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COMMUTATIVITY AND NON-COMMUTATIVITY OF
TOPOLOGICAL SEQUENCE ENTROPY ON CONTINUA

FEAEBFR HMESEMR (NAOTSUGU CHINEN)

ABSTRACT. Let hg(f) denote the topological sequence entropy of f respect to
the sequence S. We will prove the following.
(1) hs(f og) = hs(go f) for any sequence S and any graph maps f,g.
(2) For each n-dimensional compact topological manifold M with n > 1,
there exist two continuous maps F,G : M — M such that 0 = hg, (F o
G) < log2 < hs,(Go F) and 0 = hSa(F|n(i~)) < log2 < hg,(F), where
Sy = (29)2, and Q(F) is the set of nonwandering points of F.
(3) A graph map f is chaotic in the sense of Li-Yorke if and only if the shift
map oy : li‘r_n(X fl— liin(X , ) is chaotic in the sense of Li-Yorke.

(4) For any n-dimensional compact topological manifold M with n > 2, we
construct a chaotic map fas in the sense of Li-Yorke from M to itself such
that the shift map oy,, is not chaotic in the sense of Li-Yorke.

(1) and (2) are the affirmative answers of questions in [BCL, Remark 4.7].

1. INTRODUCTION.

T. N. T. Goodman introduced in [G] the notion of topological sequence entropy
as an extension of the concept to topological entropy. Let f be a continuous map
from a compact metric space (X, d) to itself. Let hg(f) denote the topological
sequence entropy of f respect to the sequence S and h(f) denote the topological
entropy of f. We know that if S = (1), then hgs(f) is equal to h(f) for all
continuous map f.

A map f: X — X is said to be chaotic in the sense of Li-Yorke if there exists
an uncountable set D such that

lim sup,,_.., d(f"(z), f*(y)) > 0 and lim inf, .o d(f"(z), f"(y)) =0

for all z,y € D with = # y. This set D is called a scramble set of f. When X
is a compact interval or the circle to itself, if h(f) > 0, then f is chaotic in the
sense of Li-Yorke, but the converse is not true, that is, there exists a continuous
map f’ :[0,1] — [0, 1] with A(f") = 0 which is chaotic in the sense of Li-Yorke.
In [FS] and [H] it was proved that f is chaotic in the sense of Li-Yorke if and
only if hg(f) > 0 for some sequence S. This shows that chaotic maps can be
characterized by the topological sequence entropy.

First, Kolyada and Snoha proved in [KS, Theorem A] that h(f o g) = h(go f)
for all continuous maps f, g from a compact metric space X to itself. Moreover,
it is showed in [BCL, Theorem 3.1 and Proposition 3.2] that hs(f og) = hs(go f)
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for any sequence S if the maps f, g are onto or X is a compact interval. But,
by [BCL, Theorem 4.5], there exist a 0-dimensional compact metric space X and
two continuous maps f,g : X — X such that 0 = hg,(fog) < hs,(g0 f) =1log2,
where Sy = (24),. The first aim of this paper is to show that hs(fog) = hs(gof)
for any sequence S and any continuous maps f, g from a graph to itself. For any
n-dimensional compact topological manifold M with n > 2, the second aim of
this paper is to construct two continuous maps F', G from M to itself such that
0 = hg,(F oG) < log2 < hg,(G o F). There are the affirmative answers of
questions in [BCL, Remark 4.7].

If Q(f) denotes the set of nonwandering points of f, it is known that Q(f) is
an invariant set for f, Q(f) C N, f*(X) and h(f) = h(fla¢)), where flag) :
Q(f) — Q(f) is the restriction map. Szleuk in [S] first pointed out that the
formula hs(f) = hs(flas)) does not necessarily hold. In [BCL, p.1708], it was
shown that log 2 = hg,(f) > hs,(fla(s)) = 0 for some continuous map f from a 0-
dimensional compact metric space to itself. And by [C2], there exists a continuous
map f : [0,1] — [0, 1] such that hg,(f) > log2 > hs,(fla¢s)) = 0. We show that
for the map F' above, hg,(F) > log2 > hsz(ﬁ'ln(p)) =0.

We define the inverse limit space associated to X and f to be the set

liE_n(X, ) ={(z:)2, € X*°|f(x;) = ;-1 foreachi=1,2,...}

with a metric d as d((z:)20, (1:)20) = S22 'd(zi,%:). And the shift map
os : lim(X, f) — lim(X, f) is defined by

af((zl)zoiﬁ) = (f(xo), Zoy T1y--- )

Rongbao in [R] proved that if f is surjective, then f is chaotic in the sense of
Li-Yorke if and only if oy is chaotic in the sense of Li-Yorke. But Cédnovas in
[C1] showed that the hypothesis that f is surjective can not be removed, that is,
there exists a chaotic map g in the sense of Li-Yorke from 0-dimensional compact
metric space to itself such that o, is not chaotic in the sense of Li-Yorke. And
he also proved in [C1] that f : [0,1] — [0,1] (whether f is surjective or not) is
chaotic in the sense of Li-Yorke if and only if oy is chaotic in the sense of Li-
Yorke. For any n-dimensional compact topological manifold M with n > 2, from
the composition method of the map F above, we construct a chaotic map fjs in
the sense of Li-Yorke from M to itself such that oy, is not chaotic in the sense
of Li-Yorke. And we show that f : G — G from a graph to itself is chaotic in the
sense of Li-Yorke if and only if o is chaotic in the sense of Li-Yorke.

2. DEFINITIONS.

Definition 2.1. A continuum is a nonempty, compact, connected, metric space.
A graph is a continuum which can be written as the union of finitely many arcs
any two of which are disjoint or intersect only in one or both of their end points.

Definition 2.2. Let Y be a subspace of a metric space X. Cl(Y) and diamY
denote the closure and the diameter of Y in a space X, respectively.
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The cardinality of a set P will be denoted by Card(P). Let Sy = (k*)32, for
each positive integer £ > 1.

Let f be a continuous map from a compact metric space X to itself. We
denote the n-fold composition f* of f with itself by fo---o f and f° the identity
map. Let us denote f~*(Y') the ith inverse image of an arbitrary set Y C X and
fu(X) = ﬂ;“él f"(X)-

Let A, B be finite open covers of X. Denote {f~™(A)|A € A} by f~™(A) for
each positive integer m. The mesh of an open cover A of X is the supremum of
the diameter of the elements of A, denoted by meshA. Let us define AV B =
{ANB|A € A, B € B} and N(A) denotes the minimal possible cardinality of a
subcover chosen from A.

Definition 2.3. Let f be a continuous map from a compact metric space (X, d)
to itself and S = {s;]¢ = 1,2,...} an increasing unbounded sequence of positive
integers. We define the topological sequence entropy of f relative to a finite open
cover A of X (respect to the sequence S) as

n—1

hs(f,A) = limsup-l- log N(\/ 7% (A)).

n—oo TN =1

And we define the topological sequence entropy of f (respect to the sequence S)
as

hs(f) = sup{hs(f, A)|A is a finite open cover of X }.

If s; = i for each 4, then hg(f) is equal to the standard topological entropy h(f)
of f introduced by Adler, Konheim and McAndrew in [AKM].

3. THE GRAPH MAPS CASE.

Lemma 3.1. Let f be a continuous map from a graph X to itself such that
fo(X) # fM(X) for all n, C, the set of all components of f*(X) \ f(X) and
E, = |U{CI(C) N f“(X)|C € C,}. There exists a positive number N such that
E, = Eyx and Card@, = CardCy for alln > N, and that CI(C) is an arc and
En N CI(C) is one point for alln > N and all C € €, and that f(En) = En.

By making use of Lemma 3.1, we can prove the following.

Theorem 3.2. Let f be a continuous map from a graph X into itself. Then
hs(f) = hs(flso(x)) for any sequence S, where f|p(x) : f¥(X) — f(X) is the
restriction map.

By Theorem 3.2 and [BCL,Proposition 3.2], we have the following.

Corollary 3.3. If f, g are continuous maps from a graph to itself, then hg(fog) =
hs(g o f) for any sequence S.
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4. THE COMPACT SET OF [0,1] CASE.

Let us denote three Cantor sets ¥', £, and ¥3 by {—2, —1,0,1,2}*,{-1,0,1},
and {(2,1,09,...) € Y|(a;)R; € X}, respectively. And let ¥ = X, U Xy,
0 = (0,0,...) and 1 = (1,1,...). The shift map o : ¥’ — X' is defined by
o(()2)) = (@i41)R;- Let p, : ¥ — {-2,-1,0,1,2}" be the projection for
each n such that p,((;)2;) = (ou,q,...,ay) for any ()2, € ¥'. Denote
=M = p,(T), 5™ = p,(T;) and 0™ = (0,0,...,0),1™ = (1,1,...,1) € £™ for
each n > 1 and each i = 1,2. For o = (0;)2, € %, denote af, = p.(a) € ™
and Xy, = p;l(als). For 8 = (61,6,,...,0,) € po(¥') and ¢ = (0},05,...,0,,) €
p(Z') (or @ € ¥, respectively), denote |8] = (|61],|02],-.-,|6|) and 8 %6 =
(01,02,...,0,,,0’1,05,..., ;1') Epn_w(Z’) (OI' 0x0 = (01,02,...,97,,0;,0,2,...) €
Y, respectively).

Now we are going to define a substracting machine p : ¥ — ¥'. First, define
w(0) = 1. Let o = ()2, € '\ {0} and k = min{i|a; # 0}. Define u(a) =
(u(a)s)2; by

1 ifl1<i<k-1
pla)i=< 1—|og| ifi=k

('] ifi>k
We notice that
(4.1) w(Zqy,) C Ly(a)), for each @ € T and each n > 1, thus, u is continuous.
Thus, for each n > 1, we can think of u as a map from (™ to itself defined by
0 — p(6 % 0)|,. And we have
(4.2) p(6) 0 = (0 *0) for all § € =™ \ {0™} and
(4.3) u*"(Zg) =Ty, ie. u2" () = 6| for allm > n and all 6 € =,
Definition 4.1.  (a) Let o, 8 € ¥’ with a|, # 8|, and £ = min{s < n|a; #
B;}. Define a|, < 8|, (or a < B) if Card{1 < ¢ < k|o; < 0} is even and
o < P or Card{1 < < k|a; < 0} is odd and ax > [.
(b) Let A, B be subspaces of [0,1]. If z < y for all z € A and all y € B, let
us denote A < B.

Now we construct a family {Dy|d € T™}(n = 1,2,...) of pairwise disjoint
compact subintervals of [0, 1] satisfying that for any o € £ and any n = 1,2,...,

(4.4) diamD,), = 9™" and

(4'5) Da|n+1 - Daln'

Moreover, we have the following property :

(4.6) Do), < Dg,, if and only if a, 3 € T with a|, < B|n-

Denote Y; = (oo, U{Dsl0 € 2™} 6 =1,2)and Y = Y; UYz. We see
that Y; and Y, are disjoint and Cantor sets. It is known that there exists the
homeomorphism h : Y — ¥ such that A™'({a}) = (e, Da, for each a € X.

Thus, for the sake of convenience, let us regard Y,Y;,Y; and h=! o (u|g) o h as
¥, %, X, and pls, respectively.
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Denote (i) = {a € ¥|a; # 0 and o*(a) = 0}. Let (a;)°, be a decreasing
sequence of positive real numbers with Y ;o 3%a; < 972 There exists a family
{Kala € Usep £(2)} of pairwise disjoint compact subintervals of [0,1] such that
diamK, < a; for all o € X(z) and all ¢ > 0 and that for a,o’ € Uy L(4), a < o
implies K, < Ky'- .

We have a monotone map = : [0,1] — [0, 1] with 7(0) = 0 and 7(1) = 1 such

that ' - ‘
(z) = { K, ifz=a¢€lUpg,Z()
one point if otherwise
Denote K, = 7~(c) for each a € , Ky = n~!(Zy) for each § € =™, X, =
7 1(Zy), Xo = 771(Z,) and X = 7-1(X). By (4.6), we see that one side of a € &
is mapped by 4 to one side of u(c). Thus, there exists the natural continuous
map f: X — X such that po (|z) = (7|g) o f and that for each a € U2, Z(4),
flk. : Ko — K, (a) is a linearly homeomorphism.

lx | |12

Y — X
uls

Remark 4.2. (1) We can think of X; = |J, g, BdK, (1 =1,2), X = X; U X,
and f as X; (i =1,2), X and f in [BCL, p.1704], respectively.

(2) We notice that all fibers of 7|x : X — ¥ have at most two points, that
(r|x)o f = po(m|x) and that hg,(pls) = 0, but hs,(f|x) = log2 by [BCL,
Lemma 4.4]. This implies that Bowen’s theorem (see [MS, Theorem 7.1,
p.165]) for topological sequence entropy does not necessarily hold.

As the proof of [BCL, Lemma 4.3 and 4.4], we have the following.
Lemma 4.3. With the notation above, 0 = hSz(ﬂXl) < log?2 < hg,(f).

5. THE MANIFOLDS CASE.

Let a € [0,1]2 and B a subspace of [0,1]2. Denote C(a,B) = {ta+ (1 —t)b €
[0,1]%|b € B and t € [0,1]}. If B = {b}, then we write C(a,b) = C(a, B).

Let £,(0) = {0} C 24, Z1(n) = {a € Zy|an, # 0 and o, = 0(k > n)}(n > 1),
me the middle point of K, and b, (k) = (Mg, 97%) € [0, 1]2 for each a € £;(n) and
each k > 0. We identify [0, 1] x {0} with [0, 1]. Moreover let A, = C(by(n), Ka)
and A, (t) = Aq N ([0,1] x {t}) for each @ € ¥;(n) and each t € [0,97"].

Next, we are going to define a closed subspace Z; C [0,1]? containing X,

and a continuous map Fy : Z; — Z; which is an extension of f|g,. Let Iy =
C(b-140(0), b140(0)) C [0,1] x {1}. In general, for each n > 1 let

I, = U C(box{-1}x0(n), boef13s0(n)) C [0,1] x {97"}.

oez(™
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Zi=XUJUI.u | Ca(n—1),5:(n) UAs),

n>0 a€X1(n)

where bo(—1) = bo(0). We see that Z; is a closed subspace and an AR by [M,

Theorem 5.5.7,p.237].

Z
b-1.0(0) bo(0) b1+0(0)
b-1+0(1) bo(1 bio(1)
b(-1,-1)0(2 ba1,—1)x0(2
bo,1yx0(2 b(o,-1)«0(2)
K(-1,0+0 Ko,1)«0 Ko K,-1)+0 K1,0)x0
(-1,1)»0 (-1,—1)+0 Kqa,-1s0 K(1,1)«0
Figure.

Let us define F; on Ag:

F1(Ao(t97™ 4+ 5(1 — ¢)97™)) = {thy(n-1ysg(n — 1) + (1 — £)bymuo(n — 1)} and

Fi(Ao(t5-97" + (1 = £)97")) = {thimuo(n — 1) + (1 = )byemaa(n)},

where n > 1,t € [0,1] and 1® % 0 = 0. We see that Fy(Ao) is the arc in Z;

connected bg(0) and Kj.

Let us define an embedding F; on C(bs(n — 1),ba(n)) U Ay (o € £;(n) and

n>1):

Fi(tba(n — 1) + (1 — t)be(n)) = thya)(n — 1) + (1 — t)by(a)(n) and

Fi(tha(n) + (1 — t)z) = thyey(n) + (1 — t) f(z),

where t € [0,1] and z € K,.
Let us define Fy on Ip: Fi(Ip) = {bo(0)}.

Let us define F on C(bgufo}s0(n), bou(sp+o(n)) (n > 1,6 = —1,1 and 6 € E;(n)):

F1(tbostopo(n) + (1 — t)bguisys0(n)) = thyu(osiopsoy(n) + (1 — t)bu(osiaysy(n),
where ¢ € [0, 1].
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Final, let us define F} on A = C(bg«{ops0(n), boxisyso(n)) (n > 1,6 = —1,1 and
9 € =™ with 6, = 0). If §; = 0(1 < i < n), define F1(A) = {F(bo(n))}. Let
6; # 0 for some i. Since F} is defined on (A N Ag.fops0) U {bes(sps0(n)}, we can
naturally extend F; on A which is an embedding.

Denote Ky, = (Kp % [0,97™]) N Z; for each § € 2(1") and each m > 0. By the
definition of F}, we have

(5.1) Fi(Z,n[0,1] x [9~™1,9™]) C Z1N[0,1] x [97™~,9™] for each m > 0 and

(56.2) Fi(Kpm) C Kpyg)m for each 8 € »{ and each m > 1.

Lemma 5.1. With the notation above, hs,(F;) = 0.

Let Z_; be the closure of the component of Z; \ {bp(0)} containing K(_1).0. We
can construct a closed subspace Z, C [0, 1]2 containing X, and a homeomorphism
F; : Zo — Z_, which is an extension of f| %, such that Z, N Z, = {b140(0)}.
Define Z =2, UZ,, F=FUF,: Z > Zand G: Z — Z by G|z = F and
G(Z,) = {bo(0)}. As the proof of [BCL, Theorem 4.5, we obtain the following.

Theorem 5.2. With the notation above, hg,(F) > log2 and 0 = hg,(F o G) <
10g2 < th(G o F)

Since Z is an AR, by Theorem 5.2, we can prove the following.

Theorem 5.3. For each n-dimensional compact topological manifold M with
n > 1, there exist two continuous maps F',G : M — M such that 0 = hg,(FoG) <
log2 < hs,(G o F) and 0 = hg,(Flgf) <log2 < hs,(F).

6. SOME APPLICATIONS TO INVERSE LIMIT SPACES
By making use of Lemma 3.1, we can prove the following.

Lemma 6.1. Let X be a graph and f a continuous map from X to itself. Then
f is chaotic in the sense of Li-Yorke if and only if f|o(x) : f9(X) — f9(X) is
chaotic in the sense of Li-Yorke.

As in proof of [C1, Theorem 2.2], by Lemma 6.1 we can show the following.

Theorem 6.2. Let X be a graph and f a continuous map from X to itself. Then

f is chaotic in the sense of Li-Yorke if and only if oy is chaotic in the sense of
Li-Yorke.

Remark 6.3. Let f be a continuous map from a compact metric space X to itself.
The proof of [C1, Theorem 2.2] implies that if o is chaotic in the sense of Li-
Yorke, then f|so(x) is chaotic in the sense of Li-Yorke, thus, f is chaotic in the
sense of Li-Yorke.

Theorem 6.4. For each n-dimensional compact topological manifold M with
n > 1, there exists a continuous maps far : M — M such that far is chaotic in
the sense of Li-Yorke and that oy,, is not chaotic in the sense of Li-Yorke.
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Thorem 6.4 shows the possibility of the existence of a map which is not chaotic
in the sense of Li-Yorke with positive topological entropy. But, recently, F. Blan-
chard, E. Glasner, S. Kolyada, and A. Maass [BGKM] prove that every continous
map with positive topological entropy is chaotic in the sense of Li-Yorke.
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