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Let $\Omega\in \mathrm{R}^{n}$ be abounded domain with smooth boundary $\partial\Omega$ . The following
energy functional

$E_{\epsilon}(u)= \int_{\Omega}\frac{\epsilon}{2}|\nabla u|^{2}+\frac{W(u)}{\epsilon}$ ,

where $W$ is adouble well potential with strict minima at $\pm 1$ , $\epsilon.>0$ is asmall
parameter and $u$ : $\Omegaarrow \mathrm{R}$ has attracted many researchers in recent years
and, to much extent, has been quite well understood mathematically. Under
the fixed integral constraint $\int_{\Omega}u=m$ , the critical point of $E_{\epsilon}$ satisfies the
second order semilinear equation

(1) $- \epsilon\Delta u+\frac{W’(u)}{\epsilon}=\lambda$,

where Ais the Lagrange multiplier. With aminor structure condition on
$W$ such as the growth at infinity, the standard minimization in the Sobolev
space shows the existence of minimizers for all $\epsilon>0$ . The family of en-
ergy minimizers $\{u_{\epsilon}\}_{\epsilon>0}$ has asubsequence which converges to abounded
variation function $u$ which takes only $\pm 1$ for almost all point on $\Omega$ and
which has the least area interface among all the competing functions hav-
ing the same integral value ([3, 4]). The value of $E_{\epsilon}(u_{\epsilon})$ converges to
$\sigma H^{n-1}(\partial\{u=1\}\cap\Omega)$ , where $H^{n-1}$ is the (n-l)-dimensional Hausdorff mea-
sure and $\sigma=\int_{-1}^{1}\sqrt{2W(s)}ds$ . The picture is that the minimizer $u_{\epsilon}$ takes
values very close to $\pm 1$ except for the transition region with thickness of
order $\epsilon$ . If we let $M_{\epsilon}$ be the level set $\{u_{\epsilon}=0\}$ , and $\phi$ : $\mathrm{R}arrow \mathrm{R}$ be the
unique solution to the 2nd order ordinary differential equation $\phi’=W’(\phi)$

with $\phi(0)=0$ , $\phi(\infty)=1$ and $\phi(-\infty)=-1$ , then one expects that, in a
suitable sense, $u_{\epsilon}$ should look very close to $\phi(d(x)/\epsilon)$ . Here, $d(x)$ is the ap-
propriately signed distance function to the hypersurface $M_{\epsilon}$ . This is how the
comparison function is constructed in $[3, 4]$ in fact. The approach using the
monotonicity formula for general critical points of the energy is considered
in our previous work [2], which also shows that the profile of the transi-
tion region is what one expects. What these arguments show rigorousl
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is that the sequence of Radon measures defined naturally from the energy
$\mu_{\epsilon}(B)=\int_{B}\frac{\epsilon}{2}|\nabla u_{\epsilon}|^{2}+\frac{W}{\epsilon}$ converges to aRadon measure $\mu$ whose support

concentrates on some hypersurface and the (n-l)-dimensional density of $\mu$

is integral multiple of the constant $\sigma$ , at least for almost all points on the

support of $\mu$ . If $\{u_{\epsilon}\}$ are global or local minimizers, the limit $u$ has the inter-

face minimizing the (n-l)-dimensional area globally or locally, respectively,

so $\partial\{u=1\}\cap\Omega$ is areal analytic hypersurface outside the closed singular

set of codimension at least 7by the standard results from geometric measure
theory. If $\{u_{\epsilon}\}$ is only assumed to be a sequence of critical points, then the

support of $\mu$ (which includes C){rr $=1$} $\cap\Omega$ but may not coincide) is again

real analytic on adense open set of the support of $\mu$ .
If we assume that $W$ is smooth, then the standard elliptic regularity

theory shows that $u_{\epsilon}$ is also smooth, so the level set of $u_{\epsilon}$ is asmooth
hypersurface for almost all value. This does not necessarily imply that the
convergence of the level sets is smooth as $\epsilon$ approaches 0. In [2], we proved

the convergence in the Hausdorff distance topology at least. At the point

where the limit interface is smooth and density is $\sigma$ , one may wonder if

the convergence of the interface is even better than the Hausdorff distance
convergence. Here we describe what we know so far in this regard. For

dimension $n=2$, on the support of $\mu$ where the density is $\sigma$ , we show

that the level sets for $u_{\epsilon}$ , which are smooth curves, converge to the limit

curve in $C^{1}$ graph topology. That is, the $C^{1}$ norms of the level curves
represented as graphs over a line are uniformly bounded as $\epsilonarrow 0$ . For
higher dimensions, we have been unable to prove or disprove the statement
for better convergence so far. We believe that one needs to have abetter
understanding of the rescaled problem An $=W’(u)$ , where it is defined on
the domain of the order of $1/\epsilon$ so it is asymptotically approaching to the

entire function on $\mathrm{R}^{n}$ .
Suppose that $W$ is $C^{3}$ and has only three critical points. Assume also

that $W’(\pm 1)>0$ . Suppose each of $\{u_{\epsilon}\}_{1>\epsilon>0}$ satisfies (1) and that the en-
ergy, the Lagrange multiplier and the supremum norm of $u_{\epsilon}$ are uniformly

bounded with respect to $\epsilon$ by aconstant $C$ . With this setting, the results
from [2] shows that the sequence of measures $\{\mu_{\epsilon}\}$ as defined above has a
subsequence which converges to a Radon measure $\mu$ with the (n-l)-rectifiable
support. Suppose that the density at $0\in \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}\mu$ is $\sigma$ and that the approx-
imate tangent plane exists. This implies from [2] and Allard’s regularity
theory [1] that the support of $\mu$ is asmooth manifold in asmall neighbor-
hood. In the following, we restrict $n$ to be equal to 2. We then claim that
there exist aline $L$ through 0and some constants $\beta$ $>0$ and $\tilde{C}$ such that, for
all sufficiently small $\epsilon>0$ , the level set $\{u_{\epsilon}=0\}\cap B_{f/2}\mathrm{c}\mathrm{n}$ be represented
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as agraph over $L$ as $\{(x, f_{\epsilon}(x))|x\in(a_{\epsilon}, b_{\epsilon})\subset L\}$ and $||f_{\epsilon}||_{C^{1_{1}\beta}}((a_{e},b_{\epsilon}))\leq\tilde{C}$.
Thus, the level set converges subsequencially at least in $C^{1}$ topology to the
limit curve as $\epsilonarrow 0$ . The proof uses the analogies with Allard’s regularity
results in many ways, in that one approximates the level sets by afamily of
lipschitz functions and utilizes the reverse H\"older-type estimates. What one
shows is the following decay estimates. Define

$G(T, r)= \frac{1}{r^{n+1}}\int_{B_{r}}|Tx|^{2}\epsilon|\nabla u_{\epsilon}|^{2}$ ,

where $T$ is aprojection to a(n-l)-dimensional plane identified with the set
$T$ . Note that $G(T, r)$ roughly corresponds to the $L^{2}$ norm of the graph of
the level set normalized appropriately. We then suppose $G(T,r)>(\epsilon/r)^{2-\delta}$

and $\{u_{\epsilon}=0\}\cap B_{r/4}$ is not empty. One can then prove that there exist
$0<\theta<1/2$ and $\tilde{T}$ such that $G(\tilde{T}, \theta r)\leq\theta G(T,r)$ . For example, the
Reverse H\"older inequality in this setting corresponds to

$\frac{1}{r^{n-1}}\int_{B_{r/2}}|T(\frac{\nabla u_{\epsilon}}{|\nabla u_{\epsilon}|})|^{2}\epsilon|\nabla u_{\epsilon}|^{2}+(\frac{W}{\epsilon}-\frac{\epsilon}{2}|\nabla u_{\epsilon}|^{2})^{+}\leq c(G(T, r)+r\epsilon^{1/2})$ .

This estimate can be obtained from the equation (1) with asuitable multi-
plication of function and two integration by parts as well as auniform $L^{\infty}$

estimate on the positive part of the function $\frac{\epsilon}{2}|\nabla u_{\epsilon}|^{2}-\frac{W}{\epsilon}$ . Once the decay
estimate is established, then one can iterate the estimates for smaller and
smaller scale until the assumption on $G(T, x)$ does not hold for appropri-
ately rescaled setting. If it does not hold, then in case the dimension $n=2$ ,
one can prove that the level set has auniform $C^{1,\beta}$ estimate with respect
to asuitably chosen line. Note that if $G(T, x)\approx(\epsilon/r)^{2}$ , this means that
the deviation of the level set from the plane $T$ is roughly of order $\epsilon/r$ in $L^{2}$

norm, and one cannot expect that $G(\cdot)$ will decay further in asmaller scale
unless some suitable quantity is subtracted from $G(T, r)$ .

So if $G(T, r)>>(\epsilon/r)^{2}$ , then we can see the bending of the interface and
we can show the decay in asmaller scale, while we do not know what one can
say furthermore in case $G(T, r)\approx(\epsilon/r)^{2}$ . It would be interesting to know
precisely what to be said when the interface is almost flat in the $L^{2}$ norm
in this sense. The rescaled problem Au $=W’(u)$ on the entire $\mathrm{R}^{n}$ has been
studied by C. Guj L. Ambrosio, X. Cabre and others in connection with the
so called De Giorgi’s conjecture. They show certain rigidity properties and
various Harnack-type estimates and it should be interesting to investigate
the relationships between the asymptotic problems arising from (1) and the
entire solution.
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