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Time-Periodic Finite-Element Method for Hysteretic
Eddy-Current Analysis

Tetsuji Matsugp Member, IEEEand Masaaki ShimasagKkilember, IEEE

Abstract—The time-periodic finite-element method is appliedto  [I. 2-D EDDY-CURRENT ANALYSIS WITH VOLTAGE SOURCE
hysteretic eddy-current analysis. A new method for determining . . . . .
the relaxation factor of Newton iteration is proposed for fast con- 1 he two-dimensional (2-D) eddy-current field given by (1) is

vergence to periodic solutions. The influence of hysteretic terms in analyzed.
the Jacobian matrix on the Newton iteration is discussed. Appli-

cation examples show that the proposed method efficiently yields 9Hy(By, By) _ 9Hx(Bx, By) =jo(I) — o % (1)
periodic solutions for both hysteretic and nonhysteretic eddy-cur- dx dy ot
rent fields.

whereH = (H,, H,) is the magnetic field that is a nonlinear
function of the magnetic flux densit§ = (Bx, By); Aisthe
magnetic vector potentiaf; is the electrical conductivity; and
Jo is the induced current density. The exciting curréng de-

Index Terms—Eddy-current analysis, hysteresis, Newton
method, relaxation factor, time-periodic FEM.

. INTRODUCTION termined by the electric-circuit equation (2).
INITE-ELEMENT analysis often requires a large amount dv
of computation time to find periodic eddy-current fields in Ecoswt— — —RI=0 @)

ere E is the amplitude of voltage source;is the angular

these elements prevent transient oscillations from decayi ) . ; .
quency; andR is the resistance. The flux interlinkage of

electric machines with nonlinear inductive elements, becausg
quickly. If the inductive elements have hysteretic characteris- ding is i b
tics, steady-state analysis becomes much more time—consurﬁ’m@ Ing 1S given by
because of the computational cost for representing the hys- U Nely Ao ded 3
teretic characteristics. T P i ©)
The present paper applies the time-periodic finite elemen . . .
method (FEM) [1]-[3] to a fast steady-state analysis of hy¥\5. %r.en? }S Fhehnurﬁ_b(la(r of turnsi‘;li the (r:]rosg—sdgct|o;al ar-ea.of
teretic eddy-current fields. Using the Newton iteration, the timga\!rllrc]jsl‘ngi,sztr:setw?ntjilr?g Tgsisg;(_ ) is the winding direction;
periodic FEM yields steady periodic fields directly without tran< w X ) . .
sient calculation. To stabilize the Newton iteration, a relaxation :]-he Glale(rjkln F4E'¥| andlthe l?jaczkwgrd Euler time-difference
factor is often introduced in the time-periodic FEM [3]. TheCNeme lea to (4) from (1) and (2) [2].
present paper proposes a new and simple method for deter- A(ty) — Alt,1) B
mining the relaxation factor for fast convergence to periodic so- K(A(tn)) +M At J(I(tn))

lutions. EAtcoswt, — U(t,) + U(t,_1) — RI(t,)At
The influence of the hysteretic element on the time—periodicF n= 1,

FEM is also discussed in this paper. When the magnetic field

H isrepresented as the hysteretic function of the magnetic field

density B, H depends on not only the present valueibbut

also on the past history @ [4], [5]. This relation requires hys- =0 4)

teretic terms to represent the effect of past history in the JacobjgRere At is the time-step and the subscriptstdhdicate the

matrix for the Newton iteration. The effect of these hySteretiﬁ'ne-points;K = {K;},M = {M;;},J = {J;} andA =

terms on the Newton iteration in the time-periodic FEM, how, A;}. These vectors and matrix are given by

ever, has notyet been discussed. The present paper describes the

hysteretic terms and shows that hysteretic terms are necessary - _ Z / / < I IN;
v T X
e Se Y

IN;
— By 5

) drdy  (5)

for the fast convergence of Newton iteration. 17,

Mijzz//s oN;N;dz dy (6)
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lll. TiME-PERIODIC FEM WITHOUT HYSTERESIS IV. TIME-PERIODIC FEM WITH HYSTERESIS
We assume a symmetric periodic solution of (4) as WhenH is a hysteretic function of, H depends on not only
the present value df but also the past history @ [4], [5] as
X(to) = —X(tn) (8)
whereX — (A, D)ty = to + T/2, andT = 2njwisthe A = Hu (B(t)| Blto). Bt). ... Bt,)).  (19)
time-period.
The time-periodic FEM yields the periodic solution from (4)n the case of symmetric periodic oscillation without accommo-
and (8) using the Newton iteration dation, only the history of the past half-period affects the present
field as
X(t,)™ T = X(t,)™ + adX (t,) 9)
whereq is a relaxation factor, anéliX (¢,,) (n = 1, ..., N) are H = Hy (B(t") —B(tni1), =Bltns2), -, =B(tw);
determined by the linear system of (10) and (11). B(t), B(ty), ..., g(tn71)>_ (19)
G16X(t) — C16X(ty) =—F; (10)

The vector functionk is accordingly written as
G 6X(t,)+ CpéX(ty—1)=-F,(n=2,...,N) (11)

where K = K, (A(t,)| — A(tnt1), —A(tny2), ..., —A(tn),
A A o Altn—1)). (2
oK N M o (t1), A(t2), ..., Atn-1)). (20)
G, = 0A(t) ~ At ol Consequently, the linear system of (10) and (11) becomes
’ ~ <8_J>T _ RAt
L oI Iz GL6X (1) + Y GrnéX(tr) — CL6X(ty) =—F1 (21)
- M 0 k#1
co=| e | (12) GubdX(t)+ 3 GuundX(te) + CobX(tamr) =—F.
-<8I> (n=2,...,N) (22)
The matrixdK /0A = {0K,;/0A;} is given by
OK; OH, ON; 9H, ON;\ ON;
94; ze: //Se { <aBX dy 0By Oz ) dy Gunk = {8Kn,/(()9A(tk) 8 (23)

_ (0Hy ON;  OHy ON;\ ON; drdy. (13) . . .
9B, Oy 0B, Oz Iz Y- vv_hergGhnk representg the hyste're'uc effect in the Jacobian ma-
trix since the summation terms in (21) and (22) are caused by
Since the linear system of (10) and (11) may become vettye hysteretic relations (19) and (20).
large, an approximation (14) is often used to solve (10) for The matrixdK,,/0A(tx) = {9K,;/0A;(tx)} is given by
6X (t1) in the time-periodic FEM

(5X(tN) —0. (14) 8Km/8AJ(tk)

_Z// {( OH. ON;  OH. aNj> ON;
ThenéX(t,) (n = 2, ..., N) are sequentially obtained from —~ JJse \\OBx(tx) 9y  OBy(tx) Ox ) Oy
(11). OH,, ON;  dH,, ON;\ dN;

While 6X(¢,,) (n =1, ..., N) satisfy (11), they do not sat- ~\aB (tk) By ~ 3B (tk) oz | oz
isfy (10) owing to the approximation (14) in solving (10). This * Y
ft the fail f Newton iteration (9) with= 1. Th o
often causes the failure of Newton iteration (9) e here [K,;} = K, given by (20), and Hy, Hyn) = f,

ki

} dz dy (24)

present paper accordingly proposes that the relaxation factol"

is determined so as to minimize ven by (19)2
Since the linear system of (21) and (22) may become very
Err; = |[F1 + a{G16X(t) — C16X(tn)}|. (15) large, an approximation (25) is used to solve (21)#1(t; )
SinceG16X (t1) = —F; from (10) and (14)Ezr; is given by 6X(t)=0(k=2,..., N). (25)

Frry = |(1 - a)F1 — aC16X (tn)]- (16) Then, (22) is sequentially solved f6X (t,) (n = 2, ..., N)

This is minimized byor = arop: that is given by with the approximation (26)

opt, = [F1 - {F1 +C16X (tx)}/I1F1 + CL6X (tx)||2. (A7) §X(tr)=0(k=n+1,..., N). (26)
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Fig. 1. Analyzed iron-cored inductor. 1 .
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Fig. 2. Hysteretic characteristics. Fig. 3. Convergence of exciting current of nonhysteretic inductor; (a) required
periods, and (b) required CPU time.
In a way similar to the nonhysteretic case, the relaxation e
factor « is determined so as to minimize 0001 | y
. Z\,Z o TP(opt) ——
N =1e-06 | TP(0.5) o 1
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This reaches the minimum when= «.y, given by etz L ]

k=2

N
Fy {Fl + CL6X(ty) ZGlllkéX(tk)}
(28)

Qopt =
N

HFl +C16X(tn) — Y GuundX(ty)
k=2

V. EXAMPLES OF EDDY-CURRENT ANALYSIS
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Fig. 4. Convergence of exciting current of hysteretic inductor; (a) required
periods, and (b) required CPU time.

performed on a PC using the Intel Pentium Il (450 MHz) pro-
cessor.

First, the time-periodic FEM is compared with a conventional
step-by-step method for eddy-current analysis without hys-

The iron-cored inductor shown in Fig. 1 is analyzed. Thieresis, where the initial curve of the hysteretic characteristics

circuit parameters are set &/l, = 500 V/Im,w = 100r

shown in Fig. 2 is used for the nonhysteretic magnetic charac-

rad/s,n, = 400 andR/l, = 50 Q/m. The electrical con- teristics. Fig. 3 shows the convergence of exciting current where
ductivity o is set at 1x 10° S/m. The present analysis asthe maximum value ofI(t) + I(t — T'/2)| during half-period
sumes an isotropic vector hysteresis. Fig. 2 shows the unidiplotted. The initial guesX (¢,,)° (» = 1, ..., N) are set at
rectional hysteretic characteristics of the iron-core construct@dor the time-periodic FEM, and the initial conditiok (¢o)

by the superposition of stop hysteron models [6]. This modisl set at0 for the step-by-step method @t = 0. One Newton
can analytically provid@ﬁn/aé(tk) required in (24). The an- iteration in the time-periodic FEM corresponds to a half-period
alyzed region shown in Fig. 1 is divided into 6000 triangulain Fig. 3(a). The curve “TP(opt)” shows the convergence given
meshes, where the iron-core is divided into 600 equal meshieg.the time-periodic FEM with a relaxation facter = 0.5

The time-stepAt is set atr /(12w). The computation has beenfor the first five Newton iterations and,; given by (17) for
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Fig. 5. Convergence of exciting current of hysteretic inductor driven by 15[ a
voltage sourcer sin wt; (a) required periods, and (b) required CPU time. '1
__05¢f 4
the rest of the iterations. The curves “TP(1)" and “TP(0.5)" S ]
are given by the time-periodic FEM with = 1 and 0.5, T o5l -
respectively. Fig. 3 shows that the time-periodic FEM with the 1t time-periodic —— -
proposed relaxation factor achieves much faster convergence 15 ¢ | Stepby-step
than does the step-by-step method, whereas the time-periodic 0.5 HXO(ENm) 1 1.5
FEM with o« = 1 results in the failure of convergence. ®)

Next, the hysteretic eddy-current field is analyzed. Fig. 4
shows the convergence of the exciting current of the hystereftig- 7. Hysteresis loops; (a) driven iycos wt, and (b) driven by sin wt.
inductor. The “simplified-TP” curves mean that the hysteretic
terms withGy,x in (21), (22), and (28) are neglected for thestep-by-step method results in asymmetric steady loops whose
sake of simplicity in the same way as the nonhysteretic cag@sitions depend on their past histories until arriving at the
The convergence of the step-by-step method is shown $igady-state, whereas the time-periodic FEM yields a sym-
maxI(t) — I(t — T)| because the step-by-step method doégetric steady loop by the assumption of (8).
not always yield a symmetric periodic field that satisfies (8).

Fig. 4(a) shows that the simplified method results in the failure VI. CONCLUSION

or slow convergence of Newton iteration because of the neglectrye hroposed method efficiently yields periodic solutions for
of hysteretic terms in the Jacobian matrix. Fig. 4(b) shows thgtih hysteretic and nonhysteretic eddy-current fields. The ne-
the step-by-step method consumes much more computatiffe of hysteretic terms in the Jacobian matrix causes the failure
time for convergence because the step-by-step method requies|ow convergence of the Newton iteration.

several Newton iterations at every time-step, leading to a larger
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