<table>
<thead>
<tr>
<th>Title</th>
<th>Pointwise and Sequential Continuity in Constructive Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ishihara, Hajime</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2003), 1318: 1-2</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2003-05</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/43023</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

KURENAI : Kyoto University Research Information Repository
Pointwise and Sequential Continuity in Constructive Analysis

Hajime Ishihara (石原 哉)
JAIST (北陸先端科学技术大学院大学)

We discuss various continuity properties, especially pointwise and sequential continuity, in Bishop’s constructive mathematics; see [1, 2, 11] for Bishop’s constructive mathematics and [3, 4, 5, 9] for various continuity properties. We say that a mapping f between metric spaces X and Y is \textit{sequentially continuous} if $x_n \rightarrow x$ implies that $f(x_n) \rightarrow f(x)$; \textit{pointwise continuous} if for each $x \in X$ and $\epsilon > 0$ there exists $\delta > 0$ such that $d(x, y) < \delta$ implies $d(f(x), f(y)) < \epsilon$ for all $y \in X$. We first show the following theorem.

\textbf{Theorem 1} The following are equivalent.

1. Every sequentially continuous mapping of a separable metric space into a metric space is pointwise continuous.

2. Every sequentially continuous mapping of a complete separable metric space into a metric space is pointwise continuous.

3. BD-N. Every countable pseudo-bounded subset of \mathbb{N} is bounded.

Here a subset A of \mathbb{N} is said to be \textit{pseudo-bounded} if for each sequence \{${a_n}$\} in A, $a_n < n$ for all sufficiently large n. Note that although BD-N holds in classical mathematics, intuitionistic mathematics and constructive recursive mathematics of Markov’s school, a natural recursivisation of BD-N is independent of Heyting arithmetic [3, 5, 8, 10].

We also show that very important theorems in functional analysis – Banach’s inverse mapping theorem, the open mapping theorem, the closed graph theorem, the Banach-Steinhaus theorem and the Hellinger-Toeplitz theorem – can be proved in Bishop’s constructive mathematics for \textit{sequentially continuous} linear mappings [6, 7]. However it has emerged that the theorems for \textit{pointwise continuous} linear mappings are equivalent to BD-N.
參考文獻

