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Towards Effective and Efficient Personalized

Recommendation from a Spectral Perspective∗

Shaowen Peng

Abstract

Due to the development of computer hardware and explosive growth of data,

personalized recommendation has been applied to many online services such as

E-commerce, social network service, short videos and so on, which is ubiquitous

in our daily life. Starting from matrix factorization to deep learning based meth-

ods, tremendous research effort has been devoted to exploit powerful algorithms

to extract user preference from complex user behaviours, and they have shown

great potentials and superior performance for recommender systems. However,

we notice that limited attention has been paid to the spectrum of data repre-

sentation containing important information of the recommendation datasets and

reflecting how users and items are represented in the embedding space. In this

thesis, we analyze and evaluate recommendation algorithms from a spectral per-

spective. Particularly, we focus on (1) the graph spectrum and (2) the spectrum

of user/item representations.

While Graph Convolutional Networks (GCNs) have shown tremendous success

in recommender systems and collaborative filtering (CF), the mechanism of how

they contribute to recommender systems has not been well studied. Furthermore,

GCN-based recommendation methods suffer from expensive computational com-

plexity and poor scalability compared with traditional methods. By analyzing

GCN from a spectral perspective (i.e., the graph spectrum), we unveil the effec-

tiveness of GCN for recommendation from the following three aspects.

• We discover that only a small fraction of spectral graph features that emphasize

the neighborhood smoothness and difference contribute to the recommendation

accuracy, whereas most graph information can be considered as noise that even

reduces the performance. What’s more, stacking multiple graph convolution
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layers (i.e., repeating the neighborhood aggregation) emphasizes smoothed fea-

tures and filters out noise information in an ineffective way.

• We show the close connection between GCN-based and low-rank methods such

as singular value decomposition (SVD) and matrix factorization (MF), where

stacking graph convolution layers is to learn a low-rank representation by em-

phasizing (suppressing) components with larger (smaller) singular values.

• The number of required spectral graph features is closely related to the spectral

distribution, where important information tends to be concentrated in more

(fewer) spectral features on the dataset with a flatter (sharper) distribution.

Based on the above findings, we propose more effective and efficient GCN learn-

ing algorithms for recommender systems, which outperform state-of-the-arts and

reduce the time and space complexity of existing works.

In another line of our work, we focus on the spectrum of the user/item rep-

resentations to study what factors contribute to good representations. We shed

light on an issue in the existing pair-wise learning paradigm (i.e., the embedding

collapse problem), that the representations tend to span a subspace of the whole

embedding space, leading to a suboptimal solution and reducing the model ca-

pacity. Specifically, optimization on observed interactions is equivalent to a low

pass filter causing users/items to have the same representations and resulting in

a complete collapse; while negative sampling acts as an unreliable high pass filter

to alleviate the collapse by balancing the embedding spectrum but still leads to

an incomplete collapse. To tackle this issue, we propose a novel method called

DirectSpec, acting as a reliable all pass filter to balance the spectrum distri-

bution of the embeddings during training, ensuring that users/items effectively

span the entire embedding space. Additionally, we provide a thorough analysis

of DirectSpec from a decorrelation perspective and propose an enhanced variant,

DirectSpec+, which employs self-paced gradients to optimize irrelevant samples

more effectively.

Keywords: Information Retrieval, Recommender System, Collaborative

Filtering, Graph Neural Network, Spectrum
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CHAPTER 1

Introduction

1.1 Background

With the explosive growth of information on the web, we are overwhelmed by

the large amount of accessible data nowadays. Recommender system (RS) is

considered as an effective strategy to overcome information overload by providing

personalized content (e.g., products, music, restaurants, etc.) to distinct users

according to their interests and preference. Therefore, it has been extensively

applied to online services such as Amazon, Youtube, TikTok, and so on. It has

also been reported that recommender systems can significantly boost sales by

influencing user behaviours [1, 2]. For instance, 35% of what (out of 310 million)

consumers purchase on Amazon and 75% of what they (out of 247 million) watch

on Netflix come from product recommendations based on algorithms∗. As such,

there is no doubt that recommender systems play an increasingly important role

to enrich our daily life by providing a variety of choices to users when they are

undecided over their next behaviours.

The goal of recommender systems is to predict the relevant scores of users

to a group of items based on the optimization over past user-item interactions,

and the items with the highest scores are considered as relevant items that are

recommended to users. Generally, recommendation datasets at least contain user-

∗https://urlzs.com/ZLprh
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Figure 1.1. A visualization of difference between conventional (e.g., MF) and

GNN-based methods. For GNN-based methods, the user/item embeddings are

repeatedly updated by aggregating the message from higher-order neighborhood.

ID, item-ID, and interactions (i.e., the record of which users interacted with which

items) represented as implicit (e.g., clicks or views) or explicit feedbacks (e.g.,

ratings or reviews). Additionally, other side information such as demographic

data (i.e., age, gender, country, etc.) [3], social relations [4], review data [5], item

attributes (i.e., image, genre, price, etc.) [6], and so on can also be included to

augment data to better infer the user preference from the historical behaviours.

To accurately and precisely predict users’ future behaviours, several kinds of

recommendation algorithms have been proposed, such as memory-based [7, 8],

model-based [9, 10, 11], content-based [12, 13], hybrid-based [14, 15] methods,

and so on. Among them, matrix factorization (MF) [11] is one of the simplest

yet effective methods. It characterizes user and item as latent vectors, and esti-

mates the score between a user and an item as the inner product between their

latent vectors. Despite its effectiveness, the performance of MF is limited as it

simply uses a linear function to model complex user-item relationships. To over-

come this issue, subsequent works empower the recommendation algorithms by

replacing the linear function with other advanced algorithms such as multilayer

perceptrons (MLP) [16, 17], recurrent neural networks (RNNs) [18, 19], attention

mechanism [20, 21], transformer [22, 23], etc. and have shown tremendous success

2



1. Introduction

in recommender systems.

Users usually only interact with a very small fraction of items out of millions of

them, leading to a sparse training data in practice. Consequently, this issue jeop-

ardizes the effectiveness of recommendation algorithms [24]. The recommender

systems that are even equipped with powerful algorithms also show poor per-

formance under extreme data sparsity. In recent years, graph neural networks

(GNNs) [25] have attracted considerable attention in various research fields such

as node classification [26], anomaly detection [27], molecular science [28], and so

on. GNNs have also shown great potential in recommender systems and collabo-

rative filtering (CF) [29, 30] due to the capability of alleviating the sparsity issue

by capturing the higher-order collaborative signals. As illustrated in Figure 1.1,

unlike traditional recommendation algorithms directly optimizing the sparse user-

item interactions, GNNs represent user-item interactions as a bipartite graph and

repeatedly aggregate the messages from higher-order neighborood, providing an

effective way to augment the training data to alleviate the data sparsity issue.

1.2 Motivation and Challenge

Owing to the dramatic improvement of computing hardware, more powerful al-

gorithms have been proposed and have achieved significant success in various re-

search fields such as computer vision [31], natural language processing [32], speech

recognition [33], etc. Starting from memory-based and model-based methods,

deep learning based techniques requiring more training parameters and computing

resources have been extensively applied to recommender systems as well [17, 34].

However, existing recommendation algorithms are mostly evaluated on certain

datasets, their efficiency and effectiveness have not been carefully studied with

empirical and theoretical analysis. As such, in this thesis, we comprehensively

analyze recommendation algorithms from a spectral perspective. Particularly, we

focus on the spectrum information with two aspects:

• Graph Neural Networks (GNNs) recently have been applied to recommender

systems, which unlike traditional recommendation methods represent the rec-

ommendation data as a graph. We demystify GNN-based recommendation

methods by analyzing the graph spectrum of existing methods, and propose

more scalable and effective GNN learning algorithms for recommendation.

3
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Figure 1.2. An illustration of the data distribution in the original space and

expected distribution in the learning embedding space.

• Without depending on specific algorithms, we generally analyze the embedding

spectrum of recommendation methods to study what factors contribute to good

user/item representations. Particularly, we shed light on a collapse issue causing

user and item representations to span a subspace of the whole embedding space,

and we propose effective methods to address this issue.

Graph Neural Networks (GNNs) recently have attracted significant attention

in recommender systems as they can learn high-quality representation under data

sparsity by exploiting higher-order neighborhood. The research efforts are mostly

devoted to applying GNN structures to different scenarios of recommendation

[35, 36, 30, 37] or empowering GNNs with other advanced algorithms [38, 39, 40],

while the following research questions have not been well studied:

• How and why GNNs show superior performance to traditional recommendation

algorithms, what designs matter for GNN-based recommender systems?
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• Compared with traditional recommendation algorithms, GNNs suffer from high

computational cost and poor scalability. It has also been reported that GNN-

based methods show slow training convergence [41]. Can GNNs be both effec-

tive and efficient for recommender systems?

• GNNs suffer from an over-smoothing issue [42], causing users/items to have the

same representations as stacking more layers. As a result, most GNN-based

methods remain shallow. Can GNN-based recommendation algorithms benefit

more from deep GNNs?

We argue that the above limitations are due to the lack of a deep understanding

of GNNs. Given that the foundation of GNNs is deeply rooted in the spectral

graph theory [43] and the signal processing on graphs [44], we mainly focus on

graph convolutional networks (GCNs) which exploits the adjacency matrix to

aggregate messages from neighborhood. By reviewing existing GCN-based meth-

ods, we show three kinds of redundancies that significantly affect model efficiency

and effectiveness:

1. Feature redundancy. Only a very small fraction of spectral features that

emphasize the neighborhood smoothness and difference significantly affect the

recommendation accuracy, while most graph information is barely contributive

to recommendation that can be considered noise added on the graph. Stacking

more graph convolution layers can suppress but cannot completely remove

the noisy features. Based on this observation, we propose Graph Denoising

Decoder (GDE) which only keeps the important graph features to model the

graph smoothness and difference without stacking layers.

2. Structure redundancy. We show the close connection between GCN-based

and low-rank methods (e.g., singular value decomposition (SVD) and MF)

that stacking graph convolution layers is to learn low-rank representations

by emphasizing (suppressing) the components with larger (smaller) singular

values. We then propose a simplified GCN learning paradigm dubbed SVD-

GCN showing much fewer complexity than existing GCN-based methods.

3. Distribution redundancy. The number of required spectral features con-

tributing to recommendation is highly related to the spectral distribution,

where important information tends to be concentrated in more (fewer) graph
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features on a flatter (sharper) distribution (i.e., the spectral value drops more

slowly (quickly)). To reduce the complexity for retrieving spectral features, we

concentrate the important information in fewer spectral features by sharpening

the spectral distribution. Specifically, we introduce a renormalized adjacency

matrix with a hyperparameter adjusting the sharpness of the spectral distri-

bution to reduce the number of required spectral features.

We then shift our focus to the embedding spectrum. Most of existing recom-

mendation algorithms can be considered as MF variants whose goal is to learn low

dimensional representations (with dimension d) from the high dimensional sparse

interaction matrix (with dimension D � d). Figure 1.2 illustrates the top 500

normalized singular value distribution of the interaction matrix of CiteULike. We

observe that users/items are predominantly distributed along a few dimensions

in the original space while most dimensions barely contribute (i.e., with singular

values close to 0) to the representations. Thus, when users and items are mapped

into a more compact embedding space, it is expected that redundant dimensions

are all removed and each dimension contributes to the user/item representations

as equally and uniformly as possible (i.e., the representations make full use of the

embedding space). Unfortunately, by analyzing the spectrum of the embedding

matrix, we empirically and theoretically show that users/items tend to span a

subspace of the whole embedding space (with dimension d′ < d), where the em-

beddings collapse along all (complete collapse) or certain dimensions (incomplete

collapse). Particularly, optimization solely on observed interactions is equivalent

to a low pass filter, where the representations of users and items tend to col-

lapse to a constant vector. Negative sampling is the most common technique

to optimize recommendation algorithms without causing an explicit embedding

collapse by pushing away the unobserved user-item pairs, and we show that it is

equivalent to a high pass filter that alleviates the collapse issue by balancing the

embedding spectrum. However, there is no guarantee that negative sampling can

completely prevent the collapse, and collapse over certain dimensions still happens

on existing pair-wise learning paradigms such as Bayesian personalized ranking

(BPR) [45] and binary cross-entropy (BCE) loss [17]. Due to the data sparsity

and long tailed distributions, increasing negative sampling ratios is considered as

an effective way to to improve representation quality [17, 46], whereas we also

demonstrate that it cannot further alleviate the collapse issue by evaluating dif-

ferent negative sampling ratios. We tackle the embedding collapse issue from a
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spectral perspective. We observe that the extent of the collapse is closely related

to the spectrum distribution of the embedding matrix. Specifically, only one sin-

gular value dominates when the representations completely collapse, whereas the

singular values are uniformly distributed when the representations make full use

of the embedding space. Inspired by this observation, we propose a novel method

dubbed DirectSpec acting as an all pass filter to ensuring that all dimensions

equally contribute to the representations. We theoretically and empirically show

that DirectSpec can completely prevent the embedding collapse without explic-

itly sampling negative pairs by directly balancing the spectrum distribution, and

provide a simple implementation with a complexity only as O(B2d) where B is

the batch size. Moreover, we shed light on DirectSpec from a decorrelation per-

spective, and propose an enhanced variant DirectSpec+ which employs self-paced

gradients to optimize the irrelevant samples that are highly correlated more ef-

fectively. By showing the close connection between DirectSpec and uniformity,

we discover that contrastive learning (CL) can alleviate embedding collapse by

balancing spectrum distribution in a similar way to DirectSpec, explaining the

effectiveness of CL based recommendation algorithms.

1.3 Contributions

The contributions of this thesis can be summarized follows:

• We shed light on the feature redundancy on graph based recommendation

that only a very small fraction of spectral features emphasizing neighborhood

smoothness and difference are contributive to recommendation, and unveil the

effectiveness and weakness of existing GCN-based methods. We propose graph

denoising encoder (GDE) which can capture the message from any-hop neigh-

borhood without stacking graph convolution layers.

• We show the close connection between GCN-based and low-rank methods that

GCNs contribute to recommendation in a way similar low-rank methods. Par-

ticularly, stacking graph convolution layers is to learn a low-rank representation

by emphasizing (suppressing) the components with larger (smaller) singular val-

ues, and the weighted spectral features is the key making GCN effective instead

of the neighborhood aggregation that is considered as the core design of GCNs.

We propose a simplified GCN learning paradigm dubbed SVD-GCN which only
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requires a very few (K-largest) singular values (vectors) and model parameters

(less than 1% of MF’s on the tested data) for prediction.

• We show that the number of required spectral feature is closely related to the

spectral distribution, that the datasets with flatter (sharper) spectral distribu-

tion tend to require more spectral features. To reduce the computational cost

for retrieving spectral features, we concentrate important information from in-

teractions on fewer features by increasing node smoothness to sharpen the spec-

tral distribution, resulting in significant improvement as well.

• We propose a scalable contrastive learning framework by performing augmenta-

tion on spectral features where the intensity of the noise added on the features is

inversely proportional to their importance and augmenting sparse supervisory

signals with abundant higher-order neighborhood signals, resulting in signifi-

cant improvement.

• We theoretically and empirically show that existing recommendation methods

suffer from embedding collapse, that the representations tend to fall into a

subspace of the whole embedding space, and analyze the mechanisms causing

this issue. We propose a novel method DirectSpec which directly balances the

spectrum distribution. We empirically and theoretically show that DirectSpec

can prevent embedding collapse.

• Extensive results on public datasets not only show our proposed methods out-

perform state-of-the-arts but also demonstrate the efficiency and effectiveness

of our proposed designs.

1.4 Thesis Outline

The rest of this thesis is organized as follows. In Chapter 2, we conduct compre-

hensive literature review related to our research. In Chapter 3 to 5, we present our

solutions to tackle the aforementioned research questions in GNN, including de-

mystifying how GNNs contribute to recommendation, more effective and efficient

GNN methods, and approaches to tackle the over-smoothing issue. In Chapter 6,

we propose DirectSpec to tackle the embedding collapse issue in recommendation

algorithms. Finally, we conclude our research in Chapter 7.
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CHAPTER 2

Literature Review

2.1 Collaborative Filtering

This thesis focuses on the personalized recommendation under the setting of

collaborative filtering (CF). CF, a fundamental task for recommender systems,

makes predictions based on users’ historical interactions. Early memory-based

CF methods exploit users that share similar interests or items that tend to be

interacted by similar users to infer user preference [8, 47]. The similarity are usu-

ally measured as the cosine similarity or Pearson correlation between the users or

items interaction vectors. However, directly calculating the similarity is far from

effective due to the sparseness and the large size of the datasets. Model-based

CF methods [48, 49] are becoming increasingly prevalent as they can tackle the

shortcomings of memory-based methods by representing users and items in a more

effective way. Especially, Model-based methods usually characterize users/items

as low dimensional vectors instead of directly employing the high dimensional

interaction matrix, making the algorithms more efficient and scalable. Matrix

factorization (MF) [11] is one of the most extensively used model-based meth-

ods and the cornerstone of advanced recommendation algorithms. It stems from

singular value decomposition (SVD) and compresses the high dimensional inter-

action matrix to a low dimensional embedding matrix, where users/items are

represented as latent vectors and the rating is estimated as the inner product or
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cosine similarity between the user and item latent vectors. However, the model

expressivity of MF is still limited, due to (1) the lack of auxiliary information

provided to complement user-item interactions to help better infer user prefer-

ence, and (2) the unreasonable assumption that complex user-item relations can

be properly modelled by a simple linear function. To tackle the above weakness,

subsequent works mostly focus on introducing auxiliary information [50, 51] or

employing advanced algorithms to empower MF-based methods [17, 22]. There

are still some challenges existing in CF and recommender systems in general that

need to be addressed such as: (1) cold start [52]. How to recommend new users

and items? (2) Bias in recommendation, such as popularity bias, exposure bias,

and so on [53]. (3) Privacy protection. Collecting more detailed user information

always leads to more accurate recommendation while is also a threat to users [54].

2.2 Deep Learning Based Recommendation

Deep learning has yielded immense success in recommender systems in recent

years. Compared to traditional recommendation models:

• Deep learning is adept at modelling the non-linearity such as user-item rela-

tions. Conventional methods such as matrix factorization [11] and factorization

machine [55] are essentially linear models. By stacking weight transformation

and non-linear activation function, neural networks are capable of approximat-

ing any measurable functions to any desired degree of accuracy [56].

• Traditional methods rely heavily on the hand-crafted feature designs. Deep

learning, on the other hand, can automatically learn the complex relations

between raw input data and the decision space without relying much on the

feature engineering, providing a way to effectively learn from side information

such as review, temporal and spatial data, social relation, etc.

According to the techniques that have been applied to recommender systems,

deep learning based recommendation models can be categorized to: multilayer

perceptron (MLP), autoencoder (AE), convolutional neural network (CNN), re-

current neural network (RNN), attention mechanism, transformer, and so on. For

instance, wide & deep learning framework jointly trains feed-forward neural net-

works with embeddings and linear model with feature transformations for generic
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recommender systems with sparse inputs [16]. Liang et al. [57] developed vari-

ational autoencoder (VAE) for collaborative filtering on implicit feedback data,

enabling us to go beyond linear factor models with limited modelling capacity.

NCF [17] is a simple and generic neural network architecture fusing generalized

matrix factorization (GMF) and MLP to model latent features of users and items.

Kand et al. [58] built a self-attention based sequential recommendation model

(SASRec), which adaptively assigns weights to previous items at each time step.

Zheng et al. [59] proposed a reinforcement learning framework applying a deep

Q-Learning structure that can take care of both immediate and future reward for

online personalized news recommendation.

From a different perspective, according to the available data that can be used,

different task-specific methods has been proposed. For instance, for pure col-

laborative filtering only exploiting the user-item interactions, most deep learning

based models [17, 60] replace the simple model architecture with advanced deep

learning based techniques to model the complex user-item relations. Due to the

availability of temporal information, self-attention and RNN that are suited to

handle sequential data are applied to sequential and session-based recommenda-

tion [19, 58, 61]. Deep neural networks and attention mechanisms are employed

to multimedia recommendation owing to their superior ability to automatically

learn from heterogeneous data [20, 62, 63]. Aside from aforementioned men-

tioned architectures, convolutional neural networks (CNN) and transformers have

shown potentials in explainable recommendation [64, 65]. However, concern has

also been raised that the progress achieved by deep learning is not as strong as

claimed in the published research [66].

2.3 Graph Neural Network (GNN) and its Ap-

plications

2.3.1 Spectral and Spatial GNN

The non-Euclidean nature of graphs prevent deep learning techniques from being

directly applied to the graph data. Bruna et al. [67] generalized CNNs to the

graph data and proposed a spectral graph convolutional network (GCN) based
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on the graph Fourier transform:

F = VTx, (2.1)

where V is the stacked eigenvectors of the graph Laplacian, x is a graph signal.

Note that the eigenvectors {v1, · · · } is an orthonormal basis, thus VTx is actually

the coordinate of the basis {v1, · · · }. Given the output signal from the graph

Fourier transform x̂, the inverse graph Fourier transform is defined as follows:

F−1 = Vx̂. (2.2)

Then, the spectral graph convolution is defined as follows:

gθ ∗ x = VgθV
Tx, (2.3)

where gθ = diag(θ) is a parameterized filter where diag(·) is the diagonalization

operation. Due to the spatial non-localization and the expensive learning com-

plexity for retrieving eigenvectors, Defferrard et al. [68] simplified the spectral

graph convolution as a polynomial graph filter. By considering gθ as a function

of the eigenvalues λi of the graph Laplacian L, the spectral graph convolution

can be rewritten as follows:

gθ ∗ x = VgθV
Tx = Vdiag

(
K∑
k=0

θkλ
k
i

)
VTx =

K∑
k=0

θkL
k. (2.4)

It further reduced the complexity with Chebyshev polynomial, significantly re-

ducing the learning complexity of the spectral graph convolution. Based on these

two research works, Kipf et al. [25] proposed a layer-wise GCN model by further

simplifying [68]. A single-layer model architecture is formulated as follows:

gθ ∗ x = σ
(
ÂXΘ

)
, (2.5)

where σ(·) is an activation function, X is the feature matrix, Θ is the weight

matrix, Â is a symmetrically normalized adjacency matrix. By stacking multiple

layers, Equation (2.5) is able to aggregate the messages from multi-hop neighbor-

hood. [25] is one of the most extensively used GNN architectures.

There are basically two types of GNNs: spatial- and spectral-based GNNs, the

difference of them lies in the the message passing design. Spatial-based GNNs

focus on the spatial properties of graphs, one representative work is graph at-

tention networks [69]. Unlike [25], it uses attention mechanism to measure the
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importance between the target node and its first neighborhood. GraphSAGE [70]

is a general inductive framework learning a function that generates embeddings

by sampling and aggregating features from nodes’ local neighborhood. By theo-

retically showing that existing GNNs fail to distinguish similar graph structures,

Ke et al. [71] proposed Graph Isomorphism Network (GIN) that is as powerful

as the Weisfeiler Lehman (WL) graph isomorphism test. Spectral-based GNNs

which are also called GCNs, on the other hand, focus on the spectral properties

of graphs. They have a solid mathematical foundation in graph signal process-

ing [44] and mostly can only deal with the undirected graphs since the graph

Laplacian of directed graphs are asymmetric with complex eigenvalues. The

aforementioned works [25, 67, 68] generalizing CNNs to the graph data are repre-

sentative spectral-based GNNs. It has been shown that GCNs are low pass filters

emphasizing the low frequency components [72, 73], while some works show that

high frequencies are also important [74, 75] especially on heterophilic graphs.

Balcilar et al. [76] bridged the gap between spectral- and spatial-based GNNs

by conducting spectral analysis. Unlike conventional GCNs based on polynomial

filters, some works improve GCNs by exploiting other expressive filters such as

Bernstein approximation [77], ARIMA filter [78], Jacobi basis [79], etc., show-

ing better performance. Despite the superior performance GNNs have shown

in various research fields, there are still some challenges and issues that need

to be tackled such as: (1) Over-smoothing [42]. The node representations tend

to be the same as stacking more layers which instead reduces the performance.

As a result, conventional GNNs cannot benefit from deep model architectures.

(2) Expressive power [80]. many GNN methods fail to distinguish similar graph

structures that cannot be more powerful than WL test. (3) Effectiveness and

scalability trade-off. GNNs suffer from expensive learning complexity. The sam-

pling based strategy [70, 81] can reduce the complexity while loses part of the

graph information as well. How to trade-off scalability and graph integrity is

critical. (4) Generalization on heterophily. Conventional GNNs are equivalent

to low pass filters working well on homophilic graphs while perform poorly on

heterophilic graphs where connected nodes tend to be different.
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Figure 2.1. An illustration of how the interactions are represented as a graph.

2.3.2 GNN-based Recommendation

Graph neural networks (GNNs) have also been applied to recommender systems

in the light of their success in other research fields, including collaborative filtering

(CF) [30, 82], social recommendation [35], sequential recommendation [37, 83],

multimedia recommendation [84], news recommendation [85, 86], and so on. Since

we focus on CF in this thesis, we mainly summarize the GNN learning paradigm

for CF in this subsection.

Graph Construction. Given the user-item interaction matrix, it can be rep-

resented as a graph G = (V , E), where the node set V contains all users and items,

and the edge set E is represented by the observed interactions. Without introduc-

ing auxiliary information, G is bipartite where the edges only exist between a user

and an item. User-user or item-item can be connected when introducing social

relations or item-item knowledges [87, 88]. Figure 2.1 is an example of how inter-

actions are represented as graphs. The graph can be more complex by including

external knowledge [89, 90]. For instance, for movie recommendation we have

other entities such as actors and directors where there are additional connections
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among movies, directors, and actors. Some research works use hypergraphs which

are more powerful in representation and provide more information to replace the

simple graph [39, 91]. Unlike the simple graph that a edge only contains two

nodes, the hyperedge connects any number of nodes in the hypergraphs [92].

Model Architecture. Overall, the message passing design in GNN-based

methods can be summarized as follows:

n(l+1)
u = Aggregator

(
h
(l)
i |i ∈ Nu

)
,

h(l+1)
u = Update

(
n(l+1)
u ,h(l)

u

)
,

(2.6)

where Nu is the directly connected neighbor to u, Aggregator(·) is a func-

tion to aggregate messages from neighborhood i, and Update(·) is to update

node embeddings based on their previous h
(l)
u and current embeddings n

(l+1)
u .

Aggregator(·) is required for most message-passing based GNNs. Usually the

sum or mean function is favoured as it is easy to implement without introducing

additional complexity [29, 30, 35], some works also use the max pooling [93] or

attention mechanism [90] as the aggregator. SpectralCF [82] applies the original

spectral graph convolution [67] for recommendation which captures the global

neighborhood information. To make GNNs scalable on large graphs, some works

sample part of the neighborhood [93, 94] to avoid updating the embeddings via an

adjacency matrix, thereby reducing the complexity. Most GNN-based methods

especially for CF implement Aggregator(·) via an adjacency matrix, where the

updating rule with the matrix and node form are formulated as follows:

h(l+1)
u = σ

(∑
i∈Nu

1√
dudi

h
(l)
i W(l+1)

)
,

H(l+1) = σ
(
ÂH(l)W(l+1)

)
,

(2.7)

where W(l+1) is a weight matrix, Â is a symmetric normalized adjacency matrix

with Âui = 1√
dudi

for (u, i) ∈ E , du and di are the node degrees for u and i,

respectively. Equation (2.7) only applies to implicit feedbacks with only one edge

type. For explicit feedbacks where the edges have different weights, the messages

with different edge types are accumulated with unshared weights [29, 94]. Chen

et al. [95] showed that removing the non-linear activation function enhances the

recommendation performance, He et al. [41] further empirically demonstrated the

redundancy of both activation functions and weight transformations. It it worth

15



2. Literature Review

noting that some works review GNNs from a graph signal processing perspective

and do not need to explicitly aggregate neighborhood [80, 96]. The Update(·)
function is not necessary for GNN-based methods. NGCF [30] uses element-wise

multiplication and sum, while Pinsage [93] introduces an attention mechanism to

update the embeddings.

The final user and item representations are generated via a Pooling(·) function:

O = Pooling
(
H(0), · · · ,H(L)

)
. (2.8)

Some works such as GCMC and Pinsage [29, 93] simply use the embeddings

from the final layer as the final representation, while most works generate the

representations by accumulating embeddings from different layers. Particularly,

the concatenate [30, 82, 94] and sum [40, 41] are favoured as they are easy to

implement without introducing additional complexity.

Optimization. The works focusing on implicit feedbacks usually choose a

Bayesian personalized loss (BPR) [45] formulated as follows:

Lbpr = −
∑
u∈U

∑
(u,i+)∈,(u,i-)/∈E

lnσ (r̂ui+ − r̂ui-) . (2.9)

Here, σ(·) is the sigmoid function, r̂ui+ and r̂ui- are predicted scores usually

measured by the inner product between the representation of a user and an item.

Since the goal of recommendation with explicit feedbacks is to minimize the

difference between the estimated rating and ground truth, the Euclidean distance

is favoured:

Ldist =
∑
u∈U

∑
(u,i)∈E

(r̂ui − rui)2 . (2.10)

The above supervised learning losses can be combined with other loss functions.

For instance, growing effort has been devoted to apply self-supervised learning

(SSL) to graph learning [97, 98] including recommender systems. Wu et al. [38]

proposed to jointly optimize the supervised learning loss and the following self-

supervised learning loss:

Luser = −
∑
u∈U

ln
exp

(
o′Tuo′′u/τ

)
∑

v∈U exp
(
o′Tuo′′v/τ

) ,
Litem = −

∑
i∈I

ln
exp

(
o′Ti o′′i/τ

)
∑

v∈I exp
(
o′Ti o′′j/τ

) , (2.11)
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where τ is a temperature hyperparameter, o′u and o′′u represent two different

views of u. The views are generated by perturbing the graph G called graph

augmentation. Commonly used augmentation operators include node dropping,

edge dropping, and so on [38, 99].

Recent research works also empower GNNs for recommendation by combin-

ing them with other advanced algorithms or techniques such as negative sam-

pling [100], learning in hyperbolic space [40], and knowledge distillation [101],

etc. Still, there are some challenges in GNN-based recommendation methods

that need to be addressed:

• Some issues in GNNs that also affect the recommendation performance. For

instance, the over-smoothing issue that makes the representations of distinct

nodes be the same as stacking more layers also prevents recommender systems

from benefiting from deep GNNs. There are some works proposed to tackle

this issue. For instance, LightGCN [41] is shown to share similarities with

APPNP [102] which is proven to avoid over-smoothing. Shen et al. [80] and

Peng et al. [96] analyzed GNN-based methods from a spectral perspective to

address the over-smoothing issue.

• Some issues in recommender systems that are aggravated by GNNs. For in-

stance, Zhao et al. [103] showed that the symmetric neighborhood aggregation

adopted in most GCN-based CF methods exacerbates the popularity bias issue.

Existing GNN learning paradigms are mostly inherently transductive, causing

the cold-start problem to be more difficult to address.

• The expensive complexity and poor scalability compared with traditional rec-

ommendation methods. In spite of some improvement has been made to sim-

plify GNN-based recommendation methods [41, 95], it still takes significantly

large space and much time to update the node embeddings by multiplying by

the adjacency matrix, making the algorithms impractical on large datasets.

• Limited attention has been paid to demystify the mechanism of how GNN

works for recommendation. Most existing works simply apply GNN architecture

to recommender systems. For instance, SpectralCF incorporates the spectral

graph convolution [67], NGCF [30] is highly similar to GCN [25], and LightGCN

is inspired by SGC [41] and APPNP [102]. Deeper insights into GNN-based

methods are relatively unexplored.
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(b) Dimensional Collapse (c) Expected Representations(a) Complete Collapse

Figure 2.2. An illustration of collapse in representation learning. The embedding

vectors collapse to the same point for complete collapse, and span a lower dimen-

sional space for dimensional collapse, as opposed to the expected representations

making full use of the whole embedding space.

In this thesis, we focus on demystifying how GNNs contribute to recommender

systems (CF mainly) by analyzing existing works from a spectral perspective.

By providing deep insights into GNN-based methods, we further investigate what

designs are necessary for recommendation and what designs are redundant. Based

on the comprehensive analysis, we propose simple yet effective GNN learning

paradigm for recommendation, significantly reducing the complexity of GNNs

while maintaining superior recommendation accuracy.

2.4 Collapse in Representation Learning

The success of machine learning algorithms significantly lies in learning repre-

sentation, the goal of which is to represent data in an effective and efficient

way to make it easier to extract useful information when building predictors

[104, 105, 106]. However, it has also been shown that model outputs tend to col-

lapse to the same constant vector (as shown in Figure 2.2 (a)) when only optimiz-

ing the model based on the positive pairs [107]. This issue can be well alleviated

by self-supervised learning and contrastive learning by exploiting negative sam-

ples in an effective way [108, 109]. Due to the heavy computation, research effort

has been made to simplify the self-supervised learning algorithms without ex-

plicitly sampling negative data [107, 110, 111]. Unfortunately, subsequent works
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show that a dimensional collapse (as shown in Figure 2.2 (b)) cannot be ignored

that the embedding vectors end up spanning a lower dimensional subspace of the

whole embedding space [109, 112]. The collapse issue in representation learning

shares similarities to some issues such as over-smoothing in GNN [42], which in-

spires some researcher works to tackle issues in GNN [113, 114]. Inspired by the

aforementioned works tackling collapse in representation learning, we review ex-

isting recommendation methods, and show that they suffer from a collapse issue

as well. Particularly, the representations tend to collapse to a constant vector

when only optimization observed interactions, and an incomplete collapse still

exists despite introducing negative samples [17, 45] or even raising the negative

sampling ratio [46] where the representations are predominantly distributed in

certain dimensions. Most existing works tackle the collapse issue from a spatial

perspective by pushing away different users/items [38, 115, 116], whereas we ad-

dress this issue from a spectral perspective by directly balancing the embedding

spectrum, which is demonstrated more effective than existing works.
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CHAPTER 3

Graph Feature Denoising for

Recommendation

In this chapter [96], we address the research questions of graph convolutional

network (GCN) based recommendation methods mentioned in Section 1.2. To

unveil the effectiveness of GCNs for recommendation, we first analyze them in a

spectral perspective and discover two important findings: (1) only a small frac-

tion of spectral graph features that emphasize the neighborhood smoothness and

difference contribute to the recommendation accuracy, whereas most graph in-

formation can be considered as noise that even reduces the performance, and (2)

repetition of the neighborhood aggregation emphasizes smoothed features and

filters out noise information in an ineffective way. Based on the two findings

above, we propose a new GCN learning scheme for recommendation by replacing

neighborhood aggregation with a simple yet effective Graph Denoising Encoder

(GDE), which acts as a band pass filter to capture important graph features. We

show that our proposed method alleviates the over-smoothing and is comparable

to an indefinite-layer GCN that can take any-hop neighborhood into considera-

tion. Finally, we dynamically adjust the gradients over the negative samples to

expedite model training without introducing additional complexity. Extensive

experiments on five real-world datasets show that our proposed method not only

outperforms state-of-the-arts but also achieves 12x speedup over LightGCN.
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3.1 Introduction

Recommender systems have been playing an important role in people’s daily life

by predicting items the user may be interested in based on the analysis of users’

historical records, such as user-item interactions, user reviews, demographic data,

etc. Collaborative Filtering (CF), which focuses on digging out the user prefer-

ence from past user-item interactions, is a fundamental task for recommenda-

tion. A common paradigm for CF is to characterize users and items as learnable

vectors in a latent space and optimize based on user-item interactions. Matrix

factorization (MF) [11] is one of the most widely used embedding-based methods,

which estimates the interaction as the inner product between user and item latent

vectors. Subsequent works improve MF mostly by: (1) exploiting advanced algo-

rithms such as perceptrons [17, 117], recurrent neural networks [18, 61], memory

networks [118], attention mechanisms [20], transformer [22] to model non-linear

user-item relations; (2) augment interactions with axillary information

To overcome the drawback of MF that simply exploits a linear function to

model complex user behavior, subsequent works exploit advanced algorithms such

as perceptrons [17, 117], recurrent neural networks [18, 61], memory networks

[118], attention mechanisms [20], transformer [22] to model non-linear user-item

relations.

However, the unavailability of capturing the higher-order signals limits the per-

formance of the aforementioned methods due to the data sparsity. Graph convo-

lutional networks (GCNs) [68, 25] have attracted much attention and have shown

great potential in various fields including social network analysis [35, 119] and

recommender systems [29, 30]. The core idea of GCNs is to augment node rep-

resentations with (higher-order) neighborhood. Much effort has been devoted to

adapt GCNs [25] to CF. For instance, NGCF [30] is inspired and inherits the com-

ponents from vanilla GCN [25]; EGLN [120] learns an adaptive user-item graph

structure to predict potential positive preference. Some research efforts have been

made to simplify GCN-based CF methods by removing the non-linearity and em-

bedding transformation [41, 95]. However, we notice that the mechanism of how

GCNs contribute to recommendation has not been well studied. To this end, our

work focuses on the core component (i.e, neighborhood aggregation) and aims to

investigate the following research questions:

• What graph information matters for recommendation?
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• How neighborhood aggregation helps recommendation and why repeating it

achieves better accuracy?

• Is there a more effective and efficient design to replace neighborhood aggrega-

tion?

To answer the aforementioned questions, we review GCNs from a spectral per-

spective in Section 3.3.1. Specifically, we decompose adjacency matrix into spec-

tral features and discover two important findings: (1) we identify neighborhood

smoothness and difference which significantly affect the recommendation accu-

racy while only account for a small portion of the spectral features, whereas most

graph information has no positive effect that can be considered noise added on

the graph; (2) stacking layers in GCNs tends to emphasize graph smoothness and

depress other information. Based on the two findings above, we unveil the inef-

fectiveness of neighborhood-aggregation and replace it with our proposed Graph

Denoising Decoder (GDE) in Section 3.3.2, which only keeps the important graph

features to model the graph smoothness and difference without stacking layers.

Our proposed GDE significantly simplifies existing GCN-based CF methods and

reduces the running time. The contributions of our work are summarized as

follows:

• We unveil the effectiveness of Graph Convolutional Networks (GCNs) for rec-

ommendation in a spectral perspective, and shed light on the ineffectiveness of

the existing design (i.e., neighborhood aggregation), which provides theoretical

and empirical support for our proposed method.

• Compared with existing work that stacks many layers to capture higher-order

neighborhood, our proposed GDE is built in a different way by directly cap-

turing the important spectral graph features to emphasize the neighborhood

smoothness and difference, which is equipped with a simple yet effective archi-

tecture that can incorporate neighborhood signals from any hops.

• We propose to dynamically adjust the magnitude of gradients over the nega-

tive samples to tackle the slow convergence issue on GCN-based CF methods,

resulting in further improvement and helping expedite the model training.

• Extensive experiments on five real-world datasets not only show our proposed

method outperforms state-of-the-arts under extreme data sparsity with less

running time but also demonstrate the effectiveness of our proposed designs.
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3.2 Preliminaries

3.2.1 Graph Convolutional Network for CF

We first summarize the common GCN paradigm for CF. Given an interaction

matrix R = {0, 1}M×N with M users and N items consisting of observed R+ and

unobserved interactions R-, we define a bipartite graph G = (V , E) where the

node set V contains all users and items, E = R+ are the edge set. Each user and

item is considered as a node of G and is characterized as a learnable embedding

vector eu ∈ Rd (ei ∈ Rd); by stacking them together we have an embedding

matrix E ∈ R(M+N)×d. The goal is to estimate the unobserved interactions R-,

by learning an interaction function given as follows:

f(R-|G,R+,Θ) : Vu × Vi → R+, (3.1)

where Θ denotes model parameters. Here, f(·) corresponds to a specific GCN

model. The matrix and node form of the updating rule are generally formulated

as follows:

H(k+1) = σ
(
ÂH(k)W(k+1)

)
,

h(k+1)
u = σ

(∑
i∈Nu

1√
du + 1

√
di + 1

h
(k)
i W(k+1)

)
,

(3.2)

where σ(·) is a non-linear activation function; W(k+1) are the weight matrix at

(k + 1)-th layer, du and di are the node degree for u and i, respectively; Nu
are nodes directly connected to u, Â = D̃−

1
2 ÃD̃−

1
2 , and D̃ = D + I, Ã =

A + I, where A, D and I are the adjacency matrix, diagonal degree matrix and

identity matrix, respectively. The node embedding is updated by aggregating the

neighborhood’s current embedding through adjacency matrix starting from the

initial state h
(0)
u = eu. Some works simplify the updating rule by removing the

activation function or weight matrix and gain further improvements [95, 41]. The

final node embeddings are generated from the previous embeddings via a pooling

function:

ou = pooling
(
h(0)
u , · · · ,h(K)

u

)
. (3.3)

Common pooling functions are sum, concatenate; some works also output the

last layer as the final embeddings. Finally, an interaction between a user and an
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item is estimated as follows:

r̂ui = oTuoi. (3.4)

3.2.2 Graph Signal Processing

We introduce an important definition from graph signal processing. Given a

graph signal s, its variation on the graph is defined as:

‖s− Âs‖. (3.5)

The variation of a signal on a graph measures the difference between the signal at

each node and at its neighborhood [44]. Intuitively, a signal with small variation

implies the smoothness between each node and its neighborhood, whereas a signal

with large variation stresses the difference between them.

Definition 1. Given eigenvalue λt and eigenvector vt of Â, the variation of an

eigenvector on the graph is ‖vt − Âvt‖ = 1− λt.

Where λt ∈ (−1, 1] [42]. According to eigendecomposition Â = Vdiag(λt)V
T =∑

t λtvtv
T
t , the graph information is made up of orthogonal spectral features.

Through Definition 1, we can classify these features based on their variations:

vt with larger eigenvalue is smoother (smaller variation), while the feature with

smaller eigenvalue is rougher (larger variation). In this work, we focus on in-

vestigating how spectral features with different variations affect recommendation

accuracy.

3.3 Methodology

3.3.1 Recap in A Spectral Perspective

As recent works [41, 95] show that GCNs perform better without non-linear ac-

tivation functions and transformation for CF, the effectiveness of GCNs lies in

neighborhood aggregation, which is implemented as the multiplication of adja-

cency matrix. Following Definition 1, we study how neighborhood aggregation

affects and contributes to recommendation accuracy.
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(a) CiteUlike on vanilla GCN.
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(b) MovieLens on vanilla GCN.
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(c) CiteULike on LightGCN.
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(d) MovieLens on LightGCN.

Figure 3.1. In (a) and (b), we partition spectral features into different groups

based on their variations, it illustrates the percentage of features in different

groups and how they contribute to the accuracy which is tested on vanilla GCN;

we use a randomly initialized adjacency matrix for ’random’ as the benchmark.

(c) and (d) show the accuracy where the features with variation ≥ x are removed

(e.g., the result on x = 2 is obtained on the original graph containing all features)

on LightGCN.
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The Importance of Different Spectral Graph Features

We first define a cropped adjacency matrix as:

Â′ =
∑
t

M(λt)vtv
T
t , (3.6)

where M(λt) = {0, λt} is a binary value function. We only keep the tested fea-

tures (M(λt) = λt) and remove others (M(λt) = 0) to verify the effectiveness of

different spectral features for CF. We replace Â with Equation (3.6) and apply

it to two classic models: vanilla GCN [25] and LightGCN [41] that have been ex-

tensively adopted as baselines for CF, and conduct experiments on two datasets:

CiteULike (sparse) and MovieLens-1M (dense) (see Table 3.1 for details). Fig-

ure 3.1 shows the results.

In Figure 3.1 (a) and (b), the accuracy is mainly contributed by a small portion

of features that are rather smoothed or rough, while most features concentrated

in the middle area (83% on CiteULike and 76% on MovieLens) which are not so

rough or smoothed contribute as little as the randomly initialized signals to the

accuracy and are barely useful. If we ignore the noisy features, it is obvious that

the smoother features tend to outweigh the rougher features. In Figure 3.1 (c)

and (d), we evaluate the importance of certain features by observing how accu-

racy changes after removing them. Slight and significant drops in accuracy are

identified right after removing the top rough and smoothed features, respectively,

while removing other features even results in an improvement.

The above observations raise a question: why the accuracy is mainly con-

tributed by the top smooth and rough features? According to the definition,

the two kinds of features actually represent the tendency of user behaviour: ho-

mophily and heterophily, that a user tends to interact with both similar others

(i.e., in the neighborhood) and different others (i.e., not related to the user) [121],

whereas most features that are not either rather smoothed or rough are less helpful

to emphasize the two effects, thus contribute less to the accuracy. To summarize

the analysis:

• Only a small portion of features that rather smoothed or rough are truly helpful

for the recommendation.

• Smoothed features (homophily) outweigh the rough features (heterophily) for

recommendation.
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Figure 3.2. The normalized weights for distinct graph features.

Note that this finding only applies to recommendation tasks, because the im-

portance of different spectral features varies on tasks according to their data

characteristics [74, 122].

Analysis and Limitations of Existing Work

Our analysis is based on LightGCN [41] which only keeps the essential component

(i.e., neigbhrhood aggregation), and we can rewrite it as:

O =
K∑
k=0

αkH
(k) =

K∑
k=0

Âk

K + 1
E =

(∑
t

(
K∑
k=0

λkt
K + 1

)
vtv

T
t

)
E. (3.7)

We can see each spectral feature is weighted by a polynomial filter
∑K

k=0 αkλ
k
t

(αk = 1
K+1

). Here, we are interested in the weights of distinct graph features and

plot them in Figure 3.2 (a), where the weight is normalized as
∑K
k=0 αkλ

k
t∑K

k=0 αk
(ratio

to the maximum). As increasing the layer K, the model depresses the rough

features and emphasizes the smoothed features which have been shown important

for recommendation in Section 3.3.1. This finding shows the equivalence between

exploiting neighborhood signals by stacking layers and emphasizing homophily.

We can modify Equation (3.7) to emphasize heterophily as:

O =
K∑
k=0

Lk

K + 1
E, (3.8)
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where L = I−Â is the normalized Laplacian matrix that measures the difference

between each node and its neighborhood. It is easy to verify that the eigenvalue of

L is λ′t = 1−λt, where the rough features are stressed and smoothed features are

depressed. It is feasible to combine the two models to capture both the homophily

and heterophily in user behaviour, while we argue that existing work suffers from

more limitations that we need to propose a new GCN learning scheme to tackle

them:

• The smoothed features are emphasized by repeating the multiplication of ad-

jacency matrix, which is computationally expensive.

• The spectral features are weighted through a polynomial filter in a heuristic

way, other designs should be discussed.

• The features shown useless still remain even stacking 100 layers, indicating the

poor ability to denoise graph information.

• Stacking layers in GCNs results in the over-smoothing issue.

• The model cannot capture heterophily that might facilitate recommendation as

the rough features are heavily depressed.

Evidently, a more flexible and effective design is required to replace the neighborhood-

aggregation. Thus, here we plot an ideal design in Figure 3.2 (b): the noisy

features are unnecessary that should be completely filtered out, while the useful

features are reasonably measured according to their importance.

3.3.2 Proposed Method

We first formulate the general idea of GDE. Following previous analysis and Equa-

tion (3.6), we can partition an interaction graph G into smoothed GS, rough GR
and noisy GN graphs, which are made up of smoothed, rough and noisy spectral

features, respectively. The final representations are contributed by the embed-

dings generated on GS and GR, while the embeddings from GN are filtered out.

Thus, GDE can be formulated as a band pass filter:

γ(u/i, λt)


6= 0 vt ∈ GS or GR

= 0 vt ∈ GN .
(3.9)
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Figure 3.3. The Framework of our proposed GDE.

We replace the polynomial filter by a function γ(·). We argue that the importance

of a spectral feature not only depends on the variation/eigenvalue but also is

related to user/item, thus γ(u, λt) outputs the importance of t-th feature to u. In

practice, we only need to compute the feature from GS and GR as GN is not fed

into the model in the first place (i.e., we do not need to consider the situation

γ(u, λt) = 0).

To make graph representation more informative and powerful, we represent

user-item interactions as hypergraphs:

AU = D
- 1
2
u RD-1

i RTD
- 1
2
u ∈ RM×M ,

AI = D
- 1
2
i RTD-1

u RD
- 1
2
i ∈ RN×N ,

(3.10)

where Du,Di are diagonal degree matrices of users and items. Equation (3.10) is

consistent with the propagation matrix of hypergraph neural network [123], the

definition and analysis in the previous section is still applicable here. We treat

items (users) as hyper-edges when considering user (item) relations.
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Graph Denoising Encoder (GDE)

We illustrate the proposed GDE in Figure 3.3, where we propagate embeddings on

hypergraphs which emphasize the neighborhood smoothness and difference. The

embeddings generated on the smoothed hypergraphs are formulated as follows:

H
(s)
U =

(
P(s) � γ

(
U , π(s)

)
P(s)T

)
EU ,

H
(s)
I =

(
Q(s) � γ

(
I, σ(s)

)
Q(s)T

)
EI ,

(3.11)

where {P(s) ∈ RM×m1 , π(s) ∈ Rm1}, {Q(s) ∈ RN×n1,, σ(s) ∈ Rn1} are top m1

and n1 smoothed {features, eigenvalues} for user and item relations (AU and

AI), respectively. The term in parentheses represents the node relations on the

smoothed graph; γ(·) outputs the importance of distinct features to users/items,

� stands for the element-wise multiplication. EU and EI are embedding matrices

for users and items, respectively. To improve generalization on test sets, we

randomly drop out the node relations with a ratio p ∈ [0, 1]. Similarly, we

propagate embeddings on the rough hypergraphs with top m2+n2 rough features

to learn the heterophily:

H
(r)
U =

(
P(r) � γ

(
U , π(r)

)
P(r)T

)
EU ,

H
(r)
I =

(
Q(r) � γ

(
I, σ(r)

)
Q(s)T

)
EI .

(3.12)

Similarly, {P(r), π(r)}, {Q(r), σ(r)} are top m2 and n2 rough {features, eigenval-

ues} for user and item relations, respectively. We let m = m1 +m2, n = n1 + n2,

and generate the final embeddings by:

OU = pooling
(
H

(s)
U ,H

(r)
U

)
,

OI = pooling
(
H

(s)
I ,H

(r)
I

)
.

(3.13)

To keep the model simple and avoid bringing additional complexity, we take sum-

mation for pooling function. According to our analysis in Section 3.3.1, stacking

layers in GCNs is essentially reweighting the spectral features. Since a single-

layer GDE is capable of reasonably weighting the important graph features for

recommendation, it is unnecessary to stack more layers.
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Measuring the Importance of Graph Features

There are two directions for the design of γ(·): a dynamic design by param-

eterizing γ(·), or a well motivated static design by manually adjusting hyper-

parameters without introducing parameters. Here, we introduce a instantiation

for each of them. For simplicity, we define P = [P(s) ||P(r)], π = [π(s) || π(r)] and

Q = [Q(s) ||Q(r)], σ = [σ(s) || σ(r)] (|| is the concatenate operation).

• Option I. We first encode variation into spectral features and define variation-

encoded feature matrices as: P′ = Pdiag(π), Q′ = Qdiag(σ). The importance of

a spectral feature to a user is generated via attention mechanism:

γ(u, πg) = σ
(
aT
[
W

(1)
U P′Tu ||W

(2)
U P′g

])
, (3.14)

where P′Tu is a feature vector of u, P′g is g-th spectral feature; W
(1)
U ∈ Rd1×m,

W
(2)
U ∈ Rd1×M are transform matrices, attention mechanism is parameterized as

a single-layer neural network where a ∈ R2d1 . We can learn the importance of

a spectral feature to an item similarly. Finally, we normalize the scores across

features using the softmax function.

• Option II. We first analyze what static design could lead to better results.

By considering γ(·) as a one variable continuous function of eigenvalues (i.e.,

ignore the effect from user/item first), we can rewrite the term in parentheses in

Equations (3.11) and (3.12) as follows according to the Taylor series:

Pdiag(
K∑
k=0

αkπ
k)PT =

K∑
k=0

αkPdiag(πk)PT =
K∑
k=0

αkĀ
k
U , (3.15)

where Āk
U can be considered as an adjacency matrix with noisy features being re-

moved, Āk
U = Ak

U when m→M . K is the highest order with non-zero derivative,

αk = γ(k)(0)
k!

is the coefficient of k-th order Maclaurin expansion. On the other

hand, from a spatial perspective, K is also the order of the farthest incorporated

neighborhood and αk is the contribution of k-th order neighborhood. Intuitively,

we hope the model can capture neighbor signals as far as possible with positive

contributions to user/item representations, implying that αk > 0, K → ∞. In

other words, γ(·) should be infinitely differentiable whose any-order derivative

is positive. To satisfy this condition and after extensive experiments (shown in

Section 3.4.4), we use a exponential kernel: γ(π) = eβπ, where β ∈ R controls the

extent of the emphasis over different features (i.e., a larger (smaller) β emphasize
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the neighbor smoothing (difference) more). We can rewrite Equation (3.15) as

A′U =
∑∞

k=0
βk

k!
Āk
U , and is comparable to a GCN with infinite layers if we further

rephrase GDE in the form of the GCN paradigm for CF:

H(k+1) = ĀUH(k),

OU = lim
K→∞

K∑
k=0

βk

k!
H(k).

(3.16)

Furthermore, the importance of a spectral feature might vary on different users/items

as well. For instance, the users/items with low degrees are isolated on the graph,

thus the smoothing effect should be emphasized more than the nodes with high

degrees. To this end, we modify as γ(u, πg) = e(β+(−log(du)))πg to adapt to different

users/items.

In our experiments, we choose Option II as it shows improvement over Op-

tion I across all datasets. Here, we attempt to analyze the limitations of an

adaptive design. Firstly, with a parameterized design, the terms in parentheses

in Equations (3.11) and (3.12) need to be repeated during each epoch of training,

which is computationally expensive and unnecessary when using an static design.

Secondly, we notice that introducing parameters to model the importance of fea-

tures results in even worse convergence and accuracy. We speculate the reason is

due to the sparseness of the datasets. Unlike other tasks, the available data for

CF is only the user/item ID, which is difficult to learn the data intrinsic char-

acteristics in an adaptive manner. We will compare the two designs in Section

3.4.4.

3.3.3 Discussion

Over-Smoothing

Definition 2. A model suffers from the over-smoothing if any spectral features

dominate as the model layer K is large enough:

lim
K→∞

|γ(λt)|
max{|γ(λ1)| , · · · , |γ(λM+N)|}

→ 0. (3.17)

Over-smoothing in GCNs [42, 124] refers to overweight of the smoothest feature

when increasing the layer K, eventually all features except the smoothest one

loses and it results in the same user/item representations. Most GCN-based CF
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methods suffer from this limitation and remain shallow, take LightGCN as an

example:

LightGCN : lim
αk=

1
K+1

K→∞

γ(λt)

γ(λmax)
=

∑K
k=0

λkt
K+1∑K

k=0
1

K+1

→ 0. (3.18)

The key to prevent over-smoothing is to properly and reasonably model the im-

portance of features too assure any features are not overweighted. On the other

hand, instead of controlling the weight through neighborhood aggregation, we

adjust the weight of different features through a flexible and light design (i.e.,

Option II). According to Definition 2, it is easy to verify that GDE does not

suffer from over-smoothing: eβπg

eβπmax 6= 0, eβσh
eβσmax 6= 0.

Time Complexity

The complexity of our model mainly comes from retrieving of required graph

features (preprocessing) and the training. We can calculate spectral features

through algorithms such as Lanczos method and LOBPCG [125, 126] with GPU

implementation. For instance, the complexity of Lanczos method is O(m2M +

m|EAU
|+n2N+n|EAI

|) [125], where AU and AI are sparse, and m�M , n� N ,

EAU
and EAI

are edges of AU and AI , respectively. Since AU and AI are sparse

and required features only account for a small portion, the complexity can be

controlled at a low level. During training, each user/item can be considered as a

multi-hot vector, and the final embedding is generated in a node level rather than

a matrix level. The complexity for GDE is O((1 − p)(M + N)dc |R+|), where c

is the number of epochs.

3.3.4 Optimization

It has been reported that some GCN-based methods show slow training conver-

gence. We argue that the issue lies in the commonly used BPR loss for pairwise

learning [45]:

LBPR = −
∑

(u,i,j)∈T

lnσ(r̂ui − r̂uj), (3.19)

where T = {(u, i, j)|(u, i) ∈ R+, (u, j) ∈ R-}, σ(·) is a sigmoid function. The

loss optimizes based on sampled triples by maximizing the difference between ob-

served interactions and unobserved interactions. Rendle and Frendenthaler [127]
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Figure 3.4. A training issue of pairwise learning and a solution to it.

show that the positive rating r̂ui increases quickly due to the tailed item distribu-

tions (i.e., observed interactions are more likely to be sampled than unobserved

ones). As a result, the term controlling the gradient magnitude (1 − σ(r̂ui − r̂uj))

decreases quickly and prevents the model from learning from (negative) training

pairs. Figure 3.4 (a) shows that LightGCN suffers more from this issue than

MF, which explains why it requires many epochs to converge. To avoid bringing

additional complexity, we propose to adaptively adjust the gradient to expedite

model training:

δuj = 1− log(1−min(σ(r̂uj), ξ)). (3.20)

Since this issue is due to the over-sampling of positive items, we adjust the gra-

dients over negative samples. δuj is a self-paced but non-trainable parameter

changing according to r̂uj; when σ(r̂uj) deviates too far from 0, δuj becomes large

to accelerate the model training. min(σ(r̂uj), ξ) is to prevent δuj being too large,

and we set ξ = 0.99. The loss function is enhanced as follows:

Ladapt = −
∑

(u,i,j)∈T

lnσ(r̂ui − δuj r̂uj) + λ ‖Θ‖2 , (3.21)

where λ controls regularization strength. We compare two loss functions in Figure

3.4 (b) by showing the gradient with respect to r̂uj. Obviously, the negative items

consistently receive larger gradients from the adaptive loss than the plain BPR

loss, thereby helping accelerate training.
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3.4 Experiments

In this section, we comprehensively evaluate GDE. In particular, we aim to answer

the following research questions:

• RQ1: Does GDE outperform other baselines?

• RQ2: Is GDE more efficient than GCN-based methods?

• RQ3: Does the proposed designs show positive effects? How do hyper-parameters

affect the performance?

3.4.1 Experimental Setup

Datasets

The descriptions of datasets are listed as follows. The statistics of all five datasets

are summarized in Table 3.1.

• Pinterest: This is an implicit feedback dataset [17] for content-based image

recommendation, where users can pin image they are interested in.

• CiteULike-a: This dataset∗ is collected from CiteULike which allows users to

create their own collections of articles.

• MovieLens: These two datasets (1M and 100K)† have been widely used to

evaluate CF algorithms. Since it is an explicit feedback dataset while we focus

on implicit feedback, we hide all ratings.

• Gowalla: The interactions in this dataset [30] are check-ins which record the

locations the user has visited.

Evaluation Metrics

We adopt two widely-used metrics: Recall and nDCG for personalized ranking

[128]. Recall measures the ratio of recommended items in the test set; nDCG

considers the position of items by assigning a higher weight to the item ranking

∗https://github.com/js05212/citeulike-a
†https://grouplens.org/datasets/movielens/
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Table 3.1. Statistics of datasets

Datasets #User #Item #Interactions Density%

CiteULike-a 5,551 16,981 210,537 0.223

MovieLens-1M 6,040 3,952 1,000,209 4.190

MovieLens-100K 943 1,682 100,000 6.305

Pinterest 37,501 9,836 1,025,709 0.278

Gowalla 29,858 40,981 1,027,370 0.084

Table 3.2. Overall performance comparison in terms of nDCG@20 and Recall@20.

Improv.% denotes the improvements over the best baselines.
CiteULike Pinterest MovieLens-1M Gowalla MovieLens-100K

nDCG Recall nDCG Recall nDCG Recall nDCG Recall nDCG Recall

BPR 0.0591 0.0527 0.0861 0.0809 0.4849 0.4578 0.0907 0.0743 0.4935 0.4641

Ease 0.0846 0.0801 0.0695 0.0639 0.3249 0.3000 0.0670 0.0642 0.3523 0.3214

LCFN 0.0662 0.0590 0.0937 0.0873 0.5197 0.4898 0.1132 0.0980 0.5199 0.4898

GF-CF 0.0836 0.0811 0.0776 0.0755 0.4789 0.4562 0.0537 0.0567 0.4048 0.3793

ELGN 0.1125 0.1027 0.1176 0.1098 0.5418 0.5133 0.1249 0.1138 0.5347 0.5100

LightGCN 0.1149 0.1066 0.1143 0.1069 0.5261 0.5031 0.1327 0.1224 0.5418 0.5133

SGL-ED 0.1070 0.0985 0.1185 0.1094 0.5314 0.5035 0.1561 0.1353 0.5321 0.5044

GDE 0.1339* 0.1224* 0.1240* 0.1147* 0.5715* 0.5423* 0.1632* 0.1449* 0.5731* 0.5400*

GDE-d 0.1126 0.1026 0.1157 0.1080 0.5578 0.5306 0.1462 0.1341 0.5582 0.5280

Improv.% +16.54 +14.82 +3.29 +4.46 +5.48 +5.65 +4.55 +7.10 +5.77 +5.20

p-value 4.10e-9 2.77e-8 2.94e-4 3.71e-7 6.71e-7 5.44e-4 6.15e-5 5.44e-4 3.88e-6 4.29e-6

higher. The recommendation list is generated by ranking unobserved items and

truncating at position k. As the success of GCNs lies in the ability of exploiting

high-order neighbor to tackle data sparsity which is common in practice, we use

only 20% of the user-item pairs for training to evaluate the model stability with

limited interactions, and leave the remaining for test; we randomly select 5%

from the training data as validation set for hyper-parameter tuning. We report

the average accuracy on test sets.

Baselines

We compare our proposed method with the following CF methods. The architec-

ture settings are based on the reported results in each paper:

• BPR [45]: This method proposes a pair-wise ranking loss by maximizing the
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difference between observed and unobserved interactions.

• EASE [129]: This is a neighborhood-based method which is considered as a

SLIM [130] variant with a closed form solution.

• LCFN [91]: This model proposes a low pass graph convolution to replace the

vanilla graph convolution and initializes the embeddings with pretrained MF.

We set F = 0.1 on CiteULike and F = 0.005 on other datasets.

• LightGCN [41]: Unlike other GCN methods, this model exploits a light GCN

model for CF by removing non-linear activation functions and transformation

layers where the model complexity is the same as MF.

• GF-CF [80]: This is a GCN-based CF method without model optimization,

exploiting low frequency components and has a low time complexity.

• EGLN [120]: This model uses an adaptive user-item graph structure and deigns

a local-global consistency optimization function via mutual information maxi-

mization to better serve CF. We set α = 0.1 and β = 0.1.

• SGL-ED [38]: This model contrasts different node views that are generated

by randomly masking the edge connections on the graph, and incorporate the

proposed self-supervised loss into LightGCN [41]. We set τ = 0.2, λ1 = 0.1 and

p = 0.1.

We remove popular GCN-based methods such as GCMC [29], SpectralCF [82],

Pinsage [93], NGCF [30] as the baselines above have shown superiority over them.

Implementation details

We implemented the proposed model based on PyTorch‡, and released the code

on Github§. For all models, the optimizer is SGD; the embedding size d is set

to 64 and d1 = 16; the regularization rate is set to 0.01 on all datasets; the

learning rate is tuned amongst {0.001, 0.005, 0.01, · · · }; the drop ratio of node

relations is tune amongst p = {0.1, 0.2, · · · }; without specification, the model

parameters are initialized with Xavier Initialization [131]; the batch size is set

to 256. We report the hyper-paramter setting: m
M
/ n
N

= {0.01, 0.05, 0.1, 0.2, · · · },
β = {1, 1.5, 2, 2.5, · · · } in the next subsection.

‡https://pytorch.org/
§https://github.com/tanatosuu/GDE
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3.4.2 Overall Comparison (RQ1)

We report the performance of baselines and our GDE variants in Table 3.2, where

GDE-d is a GDE variant using Option I. We observe the followings:

• Overall, GCN-based methods outperform traditional CF methods when data

suffers from extreme sparsity, indicating the effectiveness of GCNs to tackle

the data sparsity. EGLN, LightGCN, and SGL-ED alternately achieve the best

baseline, while our proposed GDE consistently outperforms all baselines across

all datasets, indicating the superiority and stability of our proposed method.

• Among GCN-based methods, LCFN and GF-CF show relatively poor perfor-

mance compared with other methods. We speculate that the parameterized

kernel used in LCFN fails to learn the importance of low frequency compo-

nents, such an design even reduces the accuracy and hinders the convergence.

As for GF-CF, a reasonable explanation is GF-CF fails to perform stably with

limited interactions due to the lack of model optimization. The sparse setting

adopted in our work increases the difficulty to learn from data and to perform

stably, which is also critical to evaluate recommendation models.

• Since our work improves the GCN architecture for CF, it is more fair to com-

pare with pure GCN-based methods such as LightGCN. The improvement of

GDE over LighGCN is more significant on sparse data (e.g., 23.0% on Gowalla

in terms of nDCG@20) than dense data (e.g., 5.8% on 100K), indicating the

effectiveness of GDE to tackle data sparsity.

• Although GDE-d shows competitive performance over baselines, it still signif-

icantly underperforms GDE, indicating that it is difficult to learn the data

characteristic in an adaptive manner, while a well motived static design might

result in a promising accuracy. We will compare the two designs in terms of

complexity and performance in detail in the latter section.

3.4.3 Efficiency of GDE (RQ2)

Figure 3.5 shows the preprocessing time. We can see the model shows superior

performance with only a small portion of spectral features. For instance, GDE

outperforms the best baseline with less than 10%, 5%, 1%, 5% spectral features
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Table 3.3. The comparison of the training time (seconds) per epoch on Gowalla.

CiteULike Pinterest ML-1M Gowalla Epochs

ELGN 13.90 268.7 26.5 770.1 260

LightGCN 1.17 7.7 8.0 9.8 600

LCFN 33.71 154.3 4.8 269.7 350

BPR 0.44 1.9 1.8 3.3 450

GDE 0.39 1.8 1.8 3.1 120

GDE-d 3.15 26.7 3.3 34.5 180

on the datasets in Figure 3.5 (a) to (d), respectively, that justifies our previous

analysis that only a very small portion of graph features is useful for recommenda-

tion. In practice, we can adjust the number of graph features in order to balance

between the computational complexity and model accuracy. Table 3.3 shows the

training times per epoch of several methods. Since the batch size is different on

baselines, we test with fixed batch size to compare their time complexity fairly.

The training epochs are obtained on the optimal batch-size settings reported in

the papers. Since GF-CF requires no model training and SGL-ED is compared

with LightGCN in terms of time complexity in the original literature, we ignore

them. Among GCN baselines, LightGCN is the most efficient one, as it only keeps

the core component (i.e., neighborhood aggregation) for training. On the other

hand, the training time of GDE barely increases with the size of datasets, which

is as fast as BPR and much faster than LightGCN; GDE-d takes more training

time as Equations (3.11) and (3.12) need to be repeated during each epoch of

training. Overall, the running epochs of GDE, LightGCN, BPR are 120, 600,

450, and the whole running times are 502s (including preprocessing time), 5880s,

1480s, respectively; GDE has around 12x, 3x speed-up compared with LightGCN

and BPR, respectively.

3.4.4 Study of GDE (RQ3)

How Rough and Smoothed Features Contribute?

As shown in Figure 3.6, the rough features behave like inherent features of the

graph as it contributes to the accuracy without much model training and the

training loss barely drops. On the other hand, the accuracy of the smoothed
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Figure 3.5. How the accuracy and preprocessing time (y-axis) change with the re-

quired spectral features (x-axis). SOTA represents the accuracy of the best base-

line (i.e., LightGCN on CiteULike, SGL-ED on Pinterest and Gowalla, ELGN on

ML-1M).

features significantly increases as the training proceeds, in the meanwhile the

training loss drops sharply. Normally, we set m2 ≤ 0.1×m1, since the accuracy

is mainly contributed by the smoothed features while the rough features show a

slight improvement to the accuracy. We also notice the improvement of rough

features tends to be significant on dense datasets (e.g., MovieLens) and is hard

to be identified on sparse datasets (e.g., CiteULike). A reasonable explanation is
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Figure 3.6. How rough and smoothed features affect accuracy and training loss

as the training proceeds.

Table 3.4. The accuracy of different designs to measure the importance of spectral

features on CiteULike.

Design Function nDCG@10
Property

Increasing Pos Coef. Infinite

Static

log(αλt) 0.1343 X × X∑
k αkλ

k
t 0.1434 X X ×

1
1−αλt 0.1464 X X X

eβλt(β > 0) 0.1518 X X X

eβλt(β < 0) 0.0322 × × X

Dynamic Attention 0.1296

that the rough features can help emphasize the difference among nodes on dense

datasets, where nodes are relatively connected to each other, whereas they are

less important on sparse datasets as the nodes are already isolated on the graph.

What Kind of γ(·) Design Works Better?

Table 3.4 lists some designs for weighting functions γ(·), and (1) Increasing, (2)

Pos Coef, and (3) Infinite refer to: if it (1) is an increasing function, (2) has pos-

itive coefficients of Taylor series and (3) is infinitely differentiable, respectively.

From the top to bottom, we set α = 10, αk = 1, α = 0.9, β = 4, β = -2. We

can see the importance of the three properties is (1)�(2)¿(3). The model shows
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Figure 3.7. Accuracy of GDE with varying β.

poor performance when γ(·) is a decreasing function (i.e., the rougher features

have higher importance), justifying our previous analysis that the smoother fea-

tures are more important. Overall, the designs that satisfy all three properties

outperform other designs. On the other hand, we notice that the dynamic design

underperforms the static designs with an increasing function, which demonstrates

that the dynamic design fails to learn the importance of different features, oth-

erwise it should perform closely to above static designs. In addition, the running

time comparison in Table 3.3 also shows that a static design runs much faster

than the dynamic design. Based on the above analysis and experimental results,

we conclude that a static design is more effective and efficient for CF.

Effect of β

Figure 3.7 shows the accuracy of GDE with varying β on two datasets, where sim-

ilar trends are observed on other datasets as well. We observe consistent improve-

ments when the smooth features are emphasised (β becomes larger). Particularly,

the best accuracy is achieved at β = 4.5 on both datasets, and the accuracy drops

by 9.4%, 3.5% at β = 1 compared with the best accuracy on CiteULike and 100K,

respectively. We speculate the degradation is larger on CiteULike is because the

smoothed features are more important on sparse data, on which users and items

have fewer interactions and are more isolated on the graph.
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Figure 3.8. The adaptive loss helps accelerate GCN training.

Table 3.5. The accuracy of several GDE-variants evaluated by Recall@20.
CiteULike Pinterest ML-1M Gowalla ML-100K

plain 0.1146 0.1109 0.5303 0.1353 0.5287

drop 0.1198 0.1116 0.5390 0.1382 0.5400

drop+adaptive 0.1224 0.1147 0.5423 0.1449 0.5275

LightGCN 0.1066 0.1069 0.5031 0.1224 0.5133

Ablation Study

As shown in Table 3.5, we propose three variants: (1) with BPR loss and without

dropout (plain), (2) with BPR loss and dropout (drop), (3) with adaptive loss

and dropout (drop+adaptive).

The effect of dropout. Edge dropout is a commonly used technique to improve

generalization on test data. We can identify the positive effect of it as a model

with dropout shows improvements over the model without it across all datasets.

In addition, we observe that the improvements on dense data (e.g., MovieLens

100K) tend to be more significant than sparse data (e.g., Pinterest).

The effect of adaptive loss. As shown in Figure 3.8, the adaptive loss largely

reduces the training epochs of GCN-based methods including but not limited to

GDE. From the reported results in Table 3.5, the adaptive loss also results in

improvements on 4 out of 5 datasets. We speculate that the reason it reduces

the accuracy on 100K is closely related to the data density; since we propose the
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adaptive loss to help alleviate the undersampling of the negative samples, where

such issue is not serious on dense data as the negative samples are more likely to

be sampled.

The effectiveness of GDE. It is fair to separate the improvement from the

adaptive loss from overall improvements, as it can be applied on other GCN-

based methods as well. We can see GDE with a common loss still outperforms

competitive baselines including LightGCN, proving the effectiveness of our pro-

posed designs.

3.5 Summary

In this chapter [132], we explored how GCNs facilitate recommendation and what

graph information matters for recommendation from a spectral perspective. We

especially showed how distinct spectral graph features contribute to the accu-

racy, found that only a very small portion of spectral features that emphasize the

neighborhood smoothness and difference are truly helpful for recommendation.

We then unveiled the effectiveness of GCNs by showing that stacking layers in

GCNs emphasizes the smoothness. Based on the two important findings above,

we pointed out the limitations of existing GCN-based CF methods and proposed

a Graph Denoising Encoder (GDE) to replace neighborhood aggregation with a

simple yet effective architecture. Finally, to tackle a slow convergence issue on

GCN-based methods, we proposed an adaptive loss to dynamically adjust the

gradients over negative samples, accelerating the model training and resulting in

improvement. Extensive experiments conducted on five datasets not only demon-

strate the effectiveness and efficiency of our proposed methods but also justifies

our analysis and findings. We believe that the insights of our work are inspi-

rational to future developments of GCN architecture designs for recommender

systems. In future work, we plan to analyze the potential of GCNs from other

perspectives and apply our proposed models to other recommendation tasks.
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CHAPTER 4

A Simplified Graph

Convolution Paradigm for

Recommendation

In this chapter, we demystify GCNs by showing close connection between GCN-

based and low-rank CF methods such as Singular Value Decomposition (SVD)

and Matrix Factorization (MF), that stacking graph convolution layers is to learn

a low-rank representation by emphasizing (suppressing) components correspond-

ing to larger (smaller) singular values. Based on this observation, we replace

the core design of GCN-based methods with a flexible truncated SVD and pro-

pose a simplified GCN learning paradigm dubbed SVD-GCN, which only exploits

K-largest singular vectors for recommendation. To alleviate the over-smoothing

issue, we propose a renormalization trick to adjust the singular value gap, re-

sulting in significant improvement. Extensive experiments on three real-world

datasets show that our proposed SVD-GCN not only significantly outperforms

state-of-the-arts but also achieves over 100x and 10x speedups over LightGCN

and MF, respectively.
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4.1 Introduction

With rapid development of the Internet and web services, recommender systems

have been playing an important role in people’s daily life. As a fundamental task

for recommendation, Collaborative Filtering (CF) focuses on digging out the user

preference from past user-item interactions, and has received much attention for

decades. One of the most widely used CF methods, low-rank matrix factorization

(MF) [11], characterizes user/item as latent vectors in an embedding space and

estimates ratings as the cosine similarity between user and item latent vectors.

To overcome the drawback of MF that a linear function is inefficient to capture

complex user behaviour, subsequent works incorporate side information (e.g., user

reviews, image data, temporal information, etc.) [20, 4, 133] and exploit advanced

algorithms [17, 22, 134] to infer user preference.

However, traditional CF methods heavily rely upon the quality of interactions

as they can only learn the direct user-item relations. Therefore, they always show

poor performance due to the common data sparsity issue in practice. Recently,

Graph Convolutional Networks (GCNs) [25] have shown great potential in var-

ious fields including social network analysis [119, 35] and recommender systems

[29, 93]. Much research effort has been devoted to adapt GCNs for recommenda-

tion, such as augmenting GCNs with other advanced algorithms [40, 38, 39], sim-

plifying GCNs to improve training efficiency and model effectiveness [41, 95, 135],

and so on. By representing user-item interactions as a bipartite graph, the core

idea of GCNs is to repeatedly propagate user and item embeddings on the graph

to aggregate higher-order collaborative signals, thereby learning high quality em-

beddings even with limited interactions. Despite its effectiveness, most existing

GCN-based methods suffer from the following limitations:

• The core step of GCNs is implemented by repeatedly multiplying by an adja-

cency matrix, resulting in high computational cost and poor scalability.

• As shown in many works [42, 136], stacking graph convolution layers tends to

cause the overs-smoothing issue, resulting in similar user/item representations

and reducing the recommendation accuracy. As a result, most existing GCN-

based CF methods remain shallow (two, three layers at most).

• Unlike traditional CF methods, user/item representations are contributed from

tremendous higher-order neighborhood, making the model difficult to train.

46



4. A Simplified Graph Convolution Paradigm for Recommendation

Some GCN-based CF methods such as LightGCN requires about 800 epochs to

reach the best accuracy, which further increases the training cost.

We argue that the above limitations are due to the lack of a deep understanding

of GCNs. Thus, in this work, we aim to figure out: what is the core design making

GCNs effective for recommendation? Based on our answer to this question, we

propose a scalable and simple GCN learning paradigm without above limitations.

To this end, we first dissect LightGCN, a linear GCN-based CF method which

only exploits neighborhood aggregation and removes other designs. By simplify-

ing LightGCN, we show that it is closely related to low-rank CF methods such as

Singular Value Decomposition (SVD) and low-rank Matrix Factorization (MF),

where stacking graph convolution layers is to learn a low-rank representation by

emphasizing (suppressing) the components with larger (smaller) singular values.

With empirical analysis, we further show that only a very few components corre-

sponding toK-largest singular values contribute to recommendation performance,

whereas most information (over 95% on the tested data) are noisy and can be

removed. Based on the above analysis, we replace the core component of GCNs

(i.e., neighborhood aggregation) with a flexible truncated SVD and propose a

simplified GCN learning paradigm dubbed SVD-GCN. Specifically, SVD-GCN

only requires a very few (K-largest) singular values (vectors) and model param-

eters (less than 1% of MF’s on the tested data) for prediction. To alleviate the

over-smoothing issue, we propose a renormalization trick to adjust the singular

value gap, making important features of interactions well preserved, thereby re-

sulting in significant improvement. Furthermore, to make the best of interactions,

we augment SVD-GCN with user-user and item-item relations, leading to further

improvement. Since the superiority of GCNs over traditional CF methods lies

in the ability to augment interactions with higher-order collaborative signals, we

only use 20% of the interactions for training to evaluate the robustness and effec-

tiveness of GCN designs. The main contributions of this work are summarized

as follows:

• By showing the connection between GCN-based and low-rank CF methods,

we provide deep insight into GCN-based CF methods, that they contribute to

recommendation in the same way as low-rank methods.

• Distinct from the GCN learning paradigm that most GCN-based methods rig-

orously sticking to, we propose a simplified formulation of GCNs dubbed SVD-
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GCN, which only exploits K-largest singular values and vectors and is equipped

with a lighter structure than MF.

• To tackle the over-smoothing issue, we propose a renormalization trick to adjust

the singular value gap to assure that important features from interactions are

well preserved, leading to significant improvement.

• Extensive experiments on three datasets show that our proposed SVD-GCN

outperforms state-of-the-art with higher training efficiency and less running

time.

4.2 preliminaries

4.2.1 GCN learning paradigm for CF

We summarize a common GCN learning paradigm for CF. Given the user set U ,

item set I and an interaction matrix R ∈ {0, 1}|U|×|I|, we define a bipartite graph

G = (V , E), where the node set V = U∪I contains all users and items, the edge set

E = R+ is represented by observed interactions, where R+ = {rui = 1|u ∈ U , i ∈
I}. Each user/item is considered as a node on the graph and parameterized as

an embedding vector eu/ei ∈ Rd. The core idea of GCNs is to update user and

item embeddings by propagating them on the graph. The adjacency relations are

represented as:

A =

[
0 R

RT 0

]
. (4.1)

The updating rule of GCNs is formulated as follows:

H(l+1) = σ
(
ÃH(l)W(l+1)

)
, (4.2)

where Ã = D- 1
2 AD- 1

2 is a symmetric normalized adjacency matrix, D is a diag-

onal node degree matrix. The initial state is H(0) = E, where E ∈ R(|U|+|I|)×d

contains users’ and items’ embedding vectors. Recent works [41, 95] show the

non-linear activation function σ(·) and feature transformations W(l+1) are redun-

dant for CF , the above updating rule can be simplified as follows:

H(l) = ÃlE. (4.3)
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The final embeddings are generated by accumulating the embeddings at each

layer through a pooling function:

O = pooling
(
H(l)|l = {0, 1, · · · , L}

)
. (4.4)

Finally, an interaction is estimated as the inner product between a user’s and an

item’s final embedding:

r̂ui = oTuoi. (4.5)

4.2.2 Low-Rank Methods

Low rank representation plays a fundamental role in modern recommender sys-

tems [11]. The core idea of low-rank methods is inspired by Singular Value

Decomposition (SVD):

R = Udiag (sk) VT ≈
K∑
k=1

skukv
T
k . (4.6)

The interaction matrix can be decomposed to three matrices, where the column

of [U and V (i.e., uk and vk)] and sk are [left and right singular vectors] and

singular value, respectively; s1 > s2 > · · · ≥ 0; diag(·) is the diagonalization

operation. Since the components with larger (smaller) singular values contribute

more (less) to interactions, we can approximate R with only K-largest singular

values. Alternatively, we can learn low-rank representations in a dynamical way

through matrix factorization (MF) [11]:

min
∑

(u,i)∈R+

∥∥rui − eTuei
∥∥2
2

+ λ
(
‖eu‖22 + ‖ei‖22

)
, (4.7)

where λ is the strength for regularization. Each user and item is represented as

a trainable vector with dimension d ≤ min(|U| , |V|). By optimizing the follow-

ing objective function, the model is expected to learn important features from

interactions (e.g., components corresponding to d-largest singular values).

4.3 Methodology

4.3.1 Connections Between GCNs and SVD

As activation functions and feature transformations have been shown ineffective

for CF [41], we focus on LightGCN whose final embeddings are generated as
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Figure 4.1. Some empirical results on two datasets (CiteULike and ML-100K).

follows:

O =
L∑
l=0

H(l)

L+ 1
=

(
L∑
l=0

Ãl

L+ 1

)
E, (4.8)
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where the pooling function is 1
L+1

. If we take a closer look at the power of

adjacency matrix Ãl, we have the following observation:

Ãl =




(
R̃R̃T

) l
2

0

0
(
R̃T R̃

) l
2

 l = {0, 2, 4, · · · }

 0 R̃
(
R̃T R̃

) l-1
2

RT
(
R̃R̃T

) l-1
2

0

 l = {1, 3, 5, · · · }.

(4.9)

Following the definition of Ã, R̃ = D
- 1
2
U RD

- 1
2
I , where DU and DI are the node

degree matrices for users and items, respectively. Then, we can split Equation

(4.8) as follows:

OU =

∑
l={0,2,4,··· }

(
R̃R̃T

) l
2
EU +

∑
l={1,3,5,··· } R̃

(
R̃T R̃

) l-1
2

EI

L+ 1
,

OI =

∑
l={0,2,4,··· }

(
R̃T R̃

) l
2
EI +

∑
l={1,3,5,··· } R̃

T
(
R̃R̃T

) l-1
2

EU

L+ 1
.

(4.10)

The first and second terms represent the messages from homogeneous (even-hops)

and heterogeneous (odd-hops) neighborhood, OU and OI are final embeddings

for user and items, EU and EI are embedding matrices for users and items,

respectively. Similar to the definition in Section 4.2.2, let P, Q, and σk denote

the stacked left, right singular vectors, and singular value for R̃, respectively, and

we formulate the following theorem.

Theorem 1. The adjacency relations in Equation (4.10) can be rewritten as the

following forms: (
R̃R̃T

)l
= Pdiag

(
σ2l
k

)
PT ,(

R̃T R̃
)l

= Qdiag
(
σ2l
k

)
QT ,

(4.11)

R̃
(
R̃T R̃

) l-1
2

= Pdiag
(
σlk
)

QT ,

RT
(
R̃R̃T

) l-1
2

= Qdiag
(
σlk
)

PT .

(4.12)
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Following Theorem 1, we can rewrite Equation (4.10) as:

OU = Pdiag

(∑
l={0,2,··· } σ

l
k

L+ 1

)
PTEU + Pdiag

(∑
l={1,3,··· } σ

l
k

L+ 1

)
QTEI ,

OI = Qdiag

(∑
l={0,2,··· } σ

l
k

L+ 1

)
QTEI + Qdiag

(∑
l={1,3,··· } σ

l
k

L+ 1

)
PTEU .

(4.13)

Now the final embeddings are contributed from R̃’s singular vectors and values

instead of neighborhood. Note that:

Pdiag

(∑
l={0,2,··· } σ

l
k

L+ 1

)
PT =

∑
k

∑
l={0,2,··· } σ

l
k

L+ 1
pkp

T
k . (4.14)

∑
l={0,2,··· } σ

l
k

L+1
and

∑
l={1,3,··· } σ

l
k

L+1
can be considered as weights of singular vectors when

considering even and odd hop neighbors, respectively. We illustrate the normal-

ized weights in Figure 4.2 (a) and (b), and make the following observation:

Observation 1. As stacking more graph convolution layers, the goal of GCNs

is to learn a low-rank representation by stressing (suppressing) more components

with larger (smaller) singular values.

We further observe that:

Ou =

(
pTu∗ �

∑
l={0,2,··· } σ

l

L+ 1

)
PTEU +

(
pTu∗ �

∑
l={1,3,··· } σ

l

L+ 1

)
QTEI , (4.15)

where σ is a vector containing all singular values, pTu∗ is the u-th row vector,

� represents the element-wise multiplication. We can see PTEU and QTEI are

common terms for distinct users/items, what makes representations unique lies

in the term in parentheses.

Assumption 1. PTEU and QTEI are redundant.

On the other hand, the above two terms play a important role constituting the

core design of GCNs (i.e., neighborhood aggregation), replacing or removing them

leads to a new learning paradigm without explicitly aggregating neighborhood. To

verify this assumption, we evaluate three models: (1) the original model Equation

(4.13); (2) we simply replace PTEU and PTEI with two different weight matrices;

(3) we use a shared weight matrix based on (2).

52



4. A Simplified Graph Convolution Paradigm for Recommendation

1

1.5

2

2.5

3

0.081

0.083

0.085

0.087

0.089

T
im

e
 (

se
co

n
d

s)

n
D

C
G

@
1

0

K

Time

Accuracy

SOTA

0.6

0.7

0.8

0.9

1

N
o

rm
a

liz
e

d
 W

e
ig

h
t

L=1

L=3

L=10

L=100

σmin σmax

(a) Odd-hop neighbors.
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(b) Even-hop neighbors.
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(c) SVD-LightGCN.

Figure 4.2. Normalized weights of singular vectors.

The results in Figure 4.1 (a) and (b) show that the performance of the three

models are fairly close, and thus: (1) neighborhood aggregation is not necessary

for GCNs; (2) The power of GCNs for CF does not heavily rely on model pa-

rameters, since reducing parameters (by half) does not reduce the accuracy and

even results in faster convergence. Based on the model (3), we can merge the two

terms in Equation (4.13) and simplify it as:

OU = Pdiag

(∑L
l=0 σ

l
k

L+ 1

)
W,

OI = Qdiag

(∑L
l=0 σ

l
k

L+ 1

)
W,

(4.16)

and name it SVD-LightGCN. We can interpret it as a two-step procedure. We first

obtain a weighted singular matrices by assigning the weight
∑L
l=0 σ

l
k

L+1
to singular

vectors (i.e., pk and qk); then, we learn a condensed embeddings of the singular

vectors through a feature transformation W. Figure 4.2 (c) shows the goal of

SVD-LightGCN is also to learn a low-rank representation, where the weights of

singular vectors are adjustable through L. We also observe that:

Observation 2. SVD is a special case of SVD-LightGCN where W = I and

l = L = 1
2

(fixed to a square root).

4.3.2 Analysis on SVD-LightGCN

Training Efficiency. Observation 1 provides an alternative way to build GCNs,

that we can directly focus on the weights over singular vectors instead of stacking
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layers. However, retrieving all singular vectors is computationally expensive and

not applicable on large datasets as well. On the other hand, Observation 1 implies

that most small singular values are not so helpful for recommendation. To fur-

ther verify this observation, we compare SVD-LightGCN and SVD-LightGCN-T

which only exploits K-largest singular values and vectors, and report the accu-

racy of them in Figure 4.1 (c) and (d), where x-axis represents the singular vector

ratio: K
min(|U|,|I|) . We can see SVD-LightGCN-T with only the top 1% largest sin-

gular values and vectors outperforms SVD-LightGCN which exploits all singular

vectors, and the best accuracy is achieved at 4% on CiteULike, 6% on ML-100K.

This finding not only shows that most small singular values and vectors are noisy

that even reduces the performance, but also helps largely reduce the training cost

and improve the training efficiency. For instance, retrieving 4% of the singular

vectors and values only takes 1.8s on CiteULike, the learning parameters (Kd)

are merely 1% of that of MF and LightGCN (|U| d+ |I| d).

Over-Smoothing. Users and items tend to have the same representations

when the model layer L is large enough [42].

Theorem 2. The maximum singular value of R̃ is 1.

As shown from Figure 4.2 (b), the larger singular values are further emphasized

as increasing the model layers. Following Theorem 2, if we further increase the

layer L:

lim
L→∞

=

∑L
l=0

σlk
L+1∑L

l=0
σlmax

L+1

→ 0, (4.17)

where the weights of any singular vectors are reduced to 0 compared with the

largest one σmax, where user/item representations are only contributed by the

largest singular vector. Thus, increasing model layers does not necessarily lead

to better representations and might instead cause information loss. The over-

smoothing issue lies in the gap between singular values, where it is enlarged as

stacking layers, which suppresses some important information that matters for

recommendation. To alleviate this issue, we define a renormalized interaction

matrix as: Ṙ = (DU + αI)-
1
2 R(DI + αI)-

1
2 where α ≥ 0.

Theorem 3. Given the singular value σ̇k of Ṙ, σ̇max ≤ dmax

dmax+α
where dmax is the

maximum node degree.
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The maximum singular value becomes smaller as increasing α, indicating a

smaller gap. On the other hand, a too small gap fails to emphasize the difference

of importance of different components (i.e., the component with a larger singular

value is more important). Thus, we can adjust α to regulate the gap to assure

that important information is well preserved and to adapt to different datasets.

Furthermore, the weighting function is a crucial design as it controls the weights

of singular vectors, while LightGCN adopts a polynomial in a heuristic way.

Let ψ(·) denotes the weighting function. Basically, we can parameterize ψ(·)
with advanced algorithms to dynamically learn the weights of singular vectors.

Alternatively, if we consider ψ(·) as a static continuous function of singular values

σk, it is expected to weight the singular vectors through a function with easy-to-

adjust hyperparameters instead of by repeatedly increasing the model layer L.

In addition, by replacing the polynomial in LightGCN with ψ(·), following the

Taylor series ψ(σk) =
∑L

l=0 αlσ
l
k, we can rewrite Equation (4.8) as:

O =

(
L∑
l=0

αlÃ
l

)
E, (4.18)

where αl is ψ(σk)’s l-th order derivative at 0, L is ψ(·)’s highest order. From a

spatial perspective, αl is also the contribution of l-th order neighborhood, and

L corresponds to the farthest neighborhood being incorporated. Intuitively, it is

expected that user/item representations are constructed from as many positive

neighborhood signals as possible (i.e., αl > 0 and L→∞), implying that ψ(·) is

infinitely differentiable with any-order derivatives positive.

4.3.3 SVD-GCN

Based on the analysis in Section 4.3.2, we formulate the user and item represen-

tations as follows:
OU = Ṗ(K)diag (ψ (σ̇k)) W,

OI = Q̇(K)diag (ψ (σ̇k)) W,
(4.19)

where Ṗ(K) and Q̇(K) are composed of K-largest left and right singular vectors

of Ṙ, respectively. Our initial attempt is to dynamically model the importance

of singular vectors through a neural network given singular values as the input.

However, we found that such a design underperforms static designs in most cases,

and speculate that the reason is due to the data sparsity on CF. Unlike other
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recommendation tasks with rich side information, the only available data is the

user/item ID besides interactions, which increases the difficulty to learn the in-

trinsic data characteristics. Based on previous analysis in Section 4.3.2, extensive

experiments show that an exponential kernel [137] achieves superior accuracy on

the tested data, thus we set ψ(σ̇k) = eβσ̇k , where β is a hyperparameter to ad-

just the extent of emphasis over larger singular values (i.e., a larger (smaller)

β emphasizes the importance of larger (smaller) singular values more). We will

also compare different ψ(·) designs in Section 4.4.3. Unlike conventional GCNs

updating all user/item embeddings simultaneously in a matrix form resulting in

a large spatial complexity, we can train SVD-GCN in a node form with more

flexibility as:

ou = ṗTu �
(
eβσ̇
)

W,

oi = q̇Ti �
(
eβσ̇
)

W,
(4.20)

where ṗTu and q̇Ti are the rows of Ṗ(K) and Q̇(K), respectively; σ̇ is a vector

containing all singular values. Note that the element-wise multiplication does

not involve parameters thus can be precomputed. Then, inspired by BPR loss

[45], we formulate the loss function as follows:

Lmain =
∑
u∈U

∑
(u,i+)∈R+,(u,i-)/∈R+

lnσ
(
oTuoi+ − oTuoi-

)
. (4.21)

As shown in Equation (4.10), in GCN-based CF methods, user/item represen-

tations are contributed from three kinds of information flows: user-item, user-

user, and item-item relations. Thus, besides the user-item relations, homo-

geneous (i.e., user-user and item-item) relations also help increase model ef-

fectiveness. We define a user-user GU = (VU , EU), and an item-item graph

GI = (VI , EI), where VU = U and VI = I; EU = {(u, g)|g ∈ Ni, i ∈ Nu} and

EI = {(i, h)|h ∈ Nu, u ∈ Ni}, where Nu and Ni are the sets of directly connected

neighbors for u and i, respectively. Naturally, we can define the normalized

adjacency matrix of GU and GI as RU = ṘT Ṙ and RI = ṘṘT , respectively.

According to Equation (4.26) in Section 4.5, the eigenvectors of RU and RI are

actually Ṙ’s left and right singular vectors, respectively; and the eigenvalues are

both the square of Ṙ’s singular values. Thus, G, GU and GI are closely connected.

We formulate the following loss to learn the relations on GU :

Luser =
∑
u∈U

∑
(u,u+)∈EU ,(u,u-)/∈EU

lnσ
(
oTuou+ − oTuou-

)
. (4.22)
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Similarly, we learn the relations on GI via the following loss:

Litem =
∑
i∈I

∑
(i,i+)∈EI ,(i,i-)/∈EI

lnσ
(
oTi oi+ − oTi oi-

)
. (4.23)

Finally, we propose the following four SVD-GCN variants:

SVD-GCN-B : L = Lmain + λ ‖Θ‖22 ,
SVD-GCN-U : L = Lmain + γLuser + λ ‖Θ‖22 ,
SVD-GCN-I : L = Lmain + ζLitem + λ ‖Θ‖22 ,
SVD-GCN-M : L = Lmain + γLuser + ζLitem + λ ‖Θ‖22 ,

(4.24)

where Θ denotes the model parameters. Besides the above variants, to evaluate

the effect of the feature transformation, we propose a non-parametric method

SVD-GCN-S by removing W.

4.3.4 Discussion

Model Complexity

The complexity of SVD-GCN mainly comes from two parts. We first retrieve K

singular vectors through SVD for the low-rank matrix [138], with a complexity as:

O(K |R+|+K2 |U|+K2 |I|). We run the algorithm on GPU and only require a

very few singular vectors, which only costs several seconds. Except for SVD-GCN-

S, other variants require training with time complexity as O(c |R+| (K + 1)d),

which is comparable to MF: c |R+| d, where c denotes the number of epochs. On

the other hand, the model parameters of MF is |U|+|I|
K

time that of GCN-SVD.

Overall, SVD-GCN is lighter than MF, and we will show more quantitative results

in terms of efficiency in Section 4.2.

Comparison with GCN-based CF Methods

Compared with conventional GCN-based methods, GCN-SVD replaces neigh-

borhood aggregation with a truncated SVD and significantly reduces the model

parameters. Overall, SVD-GCN is equipped with a lighter structure and more

scalable. Recent proposed work UltraGCN [135] simplifies LightGCN by replac-

ing neighborhood aggregation with a weighted MF and shows lower complexity:

max
∑

u∈U ,i∈Nu

βu,ie
T
uei, (4.25)
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Table 4.1. Statistics of datasets

Datasets #User #Item #Interactions Density%

CiteULike 5,551 16,981 210,537 0.223

ML-100K 943 1,682 100,000 6.305

ML-1M 6,040 3,952 1,000,209 4.190

Yelp 25,677 25,815 731,672 0.109

Gowalla 29,858 40,981 1,027,370 0.084

where βu,i is obtained from single-layer LightGCN. However, UltraGCN improves

based on single-layer LightGCN, which can only exploit the first order neighbor-

hood and losses the ability of incorporating high-order neighborhood to augment

training interactions. On the other hand, SVD-GCN is derived from any-layer

LightGCN and we further generalize it to the situation of infinite layers, hence

maximizes the power of GCNs.

4.4 Experiments

In this section, we comprehensively evaluate our proposed SVD-GCN. The rest of

this section is organized as follows: we introduce experimental settings in Section

4.1, compare baselines with SVD-GCN in terms of recommendation accuracy and

training efficiency in Section 4.2; in Section 4.3, we dissect SVD-GCN to show the

effectiveness of our proposed designs and how different hyperparameter settings

(i.e., K, α, β, γ, and ζ) affect performance.

4.4.1 Experimental Settings

Datasets and Evaluation Metrics

We use five public datasets in this work, where the results of Figure 4.1 are

based on CiteULike∗ and ML-100K [139]. To demonstrate the effectiveness of

our proposed methods on more datasets and to justify the previous analysis, we

∗https://github.com/js05212/citeulike-a
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evaluate SVD-GCN on three other datasets: Gowalla [30], Yelp [140], and ML-

1M [139]. Since we focus on implicit feedback, we only keep user/item ID and

transform feedbacks to binary ratings. Table 4.1 lists statistics of datasets.

We adopt two widely-used metrics: Recall and nDCG [128] to evaluate our

methods. Recall measures the ratio of the relevant items in the recommended list

to all relevant items in test sets, while nDCG takes the ranking into consideration

by assigning higher scores to items ranking higher. The recommendation list is

generated by ranking unobserved items and truncating at position k. Since the

advantage of GCN-based methods over traditional CF methods is the ability of

leveraging high-order neighborhood to augment training data, thereby alleviating

the data sparsity, we only use 20% of interactions for training and leave the

remaining for test to evaluate the model robustness and stability; we randomly

select 5% from the training set as validation set for hyper-parameter tuning and

report the average accuracy on test sets.

Baselines

We compare our methods with the following competing baselines, where the hy-

perparameter settings are based on the results of the original papers:

• BPR [45]: This is a stable and classic MF-based method, exploiting a Bayesian

personalized ranking loss for personalized rankings.

• EASE [129]: This is a neighborhood-based method with a closed form solution

and show superior performance to many traditional CF methods.

• LightGCN [41]: This method uses a light GCN architecture for CF by removing

activations functions and feature transformation. We use a three-layer archi-

tecture as the baseline.

• LCFN [91]: This model replaces the original graph convolution with a low pass

graph convolution to remove the noise from interactions for recommendation.

We set F = 0.005 and use a single-layer architecture.

• SGL-ED [38]: This model generates different node views by randomly removing

the edge connections and maximizes their agreements, and the proposed self-

supervised loss is implemented on LightGCN [41]. We set τ = 0.2, λ1 = 0.1,

p = 0.1, and use a three-layer architecture.
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• UltraGCN [135]: This model simplifies LightGCN by replacing neighborhood

aggregation with a weighted MF, which shows faster convergence and less com-

plexity.

We remove some popular GCN-based methods such as Pinsage [93], NGCF [30],

and SpectralCF [82] as aforementioned baselines have already shown superiority

over them.

Implementation Details

We implemented the proposed model based on PyTorch† and released the code

on Github‡. For all models, We use SGD as the optimizer, the embedding size d

is set to 64, the regularization rate λ is set to 0.01 on all datasets, the learning

rate is tuned amongst {0.001, 0.005, 0.01, · · · , 1}; without specification, the model

parameters are initialized with Xavier Initialization [131]; the batch size is set to

256. We report other hyperparameter settings in the next subsection.

4.4.2 Comparison

Performance

We report the accuracy of baselines and our proposed GCN-SVD variants in Table

4.2, and have the following observations:

• Overall, GCN-based methods outperforms traditional CF methods, indicating

the effectiveness of GCNs for CF and demonstrating the importance of aug-

menting training interactions by incorporating high-order neighborhood infor-

mation, thereby alleviating data sparsity.

• Among all baselines, SGL-ED achieves the best across all datasets, while our

proposed SVD-GCNs show consistent improvements over SGL-ED, indicating

the effectiveness and superiority over conventional GCN designs. UltraGCN

shows relatively poor performance among GCN-based methods. As shown in

our previous analysis in Section 3.4.2, UltraGCN improves based on single-

layer GCN which fails to leverage the higher-order neighborhood, thus cannot

perform stably with limited interactions.

†https://pytorch.org/
‡https://github.com/tanatosuu/svd_gcn
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Table 4.2. Overall performance comparison. Improv.% denotes the improvements

over the best baselines.
Datasets Methods nDCG@10 nDCG@20 Recall@10 Recall@20

Yelp BPR 0.0388 0.0374 0.0371 0.0370

Ease 0.0360 0.0362 0.0346 0.0368

LCFN 0.0617 0.0627 0.0613 0.0653

UltraGCN 0.0417 0.0403 0.0404 0.0403

LightGCN 0.0751 0.0710 0.0725 0.0698

SGL-ED 0.0817 0.0794 0.0784 0.0792

SVD-GCN-S 0.0919 0.0895 0.0894 0.0903

SVD-GCN-B 0.0898 0.0876 0.0866 0.0879

SVD-GCN-U 0.0923 0.0897 0.0888 0.0898

SVD-GCN-I 0.0930 0.0907 0.0897 0.0910

SVD-GCN-M 0.0941 0.0917 0.0908 0.0921

Improvement% +15.18 +15.49 +15.82 +16.29

ML-1M BPR 0.5521 0.4849 0.5491 0.4578

Ease 0.3773 0.3249 0.3682 0.3000

LCFN 0.5927 0.5197 0.5887 0.4898

UltraGCN 0.5326 0.4688 0.5302 0.4434

LightGCN 0.5917 0.5261 0.5941 0.5031

SGL-ED 0.6029 0.5314 0.6010 0.5035

SVD-GCN-S 0.6458 0.5702 0.6466 0.5421

SVD-GCN-B 0.6480 0.5724 0.6484 0.5443

SVD-GCN-U 0.6571 0.5791 0.6571 0.5495

SVD-GCN-I 0.6574 0.5770 0.6565 0.5465

SVD-GCN-M 0.6521 0.6705 0.6490 0.5377

Improvement% +9.04 +8.98 +9.33 +9.14

Gowalla BPR 0.1086 0.0907 0.0917 0.0743

Ease 0.0722 0.0670 0.0680 0.0642

LCFN 0.1305 0.1132 0.1144 0.0980

UltraGCN 0.0977 0.0815 0.0841 0.0681

LightGCN 0.1477 0.1327 0.1368 0.1224

SGL-ED 0.1789 0.1561 0.1563 0.1353

SVD-GCN-S 0.1900 0.1677 0.1690 0.1484

SVD-GCN-B 0.1820 0.1607 0.1628 0.1428

SVD-GCN-U 0.1875 0.1654 0.1667 0.1460

SVD-GCN-I 0.1857 0.1646 0.1662 0.1466

SVD-GCN-M 0.1905 0.1681 0.1693 0.1487

Improvement% +6.48 +7.69 +8.32 +9.90
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Table 4.3. Training time comparison on Gowalla.
Model Time/Epoch Epochs Running Time Parameters

LightGCN 6.43s 600 3,858s 4.5m

UltraGCN 2.55s 90 229.5s 4.5m

BPR 1.04s 250 260.0s 4.5m

SVD-GCN-S 0.00s 0 3.07s 0.0k

SVD-GCN-B 1.28s 8 13.31s 5.7k

SVD-GCN-U 2.06s 8 19.55s 5.7k

SVD-GCN-I 2.18s 8 20.51s 5.7k

SVD-GCN-M 3.05s 8 27.47s 5.7k

• Since our key contribution is to replace neighborhood aggregation, the im-

provement is more clear if we compare with pure GCN-based methods such as

LightGCN. SVD-GCN outperforms LightGCN on Yelp, ML-1M, and Gowalla

by 53.6%, 11.7%, and 29.0%, respectively, in terms of nDCG@10. The improve-

ments over sparse data tend to be more significant, indicating the stability of

SVD-GCN under extreme data sparsity.

• Among SVD-GCN variants, the basic model SVD-GCN-B and SVD-GCN-S

already outperform all baselines by a large margin. In addition, introducing

user-user and item-item relations results in further improvement. We also notice

that mixing user-user and item-item relations does not necessarily leads to

better accuracy, and we speculate that the reason might be related to the data

density. On the dense data such as ML-1M where the user-item interactions are

relatively sufficient, the improvement by introducing user-user and item-item

relations is not as significant as that of sparser datasets, and incorporating both

relations even performs worse; while on the sparest data Gowalla, introducing

auxiliary relations shows consistent improvements.

Training Efficiency

The results shown in this subsection are obtained on a machine equipped with

AMD Ryzen 9 5950X and GeForce RTX 3090. Figure 4.3 shows how the prepro-

cessing time and accuracy change with K, where SOTA is the best baseline. The

best accuracy is achieved at K = 90, K = 60, and K = 60, where the preprocess-

ing time is 3.07s, 0.82s, and 1.74s, on Gowalla, ML-1M, and Yelp, respectively.

Overall, only 1% singular vectors are required on ML-1M, and less than 0.5%
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singular vectors are required on Gowalla and Yelp, when the model reaches the

best accuracy.

Table 4.3 shows the training time and running epochs of several methods,

where the running time includes both preprocessing and training time. Overall,

LightGCN is the most time consuming model (3,858s) as it is a conventional

GCN model; SVD-GCN-S is the most time efficient model (3.07s) since it does

not require model optimization and shows over 1000x speed-up over LightGCN.

BPR is the fastest model (1.04s) in terms of training time per epoch, while it still

requires hundreds epochs to reach the best accuracy due to the large amount of

parameters need to be optimized. Although SVD-GCN variants (excluding SVD-

GCN-S) are slightly slower than BPR on training time per epoch, they show fast

training convergence as the model parameters are only 0.08% of that of BPR.

4.4.3 Model Analysis

How Homogeneous Relations Affect Performance?

The direct comparison between SVD-GCN-B and SVD-GCN-U, SVD-GCN-I, and

SVD-GCN-M demonstrates the positive effect of homogeneous relations. Fur-

thermore, Figure 4.4 shows how different γ and ζ affect the accuracy, where the

accuracy increases first then drops as constantly increasing the value of γ and ζ.

The best accuracy is achieved at γ = 0.5, while the optimal ζ (0.9 on Gowalla and

0.7 on Yelp) is larger than γ. One reasonable explanation is that item-item rela-

tions are usually sparser (0.21% on Gowalla and 0.33% on Yelp) than user-user

relations (0.41% on Gowalla and 0.48% on Yelp).

Do We Need Feature Transformation?

By comparing SVD-GCN-S and SVD-GCN-B, we can see W results in worse

accuracy on Gowalla and Yelp and only a slight improvement on ML-1M, which

shows that feature transformation does not help much learn user-item interac-

tions. On the other hand, we can identify the positive effect of W when incorpo-

rating user-user and item-item relations, which leads to improvement compared

with SVD-GCN-B. We speculate that the ineffectiveness of feature transforma-

tion is related to the data density, where the intrinsic characteristic of sparse data

such as user-item interactions is difficult to learn, while user-user and item-item
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Figure 4.3. How the preprocessing time and accuracy (nDCG@10) vary on K on

SVD-GCN-B.

relations are much denser thus is easier to learn. Overall, SVD-GCN can achieve

superior accuracy without any model training, implying that the key design mak-

ing GCN effective for recommendation lies in a good low-rank representation.

Effect of Renormalization Trick

We have two observations from Figure 4.5 (a): as increasing α (i.e., shrinking the

singular value gap), (1) the accuracy increases first then drops, reaches the best

at α = 3; (2) the model tends to require fewer singular vectors. In Figure 4.5

(b), as increasing α, (1) the maximum singular value becomes smaller, which is

consistent with Theorem 3; (2) singular values drops more quickly, which explains

why fewer singular vectors are required. For instance, the model with α = 0

has more large singular values which contribute significantly to the interactions

compared with the model with α > 0, thus more singular vectors are required;

while the important large singular values are fewer as increasing α. In other

words, the important information is concentrated in fewer top singular values

when we constantly increase α. Surprisingly, we have the same observation on

other datasets. Theoretical analysis on this interesting phenomenon is beyond

the scope of this work, we leave it for future work.

Effect of β

Figure 4.6 shows the accuracy with varying β. The accuracy first increases as

increasing β, then starts dropping after reaching the best performance at β = 2.5
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Figure 4.5. Effect of renormalization trick on Yelp.

on ML-1M, β = 6.0 on Gwoalla; there is a similar trend on Yelp that the best

accuracy is achieved at β = 4.0. We observe that β tends to be larger on sparser

data, implying that the large singular values are more important on the sparser

data. We speculate that there is less useful information on sparser datasets, thus

the small singular values contain more noise and should be depressed more than

denser datasets.
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Figure 4.6. Effect of β on SVD-GCN-S.

The Choice of Weighting Function

We show the accuracy of SVD-GCN-S with different weighting functions in Ta-

ble 4.4. For dynamic designs, we use a neural network to attempt to model the

importance of singular vectors with singular values as the input, while it under-

performs most static designs, showing that the dynamic design is not suitable

for the weighting function. For static designs, following the previous analysis in

Section 3.2, we list some properties that matter to accuracy: (from left to right)

if the function (1) is increasing, (2) has positive taylor coefficients, (3) is infinitely

differentiable, and evaluate some functions, where the setting of β is based on the

best accuracy of each function. We can see the importance of the three prop-

erties is (1)�(2)>(3). (1) implies that the larger singular values are assigned

higher weights, which is important according to the previous analysis; (2) and

(3) suggest if the model can capture neighborhood from any-hops with positive

contributions. Overall, the importance of the three properties is (1)�(2)>(3),

and the functions satisfying all three properties perform the best.
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Table 4.4. Accuracy of different weighting functions on Yelp.

Design Function nDCG@10

Property

(1) (2) (3)

Increasing Pos Coef. Infinite

Static

log(βσk) 0.0882 X × X∑L
l σ

l
k 0.0899 X X ×

1
1−βσk

0.0919 X X X

eβσk(β > 0) 0.0919 X X X

eβσk(β < 0) 0.0828 × × X

Dynamic Neural Network 0.0850

4.5 Proofs

4.5.1 Proofs of Theorem 1

Proof. Following SVD, we know any two singular vectors are orthonormal (i.e.,

PPT = I and QQT = I), thus it is easy to derive the following equations:

R̃R̃T = Pdiag
(
σ2
k

)
PT ,

R̃T R̃ = Qdiag
(
σ2
k

)
QT .

(4.26)

By repeating the above Equations l times, we obtain Equation (4.11).

For simplicity, we let R′ = R̃
(
R̃T R̃

) l-1
2

, and R′T = RT
(
R̃R̃T

) l-1
2

. We let

P′, Q′ and σ′k denote the stacked left singular vectors, right singular vectors and

singular value for R′, respectively. Following Equation (4.26), we can derive the

following equations:

R′R′T =
(
R̃R̃T

)l
= Pdiag

(
σ2l
k

)
PT = P′diag

(
σ′2k
)

P′T ,

R′TR′ =
(
R̃T R̃

)l
= Qdiag

(
σ2l
k

)
QT = Q′diag

(
σ′2k
)

Q′T .

(4.27)

It is easy to observe that P′ = P, Q′ = Q and σ′k = σlk. Then, according to SVD,

we derive Equation (4.12).

4.5.2 Proofs of Theorem 2 and 3

Proof. We first introduce Rayleigh quotients [141]:

λmin ≤ xT Ãx ≤ λmax s.t. |x| = 1, (4.28)
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where λmin and λmax are the minimum and maximum eigenvalues of Ã, respec-

tively. Then, we can show λmax = 1:

1− xT Ãx = xTx− xT Ãx =
∑

(u,i)∈E

(
xu√
du
− xi√

di

)2

≥ 0. (4.29)

In the meanwhile, we have the following observation:

Ã

[
pk

qk

]
=

[
R̃qk

R̃Tpk

]
= σk

[
pk

qk

]
, (4.30)

which implies that σk ∈ {λmin, · · · , λmax} ≤ 1 with [pk,qk]
T as the eigenvector.

By observing the eigenvector of λmax, if λmax is also a singular value, we have:

pk =
√

DU1 and qk =
√

DI1 where 1 is a vector with all 1 elements. It is easy

to verify the solution satisfies SVD: R̃qk = pk, thus σmax = 1.

Given Ṙ, we can define the corresponding adjacency matrix Ȧ. Since the

relation in Equation (4.30) still holds between Ṙ and Ȧ, we only need to prove

λ̇max ≤ dmax

dmax+α
.

xT Ȧx =
∑

(u,i)∈E

2xuxi√
du + α

√
di + α

≤
∑
u∈V

du
du + α

x2u,

= 1−
∑
u∈V

α

du + α
x2u ≤ 1− α

dmax + α
=

dmax

dmax + α
.

(4.31)

= holds when α = 0. When α > 0, λ̇max <
dmax

dmax+α
, since x takes different values

at
∑

(u,i)∈E
2xuxi√

du+α
√
di+α

=
∑

u∈V
du

du+α
x2u and 1−

∑
u∈V

α
du+α

x2u = 1− α
dmax+α

.

4.6 Summary

In this chapter, we proposed a simplified and scalable GCN learning paradigm

for CF. We first investigated what design makes GCN effective. Particularly, by

further simplifying LightGCN, we showed that stacking graph convolution layers

is to learn a low-rank representation by emphasizing (suppressing) more compo-

nents with larger (smaller) singular values. Based on the close connection between

GCN-based and low-rank methods, we proposed a simplified GCN formulation

by replacing neighborhood aggregation with a truncated SVD, which only ex-

ploits K-largest singular values and vectors for recommendation. To alleviate
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over-smoothing issue, we proposed a renormalization trick to adjust the singular

value gap, resulting in significant improvement. Extensive experimental results

demonstrated the training efficiency and effectiveness of our propose methods.

We leave two questions for future work. Firstly, since SVD-GCN-S already

achieves superior performance and feature transformation only shows positive ef-

fect learning user-user and item-item relations, we aim to incorporate user-user

and item-item relations without introducing any model parameters (i.e., we im-

prove based on SVD-GCN-S). In addition, we attempt to explain the phenomenon

in Section 4.4.3, that why shrinking the singular value gap causes singular values

to drop more quickly, thereby making important information to be concentrated

in fewer singular vectors.
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CHAPTER 5

Removing Distribution

Redundancy in Graph

Recommendation

In Chapter 3 and 4, we showed that only a small fraction of spectral features are

contributive to recommendation accuracy. In this chapter [142], we show that

the number of required spectral features is closely related to the spectral distri-

bution where important information tends to be concentrated in more (fewer)

spectral features on a flatter (sharper) distribution, making the complexity un-

predictable. To reduce the complexity for retrieving spectral features, we propose

a renormalized adjacency matrix with a hyper-parameter adjusting the sharpness

of the spectral distribution. We further propose a scalable contrastive learning

framework to alleviate data sparsity and to boost model generalization, leading

to significant improvement. Extensive experiments on three real-world datasets

demonstrate the effectiveness and efficiency of our proposed designs.

5.1 Introduction

Graph convolutional networks (GCNs) [25] have shown great potentials in rec-

ommender systems and collaborative filtering (CF) [93, 30]. Due to the limited
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attention that has been paid to demystify GCN-based recommendation algo-

rithms as well as the expensive computational complexity and poor scalability of

existing GCN-based methods, we presented two solutions: GDE and SVD-GCN

showing lower complexity and higher efficiency in Chpter 3 and 4. Most impor-

tantly, we showed that only a small fraction of spectral features are contributive

to recommendation while most features are noisy and useless. However, we no-

tice that the number of required spectral features actually varies on datasets after

conducting extensive experiments on different datasets, making the complexity of

our proposed algorithms unpredictable since calculating spectral features requires

additional complexity.

To tackle this limitation, we show that the number of required spectral features

is related to the sharpness of the spectral distribution, that fewer (more) features

are required on a sharper (flatter) spectrum. Inspired by this observation, we

propose a renormalized adjacency matrix with a hyper-parameter adjusting the

sharpness of spectrum to reduce the number of required features. Furthermore,

By analyzing how graph contrastive learning (GCL) works for recommendation,

we propose a scalable contrastive learning framework to boost model generaliza-

tion and robustness and to augment sparse supervisory signal with rich higher-

order neighborhood signals. Finally, we comprehensively evaluate the proposed

designs on three datasets with respect to efficiency and effectiveness. The main

contributions of this work can be summarized as follows:

• To reduce the computational cost for retrieving spectral features, we concen-

trate important information from interactions on fewer features by increasing

node smoothness to sharpen the spectral distribution, resulting in significant

improvement as well.

• We propose a scalable contrastive learning framework by performing augmenta-

tion on spectral features and augmenting sparse supervisory signals with abun-

dant higher-order neighborhood signals, resulting in significant improvement.

• Extensive experiments on three real-world datasets demonstrate the effective-

ness and efficiency of our proposed designs.
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5.2 Preliminaries

The notations used in this chapter is consistent with Chapter 3 and 4. We use

SVD-GCN proposed in Chapter 4 as the baseline model:

OU = P(K)diag (∆ (σk)) W,

OI = Q(K)diag (∆ (σk)) W,
(5.1)

with the following three components:

• Stacked top-K smoothest left and right singular vectors of R̂: P(K) ∈ R|U|×K

and Q(K) ∈ R|I|×K .

• GCNs use a polynomial to weight the spectral features. Here, we abstract it

as a nonparametric function ∆(·), since the dynamic choice has been shown

ineffective [96].

• A feature transformation W ∈ RK×d, where K � min(|U| , |I|).

5.3 Methodology

5.3.1 Removing Distribution Redundancy

Figure 5.1 (a) and (b) illustrate the spectral distributions of CiteULike and ML-

1M, on which our previously proposed GDE [96] reaches the best performance

with top 30% and 5% smoothed features, respectively. On CiteULike, over 10%

components correspond to the largest eigenvalue, and the spectral value drops

slowly; while the spectral distribution on ML-1M is sharper and the spectral

value drops more quickly. Recall our previous analysis that the feature with

a larger spectral value (i.e., smoother feature) tends to be more important to

recommendation. Thus, we can make the following observation:

Observation 3. A flatter (sharper) spectral distribution (i.e., the spectral value

drops more slowly (quickly)) implies the graph is composed of more (fewer) smoothed

components and thus requires more (fewer) features.

Apparently, it requires more computational cost for retrieving spectral features

on a flatter spectral distribution, while we hope the important information can
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Figure 5.1. Experimental results for tackling distribution redundancy.
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be concentrated in as few features as possible to reduce the cost. Then, we raise

a simple question: Can we reduce the required features K? This question

is equivalent to: How can we sharpen the distribution? Without considering the

specific recommendation algorithm, a user or an item can be represented as the

corresponding row of the adjacency matrix (e.g., Âu∗ for u and Âi∗ for i), and the

similarity can be simply measured as their dot product or cosine similarity. And

we can see that only homogeneous nodes (i.e., user-user and item-item) connected

to the common nodes (e.g., the users that interacted with common items, and

the items that are interacted by common users) have similarities. Consider the

average similarity between a node u and other nodes:

Âu∗
∑
z∈N 2

u

ÂT
z∗ = (Vu∗ � λ) VT

((∑
z

Vz∗ � λ

)
VT

)T

,

= (Vu∗ � λ)

(∑
z

Vz∗ � λ

)T

,

(5.2)

where N 2
u is the node set of second-order neighbor who have similarities with u,

λ is a vector containing all eigenvalues.

Definition 3. (Variation on Second-order Graphs). The variation of the eigen-

vectors on the second-order graph can be defined as:∥∥∥vk − Â2vk

∥∥∥ = 1− λ2k ∈ [0, 1] (5.3)

Interpretation of Equation (5.2). Definition 3 measures the difference

between the signal samples of eigenvectors at each node (Vuk) and at its second-

order neighbor (
∑

z Vzk). Intuitively, vk with |λk| → 1 implies that the nodes

are similar to their second-order neighborhood: |Vuk −
∑

z Vzk| → 0, while vk

with |λk| → 0 emphasizes the difference between Vuk and
∑

z Vzk. Consider λ as

a band-pass filter, with the spectral distribution becoming sharper, the compo-

nents with |λk| → 1 and |λk| → 0 are emphasized and suppressed, respectively,

leading to a higher similarity between the nodes and their second-order neigh-

bor who have non-zero similarities with them. In other words, the sharpness of

the spectral distribution is closely related to the average node similarity defined

on the normalized adjacency matrix. On the other hand, the obvious difference
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between ML-1M and CiteULike is the data density, where the users/items of

ML-1M have more interactions that are easier to have similarities with other the

users/items, thus resulting in a sharper spectral distribution. Then, the origi-

nal question can be transformed to: How do we increase the average node

similarity (defined on the interaction matrix) to sharpen the spectral

distribution?

Without changing the interactions, the key to increase the average similarity

lies in the weight of the adjacency relation: Âui = 1√
du
√
di

. To this end, we

define a renormalized adjacency matrix with Āui = w(du)w(di) and investigate

what node weights lead to a higher average similarity. Intuitively, the average

similarity between users and items are defined as follows:

ave sim user =

∑
u,v∈U Âu∗Â

T
v∗

|U|2
=
∑
i∈I

2w(i)2
∑

u,v∈Ni w(u)w(v)

|U|2
,

ave sim item =

∑
i,j∈I ÂT

∗iÂ∗j

|I|2
=
∑
u∈U

2w(u)2
∑

i,j∈Nu w(i)w(j)

|I|2
.

(5.4)

Without loss of generality, we assume that user preference is not related to the

node degree, or such a relation is uniform across the board. For instance, if we

consider the popularity bias, we assume that all users are uniformly have the

tendency to interact with popular items. In other words, w(u)w(v) or w(i)w(j)

follow the same distribution that can be considered fixed. Then, we can see the

item with a higher degree affects more to the average similarity (proportional

to d2i ) when we consider user similarity. Similarly, the user with a higher degree

affects more to the average similarity when we consider the item similarity, leading

to the conclusion that the higher weights over the high-degree nodes results in

higher node similarity. Theoretically, w(z) with a higher weight over high-degree

nodes than the original setting w(z) = 1√
z

results in higher average similarity. In

this work, we set Āui = 1√
du+α

√
di+α

, where α ∈ R+. To avoid introducing too

many different notations, we still use α here for simplicity. The range of α here

is different from the α in w(z) = 1
zα

. Note that since
(

1√
z

)′
is monotonically

increasing, the weights of 1√
z+α

over high-degree nodes are higher than that of
1√
z
, and are emphasized more by setting α larger. Figure 5.1 (c) and (d) show

that the average user and item similarities constantly increase as increasing α; in

Figure 5.1 (e) and (f), we can observe a sharper distribution as increasing α, thus

the number of required features (i.e., K) is expected to be reduced. Note that
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Figure 5.2. Arranging spectral features in rough → smooth order, we evenly

divide them into 10 groups and calculate the average relevance (taking the abso-

lute value of cosine similarity) between the eigenvectors of the original and the

perturbed graphs (we randomly drop the edge with probability 0.1). The smaller

(larger) relevance implies that the noise is more intense (weaker) on the group of

features.

there is a trade-off between the reduction of K and the integrity of interactions:

a too large α would sabotage the original interactions.

By applying the renormalized adjacency matrix to SVD-GCN, we name it

simplified graph denoising encoder (SGDE) and optimize it with BPR loss [45]:

Lmain =
∑
u∈U

∑
(u,i+)∈R+,(u,i-)/∈R+

lnσ
(
oTuoi+ − oTuoi-

)
. (5.5)

5.3.2 Contrastive Simplified Graph Denoising Encoder (CS-

GDE)

Recently, graph contrastive learning (GCL) has received much attention includ-

ing recommender systems [38, 143]. The core idea is to maximize and minimize

the agreement of two views from the same and different node(s), respectively,

where the views are generated by perturbing the original graph such as randomly

dropping out edges or nodes. However, existing GCL learning paradigm is compu-

tationally expensive as generating multiple node views basically requires multiple
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times the complexity of GCNs. In this section, we aim to incorporate GCL into

our method without bringing too much complexity. To this end, we first attempt

to analyze how GCL works for recommendation. We focus on edge dropping as

it gains more improvement than other augmentations [38]. As shown in Figure

5.2, the edge-dropping noise tends to attack noisy components in the middle area

while the smoothed and rough components tend to be preserved. By maximiz-

ing the agreements between embeddings from perturbed graphs, the dissimilar

components (i.e., noisy features) tend to be filtered out. However, there is no

guarantee that the edge-dropping noise always attack the noisy spectral features

as we can see the spectral features in the middle area on CiteULike shows higher

relevance than ML-1M. To summarize, the limitations of GCL are that: (1) The

noise added on the graph is uncontrollable, (2) computationally expensive; (3)

GCL ignores the latent relations that indirectly connected users/items might be

as well closely related to the target user/item, as it only maximizes the views

from the same node. To this end, we propose a feature augmentation by adding

random noise on the weighted spectral features:

OU = N
(
P(K)diag (∆ (σk)) , µ

)
W,

OI = N
(
Q(K)diag (∆ (σk)) , µ

)
W,

(5.6)

where the noise is generated from normal distribution N (0, µ) with µ as the

standard deviation. Since ∆(·) outputs the feature weight according to their

importance to recommendation, the more (less) important features have larger

(smaller) weights thus are less (more) perturbed by the noise. Then, Equation

(5.6) emphasizes the important features and tends to filter out the noisy ones.

Instead of only maximizing the views from the same node, we incorporate higher-

order neighbor signals:

Luser =
∑
u∈U

∑
(u,u+)∈, (u,u-)/∈ELAU

lnσ
(
oTuou+ − oTuou-

)
, (5.7)

where ELAU is the edge set considering {1, · · · , L} hop neighbors of AU . Although

users are not directly connected, they still might show similar interests and should

be close on the embedding space if they are close on the graph. Since the InfoNCE

loss brings additional complexity, we stick to the BPR loss here. Similarly, the

contrastive loss for higher-order item signals are generated as:

Litem =
∑
i∈I

∑
(i,i+)∈, (i,i-)/∈ELAI

lnσ
(
oTi oi+ − oTi oi-

)
, (5.8)
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where ELAI is the edge set considering {1, · · · , L} hop neighbors of AI . Finally,

the model is optimized by the following loss:

L = Lmain + δLuser + ζLitem + γ ‖Θ‖22 , (5.9)

where Θ denotes the model parameters, δ and ζ are hyperparameters controlling

the effect from higher-order neighbors. We additionally propose a robust SGDE

(RSGDE) by only applying Equation (5.6) to SGDE to investigate how feature

augmentation solely affects the performance.

5.4 Experiments

In this section, we comprehensively evaluate our proposed methods in terms of

effectiveness and efficiency. Particularly, we aim to answer the following research

questions:

• Do our proposed methods outperform other competitive baselines as well as

our previously proposed GDE?

• How are the efficiency of our proposed methods, especially compared with GCN-

based methods?

• How do hyperparameters affect model performance? Do the proposed designs

positively affect the model performance?

5.4.1 Experimental Settings

Datasets and Evaluation Metrics

We list statistics of datasets in Table 5.1. Two MovieLens datasets: ML-1M and

ML-100K are collected by GroupLens∗ and have been widely used to evaluate CF

algorithms. CiteULike† is collected from CiteULike which allows users to create

their own collections of articles. Gowalla [30] is a check-in dataset which records

the locations users have visited. Yelp [140] is the Yelp Challenge data for user

ratings on businesses. Since we focus on implicit feedbacks, we remove other

auxiliary infromation such as ratings and reviews and only leave user/item IDs.

∗https://grouplens.org/datasets/movielens/
†https://github.com/js05212/citeulike-a
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Table 5.1. Statistics of datasets

Datasets #User #Item #Interactions Density%

CiteULike 5,551 16,981 210,537 0.223

ML-100K 943 1,682 100,000 6.305

ML-1M 6,040 3,952 1,000,209 4.190

Yelp 25,677 25,815 731,672 0.109

Gowalla 29,858 40,981 1,027,370 0.084

To further verify our previous observations and generalize on other datasets, we

evaluate on ML-1M, Yelp, and Gowalla.

We adopt two widely used evaluation metrics: Recall and nDCG [128] to eval-

uate model performance. Recall measures the ratio of the relevant items in the

recommended list to all relevant items in test sets, while nDCG takes the rank

into consideration by assigning higher scores to relevant items ranked higher. The

recommendation list is generated by ranking unobserved items and truncating at

position k. Since the advantage of GCN-based methods over traditional CF meth-

ods is the ability of leveraging higher-order neighbor signals to augment training

data, thereby alleviating the data sparsity, we only use 20% of interactions for

training and leave the remaining for test to evaluate the model robustness and

stability; we randomly select 5% from the training set as validation set for hy-

perparameter tuning and report the average accuracy on test sets.

Baselines

We compare our proposed methods with the following competing baselines, where

the hyperparameter settings are based on the results of the original papers:

• BPR [45]: This is a stable and classic MF-based method, exploiting a Bayesian

personalized ranking loss for personalized rankings.

• EASE [129]: This is a neighborhood-based method with a closed form solution

and show superior performance to many traditional CF methods.

• LightGCN [41]: This method removes activations functions and feature trans-

formation, only leaves neighborhood aggregation for recommendation. We use

79



5. Removing Distribution Redundancy in Graph Recommendation

a three-layer architecture as the baseline.

• LCFN [91]: To remove the noise from interactions for recommendation, this

method uses a low pass graph convolution to replace the spectral graph convo-

lution. We set F = 0.005 and use a single-layer architecture.

• SGL-ED [38]: This model explores self-supervised learning based on LightGCN

[41], by maximizing the agreements of multiple views from the same node, where

the node views are generated by performing noise such as randomly removing

the edges or nodes on the original graph. We set τ = 0.2, λ1 = 0.1, p = 0.1,

and use a three-layer architecture.

• UltraGCN [135]: This model simplifies LightGCN by replacing neighborhood

aggregation with a weighted MF, which shows faster convergence and less com-

plexity.

• GDE [96]: This method only uses a very few graph features for recommendation

without stacking layers, showing less complexity and higher efficiency than

conventional GCN-based methods.

We remove some popular GCN-based methods such as Pinsage [93], NGCF [30],

and SpectralCF [82] as the aforementioned baselines have already shown superi-

ority over them.

Implementation Details

We implemented the proposed model based on PyTorch‡ and released the code

on Github§. For all models, we use SGD as the optimizer, the embedding size d

is set to 64, the regularization rate γ is set to 0.01 on all datasets, the learning

rate is tuned amongst {0.001, 0.005, 0.01, · · · }; without specification, the model

parameters are initialized with Xavier Initialization [131]; the batch size is set to

256. We report other hyperparameter settings in the next subsection.

5.4.2 Performance Comparison

We report the accuracy of our proposed SGDE variants and other baselines in

Table 5.2, and make the following observations:

‡https://pytorch.org/
§https://github.com/tanatosuu/GDE
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Table 5.2. Overall performance comparison. Improv.% denotes the improvements

over the best baselines.

Datasets Methods nDCG@10 nDCG@20 Recall@10 Recall@20

Yelp

BPR 0.0388 0.0374 0.0371 0.0370

Ease 0.0360 0.0362 0.0346 0.0368

LCFN 0.0617 0.0627 0.0613 0.0653

UltraGCN 0.0417 0.0403 0.0404 0.0403

LightGCN 0.0751 0.0710 0.0725 0.0698

SGL-ED 0.0817 0.0794 0.0784 0.0792

GDE 0.0866 0.0850 0.0839 0.0860

SGDE 0.0900 0.0877 0.0870 0.0880

RSGDE 0.0947 0.0919 0.0917 0.0924

CSGDE 0.0966 0.0938 0.0933 0.0939

Improv.% +11.55 +10.35 +11.20 +9.19

ML-1M

BPR 0.5521 0.4849 0.5491 0.4578

Ease 0.3773 0.3249 0.3682 0.3000

LCFN 0.5927 0.5197 0.5887 0.4898

UltraGCN 0.5326 0.4688 0.5302 0.4434

LightGCN 0.5917 0.5261 0.5941 0.5031

SGL-ED 0.6029 0.5314 0.6010 0.5035

GDE 0.6482 0.5681 0.6471 0.5376

SGDE 0.6491 0.5730 0.6496 0.5445

RSGDE 0.6559 0.5771 0.6554 0.5468

CSGDE 0.6581 0.5798 0.6583 0.5502

Improv.% +1.52 +2.06 +1.73 +2.34

Gowalla

BPR 0.1086 0.0907 0.0917 0.0743

Ease 0.0722 0.0670 0.0680 0.0642

LCFN 0.1305 0.1132 0.1144 0.0980

UltraGCN 0.0977 0.0815 0.0841 0.0681

LightGCN 0.1477 0.1327 0.1368 0.1224

SGL-ED 0.1789 0.1561 0.1563 0.1353

GDE 0.1857 0.1632 0.1657 0.1449

SGDE 0.1820 0.1607 0.1628 0.1428

RSGDE 0.1917 0.1690 0.1691 0.1485

CSGDE 0.1950 0.1712 0.1714 0.1496

Improv.% +5.01 +4.90 +3.44 +3.24
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• Overall, GCN-based methods tend to show better performance over traditional

CF methods, demonstrating the superiority of GCNs for CF especially when the

data is extremely sparse, as GCNs can augment interactions with rich higher-

order neighbor signals.

• SGL-ED performs the best among GCN-based baselines, which demonstrates

the effectiveness of self-supervised learning for CF. UltraGCN shows relatively

poor performance, despite the superior performance reported in the original

paper. According to our previous analysis in Section 4.2.3, that UltraGCN

is basically a weighted MF which loses the ability to leverage higher-order

neighborhood, explaining why it performs poorly when data is sparse (with

20% interactions for training).

• By comparing SGDE, RSGDE, and CSGDE, we can see that the improve-

ment from feature augmentation is more significant than leveraging higher-order

neighbor signals, indicating that a well-designed data augmentation helps learn

robust and generalizable representations.

• SGDE achieves similar performance to GDE on ML-1M, outperforms GDE

on Yelp, and slightly underperforms GDE on Gowalla. Note that GDE is

trained with an adaptive loss which gains improvement over GDE with BPR

loss, SGDE still outperforms GDE on Gowalla when both models are trained

with the same BPR loss. RSGDE and CSGDE show consistent improvements

over GDE, demonstrating the effectiveness of our proposed contrastive learning

framework. For instance, the improvements of CSGDE over GDE on Yelp,

ML-1M, and Gowalla are 11.6%, 1.5%, and 5.0%, respectively, in terms of

nDCG@10.

• Compared with conventional GCN-based methods such as LightGCN, CSGDE

outperforms it by 28.6%, 11.2%, and 32.0%, in terms of nDCG@10, on Yelp,

ML-1M, and Gowalla, respectively, demonstrating the superiority and effective-

ness of our proposed designs.
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Figure 5.3. How the accuracy of SGDE and the number of required features

change with α.
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Table 5.3. How the accuracy changes with L.

L=1 L=2 L=3 L=4

Yelp 0.0965 0.0963 0.0962 0.0964

ML-1M 0.6581 - - -

Gowalla 0.1924 0.1925 0.1949 0.1950

5.4.3 Model Analysis

Distribution Redundancy

We report how the number of required features K and the accuracy change with α

in Figure 5.3. We can see K =120, 2000, and 3000 on ML-1M, Yelp, and Gowalla

at α = 0, and it constantly decreases as increasing α, where the best accuracy is

achieved at α =2, 3, and 3, with K reduced to 60, 60, and 90, respectively. For

instance, we can observe a 13x speed-up on Yelp by comparing the processing

times for K = 60 and K = 2000 which are 1.74s and 24.94s, respectively, and the

best accuracy at α = 3 outperforms that at α = 0 by 10.0%, indicating the im-

portant information can be concentrated in fewer spectral features by increasing

α. Overall, we can both boost the efficiency and effectiveness by setting α in a

reasonable way (i.e., there is a trade-off between sharpening the distribution and

keeping the original data uncontaminated).

Contrastive Loss

We report effect of the contrastive loss in Figure 5.4. In Figure 5.4 (a) - (c), we

show how the accuracy changes with δ and ζ, ’Both’ represents the accuracy of

the model with the best settings of δ and ζ. We observe the followings:

• The accuracy increases first then drops as constantly increasing the hyperpa-

rameters and is mostly maximized at 0.5 on three datasets (excluding ζ = 0.3

on Yelp). The contrastive loss tends to achieve a larger improvement on the

sparser data, as the improvement is 0.3% on the denser data ML-1M, and nearly

2% on the other two datasets.

• incorporating both user and item homogeneous relations does not lead to an

improvement compared with incorporating either of them. A reasonable ex-

planation is that incorporating either relations can help optimize another re-
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lation as well. For instance, consider the target users and neighbor users

(u, u+) ∈ E lAU , l = {1, · · · , L}, let i and i+ be the items u and u+ have inter-

acted, respectively, then the possible distance between i and i+ is l−1(l > 1), l,

or l+ 1. When u and u+ are optimized to be close, since i and i+ are optimized

to be near to u and u+, respectively, then i and i+ are pulled to be close as well.

Thus, the item higher-order relations are also optimized to some extent when

considering the user higher-order relations. Similarly, we can draw the same

conclusion if we consider the relations between neighbor items and the target

items. As a result, incorporating both relations results in overfitting, showing

a worse performance on the data used in this work.

• We observe that the model performs better with user relations on ML-1M, and

with item relations on Gowalla and Yelp. If we define the scale of relations

as the number of all possible relations (i.e., |U|2 for user relations and |I|2 for

item relations), then this observation shows that optimizing the relations with

a larger scale might lead to larger improvement.

Figure 5.4 (d) - (f) show how the accuracy changes with standard variation

µ where a larger (smaller) µ implies intenser (weaker) noise, and the maximum

accuracy is reached at 0.015, 0.02, and 0.03 on Yelp, ML-1M, and Gowalla re-

spectively, where the noise tends to be more intense on sparser datasets when

reaching the best accuracy. Table 5.3 shows how the accuracy changes with L.

Since almost all users and items are connected when L > 1 on ML-1M (i.e.,

all users and items can sampled as positive), we only report the accuracy with

L = 1. The accuracy gradually increases as increasing L on Gowalla, while the

best accuracy is achieved at L = 1 on Yelp, which might be due to the data den-

sity since Gowalla is sparser than Yelp. Overall, higher-order relations provide

auxiliary information to help extract user preference.

5.5 Summary

In this chapter, we unveiled the distribution redundancy of GCN-based recom-

mendation methods by showing that the number of required spectral feature is

related to the spectral distribution, where a dataset with a flatter distribution

tends to requires more spectral features when reaching the best performance, re-

sulting in more computational cost. We define a renormalized adjacency matrix
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with a hyper-parameter adjusting the sharpness of the spectral distribution to

reduce the number of required spectral features, making the important informa-

tion on the graph be concentrated in fewer features. By analyzing how GCL

works for recommendation, we further proposed a scalable contrastive learning

framework. Particularly, we performed feature augmentation by adding noise on

the spectral feature where the intensity is according to their importance, and

augmented sparse supervisory signals with higher-order neighbor. Experimen-

tal results on three datasets demonstrated the effectiveness and efficiency of our

proposed SGDE variants over our previously proposed GDE as well as compet-

itive baselines including both GCN-based and traditional CF methods. In the

future, we will continue efforts to boost training efficiency and model scalability

of GCN-based recommendation methods.
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CHAPTER 6

Balancing Embedding Spectrum

for Recommendation

In this chapter, we shed light on an issue in the existing pair-wise learning

paradigm (i.e., the embedding collapse problem) mentioned in Section 1.2, that

the representations tend to span a subspace of the whole embedding space, leading

to a suboptimal solution and reducing the model capacity. Specifically, optimiza-

tion on observed interactions is equivalent to a low pass filter causing users/items

to have the same representations and resulting in a complete collapse; while neg-

ative sampling acts as an unreliable high pass filter to alleviate the collapse by

balancing the embedding spectrum but still leads to an incomplete collapse. To

tackle this issue, we propose a novel method called DirectSpec, acting as a reli-

able all pass filter to balance the spectrum distribution of the embeddings during

training, ensuring that users/items effectively span the entire embedding space.

Additionally, we provide a thorough analysis of DirectSpec from a decorrelation

perspective and propose an enhanced variant, DirectSpec+, which employs self-

paced gradients to optimize irrelevant samples more effectively. Moreover, we

establish a close connection between DirectSpec+ and uniformity, demonstrat-

ing that contrastive learning (CL) can alleviate the collapse issue by indirectly

balancing the spectrum. Finally, we implement DirectSpec and DirectSpec+ on

two popular recommender models: MF and LightGCN. Our experimental results
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demonstrate its effectiveness and efficiency over competitive baselines.

6.1 Introduction

Recommender systems have penetrated into our daily life, we can see them every-

where such as e-commerce [144], short-video [21], social network [4], and so on.

Collaborative filtering (CF), a fundamental technique for recommendation to dis-

cover user preference based on the historical data, has attracted much attention

in the last decades. The most extensively used CF technique, matrix factoriza-

tion (MF) [11] which represents users and items as low dimensional latent vectors

and the rating is estimated as the inner product between latent vectors, has been

the cornerstone of modern recommender systems. Since MF estimates the rating

with a simple linear function, subsequent works mostly focus on designing more

powerful and complex algorithms to model non-linear user-item relations, includ-

ing but not limited to multi-layer perceptron (MLP) [17], attention mechanism

[58], reinforcement learning [59], transformer [22], diffusion model [145] graph

neural network (GNN) [93, 132], etc., and have shown tremendous success.

Although different kinds of methods have been proposed, most of them can

be considered as MF variants whose goal is to learn low dimensional represen-

tations (with dimension d) from the high dimensional sparse interaction matrix

(with dimension D � d). Figure 6.1 illustrates the top 500 normalized singular

value distribution of the interaction matrix of CiteULike (see Section 6.5 for data

description). We observe that users/items are predominantly distributed along

a few dimensions in the original space while most dimensions barely contribute

(i.e., with singular values close to 0) to the representations. Thus, when users

and items are mapped into a more compact embedding space, it is expected that

redundant dimensions are all removed and each dimension contributes to the

user/item representations as equally and uniformly as possible (i.e., the repre-

sentations make full use of the embedding space).

Existing recommendation methods are mostly optimized by pulling observed

user-item pairs closer than unobserved ones. Here, a simple yet fundamental ques-

tion arises: Can user/item representations of existing work make full use of all

dimensions? Unfortunately, by analyzing the spectrum of the embedding matrix,

we empirically and theoretically show that users/items tend to span a subspace

of the whole embedding space (with dimension d′ < d), where the embeddings
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Figure 6.1. An illustration of the data distribution in the original space and

expected distribution in the learning embedding space.

collapse along all (complete collapse) or certain dimensions (incomplete collapse).

Particularly, optimization solely on observed interactions is equivalent to a low

pass filter, where the representations of users and items tend to collapse to a

constant vector. Negative sampling is the most common technique to optimize

recommendation algorithms without causing an explicit embedding collapse by

pushing away the unobserved user-item pairs, and we show that it is equivalent

to a high pass filter that alleviates the collapse issue by balancing the embed-

ding spectrum. However, the effectiveness of negative sampling in completely

preventing the embedding collapse cannot be guaranteed, and collapse over cer-

tain dimensions still happens on existing pair-wise learning paradigms such as

Bayesian personalized ranking (BPR) [45] and binary cross-entropy (BCE) loss

[17]. Due to the data sparsity and long tailed distributions, increasing negative

sampling ratios is considered as an effective way to to improve representation

quality [17, 46], whereas we also demonstrate that it cannot further alleviate the

collapse issue by evaluating different negative sampling ratios.
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In this work, we tackle the embedding collapse issue from a spectral perspec-

tive. We observe that the extent of the collapse is closely related to the spectrum

distribution of the embedding matrix. Specifically, only one singular value dom-

inates when the representations completely collapse, whereas the singular values

are uniformly distributed when the representations make full use of the embedding

space. Inspired by this observation, we propose a novel method dubbed Direct-

Spec acting as an all pass filter to ensuring that all dimensions equally contribute

to the representations. We theoretically and empirically show that DirectSpec

can completely prevent the embedding collapse without explicitly sampling neg-

ative pairs by directly balancing the spectrum distribution, and provide a simple

implementation with a complexity only as O(B2d) where B is the batch size.

Moreover, we shed light on DirectSpec from a decorrelation perspective, and

propose an enhanced variant DirectSpec+ which employs self-paced gradients to

optimize the irrelevant samples that are highly correlated more effectively. By

showing the close connection between DirectSpec and uniformity, we discover

that contrastive learning (CL) can alleviate embedding collapse by balancing

spectrum distribution in a similar way to DirectSpec, explaining the effectiveness

of CL based recommendation algorithms. Finally, we implement DirectSpec and

DirectSpec+ on two popular baselines: MF [11] and LightGCN [41], and exper-

imental results show that DirectSpec+ improves BPR and LightGCN by up to

52.6% and 41.8% in terms of nDCG@10, respectively. The contribution of this

work can be summarized as follows:

• We theoretically and empirically show that existing recommendation methods

suffer from embedding collapse, that the representations tend to fall into a

subspace of the whole embedding space, and analyze the mechanisms causing

this issue.

• We propose a novel method DirectSpec which directly balances the spectrum

distribution. We empirically and theoretically show that DirectSpec can pre-

vent embedding collapse.

• We unveil the effectiveness of CL by showing that uniformity, a key design of

CL can alleviate collapse issue by indirectly balancing the spectrum distribution

that can be considered as a special case of DirectSpec.

• Extensive results on three datasets demonstrate the efficiency and effectiveness
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of our proposed methods.

6.2 Preliminaries

Given the user set U and item set I, the interaction matrix is defined as R ∈
{0, 1}|U|×|I|, the observed interactions are represented as R+ = {rui = 1|u ∈ U , i ∈
I}. Users and items are first mapped to low dimensional vectors H ∈ R(|U|+|I|)×d

through an encoder, where the encoder can be as simple as a linear mapping [11]

or advanced algorithms such as MLPs [17], GNNs [30], etc. Let hu and hi be the

u’s and i’s representations, respectively. The goal of CF is to predict unobserved

interactions R− = {rui = 0|u ∈ U , i ∈ I} estimated as the inner product between

the user and item representations: r̂ui = hTuhi. The model parameters Θ are

optimized through a loss function L formulated as follows:

arg min
Θ
L(r̂ui, rui). (6.1)

The loss function measures the difference between the estimated score and the

ground truth. BPR and BCE loss are two extensively used learning frameworks

for CF methods:

LBPR =
∑

(u,i)∈R+,(u,j)∈R−

− lnσ(r̂ui − r̂uj),

LBCE =
∑

u∈U ,i∈I

−rui lnσ(r̂ui)− (1− rui) ln (1− σ(r̂ui)) ,
(6.2)

where σ(·) is the sigmoid function. BPR loss maximizes the difference between

observed and unobserved user-item pairs, while BCE loss directly pulls the ob-

served pairs close and pushes the unobserved ones away from each other. The

embeddings are a low dimensional approximation of the sparse high dimensional

interaction matrix, thus they should contain diverse and rich information rep-

resenting the user-item relations. Rank is a commonly used metric to measure

the dimension of a matrix, while it fails to tell the difference between the em-

bedding matrix (1) with a ‘sphere’ distribution that users/items are uniformly

distributed in each dimension of the space and (2) with a ‘spheroid’ distribu-

tion that users/items are predominantly distributed over some dimensions and

insignificantly distributed over other dimensions. Although both matrices have

the same rank, apparently (1) contains more diverse information than (2). Here,

we introduce another tool:
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Definition 4. Effective Rank. Given singular values of the embedding matrix

H: σ1 ≥ σ2 ≥ · · · ≥ σd ≥ 0, let pk = σk∑
k σk

, then the effective rank is defined as

follows:

erank(H) = exp (H (p1, · · · , pd)) , (6.3)

where H (p1, · · · , pd) = −
∑

k pk log pk is the Shannon entropy.

Compared with rank, erank takes the singular value distribution into consid-

eration: the more uniform (sharper) of the distribution, the higher (lower) of the

erank [146]. The embedding matrix contains the least information when there is

only one leading non-zero singular values (σ2 = · · · = σd = 0, and erank(H) =

rank(H) = 1), while erank is maximized when each dimension equally contributes

to the representations: σ1 = · · · = σd (erank(H) = rank(H) = d).

6.3 Embedding Collapse in CF

6.3.1 Complete Collapse

Consider a graph G = (V , E), where the node set contains all users and items:

V = U ∪ I, the edge set is represented by observed interactions: E = R+. Let

us first consider a log loss function (as it is extensively used) that only optimizes

the observed interactions: L = −
∑

lnσ(r̂ui), (u, i) ∈ R+.

Proposition 4. Suppose G is connected, then hk ≈ hz for arbitrary nodes k and

z when L completely converges.

By calculating the gradient over the embeddings, the parameters are updated

through stochastic gradient descent (SGD) as follows:

H(l+1) = H(l) − α ∂L
∂H(l)

= H(l) + αAH(l),

h(l+1)
u = h(l)

u − α
∂L
∂h

(l)
u

= h(l)
u + α

∑
(u,i)∈R+

Auih
(l)
i ,

(6.4)

where α ∈ (0, 1), Aui = 1−σ(r̂ui) for (u, i) ∈ R+, and A can be considered as an

adjacency matrix of G. Equation (6.4) is similar to the message passing in GNN

[25], which makes the nodes similar to their neighborhood. Repeating Equation

(6.4) multiple times can further reach the higher-order neighborhood, causing

indirectly connected nodes to be similar. While Aui controlling the magnitude
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Figure 6.2. Embedding collapse on Yelp (d = 64). (a) and (b) show how embed-

dings completely and incompletely collapse, respectively; (c) and (d) show how

nDCG@10 changes as the training proceeds under the two situations.

of the gradient tends to vanish as training proceeds, and eventually L converges

when A degenerates into a zero matrix. Note that this issue does not exist on

other loss functions such as Euclidean distance loss:
∑
‖hu − hi‖22. If we fix the

magnitude of gradients unchanged, then Equation (6.4) can be rewritten as:

H(l) = (I + αA)l H(0). (6.5)

Definition 5. Graph Filtering. Let λ1 > λ2 > · · · be the eigenvalues of A.
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Then FL(A) is a low pass filter if |FL(λi)| > |FL(λj)| for λi > λj, and FH(A)

is a high pass filter if |FH(λi)| > |FH(λj)| for λi < λj.

Suppose A is normalized such as |λk| ≤ 1, then we can see that I + αA is

equivalent to a low pass filter. According to the spectral decomposition with vk

as the eigenvector:

(I + αA)l =
∑
k

(1 + αλk)
lvkvk

T , (6.6)

it is obvious that (1+αλk)
l

(1+αλ1)l
→ 0 (k 6= 1) as l is large enough, resulting in rank((I +

αA)l)→ 1, then:

rank
(
H(l)

)
≤ min

(
rank

(
(I + αA)l

)
, rank

(
H(0)

))
= 1, (6.7)

showing that all nodes have the same embedding representations. Considering

that the gradient vanishing hinders the convergence of Equation (6.5), the repre-

sentations of distinct nodes would not be completely the same.

In Figure 6.2 (a) and (c), we evaluate LightGCN and MF on how the em-

beddings completely collapse on Yelp when only considering the observed inter-

actions, the parameters are initialized with Xavier initialization. We have the

following observations:

• Before the training starts, the embeddings are uniformly distributed in the

embedding space since erank(H) ≈ d.

• The erank monotonically decreases on both models, and the accuracy barely

changes throughout the training, indicating that the embeddings collapse as

the training starts and the issue becomes more serious as training proceeds.

• The erank decreases more rapidly on LightGCN than MF. Consider a K-th

layer LightGCN, then Equation (6.5) can be rewritten as:

H(l) = (I + αA)l
K∑
k=0

AkE. (6.8)

Here, E is the initial stacked user/item embeddings sent to the encoder; we

ignore the difference between the adjacency matrix used in Equation (6.5) and

LightGCN for simplicity. We can see that increasing the layer K causes the

loss function to converge faster, indicating that the over-smoothing in GNN

[42] aggravates the collapse issue.
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• The erank tends to converge to a value larger than 1. Besides the gradient

vanishing issue mentioned above, Proposition 1 is based on the assumption that

G is connected, which always does not hold on the real-world recommendation

datasets. In other words, disconnected nodes (i.e., no reachable paths between

them) do not have the same representations.

6.3.2 Incomplete Collapse

Existing recommendation algorithms mostly exploit unobserved interactions for

optimization. Naturally, we raise a question: Can existing pair-wise learning

paradigm completely prevent the collapse? Similarly, we evaluate LightGCN

(with BPR), MF (with BPR), and MF (with BCE) on Yelp, and show how erank

and accuracy change as training proceeds in Figure 6.2 (b) and (d). The erank

plunges at first, showing a trend similar to Figure 6.2 (a). Gradually, the erank

increases and tends to converge to a value lower than d, indicating that the

embeddings are negligibly distributed over some dimensions. LightGCN drops

more rapidly than MF and converges to a smaller value. In the meanwhile, the

accuracy also increases accordingly, and shows a trend similar to erank. It is

obvious that existing learning paradigms can alleviate the collapse issue but still

cannot completely prevent it. We attempt to analyze how negative sampling

alleviates the collapse issue and its weakness. Take the BCE loss as an example,

the parameters are updated through SGD as follows:

H(l+1) = H(l) + α
(
A− Ā

)
H(l),

h(l+1)
u = h(l)

u + α
∑

(u,i)∈R+

Auih
(l)
i − α

∑
(u,j)∈R−

Āujh
(l)
j ,

(6.9)

where Āuj = σ(r̂uj) for (u, j) ∈ R−. Intuitively, as the direction of the gradients

are opposite to that of observed interactions, the disconnected nodes (unobserved

interactions) are pushed away from the target users/items, preventing the rep-

resentations from collapsing. Furthermore, as shown previously in Section 6.3.1

that optimization on observed interactions is equivalent to a low pass filter, Equa-

tion (6.9) can be disentangled to a low pass I +αA and a high pass filter I−αĀ

(suppose A and Ā are symmetrically normalized), where a high pass filter can

balance the embeddings spectrum by reducing the weights on low frequency and

raising the importance of high frequency components, leading to a more uniform

distribution. To verify our analysis, we visualize the spectrum of A−Ā in Figure
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Figure 6.3. (a) the normalized eigenvalue distribution (Top 500) of A − Ā on

CiteULike; (b) how erank and recall@10 changes with varying negative sampling

ratios N on CiteULike.

6.3 (a), where we fix the elements of A and Ā to 1 for simplicity since they are

changing during training. Ā = 0 (zero matrix) for ‘All positive’, and Ā contains

all unobserved interactions for ‘All negative’. It is obvious that A − Ā has a

more balanced spectrum than A, leading to a higher erank. However, due to

the varying elements, there is no guarantee that repeating Equation (6.9) can

consistently alleviate the collapse issue and eventually completely prevents it.

The experimental results also show that the representations still suffer from an

incomplete collapse. A plausible solution is to raise the negative sampling ratio

as unobserved interactions usually account for over 95% of all interactions that

cannot be sufficiently sampled during training, whereas the spectrum of A − Ā

is the most uniform when the negative sampling ratio N = 1, and raising the

ratio seems to aggravate the collapse issue again as shown in Figure 6.3 (a). We

further evaluate BCE with different negative sampling ratios and report the re-

sults in Figure 6.3 (b). The accuracy increases by raising the negative sampling

ratio N > 1, while the erank remains unchanged, showing that introducing more

negative samples fails to further alleviate or prevent the embedding collapse.
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6.4 Methodology

6.4.1 Balancing Embedding Spectrum

The spectrum distribution can directly reflect the extent of embedding collapse.

Intuitively, a uniform distribution indicates that different dimensions equally con-

tribute to the embeddings and leads to a high effective rank. Therefore, a reliable

solution is an all pass filter FA such that FA(σi)=FA(σj) for σi 6= σj. By param-

eterizing FA, it is straightforward to directly balance the spectrum by optimizing

the following loss:

min
∑
k 6=z

‖σ′k − σ′z‖
2
2 , (6.10)

where σ′k is the singular value of FA (H). However, such a design requires the

computation of singular values during each training and introduces more model

parameters that might hinder the model convergence, thus we stick to a simple

yet effective design in this work. Consider an affinity graph G ′ = (V , Â), where

the node features are represented by the embedding matrix H and the adjacency

relation is measured by the similarity score between nodes: Âui = hTuhi, we define

the massage passing on G ′ as follows:

FA (H) = H− αÂLH, (6.11)

where α ∈ R+, L ∈ N is the matrix power.

Proposition 5.

T︷ ︸︸ ︷
FA · · · FA(H) (Repeating FA(H) T times ) is equivalent to an

all pass filter where erank(

T︷ ︸︸ ︷
FA · · · FA(H)) = d .

We can rewrite Equation (6.11) according to singular value decomposition

(SVD) as follows:

FA (H) = H− α
(
HHT

)L
H = Pdiag (σk) QT − αPdiag

(
σ2L+1
k

)
QT

= Pdiag
(
σk
(
1− ασ2L

k

))
QT ,

(6.12)

where P and Q are stacked singular vectors, diag(·) is the diagonalization op-

eration. It is obvious that 1 − ασ2L
i > 1 − ασ2L

j for σi < σj. Thus 1 − ασ2L
k

can be considered as rescaled factors: the larger singular values corresponding
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to the lower frequency components are multiplied by smaller weights, leading to

a more uniform distribution when L > 0. L and α control the weight multi-

plied on the singular value of H, thus directly affect the efficiency of spectrum

balancing. A larger (smaller) L makes the rescaled factors smaller (larger) on

the large singular values, and α controls the norms of the rescaled factors that

has a similar effect to L. Since σLk increases fast, a large L could reduce the

algorithm’s efficiency where the large singular values in the original distribution

are multiplied by too small weights, causing a sharp singular value distribution

similar to the original one. In addition, too large L or α could also break the

non-negativity of the singular value, thus we need to assure that 1 − ασ2L
1 > 0.

According to the definition of Entropy and erank, a more uniform distribution

results in a larger erank, indicating that erank(FA(H)) ≥ erank(H) where =

holds when erank(H) = d. By sufficiently repeating Equation (6.12), eventually

erank(H) = d. We summarize the above analysis and propose Algorithm 1 to

tackle the embedding collapse. We run Algorithm 1 on a randomly generated

matrix with the code torch.randn(10, 10)∗, and report the results with different

setting of α, L, and T in Table 6.1, where 1− ασ2L
1 < 0 when L > 3. We can see

that the erank tends to converge to d = 10 as we increase the iteration T , scaling

hyperparameter α, and the order L, demonstrating the effectiveness of Algorithm

1 balancing the embedding spectrum.

Algorithm 1 is impractical since the complexity is O(TLD2d) where D =

|U| + |I|. We propose a simplified implementation of DirectSpec formulated

in Algorithm 2. Since the singular value increases fast with L which could break

the non-negativity of the singular value, and in practice we do not need the erank

to strictly be d (we will explain in Section 6.4.3), we can set T = 1 and L = 1. In

addition, instead of updating the whole embedding matrix, we iteratively rebal-

ance the spectrum of a smaller matrix with a size in accordance with the batch

size.

6.4.2 A Decorrelation Perspective

In this subsection, we show how users and items are represented in the embedding

space through our proposed DirectSpec from a spatial perspective.

∗https://pytorch.org/
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Algorithm 1: Balancing Embedding Spectrum via Message Passing

Input: Embedding matrix H; matrix power L; the number of iteration T ;

scaling hyperparameter α ∈ R+

for t = 1 to T do

H← H− αÂLH;

end

Return H

Algorithm 2: DirectSpec

Input: Embedding matrix H; batch size B; scaling hyperparameter

α ∈ R+

sample the users and items: UB, IB ;

generate the normalized embeddings: HU
B, HI

B;

HU
B ← HU

B − αHU
BHU

B
T
HU
B;

HI
B ← HI

B − αHI
BHI

B
T
HI
B;

Return HU
B, HI

B

Proposition 6. Algorithm 2 is equivalent to optimizing the following loss:

Lds =
∑
u∈U

∑
v∈U

∥∥hTuhv
∥∥2 +

∑
i∈I

∑
j∈I

∥∥hTi hj
∥∥2 . (6.13)

Table 6.1. An toy example demonstrating the effectiveness of Algorithm 1. The

matrix is randomly generated with a size 10. Without specification, T = 50,

α = 1e− 3, and L = 1.

T 0 1 10 100 500 1000

erank 7.64 7.72 8.11 8.59 9.57 9.75

α 0 1e-3 2e-3 5e-3 1e-2 2e-2

erank 7.64 8.43 8.71 9.09 9.35 9.59

L 0 1 2 3 - -

erank 7.64 7.80 8.45 8.83 - -
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Figure 6.4. An illustration of the proposed DirectSpec.

By calculating the gradient over user and item embeddings:

∂Lds
hu

= 4
∑
v

(
hTuhv

)
hv,

∂Lds
hi

= 4
∑
j

(
hTi hj

)
hj, (6.14)

the parameter updating through SGD can be formulated as follows:

HU ← HU − α
(
HUHT

U

)
HU ,

HI ← HI − α
(
HIH

T
I

)
HI ,

(6.15)

where HU and HI are user and item embedding matrices, respectively. Therefore,

Equation (6.13) is equivalent to DirectSpec. Intuitively, two users/items are

(positively or negatively) correlated if |hTuhv| > 0 or |hTi hj| > 0, then we can see

that the goal of Equation (6.13) is to decorrelate/orthogonalize different users

and items (e.g., hTuhv → 0 and hTi hj → 0) instead of simply pushing them away.
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Proposition 7. The global minimum of Equation (6.13) can be reached when

d > max(|U|, |I|).

Suppose that n user or item embeddings are perfectly decorrelated (i.e., any

two embeddings are orthogonal), then they are linearly independent as well:

α1h1 + · · ·+ αnhn = 0, (6.16)

since we get αk = 0 by multiplying Equation (6.16) by hTk , k = {1, · · · , n}. There-

fore, any two users/items being orthogonal implies that all embedding vectors are

linearly independent, requiring d to be greater than max(|U|, |I|).
From a different perspective, the matrices HUHT

U and HIH
T
I represent the

similarity scores between users and items, respectively, and we have the following

relations according to SVD:

HUHT
U = Pdiag(σ2

k)P
T , HIH

T
I = Qdiag(σ2

k)Q
T . (6.17)

For simplicity, we use the same notations denoting singular values and vectors of

HU and HI , since we do not emphasize their difference here. In the meanwhile,

P and Q are also the eigenvectors of HU and HI , respectively. Let λk denote the

eigenvalue of HUHT
U and HIH

T
I , we have λk = σ2

k. When (HUHT
U)uv → 0 and

(HIH
T
I )ij → 0, (HUHT

U) and (HIH
T
I ) are optimized to be identity matrices with

uniform spectrum distributions: λ1 = λ2 = · · · = 1, thus HU ’s and HI ’s spectra

are also uniform, leading to a maximum erank. The above observations reveal

that unobserved pairs should stay irrelevant instead of simply being pushed away

like BCE and BPR loss, which is more consistent with users’ true preference over

unobserved interactions. We will empirically compare DirectSpec and negative

sampling in Section 6.5.2.

6.4.3 DirectSpec+

As the observed pairs should be deeply correlated, perfect user/item decorrelation

is not the goal of personalized recommendation, explaining why we do not need

(1) the erank of the embedding to strictly be d and (2) d to be large enough to

reach the perfect decorrelation. The training objective should balance between

user/item correlation and decorrelation:

L =
∑

(u,i)∈R+

lnσ
(
hTuhi

)
+ Lds. (6.18)
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The first term pulls users/items to be close to each other, while the second term

offsets the negative effect from the first term by orthogonalizing them. From

Equation (6.14), we can see that all samples are optimized with the same pace.

To enhance the efficiency, we can penalize more on the highly correlated user/item

pairs (i.e., hTuhv → 1 and hTi hj → 1) by improving Equation (6.13) as:

Lds =
∑
u∈U

∑
v∈U

exp
(
hTuhv/τ

)
+
∑
i∈I

∑
j∈I

exp
(
hTi hj/τ

)
. (6.19)

Compared with Equation (6.14), hTuhv → 1 and hTi hj → 1 are pushed away at a

faster pace (i.e., larger gradients); τ is a temperature controlling the strength of

penalties on highly correlated samples. Note that Equation (6.19) is equivalent

to a pairwise Gaussian potential: exp
(

hTuhv
τ

)
= exp

(
−‖hu−hv‖2

2τ
+ 1

τ

)
, and the

minimum is reached when users/items are orthogonal to each other in the em-

bedding space when d is large enough according to Proposition 3 in [147]. Thus,

the training objective of the enhanced algorithm is consistent with the original

DirectSpec. Furthermore, we notice that some unobserved pairs are correlated as

well to some extent, such as the users showing similar preference or items inter-

acted by similar users that should be decorrelated with a slower pace than other

irrelevant pairs. Here, we propose two adaptive temperature designs to adapt to

the pairs with different degrees of correlations:

i. We dynamically learn the temperature through an attention mechanism such as

Γuv = σ(WT [hu||hv]) for u and v, where || stands for the concatenate operation

and W ∈ R2d is the transform matrix.

ii. We define the graph distance between two nodes as the minimum length of path

between them on G, then an unparameterrized design is defined as follows:

Γuv =


τ0 dG (u, v) ≤ K

τ1 otherwise,

(6.20)

where dG (u, v) is the graph distance between u and v. Here, the pairs with

dG (u, v) ≤ K are considered correlated, and τ0 ≤ τ1.

By calculating the gradients of Equation (6.19), we can incorporate its parameter-

updating formula into Algorithm 2, and propose DirectSpec+:

HU
B ← HU

B − α · softmax
(
HU
BHU

B

T � Γ
)

HU
B,

HI
B ← HI

B − α · softmax
(
HI
BHI

B

T � Γ
)

HI
B.

(6.21)
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Figure 6.5. (a): DirectSpec+ can prevent embedding collapse on CiteULike; (b):

users/items are decorrelated as the training of DirectSpec+ proceeds.

To regulate the magnitude of the gradient, we rewrite it as a Softmax function.

Other steps of DirectSpec+ are consistent with Algorithm 2. In Figure 6.5 (a), we

compare the erank of LightGCN and DirectSpec, and show that DirectSpec can

prevent the embeddings from collapsing in the first place as erank ≈ d throughout

the training; In Figure 6.5 (b), ‘user/item corr’ is short for user/item correlation

measured by Equation (6.13), reflecting the correlation between users/items. We

can see that users/items tend to be more orthogonal as training proceeds while

the accuracy increases, demonstrating that decorrelating users/items is a key

to prevent embedding collapse instead of simply pushing them as far away as

possible.

6.4.4 Discussion

Connection Between DirectSpec+ and Uniformity Loss

Contrastive learning has shown great potential in recommender systems [38, 148],

which adopts an InfoNCE loss:

Lcl = −
∑
u

ln
exp

(
hTuhu+/τ

)∑
v exp (hTuhv/τ)

−
∑
i

ln
exp

(
hTi hi+/τ

)∑
j exp (hTi hj/τ)

, (6.22)
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Table 6.2. Comparison of time complexity.

Complexity/Model DirectSpec CL GCL

Self-supervised c|R+|Bd
c|R+| (|U|+ |I|) d

or

c|R+|Bd

c|R+|
(
L|R+|
B

+|U|2 + |I|2) d

Supervised c|R+|d
2c|R+|d

or

c|R+|Bd
2c|R+|d

that can be decoupled to alignment and uniformity loss. Alignment minimizes

the distance between positive pairs (i.e., (u, u+) and (i, i+)). In the meanwhile,

embeddings from different users/items are pushed away via uniformity loss, which

has been shown necessary for desirable user/item representations [115, 149]. To

unveil the effectiveness of uniformity, we fix alignment: hTuhu+ = 1 and hTi hi+ =

1, and let Lcl(u) = − ln exp(1/τ)∑
v exp(h

T
uhv/τ)

. Then, the gradients over the parameters

are calculated as follows:

∂Lcl
∂hu

=
∂Lcl(u)

∂hu
+
∑
v 6=u

∂Lcl(v)

∂hu

=
∑
v

exp
(
hTuhv/τ

)∑
k exp (hTuhk/τ)

hv/τ +
∑
v

exp
(
hTuhv/τ

)∑
k exp (hTv hk/τ)

hv/τ,

(6.23)

thus the parameters are updated via SGD as:

HU ← HU − α ·
(
softmax

(
HUHU

T/τ
)

+ SD−1
)

HU , (6.24)

where S = exp
(
HUHU

T/τ
)
, and D is a diagonal matrix with Duu =

∑
v Suv,

softmax
(
HUHU

T/τ
)

= D−1S. Item embeddings are updated in a way similar

to Equation (6.24). We can see that Equation (6.24) is the same as DirectSpec+

if we ignore the term SD−1, revealing that uniformity can alleviate collapse by

indirectly rebalancing the embedding spectrum.

Complexity

We compare the complexity of DirectSpec with graph contrastive learning (GCL)

and CL in Table 6.2, where B and c denote the batch size and the required epochs,

respectively. All the three methods adopt a multi-task training strategy, where
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Table 6.3. Statistics of datasets.

Datasets #User #Item #Interactions Density%

CiteULike 5,551 16,981 210,537 0.223

Yelp 25,677 25,815 731,672 0.109

Gowalla 29,858 40,981 1,027,370 0.084

the complexity comes from the supervised and self-supervised learning task (if

we consider the process of spectrum balancing in DirectSpec as a self-supervised

learning task). For self-supervised learning task, GCL has the expensive com-

putational cost as it generates two node views on perturbed graphs, whose time

complexity is twice that of the backbone GCN (here, we use LightGCN). CL has

lower time complexity than GCL as it does not exploit graph structures, and

the complexity can be reduced to that of DirectSpec: c|R+|Bd if it adopts a

mini-batch training [148]. For supervised learning task, we ignore the computa-

tional cost of the encoder (i.e., the complexity for generating the embeddings)

as DirectSpec and CL can also be implemented on other algorithms (e.g., MLP,

GNN, transformer, etc.). Compared with most of the works adopting BPR or

CL loss which still rely on negative samples, DirectSpec only samples the positive

pairs and is equipped with a simple loss. Overall, DirectSpec shows lower time

complexity over GCL and CL methods.

6.5 Experiments

In this section, we comprehensively evaluate our proposed methods on three pub-

lic datasets. We implement DirectSpec on two popular baselines: MF and Light-

GCN. Particularly, we introduce data description and implementation details in

Section 6.5.1; we compare DirectSpec with other competitive baselines in terms

of accuracy and efficiency in Section 6.5.2. Finally, we conduct model analysis in

Section 6.5.3, including detailed analysis and experimental results on how Direct-

Spec prevents embeddings from collapsing without relying on negative samples,

and how different settings of hyperparameters affect model performance.
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6.5.1 Experimental Settings

Datasets

We use the following three publicly available real-world datasets in this work,

where the statistics of them are summarized in Table 6.3.

• CiteULike†: This is an scholarly article recommendation dataset. Users are

allowed to create their own collections of articles including abstracts, titles, and

tags, etc.

• Yelp [140]: This is a business dataset from Yelp Challenge data. The items

are point of interests (POIs), users can leave reviews and ratings.

• Gowalla [30]: This is a check-in datasets recording which locations users have

visited.

Since we focus on CF for implicit feedbacks, we remove auxiliary information

such as reviews, tags, geological and item information, etc, and transform explicit

ratings to 0-1 implicit feedbacks.

Evaluation Metrics

We adopt two widely used evaluation metrics for personalized rankings: Recall

and normalized discounted cumulative gain (nDCG) [128] to evaluate model per-

formance. The recommendation list is generated by ranking unobserved items

and truncating at position k. Recall measures the ratio of the relevant items in

the recommendation list to all relevant items in test sets, while nDCG takes the

rank into consideration by assigning higher scores to the relevant items ranked

higher. We use 80% of the interactions for training and randomly select 10% from

the training set as validation set for hyper-parameter tuning, the rest 20% data

is used for test sets; we report the average accuracy on test sets.

Baselines

We compare DirectSpec with the following competitive baselines:

• BPR [45]: This is a stable and classic MF-based method, exploiting a Bayesian

personalized ranking loss for personalized rankings.

†https://github.com/js05212/citeulike-a
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• CL-Rec [148]: This is a CL-based method. Since there are no item features on

the datasets used in this work, we remove data augmentation and use BPR as

the main loss to better compare with our methods.

• DMF [150]: This is a neural network based method with interaction vectors as

the input and BCE loss for optimization. Since multiple layers does not result

in improvement on our datasets, we adopt a single-layer architecture.

• CCL [46]: The proposed cosine contrastive loss (CCL) maximizes the similarity

between positive pairs and minimizes the similarity of negative pairs below the

margin m. After parameter tuning, we set N = 1000, w = 300 on all datasets,

m = 0.1, 0.3, and 0.3 on CiteULike, Yelp, and Gowalla, respectively, and we

choose MF as the encoder.

• DirectAU [115]: This method directly optimizes alignment and uniformity and

shows superior performance. Following the original paper, we choose MF and

LightGCN as the encoder, and set γ = 5.0, 0.5, and 1.5 on CiteULike, Yelp,

and Gowalla, respectively.

• LightGCN [41]: This is a linear GNN method that only keeps neighborhood

aggregation for recommendation. We employ a three-layer architecture as our

baseline.

• SGL-ED [38]: This model explores self-supervised learning by maximizing the

agreements of multiple views from the same node, where the node views are

generated by adding noise such as randomly removing the edges or nodes on

the original graph. We set τ = 0.2, λ1 = 0.1, p = 0.1, and use a three-layer

architecture.

• GDE [96]: This method only keeps a very few graph features for recommenda-

tion without stacking layers, showing less complexity and higher efficiency than

conventional GCN-based methods.

Implementation Details

We implemented our DirectSpec based on PyTorch and the code is released pub-

licly‡. SGD is adopted as the optimizer for all models, the embedding size d is

‡https://github.com/tanatosuu/directspec
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set to 64, the regularization rate is set to 0.01 on all datasets, the learning rate is

tuned amongst {0.001, 0.005, 0.01, · · · }; without specification, the model param-

eters are initialized with Xavier Initialization [131]; the batch size is set to 256.

We report other hyperparameter settings in the next subsection.

6.5.2 Comparison

Performance

We report overall performance in Table 6.4, and observe the followings:

• Overall, GCN-based methods show better performance on sparse data (Yelp

and Gowalla) than dense data (CiteULike). For instance, DirectSpec+(GCN)

achieves better and worse than DirectSpec+(MF) on Gowalla and CiteULike,

respectively, and their performance is close on Yelp. LightGCN underperforms

BPR on CiteULike and Gowalla, which might be attributed to the slow con-

vergence that has been reported in the original paper. Among baselines, Di-

rectAU achieves the best on CiteULike and Yelp, while SGL-ED outperforms

other baselines on Gowalla. Our proposed DirectSpec+ implemented on both

LightGCN and MF consistently show improvements over all baselines.

• CL-Rec is even inferior to BPR, indicating that it is hard for traditional CF

task without any side information to benefit from CL. In the meanwhile, the

GCL-based method (SGL-ED) works much better as we can exploit the graph

structure containing rich topological information as the input, as opposed to

traditional CF task that only uses user/item ID as input.

• DirectAu directly regulating the uniformity shows relatively superior perfor-

mance. Inspired by [147], it adopts a Radial Basis Function (RBF) kernel

which shares a similar form to the uniformity loss. Since we have shown that

the uniformity loss can tackle embedding collapse by indirectly balancing the

spectrum distribution in Section 6.4.4, the effectiveness of DirectAU demon-

strates our previous analysis.

• Since our methods are implemented on MF and LightGCN, the effectiveness

of our methods can be further demonstrated by directly comparing with them.

DirectSpec(MF) and DirectSpec+(MF) outperform BPR by 14.3% and 35.8%,
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Table 6.4. Performance comparison. The best baseline is underlined. “∗” indi-

cates statistical significance at p < 0.01 for a one-tailed t-test.

Datasets Methods nDCG@10 nDCG@20 Recall@10 Recall@20

CiteULike

BPR 0.1620 0.1773 0.1778 0.2190

DMF 0.1442 0.1640 0.1646 0.2183

CL-REC 0.1523 0.1662 0.1671 0.2069

CCL(MF) 0.1545 0.1642 0.1716 0.1996

DirectAU(MF) 0.2102 0.2252 0.2260 0.2693

DirectAU(GCN) 0.1926 0.2109 0.2116 0.2604

LightGCN 0.1610 0.1781 0.1771 0.2190

SGL-ED 0.1890 0.2065 0.2117 0.2588

GDE 0.1890 0.2061 0.2055 0.2528

DirectSpec(MF) 0.1688 0.1849 0.1827 0.2270

DirectSpec(GCN) 0.1693 0.1863 0.1875 0.2334

DirectSpec+(MF) 0.2197∗ 0.2354∗ 0.2352∗ 0.2818∗

DirectSpec+(GCN) 0.2038 0.2213 0.2213 0.2704

p-value 2.51e-4 2.25e-5 1.17e-4 1.54e-5

Yelp

BPR 0.0487 0.0583 0.0607 0.0869

DMF 0.0543 0.0649 0.0694 0.0986

CL-REC 0.0476 0.0566 0.0588 0.0833

CCF(MF) 0.0509 0.0593 0.0617 0.0846

DirectAU(MF) 0.0721 0.0848 0.0872 0.1219

DirectAU(GCN) 0.0695 0.0819 0.0854 0.1194

LightGCN 0.0572 0.0690 0.0721 0.1045

SGL-ED 0.0676 0.0794 0.0837 0.1166

GDE 0.0653 0.0771 0.0805 0.1129

DirectSpec(MF) 0.0689 0.0804 0.0839 0.1156

DirectSpec(GCN) 0.0712 0.0832 0.0861 0.1192

DirectSpec+(MF) 0.0743 0.0864 0.0909∗ 0.1249

DirectSpec+(GCN) 0.0745∗ 0.0868∗ 0.0909∗ 0.1252∗

p-value 3.37e-4 2.56e-3 3.17e-5 4.29e-4

Gowalla

BPR 0.1164 0.1255 0.1186 0.1483

DMF 0.1121 0.1227 0.1186 0.1504

CL-REC 0.1116 0.1198 0.1123 0.1401

CCL(MF) 0.1269 0.1349 0.1295 0.1573

DirectAU(MF) 0.1286 0.1402 0.1349 0.1710

DirectAU(GCN) 0.1298 0.1409 0.1363 0.1711

LightGCN 0.0987 0.1098 0.1074 0.1399

SGL-ED 0.1343 0.1462 0.1417 0.1779

GDE 0.1261 0.1367 0.1313 0.1656

DirectSpec(MF) 0.1133 0.1225 0.1183 0.1480

DirectSpec(GCN) 0.1160 0.1251 0.1191 0.1490

DirectSpec+(MF) 0.1389 0.1509 0.1447 0.1829∗

DirectSpec+(GCN) 0.1400∗ 0.1513∗ 0.1453∗ 0.1819

p-value 1.89e-8 1.70e-7 1.35e-7 1.54e-5
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Table 6.5. Training time (seconds) per epoch.

Model/Data Citeulike Yelp Gowalla

BPR 2.37 8.53 13.28

DirectSpec+(MF) 3.78 (1.59x) 13.15 (1.54x) 19.10 (1.44x)

LigtGCN 8.78 43.18 79.79

DirectSpec+(GCN) 9.49 (1.08x) 45.70 (1.06x) 81.20 (1.02x)

SGL-ED 22.20 (2.53x) 182.54 (4.23x) 401.96 (5.04x)

on average in terms of nDCG@10, respectively. In the meanwhile, the improve-

ment of DirectSpec(GCN) and DirectSpec+(GCN) over LightGCN is 15.7% and

32.9% on average in terms of nDCG@10, respectively.

• Overall, the improvement of DirectSpec over MF and LightGCN is Yelp>

Gowalla>CiteULike (33.0%, 7.4%, and 4.7% on average in terms of nDCG@10,

respectively). Figure 6.6 compares the extent of collapse on three datasets us-

ing MF and LightGCN (with only positive samples). We can observe that Yelp

suffers more from the collapse while CiteULike suffers less, which is consistent

with the improvement of DirectSpec. This observation reveals that the dataset

suffering more from collapse tends to benefit more from DirectSpec.

• DirectSpec+ shows significant improvement over DirectSpec across all datasets.

As introduced in Section 6.4.2, DirectSpec+ is more effective tackling embed-

ding collapse than DirectSpec by effectively penalizing the hard negative sam-

ples with user/item pairs highly correlated. The superior performance demon-

strates its effectiveness.

Efficiency

We report the training time per epoch of BPR, LightGCN, and DirectSpec+ (MF

and GCN) in Table 6.5. The experiments are all conducted on Intel(R) Core(TM)

i9-10980XE CPU and NVIDIA RTX A6000 GPU. We first compare BPR and

DirectSpec+(MF), and observe that it takes roughly 0.5x additional running time,

which is acceptable considering the significant improvement. DirectSpec+(GCN)

almost shows no additional running time over LightGCN, due to the reason that

the complexity of DirectSpec+ is mainly determined by the batch size rather than
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Figure 6.6. The extent of collapse on three datasets.

the size of users and items. Since LightGCN has a higher complexity than BPR,

the proportion of DirectSpec+(LightGCN)’s running time to that of LightGCN

is much smaller than the proportion of DirectSpec+(MF)’s running time to that

of BPR. This finding can explain another observation that the additional time

is smaller on larger datasets (i.e., Gowalla<Yelp<CiteULike). The complexity

of DirectSpec+ is unchanged while LightGCN and BPR accordingly take more

running time on larger datasets, thus the proportion of DirectSpec+’s running

time to that of LightGCN/BPR becomes smaller. Meanwhile, SGL-ED is more

computationally expensive on larger datasets, and DirectSpec+(LightGCN) is

more efficient than it with more significant improvement over LightGCN.

Comparison with Negative Sampling

The results in Table 6.4 demonstrates the superiority of DirectSpec over nega-

tive sampling based methods including BPR and CCL in terms of performance.

Furthermore, we compare how these two methods alleviate collapse issue by op-

timizing them solely based on unobserved interactions. In Figure 6.7 (a) and (b),

we observe that the erank of MF (BCE) consistently drops without optimiza-

tion on the observed interactions, resulting in a complete collapse, and the erank

drops more quickly as increasing the negative sampling ratios, whereas the er-

ank of DirectSpec remains unchanged throughout the training. This observation

indicates that there exists a dynamic balance between optimization on observed

and unobserved interactions, the lack of either of them cannot prevent the em-
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Figure 6.7. All models are optimized without using observed interactions. In (a)

and (b), we show how erank changes on DirectSpec (MF) and MF (BCE) where

N is the negative sampling ratio. In (c) and (d), we use BCE (MF) for the first

50 epochs and DirectSpec for the last 50 epochs.

beddings from collapsing. Furthermore, since negative sampling is equivalent to

a high pass filter, it can only alleviate the collapse caused by low pass filters (e.g.,

optimization on observed interactions), while DirectSpec is equivalent to an all

pass filter that can tackle the collapse under any situations. Figure 6.7 (c) and (d)

demonstrate that DirectSpec can recover the embeddings from collapsing caused

by negative sampling.

112



6. Balancing Embedding Spectrum for Recommendation

0.033

0.035

0.037

0.039

0.041

0.043

0.045

0.047

0.049

34

39

44

49

54

59

64

n
D
C
G
@
1
0

e
ra
n
k

epoch

erank

accuracy

(a) BPR

0.065

0.066

0.067

0.068

0.069

0.07

0.071

0.072

39

44

49

54

59

64

n
D
C
G
@
1
0

e
ra
n
k

epoch

erank

accuracy

(b) DirectSpec+(MF)

0

0.2

0.4

0.6

0.8

1

N
o
rm

al
zi
e
d

d=64

Directspec

BPR

(c) Singular value distribution of the embed-

ding matrix

62

62.5

63

63.5

64

e
ra
n
k

epoch

DirectSpec+

DirectSpec

(d) erank comparison

Figure 6.8. How DirectSpec prevents collapse (on Yelp).

Table 6.6. Comparison between static and dynamic temperature design.

Citeulike Yelp Gowalla

nDCG@10 Recall@10 nDCG@10 Recall@10 nDCG@10 Recall@10

Static (i) 0.2197 0.2352 0.0743 0.0909 0.1389 0.1447

Dynamic (ii) 0.1593 0.1693 0.0485 0.0611 0.1126 0.1144
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Figure 6.9. (a) and (b) show how the accuracy changes with τ1, (c) displays the

sensitivity of k, and (d) illustrates how the accuracy changes with τ0.

6.5.3 Model Analysis

Can DirectSpec Prevent Collapse?

In Figure 6.8 (a) and (b), we report how the accuracy and erank change as train-

ing proceeds on BPR and DirectSpec+(MF). For BPR, the erank increases slowly

and tends to converge to a value smaller than d, resulting in an incomplete embed-

ding collapse. While the erank of DirectSpec+(MF) is close to d at the beginning

of training and remains almost unchanged throughout the training. Figure 6.8
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Figure 6.10. Impact of α on accuracy (nDCG@10) and erank.

(c) illustrates the normalized singular value distribution of the embedding matrix

when the accuracy of BPR and DirectSpec+(MF) is maximized. We can see that

most singular values of BPR’s embeddings are less than 0.2, barely contributing

to the representations; while DirectSpec+(MF)’s singular values are mostly larger

than 0.5, indicating that the representations are contributed by more dimensions.

One may raise a concern, that DirectSpec still suffers from embedding collapse

as the erank is still slightly smaller than d (d = 64 > erank(H) > 62 in our ex-

periments) when the accuracy is maximized. As shown in Section 4.2, the goal of

DirectSpec is equivalent to decorrelating users and items, while it is obvious that

not all users/items are irrelevant, considering the relations of observed interac-

tions (e.g, users share similar/opposite interests are positively/negatively related;

items that are interacted by similar users or users that have opposite interests

are also positively or negatively correlated, respectively). Thus, a higher erank

does not necessarily lead to a better accuracy. From a spectral perspective, all di-

mensions are not completely equally important to users/item. Some dimensions

might contain more important information while others contain less. In other

words, the goal of DirectSpec is to assure that all dimensions literally contribute

to the representations, as opposed to the representations of BPR or LightGCN

that are only predominantly distributed along a few dimensions. In Figure 6.8

(d), DirectSpec seems to show a better ability of balancing spectrum as it has a

higher erank, while it shows inferior performance to DirectSpec+. As shown in
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6. Balancing Embedding Spectrum for Recommendation

Equation (6.14), all samples are decorrelated with the same pace on DirectSpec,

thus the similar or dissimilar (i.e., sharing opposite interests) users/items that

should be correlated to some extent are also perfectly orthogonalized, leading to

underfitting.

Adaptive Temperature Design

We first compare the dynamic and static designs proposed in Section 4.3, and

report the results in Table 6.6. We observe that the static design outperforms

the dynamic design by a large margin on all datasets, and the reason might be

attributed to the data scarcity on CF task, making the algorithm difficult to

learn the inherent user/item relations from the interactions data in a dynamic

way. Therefore, DirectSpec is implemented with a static temperature design,

which avoids bringing additional complexity. We first tune τ1 by fixing τ0 = τ1

and report how the accuracy changes with τ1 in Figure 6.9 (a) and (b). The

accuracy first increases and then drops as increasing τ1, which is maximized at

τ1 = 3 on CiteULike and τ1 = 4 on Yelp. τ1 controls the strength of penalties

on highly correlated unobserved samples (i.e., hard negatives), the samples that

are not highly correlated tend to be ignored when τ1 is set too large, while a too

small τ1 fails to optimize the highly correlated samples in an effective way. On

the other hand, among all unobserved interactions, some are correlated to some

extent that should be decorrelated with a slower pace which we use an another

hyperparameter τ0 to control. In Figure 6.9 (c), we observe that optimizing the

user/item pairs whose graph distance are K = 2 with a slower pace τ0 results in a

better accuracy, and the accuracy drops after introducing the pairs farther away

(i.e., K > 2) as they are too far away on the graph that should be considered

irrelevant. In Figure 6.9 (d), DirectSpec achieves the best performance at τ0 = 3.5

which is slightly smaller than τ1 = 4 on Yelp (see Figure 6.9 (b)), and further

decreasing τ0 = 3.5 leads to a worse performance. This finding indicates that the

correlation between the pairs that are close on the graph are still significantly

smaller than the observed interactions.

Impact of α

According to Equation (6.12), α controls the extent of spectrum balancing. A

larger (smaller) α implies that large singular values are multiplied by smaller
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Figure 6.11. Correlations of users (left) and items (right) during the training.

(larger) weights, leading to a more (less) uniform spectrum distribution. Prepo-

sition 1 does not hold when α is too large: 1 − ασ2
1 < 0 (with L = 1). Since it

takes additional time to calculate σ1 during each training, we use the grid search

for optimal α. As shown in Figure 6.10 (a) and (b), both of the accuracy and

erank first increase and then drop, showing a similar trend. Specifically, the speed

of collapse tends to outrun the speed of spectrum balancing when α is small, and

the drop in erank as increasing α demonstrates our analysis in Section 4.1 that a

large α instead results in a sharp distribution. In addition, the best performance

is achieved at α = 1.1 on CiteULike and α = 0.6 on Yelp, and the erank and

accuracy are more sensitive when α is small on Yelp, which might be related to

the fact that Yelp suffers more from the collapse issue than other datasets.

User/Item Correlation

As analyzed in Section 6.4.2, the user/item correlation can reflect the extent

of embedding collapse, and the correlation here is measured by Equation (6.13)

similar to Figure 6.5 (b). As shown in Figure 6.11, the correlation is low before

training, while users/items become highly correlated immediately after training

starts on LightGCN(pos) which only optimizes positive (i.e., observed) pairs,

causing user and items to have similar representations and resulting in a complete

collapse. For LightGCN using BPR loss, the correlation increases fast first and

then gradually drops, whereas the correlation keeps low throughout the training
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on DirectSpec+, demonstrating its effectiveness to tackle embedding collapse.

Since GNN-based methods also suffer from the over-smoothing issue, the above

observation also indicates that our proposed method can alleviate this issue very

well. We also notice that the correlation did not converges to 0, due to the reason

that HUHT
U and HIH

T
I are full rank matrices when they are optimized to identity

matrices (i.e., completely decorrelated) according to Equation (6.13), while the

embedding matrix is merely a low-rank approximation: d � min(|U|, |I|), thus

the correlation would not converge to 0 unless d ≥ max(|U|, |I|).

6.6 Summary

In this chapter, we showed that existing CF methods mostly suffer from an embed-

ding collapse issue. Particularly, optimization solely on the observed interactions

is equivalent to a low pass filtering, causing the representations of users and items

to collapse to a constant vector. Optimizing unobserved interactions (i.e., nega-

tive sampling) can alleviate this issue by acting as a high pass filter to balance

the embedding spectrum, while an incomplete collapse still exists where the em-

beddings are distributed along certain dimensions instead of making full use of all

dimensions. We demonstrated that increasing the negative sampling ratio which

is considered as an efficient way to improve the representation quality cannot fur-

ther alleviate the collapse issue. To tackle this issue, we proposed a DirectSpec

which acts as an all pass filter to directly balances the spectrum distribution to

assure that all dimensions can contribute to the user/item embeddings as equally

as possible. We conducted comprehensive analysis on DirectSpec from a decor-

relation perspective and further proposed an enhanced variant DirectSpec+ to

efficiently penalize irrelevant samples with self-paced gradients. In addition, we

shed light on the close connection between DirectSpec and contrastive learning,

that uniformity, a key design contributing to recommendation, can alleviate col-

lapse issue by indirectly balancing spectrum distribution, that can be considered

as a special case of DirectSpec+. Finally, extensive experiments on three publicly

available datasets demonstrated the effectiveness and efficiency of our proposed

methods. In future, we plan to focus on different perspectives to tackle embedding

collapse to achieve much better efficiency and effectiveness.
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CHAPTER 7

Conclusion

7.1 Conclusion

In this thesis, we investigated recommendation methods from a spectral per-

spective. Particularly, we focus on two topics: (1) demystifying the mechanisms

of how graph convolutional networks (GCNs) work for recommendation and the

designs of more efficient and effective GCN learning paradigm, and (2) investigat-

ing the factors contributing to high-quality representations that have remained

relatively unexplored. The contribution can be summarized as follows:

• In Chapter 3, we showed how distinct spectral graph features contribute to

the accuracy and found that only a very small fraction of spectral features

that emphasize the neighborhood smoothness and difference are contributive

to recommendation. We then unveiled the effectiveness of GCNs by showing

that stacking layers in GCNs emphasizes the smoothness. Based on the two

important findings above, we pointed out the limitations of existing GCN-based

methods and proposed a Graph Denoising Encoder (GDE) equipped with a

simple yet effective architecture. Finally, to tackle a slow convergence issue on

GCN-based methods, we proposed an adaptive loss to dynamically adjust the

gradients over negative samples, accelerating the model training and resulting

in further improvement.
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• In Chapter 4, we proposed a simplified and scalable GCN learning paradigm for

CF. By simplifying LightGCN [41], we showed that stacking graph convolution

layers is to learn a low-rank representation by emphasizing (suppressing) more

components with larger (smaller) singular values. Based on the close connection

between GCN-based and low-rank methods, we proposed a simplified GCN for-

mulation by replacing neighborhood aggregation with a truncated SVD, which

only exploits the K-largest singular values and vectors for recommendation. To

alleviate over-smoothing issue, we proposed a renormalization trick to adjust

the singular value gap, resulting in significant improvement.

• In Chapter 5, we unveiled the distribution redundancy of GCN-based meth-

ods by showing that the number of required spectral feature is closely related

to the spectral distribution, where a dataset with a flatter distribution tends

to requires more spectral features when reaching the best performance, result-

ing in more computational cost. We define a renormalized adjacency matrix

with a hyper-parameter adjusting the sharpness of the spectral distribution to

reduce the number of required spectral features, making the important informa-

tion on the graph be concentrated in fewer features. By analyzing how graph

contrastive learning (GCL) works for recommendation, we further proposed a

scalable contrastive learning framework.

• In Chapter 6, we showed that existing CF methods mostly suffer from an em-

bedding collapse issue. Particularly, optimization solely on the observed inter-

actions causes the representations of users and items to collapse to a constant

vector. Optimizing unobserved interactions (i.e., negative sampling) can allevi-

ate this issue by acting as a high pass filter to balance the embedding spectrum,

while an incomplete collapse still exists where the embeddings are distributed

along certain dimensions instead of making full use of all dimensions. To tackle

this issue, we proposed a DirectSpec which acts as an all pass filter to directly

balances the spectrum distribution to assure that all dimensions can contribute

to the user/item embeddings as equally as possible. We conducted comprehen-

sive analysis on DirectSpec from a decorrelation perspective and further pro-

posed an enhanced variant DirectSpec+ to efficiently penalize irrelevant samples

with self-paced gradients.
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7. Conclusion

7.2 Future Work

Firstly, the approaches proposed in this thesis are mainly based on collaborative

filtering (CF). We aim to extend our proposed methods to other recommendation

tasks, which is not easy as the research findings made on CF does not necessarily

hold on other tasks. Therefore, we will need to modify and improve our algorithms

to adapt to other recommendation tasks. Secondly, in the light of great potential

of graph neural networks (GNN), we will continue to improve GNN-based rec-

ommendation methods. Particularly, we focus on the scalability and efficiency of

the model architecture considering the expensive complexity of GNNs compared

with traditional recommendation methods. In addition, spectrum contains im-

portant information of graphs and embeddings which is relatively unexplored by

existing works. We will keep improving recommendation methods by empirically

and theoretically studying the spectrum information.
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