dλ
= ⟨E,α;λ|H1 |E,α;λ⟩ =

∑
j: site

Re ⟨E,α;λ|Wq(j) |E,α;λ⟩ , (4.2.11)

where E(α;λ) is the energy eigenvalue for the eigenstate that depends on the parameter λ: E(α;λ) |E,α;λ⟩ =

H̃(λ) |E,α;λ⟩. In the first order, the perturbed energy reads

E(α;λ) = E + λ
∑
j: site

Re ⟨E,α|Wq(j) |E,α⟩ + O(λ2). (4.2.12)

Significantly, for all elements of H(E), the expectation ⟨E,α;λ|Wq |E,α;λ⟩ have different values

because of the relation ⟨E,α;λ| Ũ †
mWqŨm |E,α;λ⟩ = eiqm ⟨E,α;λ|Wq |E,α;λ⟩. Except for the case

⟨E,α;λ| Ũ †
mWqŨm |E,α;λ⟩ = ⟨E,α;λ|Wq |E,α;λ⟩∗, we can see that the perturbed energies (4.2.12)

are split for |E,α;λ⟩ and Ũm |E,α;λ⟩. Even if the energies are still degenerate in the first order
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perturbations, the degeneracies are lifted by higher order perturbations due to the mixing with

other energy eigenstates.

Note here that the standard perturbation theory for higher order breaks down in the large

system-size limit V → ∞. Since the separations of the energies tend to be exponentially small in

the limit, they become small enough compared to the perturbation, i.e., E−E′ ≃ λ ⟨E,α|H1 |E,α⟩,

where E′ is an energy eigenvalues of another eigenstate. The higher-order perturbation is no longer

valid unless λ ⟨E,α|H1 |E,α⟩ ≃ O(e−V ), and thus we have to resort to the Hellmann-Feynman

theorem as in (4.2.11).

After all, we obtain the energy eigenstates with the energy separations of order λ (see Fig. 4.2).

The key point is that these eigenstates in H(E) have distinct charges of Um. In the thermodynamics

limit V → ∞, we should take the width of the energy shell δE = O(V 1/2), and we suppose the

energy splitting also scales as O(V 1/2), i.e.,

λ

∑
j: site

Re ⟨E,α|Wq(j) |E,α⟩ −
∑
j: site

Re ⟨E, β|Wq(j) |E, β⟩

 ≃ O(V 1/2), α ̸= β. (4.2.13)

This relation is expected to be naturally realized, but we can also force (4.2.13) by e.g., setting

λ ≃ O(V −1/2) since Wq is a local operator. Another approach is to implement a weak randomness

such that λH1 = λ
∑

j rjWq(j), where rj is a uniformly chosen constants from [−r, r], 0 < r ≪ 1.

Assuming the expectation value ⟨Wq(j)⟩ is almost uniform, we obtain the variation ⟨H1⟩ ≃ O(V 1/2).

Under the supposition (4.2.13), we notice that given an energy window with the width δE, we can

arrange eigenstates with different symmetry sectors with respect to G1 within it by tuning the

parameter λ. This exactly indicates the condition ii) is satisfied.

Figure 4.2: Schematics for the spectrum [140]. α denotes the charge for Um s.t. Um |E,α⟩ = eiα |E,α⟩. After the
perturbation with sufficiently small λ, the degeneracies are resolved so that the condition ii) is satisfied.
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4.3 Demonstration for lattice models

In this section, we demonstrate the statement discussed in Section 4.2 by numerically calculating

the energy spectra for concrete examples.

4.3.1 (1 + 1)-dimensional spin chains

As the first example, we consider a (1 + 1)-dimensional Z2 × Z2-symmetric spin chain and its

Z3 × Z3-symmetric generalization. Both of the models only exhibit 0-form symmetries, and thus

the ETH-violating operators based on the mechanism in [139] are 1-dimensional. Even though one

can not tell whether ETH violation is caused by the smallness of the baths for such operators that

have the same dimensionality with the space, it is instructive to illustrate that the discussion in

Section 4.2 indeed holds for those models.

A projective representation of ZN ×ZN is realized on the N -dimensional Hilbert space spanned

by |g⟩, g = 0, 1, . . . , N − 1. The generators of each ZN are represented by “clock” operators Z and

“shift” operators X, which satisfy the relations [187]

ZX = e
2πi
N XZ. (4.3.1)

The operators act on the Hilbert space as

Z |g⟩ = e2πi
g
N |g⟩ , X |g⟩ = |g + 1 mod N⟩ . (4.3.2)

In the matrix form, they can be explicitly expressed as

Z =


1 0 0 · · · 0

0 e2πi
1
N 0 · · · 0

0 0 e2πi
2
N · · · 0

...
...

...
. . .

...

0 0 0 · · · e2πi
N−1
N

 , X =


0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 . (4.3.3)

For N = 2, these are just the standard Pauli matrices.

In order to accommodate a spin chain with L sites, we introduce the tensor product |g⟩⊗· · ·⊗|g⟩,

and the operators acting only the j-th site Zj := 1⊗· · ·⊗Z⊗· · ·⊗1 and Xj := 1⊗· · ·⊗X⊗· · ·⊗1.

The symmetry operators are then given by

U1 :=

L∏
j=1

Zj , Ũ1 :=

L∏
j=1

Xj . (4.3.4)

We note that the projective phase between Ui and Ũj can be trivial for the case gcd(N,L) ̸= 1, and

thus we suppose gcd(N,L) = 1 so that the discussion in the previous section always holds.
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Z2 × Z2-symmetric spin chain

In the N = 2 case, a Z2 × Z2-invariant (1 + 1)-dimensional spin chain is given by

HN=2 =
L∑
j=1

(
Jxj XjXj+1 + Jyj YjYj+1 + Jzj ZjZj+1

)
, (4.3.5)

where Yj := iXjZj . This Hamiltonian is nothing but the one of the XYZ Heisenberg spin chain.

To remove unwanted spacetime symmetry, we introduce a weak randomness to the couplings Jxj ,

Jyj and Jzj . There is still an extra symmetry that flips the sign of one of the Pauli matrices, e.g.,

Yj 7→ −Yj , ∀j. We thus work with a deformed Hamiltonian

HN=2 =
L∑
j=1

(
Jxj XjXj+1 + Jyj YjYj+1 + Jzj ZjZj+1

)
+ α

L∑
j=1

XjYj+1Zj+2 , (4.3.6)

which is indeed Z2×Z2-symmetric. Here we consider the periodic boundary condition with j ∼ j+L,

which indicates the topology of the space is S1.

To weakly break the Z2 generated by Ũ1, we perturb the Hamiltonian as

H̃N=2 := HN=2 + λ
L∑
j=1

Zj . (4.3.7)

The numerical results are shown in Fig. 4.3. Since the surviving symmetry operator is given by

U1 :=
∏L
j=1 Zj , one of the ETH-violating operator in this case is given by U1(1̄) :=

∏L
j=2 Zj . After

the perturbation, the double degeneracy is completely broken, and these eigenstates leads to mixed

symmetry sector in a energy shell.

Z3 × Z3-symmetric spin chain

In the N = 3 case, the Hamiltonian for a Z3 × Z3-symmetric spin chain is given by

HN=3 :=
L∑
j=1

(
Jwj WjW

†
j+1 + Jxj XjX

†
j+1 + Jyj YjY

†
j+1 + Jzj ZjZ

†
j+1

)
+ (h.c.), (4.3.8)

where Wj := Z†
jXj and Yj := ZjXj . Again, we take the periodic boundary condition j ∼ j + L.

If the couplings Jwj , Jwj , Jwj and Jwj are weakly random and not real, the theory has no relevant

symmetries other than Z3 × Z3 symmetry represented by Um and Ũm (m = 1, 2). Under these

symmetry action, the local operators transform as

U †
mWjUm = e

4
3
πmiWj , U †

mXjUm = e
4
3
πmiXj , U †

mYjUm = e
4
3
πmiYj , U †

mZjUm = Zj ,

Ũ †
mWjŨm = e

4
3
πmiWj , Ũ †

mXjŨm = Xj , Ũ †
mYjŨm = e

2
3
πmiYj , Ũ †

mZjŨm = e
2
3
πmiZj ,

(4.3.9)
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Figure 4.3: (a)(b) Part of energy spectra for Z2 × Z2-symmetry spin chain for L = 11, λ = 0.1 [140]. The coupling
constants are uniformly distributed in Jx

j ∈ [0.9, 1.0], Jy
j ∈ [0.7, 0.8], Jz

j ∈ [0.6, 0.7], and the parameter is given by
α = 0.9. The degeneracy in the original Hamiltonian (4.3.6) (a) is resolved by the perturbation (4.3.7) (b). (c) The
expectation value of U1(1̄) for L = 13, λ = 0.4 [140]. The expectations are separated into two sectors, and thus the
ETH for U1(1̄) is not satisfied.

Since the local operator Zj is not charged under Ui, a desired perturbation can be performed as

H̃N=3 := HN=3 + λ
L∑
j=1

Zj , (4.3.10)

and then the Hamiltonian is invariant only under the action of Ui. As shown in Fig. 4.4, the

triple degeneracies of the energy spectrum are resolved by the perturbation, and the operator

U(1̄) =
∏L
j=2 Zj does not satisfy the ETH.

Figure 4.4: (a)(b) Part of energy spectra for Z3 × Z3-symmetry spin chain for L = 7, λ = 0.1 [140]. The coupling
constants are uniformly distributed in Jw

j ∈ [1.0 + 0.2i, 1.1 + 0.2i], Jx
j ∈ [0.9, 1.0], Jy

j ∈ [0.1, 0.2], Jz
j ∈ [0.2, 0.3]. The

degeneracy in the original Hamiltonian (4.3.8) (a) is resolved by the perturbation (4.3.10) (b). (c) The expectation
value of U1(1̄) for L = 8, λ = 0.4 [140]. The expectations are separated into two sectors, and thus the ETH for U1(1̄)
is not satisfied.
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4.3.2 (2 + 1)-dimensional Z2 gauge theory

Here we consider the (2+1)-dimensional Z2 lattice gauge theory defined on a Lx×Ly square lattice

with the periodic boundary conditions. In this model, the argument in Section 4.2 can be applied

to the projective representation of Z2 electric one-form symmetry and “time reversal” symmetry.

The Hamiltonian is given by [159,166,167]

HZ2 = −
∑
r

λr,xyσ
3
r,xσ

3
r+ex,yσ

3
r+ey ,xσ

3
r,y − λ

∑
r,j

σ1r,j , (4.3.11)

where σ1,2,3r,j denote the Pauli matrices acting on the link variable (r, j), specified by the coordinate

of vertices r and the direction j = x, y. The coupling constants λr,xy and λ are real numbers.

Note here that we take the different definition of the coupling constants from the one in Section

3.3, to apply the discussion in this chapter. Along the line of Section 4.2, we can regard the term

λ
∑

r,j σ
1
r,j , as a perturbation term. We can observe that for λ = 0, the Hamiltonian HZ2 is invariant

under the “time reversal” symmetry1 represented by

Ũ :=
∑
r,j

σ2r,j . (4.3.12)

This theory also enjoys the electric Z2 1-form symmetry, and the spatial symmetry operators can

be characterized by H1(T
2,Z2) = Z2 ⊕ Z2 [168]. The generators of Z2 correspond two independent

symmetry operators corresponding to the x-cycle and y-cycle.

Though the total Hilbert space of the system for the Lx × Ly lattice is (22LxLy)-dimensional,

we have to project it onto the physical Hilbert space. This is because there exist residual gauge

redundancies, after the temporal gauge-fixing, which is analogous to the gauge A0(r) = 0 for the

Maxwell theory. Spatial gauge transformation is generated by the local operator

Qv :=
∏

b: spatial link,b∋v
σ1b , v : vertex, (4.3.13)

which satisfies Q2
v = 1 and [HZ2 , Qv] = 0. The physical Hilbert space is then obtained as

span
{
|ψ⟩

∣∣ Qv|ψ⟩ = +|ψ⟩, ∀v : vertices
}
. (4.3.14)

1This operation is not the time reversal symmetry in the usual sense, because it does not accompany the complex
conjugation. However, the complex conjugation does not affect the Hamiltonian HZ2 , and we just referred to this
symmetry as ”time reversal.”
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This constraint can be regarded as the Z2 analog of the Gauss law ∇ · E|ψ⟩phys = 0 since we

can write Qv = (σ1r−ex,x)−1σ1r,x(σ1r−ey ,y)
−1σ1r,y. After this projection, the expectation value of

non-gauge invariant operators with respect t physical states |ψ⟩ always vanishe.

The Wilson and ’t Hooft operators on the spatial directions are defined as [169–171]

W (C) =
∏
b∈C

σ3b , U(C∗) =
∏
b∗∈C∗

σ1b∗ , (4.3.15)

where, C and C∗ are closed loops on the lattice and dual lattice, respectively (see Fig. 3.3). Both

U(C∗) and W (C) are gauge invariant operators since they commute with Qv.

The ’t Hooft operator U(C∗) satisfies [HZ2 , U(C∗)] = 0, and serves as the Z2 1-form symmetry

operator. This operator is topological since continuous deformations of the path C∗ do not change

the action of U(C∗) on the physical states, i.e., U(C∗
1 )|ψ⟩ = U(C∗

2 )|ψ⟩ if C∗
1 and C∗

2 are homotopically

equivalent. If a dual closed loop C∗ is topologically trivial, it follows that U(C∗)|ψ⟩ = |ψ⟩. The

“electric” charge of the Wilson operator is measured by the ’t Hooft operator U(C∗). Defining

closed loops winding around the x-/y-cycle by Cx and Cy (and similarly the loops on the dual

lattice by C∗
x and C∗

y ), we see that the operators W and U satisfy

U(C∗
y )W (Cx)U−1(C∗

y ) = −W (Cx), U(C∗
x)W (Cy)U

−1(C∗
x) = −W (Cy),

U(C∗
x)W (Cx)U−1(C∗

x) = +W (Cx), U(C∗
y )W (Cy)U

−1(C∗
y ) = +W (Cy),

(4.3.16)

which is indeed operator-realization of the electric Z2 1-form symmetry [118]. (See also Appendix

D.)

After these setups, we can explicitly observe that the symmetry operators satisfy U(C∗
x)Ũ =

−ŨU(C∗
x) and U(C∗

y )Ũ = −ŨU(C∗
y ), and then the perturbation H1 =

∑
r,j σ

1
r,j lift the degeneracy.

It suffices to show the breakdown of the ETH as shown in Fig. 4.1, where the numerical calculation

are performed for the 5 × 3 lattice, and the coupling constants λr,xy are uniformly chosen from

[1.0, 1.1] and the parameter is set to λ = 0.6. On the other hand, the ETH holds for other operators

such as the plaquette operator Bp :=
∏
i∈p:plaquette σ

3
i and a double insertion of the Wilson operators

W (C1)W (C2) (Fig. 4.5). We stress that the nonlocality of the operator does not immediately lead

to the breakdown of the ETH since the non-local operator W (C1)W (C2) satisfy the ETH.

4.4 Summary of Chapter 4

In this chapter, we have shown that the the one of the sufficient conditions for the ETH-violation is

satisfied if we consider perturbations which breaks the symmetry with ’t Hooft anomaly. Following
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Figure 4.5: (a)(b) The expectation values of the plaquette operator Bp :=
∏

i∈p:plaquette σ
3
i and a double insertion

of the Wilson operators W (C1)W (C2) with respect to the energy eigenstates for the Z2 gauge theory [140]. The ETH
for both of the operators are satisfied while the operator W (C1)W (C2) is a 1-dimensional non-local operator.

this treatment, we just have to suppose the following: 1) the unperturbed Hamiltonian exhibits a

ZN ×ZN (p-form, in general) symmetry with a mixed ’t Hooft anomaly; 2) the symmetry operator

corresponding to one of the ZN symmetry can be divided as Um(C̃) = Um(γ)Um(γ̄) with open

manifolds γ and γ̄; 3) ⟨Um(γ)⟩δEmc ̸= 0. Under these assumptions, the ETH for the (d−p)-dimensional

operator Um(γ) or Um(γ̄) is always violated after perturbing the Hamiltonian by λ
∑

jWq(j) with

the scaling (4.2.13). Although the conditions ii) in Section 4.1 (and in [139]) require information

about each eigenstate in the middle of the spectrum a priori, the conditions 1), 2) and 3) lead to

the same conclusion with the tractable condition to such eigenstates.

We also performed numerical calculations for (1 + 1)-dimensional Z2 × Z2-symmetric/Z3 × Z3-

symmetric spin chains, and (2 + 1)-dimensional Z2 gauge theory. All of the models have indeed

the 1-dimensional ETH-violating operators, and their mechanisms are boiled down to the general

discussion above. We can thus conclude that our treatment indeed results in the ETH-violation for

these concrete examples.



Chapter 5

Conculusion and discussion

In this thesis, we have discussed thermalization in lattice regularized quantum field theories, espe-

cially regarding higher-form symmetry and its ’t Hooft anomaly. Chapter 2) was devoted to review

of thermalization in isolated quantum systems and the eigenstate thermalization hypothesis (ETH),

a successful framework to give sufficient conditions for thermalization. Based on our work [139], we

discussed the influence of higher-form symmetry, which is a generalized concept of the conventional

global symmetries, on the ETH in Chapter 3. Chapter 4 was devoted to reconsideration of the

sufficient condition for ETH-violation by p-form symmetries, based on our work [140]

In Chapter 2, we first provided an overview of the recent understanding of thermal equilibrium in

isolated quantum many-body systems. The notion of thermal equilibrium has been conventionally

accompanied with the principle of typicality in classical and quantum many-body systems. In

quantum systems, there are two widely recognized characterization of typicality: thermodynamic

typicality and canonical typicality. Based on these concepts of typicality, we can regard “typical

states” as in thermal equilibrium. Corresponding to thermodynamic/canonical typicality, we can

formulate the notion of thermal equilibrium called MATE and MITE, respectively. The notion of

MITE further motivate us to see thermal equilibrium at the level of operators, which is one of the

main theme of this thesis. The ETH was introduced as a sufficient condition of thermalization

in the sense of equilibrium for operator sets. The criterion being most actively studied is the

(diagonal/strong) ETH, which states all eigenstates in a energy shell are thermal. In the subsequent

chapters, we studied how certain operators violate the diagonal ETH while other operators do not.

In Chapter 3, we considered (d+ 1)-dimensional quantum field theories with p-form symmetry,

and discussed its consequences on thermalization. Our analytical study reveals that the presence

of a p-form symmetry results in the violation of the (diagonal) ETH for numerous observables of

46
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(d − p)-dimensions, specifically in the form of Uα(γ̄), under a set of reasonable assumptions. A

notable aspect of this observation is that for p ≥ 1, the observables that violate the ETH have

non-local yet lower-dimensional support, as opposed to acting on the entire d-dimensional space

manifold M. This fact indicates that the ETH-violation is not attributed by the smallness of the

bath. We next proposed a generalized Gibbs ensemble (GGE) that describe the thermal ensemble

in these systems. In presence of p-form symmetry, we should suitably include chemical potentials

for the projectors onto each symmetry sector. To illustrate these concepts, we numerically studied

the Z2 lattice gauge theory.

In Chapter 4, we followed up the discussion in Chapter 3, and reformulated the assumption

regarding the mixing of symmetry sectors, in terms of ’t Hooft anomaly. To discuss it in detail,

we focused on the situation with ZN × ZN . The main results of this chapter is as follows: we

can make the theory satisfy the assumption of the ETH-violation in Chapter 3, by appropriately

perturbing the Hamiltonian preserving one of the ZN symmetry. Consequently, we no longer need

detailed information about the eigenstates in the middle of the spectrum, and we can provide

more tractable conditions for the ETH-violation. Along the line of the general arguments, we also

numerically demonstrated how the energy spectra are deformed, and the ETH-violation is justified.

As an outlook, our analysis in Chapter 3 regarding the breakdown of the ETH has implications

for more general systems with p-form symmetries. This includes a range of quantum field theories,

notably the SU(N) Yang-Mills theory, which is known to exhibit the center symmetries. The

influence of higher-form symmetry on the entanglement structures of certain subsystems merits

investigation. This includes the dynamics of entanglement entropy, a non-local quantity. Since

entanglement entropy plays an essential role in holography, its exploration could illuminate black-

hole dynamics, particularly in the context of gauge/gravity duality.

As for the formulation in Chapter 4, the application to other groups would be possible since

essential procedure to mix the symmetry sectors should be common to the case of ZN × ZN . It

enables us to ensure the breakdown of the ETH for broader class of quantum field theories with

higher-form symmetry including lattice gauge theories. In [41], it is shown that the local ETH

suffices to the subsystem ETH for 0-dimensional subsystems. On the other hand, considering the

prevalence of 0-form symmetries in general 2-dimensional conformal field theories, the results in

Chapter 4 suggest an ETH violation for 1-dimensional operators. Studying the implications of

this for the subsystem ETH in 1-dimensional subsystems in conformal field theories would be a
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compelling direction for future research. Additionally, examining the impact of mixed ’t Hooft

anomalies on thermalization processes presents an intriguing area of study. We hope that our

results will contribute to a deeper understanding of non-equilibrium dynamics in various quantum

field theories and quantum many-body systems.
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Appendix A

Proof of the breakdown of the ETH
under p-form symmetries

As discussed in the main text, higher-form symmetry of a non-degenerate Hamiltonian leads to the

breakdown of the eigenstate thermalization hypothesis (ETH) even for many nontrivial operators.

We here show this fact. The case A(g) = 1 in the following corresponds to the main claim in the

main text, and the ETH-violating operators are (d− p)-dimensional in this case.

As stated in the main text, we require the following reasonable assumptions: i) the topolog-

ical operator Uα(C̃) can have boundaries, i.e., Uα(γ) with an arbitrary (d − p)-dimensional sub-

manifold γ (⊂ C̃) is a well-defined (not-null) operator. One can then decompose the operator

as Uα(C̃) = Uα(γ)Uα(γ̄), where we have introduced the complement of γ as γ̄ := C̃\γ. ii) For

at least one nontrivial closed surface, say C̃ (⊂ M), there are energy eigenstates |En⟩, |Em⟩ with

En, Em ∈ [E,E + ∆E] such that ⟨En|Uα(C̃)|En⟩ ̸= ⟨Em|Uα(C̃)|Em⟩. In other words, the energy

shell of our interest contains eigenstates in different symmetry sectors defined by Uα(C̃). iii)’ The

microcanonical average ⟨A(g)Uα(γ)⟩∆Emc (E) of the operator A(g)Uα(γ) defined from the energy shell

[E,E + ∆E] takes a nonzero value in the thermodynamic limit. The operator A(g) here is defined

on an arbitrary region g (⊂ M) that satisfies g ∪ γ̄ = ϕ (empty region). If A(g) is the identity

operator, the assumption iii)’ just reduces to iii).

With these assumptions, we can show that either A(g)Uα(γ) or Uα(γ̄)A(g)† necessarily breaks

the ETH within the energy shell [E,E+∆E]. To see this, we consider a (d−p)-dimensional surface

γ with boundary, which satisfies the property iii)’. If the operator A(g)Uα(γ) does not satisfy the

ETH, our claim holds; we thus consider the case where A(g)Uα(γ) satisfies the ETH, i.e.,

⟨En|A(g)Uα(γ)|En⟩ ≃ ⟨Em|A(g)Uα(γ)|Em⟩ ≃ ⟨A(g)Uα(γ)⟩∆Emc (E). (A.0.1)
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Since H is assumed to have no degeneracy, its eigenstates |En⟩, |Em⟩ are also eigenstates of Uα(C̃).

Since the group G is abelian, the eigenvalues are expressed as

Uα(C̃)|En⟩ = eiαqn |En⟩ (A.0.2)

and

Uα(C̃)|Em⟩ = eiαqm |Em⟩, (A.0.3)

where qn, qm ∈ R. From the assumption ii), we can assume that |En⟩ and |Em⟩ belong to different

sectors, i.e., eiαqn ̸= eiαqm .

Now, the definition of γ̄ indicates

⟨En|A(g)U−1
α (γ̄)|En⟩ = ⟨En|A(g)Uα(γ)Uα(C̃)−1|En⟩ = e−iαqn⟨En|A(g)Uα(γ)|En⟩ (A.0.4)

and ⟨Em|A(g)U−1
α (γ̄)|Em⟩ = e−iαqm⟨Em|A(g)Uα(γ)|Em⟩. Recalling the assumption of the ETH and

iii)’, i.e.,

⟨En|A(g)Uα(γ)|En⟩ ≃ ⟨Em|A(g)Uα(γ)|Em⟩ ≃ ⟨A(g)Uα(γ)⟩∆Emc (E) ̸= 0, (A.0.5)

we obtain the relation ⟨En|A(g)U−1
α (γ̄)|En⟩ ̸= ⟨Em|A(g)U−1

α (γ̄)|Em⟩. Finally, taking the complex

conjugate, we have

⟨En|Uα(γ̄)A(g)†|En⟩ ≠ ⟨Em|Uα(γ̄)A(g)†|Em⟩. (A.0.6)

Thus, Uα(γ̄)A(g)† breaks the ETH, and our claim has been proven.
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Numerical details of the ETH for the
Z2 gauge theory

B.1 Fitting parameters for the finite-size scaling analysis

Figure 3(c) in the main text shows the finite-size scaling of the deviation measure

∆∞(O) := max
n,En∈[E,E+δE]

∣∣∣⟨En|O|En⟩ − ⟨O⟩δEmc(En)
∣∣∣ . (B.1.1)

The measure E[∆∞(O)] averaged over disorder is fitted with a function e−aN+b. Table S-1 shows the

fitting parameters for each case. The decay for U(γ̄x) with the total symmetry sectors (Case II) is

much slower than the other cases, which indicates that the ETH is hindered only for this case. We

use the square lattices (Nx, Ny) = (3, 3), (4, 3), (5, 3) with 104, 103, and 102 samples, respectively.

The energy window is set as [E,E + δE] = [−1.3Nx,−1.0Nx].

Table B.1: Observables, symmetry sectors, and the fitting parameters a and b for six different cases.
Case Observable Symmetry sector a b

I
U(γ̄x)

U(C∗
x) = 1 0.256 ± 0.017 1.47 ± 0.16

II U(C∗
x) = ±1 0.158 ± 0.020 0.74 ± 0.20

III
U(γx)

U(C∗
x) = 1 0.260 ± 0.021 1.52 ± 0.23

IV U(C∗
x) = ±1 0.244 ± 0.036 1.41 ± 0.40

V
Bp

U(C∗
x) = 1 0.310 ± 0.024 2.03 ± 0.24

VI U(C∗
x) = ±1 0.297 ± 0.005 2.02 ± 0.05

B.2 ETH for the plaquette operator

Here, we show the detail of the ETH for a plaquette operator Bp along the same line as those for

U(γx) and U(γ̄x) in the main text. Though this operator can be regarded as the minimal Wilson
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operator, it acts nontrivially on the links around one plaquette p. In this sense, the operator Bp

can be regarded as a local observable.

The expectation values versus eigenenergies are shown in Fig. B.1(a). Along with Fig. 3(c) in

the main text, we conclude that the operator Bp satisfies the ETH even without resolving symmetry

sectors. Figure B.1(b) shows the time evolution of the expectation value ⟨Bp(t)⟩. The stationary

state is well described by the ensemble average of the generalized Gibbs ensemble (GGE) and that

of the canonical ensemble, where both ensembles provide almost the same prediction.

Figure B.1: (a) Expectation values of the local operator Bp with respect to energy eigenstates for
the 5 × 3 lattice [139]. We see that Bp satisfies the ETH (also see Fig. 3(c) in the main text), even
without resolving the symmetry sectors associated with U(C∗

x) and U(C∗
y ).

(b) Time evolution of the expectation value of Bp for the 4 × 3 lattice [139]. The initial state is a
random superposition of the eigenstates of Bp with the eigenvalue +1, whose energy expectations
lie within an energy window E ∈ [−5.0,−3.0]. The prediction for the GGE and that for canonical
ensemble make no difference (i.e., two results are almost overlapped), and the stationary value of
⟨Bp⟩ is described by them.



Appendix C

Justification of the GGE

C.1 Justification for the case with HZ2

In the main text, we have introduced the GGE that takes into account discrete 1-form symmetry,

U(C∗
x). Here we show that this GGE can be justified if we assume the ETH restricted for each

symmetry sector with respect to U(C∗
x). Our GGE that takes account of the Z2 1-form symmetry

is given by

⟨O⟩GGE = Tr(OρGGE),

ρGGE(β, λx, µx) :=
1

ZGGE(β, λx, µx)
e−βHZ2−λxU(C∗

x)−µxU(C∗
x)HZ2 ,

ZGGE(β, λx, µx) := Tr[e−βHZ2−λxU(C∗
x)−µxU(C∗

x)HZ2 ],

(C.1.1)

where β, λx, µx are determined from the initial values of the conserved quantities HZ2 , U(C∗
x), and

U(C∗
x)HZ2 (see Eq. (C.1.12)).

To see that the GGE describes the stationary state, we first obtain the expression for the

stationary state, i.e., the long-time average of the expectation value of an observable O (we assume

that the temporal fluctuation around the long-time average is negligible in the thermodynamic

limit). For this purpose, we define the projection operator onto each symmetry sector by

P x± :=
1

2

(
1 ± U(C∗

x)
)
, (C.1.2)

Once we assume the ETH with respect to each symmetry sector, the expectation values ⟨P x+⟩,

⟨P x+HZ2P
x
+⟩ and ⟨P x−HZ2P

x
−⟩ suffice to specify the stationary state. To see this, we consider the time

evolution from an initial state |ψ⟩ =
∑

n cn |En⟩ with the energy eigenstates |En⟩. Then, if we assume

no degeneracy for the energy eigenvalues, the long-time average ⟨ψ|O|ψ⟩ := limT→∞
1
T

∫ T
0 dt ⟨ψ(t)|O|ψ(t)⟩
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is given by

⟨ψ|O|ψ⟩ =
∑
n

|cn|2 ⟨En|O|En⟩

=
∑

n+:U(C∗
x)=+1 sector

|cn+ |2 ⟨E+
n+

|O|E+
n+

⟩ +
∑

n−:U(C∗
x)=−1 sector

|cn− |2 ⟨E−
n− |O|E

−
n−⟩

≃ ⟨P x+⟩ ⟨P x+OP x+⟩
δE+

mc
(E+) + ⟨P x−⟩ ⟨P x−OP x−⟩

δE−
mc

(E−), (C.1.3)

where |E+
n+

⟩ and |E−
n−⟩ denote the eigenstates with U(C∗

x) = +1 and U(C∗
x) = −1, respectively.

Here, we have used the ETH for each symmetry sector

⟨E±
n± |O|E

±
n±⟩ ≃ ⟨P x±OP x±⟩

δE±
mc

(E±
n±) (C.1.4)

and assumed that
|cn± |2∑
n±

|cn± |2 is localized around the mean energy for each symmetry sector

E± =

∑
n±

|cn± |2En±∑
n±

|cn± |2
=

⟨P x±HZ2P
x
±⟩

⟨P x±⟩
, (C.1.5)

where
∑

n±
stands for

∑
n±:U(C∗

x)=±1 sector in the following. Note that the precise values of δE± are

not important, and we will not consider them in the following.

Next, we consider the GGE. For this purpose, we define canonical ensembles for each sector

⟨O⟩can,± :=
1

Z±

∑
n±

On±n±e
−(β±µx)E±

n±∓λx , Z± :=
∑
n±

e−(β±µx)E±
n±∓λx . (C.1.6)

In terms of these ensembles, the GGE (C.1.1) is expressed as

Tr(OρGGE) =
1

ZGGE

(∑
n+

e−βEn+−λx−µxEn+On+n+ +
∑
n−

e−βEn−+λx+µxEn−On−n−

)
=
∑
s=±

Zs
ZGGE

⟨O⟩can,s =
∑
s=±

⟨P xs ⟩GGE ⟨O⟩can,s . (C.1.7)

As for the standard canonical ensemble, by appropriately choosing β ± µx, we can set

E± = ⟨H⟩can,± =
⟨P x±HZ2P

x
±⟩GGE

⟨P x±⟩GGE

. (C.1.8)

Under this condition, we assume that the distributions ⟨E±
n± |ρ±|E

±
n±⟩ = exp

(
−(β ± µx)E±

n± ∓ λx

)
/Z±

are sufficiently localized around E±. Then, using the ETH for each symmetry sector, we can write

the operator averages as

⟨O⟩can,± ≃ 1

Z±

∑
n±

e−(β±µx)E±
n±∓λx ⟨P x±OP x±⟩mc

(E±) = ⟨P x±OP x±⟩mc
(E±). (C.1.9)
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Choosing λx appropriately, we can set

⟨P x+⟩GGE
= ⟨P x+⟩ ,

(
⇒ ⟨P x−⟩GGE

= 1 − ⟨P x+⟩GGE
= 1 − ⟨P x+⟩ = ⟨P x−⟩

)
. (C.1.10)

In summary, by setting β, µx, and λx such that Eqs. (C.1.8) and (C.1.10) hold true, we can show

that the long-time average of the observable O (C.1.3) can be identified with the GGE prediction:

⟨ψ|O|ψ⟩ ≃
∑
±

⟨P x±⟩GGE
⟨O⟩can,± = Tr(OρGGE). (C.1.11)

Note that the conditions Eqs. (C.1.8) and (C.1.10) are equivalent to the following condition for

the conserved quantities in the GGE,

⟨HZ2⟩GGE = ⟨HZ2⟩ , ⟨U(C∗
x)⟩GGE = ⟨U(C∗

x)⟩ , ⟨U(C∗
x)HZ2⟩GGE = ⟨U(C∗

x)HZ2⟩ , (C.1.12)

as expected.

The above discussion has focused on observables that are non-local in the x-direction but local

in the y-direction. To adopt operators extended to the y-direction as well, we should include

at most seven chemical potentials in total as ρ̃GGE = Z̃−1
GGE exp

(
− βHZ2 −

∑
i=x,y λiU(C∗

i ) −∑
i=x,y µiU(C∗

i )HZ2 − αU(C∗
x)U(C∗

y ) − α′U(C∗
x)U(C∗

y )HZ2

)
.

C.2 Justification for the general case

In the case of a general finite abelian group G, we propose that the following density matrix serves

as the GGE:

ρGGGE(βG, {λGj }, {γGj }) =
1

ZGGGE(βG, {λGj }, {γGj })
e−β

GH−
∑N−1

j=1 λGj Pj−
∑N−1

j=1 µGj PjH , (C.2.1)

where Pj (j = 1, . . . , N) are the projections to each symmetry sector, and the number of the sectors

is given by N = |Hd−p(M, G)|. Note here that the summation over the chemical potentials is

performed over 1 ≤ j ≤ N − 1 because operators PN and PNH are not independent of the other

conserved quantities.

Assuming the ETH for each symmetry sector,

⟨Ejnj
|O|Ejnj

⟩ = ⟨PjOPj⟩δEj

mc (Ejnj
) (1 ≤ j ≤ N), (C.2.2)
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we can obtain the stationary state as in the Z2 case (C.1.3):

⟨ψ|O|ψ⟩ =
∑
n

|cn|2 ⟨En|O|En⟩ =

N∑
j=1

∑
nj

|cnj |2 ⟨Ejnj
|O|Ejnj

⟩

≃
N∑
j=1

⟨Pj⟩ ⟨PjOPj⟩δEj

mc (Ej), (C.2.3)

where |Ejnj ⟩ are energy eigenstates in each symmetry sector and

Ej =
⟨PjHPj⟩
⟨Pj⟩

. (C.2.4)

Here,
∑

nj
means that the sum is taken only over eigenstates that belong to the symmetry sector

j. We have also assumed the localization of the energy distribution in each sector around Ej . In

the following, we omit δEj , whose details are not important in the thermodynamic limit.

Along the same lines as the Z2 case, the GGE (C.2.1) can be written as

⟨O⟩GGGE =
1

ZGGGE

N−1∑
j=1

∑
nj

e−(βG+µGj )Enj−λjOnjnj +
∑
nN

e−β
GEnN OnNnN


=

N∑
j=1

Zj

ZGGGE

⟨O⟩can,j =
N∑
j=1

⟨Pj⟩GGGE ⟨O⟩can,j , (C.2.5)

where canonical ensembles restricted to each sector are defined by

⟨O⟩can,j :=
1

Zj

∑
nj

Onjnje
−(βG+µGj )Enj−λ

G
j , Zj :=

∑
nj

e−(βG+µGj )Enj−λ
G
j , (j = 1, . . . , N − 1),

⟨O⟩can,N :=
1

ZN

∑
nN

OnNnN e
−βGEnN , ZN :=

∑
nN

e−β
GEnN .

(C.2.6)

Here, we can choose βG and µGj (j = 1, · · · , N − 1) such that

Ej = ⟨H⟩can,j =
⟨PjHPj⟩GGGE

⟨Pj⟩GGGE

(C.2.7)

holds for 1 ≤ j ≤ N . Now, the assumption that the distributions ⟨Enj |ρj |Enj ⟩ := exp
(
−(βG + µGj )Enj − λGj

)
/Zj

and ⟨EnN |ρN |EnN ⟩ := exp
(
−βGEnN

)
are localized around Ej again leads to the following:

⟨O⟩can,j = ⟨PjOPj⟩mc (Ej), (j = 1, . . . , N). (C.2.8)

We can determine λGj (j = 1, . . . , N − 1) uniquely such that the following holds true:

⟨Pj⟩GGGE = ⟨Pj⟩ , (j = 1, . . . , N − 1), (C.2.9)
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⇒ ⟨PN ⟩GGGE =
ZN
ZGGE

= 1 −
N−1∑
j=1

Zj
ZN

= 1 −
N−1∑
j=1

⟨Pj⟩ = ⟨PN ⟩ . (C.2.10)

In summary, by choosing βG, λGj , and µGj (j = 1, · · · , N − 1) such that Eqs. (C.2.7) and (C.2.9)

hold true, we can show that the time average (C.2.3) is given by

⟨ψ|O|ψ⟩ =
N∑
j=1

⟨Pj⟩GGGE ⟨O⟩can,j = ⟨O⟩GGGE . (C.2.11)

Finally, the conditions Eqs. (C.2.7) and (C.2.9) are equivalent to the following condition for the

conserved quantities in the GGE,

⟨H⟩GGGE = ⟨H⟩ , ⟨Pj⟩GGGE = ⟨Pj⟩ , ⟨PjH⟩GGGE = ⟨PjH⟩ (1 ≤ j ≤ N − 1), (C.2.12)

where we have used PjHPj = PjH and ⟨H⟩ =
∑N

j=1 ⟨PjHPj⟩.

Recalling the relation (C.1.2), we can recover the GGE (C.1.1) by redefining βG, λGj , and µGj

for the G = Z2 case. In addition, similar reasoning justifies the GGE ρ̃GGE for G = Z2 discussed in

the main text, where we consider the non-local observables both for the x- and y-directions.
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Hamiltonian formulation of the Z2
lattice gauge theory

D.1 Z2 gauge theory

We briefly review the Hamiltonian formalism of the Z2 lattice gauge theory here. Before introducing

the Hamiltonian, we start with the path integral formulation in order to give an overview of basic

concepts. Unless otherwise noted, lattices are on the (2 + 1)-dimensional Euclidean spacetime with

coordinates x0, x1, x2 . The partition function of a gauge theory with a gauge group G is defined by

Z =

∫ (∏
r,µ

dUµ(r)

)
exp

[
1

2g

∑
r,µν

(
tr
(
Uµ(r)Uν(r + eµ)U−1

µ (r + eν)U−1
ν (r)

)
+ (c.c.)

)]
, (D.1.1)

where the dynamical variable variables U(r) reside on each link of the lattice, and labelled by its

origin. The integral
∫
dUµ(r) is with respect to the Haar measure of the group G . In the case of

G = Z2 , the dynamical variable Uµ is just denoted by

Uµ = τµ ∈ {±1} , (D.1.2)

and the partition function reads

ZZ2 =
∑

{τµ}=±1

exp

 ∑
p∈plaquettes

1

gp
Gp

 , (D.1.3)

Gp := τµ(r)τν(r + eµ)τ−1
µ (r + eν)τ−1

ν (r) , (µν ∈ p) . (D.1.4)

We can see that the field strength Gp is invariant under gauge transformations

τµ(r0) 7→ −τµ(r0) , τµ(r0 − eµ) 7→ −τµ(r0 − eµ) , ∀µ ,

τµ(r) 7→ τµ(r) , for r ̸= r0 .
(D.1.5)
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Sets of transformation points r0 form two-dimensional surface defects defined as

⟨Ũ(S∗)⟩ =
1

ZZ2

ZZ2

(
τµ 7→ −τµ for τµ ∈ S∗) . (D.1.6)

A two-dimensional surface S∗ is defined on the dual surface. The field strength itself is invariant

under the transformation, ⟨Ũ(S∗)⟩ = 1 holds for any topology of the spacetime. A gauge invariant

non-local operator can be defined by

W (C) :=
∏

(r,µ)∈C

τµ(r) , C : closed loop, (D.1.7)

which is referred to as the Wilson operator. In the three-dimensional spacetime, there exists a

topological disorder defect called ’t Hooft operator, whose expectation value can be evaluated as

⟨U(C∗)⟩ =
1

ZZ2

∑
{τµ}=±1

[( ∏
p/∈C∗

exp

[
1

gp
Gp

])( ∏
p∈C∗

exp

[
1

gp
(−Gp)

])]
, (D.1.8)

where a closed loop C∗ is defined on the dual lattice. An ’t Hooft operator U(C∗) is topological

in the sense that it is invariant under continuous deformation, and thus U(C∗) = 1 holds as long

as the closed loop C∗ is topologically trivial. Though U(C∗) looks like a disorder in the original

Z2 gauge theory, it can be explicitly represented by the dual dynamical variable. For details, see

appendix D.2. One can easily check that a Wilson operator and an ’t Hooft operator satisfy the

following relation:

⟨W (C)U(C∗)⟩ :=
1

ZZ2

∑
{τµ}=±1

[( ∏
p/∈C∗

exp

[
1

gp
Gp

])( ∏
p∈C∗

exp

[
1

gp
(−Gp)

]) ∏
(r,µ)∈C

τµ(r)

]

= (−1)link(C,C
∗) 1

ZZ2

∑
{τµ}=±1

[( ∏
p∈plaquettes

exp

[
1

gp
Gp

]) ∏
(r,µ)∈C

τµ(r)

]
= (−1)link(C,C

∗)⟨W (C)⟩ , (D.1.9)

where link(C,C∗) denotes the linking number of the closed loops C and C∗ . The expression (D.1.9)

means that the ’t Hooft operator U(C∗) measures the “electric” charge of the Wilson operator.

This is thus the realization of the electric Z2 1-form symmetry. ’t Hooft operators can also have

endpoints, i.e., they are defined on an open path γ̃ with two endpoints s∗1, s
∗
2 as

⟨U(γ̃)⟩ =
1

ZZ2

∑
{τµ}=±1

[(∏
p/∈γ̃

exp

[
1

gp
Gp

])(∏
p∈γ̃

exp

[
1

gp
(−Gp)

])]
. (D.1.10)
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Since the path γ̃ can be continuously deformed without varying the expectation value, this operator

is regarded as a dynamical “monopole” and “anti-monopole” residing at the dual sites s∗1 and s∗2 .

We now move on to the Hamilton formulation. To this end, we take a continuum limit in the

time direction. In this limit, the partition function (D.1.3) admits the following expression:

[ZZ2 ]temporal gauge:τ0(r)=+1 = ZZ2/const. −→ tr e−βHZ2 . (D.1.11)

The Hamiltonian is given by

HZ2 = −
∑
r,j

σ1j (r) −
∑
r,jk

λr,jkσ
3
j (r)σ3k(r + ej)σ

3
j (r + ek)σ

3
j (r) , (D.1.12)

where σ1,2,3j (r) denotes the Pauli matrices acting on the link (r, j) . Though the total Hilbert space

of the system for the Nx×Ny lattice is (22NxNy)-dimensional, we have to project it onto the physical

Hilbert space. This is because there exist residual gauge redundancies, after we impose the temporal

gauge condition τ0(r) = 1 , which is analogous to the gauge A0(r) = 0 for the Maxwell theory.

The spatial gauge transformation is generated by the local operator

Qv :=
∏

b∈spatial links
b∋v

σ1b (rb) , v : vertex . (D.1.13)

The operator Qv obviously satisfies Q2
v = 1 and commutes with HZ2 . The spatial gauge redundancy

should be removed, and thus the physical Hilbert space is given by

span
{
|ψ⟩phys

∣∣ Qv|ψ⟩phys = +|ψ⟩phys , ∀v : vertices
}

= span

{ ∏
v∈vertices

(
1 +Qv

2

)
|ψ⟩

}
. (D.1.14)

Note here that the constraint for the physical states can be regarded as the Z2 analog of the Gauss

law ∇·E|ψ⟩phys = 0 since we can write Qv = (σ1x(r−ex))−1σ1x(r+ex)(σ1y(r−ey))
−1σ1y(r+ey) . After

this projection, the expectation value of a non-gauge invariant operator with respect to physical

states |ψ⟩phys always vanishes. States in the physical space (D.1.14) will be denoted just by |ψ⟩ in

the following discussion.

The next task is to represent the Wilson and ’t Hooft line as operators acting on the Hilbert

space. The Wilson line and the ’t Hooft line lying on the spatial directions are given by

W (C) =
∏
b∈C

σ3b = W−1(C) , (D.1.15)
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U(C∗) =
∏
b∗∈C∗

σ1b∗ = U−1(C∗) , (D.1.16)

where C and C∗ are closed loops lying on the lattice and dual lattice, respectively. Both of them

commutes with the operator Qv , and they are indeed gauge invariant. Corresponding to the topo-

logical property of the ’t Hooft operator (D.1.8), continuous deformations of the path C∗ does not

change U(C∗) acting on physical states, i.e.,

U(C∗
1 )|ψ⟩ = U(C∗

2 )|ψ⟩ , (D.1.17)

if C ′
1 and C ′

2 are homotopically equivalent. It immediately follows that U(C ′)|ψ⟩ = |ψ⟩ if the dual

closed loop C ′ is trivial. In addition to (D.1.17), the operator U is topological in the time direction

in the sense that

[HZ2 , U(C∗)] = 0 . (D.1.18)

In the following, we take a 2-torus as the space manifold with periodicity Nx and Ny in the 1,2

direction, respectively. We define closed loops winding around the x-/y-cycle by Cx and Cy , and

the loops on the dual lattice are denoted by C∗
x and C∗

y in the same manner. The operators W and

U then satisfy the relation

U(C∗
y )W (Cx)U−1(C∗

y ) = −W (Cx) , U(C∗
x)W (Cy)U

−1(C∗
x) = −W (Cy) ,

U(C∗
x)W (Cx)U−1(C∗

x) = +W (Cx) , U(C∗
y )W (Cy)U

−1(C∗
y ) = +W (Cy) ,

(D.1.19)

which are indeed operator-formulation of the electric Z2 1-form symmetry (D.1.9).

Since the 2-torus has a homology group H1(T
2;Z2) = Z2⊕Z2 , we have four sectors characterized

by the charge of the Z2 1-form symmetry. Though simultaneous diagonalization of U(C∗
x) , U(C∗

y ) ,

and HZ2 leads to four separated dynamics similarly to standard global symmetries, a significant

feature is their dimensionality. For standard 0-form symmetries, the symmetry operator U is a

codimension-1 operator comparison to the spacetime dimension (2+1-dimension in this case). On

the other hand, 1-form symmetries incorporate a codimension-2 symmetry operator.

We remark that there also exists a standard Z2 0-form symmetry which flips all of link variables.

The symmetry operator is a 2-dimensional object defined by

ÛZ2 =
∏

b∈links
σ1b . (D.1.20)
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Though this operator is not relevant to the Z2 1-form symmetry in general, it acts on the physical

states equivalently to U(C∗) for the lattice gauge theories:

ÛZ2 |ψ⟩ =U(C∗
x)NxU(C∗

y )Ny |ψ⟩ , (D.1.21)

and thus the global Z2 0-form symmetry has no effect on the four symmetry sectors.

D.2 Dual variable representation of the Zn gauge theory

The three-dimensional Zn gauge theory is dual to the three-dimensional Zn Ising spin model [170]

if the spacetime manifold M has a trivial homology H1(M,Z) = 1 . This can be explicitly shown

by expressing the theory in terms of dual variables. We will repeatedly utilize the identity

1

n

n−1∑
l=0

exp

(
−2πi

ml

n

)
= δm,0(modn) :=

{
1 n = 0 (modn)
0 n ̸= 0 (modn)

. (D.2.1)

The link variable of the the Zn gauge theory is given by

Uµ(r) ∈
{

exp

(
2πi

k

n

)
, k ∈ {0, 1, . . . , n− 1}

}
, (D.2.2)

and then the partition function reads

ZZn =
∑

{Uµ(r)}

( ∏
p∈plaquettes

exp[Fp(Gp)]

)
, Fp(x) :=

1

2gp

(
x+ x∗

)
=

1

2gp

(
x+ x−1

)
, (D.2.3)

Gp :=Uµ(r)Uν(r + eµ)U−1
µ (r + eν)U−1

ν (r) . (D.2.4)

Noting the identity (D.2.1) , the summand is expressed as

exp[Fp(Gp)] =

n−1∑
lp=0

IlpG
lp
p , (D.2.5)

Iℓp :=
1

n

n−1∑
np=0

exp

(
−2πi

nplp
n

)
exp
[
Fp

(
e2πi

np
n

)]
, (D.2.6)

since the summation with respect to np leads to the delta function. In order to obtain the partition

function, we perform the summation over all of the configuration of {Uµ(r)} . This summation

again give rise to the delta function, and thus we obtain

ZZn =
∑

{lp}=0

( ∏
p∈plaquettes

Ilp

)
, (D.2.7)
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where the notation {lp} = 0 means summing over configurations which satisfies∑
p∋b

lp = 0 (modn) , ∀b : link . (D.2.8)

Here we introduce the dual variable

ξp := exp

(
2πi

lp
n

)
, with the constraint:

∏
p∋b

ξp = 1 . (D.2.9)

The constraint can be solved by denoting the dynamical variable living each dual site:

ξp = ζs∗1ζ
−1
s∗2
, (D.2.10)

where the dual link p has a starting point s∗1 and an ending point s∗2 . After all, the expression

(D.2.7) takes the form

ZZn =
∑
{ζs∗}

( ∏
p∈plaquettes

n−1∑
np=0

ξ
−np
p exp

[
Fp(e

2πi
np
n )
])

(D.2.11)

=
∑
{ζs∗}

∏
p∈plaquettes

exp
[
F̃p(ξp)

]
. (D.2.12)

The dual action can be explicitly obtained by

F̃p(ξp) = log

(
n−1∑
k=0

ξ−kp exp
[
Fp(e

2πi k
n )
])

. (D.2.13)

In the case of the Z2 gauge theory (n = 2) , the action is just Fp(Gp) = Gp/gp , and thus F̃p is given

by

F̃p(ξp) = log

(
1∑

k=0

ξ−kp exp

[
(−1)k

gp

])
= log

(
1 + ξpe

−1/gp
)
, (D.2.14)

which implies the dual theory is the standard Z2 Ising model with the nearest neighbor, whose

Hamiltonian reads

H̃I({ζs∗}) =
∑

s∗1s
∗
2∈dual link

(
gs∗ζs∗1ζs∗2 + αs∗

)
,

gs∗ :=
1

2
log

(
1 + e−1/gp

1 − e−1/gp

)
, αs∗ :=

1

2
log
(
(1 − e−1/gp)(1 + e−1/gp)

)
.

(D.2.15)

The relation between the coupling constants gp and gs∗ can be rewritten as

1 = sinh(2gs∗) sinh

(
1

gp

)
. (D.2.16)
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Since the Wilson operator is given by W (C) :=
∏
b∈C Uµb(rb) for a closed loop C , we have

⟨W (C)⟩ =
1

ZZn

∑
{Uµ(r)}

[( ∏
p∈plaquettes

exp[Fp(Gp)]

)∏
b∈C

Uµb(rb)

]

=
1

ZZn

∑
{Uµ(r)}

[( ∏
p∈plaquettes

exp[Fp(Gp)]

)∏
p∈S

Gp

]

=
1

ZZn

∑
{ζs∗}

( ∏
p∈plaquettes

n−1∑
np=0

ξ
−np
p exp

[
Fp(e

2πi
np
n )
]∏
p∈S

e2πi
np
n

)

=
1

ZZn

∑
{ζs∗}

[(∏
p/∈S

exp
[
F̃p(ξp)

])(∏
p∈S

exp
[
F̃p(ξpe

−2πi/n)
])]

. (D.2.17)

The ’t Hooft operator U(γ̃) is just a string-like operator which consists of ξp:

U(γ̃) :=
∏
p∈γ̃

ξp = ζs∗1ζ
−1
s∗2
, (D.2.18)

where s∗1 and s∗2 are the end points of the path γ̃ . The expectation value of the ’t Hooft operator

can be then written in terms of the original variables as

⟨U(γ̃)⟩ =
1

ZZn

∑
{ζs∗}

∏
p∈plaquettes

ζs∗1ζ
−1
s∗2

exp
[
F̃p(ξp)

]

=
1

ZZn

∑
{ζs∗}

∏
p∈plaquettes

n−1∑
np=0

ξ
−np
p exp

[
Fp(e

2πi
np
n )
]∏
p∈γ̃

ξp

=
1

ZZn

∑
{Uµ(r)}

[(∏
p/∈γ̃

exp[Fp(Gp)]

)(∏
p∈γ̃

exp
[
Fp(Gpe

2πi/n)
])]

. (D.2.19)

Note here that in the summation over {ξp} in the discussion above, the dynamical variable ξp is

subject to the constraint
∏
p∋b ξp = 1 for all links b .
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