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1 Introduction

Aquantum system is described by aC’-algebra $A$ and its state is
given by anormalized positive linear functional $\varphi$ of $A$. Subsys-
tems of $A$ are described by C’-subalgebras $A(\{i\})$ , $i=1,2\cdots$ .
If the subalgebras $A(\{i\})$ generate $A$ as aC’-algebra, then $A$ is
called atotal system $A$ .

Let $\varphi$ be astate of $\varphi$ . Then the restrictions of $\varphi$ to $A(\{i\})$

are given by

$\varphi_{i}(A)=\varphi(A)$ ,

for $A\in A(\{i\})$ . Each $\varphi_{i}$ is astate of $A(\{i\})$ .
Conversely, suppose that states $\varphi_{i}$ of $A(\{i\})$ , $i=1,2\cdots$ , are

first given. If the restriction of the total state $\varphi$ to $A(\{i\})$ is
equal to the given state $\varphi_{i}$ for each $i$ , then this state $\varphi$ is called
ajoint extension of states $\varphi_{i}$ of $A(\{i\})$ , $i=1,2$ , $\cdots$ .

For spin lattice or Boson systems, algebras $A(\{i\})$ of sub-
systems with mutually disjoint localization mutually commute
and form atensor product system. Here the total system $A$

数理解析研究所講究録 1300巻 2003年 37-51

37



is generated by the tensor product of $A(\{i\})$ , i $=1,$ 2, \cdots as

follows.

$A=\otimes_{i}A(\{i\})$ . (1)

Let aset of states $\varphi_{i}$ of $A(\{i\})(i=1,2\cdots)$ be given. For
tensor product systems, we have obviously astate extension as
the tensor product of states $\varphi_{i}$ :

$\varphi=\otimes_{i}\varphi_{i}$ . (2)

(In general, there are many state extentions of $\varphi_{i}$ other that
this product state extention. Note that if all $\varphi_{i}$ are pure states,
then the joint extension is uniquely given by the product state
extension and is apure state.)

Let us consider the different situations where the subsystems
$A(\{i\})$ are not commutative for any distict indices $i$ . (We as-
sume that intersections of subsystems of disjoint regions do not
have non-trivial elemnents, $\mathrm{i}.\mathrm{e}.$ , $A(\{i\})\cap A(\{j\})=c1$ $(c\in \mathbb{C})$

for $i\neq j.$ ) Assume that the total system $A$ is algebraically
generated by $A(\{i\})i=1,2\cdots$ as

$A= \bigvee_{i}A(\{i\})$ . (3)

Here there arises the natural question on the state extention
from subsystems to the joint system for non-tensor product sys-
tems as follows.

Does astate extension of the toatal system $A$ exist for aset
of given states $\varphi_{i}$ of $A(\{i\})$?What kind of state extentions are
possible or impossible for $\varphi_{i}$ ?When is astate extention to be a
prodoct state? Is it possible to make aproduct state extention
for given $\varphi_{i}$ ?

Fermion systems are typical examples for non-tensor product
systems. It is obvious that algebras of subsystems with mutuall
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disjoint regions do not mutually commute due to the anticom-
mutativity of Fermion creation and annihilation operators and
satisfy $A(\{i\})\cap A(\{j\})=c1$ $(c\in \mathbb{C})$ .

Our article [3] deals with the problems about joint extension
of states for Fermion systems generalizing some of results in [5].
The setting of [5] is restricted to afinite-dimensional bipartite
CAR system and all the results about state extentions in [5] are
reduced to the special cases of those given in [3]. However, the
methods of proof are different from each other and [3] relates the
quantum entanglement for Fermion systems to the state exten-
tion; this is anew perspective. Therefore, before we are going
to the general case in Section 5, we show some restricted results
in Section 4by using aentropy method which was obtained ear-
lier by the author and is due to the finite-dimensionality of the
systems.

2The Fermion Algebra

We consider aC’-algebra $A$, called aCAR algebra or aFermion
algebra, which is generated by its elements $a_{i}$ and $a_{i}^{*}$ , $i\in \mathbb{N}(\mathbb{N}=$

$\{1,2, \cdots\})$ satisfying the following canonical anticommutation
relations(CAR).

$\{a_{i}^{*}, a_{j}\}=\delta_{i,j}1$

$\{a_{i}^{*}, a_{j}^{*}\}=\{a_{i}, a_{j}\}=0$ ,

where $\{A, B\}$ $=AB+BA$ (anticommutator) and $\delta_{i,j}=1$ for
$i=j$ and $\delta_{i,j}=0$ otherwise. For finite subset Iof $\mathbb{N}$ , $A(\mathrm{I})$

denotes the C’-subalgebra generated by $a_{i}$ and $a_{i}^{*}$ , $i\in \mathrm{I}$ .
For finite $\mathrm{I}$ , $A(\mathrm{I})$ is known to be isomorphic to the tensor

product of $|\mathrm{I}|$ copies of the full $2\cross 2$ matrix algebra M2(C) and
hence isomorphic to $\mathrm{M}_{2|1|}(\mathbb{C})$ . Then

$A_{\infty}=\cup A(\mathrm{I})|\mathrm{I}|<\infty$
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has the unique C’-norm The C’ algebra $A$ together with its
individual elements $\{a_{i}, a_{i}^{*}|i\in \mathbb{Z}\}$ is uniquely defined up to is0-
morphism and is isomorphic to the UHF-algebra $\overline{\otimes}_{i\in \mathbb{Z}}\mathrm{M}_{2}(\mathbb{C})$ ,
where the bar denotes the norm completion. $A$ has the unique
tracial state $\tau$ as the extension of the unique tracial state of
$A(\mathrm{I})$ , $|\mathrm{I}|<\infty$ .

Acrucial role is played by the unique automorphism $\Theta$ of $A$

characterized by

$\Theta(a_{i})=-a_{i}$ , $\mathrm{O}-(a_{i}^{*})=-a_{i}^{*}$

for all $i\in \mathrm{N}$ . The even and odd parts of $A$ and $A(\mathrm{I})$ are defined
by

$A_{\pm}\equiv\{A\in A|\mathrm{O}-(A)=\pm A\}$ ,

For any $A\in A$ (or $A(\mathrm{I})$ ), we have the following decomposition

$A_{\pm}=A_{+}+A_{-}$ , $A_{\pm}= \frac{1}{2}(A\pm\Theta(A))\in A_{\pm}$ (or $A(\mathrm{I})_{\pm}$ ).

Astate $\varphi$ of $A$ or $A(\mathrm{I})$ is called even if it is G-invariant:

$\varphi(\mathrm{O}-(A))=\varphi(A)$

for all $A\in A$ (or $A\in A(\mathrm{I})$ ).
For astate $\varphi$ of a C’-algebra $A(A(\mathrm{I}))$ , $\{\mathcal{H}_{\varphi}, \pi_{\varphi}, \Omega_{\varphi}\}$ denotes

the GNS triplet of aHilbert space $\mathcal{H}_{\varphi}$ , arepresentation $\pi_{\varphi}$ of
$A$ (of $A(\mathrm{I})$ ), and avector $\Omega_{\varphi}\in \mathcal{H}_{\varphi}$ , which is cyclic for $\pi_{\varphi}(A)$

$(\pi_{\varphi}(A(\mathrm{I})))$ and satisfies

$\varphi(A)=(\Omega_{\varphi}, \pi_{\varphi}(A)\Omega_{\varphi})$

for all $A\in A(A(\mathrm{I}))$ . For any $x$ $\in B(\mathcal{H}_{\varphi})$ , we writ$\mathrm{e}$

$\overline{\varphi}(x)=(\Omega_{\varphi}, x\Omega_{\varphi})$ .
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3Product State Extension

As subsystems, we consider $A(\mathrm{I})$ with mutually disjoint subsets
Fs. For apair of disjoint subsets $\mathrm{I}_{1}$ and $\mathrm{I}_{2}$ of $\mathbb{N}$ , let $\varphi_{1}$ and $\varphi_{2}$ be
given states of $A(\mathrm{I}_{1})$ and $A(\mathrm{I}_{2})$ , respectively. If astate $\varphi$ of the
joint system $A(\mathrm{I}_{1}\cup \mathrm{I}_{2})$ (which is the same as the $\mathrm{C}$ ’-subalgebra
of $A$ generated by $A(\mathrm{I}_{1})$ and $A(\mathrm{I}_{2}))$ coincides with $\varphi_{1}$ on $A(\mathrm{I}_{1})$

and $\varphi_{2}$ on $A(\mathrm{I}_{2})$ , i.e.,

$\varphi(A_{1})=\varphi_{1}(A_{1})$ , $A_{1}\in A(\mathrm{I}_{1})$ ,
$\varphi(A_{2})=\varphi_{2}(A_{2})$ , $A_{2}\in A(\mathrm{I}_{2})$ ,

then $\varphi$ is called joint extension of $\varphi_{1}$ and $\varphi_{2}$ . As aspecial case,
if

$\varphi(A_{1}A_{2})=\varphi_{1}(A_{1})\varphi_{2}(A_{2})$ (4)

holds for all $A_{1}\in A(\mathrm{I}_{1})$ and all $A_{2}\in A(\mathrm{I}_{2})$ , then $\varphi$ is called a
product state extension of $\varphi_{1}$ and $\varphi_{2}$ . It is asimple generaliza-
tion of the product state (3) to the general (i.e., not necessarily
commutative) systems.

4Finite-Dimensional Case

4.1 State Extension for the Bipartite System

We first consider afinite dimensional bipartite Fermion sys-
tems establishing the following Theorem 1on the product prop-
erty of the states with given pure marginal states. The corre-
sponding result of this theorem can be generalized to the more
general cases where the number of subsystems is arbitrary (in-
cluding infinity), and each of subsystem is not necessary finite-
dimensional. Nevertheless, the proof of Theorem 1making use
of von Neumann entropy cannot be generaized to the infinite-
dimensional systems and may be of some interest by itself. It is
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also acrucial tool for the characterization of “quantum entan-
glement” in Subsection 4.2.

Theorem 1. Let $A(\{1\})$ and $A(\{2\})$ be a pair of Fermion sys-
tems generated by one-particle Fermions $\{a_{1}, a_{1}^{*}\}$ and $\{a_{2}, a_{2}^{*}\}$ ,
respectively. Let $\omega$ be a state of A. Suppose that its restrictions
to $A(\{1\})$ and $A(\{2\})$ are both pure states. Then $\omega$ is a pure
state of $A$ and has the following product property over $A(\{1\})$

and $A(\{1\})’$ ,

$\omega(AB)=\omega(A)\omega(B)$ , (5)

for every $A\in A(\{1\})$ and $B$ $\in A(\{1\})’$ . The restriction of $\omega$ to
$A(\{1\})’$ is also a pure state.

We shall state the proof of this theorem so as to explain
the motivation of the present investigation. (As for the other
theorems in this note, see [3].)
Proof
Let $\omega_{1}$ be the restriction of $\omega$ to $A(\{1\})$ and $\omega_{2}$ be the restriction
of $\omega$ to $A(\{2\})$ . By the assumption that $\omega_{1}$ and $\omega_{2}$ are pure
states, both von Neumann entropies vanish:

$S(\omega_{1})=S(\omega_{2})=0$

The strong subadditivity property of entropy for finite-dimensional
Fermion systems holds (6), the subadditivity property of entropy
holds a fortiori.

$S(\omega|A)\leq S(\omega_{1})+S(\omega_{2})=0+0=0$ .

Thus the positivity of entropy implies

$S(\omega|_{A})=0$ .

We note that

$A=A(\{1\})\vee A(\{2\})=A(\{1\})\otimes A(\{1\})’$ .
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By this vanishing result of entropy of $\omega$ , we conclude that $\omega$ is
apure state of $A$ . Since $A$ is afull matrix algebra, every pure
state is avector state. Therefore, for this $\omega$ , there exists aunique
normalized vector $\eta_{(\omega)}$ in 7{ up to aphase factor satisfying

$\omega(A)=(A\eta_{(\omega)}, \eta_{(\omega)})_{\mathcal{H}}$

for any $A\in A$ .
The product property (5) follows from the well-known Lemma

IV.4.11 of [9]. By this product property and the tensor-product
structure between $A(\{1\})$ and $A(\{1\})’$ , the purity of $\omega$ implies
that of the restriction of $\omega$ to $A(\{1\})’$ . $\square$

4.2 Von Neumann Entropy and Quantum Entangle-
ment

We collect some basic properties entropy for Fermion systems.
The following inequality of von Neumann entropy is called the
SSA property and can be shown based on some results on the
conditional expectation (see [2]). (The SSA for the tensor-
product systems is shown by Lieb and Ruskai in [4].)

Theorem 2(SSA). For finite subsets Iand $\mathrm{J}$ , the following
strong subadditivity of von Neumann entropy $S$ holds for any
state $\varphi$ :

$S(\varphi_{\mathrm{I}\cup \mathrm{J}})-S(\varphi_{I})-S(\varphi_{\mathrm{J}})+S(\varphi_{\mathrm{I}\cap \mathrm{J}})\leq 0$ . (6)

Let Iand $\mathrm{J}$ be two disjoint finite regions. For tensor-product
systems, the s0-called “triangle inequality of entropy” holds for
any state $\varphi[1]$

$|S(\varphi_{\mathrm{I}})-S(\varphi_{\mathrm{J}})|\leq S(\varphi_{\mathrm{I}\cup \mathrm{J}})$ .

However, this inequality fails to hold for Fermion systems. The
violation of the triangle inequality decribes the charactersiti$\mathrm{c}$
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feature of quantum entanglement for Fermion systems which
cannot exist in any tensor-product systems.

Theorem 3. Let $A(\{1\})$ and $A(\{2\})$ be as Theorem 1. For any
positive number $x$ $\in$ [ $0$ , l0g2], there exists a pure state $\varphi$ such
that

$|S(\varphi|_{A(\{1\})})-S(\varphi|_{A(\{2\})})|=x$

If the above $x$ is strictly positive, we say that the pure state
$\varphi$ has “half-sided entanglement” (See [5] for details.)

5General Case (arbitrary numbers of sub-
systems of arbitrary dimensions)

We go back to the problem of state extension. For an arbitrary
(finite or infinite) number of subsystems, $A(\mathrm{I}_{1})$ , $A(\mathrm{I}_{2})$ , $\cdots$ with
mutually disjoint I’s and aset of given states $\varphi_{i}$ of $A(\mathrm{I}_{i})$ , astate
$\varphi$ of $A( \bigcup_{i}\mathrm{I}_{i})$ is called aproduct state extension if it satisfies (4)
for any dustinct $i$ and $j$ .

We give the following Lemmas.

Lemma 1. For disjoint $\mathrm{I}_{1}$ and I2, let $\varphi$ be a state of $A(\mathrm{I}_{1}\cup \mathrm{I}_{2})$

with its restrictions $\varphi_{1}$ and $\varphi_{2}$ to $A(\mathrm{I}_{1})$ and $A(\mathrm{I}_{2})$ . Then the
representation $\pi_{\varphi}$ of $A(\mathrm{I}_{1})$ is quasi-equivalent to $\pi_{\varphi_{1}}\oplus\pi_{\varphi_{1}}\ominus\cdot$

Lemma 2. If $\pi_{\varphi_{1}}$ and $\pi_{\varphi_{1}}$ are disjoint, then

$\mathcal{H}_{\varphi+}[perp] \mathcal{H}_{\varphi-}$ , (7)

and $\pi_{\varphi}$ restricted to $?t_{\varphi}\pm are$ quasi-equivalent to $\pi_{\varphi_{1}}$ and $\pi_{\varphi_{1}}\ominus\cdot$

We have the following Theorem.

Theorem 4. Let $\mathrm{I}_{1}$ , I2, $\cdots$ be an arbitrary (finite or infinite)
number of mutually disjoint subsets of $\mathbb{N}$ and $\varphi_{i}$ be a given stat$e$
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of $A(\mathrm{I}_{i})$ for each $i$ .
(1) A product state extension of $\varphi_{i}$ , $i=1,2$ , $\cdots$ , exists if and
only if all states $\varphi_{i}$ except at most one are even. It is unique if
it exists. It is even if and only if all $\varphi_{i}$ are even.
(2) Suppose that all $\varphi_{i}$ are pure. If there exists a joint extension
of $\varphi_{i;}i=1,2$ , $\cdots$ , then all states $\varphi_{i}$ except at most one have to
be even. If this is the case, the joint extension is uniquely given
by the product state extension and is a pure state.

Remark. In Theorem 4(2), the product state property (3) is
not assumed but it is derived from the purity assumption for all
$\varphi_{i}$ .

The purity of all $\varphi_{i}$ does not follow from that of their joint
extension $\varphi$ in general For aproduct state extension $\varphi$ , how-
ever, we have the following two theorems about consequences of
purity of $\varphi$ .

Theorem 5. Let $\varphi$ be the product state extension of states $\varphi_{i}$

with disjoint $\mathrm{I}_{i}$ . Assume that all $\varphi_{i}$ except $\varphi_{1}$ are even.
(1) $\varphi_{1}$ is pure if $\varphi$ is pure.
(2) Assume that $\pi_{\varphi_{1}}$ and $\pi_{\varphi_{1}\ominus}$ are not disjoint. Then $\varphi$ is pure
if and only if all $\varphi_{i}$ are pure. In particular, this is the case if $\varphi$

es even.

Remark. If $\mathrm{I}_{1}$ is finite, the assumption of Theorem 5(2) holds
and hence the conclusion follows automatically.

In the case not covered by Theorem 5, the following result
gives acomplete analysis if we take $\bigcup_{i\geq 2}\mathrm{I}_{i}$ in Theorem 5as one
subset of N.

Theorem 6. Let $\varphi$ be the product state extension of states $\varphi_{1}$

and $\varphi_{2}$ of $A(\mathrm{I}_{1})$ and $A(\mathrm{I}_{2})$ with disjoint $\mathrm{I}_{1}$ and $\mathrm{I}_{2}$ where $\varphi_{2}$ is
even and $\varphi_{1}$ is such that $\pi_{\varphi_{1}}$ and $\pi_{\varphi_{1}\ominus}$ are disjoint.
(1) $\varphi$ is pure if and only if $\varphi_{1}$ and the restriction $\varphi_{2+}$ of $\varphi_{2}$ to

45



$A(\mathrm{I}_{2})_{+}$ are both pure.
(2) Assume that $\varphi$ is pure. $\varphi_{2}$ is not pure if and only if

$\varphi_{2}=\frac{1}{2}(\hat{\varphi}_{2}+\hat{\varphi}_{2}\Theta)$

where $\hat{\varphi}_{2}$ is pure and $\pi_{\hat{\varphi}_{2}}$ and $\pi_{\hat{\varphi}_{2}}\ominus are$ disjoint

Remark The first two theorems are some generalization of re-
sults in [7] with the following overlap. The first part of Theorem
4(1) is given in [7] as Theorem 5.4 (the if part and uniqueness)
and adiscussion after Definition 5.1 (the only if part). Theorem
4(2) and Theorem 5are given in Theorem 5.5 of [7] under the
assumption that all $\varphi_{i}$ are even.

6Other State Extensions

The rest of our results concerns ajoint extension of states of
two subsystems, not satisfying the product state property (3).
We need afew more notation. For two states $\varphi$ and $\psi$ of a
C’-algebra $A(\mathrm{I}_{1})$ , consider any representation $\pi$ of $A(\mathrm{I}_{1})$ on a
Hilbert space $H$ containing vectors (I) and 1such that

$\varphi(A)=(\Phi, \pi(A)\Phi)$ , $\psi(A)=(\Psi, \pi(A)\Psi)$ .

The transition probability between $\varphi$ and $\psi$ is defined ([10]) by

$P( \varphi, \psi)\equiv\sup|(\Phi, \Psi)|^{2}$

where the supremum is taken over all 74, $\pi$ , $\Phi$ and $\Psi$ as described
above. For astate $\varphi_{1}$ of $A(\mathrm{I}_{1})$ , we need the following quantity

$p(\varphi_{1})\equiv P(\varphi_{1}, \varphi_{1}\mathrm{O}-)^{1/2}$

where $\varphi_{1}\Theta$ denotes the state $\varphi_{1}\mathrm{O}-(A)=\varphi_{1}(\mathrm{O}-(A))$ , $A\in A(\mathrm{I}_{1})$ .
If $\varphi_{1}$ is pure, then $\varphi_{1}\Theta$ is also pure and the representations

$\pi_{\varphi_{1}}$ and $\pi_{\varphi_{1}}\ominus \mathrm{a}\mathrm{r}\mathrm{e}$ both irreducible. There are two alternatives
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$(\alpha)$ They are mutually disjoint. In this case $p(\varphi_{1})=0$ .
$(\beta)$ They are unitarily equivalent.

In the case $(\beta)$ , there exists aself-adjoint unitary $u_{1}$ on $\mathcal{H}_{\varphi_{1}}$ such
that

$u_{1}\pi_{\varphi_{1}}(A)u_{1}=\pi_{\varphi_{1}}(\mathrm{O}-(A))$ , $A\in A(\mathrm{I}_{1})$ ,
$(\Omega_{\varphi_{1}}, u_{1}\Omega_{\varphi_{1}})\geq 0$ .

For two states $\varphi$ and $\psi$ , we introduce

$\lambda(\varphi, \psi)\equiv\sup\{\lambda\in \mathbb{R};\varphi-\lambda\psi\geq 0\}$

Since $\varphi-\lambda_{n}\psi\geq 0$ and $\lim\lambda_{n}=\lambda$ imply $\varphi-\lambda\psi\geq 0$ , we have

$\varphi\geq\lambda(\varphi, \psi)\psi$ .

We need

$\lambda(\varphi_{2})\equiv\lambda(\varphi_{2}, \varphi_{2}\mathrm{O}-)$ .

The next Theorem provides acomplete answer for ajoint ex-
tension $\varphi$ of states $\varphi_{1}$ and $\varphi_{2}$ of $A(\mathrm{I}_{1})$ and $A(\mathrm{I}_{2})$ , when one of
them is pure.

Theorem 7. Let $\varphi_{1}$ and $\varphi_{2}$ be states of $A(\mathrm{I}_{1})$ and $A(\mathrm{I}_{2})$ for
disjoint subsets $\mathrm{I}_{1}$ and $\mathrm{I}_{2}$ . Assume that $\varphi_{1}$ is pure.
(1) A joint extension $\varphi$ of $\varphi_{1}$ and $\varphi_{2}$ exists if and only if

$\lambda(\varphi_{2})\geq\frac{1-p(\varphi_{1})}{1+p(\varphi_{1})}$ . (8)

(2) If eq. (8) holds and if $p(\varphi_{1})\neq 0$ , then a joint extension $\varphi$ is
unique and satisfies

$\varphi(A_{1}A_{2})=\varphi_{1}(A_{1})\varphi_{2}(A_{2+})+\frac{1}{p(\varphi_{1})}f(A_{1})\varphi_{2}(A_{2-})$ ,

$f(A_{1})\equiv\overline{\varphi_{1}}(\pi_{\varphi_{1}}(A_{1})u_{1})$
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for $A_{1}\in A(\mathrm{I}_{1})$ and $A_{2}=A_{2+}+A_{2-}$ , $A_{2\pm}\in A(\mathrm{I}_{2})_{\pm}$ .
(3) If $p(\varphi_{1})=0$ , (8) is equivalent to evenness of $\varphi_{2}$ . If this is
the case, at least a product state extension of Theorem 4exists.
(4) Assume that $p(\varphi_{1})=0$ and $\varphi_{2}$ is even. There exists a joint
extension of $\varphi_{1}$ and $\varphi_{2}$ other than the unique product state ex-
tension if and only if $\varphi_{1}$ and $\varphi_{2}$ satisfy the following pair of
conditions:

(4-i) $\pi_{\varphi_{1}}$ and $\pi_{\varphi_{1}\Theta}$ are unitarily equivalent.
(4-ii) There exists a state $\overline{\varphi}_{2}$ of $A(\mathrm{I}_{2})$ such that $\overline{\varphi}_{2}\neq\overline{\varphi}_{2}\mathrm{O}-and$

$\varphi_{2}=\frac{1}{2}(\overline{\varphi}_{2}+\overline{\varphi}_{2}\mathrm{O}-)$ .

(5) If $p(\varphi_{1})=0$ , then corresponding to each $\tilde{\varphi}_{2}$ above, there
exists a joint extension $\varphi$ which satisfies

$\varphi(A_{1}A_{2})=\varphi_{1}(A_{1})\varphi_{2}(A_{2+})+\overline{\varphi_{1}}(\pi_{\varphi_{1}}(A_{1})u_{1})\overline{\varphi}_{2}(A_{2-})$ . (9)

Such extensions along with the unique product state extension
(which satisfies eq. (9) for $\overline{\varphi}_{2}=\varphi_{2}$) exhaust all joint extensions
of $\varphi_{1}$ and $\varphi_{2}$ when $p(\varphi_{1})=0$ .
Remark. The eq.(8) is sufficient for the existence of ajoint ex-
tension also for general states $\varphi_{1}$ and $\varphi_{2}$ .

We have anecessary and sufficient condition for the existence
of joint extension of states $\varphi_{1}$ and $\varphi_{2}$ under aspecific condition
on $\varphi_{1}$ .

Theorem 8. Let $\varphi_{1}$ and $\varphi_{2}$ be states of $A(\mathrm{I}_{1})$ and $A(\mathrm{I}_{2})$ for
disjoint subsets $\mathrm{I}_{1}$ and $\mathrm{I}_{2}$ . Assume that $\pi_{\varphi_{1}}$ and $\pi_{\varphi_{1}}\ominus are$ disjoint.
Then a joint extension of $\varphi_{1}$ and $\varphi_{2}$ exists if and only if $\varphi_{2}$ is
even.

7Examples

Example 1
Let $\mathrm{I}_{1}$ and $\mathrm{I}_{2}$ be mutually disjoint finite subsets of N. Let $\rho\in$
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$A(\mathrm{I}_{1}\cup \mathrm{I}_{2})$ be an invertible density matrix, namely $\rho\underline{>}$ Al for
some $\lambda>0$ and Ik(\rho ) $=1$ , where Tr denotes the matrix $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$

on $A(\mathrm{I}_{1}\cup \mathrm{I}_{2})$ . Take any $x=x^{*}\in A(\mathrm{I}_{1})_{-}$ and $y=y^{*}\in A(\mathrm{I}_{2})_{-}$

satisfying $||x||||y||\underline{<}$ A. Let $\varphi_{1}(A_{1})\equiv \mathrm{R}(\rho A_{1})$ for $A_{1}\in A(\mathrm{I}_{1})$

and $\varphi_{2}(A_{2})\equiv \mathrm{R}(\rho A_{2})$ for $A_{2}\in A(\mathrm{I}_{2})$ . Then

$\varphi_{\rho}’(A)\equiv \mathrm{I}\mathrm{k}(\rho’A)$ , $\rho’\equiv\rho+ixy$ .

for $A\in A(\mathrm{I}_{1}\cup \mathrm{I}_{2})$ is astate of $A(\mathrm{I}_{1}\cup \mathrm{I}_{2})$ and has $\varphi_{1}$ and $\varphi_{2}$ as
its restrictions to $A(\mathrm{I}_{1})$ and $A(\mathrm{I}_{2})$ , irrespective of the choice of
$x$ and $y$ satisfying the above conditions.

Example 2
Let $\mathrm{I}_{1}$ and $\mathrm{I}_{2}$ be mutually disjoint subsets of N. Let $\varphi$ and $\psi$ be
states of $A(\mathrm{I}_{1})$ and $A(\mathrm{I}_{2})$ such that

$\varphi=\sum_{i}\lambda_{i}\varphi_{i}$
,

$\psi=\sum_{i}\lambda_{i}\psi_{i}$
, $(0< \lambda_{i}, \sum_{i}\lambda_{i}=1)$

,

where $\varphi_{i}$ and $\psi_{i}$ are states of $A(\mathrm{I}_{1})$ and $A(\mathrm{I}_{2})$ which have ajoint
extension $\chi_{i}$ for each $i$ .

$\chi=\sum_{i}\lambda_{i}\chi_{i}$

is ajoint extension of $\varphi$ and $\psi$ .
This simple example yields next more elaborate ones.
Example 3

Let $\varphi$ and $\psi$ be states of $A(\mathrm{I}_{1})$ and $A(\mathrm{I}_{2})$ for disjoint $\mathrm{I}_{1}$ and I2
with (non-trivial) decompositions

$\varphi=\lambda\varphi_{1}+(1-\lambda)\varphi_{2}$ , $\psi=\mu\psi_{1}+(1-\mu)\psi_{2}$ , $(0<\lambda, \mu<1)$

where $\varphi_{1}$ and $\varphi_{2}$ are even. Product state extensions $\varphi_{i}\psi_{j}$ of $\varphi_{i}$

and $\psi_{j}$ yield

$\chi\equiv(\lambda\mu+\kappa)\varphi_{1}\psi_{1}+(\lambda(1-\mu)-\kappa)\varphi_{1}\psi_{2}$

$((1-\lambda)\mu-\kappa)\varphi_{2}\psi_{1}+((1-\lambda)(1-\mu)+\kappa)\varphi_{2}\psi_{2}$ ,
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which is ajoint extension of $\varphi$ and $\psi$ for all $\kappa\in \mathbb{R}$ satisfying

$- \min(\lambda\mu, (1-\lambda)(1-\mu))\underline{<}\kappa\underline{<}\min((1-\lambda)\mu, \lambda(1-\mu))$ .

Example 4
Let $\varphi_{k}$ , $k=1$ , $\cdots$ , $m$ and $\psi_{l}$ , $l$ $=1$ , $\cdots$ , $n$ be states of $A(\mathrm{I}_{1})$ and
$A(\mathrm{I}_{2})$ for disjoint $\mathrm{I}_{1}$ and $\mathrm{I}_{2}$ . Let

$\varphi=\sum_{k=1}^{m}\lambda_{k}\varphi_{k}$ , $\psi=\sum_{l=1}^{n}\mu_{l}\psi_{l}$

with $\lambda_{k}$ , $\mu_{l}>0$ , $\sum\lambda_{k}=\sum\mu_{l}=1$ . Assume that there exists a
joint extension $\chi kl$ of $\varphi_{k}$ and $\psi_{l}$ for each $k$ and $l$ . Then

$\chi=\sum_{kl}(\lambda_{k}\mu_{l}+\kappa_{kl})\chi_{kl}$ (10)

is ajoint extension if

$(\lambda_{k}\mu_{l}+\kappa_{kl})\geq 0$ , $\sum_{l}\kappa_{kl}=\sum_{k}\kappa_{kl}=0$ .

Since the constraint for $mn$ parameters $\{\kappa_{kl}\}$ are effectively
$m+n-1$ linear relations (because $\sum_{kl}\kappa_{kl}=0$ is common
for $\sum_{l}\kappa_{kl}=0$ and $\sum_{k}\kappa_{kl}=0$ ), we have $mn$ $-(m +n-1)=$
$(m -1)(n-1)$ parameters for the joint extension (10).
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