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1 Introduction

This is acontinuation of our work [KG], [GGK], where we studied agradient (flow) system of

an energy whose energy density is not $C^{1}$ so that the &$\cdot$ffisivity in the equation is very strong and its

effect is even nonlocal. In this paper we consider the case when the values of unknowns are constrained.

To be specific we consider agradient (flow) system of the total variations of mappings with constraint of

their values. Let us write the equation fomauy. For amapping $u$ : $\Omegaarrow \mathrm{R}^{N}$ with adomain $\Omega$ in $\mathrm{R}^{\mathfrak{n}}$ let

$E_{1}(u)$ denote its total variation, $\dot{\iota}.e.$ ,

$E_{1}(u)= \int_{\Omega}|\nabla u|dx$ . (1.1)

Let $\delta E_{1}/\delta u$ denote its ‘first variation’ (with respect to $L^{2}$ inner product). Then the unconstrained

gradient system is formally written in the form

$u_{t}=-\delta E_{1}/\delta u$ (1.2)

for $u=u(x,t)$ , $x\in\Omega,t>0$ , where $u_{2}$ denotes the time derivative, $i.e.$ , $u_{t}=du/dt$ . If the values of $u$ is

constrained in some fixed (Riemannian) manifold $M$ embedded in $\mathrm{R}^{N}$ , the first variation $\delta E_{1}/\delta_{M}u$ with
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this constaint is of the form

$\mathit{5}E_{1}/\delta_{M}u=P_{u}(\delta E_{1}/\delta u)$ ,

where $P_{u}$ is the orthogonal projection to the tangent space of $M$ at the value of $u$ . Thus our constrained

gradient system is of the form

$u_{t}=-P_{u}(\delta E_{1}/\delta u)$ . (1.3)

The explicit form of (1.2) is

$u_{\dagger}= \mathrm{d}\mathrm{i}\mathrm{v}(\frac{\nabla u}{|\nabla u|})$ . (1.4)

If $M$ is aunit sphere $S^{N-1}$ , then the explicit form of (1.3) is

$u_{t}=\ \cdot \mathrm{v}$ $( \frac{\nabla u}{|\nabla u|})+|\nabla u|u$ (1.5)

as explained in Example 2in Section 2. An explicit calculation for (1.3) is for example in [MSO]. Although

the notion of solution of (1.4) is not apriorily clear because of singularity at $\nabla u=0$ , ageneral nonlinear

semigroups theory (initiated by Y. Komura [Ko]) applies under appropriate boundary conditions since

the energy is convex. The theory yields the unique global solvability of the initial value problem for (1.2)

under the Dirichlet boundary condition; see e.g. [Ba] and also [KG], [GGK], [HZ], [ACM]. However, for

(1.3) such atheory does not apply since it cannot be viewed as agradient system of aconvex functional.

Even for smooth energy aconstrained gradient system needs individual study for well-posedness. A

typical example is the harmonic map flow equation. It is formally written in the form (1.3) where $E_{1}$ in

(1.1) is replaced by the Dirichlet energy

$E_{2}(u)$ $= \frac{1}{2}\int_{\Omega}|\nabla u|^{2}dx$.

Its initial value problem is $\mathrm{w}\mathrm{e}\mathrm{U}$-studied, for example, in [ES], [St], [Cg], [Ch], [C], [CDY], [F]. The solution

is independent of the way how $M$ is embedded $\mathrm{i}\mathrm{m}\mathrm{R}^{N}$ . For the gradient system of the total variation

(1.3) even the notion of solution is unclear because of singularity at $\nabla u=0$ .

In this paper, as afirst attempt, we propcm to formulate aconstrained gradient system when the

enoey $\varphi$ is convex but having singularities by using subdifferentials $\theta\rho$ . It is formally written as

$u_{t}\in-P_{u}(\partial\varphi(u))$ .

The speed $u_{t}$ looks undertermined. However, under some regularity condition of $u$ we prove that the right

derivative $d^{+}u/dt$ is uniquely detemined. Like unconstrained problems it equals the minus of ’minimal

section’ of the convex set $P_{u}(\partial\varphi(u))$ .
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Unfortunately, even unique local solvability of the initial value problem for (1.3) is not clear. We

restrict ourselves to consider apiecewise constant initial data in aone dimensional domain –an open

interval. We calculate subdifferentials $\partial\varphi$ when $\varphi$ is the total variation at apiecewise constant function.

We further calculate the minimal section of $P_{u}(\partial\varphi(u))$ and construct aglobal solution for (1.3) with the

Dirichlet condition by reducing the problem to asystem of ordinary differential equations (ODEs). Akey

observation is that the minimal section is constant on each maximal spatial interval where the solution is

constant so that the solution must stay as piecewise constant and the jump discontinuities are included

in those of the initial data. This yields the uniqueness of asolution at least among piecewise constant

functions. We say that each connected component of the graph of apiecewise constant function as a

plateau.

We also study the behaviour of solution when $M$ is the unit circle $S^{1}$ . The equation of the motion of

the plateau is presented, which is written in the form of reducing ODE. We identify the form of stationary

solutions and prove that the solution becomes astationary solution in finite time.

Unlke the harmonic map flow, the notion of solution depends also on the ambient space $\mathrm{R}^{N}$ not

only on $M$ itself. Moreover, there are several ways to define the notion of total variation for mappings

to $M$ . The corresponding gradient system may differ. The definition of the total variation in this paper

is not intrinsic; it depends on distance of the ambient space $\mathrm{R}^{N}$ . For $S^{1}$ -valued problem one is tempting

to define the total variation of $u=$ $(\infty \mathrm{s} \theta,\sin\theta)$ by $\int_{\Omega}|\nabla\theta|dx$. However, this energy is also singular when

the jump of argument is $\pi$ , so the dynamics starting with such jumps cannot be determined uniquely.

There are several dicussion to define the notion of mapping of bounded variation with valued in $S^{1}$ . In

[GMS] aclass of mappings approximated by smooth $S^{1}$ mapping was characterized.

Although there are huge literature on quasilinear parabolic equations with singularity at Vu $=0$ , the

singularity is weaker than ours in the sense that the diffusion effect is still local; see e.g. [D], [G]. There

are several fields where equations with nonloal singular diffusivity are proposed. The first example stems

ffom material sciences for describing motin of antiphase grain boundaries [Gu]. In fact, acrystffiine

curvature flow equation was proposed [AG], [T] as an example of anisotropic curvature flow equations

[G], [Gu] with singular interfacial energy. When the interface is acurve given as the graph of afunction,

one of simplest examples is of the form (1.4) with $n$ $=1[\mathrm{F}\mathrm{G}]$ . The second example stems from image

analysis. $\mathrm{h}$ [ROF] it was proposed to use gradient flow system of the total variation with $L^{2}$-cons ta nt

86



for agrey level function $u$ to remove noises from images. The third example stems from plastisity

problem [HZ]. The fourth example is derived from the phase field model of grain structure evolution

which include grain boundary migrations and grain rotation [KWC],[WKC],[LW],[GBP]. The equation

of orientation with singular diffusibity is coupled with the equation of ordering parameter. This model

yields amathematical subproblem with spatialy non-unifo $\mathrm{m}$ energy. We developed amathematical

theory which handles such anon-uniform equation with sigular diffusivity in [KG] and [GGK] together

with the case of the uniform energy. By now well-posedness for unconstained gradient system (1.3) is

established by many authors [FG], [HZ], [ACM], $[\mathrm{C}\mathrm{h}\mathrm{W}]\ldots$

Although the curvature flow equations with singular diffosivity do not have the divergence structure

of the form (1.2), they are well-studied for evolution of curves [GG1] based on order-preserving structure.

For asurface evolution the corresponding theory is widely open; see e.g. [BN], [GPR]. There are several

other applications of singular diffusivity, for example for formation of shocks of conservation laws [GG2],

[TGO].

The problem with value constraint naturally arises in image processing to remove noise fiom direction

field of color gray-level mappings $u=(u_{1},u_{2},u_{3})$ keeping its strength $u_{1}^{2}+u_{2}^{2}+u_{\}^{2}=1$ . There is anice

book for background of the problems form image processing. As mentioned in [ST \S 6.3] the well-posedness

for the initial-boundary problem for constrained problem (1.3) has not yet been studied even for (1.5).

This type of constrained problems also naturally arise in multi-grain problems [KWC] where $u$ is an angle

of averaged crystagraphical directions.

2Gradient system with constraint

We prepare an abstract framework for studying gradient systems of a convex functional. Let $\varphi(\not\equiv\infty)$

be aconvex, lower semicontinuous function on aHilbert space $H$ with values in $\mathrm{R}\mathrm{U}\{\infty\}$ . The gradient

system for $\varphi$ is of the form

$\frac{du}{dt}(t)\in-\mathrm{d}\mathrm{v}(\mathrm{u}(\mathrm{t}))$ for $t>0$ , (2.1)

where $\partial\varphi(v)$ denotes the subdifferential of $\varphi$ at $v$ , :. $e.$ ,

$\partial\varphi(v):=$ {$\xi\in H;\varphi(v+h)$ $-\varphi(v)\geq\langle h,\xi\rangle$ for all $h\in H$}
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and $u$ is afunction from $(0, \infty)$ to $H$ . It is well known (see e.g. [Ba]) that the problem (2.1) admits a

unique global solution for any given initial data in $H$ . We next consider agradient system with constraints

on values of functions. Let $(\mathrm{u}, w)$ denote the standard inner product of $v$ , $w\in \mathrm{R}^{N}$ . Let $\Omega$ be asmoothly

bounded domain in $\mathrm{R}^{n}$ . The space of $\mathrm{R}^{N}$ -valued square integrable functions is denoted by $L^{2}(\Omega;\mathrm{R}^{N})$ .

As aHilbert space $H$ we take $L^{2}(\Omega;\mathrm{R}^{N})$ equipped with the inner product

$\langle f,g\rangle=\int_{\Omega}(f(x),g(x))dx$ for $f,g\in H$.

Let $M$ be asmoothly embedded complete manifold in $\mathrm{R}^{N}$ . For agiven point $v\in M$ let $\pi$, denote the

orthogonal projection from $\mathrm{R}^{N}=T_{v}\mathrm{R}^{N}$ to the tangent space $T_{v}M$ of $M$ at $v$ . Let $\mathcal{M}$ be the space of

$L^{2}$ mapping from $\Omega$ to Af $i.e.$ ,

$\mathcal{M}=$ { $f\in H;\mathrm{f}(\mathrm{x})\in M$ for $\mathrm{a}.\mathrm{e}$ . $x$ $\in\Omega$ }.

For $g\in \mathcal{M}$ we define amapping fiom $H$ to $H$ by

$P_{\mathit{9}}(f)(x)=\pi_{g(x)}(f(x))$ for $\mathrm{a}.\mathrm{e}$ . $x\in\Omega$ ,

where $f\in H$ . By definition $P_{g}$ is an orthogonal projection of $H$ so that its image $H_{\mathit{9}}$ is aclosed subspace

of H. (Actually, it is the tangent space of the Hilbert manifold $\mathcal{M}$ at $g.$ )

Aconstained (by $M$) gradient systems is of the form

$\frac{du}{dt}(t)\in-P_{u(t)}(\partial\varphi(u(t)))$ for $t>0$ . (2.2)

This problem is no longer dissipative so unique globally solvability is not expected even if $\varphi$ is smooth so

that no singular diffusivity appears. In fact, there is acounterexample for global solvability of asmooth

solution and uniqueness for the harmonic map flow in Example 1.

Example 1(Harmonic map flow). Let $g$ be aLipschitz map from $\partial\Omega$ to $M$ . For $v\in H$ we set

$\varphi(v)=\{$

$\frac{1}{2}\int_{\Omega}|\nabla v|^{2}dx$ , if $\partial_{x:}v$ , $v$ $\in H(1\leq i\leq n)$ with $v=g$ on 0,

$+\infty$ , otherwise.

Then (2.2) is the harmonic map flow equation with the Dirichlet condition $v=g$ on $\partial\Omega$ . Here $\nabla v=$

$(\partial_{\mathrm{r}_{l}}v, \ldots, \partial_{x_{n}}v)$ and $\partial_{x:}=\partial/\partial x_{\dot{1}}$ and $|\nabla v|^{2}$ denotes the sum of au squares of $\partial_{\mathrm{r}:}v^{s}$ for $v=(v^{1}, \ldots,v^{N})$ .

Unconstained problem (2.1) for this $\varphi$ is the heat equation with the Dirichlet condition. Of course, $\varphi$ is

alower continuous, convex function in $H$ .
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83
The harmonic map flow equation is well-studied by many authors. Uniqueness and global solvability

depends on dimension of 0and also geometric properties of manifold $M$ . For example if $\Omega$ is two

dimensional $i$ . $e.$ , $n$ $=2$ , there is aunique global weak solution which is regular except afinite number

of isolated points and the energy is decreasing in time [St], [Cg], [F]. When $n\geq 3$ , although there exists

aglobal weak solution, it may not be unique [Ch], [C]. If $M=S^{1}$ , then the global solution is smooth.

However, if $M=S^{2}$ , there exists asmooth local solution which develops singularities in finite time [CDY]

when $\Omega$ is atwo dimensional disk. See, for example, [S] for more complete list of references on this topics.

If

$M=S^{N-1}=\{\mathrm{z}\mathrm{o}\in \mathrm{R}^{N};|w|=1\}$ (2.3)

:. $e$ . $M$ is the unit sphere, then for $z$ $\in M$

$\pi_{z}(y)=y$ $-(y, z)z$ for $y\in \mathrm{R}^{N}$ .

Since $\partial\varphi(v)=\{-\Delta v\}$ for $v$ (belonging to the domain of $\partial\varphi$ ),

$-P_{v}(\phi(v))=\{\Delta v-(\Delta v,v)v\}$ .

Since $|v|$ $=1$ so that (Av,v) $=\ \cdot \mathrm{v}(\nabla v,v)-|\nabla v|^{2}=-|\nabla v|^{2}$ , we observe that

$-P_{v}(\partial\varphi(v))=\{\Delta v+|\nabla v|^{2}v\}$ .

So (2.2) is formally written as

$\frac{\partial u}{\partial t}=\Delta u+|\nabla u|^{2}u$ .

Example 2(Total $\mathrm{v}$ riation flow with constraint). Let $g$ be aLipschitz map form ato $M$. Let $\tilde{g}$

denote aLipschitz extension of $g$ to $\mathrm{R}^{n}$ . For $v\in H$ let $\tilde{v}$ be its extension to $\mathrm{R}^{n}$ such that $\tilde{v}(x)=\tilde{g}(x)$

for $x\in \mathrm{R}^{n}\backslash \Omega$ . We set

$\varphi(v)=\{$

$\int_{\overline{\Omega}}|\nabla\tilde{v}(x)|dx$ , if $\tilde{v}\in BV(\Omega;\mathrm{R}^{N})$

$+\infty$ , otherwise,
(2.4)

where $BV$ denotes the space of functions of total variations. The quantity $\varphi(v)$ is the total variation of

the measure $\nabla v$ in $\mathrm{R}^{n}$ . The reason we extend $v$ to $\tilde{v}$ is that we would rather measure the discrepancy

of $v$
$\mathrm{f}$ or $g$ on the boundary. By this choice of $\varphi(2.1)$ is the total variation flow equation with Dirichlet

condition. Its formal form is

$\frac{\partial u}{\partial t}=\mathrm{d}\mathrm{i}\mathrm{v}(\frac{\nabla u}{|\nabla u|})$ . (2.5)
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It is easy to see that $\varphi$ is aconvex, lower semicontinuous function in $H$ [GGK]. The equation (2.2) is the

Dirichlet problem for the total variation flow equation with constaint. If $M$ is the unit sphere (2.3), then

its formal form is

$\frac{\partial u}{\partial t}=\mathrm{d}\mathrm{i}\mathrm{v}(\frac{\nabla u}{|\nabla u|})+|\nabla u|u$

since $( \mathrm{d}\mathrm{i}\mathrm{v}(\frac{\nabla v}{|\nabla v|}), v)=-|\nabla v|$ for $v$ satisfying $|v|=1$ .

Example 3(A simple inhomogeneous example). Let $a$ be apositive continuous function in Q. Instead

of Example 2we set

$\varphi(v)=\int_{\Omega}a(x)|\nabla\tilde{v}(x)|dx$

for $v\in BV(\Omega, \mathrm{R}^{N})$ and $\varphi(v)=+\infty$ otherwise. This $\varphi$ is also aconvex, lower semicontinuous function

in $H$ . This type of inhomogenous one is important in application to multi-grain problem [GGK], [KG]

and also image processing e.g. $[\mathrm{C}\mathrm{h}\mathrm{W}]$ .

3Characterization of speed

The evolution laws (2.1) and (2.2) look ambiguous since $\partial\varphi$ is multivalued. Like (2.1) the speed

$du/dt$ of the evolution by (2.2) is actually uniquely detemined under the stronger assumptions than those

for (2.1). We state such acharactarization of the speed in this section. Unfortunately, it does not yield

the uniqueness of asolution of the initial value problem for (2.2).

We prepare several notations. For aclosed convex set $A$ in aHilbert space there exists aunique point

$z$ closest to the origin. We shall write $z$ by $0A$ . Since $\partial\varphi(v)$ is always aclosed convex set in $H$ , $\mathrm{o}(\partial\varphi(v))$

is $\mathrm{w}\mathrm{e}\mathrm{U}$-defined and is denoted by $\partial^{\mathrm{O}}\varphi(v)$ . It is called the canonical restriction (or minimal section) of

$\partial\varphi(v)$ . The set Pv(dip(v)) is also aconvex set in $H_{v}$ for $v\in \mathcal{M}$ since $P_{v}$ is an orthogonal projection.

However, it may not be closed. If there exists apoint $z’\in P_{v}(\partial\varphi(v))$ which is closest to the origin of $H_{\mathrm{v}}$ ,

it must be unique since the set is convex. We shall denote $z’$ by $0P_{v}(\partial\varphi(v))$ . We call this element the

minimal section (of $P_{v}(\partial\varphi(v))$ .

continuous and right differentiable. Assume that the right derivative $d^{+}u/dt$ is continuous in [to, $t\mathrm{o}+\delta$]
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$\{\partial^{0}\varphi(u(t)+P_{u(t)}(u(t+\tau)-u(t))) ; t, t+\tau\in[t_{0}, t_{\mathrm{O}}+\delta], \tau\in \mathrm{R}\}$

is bounded in H. If $u$ satisfies

$\frac{d^{+}u}{dt}(t)\in-P_{u(t)}$ ( $\partial\varphi(u(t))$ for $t\in[t_{0},t_{0}+\delta$), (3.1)

then

$\frac{d^{+}u}{dt}(t)=-^{0}P_{u(t)}$ ($\partial\varphi(u(t))$ for $t\in[.t_{0},t_{0}+\delta$). (3.2)

In particular, the minirnal section $of-P_{u(t)}(\partial\varphi(u(t)))$ always exists for $t\in[t_{0},t\mathrm{o}+\delta)$ .

Proof. It suffices to prove (3.2) for $t=t_{0}$ . We may assume that $t_{0}=0$. we set

$h(s)$ $=u(s)-u(0)$ , $P_{\epsilon}=P_{u(\cdot)}$ for $s\in[0,\delta)$

to simplify the notation. By (3.1)

$( \frac{d^{+}u}{dt}(s), h(s)\rangle=(-\frac{d^{+}\mathrm{u}}{dt}(s), -P_{l}h(s)\rangle\leq\varphi(u(s)-P_{s}h(s))-\varphi(u(s)).$ (3.3)

By definition for $\xi\in P_{0}(\partial\varphi(u(0))$ we have

$(-\xi, h(s))=\langle-\xi, P_{0}h(s)\rangle\leq\varphi(u(0))-\varphi(u(0)+P_{0}h(s))$ . (3.4)

Combining (3.3) and (3.4), we obtain

$\langle\frac{d^{+}u}{dt}(s), h(s)\rangle\leq(-\xi, h(s)\rangle+\Phi(s)+\Psi(s)$ (3.5)

with

$\Phi(s)=\varphi(u(s)-P,h(s))-\varphi(u(0))$ ,

$\Psi(s)=\varphi(u(0)+P_{0}h(s))-\varphi(u(s))$ .

We divide both hand sides by $s>0$ . Sending $s$ to zero yields

$|| \frac{d^{+}u}{dt}(0)||^{2}\leq\langle-\xi, \frac{d^{+}u}{dt}(0)\rangle\leq||\xi||||\frac{d^{+}u}{dt}(0)||$ (3.5)

if we admit

$\varlimsup_{s\downarrow 0}\Phi(s)/s=0$ and $\overline{1\dot{\mathrm{m}}}\Psi(s)/s=0s\downarrow 0$ ’ (3.2)
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where $||\cdot$ $||$ denotes the norm in $H$ . By (3.5) we observe that $d^{+}u(0)/dt$ is the minimal section of

$P_{\mathrm{O}}(\partial\varphi(u(0))$ .

It remains to prove (3.6). We shall present the proof for $\Phi$ since the proof for $\Psi$ is similar. By

defintion of subdifferentials

$\varphi(u(s)-P_{t}h(s))-\varphi(u(0))\leq\langle(1-P_{\epsilon})h(s),\theta^{1}\varphi(u(s)-P_{s}h\{s))\rangle$

By our boundedness assumption on $\theta^{\mathrm{I}}\varphi$ it suffices to prove that

$\lim_{\epsilon\downarrow 0}||(1-P_{l})h(s)||/s=0$ . (3.7)

By definition of the tangent space there exists aconstant $C$ that satisfies

$|(1-\pi_{v})\zeta|\leq C|\pi_{v}\zeta|^{2}$

for all ($;\in \mathrm{R}^{N},v\in M$ satistying ( $+v\in M$ . Thus

$||(1-P_{\theta})h(s)||^{2}/s^{2} \leq C\int_{\Omega}\frac{|h(s)|^{2}}{s^{2}}|h(s)|^{2}dx$ (3.8)

Since $h(s)/s$ $arrow d^{+}u(0)/dt$ as $s$ $\downarrow 0$ in $H$ , $|h(s)|^{2}/s^{2}arrow|du^{+}(0)/dt|^{2}$ in $L^{1}$ sense. Since $M$ is bounded,

$|h(s)|$ is bounded in $L^{\infty}$ for small $s$ . So the right hand side of (3.8) converges to zero as $sarrow \mathrm{O}$ since

$h(x, s)arrow \mathrm{O}\mathrm{a}.\mathrm{e}$ . $x\in\Omega$ by taking asubsequence. Thus we have proved (3.7) so we obtain (3.6). $\square$

4One dimensional piecewise constant evolution

We now consider the total variation flow with constraint (Example 2) when the domain $\Omega$ is an

interval $(z_{0},z_{1})$ . We consider the initial value problem

$\frac{du}{dt}(t)\in-P_{*\{t)}(\partial\varphi(u(t)))$ , $u|_{\subset \mathrm{O}}=u_{\mathrm{O}}$ (4.1)

with $\varphi$ defined by (2.4) with $\Omega=(z_{\mathrm{O}},z_{1})$ . We consider apiecewise constant initial data

$\mathrm{u}\mathrm{Q}(\mathrm{x})=h_{}^{\mathrm{O}}\in \mathrm{R}^{N}$ on $(x:, x_{\dot{|}+1})$ , $i=0,1$, $\ldots$ , $\ell-1,\ell\geq 2$ , (4.2)

where $z_{0}=x_{0}<x_{1}<x_{2}<\cdots<x\ell=z_{1}$ . The boundary values $h_{\mathrm{O}}^{\mathrm{O}}$ , $h_{\ell-1}^{\mathrm{O}}$ are taken so that $h_{0}^{\mathrm{O}}=g(zo)$

and $h_{\ell-1}^{0}=g(z_{1})$ . We also assume that $h_{i}^{\mathrm{O}}\neq h_{i+1}^{\mathrm{O}}$ for $i=0,1$ , $\ldots$ , $\ell$ $-2$.

We shall seek asolution $u(t)=u(x,t)$ of (4.1)-(4.2) when $u(x,t)$ is piecewise constant and its jump

discontinuities are included in $\{xj\}_{i=1}^{\ell}$ .
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4.1 Subdifferentials

We first calculate the subdifferential $\partial\varphi$ of $\varphi$ defined by (2.4) at apiecewise linear function $u_{0}$ defined

by (4.2). We set

$m_{\dot{*}}^{\mathrm{O}}=(h^{0}.\cdot-h_{i-1}^{0})/|h^{0}.\cdot-h_{\dot{*}-1}^{0}|$ , $i=1$ , $\ldots$ , $\ell-1$ . (4-3)

Lemma 4.1 Let $f\in L^{2}(\Omega;\mathrm{R}^{N})$ be of the form

$f(x)=-(\xi(x))_{x}$ , $|\xi(x)|\leq 1$ , $x\in\Omega=(z_{\mathrm{O}},z_{1})$ (4.4)

for some continuous 4in $\Omega$ that satiffies

$\xi(x_{\dot{1}})=m_{j}^{\mathrm{O}}$ , $i=1,2$, $\ldots$ , $\ell-1$ . (4.5)

then $f\in\partial\varphi(u_{0})$ . Conversely, if $f\in\partial\varphi(u_{0})$ , then $f$ is of the form (4.4) with (4.5).

Proof. The proof is similar to that of [GGK, \S 3.2, Lemma 1]. We shaU check

$\langle v-u_{\mathrm{O}},f\rangle\leq\varphi(v)-\varphi(u\mathrm{o})$

for all $v\in D(\varphi)=\{v;\varphi(v)<\infty\}$ . By definition

$\langle v-u_{\mathrm{O}},f\rangle=-\int_{\Omega}(v-u_{0}, \xi_{x})dx$. (4.6)

Since $|\xi|\leq 1$ , integrating by parts we see

$- \int_{\Omega}(v,\xi_{x})dx$ $= \int_{\Omega}(v_{x},\xi)dx-(u_{\mathrm{O}},\xi)|_{z_{\mathrm{O}}}^{z_{1}}\leq\varphi(v)-u_{0}\xi|_{z_{\mathrm{O}}}^{z_{1}}$, (4.7)

where $v_{z}$ is regarded as aRadon measure; $\varphi(v)$ equals the total variation of $(\tilde{v})_{\mathrm{r}}$ . For example

$\varphi(u_{0})=.\cdot\sum_{=1}^{\ell-1}[h_{}^{0}-h_{\dot{*}-1}^{0}|$ .

Since $\xi(x:)=mj$ , we see that

$\int_{\Omega}(u_{0},\xi_{x})k$
$=u_{0} \xi|_{z\mathrm{o}}^{z_{1}}-\sum^{1}(h^{0}-|h_{i-1}^{0})m_{\dot{*}}^{0}\ell-$.

(4.8)
$\dot{*}=1$

$=u_{0}\xi|_{z\mathrm{o}}^{z_{1}}-\varphi(u\mathrm{o})$ .

The formula (4.6)-(4.8) now yield

$\langle v-u_{0},f)$ $\leq$ $\varphi(v)-u_{0}\xi|_{z_{\mathrm{O}}}^{z_{1}}+u_{\mathrm{O}}\xi|_{z\mathrm{o}}^{z_{1}}-\varphi(u_{0})$

$=$ $\varphi(v)-\varphi(u_{\mathrm{O}})$ ,
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which implies $f\in\partial\varphi(u_{0})$ .

Conversely, assume that $f\in\partial\varphi(u_{0})$ . Let $\zeta$ be aprimitive $\mathrm{o}\mathrm{f}-f$ . Since $f$ CE $L^{2}(\Omega;\mathrm{R}^{N})$ , (must be

absolutely continuous on 0. The condition $f\in\partial\varphi(u\mathrm{o})$ is equivalent to

$\int_{\Omega}(v-u_{0}, \zeta_{\mathrm{r}})dx\leq\varphi(v)-\varphi(u_{0})$. (49)

We test various $v$ in this inequality to derive properties of $($ .

We plug

$v(x)=u_{0}(x)- \lambda m:\int_{z_{\mathrm{O}}}^{x}\delta(\tau-x:)d\tau$, $\lambda\in \mathrm{R}$ , $|\lambda|<|h_{j}^{\mathrm{O}}-h_{j-1}^{0}|$

in (4.9) and integrate by parts to get

$-\lambda(m_{j}, \zeta(x_{j}))\leq-\lambda$.

for $i=1$ , $\ldots,\ell-1$ . Since this inequality holds for both positive and negative $\lambda$ , we conclude that

$(m_{j}, \zeta(x_{j}))=1$ , $i=1$ , $\ldots$ , $\ell-1$ .

For $\hat{x}\in(\mathrm{z}\mathrm{o}, z_{1})\backslash \{x_{\dot{1}}\}_{\mathrm{j}=1}^{\mathit{1}-1}$ and $i\in\{1, \ldots,l -1\}$ we set

$\mathrm{v}(\mathrm{x})=v(x)+\lambda\int_{z\mathrm{o}}^{x}m\delta(\tau-\hat{x})d\tau$ , $\lambda\in \mathrm{R}$, $m\in S^{N-1}$ .

We plug this $v$ in (4.9) and integrate by parts to get

$\lambda(m, \zeta(\hat{x}))\leq|\lambda|$

Since this inequality holds for both positive and negative $\lambda$ , we observe that

$|(m,\zeta(\hat{x}))|\leq 1$

Since $m\in S^{N-1}$ is arbitrary, this implies [ $\zeta(\hat{x}))|\leq 1$ . Be continuity of $\langle$ we see that

$|\zeta(x)|\leq 1$ for all $x\in\Omega$ .

Since $(m_{i}, ((x_{\dot{1}}))=1$ , the inequality $|\zeta(x)|\leq 1$ implies that $\mathrm{C}(\mathrm{x}\mathrm{i})=m.\cdot$ . We have thus proved that

$f\in\partial\varphi(u_{0})$ must have the form (4.4)-(4.5). $\square$
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4.2 Minimal section

We shall calculate $0P_{u_{\mathrm{O}}}\partial\varphi(u_{0})$ for apiecewise constant function $u_{\mathrm{O}}$ in (3.7). In general it is not clear

that $0P_{v}\partial\varphi(v)=P_{v}\#\varphi(v)$ but for our $u_{\mathrm{O}}$ this property holds.

Lemma 4.2. Let $L_{i}$ be the length of the interval $(x_{j},x_{\dot{|}+1})$, :, $e.$ , $L.\cdot=x.\cdot+1-x_{j}$ . Then

$-^{\mathrm{O}}P_{u_{\mathrm{O}}}((\partial\varphi)(u_{0}))(x)=\{$

$L_{j}^{-1}\pi_{h_{}^{\mathrm{O}}}(m_{*+1}^{0}.-m_{*}^{0}.)$ for $x$ $\in(x:,x:+1)$ ,
$i=1$ , $\ldots,\ell-2$ ,

0for $x\in(x_{0}, x_{1})\cup(X\ell-1, x\ell)$ .

Moreover, $0_{P_{u_{\mathrm{O}}}((\partial\varphi)u_{0})=P_{u\mathrm{o}}(\theta^{1}\varphi)(uo))}$ .

Proof. By Lemma 4.1 we already know the explicit form of $\partial\varphi(\mathrm{u}_{\mathrm{O}})$. If $q=^{\mathrm{O}}P_{u_{\mathrm{O}}}(\partial\varphi)(u_{0})$ , it must be

$q=-P_{u_{\mathrm{O}}}(\eta_{x})$

with $\eta$ minimizing

$||q||^{2}= \sum_{i=0}^{\ell-1}\int_{xj}^{x:+1}|\pi_{h_{}^{\mathrm{o}\eta_{x}|^{2}dx}}$

with constraints $\eta(xj)=m_{j}^{0}(i=1,2, \ldots,\ell -1)$ and $|\eta(x)|\leq 1$ for $x$ $\in\Omega$ . It suffices to minimize

$\int_{x}^{x_{j+1}}.|\pi_{k_{[mathring]_{j}}}\eta_{x}|^{2}dx$

with above constraint. The answer is easy. The minimum is attained when $\eta$ is linear

$\eta(x)=\{(x-xj)m_{\dot{\iota}+1}^{0}+(xj+1-x)m_{\dot{1}}^{0}\}L_{j}^{-1}$ for $x\in(x_{i}, x_{i+1})$

for $i=1,2\ldots$ , $\ell$ $-1$ and

$\eta(x\rangle=\{$

$m_{1}^{\mathrm{O}}$ for $x$ $\in(x_{0},x_{1})$ ,
$m_{\ell-1}^{0}$ $\mathrm{f}\mathrm{i})\mathrm{r}$ $x\in(x\ell-1, x\ell)$ .

Since $q=-P_{u_{\mathrm{O}}}(\eta_{x})$ , we have an expression of $0P_{u_{\mathrm{O}}}(\partial\varphi)(u_{0})$ in Lemma 4.2. 0

Since $P\varphi(u_{\mathrm{O}})$ is also computable and

$\theta\varphi(u_{0})=\{$

$L_{j}^{-1}(m_{+1}^{0}.\cdot-m_{j}^{0})$ for $x\in(x.\cdot, x_{*+1}.)$ , $i=1,2$, $\ldots,t$ $-2$,

0for $x\in(x_{\mathrm{O}},x_{1})\cup(x_{\ell-1}, x\ell)$ ,

$\mathrm{w}\mathrm{e}$ obtain $0P_{\mathrm{u}_{\mathrm{O}}}(\partial\varphi)(u_{0})=P_{u_{\mathrm{O}}}(\theta^{1}\varphi(u_{0}))$ .
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4.3 Dynamics

We consider (4.1)-(4.2) assuming that

$u(x, t)=h_{i}(t)\in \mathrm{R}^{N}$ on $(x_{i,:+1}x)$ , $i=0$ , 1, $\ldots$ , $l$ $-1$ , $t>0$ (4.10)

with $h_{0}(t)=g(z_{\mathrm{O}})$ and $h_{\ell-1}(t)=g(z_{1})$ . The values $h_{\dot{1}}(t)$ and $h_{\dot{*}+1}(t)$ may agree for some $t>0$ . It turns

out that the problem (4.1)-(4.2) is reduced to an ODE system for $h_{\dot{1}}$ ’s. Moreover, there exists aunique

global solution.

Theorem 4.3. Assume that $M$ is compact. There exists aunique

$h(t)=(h_{1}(t), \ldots, h_{\ell-2}(t))$

such that $h_{i}(1\leq i\leq\ell-2)$ is Lipschitz continuous bom $[0, \infty)$ to $M$ which is smooth except finitely

many points such that (4.10) solves (4.1)-(4.2). Moreover, $h_{\dot{1}}$ solves

$\frac{dh_{*}(t)}{dt}.=\frac{1}{L_{i}}\pi_{h:(t)}(m_{j+1}(t) -m_{i}(t))$ for $x\in(Xj, Xj+1)$ , (4.11)
$i=1$ , $\ldots,\ell$ $-2$

for sufficiently small $t>0$ , where

$m_{i}(t)=\mathrm{h}\mathrm{j}(\mathrm{t})-h:-1(t))/|h_{*}.(t)-h|.-1(t)|,i=1$ , $\ldots$ : $\ell-1$ . (4.12)

$Pro\mathrm{o}/$. If hi’s are Lipschitz on $[0, \infty)$ and smooth except finitely many points, $u$ given by (4.10) fulfills

the regularity assumptions of Theorem 3.1. Then by Theorem 3.1 and Lemma 4.2 $h_{j}$ must solve (4.11)

until the first merging time when $h:=h.\cdot+1$ for some $i$ .

Of course, (4.11) is uniquely solvable until the first merging time. If $h_{j}’ \mathrm{s}$ merges at some time $t_{\mathrm{o}}$ ,

we removes some $x_{*}$
. ’s and renumber jumps Zj’s such that $h_{j}(t_{0})\neq h_{j+1}(t_{0})$ for $:=0,1$ , $\ldots$ , $l_{0}-2$ with

$\ell_{\mathrm{O}}<\ell$ , Again we are able to solves (4.11). Repeating this procedure finitely many times, one is able

to solve (4.1)-(4.2) uniquely and globally-in-time. (Since h,-’ $s$ are bounded, the solution of (4.11) can be

extended unless some $h_{i}’ \mathrm{s}$ merge.) Since the right hand side of (4.11) is bounded (independent of $t$), the

solution $h_{j}’ \mathrm{s}$ must be globally Lipschitz continuous in time. $\mathrm{o}$
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4.4 Constrained gradient system of ordinary differential equations

If $u=u(x,t)$ is of the form (4.10), then

$\varphi(u(t))=\psi(h_{1}(t),\ldots,h_{d}(t))$ , $d=\ell-2(\ell\geq 3)$

$\psi(h_{17f}\ldots h_{d})=\sum_{j=1}^{d+1}|h_{j}-h_{\mathrm{j}-1}|$ , $h_{0}=g(z_{0})$ , $h_{\ell-1}=g(z_{1})$ .

(If $\ell=2$, $\varphi(u(t))=|h_{1}-h_{0}|$ and is independent of $t_{\backslash }$ ) Using this $\psi$ : $\mathrm{R}^{Nd}arrow \mathrm{R}$, we are able to rewrite

(4.11) as

$\frac{dh}{dt}=-\pi_{h}$ gad. $\psi(h)$ , $\mathrm{h}(\mathrm{t})=(h_{1}(t),\ldots,h_{d}(t))$ , (4.13)

where $\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}_{*}$ is the gradient of $\psi$ in $\mathrm{R}^{Nd}$ with respect to the inner product

$(h,g)_{*}= \sum_{\dot{|}=1}^{d}L:(h_{*}.,g:\}$

for $g=$ $(g_{1}$ , ..., $gd)$ and $\pi h$ $=(\pi h_{1}$ , ..., $\pi_{h_{d}})$ . Indeed, by defition,

$\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}_{*}\psi(h)=(L^{-1}.\frac{\partial\psi}{\partial h_{j}}|)_{=1}^{d}$

Since $\frac{\partial\psi}{\partial h_{}}(t)=-(m_{+1}|.(t)-\mathrm{m}\mathrm{i}(\mathrm{t}))$ , (4.11) is the same as (413). This weight is very natural since our

subdifferential of $\varphi$ is taken with respect to $L^{2}(\Omega)$ -inner product. Let us summarize what we obtained

here.

Proposition 4.4. Assume that $M$ is compact. Let $h(t)$ be afunction defined in Theorem 4.3. Then $h$

solves (4.13) for $t$ before the first merging time.

We exped that in finite time our solution $u$ stops moving. We shall prove such aphenomena when

$M=S^{1}$ . For this purpose we study the large time behabiour of $(4,13)$ assuming that there is no merging

of $h_{\dot{1}}$ ’s.

Proposition 4.5 Assume that $M$ is compact. Let $h$ be aglobal solution of (4.13) for $t\in[t_{*},\infty)$ such

that no $h_{j}’ s$ merge for $t\in[t_{*},\infty)$ . Then

$\int_{t_{\mathrm{O}}}^{\infty}(h_{t}, h_{\ell})_{*}dt\leq\psi(h(t_{*}))$ and $\frac{d\psi(h(t))}{dt}\leq 0$ for $t>t_{*}$ .

Moreover, there is asubsequence of $\{\mathrm{u}(\mathrm{x}, +t_{*}+k)\}_{k=1}^{\infty}$ converges in $L^{2}$ ($) $\mathrm{x}(0,1)\cdot$, Af) to apiecew $.s\mathrm{e}$

constant stationary solution $u_{\infty}$ of (4.1) in the sense that $0P_{u_{\infty}}(\partial\varphi(u_{\infty}))=0$. Here $u(x,t)$ is defined by
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Proof. We observe that $h$ is smooth for $(t_{*}, \infty)$ . We take inner product of (4.13) and $h_{t}$ and observe

that

$(h_{t}, h_{t})_{*}=- \frac{d\psi}{dt}(h(t))$

which yields $d\psi(h(t))/dt\leq 0$ for all $t\in(t_{*}, \infty)$ . We integrate over $(t_{\mathrm{r}}, s)$ and send $s$ to infity to get

$\int_{t}^{\infty}.(h_{t}, h_{t})_{*}dt\leq\psi(h(t_{*}))$

since $\psi\geq 0$ . In particular, $(h_{k})t(t)=h_{t}(t+tk +k)$ converges in $L^{2}(0,1)$ to zero. Since $\{h_{k}(t)\}\subset M$

is bounded for $t\in(0,1]\{h_{k}(t)\}$ has aconvergent subsequence. Since $(h_{k})_{t}arrow 0$ in $L^{2}(0,1)$ , the limit of

$\{u\mathrm{g}\}$ (defined by (4.10) with $h_{i}$ replaced by $h_{k}.\cdot$ ) converges to $u_{\infty}$ (by taking asubsequence) which is a

stationary solution. (In this argument there might be achance that $(hi-h_{j-1})(t)arrow 0$ as $tarrow\infty$ so we

rather use $u$ instead of $h$). $\square$

4.5 $S^{1}$ -valued problem

We shall study amore detailed dynamics when the set of constraint $M$ equals the unit circle $S^{1}$ in

$\mathrm{R}^{2}$ . We first characterize aU stationary piecewise constant solutions. For two vectors in $p$, $q\in M$ we

define $\arg(\mathrm{p},q)=\arg p-\arg q$. The value is taken so that $\mathrm{a}r\mathrm{g}(p,q)\in(-\pi,\pi]$ .

Lemma 4.6. Let $u_{0}$ be of the form (4.2) with $h_{i}^{0}\neq h^{0}|.+1$ for $i=0,1$ , $\ldots$
$l$ $-2,\ell$ $\geq 2$ and $h_{0}^{0}=g(z_{0})$ and

$h_{\mathit{1}-1}^{0}=g(z_{1})$ . Then $u_{0}$ is astationary solution of (4.1) (in the sense that $0P_{uo}(\partial\varphi(u_{0}))=0$) if and only

of $\arg(h_{\dot{*}}^{0},h_{\dot{*}-1}^{0})$ is independent of: $=1,2$ , $\ldots$ , $\ell-1$ .

Proof. We may assume $\ell\geq 3$ . By elementary geometry we observe that

$\pi_{h_{}^{\mathrm{O}}}(m^{0}.-|+1m_{*}^{0}.)=0$

is equivalent to say that $\arg(h_{j}^{0},h_{-1}^{0})=\arg(h_{+1}^{0},h^{0}.\cdot)$ for $i=1$ , $\ldots$ , $\ell-2$ . $\square$

We next study the stability of stationary solutions. For $u_{0}$ in (4.2) we observe that

$\varphi(u_{0})=\sum^{1}|h_{\dot{\iota}|-1}^{0}-h^{0}|\ell-.=\sum 2|\sin\xi_{j}|\ell-1$ , $\xi_{j}=\frac{1}{2}\arg(h_{\dot{1}}^{0}, h_{j-1}^{\mathrm{O}})$.
$*\cdot=1$ $*\cdot=1$
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Since $h_{0}^{0}$ and $h_{\ell-1}^{0}$ are fixed by the Dirichlet data, the sum $\sum_{i=1}^{t-1}\xi_{i}=$:Ais constant independent of

$(\xi_{1}\ldots, \xi_{\ell-1})$ (at least small perturbation of ( $\xi_{j}$ , $\ldots$ , $\xi_{d}$)). We set $E( \xi_{1}, \ldots, \xi_{d})=\sum_{i=1}^{d-1}|\sin\xi_{i}|+|\sin(\lambda-$

$\sum\xi_{j})|d$ , $d=l$ $-2$ . By definition $E(\xi_{1}, \ldots,\xi_{d})=\varphi(u_{0})/2$ . If $u_{0}$ is astationary solution of (4.1), then by
$j=1$

Lemma 4.6 we see that $\xi_{1}=\xi_{2}=\cdots=\xi_{d}=\lambda-\sum\xi d:$. The next lemma shows that such astationary
$\dot{*}=1$

solution is local maximum of $E$ so in particular it is unstable in all direction. Note that when we discuss

the stability it suffices to check Hesse matrix for gnd $(=\nabla)$ instead of $\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}_{*}$ .

Lemma 4.7. Assume that $d=\ell-2\geq 1$ . Assume that $\lambda\neq 0$ and $\lambda/(\ell-1)\in(-\pi/2,\pi/2]$. then the

Hesse metrix $\nabla^{2}E$ at $\xi_{0}=$ $(\lambda/(t$ -1), \ldots ,
$\lambda/(\ell-1))$ is negative deffiite.

Proof We may assume that $\lambda>0$ . We differentiate $E$ and observe that

$\nabla E=$
$( \cos\xi_{*}. -\cos(\lambda-\sum\xi j))_{=1}^{d}d$ near $\xi 0$ and

$\mathrm{j}=1$

$-\nabla^{2}E(\xi_{0})=(Sijd+a)_{1\leq\dot{*},j\leq \mathrm{d}}$ , $a=$ $\mathrm{X}/(\mathrm{t}-1))$ ,

where $\delta j$ is Kronecker’s delta. Since

$(\delta jja+a)=a(\delta jj+\sigma_{i}\sigma_{\mathrm{i}})$ with $\sigma=(\sigma_{1}, \ldots, \sigma_{d})=(1, \ldots, 1)$ ,

its determinant is easy to calculate. Indeed,

clet(6; a+a) $=a^{d}\det(\delta_{ij}+\sigma:\sigma j)=a^{d}(1+|\sigma|^{2})=a^{d}(1+d)$ .

Thus we conclude that

$\det((\delta_{j}a+a)_{1\leq jj\leq r},)>0$

for all $\mathrm{r}$ $=1,2$ , $\ldots$ , $d$, which implies $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}-\nabla^{2}E(\xi_{0})$ is positive definite. $\square$

By Lemma 4.7 all piecewise constant stationary solution (except one jump or no jump solution) are local

maximum in aclass of piecewise constant functions having the same location of jump discontinuities. Of

course all one jump and no jump solutions are isolated global minimizers since each stationary solution

has adifferent value of energy $\varphi$ . Combining Proposition 4.5 and Lemmas 4.6, 4.7, we obtain afull

convergence result
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Proposition 4.8. Assume that $M=S^{1}$ and $N=2$ . Let $u$ be of the form and $h=(h_{1}, \ldots, h_{\ell-2})$

solves (4.13) for $t\in[t_{*}, \infty)$ such that no $h_{i}’ s$ merges for $t\in \mathrm{I}t_{*}$ , $\infty$). Assume that $u(x, t_{*})$ is not a

stationary solution of (4.1). Then $u(x, t)$ converges to a(piecewise constant) stationary solution with

jump discontinuities strictly contained in $\{x_{i}\}_{i=1}^{\ell-1}$ . In particular, $h_{*}-h_{\mathrm{i}-1}arrow 0$ as $tarrow \mathrm{o}\mathrm{o}$ for some

$i=1$ , $\ldots,\ell,$ -1, as $tarrow\infty$ .

4.6 Stopping in finite time

We continue to study the case when $M=S^{1}$ with $N=2$. We shall prove that our piecewise

constant solution $u=u(t)$ actually stops moving after ffiite time and it becomes astationary solution.

For this purpose we shall rewrite (4.11) by using argument $\theta_{j}(t)$ of $h_{j}(t)$ . Since

$m_{\dot{1}+1}$ $=$ $(\cos\theta_{j+1}-1, \sin\theta_{j+1})/A:+1$ ,

$m$ . $=(1-\cos\theta_{j-1},-\sin\theta_{j-1})/A$.
with $A_{j}=$ $((\mathrm{c}\mathrm{o}\mathrm{e} \theta_{j}-1)^{2}+\sin^{2}\theta j)^{1}2$ if $h_{j}=(1,0)$ , we see that

$\pi_{h:}(m.\cdot+1-m:)=\tau(\sin\theta_{i+1}/A_{:+1}+\sin\theta.\cdot-1/A:)$

with $\tau=(0,1)$ . Since $A_{i}^{2}=4\sin^{2}(\theta_{i}/2)$ , we see that

$\pi_{h:}(m|.+1-m_{*}.)=\tau(\frac{\sin\theta.+1}{2|\sin(\theta_{+1}/2)|}.+\frac{\sin\theta_{1-1}}{2|\sin(\theta_{\dot{|}-1}/2)|}\cdot)$ .

For ageneral $h_{i}=$ $(\infty \mathrm{s}\theta.\cdot,\sin\theta_{\dot{*}})$ our calculation shows that

$\pi_{h:}(m_{+1}-m:)=\tau\{\frac{\sin(\theta_{i+1}-\theta_{\dot{1}})}{2|\sin(\frac{\theta_{+1}-\theta}{2})|}+\frac{\sin(\theta_{i-1}-\theta_{\dot{1}})}{2|\sin(\frac{\theta_{-1}-\theta}{2})|}\}$

$=\tau\{\mathrm{s}\mathrm{g}\mathrm{n}$ $( \mathrm{s}\mathrm{i}\mathrm{n}.\cdot\frac{\theta_{+1}-\theta_{*}}{2}.)$

coe $\frac{\theta_{+1}-\theta_{\dot{1}}}{2}$

$+ \mathrm{s}\mathrm{g}\mathrm{n}(\sin\frac{\theta_{i-1}-\theta_{\dot{1}}}{2})$ $\mathrm{c}\mathrm{o}\mathrm{e}\frac{\theta_{\dot{|}-1}-\theta_{j}}{2}\}$ with $\tau=(-\sin\theta_{\dot{*}}, \cos\theta_{i})$ . Since

$\frac{dh_{\dot{1}}}{dt}$ $= \tau\frac{d\theta}{d}i$ ,

(4. 11) becomes
$\frac{d\theta_{j}}{dt}=$ $L_{j}^{-1}\{$

-1 sgn

$\mathrm{s}\mathrm{g}\mathrm{n}(\sin\frac{\theta_{i+1}-\theta_{j}}{2})\cos\frac{\theta_{j+1}-\theta_{*}}{2}$

.

(4.14)
$( \sin\frac{\theta_{i-1}-\theta_{}}{2})\cos\frac{\theta_{-1}-\theta_{\dot{1}}}{2}]$
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for $i=1$ , $\ldots$ , $l$ $-2$ . If we consider the evolution of $u$ , (4.14) holds until the first merging times of $h.\cdot$ ’s. At

the merging time we renumber jumps so that renumbered $\theta_{*}$. ’s solves (4.14) until the next merging time.

We set $\xi_{i}=(\theta_{i}-\theta_{i-1})/2$ as before.

Theorem 4.9 (Stopping in finite time). Assume that $N=2$ and $M=S^{1}$ . Let $u$ be the solution

of (4.1)-(4.2) of the form (4.10). Then there exists $t_{*}\geq 0$ such that $u(x,t)=U(x)$ for $t\geq t_{*}$ with some

(pieeew $\mathrm{i}s\mathrm{e}$ constant) stationary solution of (4.1).

Proof. We may assume that the initial data is not astationary solution. Then there are finitely many

times $t_{0}<t_{1}<\cdots<t_{\theta}$ , $t_{0}>0$ such that the set of jump discontinuous decreases at $t_{\acute{f}},j=0$ , $\ldots$ , $s$

while in $[0, t_{0})$ , [ta, $tj+1$ ), $(j=0, \ldots,s -1)$ and $[t_{\epsilon}, \infty)$ the set of jump discontinuities is independent of

time. (At each $t\mathrm{j}$ some $h_{i}$ merges.) We claim that $u(x,t.)$ $=U(x)-$ some stationary solution so that

$u(x, t)=U(x)$ for $t>t_{*}$ . If $u(x, t_{*})$ is not astationary solution, then we have asituation of Proposition

4.8 with $t_{*}=t_{\delta}$ . By Proposition 4.8 there exists an nonempty set $I\subset \mathrm{A}=\{1, \ldots,\ell-1\}$ that satisfies

$\lim_{tarrow\infty}(\theta_{j}(t)-\theta_{j-1}(t))=0$ for $:\in I$ .

$(\mathrm{i})\mathrm{I}\mathrm{f}I\neq\Lambda$ , then there is $:_{\mathrm{O}}\in I$ such that either $:_{\mathrm{O}}+1$ or $:_{0}-1$ does not belong to $I$ . $\mathrm{I}\mathrm{f}:0+1\not\in I$,

then $|d\theta_{\dot{1}_{\mathrm{O}}}/dt|$ is bounded away ffom zero for sufficiently large $t$ by (4.14) since $\theta_{\dot{1}0}-\theta:_{\mathrm{o}-1}arrow 0$ while

$\theta_{i_{\mathrm{O}}+1}-\theta$ : is bounded away from zero. Similarly, if $i_{0}-1\not\in I$ then $|d\theta_{*0-1}./dt|$ is bounded away from

zero for sufficiently large $t$ . In both cases these properties contradict the convergence of $h_{j_{\mathrm{O}}}$ or $h_{j_{\mathrm{O}-1}}$ as

$tarrow\infty$ . So this case does not occur.

$(\mathrm{i}\mathrm{i})\mathrm{I}\mathrm{f}$ $I=\Lambda$ , then $g(z_{0})=g(z_{1})$ . Then there is some $i_{0}\in \mathrm{A}$ such that sgnsin $\xi_{j_{0}}>0$ and either

sgn $\sin\xi_{j_{0}+1}>0$ or $\mathrm{s}\mathrm{f}\mathrm{f}^{1\sin\xi_{j_{\mathrm{O}}-1}}>0$ . Note that sgnsin $\xi_{j_{\mathrm{O}}+1}(t)$ is independent of $t\geq t_{*}$ . By (4.14) either

$|d\theta_{*0}./dt|$ or $|d\theta_{j_{\mathrm{O}}-1}/dt|$ is bounded away fiom zero for large $t$ . This property contradicts the convergence

of $h_{\dot{*}0}$ or $h_{i\mathrm{o}^{-1}}$ as $tarrow\infty$ . So this case does not occur neither.

We thus conclude that $u(x,t_{x})=U(x)$. $\square$

Remark 4.10. The stationary solution $U(x)$ we obtain at $t_{\iota}$ is not necessarily one jump or no jump
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solution. Here is asimple example. We set

$h_{0}^{0}=(0, -1)$ , $h_{\theta}^{0}=(0,1)$ , $h_{1}^{0}=(\cos\theta_{0}, \sin\theta_{0})$ , $h_{2}^{0}=(\cos\theta_{0},\sin\theta_{0})$

with $\ell=4$ and $\theta_{0}\in(0, \pi/2)$ . Assume that the initial data $u\mathit{0}$ is given by (4.2) with these $h^{0}$.’s and that

$L_{0}=L_{1}=L_{2}=L_{3}$ . Then the solution $u(x, t)$ becomes

$U(x)=\{$

$h_{\mathrm{O}}^{\mathrm{O}}$ , $x\in(x_{\mathrm{O}}, x_{1})$ ,
$(1, 0)$ , $x\in(x_{1}, x_{3})$ ,
$h_{3}^{\mathrm{O}}$ , $x\in(x_{\},x_{4})$

at the first merging time which is astationary solution.

Although all piecewise constant stationary solution (except one or no jump solution) are local max-

imum in aclass of piecewise constant functions having the same location of jump discontinuities, it may

be attained at the merging time of evolution as this example shows.
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