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ABSTRACT. We show that for a C! one-dimensional map there is a hyperbolic Cantor
set in a neighborhood of the support of an invariant probability measure with positive
metric entropy. Some results concerning the relation between entropy and expanding
periodic orbits follow from this fact.

Misiurewicz and Szlenk [1, 10, 11] have proved that for any continuous map of
an interval or the circle the growth rate of the number of periodic points is equal

~or greater than the topological entropy.

For C' Hélder maps of manifolds in any dimension, the author [2, 3] proved
that the metric entropy of a hyperbolic measure is approximated by the topological
entropy of a horseshoe. It is an extension of the result obtained by Katok [5, 7]
for diffeomorphisms, and not requiring any conditions for critical orbits. Then in
dimension one the topological entropy of the map is characterized by the number
of expanding periodic points [2, 4]. In that proof he used Pesin theory [13, 14],
a theory of nonuniformly hyperbolic dynamical systems, and the assumption of
Holder continuity of the derivative is crucial in that theory [15].

On the other hand, Katok and Mezhirov [8] proved that a large number of
periodic orbits are expanding with exponent at least almost as large as entropy
without assuming the regularity of the map beyond C*.

The purpose of this paper is to show that the horseshoe result obtained for C!
Holder maps is valid without the Hélder continuous condition in dimension one.

Throughout this paper let M be a compact interval or the circle and f : M — M
a C! map with finitely many critical points. We denote by A(f) the topological
entropy of f, and by h,(f) the metric entropy of p for u € E(f), where £(f)
denotes the set of ergodic f-invariant Borel probability measures on M. Then it is
well-known as the variational principle for entropy [17] that:

h(f) = sup{hu(f) : p € E(f)}.
The following is also known as the Ruelle entropy inequality [16]:

hu(£) < Au
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for any p € E(f) with h,(f) > 0, where A\, denotes the Lyapunov exponent of p
for f, that is

M =0l = [ log ' (@)lduta),
Our main result is the following:

Proposition. Let p be an f-invariant ergodic Borel probability measure and as-
sume that the metric entropy h,(f) is positive. Then for any continuous functions
€1,...,& on M and a number € > 0 there are a positive integer mg and a Cantor

set A of M with f™°(A) = A such that:

(1) A C Be(supp(y));
(2) f™e |a: A — A is topologically conjugate to a one-sided fullshift and

mioh(fm 14) > hu() — &

(3) foranyz € Aandk=1,...,1

mo—1

I(fme)'(z)] = emo PN~ and I;l,; Y &lfi(z) - f Eedp| < e,

i=0

where B.(A) denotes the e-neighborhood of a set A, and supp(p) the support of p.

We remark that if any critical point of the map does not belong to the support
of the measure then the logarithm of the modulus of the derivative of the map is
continuous on a neighborhood of the support, and hence the Cantor set stated in
the proposition can be chosen so that on which the Lyapunov exponent is close to
that of the measure.

For a periodic point p of f with period n, the Lyapunov exponent along its orbit
is given by

1 n
A(p) = —log [(f")'(p)I-
From the proposition it follows immediately that:
Theorem 1. Let p be as above. Then for any 0 < a < h,(f) and € > 0,

half) < Jim. limsup = log H{p € Be(supp()) : () = p,

n—oo

(7Y (p)| = 6’ for all j >0}

< limsup = log #{p € Be(supp()) : "(p) =, A(p) 2 al,

n—oo

where § A denotes the cardinality of a set A.

Combining Theorem 1 with the variational principle we obtain:



Corollary 2. If 0 < a < h(f) then

A(f) = Jim limsup ~logi{p € M : £*(p) = p, () (F(p))| 2 6e7°

n—oo T

forall 20 and 0<i<n-1}

= lim limoup ~logh{p € M: ["(p) =5, A(p) 2 o

n—oo N

F(F@)I 26 forall 0<Si<n—1)

Another consequence of the proposition is the following:

Theorem 3. Let y be as in the proposition. Then there is a sequence p; (j =
1,2,...) of periodic points of f such that

1 n(p;)—1
Y iy =t
1=0 .

Jim pj € supp(s),  lim A(p) 2 hu(f) and Jim

where 6, denotes the Dirac measure supported on a single point x and n(p) the
period of a periodic point p.

Combining Theorem 3 with the ergodic decomposition, it is easy to see that any
invariant probability measure of positive metric entropy is approximated by a mea-
sure of which support consists of finite number of expanding periodic orbits. Since
the metric entropy is upper semi-continuous as a function of invariant probability
measures [11] we get:

Collorary 4. The metric entropy of generic f-invariant Borel probability measure
18 zero.

It is checked that the corollary above is also valid for any continuous map of an
interval or the circle from our proof. '
From the hyperbolicity of the Cantor set stated in the proposition we have:

Theorem 5. Let f : M — M and u be as in the proposition. If a sequence
gn (n=1,2,...) of maps converges to f in C! topology, then there are g,-invariant
ergodic Borel probability measures p,, supported on hyperbolic sets A, of g, such
that :

lim pp,=p and lm h,, (gn) = hu(f).

n—oo

PROOF OF PROPOSITION

Replacing f : M — M to its Noth iterate fNo : M — M and & to (1/No) -
Z?J:"(;_l Eroft (k=1,2,...,10) for some large Ny > 1 if necessary, we may assume
that h,(f) > log3 + € without loss of generality. Take a finite partition Z of M by
intervals such that:

(1) hu(f,T) > hu(f) — €/8, where h,(f,T) denotes the entropy of the partition

)
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(2) crit(f) C Urez8I, where crit(f) denotes the set of critical points of f and
0J the boundary of a set J;

(3) maxjez |I| £ €, where |J| denotes the diameter of a set J;

(4) maxsez ¢(&k,I) < €/2foreach k=1,2,...,1, where p(§,J) = sup, ,e; |€()
é(y)| for a function £ and a set J.

Then f is monotone on each element of 7, and taking Z to be fine enough we may
assume that any element of V;‘;ol —i7 is an interval. We denote by Z, the family
of elements of 7 whose measures are positive. Then I C B(supp(u)) holds for all
I € I,. Fix an integer N; > 1 'and put

A=AnN, ={z€ M : pu(Z.(2)) < e (hu(£,T)=¢/8)

n—1
|% E{k(f‘(z))— /{kdul <e¢/2 forallk=1,2,...,land n > N},

1=0

where Z,(z) denotes the element of V= f ~*T containing z. By the Birkéff ergodic
theorem and the Shannon-McMillan-Breiman theorem [12], taking large N1 > 1 we
may assume that u(I N A) > 0 holds for all I € Zy. For I € Z, and n > N; we put

JIin)={JeVviZ2frT:JcCI, wJnA) >0}

=0

Then for each J € J(I;n), taking z € J N A we have

p(J) = p(Za(2)) <e~hu(£,T)—¢/8)
Se_"("»(f)-e/«i)’

and if £ € J then we have
1 n—1 ) 1 n-—1 “ ]
I L) - [edul <3 Y I6(F@) - ()
=0 =0
1 n-—1 )
Ho 6@ - [
<e/2+¢/2 <e
forall k =1,2,...,l. For I,I' € I, and n > N; we put |
J(I,I'n) = {J € J(I;n) : intf*(J) D cll'},

where int A, clA denote the interior and the closure of a set A, respectively.

Lemma 6. For any I € I there are n =n(I) > Ny and I' = I'(I) € Iy such that

ﬂJ(I, I';n) > e"(hu(f)—€/2)'

Proof. Put
ag =min{u(INA):I €Iy} >0.
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Then for any n > N; and I € Z;, we have
ag < p(InA)
< Y W)
JeI (I;n)

S “J(I; n) . c"n(hﬂ(f)—e/4)’

and hence
ﬁJ(I; n) Z Qg * en(h,.(f)—-e/4)
> en(hu(f)—3¢/8) - gn

if n > —(8/¢)log ap. Then for each I € Z; there is an integer n = n(I) > N; with
n > (8/¢€)log §Zo such that

1T (Iin+1) 2 34T (I;n).

For each J € J(I;n), since f*(J) is an (connected) interval, there are at most two
elements of Z, that intersect f™(J) without whose closures are covered by it. Then

D HIILTn) = Y HJ € T(Iin) :intf*(J) D eI’}

I'el, I'eT,

= Y. HI'e€IL:intf*(J) D dr)

JeIJ(I;n)

> Y MI'eZo: frI)NI #£ 0} -2

JET(I;n)

247 (Lin+1) = 247 (I;n)

24T (Lin)

> e"(hp(f)-se/e),

and hence
8T (I, I';n) > ien(hu(f)—se/S)

~ 1o
> e"(h#(f)—€/2)

holds for some I' = I'(I) € Z,. O

By Lemma 6 we can choose a finite chain Iy = I, I, ... yIr—1 € Iy with 1 <
r < §Zp and ng,ny,... ,n,.—; > Nj such that
ﬁJ(Is;I8+1; ns) > en.(h,.(f)—e/2) (8 = 0, 1, oo g T — 1)

Put m(0) = 0, m(s) = Z;;; n; for s =1,2,... ,r, and set

K ={Ky,K,,... K}

r—1
={K=K(Jo, 1r,...,Jr1) = [ | ™)L,
8=0

Js € I(I4,I4415n,) forall s=0,1,...,r -1}



Then for any K € K if z € K then

N;-1 r—-1 n,—
NGO / udl < 3= 3| S 6 (PO @) — o / xdpl

=0 8—0 )=0

for all k =1,2,...,1, where N, = m(r) = 372, inj. Forn>1and (a- - an_1) €
I {1,2,. t} we denote

n-1
L(ao...an_l) = n f—jNQKaj.
. j =0

Then L(ao - - - an—1) is a compact interval such that
ij’L(ao cr@p_1)=L(aj:--an_y) forall 0<jyj<n-1

and
f"N’L(ao -++@p-1) D cllp.

Let consider the product space ¥ = [[2,{1,2,... ,t} and the fullshift 0 : ¥ —» X
in t-symbols. Then we have

h(o) =logt = log K
r—1

=logH 8T (Is, Is+15Ms)

8=0

r—1
> log [ e™#+(N-</?

8=0

r—1
=5 nu(hu(f) - ¢/2)

8=0

=Nz (hu(f) — €/2).

Notice that it suffices to prove the proposition for fV2 and (1/N2) Eﬁ__’; lépo f

instead of f and & (k = 1,2,...,1), respectively. Thus from now on we assume
that Ny = 1 without loss of generality. Then

|€x(z) — /fkdul <e

holds whenever z € K for all K € K. Let gy = §crit(f) < oo and fix an integer ly >
1. Then there are (c} -+ ¢}, _;),(ch - ¢} _1),---»(cg’ - -cly_y) € 151, 2,.. . .t}
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such that if (ag -+ aj,—1) € H:‘;}l{lﬂ, ...t} satisfles (ag - ajy—1) # (c§ -+ ¢} _;)
forall p=1,2,...,q0 then L(ag:--aj,—1) Necrit(f) = 0. Put

X =X, ={(a;) €T :(aj - ajt1,-1) # (g - Clo 1)
forall 720, p=1,2,...,q0}.

Then ¢’ = 0 |x: X — X is a subshift of finite type, and by [9] taking large I, we
may assume that

h(o') = k(o |x) > h(o) — €/4
2 hu(f) — 3e/4.

Lemma 7. There are an integer k > 1 and a subset Y of X with o*(Y) =Y such
that oF |y: Y — Y is a topological mizing subshift of finite type and h(o* |y) =
kh(c').

Proof. A subshift is of finite type if and only if it has the pseudo orbit tracing prop-
erty. Then the nonwandering set of ¢’ : X — X is decomposed into finite number
of invariant closed sets Z;,Z,,...,Z, such that o | z,: Zp — Z,p is topologically
transitive for each p = 1,2, ... ,q. Moreover for eachp = 1,2, ... , g there is a subset
Y, of Z, and an integer m, > 1 such that

)N (V) =0 if 0<i<i'<mp—1, o™ (¥,) =Y,

Zy=YpUo(Yp)U---Ua™ (Y,)

and 0™ |y,: Y, — Y, is topologically mixing. We remark that o™ |y : Y, — Y, is
of finite type beca,use it has the pseudo orbit tracing property. Then we ha.ve

h(a,) = ma.x{h(a IZP) b= 112, cee ,Q}
= h(o |z,)
=h(e™" |y, )/m«

for some r. Then £k =m, and Y =Y, are what we want. O

Replacing ¢’ : X — X to o* |y: Y — Y we may assume that o' : X — X is
topologlcally mixing. For each integer n > 1 we say that a word ¢ = (ao “@n_1) €
= {1 2,...,t} of length n is admissible in X if there is b = (b;) € X such that
(bo - n—1) = (@o -+ an—1). We denote by W,(X) the set of admissible words in
X of length n. Then there is a constant C; > 1 such that

Cl-lenh(a') < uWn(X) <C enh(a')

for all n > 1. On the other hand, since o' : X — X is a topologically mixing
subshift of ﬁmte type, there ex1sts an 1nteger ko 2 1 such that for any integer n > 1
and a pair a! = (a}---al_,),a? (ao a%_,) € Wo(X) there is B(a,,a,) =
(o bkot) € Wio(X) with (ah -+~ ab_yby - bpo_rad - a3_) € Wan . (X). No-
tice that ko is independent of n. Moreover since U(ao'"alo_1)€Wzo(X)L(a0 C e Gy—1)
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does not contain any critical point of f, there exists 6o > 0 such that if
L(ag-+-aj,—1) with (ag---ai,—1) € Wi,(X) then | f'(z) |2 &o. For each ini
n 2> 1 we put

Vo = {(ap- - an—1) € Wi(X): |L(ag -+ - an—1)| < 2C1|Io|€_"h(°'),

2-:|fiL(00"'an—1)| < v/n}.

=0
Lemma 8. {V, > (46'1)"1e""("') holds for all large n > 1.
Proof. Since E(aoo--a.._l)eW,.(X) |L(ao « - - @an—1)| < |Io| we have

(I) := H{(a0 + an1) € Wa(X) : |1L(ao - - an=1)| > 2C1 | Lo|e~"*)}
< (201)—16""(0').
On the other hand, since

n—1

> 3 1f (a0 - an-1)|

(ao---an-1)EWr(X) j=0

n—1

=Y Y IFL@oann)l

J=0 (ao'*an-1)EWn(X)

n—1

=) SEED DU | 7GR |

J=0 (ap::an-1)EW(X)

_ n—1
<Y W) IL(e e ann)l
Jj=0 (aj "’an-l)ewn—j (X)
n—1

< Z §W;(X) - Lo
=0
n—1 . ,

<Y Cie™ NG| < Cremh,
=0

where C; = C1|Lole™?*") /(1 — e~*?), we have

n-—1
(I1) :=§{(ao - @n_1) € Wa(X): Y_ |f*L(ao -+ an — 1)| > v/n}

i=0
< (C2/Vn)e™™ ).
Then we obtain
{Va > Wa(X) — (I) — (1)
> {C7 - (201)7 = (Ca/ )}
> (401)—lenh(a')
for all n > (4C1C,)%. O
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Lemma 9. For any large integern > 1 and (ag---an—1) € Vy if 2 € L(ag - an_1)
then
l(fn_lo)’(x)l > en(h(o")—e/B)'

Proof. Take a small number 8 > 0 such that if y,z € M satisfy |y — z| < 8 then
()| = |f'(2)|| < €bo/20. For (ag-+-apn—1) € Vo and 7 = 0,1,...,n — 1 put

Bi = |f'L(ag - an—1)| and 75 = o(|f'|, f'L(ao-*-an—1)). Then 1) B < v/n,
and hence §{: : B; > B} < /n/B holds. Thus we have

§Ui=( o+ Y m

i=0 8 >8 i:8:i<pB
< (v/A/B)- D+ n- (e6s/20)
< neby/10

for all n > (20D/B6g€)?, where D = maxepm |f'(z)|. On the other hand, since
|IL(ao * ++ @n—1)| < 2C1|Ile~"*") and |f*L(aq - - - an—1)| > |Io|, by the mean value
theorem there is yo € L(ag---an—1) such that |(f*)'(yo)| > (2C1)"'e™*®) and
hence

™Y (o)l = 1057 (o)l - () (£~ " (wo))I
> (201)—1D—Ioenh(6')_

Then for any z € L(ao - - - an—1), since f*(z) € L(ai - - - @itio—1) and (a; - @j41,—1) €
Wi, (X) for all i = 0,1,... ,n — Iy, we have

(™" (wo)]

= lo n—lolo_o "—lo’x
[(fr=t)(z)| =log|(f ) (yo)| = log |(f ) (z)|

n—lg—1
< Z |log | f'(f*(y0))| — log |f'(f*(2))Il
n—lp—1
<& Y P @l = 1F (F @I

1=0

log

n—lo—l

< 6! Z ni

=0

<5‘lnz—:1 ;
= Yo n:

=0

< ne/10,
and hence
(f1) ()] 2 e~/ 20)(F7To) (yo)]

> (201)—1 D—loen(h(cr')—-e/lo)
> en(h(s)=/8)
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for all n > (40/¢)log(2C; D). O
Fix a large integer no > 1 with ng > (8/¢) - max{koh(co') + log(4C1),(lo +
ko)(h(c') —log é)} and put mg = ng + ko. Setting
Z = {(at) € X :gk = (akmo ot 'akmo+no—l) € Vno)
(akmo+no ° 'a(k+l)mo—l) = B(Qkagk+l) for all k& > 0}

we have 0™°(Z) = Z. Moreover 0™ |z: Z — Z is topologically conjugate to a
fullshift in §V;,,-symbols. Now we define a compact set of M by

A=) U L(ag -+ Gn_1)-

n=1 (ao-~-a,_1)€Wn(Z)

Then f™°(A) = A and A C Iy C Be(supp(u)) hold. For any z € A, taking
(ag+**Amy—1) € Wino(Z) with = € L(ag- - amy-1), we have f'(z) € K, for all
1=0,1,... ,mp — 1, and then

1 mo—1 ; 1 mo—1 .-
e 2 @ [ < 3 lerien - [ea
1 mo—1
< — ; € =¢€

for all k = 1,2,---,l. Since (ag - any—1) € Vn,y, by Lemma 9 we have

I(F™0) (@)l = [(F+*) ()|
= |[(flo+R) (fo ()l - I(F™~") (=)

> 6olo+koeno(h(a')—e/8)

> 6,lotko g—koh(s') gmo(h(o”) —¢/8)
> emo(h(e')—¢/4)

> emo(hu(N)=e),

Ify,z € L(ag - Gkmo+1,) With (a0 - @Gkmo+1o) € Wimo+1,(Z) then

ly — 2| < e7FmebulDN=9| fhmo(yy _ fhmo(2)
S e—kmo(hp(f)"‘f)lIol_

Thus 7 : A — Z defind by n(z) = (a;) for z € NJ2;L(ag- - an—1) is a homeo-
morphism, and then A is a Cantor set. Further, it is obvious that o (f™° |4) =
(6™ |z) o 7, and hence f™° |4: A — A is topologically conjugate to a fullshift in
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§Vn,-symbols. Moreover, by Lemma 8 we have

1 1
—h(f™° |4) = — log §Vhn,
myo mo
1 -1 _noh(o’
> m—olog{(401) 1gnoh(e)} |

> i108{(401)—le—koh(a')emoh(a’)}
my :

> h(o') —¢/4
> hu(f) —e

This completes the proof of the proposition.
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