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Abstract

The realization of computers that understand natural language to the same extent

as humans is the ultimate goal of Natural Language Processing (NLP). Toward

this goal, numerous studies strived to build data to train/evaluate some linguis-

tic capability deemed necessary for natural language understanding (NLU) and

improve models based on the data.

As text is produced considering the context, it is essential to understand not

only the meanings of individual linguistic units (e.g., clauses and sentences) but

also the relations between them in order to comprehend the overall meaning. Such

semantic relations between text spans are called discourse relations. As discourse

relation is an important textual property for understanding the overall meaning

of text and has broad applicability, there have been studies focused on discourse

relations for a long time.

However, automatic recognition of discourse relations is a long-standing and

challenging problem as it requires knowledge about our world beyond natural

language. Although various linguistic capabilities of computers have significantly

improved with the remarkable development of deep learning in recent years, there

is still room for improvement in the linguistic capability to infer discourse rela-

tions.

Another problem is that the majority of studies on discourse relations have

targeted English even though other languages are also non-negligible. The overem-

phasis on English may lead to neglect of language-specific phenomena, espe-

cially in languages that are linguistic-typologically distant from English such as

Japanese, and cause disparity between languages. Therefore, it is worth verifying

in the non-English language.

i



ii

Against such a background, this thesis endeavors to improve the linguistic

capability to infer discourse relations primarily in Japanese. Furthermore, we

challenge its applications to other NLU tasks and human learning in order to verify

the usefulness of discourse relations. To these ends, we explore data generation

approaches that are feasible in Japanese.

First, we focus on contingency, which is one of the major discourse relations

and crucial for our intellectual activities, and build a Japanese dataset for evalu-

ating the linguistic capability to infer basic contingency (hereafter, commonsense

contingency reasoning). Most of the English datasets for commonsense contin-

gency reasoning have been manually built or based on manually constructed lan-

guage resources. However, this straightforward approach requires a substantial

cost and lacks scalability. To solve this issue, we propose a method of semi-

automatically generating multiple-choice questions that ask basic contingency

from text. Specifically, it is summarized as three steps: automatic extraction of

pairs of basic event expressions that have contingent relation from a raw corpus,

verification through crowdsourcing, and automatic generation of commonsense

contingency reasoning problems from the verified pairs. We build the dataset

according to the proposed method and verify its usefulness through experiments.

Next, we work on improving model performance utilizing the constructed

dataset. In the aforementioned proposed method, it becomes possible to automat-

ically generate pseudo-problems that imitate commonsense contingency reasoning

problems by omitting verification through crowdsourcing. We automatically gen-

erate large-scale pseudo-problems by utilizing the scalability and attempt to im-

prove commonsense contingency reasoning by this data augmentation. We also

investigate the generality of knowledge about basic contingency through quantita-

tive evaluation by performing transfer learning from a commonsense contingency

reasoning task to the related tasks.

Then, we expand our focus from contingency to discourse relations and work

on improving discourse relation recognition (DRR). Regarding DRR, one of the

biggest issues is the paucity of training data for some error-prone discourse rela-

tions. To alleviate this issue, we propose a method of generating synthetic data for

these error-prone discourse relations from a large language model. Specifically, it
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is summarized as two steps: extraction of confusing discourse relation pairs based

on false negative rate and generation of synthetic data focused on resolving the

confusion. We synthesize data for DRR according to the proposed method and

verify its effectiveness through experiments.

Finally, we take up the long-standing problem in Japanese education that el-

ementary school students tend to have an aversion to writing compositions and

challenge an educational application in order to ameliorate the situation. Con-

sidering the importance of contingency reasoning in NLU, the data constructed

in the process of our studies is expected to be useful for human learning as well

as machine learning. Thus, we design an AI educational game for elementary

school students to study Japanese writing utilizing our constructed data. We also

develop smartphone and web applications of the game and conduct a user study

to evaluate it.
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Chapter 1

Introduction

1.1 Background

The language we listen to, speak, read, and write daily is called natural language

as it has naturally emerged and developed in our society. Natural language is a

means of cognition and communication for us and thus forms the basis of a broad

variety of intellectual activities. In particular, (natural language) text has played

an indispensable role in expressing, communicating, and recording information as

a medium.

With the proliferation of web media, a vast amount of text is now accumulated

every day. The text enables us to consider various applications, whereas it has

also become increasingly laborious for us to manually find the information we

seek. Against such a background, there is a surge in demand for natural language

processing (NLP) technology, which explores the use of computers for processing

text.

NLP aims for not only text analysis but also a broad range of applications such

as dialogue, machine translation, information retrieval, question answering, and

summarization systems. Any of them is supposed to have the following linguistic

capabilities, for instance:

• to understand what is written and writer’s intention from natural language

input.

1
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• to refer to knowledge inside and outside a model and reason as necessary.

• to respond appropriately to the input.

Ultimately, the goal of NLP is to make computers understand natural language

to the same extent as humans, for such computers assuredly realize the aforemen-

tioned applications and thus enrich our lives. Toward building such a model, NLP

has developed through the cycle of building data to train/evaluate some linguis-

tic capability deemed necessary for natural language understanding (NLU) and

improving models based on the data.

What linguistic capabilities are necessary for NLU? As text is produced consid-

ering the context, it is essential to understand not only the meanings of individual

linguistic units (e.g., clauses and sentences) but also the relations between them in

order to comprehend the overall meaning. Let us consider the following example:

(1) My favorite food is gyoza. I always order it at a ramen restaurant.

When reading this text, we can infer that the second sentence elaborates on the

first one. Based on this inference, we can understand that the writer intended to

express a strong preference for gyoza.

However, how about the following text?

(2) My favorite food is gyoza. You have a cat.

As there is no semantic relation between the two sentences, we cannot understand

the writer’s intention behind the text. As shown in the above examples, the

linguistic capability to infer semantic relations in text is crucial for NLU. Such

semantic relations between text spans are called discourse relations.

Discourse relation is an important textual property that supports the coher-

ence of text (Beaugrande and Dressler, 1981) and facilitates understanding writer’s

intention. In addition to its importance in NLU, a number of discourse relations,

such as causal, temporal, and comparative relations, have broad applicability. For

instance, causal relations extracted from financial text are potentially profitable

for market analysis (Izumi and Sakaji, 2019). Recognizing temporal relations

between events described in text is applicable to the automatic generation of
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timelines. Comparative relations extracted from customer reviews help organize

the pros and cons of a product or service. For these reasons, there have been

studies focused on discourse relations for a long time.

However, automatic recognition of discourse relations is a long-standing and

challenging problem as it requires knowledge about our world beyond natural lan-

guage. Although various linguistic capabilities of computers have significantly im-

proved with the remarkable development of deep learning in recent years, there is

still room for improvement in the linguistic capability to infer discourse relations.

For instance, after the advent of general-purpose language models such as BERT

(Devlin et al., 2019), it has become possible to acquire a considerable amount of

linguistic knowledge through pre-training on large-scale raw corpora. These mod-

els have achieved near human-level performance in fundamental analyses, whereas

it has also been reported that they do not understand basic discourse relations

(Wang et al., 2019; Sap et al., 2019; Bhargava and Ng, 2022). More recently, after

the advent of large language models (LLMs) such as GPT-3 (Brown et al., 2020),

it has become possible to perform a broad variety of NLP tasks from no or a

small number of examples (k-shot learning). However, the k-shot performance of

LLMs on the task of identifying discourse relations has been demonstrated to be

unsatisfactory (Chan et al., 2023). Thus, this thesis aims to improve the linguistic

capability to infer discourse relations toward NLU.

In the modern era where deep learning is thriving, the importance of data for

training/evaluation is increasingly growing. The majority of such data has been

manually constructed. However, this straightforward approach requires a sub-

stantial cost and thus hinders verification in languages other than the major ones,

which receive active investment. Actually, the majority of studies on discourse re-

lations have targeted English even though other languages are also non-negligible.

The overemphasis on English may lead to neglect of language-specific phenom-

ena (Ruder, 2020), especially in languages that are linguistic-typologically distant

from English such as Japanese, and cause disparity between languages. In this

thesis, we primarily target Japanese and explore data generation approaches that

require minimal manual effort.

On the premise that reasoning about discourse relations is crucial for NLU, the
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data constructed in the process of our studies is expected to be useful for human

learning as well as machine learning. It is worth striving for the social return

of the fruits of our studies. We take up the long-standing problem in Japanese

education that elementary school students tend to have an aversion to writing

compositions and challenge an educational application in order to ameliorate the

situation. We also demonstrate the usefulness of discourse relations through the

implementation of the application.

In summary, this thesis endeavors to improve the linguistic capability to infer

discourse relations primarily in Japanese and verify its importance in NLU. We

explore data generation approaches that require minimal manual effort so that we

can implement them in Japanese. Furthermore, we challenge an educational ap-

plication utilizing the data constructed in the process of our studies. The following

sections summarize the literature on relevant topics and discuss our approach.

1.2 Natural Language Understanding

Natural Language Understanding (NLU) is an NLP subfield that aims to make

computers read natural language input correctly. It includes an extensive variety

of NLP tasks as illustrated in Figure 1.1. NLU is often contrasted with Natural

Language Generation (NLG), which is another NLP subfield that aims to make

computers write natural language output correctly.

1.2.1 Discussion about the Definition of “Language Understand-

ing”

Firstly, it is important to discuss the definition of “language understanding”,

although we do not have an answer for it. Let us provide a few examples. The

definition by Bobrow, who developed the NLU system “STUDENT” in the early

days of NLP, is as follows:

“A computer understands a subset of English if it accepts input

sentences which are members of this subset, and answers questions

based on information contained in the input.” (Bobrow, 1964, p. 2)
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Figure 1.1: Terminology of NLU (MacCartney, 2014, p. 8).

As STUDENT is the rule-based system for solving written algebra questions, the

focus at the time was placed on the linguistic capability to respond appropriately

to natural language input. The emphasis on responding appropriately to natural

language input can also be seen in the core idea of Turing Test (Turing, 1950) that

a machine can be considered intelligent if it can convince us through conversation

that it is also a human. However, this definition is now debatable as it has been

reported that some NLP models return a plausible answer even if they do not

fully understand natural language input (Geirhos et al., 2020).

As another example during the development period of NLP, Nagao stated as

follows:

“Language understanding here means to obtain a semantic network

from a text.” (Nagao, 1997, p. 6)

The semantic network refers to some graphical representation that integrates anal-

ysis results of linguistic properties such as dependency, coreference, discourse rela-

tion, and so forth. This engineering definition is based on the NLP technology at

the time (Sowa, 1992; Bates, 1995) and enables us to quantitatively evaluate lan-

guage understanding by comparing a predicted semantic network with the correct

one. Although it is a constructive suggestion, it is also challenging to establish it
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in the field.

With the remarkable development of deep learning, which has greatly im-

proved the linguistic capabilities of computers, there is a growing number of at-

tempts to define “language understanding” anew (Bender and Koller, 2020; Bom-

masani et al., 2021; Merrill et al., 2021). The definition of language understanding

by Bender and Koller, who sparked the discussion, is as follows:

“We take meaning to be the relation M ⊆ E × I which contains

pairs (e, i) of natural language expressions e and the communicative

intents i they can be used to evoke. Given this definition of meaning,

we can now use understand to refer to the process of retrieving i given

e.” (Bender and Koller, 2020, p. 3)

This definition is also paraphrased as “mapping from language to something out-

side of language”. They argued the need for grounding in our world like SHRDLU

(Winograd, 1971).

The definition of language understanding has continued to be discussed through

ages and varied reflecting generic NLP models at the time. However, it has not

yet been well established in NLP.

1.2.2 Bottom-Up Approach to Natural Language Understanding

Instead of defining language understanding, numerous studies have focused on

some linguistic capability deemed necessary for NLU and built data to evalu-

ate/improve it. We refer to such an approach (i.e., to work on evaluating/improving

some linguistic capability) as a bottom-up approach. We introduce Recognizing

Textual Entailment and Machine Reading Comprehension as representative ex-

amples of NLU tasks that have been addressed with a bottom-up approach. We

also mention a recent bottom-up approach to the multifaceted evaluation of NLU.

Recognizing Textual Entailment

Recognizing Textual Entailment (RTE), also known as Natural Language Infer-

ence (NLI) (MacCartney, 2009), is the task of identifying entailment and contra-
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diction relations between text spans. It is formulated as a three-way sentence-pair

classification of “entailment”, “contradiction”, or “neutral” class. An example is

shown below:

(3) Premise: An elderly man selling magazines.

Hypothesis: An old lady selling magazines.

Label: contradiction

In Example (3), the hypothesis is contradictory to the premise as the gender of

the subject in each sentence is different; therefore, it is labeled as “contradiction”.

Regarding the importance of RTE/NLI in NLU, Condoravdi et al. argued as

follows:

“Relations of entailment and contradiction are the key data of seman-

tics, as traditionally viewed as a branch of linguistics. The ability to

recognize such semantic relations is clearly not a sufficient criterion

for language understanding: there is more to language understanding

than just being able to tell that one sentence follows from another.

But we would argue that it is a minimal, necessary criterion.” (Con-

doravdi et al., 2003, p. 1)

Based on such discussion, several RTE/NLI datasets have been built so far (Da-

gan et al., 2006; Bowman et al., 2015; Williams et al., 2018; Welleck et al., 2019;

Nie et al., 2020). RTE/NLI is still actively studied to evaluate/improve model

performance and apply to other NLP tasks, including question answering (Para-

masivam and Nirmala, 2022), summarization (Falke et al., 2019), and learning of

sentence embeddings (Gao et al., 2021).

Machine Reading Comprehension

Machine Reading Comprehension (MRC) is the task of reading text and answering

questions about it. Here is an example retrieved from SQuAD (Rajpurkar et al.,

2016, 2018), which is one of the commonly-used MRC datasets:
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(4) Context: In the past, the Malays used to call the Portuguese Serani from

the Arabic Nasrani, but the term now refers to the modern Kristang creoles

of Malaysia.

Question: Which term used to refer to Kristang creoles of Malaysia?

Answer: Serani

To answer the above question, it is necessary to recognize terms in the context

and choose the most appropriate one according to the question. As shown in the

above example, MRC requires an understanding of linguistic properties, which

vary depending on questions.

The importance of MRC in NLU has long been acknowledged. For instance,

Lehnert stated as follows:

“Because questions can be devised to query any aspect of text com-

prehension, the ability to answer questions is the strongest possible

demonstration of understanding.” (Lehnert, 1978, p. viii)

Indeed, we humans have long tested our understanding through exam questions

and studied the effective use of such questions in various fields. Thus, MRC

has attracted much attention owing to a shared understanding of its importance,

resulting in a prolific NLP task (Zeng et al., 2020).

Recent Bottom-Up Approach to Multifaceted Evaluation of Natural

Language Understanding

As these tasks are different components of NLU, combining them is expected to

make the evaluation of NLU more robust. Based on such an idea, several studies

have constructed a benchmark consisting of a collection of datasets to evaluate

NLU from multiple perspectives (Wang et al., 2018, 2019; Srivastava et al., 2023).

One of the pioneering and representative examples is the General Language Under-

standing Evaluation (GLUE) benchmark (Wang et al., 2018). GLUE consists of

nine existing NLU datasets as organized in Table 1.1 and measures NLU through

the average performance on them.
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Name Task Size

Single-Sentence Tasks

CoLA (Warstadt et al., 2019) linguistic acceptability 11k

SST-2 (Socher et al., 2013) sentiment analysis 70k

Similarity and Paraphrase Tasks

MRPC (Dolan and Brockett, 2005) paraphrase identification 5.8k

STS-B (Cer et al., 2017) sentence similarity 8.6k

QQP paraphrase identification 795k

Inference Tasks

MNLI (Williams et al., 2018) NLI 432k

QNLI (Rajpurkar et al., 2016) QA/NLI 116k

RTE (Dagan et al., 2006) NLI 5.8k

WNLI (Levesque, 2011) coreference resolution/NLI 0.9k

Table 1.1: Overview of the GLUE benchmark (Wang et al., 2018).

Current NLP models have achieved near human-level performance on the

GLUE benchmark, and the target moves on to several subsequent benchmarks

consisting of a collection of more challenging and diverse datasets with the devel-

opment of NLP models. In summary, NLU, and by extension NLP, have developed

through the cycle of building data to train/evaluate some linguistic capability

deemed necessary for NLU and improving models based on the data.

1.2.3 Our Approach to Natural Language Understanding

In light of this trend, we also take a bottom-up approach to NLU. In order to

finally contribute to the multifaced evaluation of NLU, it is important to explore

a linguistic capability that is deemed necessary for NLU but relatively under-

explored. Therefore, we focus on the linguistic capability to infer discourse rela-

tions and work on evaluating/improving it toward NLU.
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My favorite food is gyoza.

I always order it at a ramen restaurant.

On the other hand, I don't like fried rice.

Contrast

Elaboration

Figure 1.2: Example of discourse relations found in text.

1.3 Discourse Relation

Discourse relation refers to the semantic relation between text spans (cf. Figure

1.2). It is an important textual property for understanding the overall meaning

of text. Furthermore, a number of discourse relations are expected to be broadly

applicable and actually have been demonstrated to be beneficial to a few NLU

tasks and applications (Pan et al., 2018; Saito et al., 2019; Kiyomaru et al., 2020;

Tang et al., 2021; Bhargava and Ng, 2022). Nevertheless, the task of identifying

discourse relations has not been addressed as actively as RTE/NLI, MRC, and so

forth. It is worth focusing on discourse relations toward NLU and other potential

applications.

Studies focused on discourse relations have been data-driven, and target dis-

course relations vary depending on language resources. We introduce existing

language resources regarding discourse relations, which are in English unless oth-

erwise noted.

1.3.1 Language Resources regarding Discourse Relations

Several studies have defined discourse relations and built a corpus based on the

definitions. Among them, Penn Discourse Treebank and Rhetorical Structure

Theory Discourse Treebank are representative corpora.

Penn Discourse Treebank

Penn Discourse Treebank (PDTB) (Prasad et al., 2005, 2008,, 2019) is a corpus

built by annotating 2,162 Wall Street Journal (WSJ) articles with discourse rela-

tions between adjacent text spans called arguments. An example is shown below:



1.3. DISCOURSE RELATION 11

(5) Arg1: he’d play for free.

Arg2: You can’t give it up that easily,

Relation: Contingency.Cause.Reason

Connective: “because”

Example (5) indicates that the discourse relation between the two arguments is

labeled as “Contingency.Cause.Reason” and can be lexicalized by the discourse

connective1 “because”. The label “Contingency.Cause.Reason” denotes that the

two arguments have three discourse relations of different granularity: “Contin-

gency”, “Cause”, and “Reason”. In summary, PDTB has two major character-

istics: discourse relations are defined hierarchically and lexicalized by some dis-

course connectives. In addition, the two arguments do not contain any discourse

connectives, which is called implicit discourse relation.

Table 1.2 organizes discourse relations defined in the latest version of PDTB

(3.0). Level-1, which is the highest and most coarse-grained, consists of four major

classes. Level-2 sub-divides Level-1 into 22 more fine-grained classes, and Level-3

is defined to distinguish Level-2 discourse relations that have directionality (e.g.,

cause and effect). When using PDTB, the linguistic capability to infer discourse

relations is usually measured by the classification performance of Level-1 or Level-

2 discourse relations.

Rhetorical Structure Theory Discourse Treebank

Rhetorical Structure Theory Discourse Treebank (RST-DT) (Carlson et al., 2001,

2002) is a corpus built by annotating 385 WSJ articles with discourse structure

based on Rhetorical Structure Theory (RST) (MANN and THOMPSON, 1988).

Figure 1.3 illustrates an example of discourse annotation based on RST. In RST,

text is first segmented into elementary discourse units (EDUs).2 Next, EDUs are

converted into a tree structure by recursively merging adjacent ones. This tree

structure is called an RST tree, where each node and edge represent an EDU and

1A word or phrase that indicates certain discourse relation such as “and”, “but”, “for exam-

ple”, and so forth.
2EDU refers to the minimal discourse unit, which typically corresponds to a clause.
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Level-1 Level-2 Level-3

TEMPORAL

SYNCHRONOUS -

ASYNCHRONOUS
PRECEDENCE

SUCCESSION

CONTINGENCY

CAUSE

REASON

RESULT

NEGRESULT

CAUSE+BELIEF
REASON+BELIEF

RESULT+BELIEF

CAUSE+SPEECHACT
REASON+SPEECHACT

RESULT+SPEECHACT

CONDITION
ARG1-AS-COND

ARG2-AS-COND

CONDITION+SPEECHACT -

NEGATIVE-CONDITION
ARG1-AS-NEGCOND

ARG2-AS-NEGCOND

NEGATIVE-CONDITION+SPEECHACT -

PURPOSE
ARG1-AS-GOAL

ARG2-AS-GOAL

COMPARISON

CONCESSION
ARG1-AS-DENIER

ARG2-AS-DENIER

CONCESSION+SPEECHACT ARG2-AS-DENIER+SPEECHACT

CONTRAST -

SIMILARITY -

EXPANSION

CONJUNCTION -

DISJUNCTION -

EQUIVALENCE -

EXCEPTION
ARG1-AS-EXCPT

ARG2-AS-EXCPT

INSTANTIATION
ARG1-AS-INSTANCE

ARG2-AS-INSTANCE

LEVEL-OF-DETAIL
ARG1-AS-DETAIL

ARG2-AS-DETAIL

MANNER
ARG1-AS-MANNER

ARG2-AS-MANNER

SUBSTITUTION
ARG1-AS-SUBST

ARG2-AS-SUBST

Table 1.2: Discourse relations defined in PDTB 3.0 (Prasad et al., 2019). For

space limitation, we omit the definition of each discourse relation, which can be

confirmed in the annotation manual (Webber et al., 2019).
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If you think that you have been injured  
by being in this study

please let the investigator  
know right awayAttribution

Condition

"If you think that you have been injured by being in this study,  
please let the investigator know right away"

Figure 1.3: Example of discourse annotation based on RST.

dependency between EDUs, respectively. Then, the relative importance between

nodes of each edge (nuclearity) is analyzed. Finally, discourse relation is assigned

to each edge based on its nodes and nuclearity. RST focuses on the discourse

structure of text rather than the semantic relations between adjacent text spans

(i.e., discourse relations).

Table 1.3 organizes discourse relations defined in RST-DT. In RST-DT, 78

discourse relations are defined and further classified into 16 classes. There are

also three syntactic relations defined to impose structure on an RST tree. When

using RST-DT, the linguistic capability to infer discourse relations is measured

by comparing a predicted RST tree with the correct one.

The major differences between PDTB and RST-DT are summarized as follows:

• PDTB and RST-DT focus on discourse relations and discourse structure of

text, respectively.

• PDTB is much larger than RST-DT as PDTB and RST-DT consist of 2,162

and 385 annotated WSJ articles, respectively.

• While PDTB discourse relations are defined hierarchically and lexicalized by

some discourse connectives, RST-DT discourse relations consider nuclerity.

PDTB is suitable for extracting local discourse relations. In contrast, RST-DT is

fit for applications that require an understanding of the discourse structure of text,
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Class Relations

Attribution attribution, attribution-negative

Background background, circumstance

Cause cause, result, consequence

Comparison comparison, preference, analogy, proportion

Condition condition, hypothetical, contingency, otherwise

Contrast contrast, concession, antithesis

Elaboration

elaboration-additional, elaboration-general-specific, elaboration-

part-whole, elaboration-process-step, elaboration-object-attribute,

elaboration-set-member, example, definition

Enablement purpose, enablement

Evaluation evaluation, interpretation, conclusion, comment

Explanation evidence, explanation-argumentative, reason

Joint list, disjunction

Manner-Means manner, means

Topic-Comment
problem-solution, question-answer, statement-response, topic-

comment, comment-topic, rhetorical-question

Summary summary, restatement

Temporal
temporal-before, temporal-after, temporal-same-time, sequence, in-

vertedsequence

Topic Change topic-shift, topic-drift

Schemata textual-organization, span, same-unit

Table 1.3: Discourse relations defined in RST-DT (Carlson et al., 2002). For

space limitation, we omit the definition of each discourse relation, which can be

confirmed in the annotation manual (Carlson and Marcu, 2001).

such as summarization. These and other corpora, such as Discourse Graphbank

(Wolf and Gibson, 2005), have been utilized differently according to applications.
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Knowledge Bases and Benchmarks regarding Discourse Relations

There are a few knowledge bases and benchmarks regarding discourse relations,

which include ASER and DiscoSense. ASER (Activities, States, Events, and their

Relations) (Zhang et al., 2020) is a knowledge base built by extracting event pairs

that are connected with certain discourse connectives and expanding them us-

ing bootstrapping (Agichtein and Gravano, 2000). This knowledge base utilizes

discourse connectives that almost uniquely determine their discourse relations re-

ferring to PDTB. DiscoSense (Bhargava and Ng, 2022) is a multiple-choice QA

dataset consisting of 13k questions that ask the most appropriate sentence follow-

ing a given context and discourse connective. This dataset measures an under-

standing of discourse relations through discourse connectives.

Language Resources regarding Discourse Relations in non-English Lan-

guages

While both PDTB and RST-DT are in English, similar corpora have also been

built in non-English languages with reference to them. Specifically, PDTB-style

corpora have been built in Turkish (Zeyrek and Webber, 2008), Hindi (Oza et al.,

2009), French (Danlos et al., 2012), Cheze (Poláková et al., 2013), Chinese (Zhou

and Xue, 2015; Jiang et al., 2018), and so forth. Their annotation schemes differ,

reflecting the characteristics of each language.3 There also exist RST-style corpora

in German (Stede, 2004; Stede and Neumann, 2014), Spanish (da Cunha et al.,

2011), Dutch (Vliet et al., 2011), and so forth. As shown in the above examples,

studies on discourse relations have developed based on representative corpora.

1.3.2 Language Resources regarding Contingency

Contingency is the discourse relation between events established when one is likely

to cause the other. It covers a broad range of causal relations and thus is crucial

for our intellectual activities. Owing to its importance and broad applicability,

several studies have constructed language resources regarding contingency apart

3For instance, Chinese PDTB (Zhou and Xue, 2015) adopts flat 11-way discourse relations

and skips annotating discourse connectives of implicit discourse relations.
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from the aforementioned ones.

For instance, ATOMIC (Sap et al., 2019) is a commonsense knowledge base

comprising 877k pairs of basic event expressions that have contingent relation.

This knowledge base has been constructed by extracting frequent event expres-

sions from corpora and manually annotating contingent relations associated with

each event by crowdsourcing. The updated version of ATOMIC (Hwang et al.,

2021) incorporates a part of ConceptNet (Speer et al., 2017), which accumulates

various relations between basic concepts. Thus, it contains a broad range of con-

tingent relations between entities and events as organized in Table 1.4.

There also exist several benchmarks regarding contingency such as COPA,

SWAG, and Social IQA. COPA (Choice Of Plausible Alternatives) (Roemmele

et al., 2011) is a QA dataset consisting of 1k questions that ask causal relation

between daily events. Each question is manually created by experts. SWAG (Sit-

uations With Adversarial Generations) (Zellers et al., 2018) is a multiple-choice

QA dataset comprising 113k questions that ask the most appropriate verb phrase

following a given context. This dataset measures an understanding of contingent

relation between actions through inferring a consecutive verb phrase. Social IQA

(Social Intelligence QA) (Sap et al., 2019) is also a multiple-choice QA dataset

consisting of 38k questions regarding social commonsense knowledge. Each ques-

tion is manually created by crowdsourcing based on a triple from ATOMIC.

1.3.3 Current Status of Discourse Relation Recognition

The linguistic capability to infer discourse relations has been measured through

a discourse relation recognition task. Discourse Relation Recognition (DRR) is

the task of identifying the discourse relation given a pair of text spans, which is

often evaluated using a PDTB-style corpus. In particular, that focused on implicit

discourse relations is called Implicit Discourse Relation Recognition (IDRR). The

following paragraphs outline the current status of DRR.

One of the major recent turning points in NLP is the advent of general-purpose

language models such as BERT. BERT (Devlin et al., 2019) is a Transformer-based

encoder-only model (Vaswani et al., 2017) that receives a sequence of tokens and

returns a contextualized embedding of each token. This and subsequent models
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HEAD Relation Tail Size
P

H
Y

S
IC

A
L

-E
N

T
IT

Y

bread

ObjectUse make french toast 165,590

AtLocation basket; pantry 20,221

MadeUpOf dough; wheat 3,345

HasProperty cooked; nice to eat 5,617

baker

CapableOf coat cake with icing 7,968

Desires quality ingredients 2,737

Not Desires bad yeast 2,838

E
V

E
N

T
-C

E
N

T
E

R
E

D

X runs out of steam

IsAfter X exercises in the gym 22,453

HasSubEvent become tired 12,845

IsBefore X hits the showers 23,208

HinderedBY drinks too much coffee 106,658

Causes takes a break 376

xReason did not eat breakfast 334

X watches anyway isFilledBy bad yeast 33,266

S
O

C
IA

L
-I

N
T

E
R

A
C

T
IO

N

X runs out of steam

xNeed do something tiring 128,955

xAttr old; lazy; lethargic 148,194

xEffect drinks some water 115,124

xReact tired 81,397

xWant to get some energy 135,360

X votes for Y

xIntent to give support 72,677

oEffect receives praise 80,166

oReact grateful; confident 67,236

oWant thank X; celebrate 94,548

Table 1.4: Social and physical commonsense relations defined in ATOMIC 2020

(Hwang et al., 2021). They include a number of contingent relations such as

“Causes”.

have become capable of acquiring a considerable amount of linguistic knowledge

through pre-training on large-scale raw corpora. Fine-tuning according to a down-

stream task has led to new state-of-the-art performance on various NLP tasks.

This improvement was no exception in DRR (Xiang and Wang, 2023). How-
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ever, it has also been reported that these models are incapable of correctly an-

swering some questions that ask basic discourse relations (Wang et al., 2019; Sap

et al., 2019; Bhargava and Ng, 2022).

Another turning point is the advent of large language models (LLMs) such as

GPT-3. GPT-3 (Brown et al., 2020) is a Transformer-based decoder-only model

that autoregressively generates tokens following a sequence of input tokens. These

LLMs have become capable of performing a broad variety of NLP tasks from no

or a small number of examples by scaling up the model and data size.

However, the k-shot performance of LLMs in IDRR has been demonstrated

to be far behind the fine-tuning performance of much smaller language models.

Specifically, the zero-shot performance of ChatGPT on PTDB 2.0 is Micro-F1 of

27.0 (Chan et al., 2023), whereas BERT has achieved Micro-F1 of 51.4 (Kishimoto

et al., 2020).

As outlined above, DRR, especially IDRR, is a long-standing and challenging

problem. In addition, this is the current status of DRR in English; there is much

room for exploration in non-English languages.

1.3.4 Our Approach to Discourse Relation Recognition

Against the above background, we work on improving the linguistic capability to

infer discourse relations primarily in Japanese. Considering that the performance

of neural language models empirically improves in proportion to the amount of

training data (Hestness et al., 2017; Kaplan et al., 2020; Rosenfeld et al., 2020;

Henighan et al., 2020; Bahri et al., 2021), it is important to delve into methodology

to construct high-quality data. Therefore, we explore data generation approaches

that require minimal manual effort so that we can implement them in Japanese.

1.4 Outline of the Thesis

The objectives of this thesis are summarized as two folds: to improve the linguistic

capability to infer discourse relations primarily in Japanese and to explore its

applications to other NLU tasks and human learning. The rest of this thesis

describes our studies toward these objectives.
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Figure 1.4: Outline of the thesis.

In Chapter 2, we present our work on building a Japanese dataset focused on

the linguistic capability to infer basic contingency (hereafter, commonsense contin-

gency reasoning). Contingency is the discourse relation between events established

when one is likely to cause the other. Despite its importance and broad applicabil-

ity, there has existed no large-scale Japanese dataset for commonsense contingency

reasoning. To solve this issue, we propose a method of semi-automatically gener-

ating multiple-choice questions that ask basic contingency from text and build a

Japanese dataset according to the proposed method.

In Chapter 3, we work on improving model performance utilizing the con-

structed dataset. We automatically generate large-scale pseudo-problems by uti-

lizing the scalability of the aforementioned proposed method and attempt to im-

prove commonsense contingency reasoning by this data augmentation. We also

investigate the generality of knowledge about basic contingency through quantita-

tive evaluation by performing transfer learning from a commonsense contingency

reasoning task to the related tasks.

In Chapter 4, we present our work on improving discourse relation recognition

(DRR) by synthetic data. As near human-level performance has been achieved

on our constructed dataset thanks to pseudo-problems, we expand our focus from
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contingency to discourse relations and work on improving DRR. Regarding DRR,

one of the biggest issues is the paucity of training data for some error-prone

discourse relations. To alleviate this issue, we propose a method of generating

synthetic data for these error-prone discourse relations using a large language

model.

In Chapter 5, we introduce an educational application utilizing the data con-

structed in the process of our studies. Considering the importance of contingency

reasoning in NLU, the data constructed in the process of our studies is expected

to be useful for human learning as well as machine learning. Thus, we take up

the long-standing problem in Japanese education that elementary school students

tend to have an aversion to writing compositions and challenge an educational

application utilizing our constructed data in order to ameliorate the situation.

In Chapter 6, we conclude this thesis and discuss the future prospects of our

studies.



Chapter 2

Building a Commonsense

Contingency Reasoning

Dataset

2.1 Introduction

The realization of natural language understanding (NLU) by computers is the

ultimate goal of natural language processing (NLP). Toward this goal, there have

been numerous studies that consider task settings to train/evaluate NLU by com-

puters and build the data (Wang et al., 2018, 2019; Srivastava et al., 2023). In

such initiatives, it has been argued that acquiring knowledge about both language

(e.g., syntax and meanings of words and phrases) and our world beyond language

is necessary for the realization of NLU by computers.

After the advent of general-purpose language models such as BERT (Devlin

et al., 2019), the problem of acquiring knowledge about language has been solved

to a large extent through pre-training on large-scale raw corpora. It is now possible

to represent the meaning of a word according to its context as a vector. Fine-

tuning based on these vectors has led to near human-level performance in natural

language inference (NLI), shallow question answering, and so forth.

On the other hand, there are still some issues left with acquiring knowledge

21
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about our world beyond language. As it is open-ended, the data focused on

the fundamental part of it (i.e., commonsense knowledge) has been actively con-

structed. One of the issues there is how to focus on commonsense knowledge in

order to acquire it from extensive knowledge.

Several approaches have been attempted to guarantee such generality of knowl-

edge. SWAG (Zellers et al., 2018), for instance, focuses on knowledge about daily

events that can be visually perceived by utilizing video captions. However, this

approach limits the range of knowledge that can be acquired. CommonsenseQA

(Talmor et al., 2019) is based on the basic vocabulary that is covered by Concept-

Net (Speer et al., 2017). This approach lacks scalability as it can create only 12k

questions from the whole ConceptNet.

Another issue is that biases in dataset construction must be reduced as much

as possible. In the above two approaches, distractor sentences or questions were

produced from a language model or by crowdsourcing, which induces generation

bias of a language model or annotation artifacts1 (Gururangan et al., 2018).

To solve these issues, we attempt to generate problems from text (a raw corpus)

rather than create problems manually or based on manually constructed language

resources. We propose a method of extracting pairs of basic event expressions that

have contingent relation from a raw corpus, verifying them through crowdsourcing,

and generating multiple-choice questions from the verified pairs.

Basic event expressions (hereafter, basic events) are defined as events (Saito

et al., 2018; Kiyomaru, 2022) composed of high-frequency predicate-argument

structures that are extracted from a raw corpus and aggregated by clustering ac-

cording to their usages. According to this definition, we automatically extract

pairs of basic events that have contingent relation with the clue of discourse con-

nectives. We call them contingent basic event pairs.

Examples of contingent basic event pairs are shown below.

(1) a. I am hungry, so I have a meal.

b. If I have a meal, I get sleepy.

1Certain patterns (biases) of vocabulary, style, and so forth contained in crowdworkers’ writ-

ing.
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I am hungry, so

a. I drink coffee.

✓ b. I have a meal.

c. I sweat.

d. I get sleepy.

Figure 2.1: Example of a commonsense contingency reasoning problem. ✓ denotes

the correct choice.

c. Since I am sleepy, I drink coffee.

d. If I exercise hard, I sweat.

Based on these contingent basic event pairs, we can generate a commonsense

contingency reasoning problem by adopting the latter events of other pairs

as distractors (cf. Figure 2.1).

As the proposed method is based on automatic extraction from a raw cor-

pus, it is scalable and does not limit the domain. In addition, there is no bias

induced by crowdsourcing because we ask crowdworkers to just verify sentences.

Furthermore, the proposed method is relatively language-independent as it does

not depend heavily on crowdsourcing or manually constructed language resources,

and discourse connectives are ubiquitous in various languages.

In this study, we construct a Japanese commonsense contingency reasoning

dataset by applying the proposed method to a Japanese web corpus. We verify

its usefulness through experiments.

The contributions of this study are summarized as follows:

• We propose a semi-automatic (scalable and low-cost) method for building

a commonsense contingency reasoning dataset, which combines automatic

extraction from a raw corpus and crowdsourcing.

• According to the proposed method, we built a Japanese commonsense con-

tingency reasoning dataset comprising 104k multiple-choice questions from

a Japanese web corpus.

• We confirmed that there was a reasonable gap in the linguistic capability to
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infer basic contingency between computers and humans and negligible bias

in the constructed dataset.2

2.2 Related Work

Existing language resources for commonsense reasoning can be classified into

knowledge bases and QA datasets.

2.2.1 Knowledge Bases for Commonsense Reasoning

Commonsense knowledge bases have been constructed by experts, crowdsourcing,

or games with a purpose. They include Cyc, ConceptNet, and ATOMIC.

Cyc (OpenCyc) (Lenat, 1995) is a commonsense knowledge base that accu-

mulates commonsense knowledge transcribed by experts in certain notation, the

size of which amounts to 2.4 million triples. Although the quality is high ow-

ing to manual construction by experts, it takes a considerable amount of time to

construct this knowledge base.

ConceptNet (Speer et al., 2017) is a multilingual commonsense knowledge

base that is primarily sourced from Open Mind Common Sense (OMCS) (Singh

et al., 2002), the size of which amounts to 2.8 million triples with two English

concepts (Otani et al., 2018). This knowledge base incorporates OpenCyc and

thus includes various relations between basic concepts, although the number of

contingent relation between events is not large.

ATOMIC (Sap et al., 2019) is a commonsense knowledge base comprising 877k

pairs of basic events that have contingent relation (cf. Section 1.3.2). The authors

collected these pairs by crowdsourcing based on frequent events extracted from

corpora. This knowledge base has been updated for further coverage (Hwang

et al., 2021).

These fully manual or crowdsourcing approaches require a substantial cost

and lack scalability. In addition, how to incorporate such knowledge bases into

an NLP model has been studied but has not been established yet.

2We named the constructed dataset “the Kyoto University Commonsense Inference dataset

(KUCI)” and released it to the public (https://nlp.ist.i.kyoto-u.ac.jp/EN/?KUCI).
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2.2.2 QA Datasets for Commonsense Reasoning

Numerous QA datasets for commonsense reasoning have been built so far. They

include COPA, SWAG, and CommonsenseQA.

COPA (Roemmele et al., 2011) consists of 1k two-choice questions that ask

causal relation between daily events. Each question presents a premise sentence

and requires to choose its cause or effect sentence from two alternatives. This

dataset has been manually created for the purpose of evaluation and is too small

to learn commonsense knowledge.

SWAG (Zellers et al., 2018) is a commonsense reasoning dataset comprising

113k multiple-choice questions that ask the most appropriate verb phrase following

a given context. Questions were created from video captions to ensure the target

knowledge is common sense; thus, the domain of the dataset is limited to physical

phenomena. Each question is based on two consecutive sentences extracted from

video captions, where the first sentence and the subject of the second sentence

constitute context, and the rest is regarded as a correct choice. The authors

generated distractors from a language model and removed those that were easily

discriminated by a discriminative model for quality control. However, SWAG was

solved by BERT with near human-level performance. This is attributed to biases

that are embedded in distractors by an LSTM-based language model (Hochreiter

and Schmidhuber, 1997) and detected by BERT (Zellers et al., 2019). They built

HellaSwag (Zellers et al., 2019) anew using a superior language model to make

biases undetectable by BERT. However, it has also been reported that HellaSwag

also contains similar biases (Tamborrino et al., 2020). The bias issue has not been

solved yet.

CommonsenseQA (Talmor et al., 2019) is a commonsense reasoning dataset

consisting of 12k multiple-choice questions that ask the most appropriate concept3,

given a question. Each question is manually created by crowdsourcing based on a

subgraph extracted from ConceptNet. The subgraph consists of one source con-

cept and three target concepts connected with the same relation. A crowdworker

writes a question sentence that contains the source concept and whose answer is

only one of the target concepts. This approach depends on the manually con-

3Usually, a word or phrase.
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structed language resource, ConceptNet, and lacks scalability. Furthermore, it

may induce annotator bias in question sentences (Geva et al., 2019) as the load

of creating question sentences is heavy for crowdworkers.

In addition to these datasets, there exist others focused on certain kind of

commonsense reasoning ability, such as Social IQA (Social Intelligence QA) re-

garding social commonsense knowledge (Sap et al., 2019) and PIQA (Physical

Interaction: Question Answering) regarding physical commonsense knowledge

(Bisk et al., 2020). There also exist several datasets that do not directly eval-

uate commonsense reasoning ability but require commonsense knowledge to an-

swer a question, which include Winograd Schema Challenge (WSC) (Levesque,

2011) and WinoGrande that was built by creating 44k WSC-style questions using

crowdsourcing (Sakaguchi et al., 2020). Any of these datasets is manually created

or based on manually created language resources, and the aforementioned issues

may be pointed out.

While most of the above datasets are multiple-choice QA tasks ranging from

two to five choices, there have also been attempts to evaluate commonsense rea-

soning ability as a generative task. CommonGen (Lin et al., 2020), which is one

of the representative examples, consists of 35k constrained sentence generation

problems created using image captions, ConceptNet, and crowdsourcing. Specifi-

cally, given several words that express objects or actions, the task is to generate

sentences that describe everyday situations using all the words. For instance,

given the words “dog”, “frisbee”, “catch”, and “throw”, the expected behavior is

to generate a sentence like “A dog leaps to catch a thrown frisbee”. A generative

task evaluates commonsense reasoning ability more directly, whereas there has

been no established automatic evaluation metric yet, which makes it challenging

to compare model performance. Furthermore, it is often impractical to prepare

several references for each problem in order to make automatic evaluation more

robust. A multiple-choice QA task has the advantage of making it easy to ob-

jectively compare model performance based on accuracy though it limits output

candidates.



2.3. PROPOSED METHOD 27

2.3 Proposed Method

A commonsense contingency reasoning problem consists of a context and four

choices. The task is to choose the most appropriate choice as the continuation of

a given context, as illustrated in Figure 2.1. We humans infer basic contingency

in everyday situations, such as reading text and having a conversation; therefore,

the problem examines the linguistic capability crucial for NLU.

To ensure the target knowledge is common sense to some extent, these prob-

lems are based on basic events and generated from contingent basic event pairs

verified through crowdsourcing. In addition, we combine automatic extraction

from a raw corpus and verification through crowdsourcing to avoid impairing

scalability and inducing unintended biases. The proposed method of generating

commonsense contingency reasoning problems consists of the following four steps

(cf. Figure 2.2):

1. Acquire high-frequency predicate-argument structures (hereafter, core

events) from case frames (Kawahara and Kurohashi, 2006; Kawahara et al.,

2014).

2. Extract contingent basic event pairs, event pairs that are unambiguously

connected by some discourse connectives representing contingent relation

and composed of core events, from parsed text.

3. Verify through crowdsourcing whether the extracted pairs actually have con-

tingent relation or not.

4. Generate problems by taking one of the verified pairs (hereafter, base) and

choosing distractors from the latter events of other pairs that are moderately

similar to the base.

The following subsections describe the details of each step.

2.3.1 Acquisition of Core Events

Basic events in this study are defined as events composed of high-frequency

predicate-argument structures (core events) that are extracted from a raw cor-
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Veri�ed Contingent 
Basic Event Pairs 

Crowdsourcing

Contingent
Event Pairs 

Commonsense Contingency 
Reasoning Problems 

   I am hungry, so I have a meal. 
   If I have a meal, I get sleepy. 
   Since I am sleepy, I drink coffee. 
   If I exercise hard, I sweat 

  ⋮

Parsed 
Web Text

Contingent 
Basic Event Pairs 

Basic
Condition 

Case Frames

   Be hungry 
   Have a meal 
   It rains 
      ⋮  

Core Events

①

②

③

 I am hungry, so 
 a. I drink coffee. 
 b. I have a meal. 
 c. I sweat. 
 d. I get sleepy.

④

Reliable 
Condition 

A⇒B A⇏B

Figure 2.2: Overview of the proposed method of generating commonsense contin-

gency reasoning problems.

pus and aggregated by clustering according to their usages. As the source of

core events, we employ case frames (Kawahara and Kurohashi, 2006; Kawa-

hara et al., 2014), which are automatically constructed by clustering predicate-

argument structures.

In the case frame data, each predicate has multiple case frames distinguished

according to their usages. Each case frame consists of multiple case slots, and each

case slot contains possible case fillers. Table 2.1 exemplifies a few case frames of

the Japanese verb “壊す [kowasu]”.

In this study, we extract high-frequency predicate-argument structures from
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Case frame Case slots Case fillers

kowasu-1
(injure)

ga 1756 I 83, person 65, ...

wo 70135 stomach 25643, body 17242, ... , kidney 85, ...

de 3941 stress 297, eating 174, ...

kowasu-2
(destroy)

ga 502 person 42, Japan 42, ...

no 10147 place 873, room 851, ...

wo 18274 atmosphere 8140, impression 3774, ...

...

Table 2.1: Examples of Japanese case frames. ga, wo, de, and no roughly cor-

respond to nominative, accusative, instrumental, and genitive cases, respectively.

The number following a case or a case filler represents its frequency. For space

limitation, examples are expressed only in English.

Case frame Case slots Case fillers

kowasu-1 (injure) wo stomach, body

kowasu-2 no place, room

(destroy) wo atmosphere, impression

Table 2.2: Examples of core events acquired from the case frames in Table 2.1.

case frames as core events. First, top-α frequent predicates in active voice are

extracted from the case frame data. For each predicate, case frames, case slots,

and case fillers are chosen in decreasing order of frequency until the cumulative

sum of frequencies reaches β%, γ%, and δ%, respectively. For instance, case

frames are chosen until covering β% of the frequency of a target predicate. These

thresholds are empirically set according to a target language.

Table 2.2 shows examples of core events acquired from the case frames in Table

2.1. The parameters for acquiring Japanese core events are described in Section

2.4.1.
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2.3.2 Extraction of Contingent Basic Event Pairs

We apply dependency and discourse parsing to a raw corpus and automatically

extract event pairs connected with both dependency and contingency. Event is

the linguistic unit that expresses a single action or state and roughly corresponds

to a clause or predicate-argument structure with some modifiers (Saito et al., 2018;

Kiyomaru, 2022). The contingent relation between events should be expressed by

some discourse connective and causal or conditional relation, corresponding to

“Contingency.Cause” or “Contingency.Condition” in Penn Discourse Treebank

(Prasad et al., 2008, 2019).

To choose a reliable part from analysis results and extract commonsense event

pairs, we filter event pairs by the following conditions. Here, we call the first event

in each event pair that represents a cause, reason, or condition former event and

the second event latter event.

Reliable The former and latter events are unambiguously connected.

In the case that only two clauses (events) exist in a sentence, there is no

ambiguity. In the case that more than two clauses exist in a sentence, we

extract a reliable part according to a language-dependent criterion. The

criterion for Japanese is described in Section 2.4.2.

Basic Both the former and latter events are composed of a core event.

This condition can be applied in a straightforward manner, but we need to

take care of the case that an argument in the latter event is pronominalized

or omitted. If the latter event does not have an explicit argument, we

attempt to recover it with any of the arguments in the former event and

examine whether the recovered latter event is composed of a core event.

For instance, let us consider the event pair “Glass breaks on impact → I

replace it”. In this case, we generate the recovered latter events “I replace

glass” and “I replace impact” by substituting an argument in the former

event for “it”. We then examine whether either of them is composed of a

core event and extract this event pair because “replace glass” is a core event.
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Finally, the following post-processing is performed so that crowdworkers in

the next step can more accurately judge event pairs.

• Count the frequency of core events contained in (unverified) contingent basic

event pairs and exclude event pairs that contain one of the high-frequency

core events to remove those that are trivial or contain web-specific functional

expressions. For instance, “問題がない (have no problem)” and “情報が満載
(have much information)” are detected as high-frequency trivial core events

in Japanese.

• Exclude event pairs that contain demonstratives or unknown words.

• Deduplicate event pairs based on pairs of predicate-argument structure con-

stituting each event pair.

2.3.3 Verification of Contingent Basic Event Pairs through Crowd-

sourcing

We verify contingent basic event pairs through crowdsourcing. Specifically, we

ask crowdworkers to select one of the following two options for each event pair.

1. A is a cause or reason of B.

2. Other relations or no relation.

Here, “A” and “B” denote the former and latter events, respectively.

We ask multiple crowdworkers to evaluate each event pair and adopt the eval-

uation that half or more of them agree. We finally obtain event pairs whose

aggregated evaluation is “A is a cause or reason of B” as contingent basic event

pairs.

2.3.4 Generation of Commonsense Contingency Reasoning Prob-

lems

We automatically generate commonsense contingency reasoning problems from

the verified contingent basic event pairs. We take one of the verified pairs (base)
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and use the former event as a context and the latter event as a correct choice.

Distractors are automatically selected from the latter events of other pairs.

In general, remarkably similar distractors to the correct choice are not dis-

tinguishable even by humans. On the other hand, dissimilar distractors can be

easily distinguished by computers. Thus, we choose distractors that are moder-

ately similar to the correct choice under the following conditions.

Choice-Similarity The similarity between the correct choice and a candidate

latter event is in the range RANGEchoice.

This similarity is computed using the cosine similarity between vectors of

(latter) events. This vector is defined as an average vector of content words

contained in an event.

Context-Similarity The similarity between the context and the former event of

a candidate latter event is in the range RANGEcontext.

This similarity is computed in the same way as the condition Choice-Similarity.

To improve the appearance of problems, we choose distractors whose ratio of the

number of words against the correct choice is in the range RANGElength.4

If more than three distractors are obtained, we randomly select three out of

them. If less than three distractors are obtained, we do not generate a problem

from the base.

2.4 Building a Japanese Dataset

We built a Japanese commonsense contingency reasoning dataset according to the

proposed method described in Section 2.3.

2.4.1 Acquisition of Core Events

We extracted Japanese core events from the Kyoto University case frames,5 which

had been constructed from 10 billion sentences in web domain. We set the thresh-
4As a result of the preliminary experiment, we confirmed that this condition did not affect

model performance. Hence, we do not investigate the effect of this condition.
5https://www.gsk.or.jp/catalog/gsk2018-b
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olds α, β, γ, and δ to 5,000, 75, 50, and 50, respectively. As a result, we acquired

about 14 million core events from 28,642 case frames. Examples of the acquired

core events have already been shown in Table 2.2.

2.4.2 Extraction of Contingent Basic Event Pairs

We automatically extracted contingent basic event pairs from a Japanese web

corpus comprising 0.7 billion sentences. This corpus is part of an in-house corpus

that has been constructed by crawling web text from 2006 to 2015. First, we used

the Japanese analyzer, KNP6 (Kurohashi and Nagao, 1994), and EventGraph7

(Saito et al., 2018) to extract event pairs from the corpus. KNP performs de-

pendency parsing and labels explicit discourse relations between clauses (events)

based on discourse connectives, and EventGraph is the tool that formats analysis

results by KNP into event units. As a result, 85 million contingent event pairs

were extracted.

Then, to extract reliable basic event pairs, the Reliable and Basic conditions

were applied to the contingent event pairs. For the Reliable condition, if there are

more than two clauses in a sentence, we extract only the last two clauses because

the dependency goes from left to right in Japanese.

Finally, we performed the post-processing and extracted 164,910 contingent

basic event pairs. The detailed statistics are organized in Table 2.3.

Preliminary Investigation of Basic Condition To investigate the effective-

ness of the Basic condition, we randomly selected 100 event pairs from “+Reliable”

and “+Reliable+Basic” in Table 2.3, and manually evaluated them. For conve-

nience, we name each set of the selected event pairs “R” and “RB”, respectively.

As a result of the manual evaluation, 47 event pairs in “R” and 76 event pairs

in “RB” were judged as understandable with commonsense knowledge. Here are

examples in “R” excluded by the Basic condition:

(2) 魔力カウンターの乗っていない「魔法都市エンディミオン」に対してサイク
ロンを発動すると→破壊できる

6http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?KNP
7https://github.com/ku-nlp/pyknp-eventgraph
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Item Number

sentences 714,605,164

contingent event pairs 85,357,299

+Reliable 51,904,745

+Reliable+Basic 517,321

+post-processing 164,910

Table 2.3: Detailed statistics regarding extraction of contingent basic event pairs.

For instance, the value of “+Reliable” represents the number of contingent event

pairs that satisfy the Reliable condition.

(activate Cyclone against “Magical Citadel of Endymion” without a spell

counter on it→can destroy {it})8

(3) すると，→泣きやすい
(do→be quick to tears)

Thanks to the Basic condition, we can remove event pairs that contain domain-

specific expressions or lack essential complements. In this sense, the Basic condi-

tion is effective in acquiring commonsense knowledge.

2.4.3 Verification of Contingent Basic Event Pairs through Crowd-

sourcing

We sorted out contingent basic event pairs through crowdsourcing. Regarding a

crowdsourcing service, we used Yahoo! Crowdsourcing.9 Each crowdworker was

presented with 17 event pairs per task and chose one from the two options for

each event pair (cf. Figure 2.3). 2 out of the 17 event pairs were attention-check

with a hidden ground truth, and the answers of crowdworkers who incorrectly

judged these event pairs were excluded. Each event pair was verified by four

crowdworkers, and we chose the event pairs two or more of whose evaluations are

“A is a cause or reason of B”.

8{} indicates a dropped pronoun.
9https://crowdsourcing.yahoo.co.jp/
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Con�rm and go next

Con�rm and go next

A is a cause or reason of B

Other relation or no relation

A. I drink coffee
B. I feel more awake

You are presented with two sentences, A and B, that describe an event or a situation. 

Con�rm and go next

Please choose one of the following choices about the relationship between A and B. 

Figure 2.3: Crowdsourcing interface for verifying contingent basic event pairs

(English translated version).

As a result of crowdsourcing, 104,266 out of 164,910 contingent basic event

pairs were chosen, which indicates that approximately one-third of the pairs were

removed. This ratio roughly corresponds to the result of the aforementioned

preliminary investigation of the Basic condition. The total cost of crowdsourcing

was 484,000 JPY, and the cost per problem was 4.7 JPY.

2.4.4 Generation of Commonsense Contingency Reasoning Prob-

lems

Finally, we automatically generated commonsense contingency reasoning problems

from the verified contingent basic event pairs. The similarity range RANGEchoice

in the condition Choice-Similarity was set to the range of (0.4, 0.6), and

RANGEcontext in Context-Similarity to (0.5, 0.7). We set RANGEcontext slightly

higher than RANGEchoice because Context-Similarity controls the similarity to the

correct choice more indirectly than Choice-Similarity. To compute the similarity

between events, we used word vectors that were induced from 200 million sentences

of the Japanese web corpus using word2vec.10 The length range RANGElength was

set to the range of (0.5, 2.0).

As a result of generation, 103,907 problems were generated from the 104,266

10https://code.google.com/archive/p/word2vec/
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Training Development Test

83,127 10,228 10,291

Table 2.4: Statistics of the constructed dataset.

verified pairs. Table 2.5 provides examples of the generated problems with BERT’s

predictions described in Section 2.5.1. On this default setting, the mean and

median numbers of the eligible candidates of distractors were 3,459 and 1,355,

respectively.

Investigation of Human Accuracy To investigate human performance on

the generated problems, we randomly sampled them and collected answers by

crowdsourcing. Specifically, we prepared 3 sets of 500 problems and performed

crowdsourcing on different dates to be answered by different sets of crowdworkers.

We collected answers from five crowdworkers per problem. As a result, the average

accuracy of individual crowdworkers was 83.8%, and the accuracy of answers

aggregated by majority voting was 88.9%.

2.4.5 Building a Japanese Commonsense Contingency Reasoning

Dataset

We built a dataset from the generated problems by splitting them into training,

development, and test splits with the ratio 8:1:1. In order to reduce leakage,

we make these splits so that the pair of core events constituting a base of each

problem does not overlap between the training and development/test splits.11 The

statistics of the constructed dataset are organized in Table 2.4.

11For instance, the base of the problem in Figure 2.1 is “I’m hungry, so I have a meal” and

composed of the pair of core events “be hungry → have a meal”. If the training split contains

this problem, it means that the development/test split does not contain problems generated from

bases that are composed of the same pair of core events like “I’m hungry, so I have a meal at a

restaurant”.
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Comparison to Existing Similar Datasets

We investigate whether our constructed dataset includes some knowledge that is

not included so much in existing commonsense contingency reasoning datasets.

In this study, we chose SWAG (Zellers et al., 2018) and Social IQA (Sap et al.,

2019) for comparison. This is because the two datasets are deemed relevant to

our constructed dataset as they focus on contingent relation between phrases or

clauses and are similar in size.

As described in Section 2.2.2, SWAG is based on video captions; thus, it

primarily focuses on contingent relation between actions and may not include

knowledge about states or emotions induced from context12 so much. To confirm

this, we investigated the percentage of examples where the correct choice contains

an adjective phrase.13 As a result, the percentages in SWAG and our constructed

dataset were 1.1% and 15.7%, respectively.

Social IQA is a commonsense contingency reasoning dataset consisting of 38k

three-choice questions created based on ATOMIC (cf. Section 1.3.2). It covers

knowledge about contingent relations between events and related mental states

(e.g., intents and emotions). On the other hand, we presume it may not in-

clude knowledge about negative condition14 so much because most of the event

expressions in ATOMIC are in basic form. To confirm this, we investigated the

percentage of examples where the correct choice is in negative form. As a re-

sult, the percentages in Social IQA and our constructed dataset were 1.6% and

11.3%, respectively. These results suggest that our constructed dataset includes

a broader range of knowledge in the sense that it contains more diverse adjective

clauses and negation expressions.

2.5 Experiments

We conducted experiments to investigate the accuracy of a high-performance lan-

guage model on the constructed dataset.

12For instance, “hang out with friends → be fun”.
13We used Stanza (Qi et al., 2020) for constituency parsing.
14For instance, “be sleepy → not get motivated”.
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2.5.1 Model

We employed the BERT model for experiments. BERT (Devlin et al., 2019) is

one of the general-purpose language models, which has achieved high performance

on various NLP tasks such as NLI, shallow question answering, and so forth. In

order to apply the model to each downstream task, a linear layer is added on top

of the output, and all the model parameters are fine-tuned on the task.

For a pre-trained model of BERT, we adopted the pre-trained Japanese

BERTLARGE WWM model,15 which is pre-trained on 18 million sentences of

Japanese Wikipedia with the whole word masking strategy.

2.5.2 Experimental Settings

The task is to choose the most appropriate sentence as the continuation of a given

context from four choices, as illustrated in Figure 2.1. The score of each choice is

computed by feeding a pair of a context and the choice delimited by special tokens

referring to the previous work (Talmor et al., 2019). For instance, the context “

お腹 が 空いた ので (I’m hungry, so)” and the choice “ご飯 を 食べる (I have

a meal)” become “[CLS] お腹 が 空いた ので [SEP] ご飯 を 食べる [SEP]”. The

hidden representation of each [CLS] token is converted into a scalar through an

added linear layer, which is regarded as the score of each choice.

During the training phase, we define the following objective function:

L = − 1

N

N∑
k=1

log
exp(skj)∑4
i=1 exp(ski)

where N is the number of training examples, j is the index of a correct choice

among 1 to 4, ski is the score of the i -th choice of the k -th example.

During the evaluation phase, we regard the choice with the highest score as

an answer by a computer. We evaluated the model by accuracy.

The major hyper-parameters are as follows: epoch of 3, maximum sequence

length of 128, a batch size of 8,16 and a learning rate of 2e-5.

15https://nlp.ist.i.kyoto-u.ac.jp/index.php?ku_bert_japanese
16If a batch size is set to N, it means we input N problems at the same time; thus, the input

to a model consists of 4N input sequences.
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Model Setting Accuracy

Chance rate 25.0

BERTLARGE 76.0

Human
1 worker 83.8

5 workers 88.9

Table 2.5: Experimental results on the constructed dataset.

Figure 2.4: Learning curve of the BERT model on the development split.

2.5.3 Experimental Results

BERTLARGE achieved the accuracy of 76.0 as shown in Table 2.5. It is observable

that there is a reasonable performance gap between the NLP model at the time

and humans.

Figure 2.4 illustrates the learning curve of the BERT model on the develop-

ment split. It can be expected by extrapolation that the BERT model requires

approximately 1.9 million training examples to achieve human performance, which

is not practical. It is meaningful to develop a superior language model to solve
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今はなにしろ９時に寝ないといけないので、
(Since I have to go to bed at nine anyway,)

a. 進行をできるだけ抑えるための治療が必要だ −14.4

(treatment is necessary to prevent disease progression as much as possible)

b. わかりやすく教えていただけましたら助かります −14.0

(I’d be grateful if you would kindly explain it)

✓ c. 敢えて面白そうな番組も見ないようにしています 2.4

(I dare not watch TV programs that look interesting)

d. 供給も可能かもしれません −14.6

(I may be able to provide it)

In
c
o
rr
e
c
t

ウナギよりも脂が少ないので
(Since it is less fatty than eel,)

✓ a. あっさりとした味が楽しめます 4.7

(you can enjoy a light taste)

× b. 今回は、お塩は使用しませんでした 10.6

(I did not use salt this time)

c. フライドポテトみたいな感じで美味しい 9.1

(it tastes good like french fries)

d. ミネラルや水分の摂取など、食事面の配慮も必要だ −9.4

(dietary considerations, such as mineral and water intake, are necessary)

Figure 2.5: Examples that the BERT model answered correctly and incorrectly.

✓ and × denote the correct choice and the prediction of the BERT model, re-

spectively. The number at the end of each choice represents an output score

(∈ [−15, 15]).

this dataset toward human performance.

2.5.4 Qualitative Analysis

We briefly analyze the predictions by the BERT model. Figure 2.5 provides some

examples that the BERT model answered correctly and incorrectly. There were

a number of noticeable examples that the BERT model answered incorrectly as a

result of overemphasizing lexical overlap between a context and a choice.
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Figure 2.6: Counts of how many times each latter event is used as a distractor.

2.5.5 Investigation of Biases

Several studies have reported that, due to unintended biases in a dataset, some

problems can be solved by just observing part of context/question sentences (Gu-

rurangan et al., 2018; Zellers et al., 2019; Tamborrino et al., 2020). To investigate

the existence of bias in our constructed dataset, we evaluated model performance

when feeding only choices during both the training and evaluation phases. For

this investigation, we used the same model and hyper-parameters as described in

Section 2.5.1.

As a result, BERTLARGE achieved an accuracy of 41.2%. Compared with the

experimental result in Section 2.5.3, the performance is significantly low, which

indicates that our constructed dataset contains low bias.

To investigate the reason why the performance without the context (41.2%)

is a bit higher than the chance rate (25%), we counted how many times each

latter event is used as a distractor. Figure 2.6 illustrates the counting result,

which indicates some latter events are frequently reused. Thus, we generated

problems so as not to use each latter event more than five times as a distractor and

evaluated model performance on a dataset built from the generated problems in
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RANGEchoice RANGEcontext BERTLARGE Human

(0.4, 0.6) (0.5, 0.7) 76.8 88.9 (83.8)

(0.4, 1.0) (0.5, 0.7) 72.7 82.2 (78.8)

(0.4, 0.6) (0.5, 1.0) 73.0 81.8 (77.7)

(-1.0, 0.6) (0.5, 0.7) 76.7 88.7 (83.9)

(0.4, 0.6) (-1.0, 0.7) 84.6 92.8 (88.8)

Table 2.6: Investigation results of the conditions on choosing distractors. The

numbers in parentheses at the rightmost column represent the average accuracies

of individual crowdworkers.

the same manner as described in Section 2.4.5. As a result, BERTLARGE achieved

an accuracy of 30.0%, which suggests that some distractors are easily detected as

incorrect due to their high frequency of reuse, leading to higher accuracy than the

chance rate.

2.5.6 Investigation of the Conditions on Choosing Distractors

We investigated how the conditions on choosing distractors affect the quality of a

dataset. Specifically, we built datasets by removing the upper or lower bounds of

each similarity range, RANGEchoice or RANGEcontext, and evaluated model and

human performance on each dataset. We evaluated model performance on each

development split using the same model and hyper-parameters as described in

Section 2.5.1. We calculated human performance in the same manner as described

in Section 2.4.4.

Table 2.6 organizes the investigation results, which indicate the effectiveness

of the upper and lower bounds. Specifically, by removing the upper bound, some

problems contained distractors that were remarkably similar to the correct choice,

and thus, neither the model nor humans could solve them. By removing the lower

bound, the relevance between a context and distractors decreased, and thus, the

generated problems became easy to solve, especially for the model. Accordingly,

it is important to choose moderately similar distractors.
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2.5.7 Summary of This Chapter

We proposed a semi-automatic (scalable and low-cost) method for building a com-

monsense contingency reasoning dataset, which combines automatic extraction

from a raw corpus and crowdsourcing. According to the proposed method, we suc-

cessfully built a Japanese commonsense contingency reasoning dataset comprising

104k multiple-choice questions. As a result of experiments, we demonstrated the

reasonable performance gap between the NLP model at the time and humans.

We also confirmed that the constructed dataset contained negligible bias, which

suggests it can be utilized as a benchmark for further research.

Future work includes improving the quality of the constructed dataset. For

instance, as the proposed method automatically generates commonsense contin-

gency reasoning problems from contingent basic event pairs, it does not guarantee

that the generated problems can be answered. Furthermore, we could not com-

pletely exclude low-quality and noisy sentences that are often found in web text

despite filtering by crowdsourcing. In order to solve these issues, it is deemed

necessary to manually modify and sort out problems (e.g., by crowdsourcing).

Regarding the acquisition of commonsense knowledge from text, we need to

address an essential issue that commonsense knowledge is rarely transcribed due

to reporting bias (Gordon and Van Durme, 2013). Toward the acquisition of a

broader range of commonsense knowledge, it is worth attempting to apply our

proposed method to text intentionally transcribed about our world, such as video

captions utilized in SWAG.



Chapter 3

Improving Commonsense

Contingency Reasoning by

Pseudo-data and its

Application to the Related

Tasks

3.1 Introduction

In Chapter 2, we successfully built a Japanese commonsense contingency reasoning

dataset that can be utilized as a benchmark. The typical next step is to improve

model performance on the dataset. In this chapter, we present our work on

improving commonsense contingency reasoning by pseudo-data and its application

to the related tasks.

Contingency is the discourse relation between events established when one is

likely to cause the other. We humans infer contingency on a daily basis. For

instance, when reading text, we unconsciously infer what happens next to deepen

our understanding. While having a conversation, we guess the next topic from the

utterance of the interlocutor to make a contextual and natural response. Thus,

44



3.1. INTRODUCTION 45

I’m hungry, so

a. I’m gonna be absent from school.

b. I refrain from strenuous exercise.

✓ c. I have a meal at a family restaurant.

d. I leave home.

Figure 3.1: Example from KUCI (English translated version). KUCI is a Japanese

QA dataset comprising 104k multiple-choice questions that ask basic contingency

directly. ✓ denotes the correct choice.

the linguistic capability to infer contingency is crucial for natural language un-

derstanding (NLU).

Recently, language resources regarding contingency have been actively con-

structed (Roemmele et al., 2011; Mostafazadeh et al., 2016; Zellers et al., 2018;

Sap et al., 2019; Sakaguchi et al., 2020). These language resources focus on basic

events and evaluate certain kind of commonsense reasoning ability. Although the

fundamental linguistic capabilities of computers, such as natural language infer-

ence and shallow question answering, have greatly improved with the remarkable

development of deep learning, several studies have also empirically demonstrated

they still have difficulty in commonsense contingency reasoning (Sap et al., 2019;

Sakaguchi et al., 2020; Talmor et al., 2021).

In this study, we set two objectives to validate the importance of contingency

reasoning: to improve commonsense contingency reasoning and to investigate the

generality of knowledge about basic contingency on the related tasks. To these

ends, we utilize the Kyoto University Commonsense Inference dataset (KUCI), the

constructed dataset in Chapter 2. KUCI is a Japanese QA dataset comprising

104k multiple-choice questions that ask basic contingency directly. An example

is shown in Figure 3.1. This dataset is also characterized by its semi-automatic

data construction method: automatic extraction of pairs of basic event expres-

sions that have contingent relation (hereafter, contingent basic event pairs) from

a web corpus, verification through crowdsourcing, and automatic generation of

commonsense contingency reasoning problems.
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It is shown that there is a performance gap between computers and humans

on this task. Furthermore, through qualitative analysis, it has been confirmed

computers sometimes provide incorrect answers to problems that ask quite ba-

sic contingency. A straightforward approach to alleviating the above issue is to

manually expand the training data (Hestness et al., 2017; Kaplan et al., 2020;

Rosenfeld et al., 2020; Henighan et al., 2020; Bahri et al., 2021). However, it is

not practical from a cost perspective to increase the number of training examples

manyfold even using crowdsourcing.

We attempt to improve model performance by omitting crowdsourcing, a bot-

tleneck in data augmentation, and utilizing pseudo-problems automatically gen-

erated from unverified contingent basic event pairs. As a web corpus is usually

scalable, and all the procedures except crowdsourcing are automatic, it becomes

possible to generate pseudo-problems at scale. Pseudo-problems are expected to

complement the lack of coverage though some of them are noisy and might be

unanswerable.

The second objective of this study is to investigate the generality of knowledge

about basic contingency on the related tasks. On the premise that contingency

reasoning is crucial for NLU, it can be expected that knowledge about basic

contingency probably helps improve the performance on other NLU tasks. While

the transferability of major English datasets has been studied (Phang et al., 2018;

Sap et al., 2019; Sakaguchi et al., 2020; Pruksachatkun et al., 2020), there is room

to explore this dataset in terms of the task and language. We investigate the

generality of knowledge about basic contingency through quantitative evaluation

by performing transfer learning from a commonsense contingency reasoning task

to the related tasks.

In summary, we work on improving commonsense contingency reasoning by

straightforward data augmentation. We generated 862k pseudo-problems, which

is about ten times as large as the training examples in KUCI (83k), and in-

corporated them into training. Thanks to pseudo-problems, a high-performance

language model has achieved near human-level performance on the commonsense

contingency reasoning task. We also investigate the transferability of knowledge

about basic contingency to the related tasks. Experimental results demonstrate
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that intermediate-task training on KUCI with pseudo-problems positively affects

Japanese Discourse Relation Recognition, the Japanese Winograd Schema Chal-

lenge, and the JCommonsenseQA, which suggests the importance of contingency

reasoning in NLU.

3.2 Related Work

Thanks to pre-training on large-scale raw corpora, pre-trained language models

have achieved unprecedented performance on a variety of NLU tasks, including

commonsense reasoning (Wang et al., 2019). Besides such improvement in general

language understanding, there have been a number of approaches to improving

the performance on commonsense reasoning tasks.

Approach to Improving Commonsense Reasoning

One group of approaches is to utilize automatically generated data, to which our

approach belongs. For instance, Ye et al. (2019) performed additional pre-training

on 16 million fill-in-the-blank multiple-choice questions generated from Wikipedia

and ConceptNet (Speer et al., 2017). They improved the performance on two

benchmarks for entity-level commonsense reasoning, CommonsenseQA (Talmor

et al., 2019) and Winograd Schema Challenge (WSC) (Levesque, 2011), though

this approach requires the manually constructed language resource, ConceptNet.

Staliunaite et al. (2021) proposed a data augmentation method for COPA and its

extension (Roemmele et al., 2011; Kavumba et al., 2019), which are summarized as

three steps: filtering of web text by several conditions, extraction of causal pairs of

clauses with the clue of discourse connectives, and generation of distractors from

a language model. They have not investigated its application to the related tasks,

focusing on improving commonsense causal reasoning. Shen et al. (2021) improved

unsupervised pronoun resolution and commonsense reasoning by pre-training on

automatically generated examples that imitate WSC.
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Transferability of Commonsense Knowledge

Regarding the second objective of this study, there have been several studies on

the transferability of commonsense knowledge from existing language resources.

For instance, it has been reported that intermediate-task training on the two

benchmarks for commonsense contingency reasoning, Social IQA (Sap et al., 2019)

and WinoGrande (Sakaguchi et al., 2020), helps improve the performance on WSC

and COPA. Pruksachatkun et al. (2020) showed the datasets that require complex

commonsense reasoning such as CosmosQA (Huang et al., 2019) and HellaSwag

(Zellers et al., 2019) are beneficial to several target tasks. Lourie et al. (2021) ran

multi-task learning on multiple language resources for commonsense reasoning to

examine their interactions. We investigate the transferability of knowledge about

basic contingency in the non-English language, Japanese.

3.3 Approach

First, we describe our data augmentation approach to improving commonsense

contingency reasoning. Our approach is to automatically generate large-scale

pseudo-problems based on the construction method of the Kyoto University Com-

monsense Inference dataset (KUCI).

3.3.1 Method of Generating Pseudo-Problems

The construction method of KUCI consists of the following four steps (cf. Figure

3.2):

1. Acquire high-frequency predicate-argument structures (core events) from

case frames (Kawahara and Kurohashi, 2006; Kawahara et al., 2014).

2. Extract contingent basic event pairs, event pairs that are unambiguously

connected by some discourse connectives representing contingent relation

and composed of core events, from parsed text.

3. Verify through crowdsourcing whether the extracted pairs actually have con-

tingent relation or not.
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- Our approach - 
Generating

pseudo-problems

Crowdsourcing

Contingent
Event Pairs 

   I am hungry, so I have a meal. 
   If I have a meal, I get sleepy. 
   Since I am sleepy, I drink coffee. 
   If I exercise hard, I sweat 

  ⋮

Parsed 
Web Text

Contingent 
Basic Event Pairs 

Basic
Condition 

Case Frames

   Be hungry 
   Have a meal 
   It rains 
      ⋮  

Core Events

①

②

③

 I am hungry, so 
 a. I drink coffee. 
 b. I have a meal. 
 c. I sweat. 
 d. I get sleepy.

④

Reliable 
Condition 

A⇒B A⇏B

Veri�ed Contingent 
Basic Event Pairs 

Commonsense Contingency 
Reasoning Problems 

Figure 3.2: Overview of the method of generating commonsense contingency rea-

soning problems in KUCI (gray) and pseudo-problems (red). Details are described

in Section 2.3.

4. Generate problems by taking one of the verified pairs (base) and choosing

distractors from the latter events of other pairs that are moderately similar

to the base.

In the above procedure, it becomes possible to automatically generate pseudo-

problems that imitate commonsense contingency reasoning problems by omitting

step 3. For the parameters in the method, such as the thresholds of frequency for

acquiring core events and the conditions on choosing distractors, we set them to

the same values as in the construction of KUCI (cf. Section 2.4).
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3.3.2 Extraction of Contingent Basic Event Pairs

According to the method described in Section 3.3.1, we automatically extracted

contingent basic event pairs from a Japanese web corpus comprising 3.3 billion sen-

tences. This corpus is also part of an in-house corpus that has been constructed

by crawling web text from 2006 to 2015, but there is no overlap of sentences

between it and the corpus used for the construction of KUCI. As a result, we ex-

tracted 915k contingent basic event pairs. Considering one-third of the extracted

event pairs were removed by crowdsourcing as reported in Section 2.4.3, we expect

about 600k event pairs to be valid.

3.3.3 Dealing with Data Leakage

There is a potential issue with generating training data from large-scale raw cor-

pora, which is called “Data Contamination” (Brown et al., 2020; Elazar et al.,

2023). This issue is that raw corpora may include information about evaluation

data, leading to overestimation of model performance.

We deal with this issue by heuristically excluding event pairs that are identical

or remarkably similar to the bases in evaluation data.1 Specifically, we apply the

following filters based on word order and core event pairs.

Filter by word order Exclude an event pair if the length of the overlapping

word order between the event pair and any base in evaluation data exceeds

75% of the word count of the base.

Filter by core event pairs Exclude an event pair if the event pair is composed

of a pair of core events that also constitutes any base in evaluation data.

For instance, the base of the problem in Figure 3.1 is “I’m hungry, so → I have a

meal at a family restaurant” and composed of the pair of core events “be hungry

→ have a meal at a family restaurant”. Let us consider whether the event pair

“I’m hungry, so → I have a big meal at the family restaurant” is excluded by the

base or not. They have the overlapping word order, {I’m, hungry, so, I, have, a,

meal, at, family, restaurant}, the length of which (10) exceeds 75% of the word

1To be specific, “evaluation data” refers to the development and test splits of KUCI.
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count of the base (11). It is also composed of the same pair of core events; thus,

it is excluded by both filters.

We expect the first filter to exclude syntactically similar event pairs and the

second one to exclude those similar in content. As a result of filtering, we acquired

881k contingent basic event pairs.

3.3.4 Generation of Pseudo-problems

We proceeded to automatically generate pseudo-problems. As a result, we ob-

tained 862k pseudo-problems from the 881k unverified pairs. The number of

pseudo-problems is about ten times as large as that of the training examples in

KUCI (83k).

To investigate the quality of pseudo-problems, we randomly sampled 100 prob-

lems and manually evaluated them. As a result, 71 out of 100 problems were

judged as answerable, which appears to be sufficient quality for automatically

generated data.

3.4 Experiments

We conducted experiments to investigate the effectiveness of incorporating pseudo-

problems into training in a commonsense contingency reasoning task and the re-

lated tasks.

3.4.1 Model

We evaluated the performance of the BERT (Devlin et al., 2019) and XLM-

RoBERTa (XLM-R) (Conneau et al., 2020) models.

BERT We employed the NICT BERT Japanese Pre-trained model (with BPE).2

It is pre-trained on the full text of Japanese Wikipedia for 1.1 million steps with

a batch size of 4,096. It has been reported that the performance is relatively high

among the pre-trained Japanese BERT models owing to partly referring to the

2https://alaginrc.nict.go.jp/nict-bert/index.html (in Japanese)
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pre-training configuration of RoBERTa (Liu et al., 2019). The model architecture

is the same as BERTBASE.

XLM-R We adopted the XLM-RoBERTaLARGE model,3 which is pre-trained on

a huge multilingual corpus consisting of Wikipedia and CC-100 (Wenzek et al.,

2020). The model architecture is the same as BERTLARGE, but the embedding

layer is relatively large due to its multilingual vocabulary. It was one of the high-

performance publicly available pre-trained language models for Japanese at the

time.

3.4.2 Experimental Settings

The hyper-parameters used in the experiments are included in Appendix A.1.

Commonsense Contingency Reasoning Task

As mentioned in Section 3.1, we utilized KUCI for evaluating the linguistic ca-

pability to infer basic contingency. The task is to choose the most appropriate

sentence as the continuation of a given context from four choices. KUCI contains

83,127/10,228/10,291 examples in training/development/test split, respectively.

During the training phase, we minimize cross-entropy loss between the scores of

each choice normalized by the softmax function and a one-hot vector representing

the correct answer as 1. The scores of each choice are computed by feeding pairs

of a context and the choice delimited by special tokens and converting the hidden

representations of the first token ([CLS]) into scalars by a linear transformation.

When incorporating pseudo-problems into training, we define the objective func-

tion L as the weighted sum of cross-entropy losses of commonsense contingency

reasoning problems and pseudo-problems. The above can be expressed by the

following equations.

H = − 1

N

N∑
k=1

log
exp(skj)∑4
i=1 exp(ski)

L = Hccr + λ×Hpseudo

3https://huggingface.co/xlm-roberta-large
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where N is the number of training examples, j is the index of a correct choice

among 1 to 4, ski is the score of the i -th choice of k -th example, H is the cross-

entropy loss of commonsense contingency reasoning problems or pseudo-problems,

and λ is the weight for pseudo-problems.

During the evaluation phase, the choice with the highest score is selected as

an answer by a computer. We evaluated models by accuracy.

Method for Comparison To investigate the effectiveness of a multiple-choice

format, we compared it to an additional pre-training method referring to Task-

Adaptive Pre-Training (Gururangan et al., 2020). Specifically, we performed an

additional Masked Language Modeling (MLM) task on the 881k unverified pairs

used for generating pseudo-problems and then fine-tuned the additionally pre-

trained model on a target task. For convenience, we name it “AMLM”.

Related Tasks

To investigate the generality of knowledge about basic contingency, we conducted

transfer learning from a commonsense contingency reasoning task to the related

tasks. In this study, we employed Japanese Discourse Relation Recognition,

Japanese Winograd Schema Challenge, and JCommonsenseQA as the related

tasks.

Japanese Discourse Relation Recognition Discourse Relation Recognition

(DRR) is the task of identifying discourse relations between clauses. In addition

to contingent relation, this task requires an understanding of various discourse

relations such as “Purpose” and “Concession”.

We used the Kyoto University Web Document Leads Corpus (KWDLC)4

(Kawahara et al., 2014; Kishimoto et al., 2018, 2020) for this task. KWDLC

has been built by collecting the first three sentences of various kinds of crawled

web text, the size of which amounts to 6,445 documents. All the documents

have been annotated with discourse relations between clauses by crowdsourcing.

Furthermore, 500 out of 6,445 documents have also been annotated by linguistic

4https://github.com/ku-nlp/KWDLC



54CHAPTER 3. IMPROVING COMMONSENSE CONTINGENCY REASONING

37k pairs of clauses 
with crowdsourced labels

Fold 2 Fold 1 Fold 3 Fold 4 Fold 5 

Dev 

Test

Train 

2,320 pairs of clauses 
with expert labels

Figure 3.3: Illustration of five-fold cross-validation on KWDLC. We excluded

some pairs of clauses from training data for each fold to ensure that there is no

overlap of pairs of clauses between the training and development/test data.

experts. In this study, we used 37k pairs of clauses with crowdsourced labels

for training data and evaluated the classification performance on 2,320 pairs of

clauses with expert labels using five-fold cross-validation (cf. Figure 3.3).

The task is formulated as a seven-way classification of discourse relations given

a pair of clauses, including “No Relation”. We fine-tuned models according to

the sentence-pair classification framework proposed by Devlin et al. (2019). We

adopted micro-averaged precision, recall, and F1 score computed without exam-

ples with the “No Relation” label as evaluation metrics.

Japanese Winograd Schema Challenge Winograd Schema Challenge (WSC)

is the task of choosing the antecedent of a pronoun from two candidates (Levesque,

2011). The task itself is coreference resolution but designed to require common-

sense reasoning. JWSC5 (Shibata et al., 2015) has been built by translating the

Rahman and Ng (2012) version of WSC into Japanese. Here is an example:

(1) ライオンはシマウマを食べる．それ（ライオン／シマウマ）は捕食動物だか
らだ．
(Lions eat zebras because they are predators.)

As shown in the above example, JWSC contains a number of questions that ask

5https://github.com/ku-nlp/Winograd-Schema-Challenge-Ja
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BERT

ライオン は シマウマ を[CLS] ⾷べる ． ...

sigmoid

Figure 3.4: Illustration of a BERT-based logistic regression classifier.

basic contingency indirectly.

As we excluded event pairs that contain demonstratives for quality control

(cf. Section 2.3.2), there is concern that intermediate-task training on KUCI with

pseudo-problems might hurt performance on JWSC due to forgetting knowledge

about demonstratives. Accordingly, we recast JWSC as binary question answering

by substituting a pronoun with each antecedent candidate. The resulting dataset

is balanced and consists of 2,644/1,128 examples for training/test split, respec-

tively. As the development split is not provided, we ran five-fold cross-validation

by splitting the training split into 8:2. We trained BERT-based logistic regression

classifiers (cf. Figure 3.4) and evaluated them by accuracy and Area Under the

ROC Curve (AUC).

JCommonsenseQA JCommonsenseQA (JCQA)6 (Kurihara et al., 2022) is the

Japanese version of CommonsenseQA (Talmor et al., 2019) and consists of 11k

five-choice questions regarding a broad range of relations between basic concepts.

Each question is manually created based on a subgraph extracted from Con-

ceptNet (Speer et al., 2017) by crowdsourcing. As commonsense contingency

reasoning problems and pseudo-problems are composed of basic events, models

learn co-occurrence of basic phrases through training on them, which is expected

to be beneficial to JCQA. We fine-tuned and evaluated models according to the

same method described in Section 3.4.2 as the task is multiple-choice question

answering.

6https://github.com/yahoojapan/JGLUE/tree/v1.0.0/datasets/jcommonsenseqa-v1.0
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Model Setting Acc.

BERT

KUCI 79.3±0.2

KUCI + Pseudo-problems (λ = 0.1) 84.1±0.1

KUCI + Pseudo-problems (λ = 0.5) 84.7±0.1

KUCI + Pseudo-problems (λ = 1.0) 84.6±0.2

AMLM → KUCI 83.9±0.1

XLM-R

KUCI 86.0±0.1

KUCI + Pseudo-problems (λ = 0.1) 88.5±0.1

KUCI + Pseudo-problems (λ = 0.5) 88.8±0.1

KUCI + Pseudo-problems (λ = 1.0) 88.6±0.1

AMLM → KUCI 86.2±0.2

Human 88.9

Table 3.1: Experimental results on the commonsense contingency reasoning task.

The scores are the mean and standard deviation over three runs with different

random seeds. Arrows denote multi-stage fine-tuning. For instance, “AMLM →
KUCI” means fine-tuning on KUCI after additional pre-training.

3.4.3 Experimental Results

Commonsense Contingency Reasoning Table 3.1 shows the experimen-

tal results on the commonsense contingency reasoning task.7 Thanks to pseudo-

problems, both the BERT and XLM-R models improved the accuracy by 5.4 and

2.8 points, respectively. Notably, the XLM-R model has achieved performance

comparable to humans. Putting moderately low weight on pseudo-problems makes

the performance slightly better.

7We also conducted a preliminary investigation of the performance of the pre-trained Japanese

RoBERTaLARGE model (https://huggingface.co/nlp-waseda/roberta-large-japanese),

which had been released after the completion of these experiments. As a result, the accuracy

on the “KUCI” and “KUCI + Pseudo-problems (λ = 0.5)” settings was 90.0 ± 0.1 and

90.5± 0.5, respectively. The performance on some related tasks was also comparable to human

performance without transfer learning; thus, we omit discussion of the effect of transfer learning

on RoBERTaLARGE in this thesis.
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Figure 3.5: Learning curves of the BERT and XLM-R models on the development

split of KUCI. We excluded degeneration results of the XLM-R model when fine-

tuned on a small number of training examples (N ∈ {103, 3 × 103}).

Figure 3.5 illustrates the learning curves of the BERT and XLM-R models

on the development split of KUCI. The crosses representing the accuracy on the

“KUCI + Pseudo-problems” setting are under the extrapolated learning curves,

which implies the difference in quality between the training examples in KUCI

and pseudo-problems.

Japanese Discourse Relation Recognition Regarding JDRR, it is observ-

able from Table 3.2 that intermediate-task training on KUCI with pseudo-problems

is effective in discourse relation recognition, especially in BERT. As these prob-

lems are based on contingent basic event pairs, which are connected by some dis-

course connectives representing causal or conditional relation (cf. Section 2.4.2),

we presume knowledge about these discourse relations is successfully transferred.
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Model Setting Prec. Rec. F1

BERT

KWDLC 55.2±2.9 38.4±1.0 45.1±1.1

KUCI → KWDLC 58.1±2.4 38.3±1.3 45.7±0.8

KUCI + Pseudo-problems → KWDLC 55.9±1.1 41.0±2.9 47.0±2.4

AMLM → KUCI → KWDLC 51.8±3.7 38.4±1.3 43.7±0.7

XLM-R

KWDLC 57.4±1.7 45.5±2.8 50.3±1.3

KUCI → KWDLC 57.8±2.3 48.2±0.3 51.9±0.2

KUCI + Pseudo-problems → KWDLC 57.2±1.0 47.4±1.8 51.5±0.7

AMLM → KUCI → KWDLC 55.2±1.6 34.5±0.6 40.9±1.0

Human (Crowdworker) (Kishimoto et al., 2020) 54.7 48.6 51.5

Table 3.2: Experimental results on the Japanese discourse relation recognition

task. The scores are the mean and standard deviation over three runs of five-fold

cross-validation with different random seeds. As with Table 3.1, arrows denote

multi-stage fine-tuning. Note that we performed additional Masked Language

Modeling (AMLM) on the 881k unverified pairs used for generating pseudo-

problems, not the training examples in KWDLC, in order to compare how to

utilize pseudo-problems. Human performance is calculated using 500 documents

that are annotated by both experts and crowdworkers, with expert annotation as

ground truth and crowdsourced annotation as predictions.

Table 3.3 organizes the detailed results on the Japanese discourse relation

recognition task. The BERT and XLM-R models transferred from KUCI with

pseudo-problems perform better on classifying causal and purpose relations. Com-

pared with crowdworkers, there is room for improvement in the precision of con-

cession and infrequent relations.



3.4. EXPERIMENTS 59

M
o
d
e
l

S
e
tt
in
g

C
a
./
R
e
.

C
o
n
d
.

P
u
rp

.
J
u
st
.

C
o
n
t.

C
o
n
c
.

F
1

B
E

R
T

(e
n
se
m
b
le
)

K
W

D
L

C
76

/1
38

32
/4

3
18

/3
7

0/
6

2/
19

54
/8

4
46

.7

K
U

C
I
→

K
W

D
L

C
81

/1
32

32
/4

3
18

/3
1

1/
6

2/
17

47
/7

2
48

.0

K
U

C
I

+
P

se
u

d
o-

p
ro

b
le

m
s
→

K
W

D
L

C
81

/1
39

33
/4

9
17

/2
9

0/
4

1/
12

56
/8

5
4
8
.8

X
L

M
-R

(e
n
se
m
b
le
)

K
W

D
L

C
98

/1
59

33
/4

6
16

/3
4

2/
4

0/
18

60
/8

8
52

.1

K
U

C
I
→

K
W

D
L

C
10

9/
20

1
34

/5
3

18
/3

2
3/

7
0/

26
56

/8
5

51
.3

K
U

C
I

+
P

se
u

d
o-

p
ro

b
le

m
s
→

K
W

D
L

C
99

/1
68

33
/5

0
18

/2
8

1/
2

0/
22

64
/9

8
5
2
.4

H
u

m
an

(C
ro

w
d

w
or

ke
r)

(K
is

h
im

ot
o

et
al

.,
20

20
)

10
0/

17
5

37
/5

4
19

/4
4

6/
32

4/
30

54
/6

7
51

.5

T
ot

al
n
u

m
b

er
of

tr
u

e
p

os
it

iv
es

an
d

fa
ls

e
n

eg
at

iv
es

24
2

54
36

15
6

10
0

—

T
ab

le
3.

3:
D

et
ai

le
d

re
su

lt
s

of
en

se
m

b
le

m
o
d

el
s

on
th

e
J
ap

an
es

e
d

is
co

u
rs

e
re

la
ti

on
re

co
gn

it
io

n
ta

sk
.

T
h

e
th

ir
d

to
ei

g
h
th

co
lu

m
n

s
st

an
d

fo
r

th
e

d
is

co
u

rs
e

re
la

ti
on

s,
“C

au
se

/R
ea

so
n

”,
“C

on
d

it
io

n
”,

“P
u

rp
os

e”
,

“J
u

st
ifi

ca
ti

o
n

”
,

“
C

o
n
tr

a
st

”
,

a
n

d

“C
on

ce
ss

io
n

”,
re

sp
ec

ti
v
el

y.
T

h
e

va
lu

es
on

th
e

le
ft

si
d

e
ar

e
th

e
n
u

m
b

er
s

of
tr

u
e

p
os

it
iv

es
fo

r
th

e
d

is
co

u
rs

e
re

la
ti

o
n

,
a
n

d

th
os

e
on

th
e

ri
gh

t
si

d
e

ar
e

th
e

to
ta

l
n
u

m
b

er
s

of
tr

u
e

p
os

it
iv

es
an

d
fa

ls
e

p
os

it
iv

es
.



60CHAPTER 3. IMPROVING COMMONSENSE CONTINGENCY REASONING

Model Setting Acc. AUC

BERT

JWSC
66.0†±3.4 71.4†±4.5

(68.4±0.1) (74.5±0.1)

KUCI → JWSC 69.9±0.3 77.0±0.6

KUCI + Pseudo-problems → JWSC 68.8±1.1 75.0±2.0

AMLM → KUCI → JWSC 58.1±1.0 61.9±1.1

XLM-R

JWSC
78.7†±3.2 85.6†±4.0

(80.7±0.4) (88.0±0.5)

KUCI → JWSC 81.2±0.1 88.7±0.2

KUCI + Pseudo-problems → JWSC 80.0±0.2 88.7±0.0

AMLM → KUCI → JWSC 50.8±0.5 51.7±0.8

Table 3.4: Experimental results on JWSC. The scores are the mean and standard

deviation over three runs of five-fold cross-validation with different random seeds.

† denotes that the result includes a few degenerate runs. We also report the

result excluding the degenerate runs in parentheses for reference. Regarding the

“AMLM → KUCI → JWSC” setting of XLM-R, the model failed to learn.

Japanese Winograd Schema Challenge The experimental results on JWSC

are shown in Table 3.4. We observed a few degenerate runs8 (Phang et al., 2018;

Pruksachatkun et al., 2020) on the “JWSC” setting despite fine-tuning for 50

epochs. This phenomenon often occurs when training large models on a small

dataset, and several studies have reported intermediate-task training can alleviate

it (Phang et al., 2018; Pruksachatkun et al., 2020). We also confirmed a similar

result in this experiment.

We found KUCI is beneficial to JWSC, but pseudo-problems are not neces-

sarily. JWSC contains a non-negligible number of questions regarding concession

relation;9 thus, we consider putting much emphasis on contingent relation may

rather worsen performance. Learning various discourse relations is a promising

solution, which we leave for future work.

8The training runs that a model results in around chance performance. Specifically, we regard

less than 0.55 accuracy or AUC as the degenerate runs.
9e.g., “James asked Robert a favor. However, James/Robert declined.”
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Model Setting Acc.

BERT

JCQA
81.8±0.1

(82.3)

KUCI → JCQA 82.0±0.3

KUCI + Pseudo-problems → JCQA 81.9±0.2

AMLM → KUCI → JCQA 68.1±0.4

XLM-R

JCQA
84.0±0.5

(84.0)

KUCI → JCQA 85.0±0.4

KUCI + Pseudo-problems → JCQA 85.3±0.6

AMLM → KUCI → JCQA 75.2±0.5

Human (Kurihara et al., 2022) 98.6

Table 3.5: Experimental results on the development split of JCQA. The scores

are the mean and standard deviation over three runs with different random seeds.

We also include the reported values in the original paper (Kurihara et al., 2022)

(the numbers in the parentheses) for reference.

JCommonsenseQA Referring to Table 3.5, we can see the solid performance

gain regarding XLM-R. We presume it is thanks to the domain match between

pseudo-problems and JCQA, considering the report by Kurihara et al. (2022)

that pre-training on CC-100 is more effective in JCQA than Wikipedia. Pseudo-

problems alone appear to be somewhat insufficient for adapting the model pre-

trained only on Wikipedia (i.e., BERT) to the web domain but effective as auxil-

iary data for the model pre-trained on CC-100 (i.e., XLM-R).

Comparison to AMLM Although AMLM is somewhat effective in KUCI, it

is poor at transferring the knowledge to the related tasks.10 It can be inferred

that the BERT and XLM-R models learn task-specific knowledge.

10We also tried the “AMLM → related task” setting, but the performance is generally worse

than those on the “AMLM → KUCI → related task” setting.
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霧が晴れると、 午後から病院へいくので
(When a fog clears,) (I’m going to see a doctor this afternoon, so)

✓ a. 景色が素晴らしい a. 滅多に病院に行かない
(the scenery is amazing) (I rarely see a doctor)

× b. 川の音がすごい b. 土日は勉強に勤しみます
(the sound of river is loud) (I’ll study hard on weekends)

c. 雪遊びも楽しそうだ ✓ c. 今日は休暇をとる
(playing in the snow sounds nice) (I take a vacation today)

d. 写真写りがいまいちだ × d. 火曜日は眠い
(it’s not photogenic) (I’m sleepy on Tuesday)

Figure 3.6: Examples of problems that the BERT model became able to answer

correctly by incorporating pseudo-problems into training. ✓ and × denote the

correct choice and the choice that BERT previously selected, respectively.

KUCI

correct incorrect

KUCI
+

Pseudo-problems
(λ = 0.5)

correct 7,891 1,028

incorrect 401 908

Table 3.6: Confusion matrix organizing the numbers of correct and incorrect

answers on the development split of KUCI. This matrix shows the results of the

BERT model (ensemble).

3.4.4 Qualitative Analysis

Figure 3.6 illustrates examples of problems that BERT became able to answer

correctly by incorporating pseudo-problems into training. We can see the im-

provement in the accuracy of these problems regarding quite basic contingency.

The model sometimes gave low scores to all the choices and appeared to select

a choice by elimination, which we observed became less frequent. We speculate

that pseudo-problems complement the lack of coverage of the training examples

in KUCI. For further information, we include the confusion matrix in Table 3.6.
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The improvement is greater though the model got to make a wrong prediction to

some problems.

3.5 Summary of This Chapter

We improved commonsense contingency reasoning by incorporating large-scale

pseudo-problems into training. We automatically generated 862k pseudo-problems

from a Japanese web corpus comprising 3.3 billion sentences utilizing the scala-

bility of the construction method of KUCI. Thanks to pseudo-problems, a high-

performance pre-trained language model has achieved near human-level perfor-

mance on the commonsense contingency reasoning task.

We also investigated the effectiveness of learning knowledge about basic con-

tingency in the related tasks: Japanese Discourse Relation Recognition, Japanese

Winograd Schema Challenge, and JCommonsenseQA. Experimental results demon-

strated that intermediate-task training on KUCI with pseudo-problems has a pos-

itive impact on the related tasks, which suggests the importance of contingency

reasoning in NLU.



Chapter 4

Synthetic Data Generation for

Discourse Relation Recognition

4.1 Introduction

In Chapter 3, a high-performance pre-trained language model has achieved near

human-level performance on our constructed dataset thanks to pseudo-problems.

Thus, we expand our focus from contingency to discourse relations. Specifically,

we work on improving Discourse Relation Recognition, the task of identifying the

discourse relation given a pair of text spans.

In order to comprehend the meaning of text, it is essential to understand

not only the meanings of individual sentences but also the semantic relations be-

tween them. Such semantic relations are called discourse relations. Automatic

recognition of discourse relations has been actively studied due to its applicability

to natural language understanding (NLU) (Bhargava and Ng, 2022) and various

natural language processing (NLP) tasks (Saito et al., 2019; Tang et al., 2021).

Penn Discourse Treebank (PDTB) (Prasad et al., 2019) is one of the repre-

sentative corpora regarding discourse relations. This corpus has been built by

annotating 2,162 Wall Street Journal articles with discourse relations between

adjacent text spans named arguments. An example is shown in Figure 4.1; (here-

after, we express an argument pair as Arg1 and Arg2.) The arguments of the

example do not contain any discourse connectives, words or phrases that indicate

64
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� �
Arg1: Maggie Thatcher must be doing something right;

Arg2: her political enemies are screaming louder than ever.

Relation: Contingency.Cause+Belief.Reason+Belief

Connective: “because”� �
Figure 4.1: Example from PDTB. PDTB defines at most three levels of hierar-

chical discourse relations. In the example, Relation is delimited by periods, and

top-, second-, and third-level relations are “Contingency”, “Cause+Belief”, and

“Reason+Belief”, respectively. Note that the higher the level, the coarser the

granularity. In addition, some discourse connectives are assigned to lexicalize the

relations. Regarding implicit discourse relations, the annotated connectives are

not present in arguments.

some discourse relations, such as “because”. Such examples are called implicit

discourse relations.

Discourse Relation Recognition (DRR), especially Implicit Discourse Relation

Recognition (IDRR), is a long-standing and challenging problem. Even large

language models (LLMs), which have achieved unprecedented performance on a

variety of NLP tasks, still cannot solve this task in a straightforward manner.1 In

addition to the complexity of DRR itself, the paucity of training data for some

error-prone discourse relations makes the problem even more challenging.

A straightforward solution to the aforementioned problem is to increase the

number of annotated examples. However, it is not practical due to requiring

cautious annotations by experts. Turning our attention to automatic generation of

training data, synthetic data generation using language models has achieved some

success recently (Puri et al., 2020; Yang et al., 2020; Schick and Schütze, 2021;

Liu et al., 2022). There is room for exploration of their generative capabilities to

generate argument pairs that have a given discourse relation, although the low

few-shot performance of LLMs in DRR is problematic.

1We investigated the few-shot performance of GPT-3.5 and GPT-4 in IDRR and confirmed

that it is far behind the fine-tuning performance of much smaller language models, which is

described in Section 4.3.2.
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In this study, we explore synthetic data generation for DRR using an LLM. We

first conduct preliminary experiments to confirm the paucity of training data for

some error-prone discourse relations. Based on the preliminary results, we propose

a method of generating synthetic data for these error-prone discourse relations

using an LLM. Specifically, it is summarized as two folds: extraction of confusing

discourse relation pairs based on false negative rate and generation of synthetic

data focused on resolving the confusion. We demonstrate the performance gain

by incorporating the synthetic data into training.

The proposed method has two key points. First, we utilize a confusion matrix

for synthesizing effective data. We address the data scarcity problem of some

error-prone discourse relations by generating synthetic data based on a confusion

matrix.

Second, we devise a method of generating synthetic data. It is probably inef-

fective to straightforwardly generate synthetic data for DRR using an LLM due

to the low few-shot performance. We presume that it is attributed to the number

of discourse relations. In other words, it is challenging for an LLM to learn and

distinguish numerous discourse relations from few-shot examples. On the other

hand, it is relatively easy to learn a single discourse relation from few-shot ex-

amples. Thus, we decompose the process of generating synthetic data into two

stages so that only a single discourse relation needs to be learned in each stage.

Further details are described in Section 4.4.1.

The contributions of this study are summarized as follows:

• We propose an error-driven method of generating synthetic data for DRR

using an LLM.

• According to the proposed method, we built synthetic data several times

larger than training examples for some error-prone discourse relations.

• We demonstrated the effectiveness of synthetic data in both English and

Japanese DRR.
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4.2 Related Work

4.2.1 Improving IDRR

As shown in Figure 4.1, PDTB has two major characteristics: discourse relations

are defined hierarchically and lexicalized by discourse connectives. A number of

previous studies on improving IDRR have exploited these characteristics.

Utilizing Relation Hierarchy This kind of approach has been on the rise

recently. For instance, Long and Webber (2022) introduced contrastive learning

and utilized the relation hierarchy to choose hard negatives, assuming it is difficult

to classify discourse relations that have the same higher-level ones. However, we

demonstrate an encoder-only language model such as RoBERTa (Liu et al., 2019)

is apt to confuse infrequent discourse relations with frequent ones rather than

misclassify discourse relations that have the same higher-level ones (cf. Section

4.3.3). Jiang et al. (2023) also developed the contrastive framework to learn

the relation hierarchy and similarity between examples simultaneously, but the

same can be pointed out. Wu et al. (2022) showed the effectiveness of learning

to generate labels along the relation hierarchy. This method may suffer error

propagation from mispredicted top-level discourse relations.

Utilizing Discourse Connectives Several studies have been devoted to learn-

ing implicit discourse relations through discourse connectives for some time. For

instance, Nie et al. (2019) and Kishimoto et al. (2020) have reported a performance

gain by performing an additional pre-training task to predict masked discourse

connectives. Other studies such as Xiang et al. (2022) and Zhou et al. (2022)

introduced prompt-based learning and utilized annotated discourse connectives

as verbalizers. As implicit discourse relations are mentioned without discourse

connectives, it is also worth considering methods not relying on discourse connec-

tives.

Other Approaches Xu et al. (2018) introduced active learning to obtain ar-

gument pairs that contain omittable discourse connectives (Rutherford and Xue,
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2015) for data augmentation. Jiang et al. (2021) performed joint learning of classi-

fication and generation, aiming to deepen the model’s understanding of discourse

relations through generating arguments. To the best of our knowledge, no studies

have been conducted on synthetic data generation for IDRR using an LLM.

4.2.2 Synthetic Data Generation for NLP tasks

After the advent of pre-trained language models, an increasing number of studies

have attempted to utilize them for synthetic data generation. For instance, Schick

and Schütze (2021) synthesized 121k sentence pairs for semantic textual similarity

task using GPT-2 XL (Radford et al., 2019) and achieved superior performance

with the synthetic data only. Liu et al. (2022) incorporated human-in-the-loop

into synthetic data generation for natural language inference task and built a

dataset comprising 108k examples using GPT-3 (Brown et al., 2020). In addition,

synthetic data generation has been attempted for other NLP tasks, including

question answering (Puri et al., 2020), commonsense reasoning (Yang et al., 2020),

and so forth. While recent studies lean toward improving few-shot performance

with synthetic data (Meng et al., 2023; Dai et al., 2023), we aim to improve fine-

tuning performance of encoder-only language models in IDRR considering the

relatively low few-shot performance of LLMs.

4.3 Preliminaries

Our proposed method is motivated by preliminary experimental results of English

IDRR. We first describe the task settings and preliminary experimental results.

4.3.1 Task Settings

As there are several variations of preprocessing and evaluation protocols regarding

PDTB (Kim et al., 2020), we explicate task settings used in our experiments

(Section 4.3.2, 4.3.3, and 4.5).

Version of PDTB PDTB has been updated several times over the years. While

the previous version (PDTB-2) (Prasad et al., 2008) has been conventionally used
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so far, the latest version (PDTB-3) (Prasad et al., 2019) has improved in both

quantity and quality of annotations. We adopt PDTB-3 taking into account that

more annotated examples are available for generating synthetic data.

Label Set Label sets vary by the version of PDTB and the level of discourse

relations to classify. We address the fine-grained classification of second-level (L2)

discourse relations and follow Kim et al. (2020) to define a label set for the task.

Specifically, we formulate IDRR as a 14-way classification using only the labels

with more than 100 examples.

Data Partitioning PDTB consists of 25 sections, and we need to partition

them to build a dataset. For a fair comparison with previous studies, we adopt

the conventional partition introduced by Ji and Eisenstein (2015), where we use

sections 2-20, 0-1, and 21-22 as training, development, and test splits, respectively.

For convenience, we call it PDTB dataset. The statistics of the PDTB dataset

are organized in Table 4.1.

Handling of Multi-labeled Examples Regarding multi-labeled examples, we

follow a common practice (Ji and Eisenstein, 2015; Qin et al., 2017). Specifically,

during the training phase, we convert them into separate examples. During the

evaluation phase, a prediction is regarded as correct if it matches one of the labels.2

4.3.2 Few-shot Performance of LLMs

Few studies attempted to employ LLMs for IDRR except Chan et al. (2023),

which investigated the zero-shot performance of GPT-3.5 on PDTB-2. We also

investigated the few-shot performance of GPT-3.5 and GPT-4 (OpenAI, 2023) on

PDTB-3.

2We found there are two implementations of this. Let us consider the case where a model

predicts “A” to an example with the labels “A” and “B”. One implementation overwrites the

prediction with “A” and “B”, while the other ignores the label “B” of the example. This may

cause discrepancies in the total number of labels among studies. In this study, we confirmed the

implementation in a compared method and adopted the former implementation.
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Relation Train
Synthetic Data

Dev Test
Unfiltered LLM-Filtered

Temporal.Synchronous 435 2,501 1,286 33 43

Temporal.Asynchronous 1,007 - - 105 108

Contingency.Cause 4,475 - - 449 406

Contingency.Cause+Belief 159 940 331 13 15

Contingency.Purpose 1,092 - - 96 89

Contingency.Condition 150 - - 18 15

Comparison.Concession 1,164 - - 105 97

Comparison.Contrast 741 - - 91 63

Expansion.Conjunction 3,586 - - 299 237

Expansion.Equivalence 254 1,167 771 25 30

Expansion.Instantiation 1,166 - - 118 128

Expansion.Level-of-detail 2,601 - - 274 214

Expansion.Manner 615 - - 28 53

Expansion.Substitution 343 - - 32 32

Table 4.1: Statistics of the PDTB dataset and synthetic data. Regarding multi-

labeled examples, we counted the labels separately. As synthetic data may vary by

a model, we show the statistics of the synthetic data generated from the confusion

matrix in Figure 4.3 as a representative.

Experimental Settings

As mentioned in Section 4.3.1, we address the 14-way classification of second-level

discourse relations. Figure 4.2 shows the prompt template for few-shot learning on

the task. We instructed LLMs to generate one of the labels given the definitions

of discourse relations (cf. Table 4.2) and demonstrations.

For the LLMs, we employed the snapshots of GPT-3.5 and GPT-4 from June

13th, 2023 (a.k.a “gpt-3.5-turbo-16k-0613” and “gpt-4-0613”). We retrieved K

nearest neighbors of a test example from training examples for each discourse

relation and used the K × 14 examples as demonstrations referring to Liu et al.
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Relation Definition

Temporal.Synchronous
there is some degree of temporal overlap between the events described by the

arguments

Temporal.Asynchronous one event is described as preceding the other

Contingency.Cause
the situations described in the arguments are causally influenced but are not

in a conditional relation

Contingency.Cause+Belief evidence is provided to cause the hearer to believe a claim

Contingency.Purpose
one argument presents an action that an agent undertakes with the purpose

of the goal conveyed by the other argument being achieved

Contingency.Condition
one argument presents a situation as unrealized (the antecedent), which (when

realized) would lead to the situation described by the other argument

Comparison.Concession
an expected causal relation is cancelled or denied by the situation described

in one of the arguments

Comparison.Contrast at least two differences between the arguments are highlighted

Expansion.Conjunction
both arguments, which don ’t directly relate to each other, bear the same

relation to some other situation evoked in the discourse

Expansion.Equivalence
both arguments are taken to describe the same situation, but from different

perspectives

Expansion.Instantiation
one argument describes a situation as holding in a set of circumstances, while

the other argument describes one or more of those circumstances

Expansion.Level-of-detail both arguments describe the same situation, but in less or more detail

Expansion.Manner
the situation described by one argument presents the manner in which the

situation described by other argument has happened or been done

Expansion.Substitution arguments are presented as exclusive alternatives, with one being ruled out

Table 4.2: Definitions of discourse relations in PDTB. They are basically taken

from PDTB-3 annotation manual (Webber et al., 2019), but we slightly modify

that of “Expansion.Conjunction”.

(2022). We made use of the RoBERTaLARGE-based supervised SimCSE3 (Gao

et al., 2021) for retrieving nearest neighbors and set K to 8 considering the token

limit of the LLMs. We used the test split of the PDTB dataset for evaluation and

evaluated the model by micro-F1 and macro-F1.

Experimental Results

Table 4.3 shows the few-shot performance of GPT-3.5 and GPT-4 on PDTB-3.

Despite providing more than 100 examples as demonstrations, the few-shot per-

formance is far behind the fine-tuning performance of the RoBERTaBASE model.

3https://huggingface.co/princeton-nlp/sup-simcse-roberta-large
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Given two arguments, please answer the  
most appropriate relation between them  
from the following 14 possible relations :
− Temporal.Synchronous : there is some ... 
…  
− Expansion.Substitution : arguments ...
Here are examples : 
Arg1 : … 
Arg2 : … 
Answer : Temporal.Synchronous 
… 

Please answer the relation between the  
following arguments.
Arg1 : …
Arg2 : …
Answer :

 Instruction 

 Definitions of dis- 
 course relations 

 Demonstrations 

 Test prompt 

Figure 4.2: Prompt template for few-shot learning on PDTB-3.

Model Setting Micro-F1 Macro-F1

GPT-3.5 few-shot 23.2 19.0

GPT-4 few-shot 29.4 30.9

RoBERTaBASE Vanilla 64.2 57.1

Table 4.3: Experimental results of few-shot learning on PDTB-3. The vanilla

fine-tuning performance of RoBERTaBASE is taken from Table 4.5.

4.3.3 Confusion Matrix of Encoder Model

In order to identify the propensity for error in a commonly used model, we ana-

lyzed the confusion matrix.

Experimental Settings

We investigated the confusion matrix of the RoBERTaBASE model, which has

been employed in numerous recent studies. We fine-tuned the RoBERTaBASE
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Figure 4.3: Normalized confusion matrix of the RoBERTaBASE model. We ap-

plied row normalization to the confusion matrix so that each element represents

sensitivity or false negative rate.

pre-trained model4 on the PDTB dataset and calculated a confusion matrix on

the development split. Training details and hyper-parameters are described later

in Section 4.5.1.
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Ground Truth Prediction

Contingency.Cause+Belief Contingency.Cause

Temporal.Synchronous Expansion.Conjunction

Expansion.Equivalence Contingency.Cause

Expansion.Substitution Contingency.Cause

Expansion.Equivalence Comparison.Concession

Table 4.4: Top-5 confusing discourse relation pairs in the RoBERTaBASE model.

Experimental Results

We define the degree of confusion by false negative rate considering the class

imbalance as seen in Table 4.1. Figure 4.3 illustrates the normalized confusion

matrix of the RoBERTaBASE model. Several non-diagonal elements indicate a

high degree of confusion, i.e., much room for improvement. Furthermore, it is ob-

servable from Table 4.4 that RoBERTaBASE is apt to confuse infrequent discourse

relations such as “Cause+Belief” and “Equivalence” with frequent ones rather

than misclassify discourse relations that have the same higher-level ones.

4.4 Synthetic Data Generation

Based on the preliminary experimental results, we propose an error-driven method

of generating synthetic data for improving fine-tuning performance of an encoder-

only language model in DRR.

4.4.1 Proposed Method

The proposed method of generating synthetic data consists of the following three

steps (cf. Figure 4.4):

1. Extract top-k confusing discourse relation pairs based on false negative rate.

2. For each confusing discourse relation pair (Rtrue, Rpred), retrieve training

examples that have Rtrue as the source of synthetic data.

4https://huggingface.co/roberta-base
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Figure 4.4: Overview of the proposed method.

3. Synthesize data based on the retrieved examples using an LLM.

The following paragraphs explicate each step.

Extraction of Confusing Discourse Relation Pairs The first step is to

extract confusing discourse relation pairs referring to a confusion matrix. As

described in Section 4.3.3, we fine-tune a model, calculate a confusion matrix on

the development split, and extract top-k confusing discourse relation pairs based

on false negative rate. We utilize false negative rate as the degree of confusion to

treat infrequent and frequent discourse relations equally.
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First stage� �
Given two arguments, the relation Rtrue is defined as

⟨ the definition of Rtrue ⟩
Here are examples that have the relation Rtrue:

⟨ demonstrations ⟩
Please write down arguments that have the relation Rtrue to the argument

⟨ Arg1 ⟩.

Here list several answers:

- ⟨ Arg2 ⟩
-� �
Second stage� �

Given two arguments, the relation Rpred is defined as

⟨ the definition of Rpred ⟩
Here are examples that have the relation Rpred:

⟨ demonstrations ⟩
Please answer whether the two arguments

⟨ pair of Arg1 and synthetic Arg2 ⟩ have the relation Rpred or not. An answer

must end with “Yes.” or “No.”.� �
Figure 4.5: Prompt templates for an LLM. We adopt two-stage prompting to

generate synthetic data. Rtrue and Rpred represent ground-truth and mispredicted

discourse relations, respectively.

Retrieval of Training Examples Next, we prepare the source of synthetic

data. We utilize training examples judging it is difficult to generate argument pairs

that have some discourse relation from scratch. Specifically, for each confusing

discourse relation pair (Rtrue, Rpred), we retrieve all the training examples that

have Rtrue in preparation for the following synthesis process.
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Given two arguments, the relation "Contingency.Cause+Belief" is defined as  
"evidence is provided to cause the hearer to believe a claim". 
Here are examples that have the relation "Contingency.Cause+Belief"

 
: 

< demonstrations > 
Please write down arguments that have the relation "Contingency.Cause+Belief" 
to the argument "Maggie Thatcher must be doing something right;". 

Here list several answers: 
− her political enemies are screaming louder than ever. 
− the economy is thriving under her leadership. 
− her approval ratings are consistently high. completion 

 Maggie Thatcher must be doing something right; − the economy is thriving under her leadership. 
 Maggie Thatcher must be doing something right; − her approval ratings are consistently high. 

( label = Contingency.Cause+Belief )

Figure 4.6: Illustration of the first stage of synthetic data generation using the

example in Figure 4.1. The definitions of discourse relations are taken from PDTB-

3 annotation manual5 (Webber et al., 2019).

Synthesis of Data Finally, we synthesize data focused on resolving the confu-

sion. As mentioned in Section 4.1, we adopt two-stage prompting to synthesize

data (cf. Figure 4.5). Specifically, in the first stage, we instruct an LLM to gen-

erate a candidate list of Arg2 given Arg1, original Arg2, and the definition of

Rtrue. We synthesize Arg2 considering the unidirectionality of language models.

Figure 4.6 demonstrates the aforementioned process using the example in Figure

4.1. Synthetic data can be obtained by splitting completion by the item mark

“- ” and combining each split with Arg1 and the label of Rtrue. In the second

stage, we ask an LLM whether each pair of Arg1 and synthetic Arg2 has Rpred

or not. Regarding the demonstrations for learning Rtrue/Rpred, we use K nearest

neighbors of a source example referring to Liu et al. (2022), which are retrieved

from training examples that have Rtrue/Rpred.

4.4.2 Generation of Synthetic Data

According to the proposed method, we generated synthetic data from top-1, 3, and

5 confusing discourse relation pairs to examine the effect of k in later experiments.

5https://catalog.ldc.upenn.edu/docs/LDC2019T05/PDTB3-Annotation-Manual.pdf
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We fixed the value of K, the number of nearest neighbors for learning the relation

Rtrue/Rpred, to 8 referring to Min et al. (2022) to avoid excessive parameter tuning.

For an LLM, we employed GPT-4 (a.k.a “gpt-4-0613”). Table 4.1 includes the

statistics of the synthetic data generated from top-3 confusing discourse relation

pairs for RoBERTaBASE as a representative.

Analysis of Synthetic Data In order to analyze the quality of synthetic

data quantitatively, we sampled 30 examples each for the “Cause+Belief”, “Syn-

chronous”, and “Equivalence” relations and manually verified them. We chose

these three relations because they were top confusing discourse relations in all the

experimental settings we tested. As a result of manual verification, 20, 20, and

23 examples of “Cause+Belief”, “Synchronous”, and “Equivalence” were judged

as valid, which appears to be acceptable quality as synthetic data.

We also analyzed the synthetic data qualitatively. “Cause+Belief” is required

that one argument expresses some belief, and the other provides its justification.

As is the example in Table 4.7, synthetic Arg2 is sometimes factual and incon-

sistent with original Arg2 when it expresses some belief. One of the possible

remedies is to utilize third-level discourse relation to choose examples whose Arg1

expresses some belief.

Regarding “Synchronous”, we observed GPT-4 was apt to include discourse

connectives such as “while” to establish the relation. Although such examples are

valid, this may cause shortcut learning (Geirhos et al., 2020), which raises the

need for refining instructions.

Synthetic data of “Equivalence” was often judged as valid. One of the possible

reasons is that the discourse relation is regarded as a kind of paraphrasing and is

relatively easy to understand for the LLM.

4.5 Experiments on English IDRR

We conducted experiments to examine the effectiveness of incorporating synthetic

data into training.
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� �
Arg1: A half-hour later, the woman is smiling and chatting;

Original Arg2: the demon seems to have gone.

Synthetic Arg2: her mood has significantly improved.

Relation: Contingency.Cause+Belief� �� �
Arg1: ensure the same flow of resources

Original Arg2: and reduce the current deficit.

Synthetic Arg2: while maintaining the current workforce.

Relation: Temporal.Synchronous� �� �
Arg1: It’s a nervous market.

Original Arg2: It was all over the place.

Synthetic Arg2: The market is highly unpredictable.

Relation: Expansion.Equivalence� �
Figure 4.7: Examples of synthetic data.

4.5.1 Experimental Settings

Data and Model

We used the PDTB dataset and the synthetic data generated by the proposed

method as described in Section 4.3.1, 4.4.1. These statistics are organized in

Table 4.8.

We evaluated the performance of the RoBERTa (Liu et al., 2019) model to

compare with previous studies. We employed the base-4 and large-size6 pre-

trained models hosted on Hugging Face Hub.

Training Details

During the training phase, we minimize the standard softmax cross-entropy loss.

When incorporating synthetic data into training, we minimize the weighted sum

6https://huggingface.co/roberta-large
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of the losses of training examples and synthetic data, which is expressed by the

following equations:

H =
1

N

N∑
i=1

− log
efy(x)∑

y′∈[Y ] e
fy′ (x)

L = Htraining + λ×Hsynthetic

where N is a batch size, Y is a set of classes, fy(x) is the logit for the class y, and

λ is the weight for synthetic data.

During the evaluation phase, we evaluate the model by Micro-F1 and Macro-

F1. We measure the performance on the development split per epoch and adopt

the model parameters with the best dev Macro-F1 for evaluation on the test split.

Compared Methods

We adopted the following methods for comparison.

Vanilla On this setting, we merely fine-tune models without synthetic data.

Logit Adjustment (Menon et al., 2021) Based on the results of Table 4.4,

we speculate the synthetic data generated by our proposed method is effective in

learning long-tail discourse relations. Thus, we compare logit adjustment with our

proposed method as a baseline of learning long-tail classes. This method adjusts

logits when computing the standard softmax cross-entropy loss so that the rarer

the class, the greater the loss. The above is expressed by the following equation.

L =
1

N

N∑
i=1

− log
efy(x)+τ log πy∑

y′∈[Y ] e
fy′ (x)+τ log πy′

where πy is an estimate of the class prior and τ is the temperature. We used the

class frequencies on the training examples as πy and set τ to 1.0 referring to the

authors’ report.

Long and Webber (2022) This is one of the state-of-the-art (SOTA) methods

for IDRR on PDTB-3. As described in Section 4.2.1, they achieved superior per-

formance by introducing contrastive learning. They also used additional training
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examples generated by inserting annotated discourse connectives between argu-

ments.

Vanilla-filtered On this setting, we use the vanilla fine-tuned model instead of

an LLM for filtering synthetic data.

Hyper-Parameters

Regarding baselines, we performed a grid search of learning rate from {5e-6, 1e-

5, 2e-5} and chose the one that achieved the best Macro-F1 on the develop-

ment split. When incorporating synthetic data into training, we used the same

hyper-parameters but performed a grid search of λ, the weight for synthetic data,

from {0.5, 0.25}. As we generated synthetic data from top-1, 3, and 5 confus-

ing discourse relation pairs, we adopted the one that achieved the best Macro-

F1 on the development split. Specifically, we used the synthetic data generated

from top-3 and top-5 confusing discourse relation pairs for RoBERTaBASE and

RoBERTaLARGE, respectively. Further details are included in Appendix B.1.

4.5.2 Experimental Results

Table 4.5 organizes the experimental results of second-level IDRR on the PDTB

dataset. As the synthetic data focuses on learning infrequent discourse relations,

it might cause the forgetting of frequent discourse relations and deteriorate Micro-

F1. Despite the concern, we achieved the superior performance of both Micro-

F1 and Macro-F1 in both RoBERTaBASE and RoBERTaLARGE thanks to the

synthetic data.7

Detailed results are organized in Table 4.6. Regarding RoBERTaBASE, the

synthetic data is actually effective in learning infrequent discourse relations such

as “Cause+Belief” and “Equivalence”. On the other hand, it does not work on

7Jiang et al. (2023) have also reported the performance of their RoBERTaLARGE-based model

is Micro-F1 of 66.4 and Macro-F1 of 60.1, which is the SOTA performance of RoBERTaLARGE to

the best of our knowledge. However, we found their implementation of handling of multi-labeled

examples might be different from ours, as mentioned in Section 4.3.1. Thus, we re-evaluated our

model in their manner and confirmed the performance was Micro-F1 of 68.1 and Macro-F1 of

61.6, which still outperformed the SOTA performance.
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Model Setting Micro-F1 Macro-F1

GPT-3.5 few-shot 23.2 19.0

GPT-4 few-shot 29.4 30.9

RoBERTa
(BASE)

Vanilla 64.2±1.2 57.1±0.4

Long and Webber (2022) 64.7 57.6

Ours

+synthetic data (unfiltered) 64.5±0.8 58.4±1.2

+synthetic data (vanilla-filtered) 63.3±0.5 57.7±0.6

+synthetic data (LLM-filtered) 64.8±1.0 59.1±1.5

RoBERTa
(LARGE)

Vanilla 67.7±0.5 60.9±1.6

Ours

+synthetic data (unfiltered) 67.6±0.9 62.1±2.0

+synthetic data (vanilla-filtered) 67.9±0.2 62.0±1.0

+synthetic data (LLM-filtered) 68.8±0.4 62.4±1.5

Table 4.5: Experimental results of second-level IDRR on PDTB-3 dataset. The

scores are the mean and standard deviation over three runs with different random

seeds. The difference between synthetic data (unfiltered) and (filtered) is whether

or not to apply the filtering by an LLM or a vanilla fine-tuned model in the second

stage.

“Synchronous”. One of the possible reasons is that the synthetic data may contain

some phrases that induce shortcut learning, as discussed in Section 4.4.2. The

above problem can be alleviated by refining the instruction so as not to include

discourse connectives. Regarding RoBERTaLARGE, the synthetic data is generally

effective in learning the target discourse relations except “Cause+Belief”. As the

size of synthetic data for “Cause+Belief” is relatively small, the model may not

have been adequately trained on the discourse relation.

Comparing the unfiltered and filtered synthetic data, we can see the solid

performance gain thanks to the filtering by an LLM. We presume some removed

examples are harmful to learning discourse relations even though they are not

always noisy.
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Relation
RoBERTaBASE RoBERTaLARGE

VNL Ours L&W VNL Ours

Temporal.Synchronous 34.4 32.6♠ 41.4 35.5 38.1♠

Temporal.Asynchronous 66.8 68.0 66.4 72.9 76.0

Contingency.Cause 69.3 69.8 71.4 74.1 74.8

Contingency.Cause+Belief 1.7 11.8♠ 0.0 5.0 5.1♠

Contingency.Purpose 94.8 93.6 96.1 95.8 95.2

Contingency.Condition 70.2 73.8 74.1 75.5 78.0

Comparison.Concession 60.1 61.7 60.1 63.3 63.9

Comparison.Contrast 49.0 49.1 56.9 56.7 56.4

Expansion.Conjunction 60.6 60.0 61.7 62.9 65.0

Expansion.Equivalence 21.6 34.1♠ 11.4 25.3 31.4♠

Expansion.Instantiation 69.8 72.7 69.8 73.1 73.2

Expansion.Level-of-detail 57.0 57.0 55.3 58.9 59.4

Expansion.Manner 80.3 80.5 78.4 80.9 83.1♠

Expansion.Substitution 63.7 62.3 63.8 72.7 73.9

Table 4.6: Detailed results of second-level IDRR on PDTB-3 dataset. VNL and

L&W represent Vanilla and Long and Webber (2022), respectively. “Ours” corre-

sponds to the “+synthetic data (LLM-filtered)” setting. ♠ denotes that the model

was trained with synthetic data of the discourse relation.

4.5.3 Discussion

Effect of Top-k Table 4.7 shows the change in performance of RoBERTaBASE

when varying how many confusing discourse relation pairs to extract. While

synthetic data is generally effective in improving Macro-F1, learning to resolve

more confusion does not necessarily lead to overall performance improvement,

which suggests the importance of choosing which confusion to focus on.

Prompting from Discourse Connectives Inspired by previous studies, we

attempted to generate synthetic data utilizing discourse connectives to examine

their effectiveness. Let us explain based on Figure 4.6. We added an annotated
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k Micro-F1 Macro-F1

0 64.2±1.2 57.1±0.4

1 63.6±0.8 57.5±0.9

3 64.8±1.0 59.1±1.5

5 63.9±1.0 58.4±1.6

Table 4.7: Correspondence between the number of confusing discourse relation

pairs to extract and the performance of RoBERTaBASE.

discourse connective to the beginning of original Arg2 (i.e., “her political enemies

... ” → “because her political enemies ... ”) and made an LLM generate text that

starts with the connective (i.e., “– {completion}” → “– because {completion}”).

We incorporated the synthetic data generated by the above method and evaluated

the model performance.

As a result, the performance of RoBERTaBASE was Micro-F1 of 64.2 and

Macro-F1 of 58.7. The effect of discourse connectives on this setting is somewhat

limited.

Single-Stage Augmentation Strategy We generated synthetic data by sim-

ply instructing an LLM to paraphrase argument pairs and investigated the perfor-

mance gain by the synthetic data to compare with our strategy. In Figure 4.5, we

modified the instruction to “Please write down paraphrases of ⟨pair of Arg1 and

Arg2⟩ keeping the relation Rtrue” and obtained paraphrases of argument pairs.

We incorporated the synthetic data and evaluated the model performance.

As a result, the performance of RoBERTaBASE was Micro-F1 of 64.4 and

Macro-F1 of 57.3, which implies the importance of generating diverse Arg2.

4.6 Experiments on Japanese DRR

We also conducted experiments to investigate whether the proposed method is

also effective in Japanese DRR.
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37k pairs of clauses 
with crowdsourced labels

Fold 2 Fold 1 Fold 3 Fold 4 Fold 5 

Dev 

Test

Train 

2,320 pairs of clauses 
with expert labels

Figure 4.8: Illustration of five-fold cross-validation on KWDLC. We excluded

some pairs of clauses from training data for each fold to ensure that there are

no duplicate pairs of clauses between the training and development/test data. If

some pairs of clauses in training data have both expert and crowdsourced labels,

we prioritize the expert label.

4.6.1 Experimental Settings

Data and Model

We used the Kyoto University Web Document Leads Corpus (KWDLC)8 (Kawa-

hara et al., 2014; Kishimoto et al., 2018, 2020), which consists of the first three

sentences of 6,445 web documents. All the documents have been annotated with

discourse relations between clauses by crowdsourcing, and 500 out of 6,445 docu-

ments have also been annotated by linguistic experts. In this study, we evaluated

the classification performance on 2,320 clause pairs with expert labels using five-

fold cross-validation (cf. Figure 4.8). Unlike the experimental settings in Chapter

3, we utilized expert data that are not used for evaluation data for training because

RoBERTa has achieved performance comparable to crowdworkers.

Synthetic data is generated from training data with expert labels for each fold.

These statistics are organized in Table 4.8.

8https://github.com/ku-nlp/KWDLC
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Relation
Train Synthetic Data

Dev Test
Crowd Expert Unfiltered LLM-Filtered

Cause/Reason 2,350 149 505 425 47 46

Purpose 538 27 77 68 9 8

Condition 704 42 138 128 10 13

Justification 383 10 28 2 2 3

Contrast 380 5 - - 0 1

Concession 759 44 150 142 30 26

No relation 31,264 1,110 - - 380 377

Table 4.8: Statistics of the KWDLC dataset and synthetic data. For space lim-

itation, we show the statistics of Fold 1 and the synthetic data for Japanese

RoBERTaBASE as a representative.

Relation Definition

Cause/Reason one clause represents the cause or reason, while the other clause represents the result

Purpose one clause represents the goal, while the other clause represents the means to achieve it

Condition one clause represents the condition, while the other clause represents the result

Justification one clause represents inference or recognition, while the other clause represents evidence

Contrast emphasize the difference in the situations represented by both clauses

Concession one clause negates the situation expressed by the other clause

No Relation
there is no semantic relation between clauses, or it represents a weak relation such as

temporal, specification, instantiation, and so forth.

Table 4.9: Definitions of discourse relations in KWDLC. We refer to

the KWDLC annotation manual (https://github.com/ku-nlp/KWDLC/blob/

master/doc/disc_guideline.pdf).

The task is formulated as a seven-way classification of discourse relations be-

tween clauses, including “No Relation”. Table 4.9 organizes discourse relations

defined in KWDLC. Unlike English IDRR, Japanese DRR does not distinguish

between explicit and implicit discourse relations.

We evaluated the performance of the RoBERTa (Liu et al., 2019) model. For a

pre-trained model, we employed the Japanese base-9 and large-size10 pre-trained

9https://huggingface.co/nlp-waseda/roberta-base-japanese
10https://huggingface.co/nlp-waseda/roberta-large-japanese
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models hosted on Hugging Face Hub.

Training Details

Training details are almost the same as Section 4.5.1, but we incorporate crowd-

sourced data into training. Thus, the objective function is as follows:

H =
1

N

N∑
i=1

− log
efy(x)∑

y′∈[Y ] e
fy′ (x)

L = Hexpert + λc ×Hcrowd + λs ×Hsynthetic

where λc is the weight for crowdsourced data.

During the evaluation phase, we evaluate the model by Micro-F1 and Macro-

F1. We measure the performance on the development split per epoch and adopt

the model parameters with the best dev Micro-F111 for evaluation on the test

split.

Hyper-Parameters

Regarding baselines, we performed a grid search of learning rate from {1e-5, 2e-5}
and chose the one that achieved the best Micro-F1 on the development split. When

incorporating crowdsourced and synthetic data into training, we used the same

hyper-parameters but performed grid search of λc and λs, from {0.5, 0.25}. As we

generated three synthetic data from top-1, 3, and 5 confusing discourse relation

pairs, we adopted the one that achieved the best Micro-F1 on the development

split. Specifically, we used the synthetic data generated from top-5 confusing

discourse relation pairs for both RoBERTaBASE and RoBERTaLARGE. Further

details are included in Appendix B.1.

4.6.2 Experimental Results

Table 4.10 shows the experimental results of DRR on KWDLC. It is observable

that synthetic data is also effective in Japanese DRR.

11We focus on Micro-F1 as the number of expert labels for some discourse relations is quite

small, and thus Macro-F1 is somewhat unstable.
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Model Setting Micro-F1 Macro-F1

RoBERTa
(BASE)

Vanilla 51.6±1.3 42.7±1.7

Ours

+synthetic data (unfiltered) 53.0±1.6 44.0±2.0

+synthetic data (vanilla-filtered) 51.5±1.6 42.3±1.8

+synthetic data (LLM-filtered) 53.3±0.3 43.6±1.0

RoBERTa
(LARGE)

Vanilla 52.7±0.5 41.6±1.0

Ours

+synthetic data (unfiltered) 53.0±0.7 43.8±1.1

+synthetic data (vanilla-filtered) 51.8±1.3 43.2±0.8

+synthetic data (LLM-filtered) 53.2±1.7 44.9±1.7

Human (crowdworker) (Kishimoto et al., 2020) 51.5 46.0

Table 4.10: Experimental results of DRR on KWDLC. The scores are the mean

and standard deviation over three runs with different random seeds.

Compared with crowdworkers, there is room for improvement in Macro-F1.

One possible reason could be that the number of some discourse relations is too

small to learn, even with synthetic data.

4.7 Summary of This Chapter

We proposed a method of generating synthetic data for DRR using an LLM, which

is summarized as two steps: extraction of confusing discourse relation pairs based

on false negative rate and generation of synthetic data focused on resolving the

confusion. According to the proposed method, we built synthetic data effective

in DRR while addressing the complexity of DRR by two-stage prompting. As

a result of experiments, we demonstrated its effectiveness both in English and

Japanese DRR.

One of the future directions is to explore the collaboration of an encoder-only

language model and an LLM for reasoning-aware discourse relation recognition.

We would also like to consider a method to generate synthetic data from scratch

for further scalability.



Chapter 5

Application to Japanese

Writing Education

5.1 Introduction

In this chapter, we introduce an educational application utilizing the data con-

structed in the process of our studies, taking a slight departure from previous

chapters. We aim to demonstrate the usefulness of discourse relations through

the implementation of the application.

As we use natural language as a means of cognition and communication, lan-

guage education plays an indispensable role in our lives. In language educa-

tion, written language production is also crucial for learning how to express our

thoughts.

However, in Japanese writing education, it is a long-standing problem that

elementary school students tend to have an aversion to writing compositions (Na-

tional Institute for Educational Policy Research, 2008; Ritsumeikan University

Library, 2017). One of the possible reasons is that they learn Japanese writing

only through open-ended writing assignments such as book reports and essays on

topics related to daily life. Such assignments rarely motivate the students to go

further than merely complete them, and they often struggle to come up with what

to write due to the open-ended format. In addition, they receive little feedback

on their writing, leading to a vicious cycle where they become increasingly aware

89
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of being poor at writing without learning how to improve.

In order to ameliorate the current situation, Japanese education is in need of

educational material that offers a more engaging experience, i.e., enables students

to construct sentences with fun and get feedback on their writing. However,

there are two major challenges to achieving this: how to reduce an aversion to

constructing sentences and how to evaluate writing automatically.

Game-based learning (Vandercruysse et al., 2012), which aims to make the

learning process more fun with a game, is a promising solution to the first chal-

lenge. There has been no AI educational game for studying Japanese writing to

the best of our knowledge; thus, it is worth attempting to design such a game and

investigate its effectiveness.

Regarding the second challenge, we focus on existing language resources. In

natural language processing (NLP), large-scale language resources have been built

so far to teach linguistic and world knowledge to computers (Fellbaum, 1998; Baker

et al., 1998; Kawahara and Kurohashi, 2006; Speer et al., 2017; Sap et al., 2019),

some of which can be utilized for human learning as well as machine learning.

By exploiting them, it is now possible to automatically generate and score sim-

ple writing practice questions, and the aforementioned educational material has

become more feasible.

This study aims to develop an educational game for elementary school students

to study Japanese writing with fun and investigate its effectiveness. To these ends,

we design an AI educational game utilizing existing language resources. Hereafter,

we call it “Kotoba-musubi”.1

Kotoba-musubi is a word-based game where the player builds simple sen-

tences by connecting content words with case markers and combining the simple

sentences with discourse markers into complex sentences with contingent rela-

tions (Figure 5.1). Players apply given word cards to empty rectangle frames and

connect them using arrow-shaped particle marks.

The created sentences are automatically scored using large-scale language re-

sources, and players can obtain feedback on the spot. For instance, if no examples

1“Kotoba” and “musubi” are the Japanese words that mean “word” and “connecting” in

English, respectively.
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NOMNOMNOMNOMNOMNOMNOMNOMNOMififififififififif

wearwearwearwearwearwearwearwearwear ACCACCACCACCACCACCACCACCACC rain bootsrain bootsrain bootsrain bootsrain bootsrain bootsrain bootsrain bootsrain boots washwashwashwashwashwashwashwashwash

golfgolfgolfgolfgolfgolfgolfgolfgolf

laundrylaundrylaundrylaundrylaundrylaundrylaundrylaundrylaundry snowsnowsnowsnowsnowsnowsnowsnowsnow

can docan docan docan docan docan docan docan docan do

get dirtyget dirtyget dirtyget dirtyget dirtyget dirtyget dirtyget dirtyget dirty
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Figure 5.1: Screenshot of the play screen of Kotoba-musubi with gloss. Kotoba-

musubi is a word-based game, where the player builds simple sentences and com-

plex sentences with contingent relations by connecting given word cards with

particle marks. “NOM” and “ACC” in the figure stand for nominative and ac-

cusative cases, respectively.

of a simple sentence are found in the Japanese case frames (Kawahara and Kuro-

hashi, 2006) due to incorrect usage of a case marker, our system gives feedback

suggesting a more appropriate case marker, as illustrated in Figure 5.2. Play-

ers can re-arrange their compositions and retry the automatic scoring; thus, our

system has interactivity that writing assignments do not have.

Kotoba-musubi focuses on learning how to construct basic sentences with fun,

and it is intended to be used as an introduction to studying Japanese writing.

We expect that, through playing the game, students discover the enjoyment of

considering sentences and cultivate knowledge necessary for writing, such as collo-

cation, usage of words and particles, and contingent relations between basic event

expressions.

We also develop smartphone and web applications of Kotoba-musubi and con-

duct a user study to investigate its effectiveness. We have released Kotoba-musubi
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If it rains, {I} will wear rain boots

it rained

wear rain boots

a car washes
Let's change the blue mark! 
(ga → wo) 

Figure 5.2: Scoring results of the sentences in Figure 5.1．{} indicates a dropped

pronoun.

for educational purposes, which is available at https://nlp.ist.i.kyoto-u.ac.

jp/EN/?Kotobamusubi.

The contributions of this study are summarized as follows:

• We propose Kotoba-musubi, an educational game for elementary school stu-

dents to study Japanese writing utilizing existing language resources and AI.

• We developed smartphone and web applications of Kotoba-musubi and con-

ducted a user study to assess engagement.

• As a result of the user study, we demonstrated our game can be used as a

good introduction to studying Japanese writing.

5.2 Related Work

Word games similar to Kotoba-musubi, where the players connect smaller lin-

guistic units to build larger ones, have been developed in the past. However, as
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represented by Scrabble2, most of them are character-based, where the players

build words by connecting characters. It is relatively easy to implement such

games because these games need only a vocabulary dictionary to judge whether

or not words have been produced successfully. In contrast, these games cannot

handle sentences, which limits the knowledge that can be acquired from them.

Game-based learning and gamification have been actively studied to make the

learning process more fun. While the former refers to learning that makes use of

educational games with defined learning outcomes (Vandercruysse et al., 2012),

the latter refers to the application of game elements to non-game problems (De-

terding et al., 2011). Kotoba-musubi is developed for game-based learning and

is an AI educational game aiming at making constructing sentences more fun.

Although several studies have proposed game-based learning with AI (Dyulicheva

and Glazieva, 2021), there has existed no AI educational game for studying

Japanese writing to the best of our knowledge. Regarding gamification, Duolingo3

is one of the educational applications that use gamification for learning language,

including written language production. While not an educational game, it intro-

duces game elements such as rewards and a badge collection feature to motivate

learners.

5.3 Kotoba-musubi

5.3.1 Game Design

In a single round, players are given 12 word cards and nine particle marks. The

objective is to achieve a higher score by constructing basic simple sentences, and

complex sentences with contingent relations using the cards and marks. In order

to construct sentences, players arrange the given cards/marks according to the

empty rectangle/oval frames on the screen. The score of each composition is

automatically computed by pattern matching with language resources.

2https://en.wikipedia.org/wiki/Scrabble
3https://ja.duolingo.com/
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Word Card The 12 word cards break down into six noun cards, five verb/adjective

cards, and one wildcard that allows players to enter a word freely.4 The role of

each card is distinguishable by its color; therefore, players can learn how to con-

struct sentences even if they do not understand the concept of parts of speech.

The word cards can also be distinguished by shape, considering those with color

vision deficiency. In addition, ruby characters are written above Chinese charac-

ters to facilitate reading. Regarding verb/adjective cards, the predicates can be

conjugated in the present, past, negative, or past-negative form, which makes it

possible to create more diverse sentences.

Particle Mark The nine particle marks break down into five major case par-

ticles and four discourse connectives representing contingent relation. The five

marks consist of “が [ga]”, “を [wo]”, “に [ni]”, “で [de]”, and “と [to]”, which

roughly correspond to nominative case, accusative case, dative case, instrumental

case, and “with” or “and”, respectively. The four marks consist of “から [kara]”,

“ので [node]”, “と [to]”, and “ら [ra]”, the first and last two of which represent

causal and conditional relations, respectively. As with the word cards, the role of

each mark is distinguishable by its color and shape. Each mark is arrow-shaped,

the direction of which indicates the dependency between words.

Referring to Figure 5.1, the player arranges the word cards “雨 (rain)” and “

降った (fell)” next to each other and connects them using the particle mark “が
(nominative case)”. The direction of the mark is from left to right; therefore, the

player has built the simple sentence “雨が降った (it rained)”. Furthermore, it is

connected to the simple sentence “長靴を履く (wear rain boots)” with the particle

mark “ら (if)”; that is, the player has also constructed the complex sentence “雨
が降ったら,長靴を履く (If it rains, I5 will wear rain boots)”.

4The input is automatically analyzed by the Japanese morphological analyzer, Juman++

(Morita et al., 2015; Tolmachev et al., 2018).
5{} indicates a dropped pronoun.
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Figure 5.3: Overview of the method for generating word card sets.

5.3.2 Method for Generating Word Card Sets

In order for the game to be more fun, it is preferable that players can construct

several simple and complex sentences from a given word card set. To guarantee

this, we focus on core event, which is defined in Section 2.3.1.

We adopt pairs of core events that have contingent relation (core event pairs)

such as “雨が降る → 長靴を履く (it rains → wear rain boots)”, which can be

extracted at scale from the Kyoto University Commonsense Inference dataset,

the dataset constructed in Chapter 2.

The proposed method is to automatically generate word card sets from core

event pairs, which consists of the following three steps (cf. Figure 5.3).

1. Set a threshold regarding word difficulty and exclude core event pairs not

satisfying the condition.

2. Take one core event pair as a seed and randomly select the other four pairs

that share the former or latter core event of the seed.

3. Generate a word card set by breaking down the selected five pairs into

predicates and arguments.

STEP 1: Filtering by Word Difficulty First, we adjust vocabulary using

the Japanese word difficulty database (Muzitani et al., 2019), considering that the

target users are elementary school students. This database contains 26k words
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Number Acquisition Time

1 Before elementary school

2 Early elementary school

3 Late elementary school

4 After junior high school

5 Never seen or heard

Table 5.1: Correspondence between numbers and acquisition times in the Japanese

word difficulty database (Muzitani et al., 2019).

of basic Japanese vocabulary labeled with their average acquisition time using

crowdsourcing. Acquisition time is regarded as word difficulty and expressed as a

number from 1 to 5, the correspondence of which is shown in Table 5.1.

In this study, we set the following threshold conditions.

Easy (for early elementary school students) The maximum word difficulty of words

in a core event pair does not exceed 2.0.

Medium (for middle elementary school students) The average word difficulty of

words in a core event pair exceeds 1.5, and the maximum word difficulty

does not exceed 2.5.

Hard (for late elementary school students) The average word difficulty of words

in a core event pair exceeds 2.0.

We set a strict upper bound but allow easy words to get mixed in harder sets.

STEP2: Selecting Core Event Pairs Then, we select five core event pairs

from the ones satisfying a threshold condition. Specifically, we take one core

event pair (hereafter, seed) and randomly select the other four pairs that share

the former or latter core event of the seed. If we fail to get five pairs, including a

seed, we skip generating a word card set.

STEP3: Generating a Word Card Set Finally, we generate a word card

set by breaking down the five pairs selected in the previous step into predicates



5.3. KOTOBA-MUSUBI 97

and arguments. If we obtain six nouns and five or six verbs/adjectives after de-

duplication, we regard the words as a word card set. In case six verbs/adjectives

are obtained, we replace the least frequent verb/adjective with a wildcard.

5.3.3 Careful Examination of Core Event Pairs

We must be extremely careful not to give inappropriate questions as an educa-

tional application. Accordingly, we request two linguistic experts to manually

classify the core event pairs used for word card sets into the following categories.

Valid A core event pair has contingent relation.

Invalid A core event pair has no contingent relation.

Inappropriate A core event pair contains educationally inappropriate expres-

sions.

Prior to the examination, we exclude core event pairs that contain minor case

particles or words unregistered in the Japanese word difficulty database. As a

result, 9k core event pairs are left and examined. We also automatically assign

reading to each word and conjugated forms to each predicate using the Japanese

morphological analyzer, Juman++ (Morita et al., 2015; Tolmachev et al., 2018).

We ask the experts to correct auto-assigned readings in addition to the examina-

tion.

As a result of the examination by the experts, we finally obtained 4,362 valid,

3,560 invalid, and 1,120 inappropriate core event pairs, respectively. We used the

“valid” core event pairs for generating word card sets.

5.3.4 Statistics of Word Card Sets

According to the method described in Section 5.3.2, we generated word card sets

from the verified pairs. As a result, we obtained 99 easy, 594 medium, and 284

hard word card sets, respectively, achieving a size that is sufficient for solo play.
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5.3.5 Automatic Scoring

When players tap a scoring button, the board information is sent to a back-

end server and automatically scored. The automatic scoring is performed in the

following three steps:

1. Recognize simple and complex sentences.

2. Score each sentence automatically.

3. Generate feedback based on the scoring results.

Recognition of Simple and Complex Sentences

A simple sentence is recognized as a sequence of a verb card at the end and noun

cards in the rest connected by case particle marks, and a complex sentence as

two simple sentences connected by a discourse connective mark. We consider all

possible combinations of simple sentences.

Automatic Scoring of Each Sentence

Our policy is to prioritize simple sentences whose predicate and argument fre-

quently co-occur (i.e., idiomatic) or whose length is longer. The score of each

simple sentence is determined based on the number of examples in the Japanese

case frames (Kawahara and Kurohashi, 2006). Specifically, regarding the case

frame cf where examples are found, we compute a score of each argument and

case pair (a, c) with the following function S and sum it up.

S(a, c, cf) = 0.5 + 0.5 ×min(1,
fa,c,cf
fcf

× 5)

where fa,c,cf is the frequency of argument a in case c of case frame cf, and fcf is

the frequency of case frame cf. For instance, referring to Table 5.2, the score of

the simple sentence “筍が顔を出す (Bamboo shoots come out from the ground)”

is computed as follows.

f筍, が, 出す2

f出す2

=
199

605, 564
= 0.000,

f顔, を, 出す2

f出す2

=
256, 404

605, 564
= 0.423

S(筍,が,出す2) + S(顔,を,出す2) = 0.5 + 1 = 1.5
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Case slots Case fillers

が [ga] 63,664 太陽 (sun) 6,481, ... , 筍 (bamboo shoot) 199, ...

を [wo] 320,338 顔 (face) 256,404, 口 (mouth) 41,127, ...

に [ni] 64,750 店 (shop) 2,154, 実家 (parents’ house) 1,632, ...

f出す2
: 605,564

Table 5.2: Second case frame of the verb “出す (show)”. “が [ga]”, “を [wo]”,

and “に [ni]” roughly correspond to nominative, accusative, and dative cases,

respectively. The number following a case or a case filler represents its frequency.

Each score is converted into the following symbols for further interpretability.

r =☆☆ (score >= 1),☆ (0 < score < 1), ?(score = 0)

Regarding complex sentences, they are graded as “☆☆☆” if they contain one of

the verified core event pairs; otherwise, as “?”. When examining the containment

relation, we take into account the polarity of the negation of a predicate.

Generation of Feedback based on the Scoring Results

The following feedback is generated from sentences graded as “?” depending on

the reasons behind the sign’s attribution.

• There is a more appropriate case marker that allows for the sentence to

achieve a score.

• The sentence is grammatically incorrect (e.g., the sentence starts with a

verb/adjective, a verb/adjective depends on a noun, and so forth).

• The sentence is not matched with any example in language resources.

Regarding the third point, we expect to collect unknown contingent relations

through an error reporting function and thus improve the evaluation system.
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Figure 5.4: Screenshot of “word dictionary” feature in Kotoba-musubi.

5.3.6 Collection Element

We introduce the “word dictionary” feature to motivate students to continue to

play the game (Figure 5.4). It records which words each player has used so far

in the game by their difficulty level. Regarding each word in the word dictionary,

we can also confirm its reading and refer to example sentences that contain the

word regardless of whether or not each player has ever used it. We believe this

feature prompts users to accept further challenges and thus to enlarge their word

collection and develop their vocabulary.

5.3.7 Implementation

Kotoba-musubi is a client-server application that is available on iOS, Android,

and web browsers. The client side is developed with Unity and runs on modern

web browsers using WebGL. The server side consists of a Nginx web server and

an application server developed with the Python web framework, Flask. The

application server has 96GB RAM and 24 cores. The account sign-in function is

implemented using Firebase Authentication.
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5.4 User Study

We developed the iOS, Android, and web applications that implement Kotoba-

musubi and conducted a user study to assess engagement.

5.4.1 Settings

We recruit 80 pairs of elementary school students and their parents across Japan

and have the children play the game for an hour in total over two days. 80 students

consist of 10 boys and 10 girls each from third to sixth grade in elementary school.

In order to let them play freely, we neither set their quota nor specify the difficulty

of questions they tackle. How to play is displayed in the first play and can be

confirmed at any time. After playing the game, they answer the questionnaire

described in Table 5.3.

5.4.2 Results

Figure 5.5 illustrates the aggregate results of the questionnaire. We can see that

elementary school students tend to dislike writing compositions, as mentioned

in Section 5.1. Despite this disadvantageous situation, 70% of the participating

children enjoyed Kotoba-musubi, and 90% answered it was worth playing the

game. In addition, 70% expressed their will to continue to play the game, which

suggests that it is a good introduction to studying Japanese writing.

We also investigated the number of children who disliked writing composi-

tions but enjoyed the game. We found that 18 of 37 children who disliked or

disliked a little writing compositions enjoyed the game6. This result supports the

effectiveness in reducing an aversion to writing compositions.

Table 5.4 lists the excerpted feedback comments from the participating chil-

dren. While a number of children noted they enjoyed themselves, there were also

several comments that it took time to understand how to play, which raises the

need for improving a tutorial.

6Specifically, 10, 8, 10, 7, and 2 children answered “Enjoyed”, “Enjoyed a little”, “Neither”,

“Didn’t enjoy a little”, and “Didn’t enjoy”, respectively.
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Figure 5.5: Aggregate results of the questionnaire described in Table 5.3. The

numbers in the figure represent those of children who chose the option.

+ It was fun and refreshing to create sentences using words I didn’t usually use.

+ I’d honestly like to see the game introduced to school tablets.

± It will be more fun if we can compete with our friends for higher scores.

− I couldn’t fully understand how to play the game.

− It was hard to get sentences scored, which made me frustrated.

Table 5.4: List of the excerpted feedback comments from the participating chil-

dren.

5.4.3 Discussion

The user study also revealed some current issues of Kotoba-musubi. For instance,

there is room for improvement in reducing the feeling of studying while playing

the game. As one of the feedback comments in Table 5.4 suggests, we need to

enhance the enjoyment of our application by introducing game elements such as

a match game system.
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Figure 5.6: Analysis results of user logs.

Another issue is the quality of automatic scoring. Although the result of the

fifth question in Table 5.5 leans toward positive, about half of the participants are

also ambivalent. One of the possible remedies is to incorporate masked language

models such as BERT (Devlin et al., 2019) into automatic scoring for more flexible

evaluation. For instance, we can quantify to some extent the correctness of the

usage of a case marker by masking it and predicting the probability of the original

token in a masked position. We will explore how to utilize neural language models

considering the computational cost.

5.4.4 Analysis of User Logs

We investigated whether there was some improvement as the number of play days

increased. Specifically, we targeted 158 users with at least one week’s worth of

activity logs, aggregated the activity logs on a daily basis, and calculated the

average number of sentences graded as “☆” or “☆☆” for each problem. We

assume that high-frequency predicate-argument structures in case frames (i.e.,

sentences graded as “☆☆”) are high quality.

Figure 5.6 illustrates the analysis results. For instance, as of day one and

five, the average numbers of sentences graded “☆” or “☆☆” for each problem

are 2.46 and 3.01. It is observable that users created more scored sentences as
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the number of play days increased, though there was some decrease after day six

possibly because they became less motivated. In addition, we can see that the

average number of sentences graded as “☆☆” gradually increased until day 5.

This implies the effectiveness of our game in learning Japanese writing.

5.5 Summary of This Chapter

We proposed Kotoba-musubi, an AI educational game for elementary school stu-

dents to study Japanese writing, which fully utilizes existing language resources

such as case frames, a word difficulty database, and a commonsense contingency

reasoning dataset. While playing the game, players construct simple and complex

sentences by connecting given word cards with particle marks. We expect stu-

dents to develop their vocabulary and reasoning skills in a ludic manner with the

game.

We also developed smartphone and web applications of Kotoba-musubi and

conducted a user study involving 80 pairs of elementary school students and their

parents to assess it. The results of the user study demonstrated its effectiveness

in reducing an aversion to writing compositions.

One future work is to address the remaining issues with reference to the feed-

back comments and further investigate long-term educational effects. We also

consider collecting unknown contingent relations through error reports.
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Conclusion

6.1 Overview

The objectives of this thesis are two folds: to improve the linguistic capability to

infer discourse relations primarily in Japanese and to explore its applications to

other NLU tasks and human learning. Toward these objectives, we have studied

data generation approaches.

In Chapter 2, we proposed a method of semi-automatically generating multiple-

choice questions that ask basic contingency from a raw corpus. According to the

proposed method, we built a large-scale Japanese commonsense contingency rea-

soning dataset comprising 104k problems. We demonstrated there was a reason-

able performance gap between the NLP model at the time and humans on this

dataset.

In Chapter 3, we worked on improving the linguistic capability to infer basic

contingency utilizing the constructed dataset. We automatically generated large-

scale pseudo-problems by utilizing the scalability of the aforementioned proposed

method and improved commonsense contingency reasoning by incorporating them

into training. We also investigated the generality of knowledge about basic con-

tingency through quantitative evaluation by performing transfer learning from

a commonsense contingency reasoning task to the related NLU tasks. Through

these experiments, we confirmed the performance gain in both a commonsense

contingent reasoning task and the related NLU tasks and thus demonstrated the

106
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importance of contingency reasoning in NLU.

In Chapter 4, we worked on improving Discourse Relation Recognition (DRR)

with a synthetic data generation approach. Regarding DRR, one of the biggest

issues is the paucity of training data for some error-prone discourse relations.

To alleviate this issue, we proposed a method of generating synthetic data for

these error-prone discourse relations using a large language model. Thanks to

the synthetic data generated according to the proposed method, we achieved the

performance gain in both Japanese and English DRR.

In Chapter 5, we introduced an educational application utilizing the data

constructed in the process of our studies. We took up the long-standing problem

in Japanese education that elementary school students tend to have an aversion to

writing compositions and developed an educational game in order to ameliorate

the situation. As the result of a user study, we demonstrated that our game can

be used as a good introduction to studying Japanese writing. This also supports

the usefulness of discourse relations.

6.2 Future Prospects

6.2.1 Evaluation of the Linguistic Capability to Infer Discourse

Relations in Multi-Modal Settings

In this thesis, we evaluated/improved the linguistic capability of computers to infer

discourse relations in a single-modal setting. However, with the rapid advance-

ment of multi-modal models, it is becoming increasingly necessary to evaluate the

extent to which they can infer discourse relations and act accordingly. Let us

consider assistant robots that assist you with housework. If you instruct them to

do laundry, and they can find some laundry should not be machine washed, i.e.,

understand contingent relation between “laundry” and “machine wash”, they can

prevent the incident. For another instance, if you ask a robot to fetch a book

without knowing that its hands are dirty, the robot should clean its hand before

granting the request based on knowledge about basic contingency. Thus, the lin-

guistic capability to infer discourse relations is crucial for robots that can function

in our world. Toward such a thoughtful multi-modal model, it is deemed neces-
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sary to implement the evaluation framework of Discourse Relation Recognition in

multi-modal settings.

There might be a claim that such discourse relations can also be learned solely

from visual information. However, it is probably challenging and inefficient to

learn vast knowledge about discourse relations from scratch based on visual in-

formation. We hope that our studies can contribute to this issue.

6.2.2 Exploration of Other Practical Applications

We explored the two applications of discourse relations in this thesis: applications

of basic contingency to improving other NLU tasks and to Japanese writing ed-

ucation. Discourse relations are also expected to be useful for challenges in our

world such as analyzing the stock market and identifying the pros and cons of a

product or service, as described in Section 1. It is beneficial to explore such other

practical applications for the public welfare.

One point to be considered for such applications is that our studies have

addressed Discourse Relation Recognition in web or news domain. It is still under-

explored whether computers can recognize discourse relations in text from other

domains, such as financial and medical texts. There will be a need to focus on

the generality of Discourse Relation Recognition in the future.

6.2.3 Rethinking of Evaluation of Natural Language Understand-

ing

In this thesis, we took a bottom-up approach to NLU, i.e., worked on evalu-

ating/improving the linguistic capability to infer discourse relations alone and

did not work on defining language understanding. However, several studies have

claimed the need to define language understanding anew and the importance of

multifaced evaluation of NLU (Bender and Koller, 2020; Bommasani et al., 2021).

In light of this trend, we should face this issue and pursue how natural language

should be evaluated toward the ultimate goal of NLP.



Appendix A

Supplementary Materials of

Chapter 3

A.1 Hyper-parameters

Table A.1, A.2, A.3, A.4, and A.5 organize the hyper-parameters used in the

experiments. We found that a lower learning rate makes the training of the XLM-

R model more stable; thus, we set the learning rate of the XLM-R model lower

than that of BERT.

Name
Value

BERT XLM-R

Epoch 3

Batch size 32

Max sequence length 128

Optimizer AdamW

Learning rate 2e-5 5e-6

Scheduler Linear decay with linear warmup

Warmup proportion 0.1

Seed {0, 1, 2}

Table A.1: Hyper-parameters for fine-tuning on KUCI with pseudo-problems.
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Name
Value

BERT XLM-R

Epoch 100

Batch size 256

Max sequence length 128

Optimizer AdamW

Learning rate 1e-4

Scheduler Linear decay with linear warmup

Warmup proportion 0.06

gradient clipping value - 0.25

Seed 0

Table A.2: Hyper-parameters for AMLM. Most of the hyper-parameters are re-

ferred to Gururangan et al. (2020).

Name
Value

BERT XLM-R

Epoch 10

Patience for early stopping 3

Batch size 32

Max sequence length 128

Optimizer AdamW

Learning rate 2e-5 5e-6

Scheduler Linear decay with linear warmup

Warmup proportion 0.1

Seed {0, 1, 2}

Table A.3: Hyper-parameters for fine-tuning on KWDLC.
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Name
Value

BERT XLM-R

Epoch 50

Batch size 32

Max sequence length 128

Optimizer AdamW

Learning rate 2e-5 5e-6

Scheduler Linear decay with linear warmup

Warmup proportion 0.1

Seed {0, 1, 2}

Table A.4: Hyper-parameters for fine-tuning on JWSC. We set the number of

epochs to a large value with reference to Mosbach et al. (2021).

Name
Value

BERT XLM-R

Epoch 4

Batch size 32

Max sequence length 128

Optimizer AdamW

Learning rate 2e-5

Scheduler Linear decay with linear warmup

Warmup proportion 0.1

Seed {0, 1, 2}

Table A.5: Hyper-parameters for fine-tuning on JCQA.
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Supplementary Materials of

Chapter 4

B.1 Hyper-parameters

Table B.1 and B.2 organize the hyper-parameters used in the experiments.

Name
Value

RoBERTaBASE RoBERTaLARGE

Epoch 20

Batch size 32

Max sequence length 128

Optimizer AdamW

Learning rate 2e-5 1e-5

Scheduler Linear decay with linear warmup

Warmup proportion 0.1

Seed {0, 1, 2}

top-k 3 5

λ 0.25

Table B.1: Hyper-parameters regarding IDRR on the PDTB dataset.
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Name
Value

RoBERTaBASE RoBERTaLARGE

Epoch 100

Batch size 256

Max sequence length 128

Optimizer AdamW

Learning rate 2e-5 1e-5

Scheduler Linear decay with linear warmup

Warmup proportion 0.06

gradient clipping value 1.0 0.5

Seed {0, 1, 2}

top-k 5

λc 0.25 0.5

λs 0.5 0.25

Table B.2: Hyper-parameters regarding DRR on KWDLC.
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Vers le FDTB : French Discourse Tree Bank (Towards the FDTB : French

Discourse Tree Bank) [in French]. In Proceedings of the Joint Conference

JEP-TALN-RECITAL 2012, volume 2: TALN, pages 471–478, Grenoble,

France, June 2012. ATALA/AFCP.

[24] Sebastian Deterding, Dan Dixon, Rilla Khaled, and Lennart Nacke. From

Game Design Elements to Gamefulness: Defining Gamification. volume 11,

pages 9–15, 09 2011. doi: 10.1145/2181037.2181040.

[25] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.

BERT: Pre-training of Deep Bidirectional Transformers for Language Un-

derstanding. In Proceedings of the 2019 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language



118 BIBLIOGRAPHY

Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Min-

neapolis, Minnesota, June 2019. Association for Computational Linguistics.

doi: 10.18653/v1/N19-1423.

[26] William B. Dolan and Chris Brockett. Automatically Constructing a Cor-

pus of Sentential Paraphrases. In Proceedings of the Third International

Workshop on Paraphrasing (IWP2005), 2005.

[27] Yulia Yu. Dyulicheva and Anastasia O. Glazieva. Game based learning

with artificial intelligence and immersive technologies: an overview. In 4th

Workshop for Young Scientists in Computer Science Software Engineering,

pages 146–159, December 2021.

[28] Yanai Elazar, Akshita Bhagia, Ian Magnusson, Abhilasha Ravichander,

Dustin Schwenk, Alane Suhr, Pete Walsh, Dirk Groeneveld, Luca Soldaini,

Sameer Singh, Hanna Hajishirzi, Noah A. Smith, and Jesse Dodge. What’s

In My Big Data?, 2023.

[29] Tobias Falke, Leonardo F. R. Ribeiro, Prasetya Ajie Utama, Ido Dagan,

and Iryna Gurevych. Ranking Generated Summaries by Correctness: An

Interesting but Challenging Application for Natural Language Inference. In

Proceedings of the 57th Annual Meeting of the Association for Computa-

tional Linguistics, pages 2214–2220, Florence, Italy, July 2019. Association

for Computational Linguistics. doi: 10.18653/v1/P19-1213.

[30] Christiane Fellbaum. WordNet: An Electronic Lexical Database. MIT Press,

Cambridge, MA, 1998. doi: 10.7551/mitpress/7287.001.0001.

[31] Tianyu Gao, Xingcheng Yao, and Danqi Chen. SimCSE: Simple Contrastive

Learning of Sentence Embeddings. In Proceedings of the 2021 Conference

on Empirical Methods in Natural Language Processing, pages 6894–6910,

Online and Punta Cana, Dominican Republic, November 2021. Association

for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.552.

[32] Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel,

Wieland Brendel, Matthias Bethge, and Felix Wichmann. Shortcut learning



BIBLIOGRAPHY 119

in deep neural networks. Nature Machine Intelligence, 2:665–673, 11 2020.

doi: 10.1038/s42256-020-00257-z.

[33] Mor Geva, Yoav Goldberg, and Jonathan Berant. Are We Modeling the

Task or the Annotator? An Investigation of Annotator Bias in Natural

Language Understanding Datasets. In Proceedings of the 2019 Confer-

ence on Empirical Methods in Natural Language Processing and the 9th

International Joint Conference on Natural Language Processing (EMNLP-

IJCNLP), pages 1161–1166, Hong Kong, China, November 2019. Associa-

tion for Computational Linguistics. doi: 10.18653/v1/D19-1107.

[34] Jonathan Gordon and Benjamin Van Durme. Reporting Bias and Knowl-

edge Acquisition. In Proceedings of the 2013 Workshop on Automated

Knowledge Base Construction, pages 25–30, 2013.

[35] Suchin Gururangan, Swabha Swayamdipta, Omer Levy, Roy Schwartz,

Samuel Bowman, and Noah A. Smith. Annotation Artifacts in Natural Lan-

guage Inference Data. In Proceedings of the 2018 Conference of the North

American Chapter of the Association for Computational Linguistics: Hu-

man Language Technologies, Volume 2 (Short Papers), pages 107–112, New

Orleans, Louisiana, June 2018. Association for Computational Linguistics.

doi: 10.18653/v1/N18-2017.

[36] Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo,
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