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Cellular automata (CA) have many applications and give aconvenient
scheme of discretized modeling of asystem [1]. There are several type of rule
construction methods such as filtered $\mathrm{C}\mathrm{A}[1,2]$ or Wolfram type $\mathrm{C}\mathrm{A}[1,3]$ . The
difference these rule constructions seems to be the same when we see ageneral
class of $\mathrm{C}\mathrm{A}$ , namely, $\mathrm{n}$ neighbors and $\mathrm{L}$ states (or $\mathrm{L}$ levels). However, filtered CA
has adifferent feature from CA with other rule construction methods, because
the filtered CA uses semi-infinite neighbors usually.

Here we develop Wolfram type CA to the CA of $\mathrm{n}$ neighbors and $\mathrm{L}$ levels
which denoted by CALn. We show amethod how organize rules for $\mathrm{n}$ neighbor and
$\mathrm{L}$ level $\mathrm{C}\mathrm{A}(\mathrm{C}\mathrm{A}_{\mathrm{n}}^{\mathrm{L}})$ . We recognized what kind of nature gives fractal feature of $\mathrm{C}\mathrm{A}$ ,

that is how comes self-similarity out on CA rule structures. We also know that
CA properly has the rule-dynamical property. Note that rule-dynamics was
proposed by Aizawa [4]. In this note, we briefly sketch these subjects and give a
scope to see adiscrete world of celular automata.

From TwO-Level CA to Multi-Level CA

Here we explain wolfram type CA and show ageneral scheme of $\mathrm{C}\mathrm{A}$ . a
simple Wolfram type CA is aone-dimensional CA is consisting of $\mathrm{N}$ cells each of
which has two states and three neighbor relation to determine the state of acell
at next time step. An example is shown as foUow:

ooooooooooooooooo (cell states at time $\mathrm{t}$),

ooooooooooooooooo (cell states at time $\mathrm{t}+1$ )
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The temporal development of each cell state is governed by following equation,

Si(t )$=\mathrm{F}$($\mathrm{S}\mathrm{i}\cdot 1(\mathrm{t})$ , Si(t), $\mathrm{S}\mathrm{i}+1(\mathrm{t})$),

where Si(t) denotes i-th cell state, takes one of two values such as {0,1}, at time t,

and F(...) is amapping function called “mle”depicted as below.

i-l i $\mathrm{i}+1$

o 0 0 at time $\mathrm{t}$

I $\mathrm{F}$

$\mathrm{o}$ at time $\mathrm{t}+1$

I

As $\mathrm{w}\mathrm{e}\mathrm{U}$ known [3], the number of rules (mappings) for $\mathrm{C}\mathrm{A}^{2}3$ (two levels and three

neighbors) is $2^{8}=256$ .
The general class of CA can obtain simply by extending neighbors and levels.

The extended scheme is explained as foUows:

Si(t)
$\mathrm{i}$

$\ldots \mathrm{o}\circ\circ\circ\circ\ldots \mathrm{n}$ neighbors
I $\mathrm{F}$

1o

Si(t )

where Si(t) takes one of L levels, namely, $\mathrm{S}\mathrm{i}(\mathrm{t})_{\in}\{\mathrm{s}1,$S2,$\mathrm{s}_{3},\ldots,\mathrm{s}_{\mathrm{L}}\}$ and the temporal

development of Si(t) is given by the recurrence equation, i.e.,

Si(t )$=\mathrm{F}(\mathrm{S}_{\mathrm{i}\cdot \mathrm{n}/2}(\mathrm{t}), \ldots,\mathrm{S}_{\mathrm{i}\cdot 1}(\mathrm{t}), \mathrm{S}_{\mathrm{i}}(\mathrm{t}), \mathrm{S}_{\mathrm{i}+1}(\mathrm{t}), \ldots, \mathrm{S}_{\mathrm{i}+\mathrm{n}l2}(\mathrm{t}))$ .

Notice that $\mathrm{F}($ ... $)$ means rules (i.e., mapPings), and $\mathrm{n}$ is assumed to be an odd

integer. We can know any case of temporal patterns of 1-D cell array ifwe get the

manner to construct entire rules for $\mathrm{C}\mathrm{A}_{\mathrm{n}}^{\mathrm{L}}$ .

To apply for the celular automata modelng of agiven system, an importan$\mathrm{t}$
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matter is what kind of spatial relation between cells must be introduced. Level
and neighbor are also required to make an appropriate model on $\mathrm{C}\mathrm{A}$ . Usually,
there are several rules that give the same temporal development of cell states
which is called pattern dynamics. class of rules on L-level and n-neighbor CA
exists to realize the same pattern dynamics.

Rule Description of CALn

Now we consider amethod to construct the rules for general type $\mathrm{C}\mathrm{A}$ . Let
a CA system has L-levels and be denoted by {si, $\mathrm{s}2$ , $\mathrm{s}_{3},\ldots,\mathrm{s}_{\mathrm{L}}$}. Here we show a
construction method to use arecurrence relation. We start from one-variable
functions and organize arecurrence relation by use of point functions shown
below. There are $\mathrm{L}^{\mathrm{L}}$ numbers of one-variable functions { $\mathrm{g}1(\mathrm{X})$ , $\mathrm{g}2(\mathrm{X})$ , $\mathrm{g}3(\mathrm{X})$ , $\ldots$ ,
$\mathrm{g}_{\mathrm{L}^{\mathrm{L}}}(\mathrm{X})\}$ . We tabulate the Boolean like relation of levels (or states) for these
one-variable functions in Table I.

Whenever we introduce afunction for every level sj defined by

1for $\mathrm{X}=\mathrm{s}_{\mathrm{j}}$

$\mathrm{I}\mathrm{s}_{\mathrm{j}}(\mathrm{X})=$ $\{$

0Otherwise
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we can construct any rule for any neighbors. We call the above function “point

function”. There exist $\mathrm{L}$ point functions for L-level $\mathrm{C}\mathrm{A}$ , namely, {Isi, Is2, Iss, $\ldots$ ,

ISL}. We can concrete the form of point functions by atypical description for
level sj as below.

Isj(X)$=\mathrm{X}/\mathrm{S}\mathrm{j}$ $.(1\cdot \mathrm{X}/\mathrm{s}\mathrm{l})/(1\cdot \mathrm{s}\mathrm{j}/\mathrm{s}\mathrm{l})\ldots(1\cdot \mathrm{X}/\mathrm{s}\mathrm{j}- 1)/(1- \mathrm{s}\mathrm{j}/\mathrm{S}\mathrm{j}\cdot 1)\cdot$ $(1\cdot \mathrm{X}/\mathrm{S}\mathrm{j}+1)/(1\cdot \mathrm{s}\mathrm{j}/\mathrm{S}\mathrm{j}+1)\ldots(1- \mathrm{X}/\mathrm{s}\iota)/(1\cdot \mathrm{s}\mathrm{j}/\mathrm{S}\mathrm{L})$

At the usage of above form, the definition for singular cases $\mathrm{X}/0=1$ and
(l-X/0)/(1-s/0)=1 should be followed.

Using the point functions, we can construct the rules for any neighbors CA
of $\mathrm{L}$ levels. The n-neighbor rules are identical to n-variable discrete functions.
Two variable discrete functions can be obtain from one-variable discrete functions
through point finctions by the following recurrence equation:

$\mathrm{F}_{\mathrm{j}1\mathrm{j}2\ldots \mathrm{j}\mathrm{L}}(\mathrm{X}, \mathrm{Y})=\mathrm{I}\mathrm{s}1(\mathrm{X})\mathrm{g}.1(\mathrm{Y})+\mathrm{I}\mathrm{s}2(\mathrm{X})\mathrm{g}.2(\mathrm{Y})+\ldots+\mathrm{I}\mathrm{s}\mathrm{L}(\mathrm{X})\mathrm{g}\mathrm{i}\mathrm{L}(\mathrm{Y})$ ,
$(\mathrm{j}_{1}, \mathrm{j}_{2}, \mathrm{j}_{3},$

\ldots ,
$\mathrm{j}_{\mathrm{L}}=1,$ 2,3, \ldots ,

$\mathrm{L}^{\mathrm{L}})$ .

As known from above expression, there are $\mathrm{L}^{\mathrm{W}}(\mathrm{W}=\mathrm{L}^{2})$
$\mathrm{n}$-variable discrete

functions. We can establish the same type recurrence relation between $\mathrm{n}$ and
$\mathrm{n}+1$ variable discrete functions. The result is

$\mathrm{F}_{\mathrm{j}1\mathrm{j}2\ldots \mathrm{j}\mathrm{L}}(\mathrm{X}_{\mathrm{n}+1}, \mathrm{X}_{\mathrm{n}},$

\ldots ,
$\mathrm{X}_{1})=\mathrm{I}\mathrm{s}1(\mathrm{X}_{\mathrm{n}+1})\mathrm{f}\mathrm{j}1(\mathrm{X}_{\mathrm{n}},\ldots,\mathrm{X}_{1})+\ldots+\mathrm{I}\mathrm{s}\mathrm{L}(\mathrm{X}_{\mathrm{n}+1})\mathrm{f}\mathrm{j}\mathrm{L}(\mathrm{X}_{\mathrm{n}},\ldots,\mathrm{X}_{1})$ ,

$(\mathrm{j}_{1}, \mathrm{j}_{2}, \mathrm{j}_{3},$

\ldots ,
$\mathrm{j}_{\mathrm{L}}=1,$ 2,3,

\ldots ,

$\mathrm{L}^{\mathrm{W}}\mathrm{t}\mathrm{W}=\mathrm{L}^{\mathrm{n}})$ ),

where $\mathrm{f}_{\mathrm{j}1}(\mathrm{X}_{\mathrm{n}},\ldots \mathrm{X}_{1})$ , $\mathrm{f}_{\mathrm{j}2}(\mathrm{X}_{\mathrm{n}},\ldots,\mathrm{X}_{1})$ , \ldots ,

$\mathrm{f}_{\mathrm{j}\mathrm{L}}(\mathrm{X}_{\mathrm{n}},\ldots,\mathrm{X}_{1})$ are n variable discrete functions
generated by n time iterations started fiom two and one variable relation.

Self-Similarity and Rule Dynamical Property of CA

Here, we consider self-similarity of CA which leads us to arecognition that
CA has the rule-dynamical property (concise explanation is seen in [4]). A
higher level CA is produced by dividing cell array to neighbor size blocks. In
this dividing, each cel block can be described by using $\mathrm{I}P$ levels. Every cell
block is affected by both neighbored blocks and itself in its temporal state
changes. Ahalf of cels in aneighbored block contribute to another neighbored

72



blocks to each other. The situation is illustrated below.

We note that $\mathrm{N}$ is the system size (i.e., number of cells in the system), as already
stated above. On these blocking, we conclude that three-neighboy CA gives a
general picture on Wolfram type $\mathrm{C}\mathrm{A}$ . We can $\mathrm{d}\mathrm{e}\mathrm{s}_{\mathrm{t}}\mathrm{c}$ribe above CA of block cells by
the same type difference equation of temporal development of every block cels by
using block level variable $\xi$ , i.e.,

$\zeta_{\mathrm{k}}(\mathrm{t}+1)=\mathrm{F}(\xi_{\mathrm{k}\cdot 1}(\mathrm{t}), \xi_{\mathrm{k}}(\mathrm{t}),$ $\zeta_{\mathrm{k}+1}(\mathrm{t}))$ ,

where $\xi_{\mathrm{i}}(\mathrm{t})$ denotes i-th block clustered together with neighbor size at time $\mathrm{t}$ . We
can completely recognize states for each block cells with preparing IF levels for a
block. Then the original CA reaches to the CA of level $\mathrm{L}^{\mathrm{n}}$ and neighborhood
three.

It is possible such blocking for the cell block automata. We therefore know
that neighborhood three may be fundamental in $\mathrm{C}\mathrm{A}$ , and that cellular automata
have the self-similarity feature by above blocking. If we introduce acoarse
graining of block state by use of original number of levels, and if the rule is
invariant for this coarse graining, the fractal property of spati0-temporal pattern

of cell states in CA is realzed.
Now we discuss rule-dynamical property of $\mathrm{C}\mathrm{A}$ . As seen from above block

making, it is an interesting aspect that CA is consisting of blocks each of which
develops its states temporally by its own manner. The temporal development of
ablock cells can be described by amapping $\Psi$ from the block level $\xi(\mathrm{t})$ at time $\mathrm{t}$ to
the block level $\xi(\mathrm{t}+1)$ at time $\mathrm{t}+1$ . This mapping actually depends on neighbored
blocks. They yield boundary conditions for this mapping because cells in ablock
near the boundary require extra-cells to determine the state at next time step.

These extra cels are supplied from two neighbored blocks. Taking these points

into account, we can describe the temporal development of k-th block state (or
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level) by folowing equation:

$\mathrm{a}(\mathrm{t}+1)=\Sigma_{(\mathrm{a}.\mathrm{b})}\mathrm{I}_{(\mathrm{a},\mathrm{b})}(\mathrm{a}\cdot 1(\mathrm{t})=\mathrm{a}, \mathrm{a}_{+1}(\mathrm{t})=\mathrm{b})\Psi \mathrm{a}.\mathrm{b}( \xi_{\mathrm{k}\cdot 1}(\mathrm{t}), \mathrm{a}(\mathrm{t})$ , $\mathrm{a}_{+1}(\mathrm{t}))$ ,

where $\mathrm{I}(\mathrm{a}.\mathrm{b})(\ldots)$ signifies the function which takes the value 1if and only if $\mathrm{a}\cdot 1(\mathrm{t})$

and $\mathrm{E}+1(\mathrm{t})$ take the specified cell levels of boundary effect cels, or takes the value

0for other cases . The above equation implies that the rule to determine the

level at next time step in k-th block is temporaly changed by the both side of
neighbored blocks. In other words, every block undergoes rule-dynamics in the
sense of temporal changing of rule (or mapping). Each block has $\mathrm{L}^{2[\mathrm{n}l2]}$ possible

rules. Notice that $[\mathrm{x}]$ denotes the integer part of $\mathrm{x}$ .
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