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Derivation of variational problems from
microscopic interface model
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1 Introduction

This note reviews recent results on the Vo interface model considered over the wall or
under the weak effects of additional self-potentials. We are, in particular, interested in
the scaling limit which passes from microscopic to macroscopic levels. The results are

classified into two types:

1. Static results.
e Large Deviation Principle
e Derivation of Variational Problems (VP)
o Wulff Shape, Winterbottom Shape
o Alt-Caffarelli or Alt-Caffarelli-Friedman’s VP

2. Dynamic results.
e Motion by Mean Curvature (MMC) with anisotropy
e Dynamic Large Deviation Principle
e MMC with reflection
) Evolutibnary Variational Inequality
e Fluctuation
o Stochastic PDE with reflection
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2 Static results

2.1. Let us introduce the V¢ interface model brieflyy. We are concerned with a
surface (interface) in R%!, which separates two distinct pure phases, described by the
height variables ¢ = {¢(z) € R,z € '} measured from a reference hyperplane I' located
in R%. To avoid complications, we assume that the interface has no overhangs nor
bubbles. The variables ¢ are microscopic objects, and the space I' is discretized and
taken as I' = Dy(= ND N Z%), lattice torus (Z/NZ)%(= {1,2,...,N}?) or Z%. Here D
is a (macroscopic) bounded domain in R? and N represents the size of the microscopic

system.

An energy is associated with each height variable ¢ : I' — R as the sum over all
bonds (z,y) in T' (or in I' U JT")

H@)=H{()= ) V(¢(z) - ),
' (z,y)CT(or TUAT)
and the equilibrium state (Gibbs measure) is defined by

du = dpf = 727 HO [ do(a),

zel

where Z is a normalization constant. The potential V is symmetric, smooth and
strictly convex (0 <? ¢ < V” <% ¢, < o0). Note that the boundary conditions
v = {¢¥(z),x € OI'} are required to define H(¢) and u when I' = Dy. An infinite
volume limit (thermodynamic limit) as ' /" Z¢ exists when d > 3 and the limit measure
p has a long correlation. More information on the V¢ interface model can be found in
[7] and [13].

2.2.  Our main interest is in the scaling limit, which passes from microscopic to

macroscopic levels, defined by
RN (9) = -;7¢ ([N6)), 6¢€ D (or e T¢=[0,1)¢ RY),

where (V6] stands for the integral part of N9(€ R?) taken componentwise. The function
h" is the macroscopic height variable associated with the microscopic ¢ : I' — R. The
surface tension o = o(u) is the macroscopic energy for a surface with tilt u € R?
determined by

p (tilt of RN ~ u) N exp{—N%(u)}.



Theorem 1. (Large Deviation, Deuschel-Giacomin-Ioffe [4]) Consider the Gibbs mea-
sure u%N on I' = Dy with 0-boundary conditions ¥(z) = 0,z € 0Dy. Then, the

probability that AY is close to a given macroscopic surface h € H}(D) behaves as
Hpy (Y~ h) | ~ exp{-N‘Tp(h)},
where X p(h) is the total surface tension of h defined by
(1) Sp(h) = /D o(Vh(6)) df. 0
This result is an analogue of Dobrushin-Kotecky-Shlosman [5] for the Ising model.

Corollary 2. (Wall and constant volume conditions) For every v > 0, under the condi-
tional probability ub, (- |hY > 0, [, AV (6)d8 > v), the law of large numbers AN — h,
(as N — oo) holds, where A, is the minimizer (called Wulff shape) of the variational

problem

min {zp(h); h € HX(D),h >0, /D h(6)df = v} . O

We add a weak self-potential term to the energy H}gN(qb):
HEO™ () = HE,(9)+ Y Q(5) W(o(2),
zeDy

having the boundary conditions ¥(z) = Nf (z/N),z € Dy determined from macro-
scopic function f : 8D — R, where Q@ : D — [0,00) and W : R — R satisfies
or =3 limy_ 4o W(r) such that oy Aa- < W < oy Va_. The Gibbs measure is
associated and defined by

Ay = Ziowe B ] doto)

z€Dy

Theorem 3. (Large Deviation, Funaki-Sakagawa [11]) Assume A := a; —a_->0.
Then,

upIW (BN ~h) ~ exp{-NI5(h)},
where

I3(h) = Sh(h) - inf  SE(K),
f

>3(h) =Zp(h) - A/ Q(0)1{n)<0} 0,
D

and H}(D) is the space of all h € H (D) having boundary conditions f. O
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Corollary 4. The law of large numbers AV — hy (as N — oo) holds under ,uwQ

where h4 is the minimizer of the variational problem
min {SH(h);h € H}(D)}. O

Remark 1. (1) The variational problem obtained in Corollary 4 was studied by Alt-
Caffarelli [1], Alt-Caffarelli-Friedman [2], Weiss [18] and others.

(2) The large deviation for the Gibbs measure with -pinning instead of weak self-
potentials is discussed by [11] in one dimension.

(3) Bolthausen-Ioffe [3] proved the law of large numbers for the Gibbs measure on the
wall with J-pinning and quadratic potential under the constant volume condition in two
dimension. The limit called Winterbottom shape is uniquely (except translation)

characterized by a certain variational problem. O

3 Dynamic results

3.1. One can introduce microscopic dynamics (stationary and reversible under the

Gibbs measure p) for the interfaces by the SDEs (Langevin equation)

OH
~ 94(2)

where {w(z),z €T} is a fa.mily of independent Brownian motions and

= Y Vigz) - )

yilz—y|=1

doy(T) = ——(¢) dt + V2dw,(z), z €T,

The goal is to discuss the space-time diffusive scaling limit for ¢; = {¢:(z),z € T'}:

RN (8, 8) = -]1-/_-¢Nat([1ve]).

Theorem 5. (Hydrodynamic Limit, Funaki-Spohn [12] on the torus T¢, Nishikawa,
[14] on D with boundary conditions) As N — oo, h™(t,0) — h(t, ). The limit h(t,6)
is a unique weak solution of the nonlinear PDE (MMC with anisotropy):

@ S (8) =div {Vo(VA(1)}
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The surface tension has the following properties: o € C'(R%), Vo is Lipschitz
continuous and ¢ is strictly convex. The PDE (2) can be regarded as the gradient flow

for ¥ = g« or Zp, the total surface tension (1) on T¢ or D:

Oh )
E(t) = ”Wz(h(t))-

Theorem 6. (Dynamic Large Deviation, Funaki-Nishikawa [9] on T¢)
P (hN(t) ~ h(t), t<T) ~ exp{=N’Ir(h)},
—00

where h(t) = h(t, ) is a given motion of surface and

Ir(h) = 2 / dt /T ., {—-—~—d1v (Vo@r®)}| d

The relation to the static large deviation (Theorem 1) is given by
lim Sp(h) = Bra(h), h = h(d),
T—o0

where

ST(}—Z) = inf {IT(h), h(T, 6) = B(e)} . O

8.2. Dynamics on the wall are introduced by SDEs of Skorohod type:

1

(3)  doi(z) = — = (¢) dt + v2dw,(z) + f (Nz’ %, N—qﬁt(x)) dt + dé,(z),

3¢( )

subject to the conditions

bu(z) >0, 4(z)/ and /0 " bu(z)dlu(x) =

where f = f(t,6,h) is a given macroscopic external field. Note that £;(z) increases
only when ¢;(z) = 0. The unique invariant (stationary) measure (when f = 0,T' = Dy
with 0-boundary conditions) is given by uj, (-|¢ > 0), which is reversible under the

dynamics.

Theorem 7. (Hydrodynamic Limit, Funaki [8] on T%) As N — oo, h¥(t,0) —

h(t,0). The limit h(t,8) is & unique solution of the evolutionary variational in-
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equality (MMC with reflection (obstacle)):
oh

(a) h e L*(0,T;V), n € L*(0,T; V"), T >0,
© (G046 —v) + (To(TH0), VAW - Vo) < (£, hD) ).

aet, WEV:v>0,
(c) h(t,0) > 0, a.e.,
(d)  h(0,6) = ho(0),

where V = HY(T%), H = L*(T¢),V’ = H~}(T%) and (-,-) denotes the inner product of
H (or H?) or the duality between V' and V. O

Remark 2. Rezakhanlou [15], [16] derived a Hamilton-Jacobi equation under hyperbolic
scaling from growing SOS dynamics (¢(z) € Z) with constraints on the gradients (e.g.
Vé(zr) < v). Related results were obtained by Evans-Rezakhanlou [6] and Seppéldinen
7. O

Let us consider the equilibrium dynamics ¢, on the wall in one dimension, i.e., ¢;
is a solution of the SDE (3) withd = 1,T' = {1,2,..., N—1}, f = 0 and with 0-boundary
conditions ¢;(0) = ¢;(N) = 0 and an initial distribution p(-|¢ > 0). Macroscopic
fluctuation field (around the hydrodynamic limit h(t,8) = 0) is defined by

N (t,0) = VNRV(t,0) (> 0), 6€]0,1].

Theorem 8. (Equilibrium Fluctuation, Funaki-Olla [10]) As N — oo, ®"(¢,6) =>
®(t,0). The limit ®(t,0) is a unique weak stationary solution of the stochastic PDE

with reflection of Nualart-Pardoux type:

0P 5%®

_Et—(t’ 0) = 9557

o0 1
B(t,0) > 0, / / B(t, 6) £(dtd6) = O,
o Jo
d(t,0) = ®(t,1) =0, ¢&: random measure,

(t,0) + V2B(t,0) + £(t,6), 6¢€]0,1],

where B(t,0) is a space-time white noise and

g=1/(1", v(dn)=e""dn / / eV dn. O
R
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