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When To Stop Accumulating Reward/Cost
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Abstract

This paper studies an optimal stopping problem for three reward accumulation
processes: terminal process, additive process and minimum process. The terminal
process together with its optimal structure is well known. We show through dynamic
programming that both additive process and minimum process have an optimal
stopping time. The additive process admits the linearity of expectation operator.
However, the minimum process does not admit the linearity. We apply an invariant
imbedding approach, which expands the original state space by one dimension. A
basic idear is a minimal Markovization of non-Markov process.

1 Introduction

In this paper, we consider the optimal stopping problem where the reward accumulation
is terminal, additive and minimum. The theory of optimal stopping of terminal process
has been studied both by dynamic programming [1] and by Snell’s envelop method [4,15,
17]). It is difficult to discrimate between both approaches. The dynamic programming is
methodorogical, and Snell’s envelop is characteristic. In fact, both are equivalent. Here
we rather consider dynamic programming approach.

2 Terminal Process

Let {X,}¥ be a Markov chain on a finite state space X with a transition law p = {p(-|)}.
Let g, : X = R! be a stop reward for 0 < n < N. We call g = {9, } a reward sequence (or
stopping-reward sequence). Then a sequence of random rewards {g,(X»)}{ is specified.
The reward process (or stopping-reward process) {gn(Xn)}{’ is called terminal. When a
decision-maker stops the terminal reward process at state z, on n-th stage, he/she will
get the reward g, (z,). His/her problem is when to stop it. This is an optimal stopping
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k times

o e
Let X* := XxXx---xX be the direct product of k state spaces X. We take Q :=
XN+1: the set of all paths w = zgz1 -+ Ty :

D={w=xpz1--zy|z, € X, 0<n <N}

Let 37 be the set of all subsets in  which are determined by random variables { X,n, Xpm+1,
..., Xn}, where X}, : Q@ — X is the projection, X (w) = zi. Strictly, F7, is the o-field on
(2 generated by the set of all subsets of the form

{Xm = Ty Xim41 = Tmia, -, Xn =20} (C )

where T, Trmt1,- .- ,Z, are all elements in state space X. Let us take N= {0,1,... ,N}.
A mapping 7 : Q — N is called a stopping time if

{r=n}={zoz,...2n8|7(x671...28) =0} €TF; VneN

The stopping time 7 is called { I }{'-adapted. Let T} be the set of all such stopping times.
Any stopping time 7 € T’ generates a stopped state (random variable) X, : Q@ — X :

X (W) = X7 () (w)
and a stopped reward (random variable) g, : Q@ — R! :
9r(W) = gr(w) (Xr (w))-

We remark that the expected value E,,[g,| is expressed by sum of multiple sums :

Ezle-] = Z Z 9n(Zn) Pzo(Xn = Tn)
n=0 {r=n} _
Z Z gn(xn)p(xl IxO)p($2lx1) - 'p(iL'nIIL‘n_.l).

n=0 {‘r::n}

Now we consider the problem of maximizing an expected value of stopped process
with terminal criterion [4,14,15,17]:

To(zo) Max Elg,] st 7€ Tp.

An invariant imbedding approach begins with taking a subprocess which starts at
state z,(€ X) on n-th stage and terminates on the final N-th stage :

Tn(zn) Max E,[g.] st. 1€TV

where T is the set of all stopping times which take values in {n,n +1,... ,N}. Let
vn(Zn) be the maximum value of T,(z,), where ‘

un(zN) 2 gn(zN) zy € X.

Then we have the the backward recursive equation :
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Theorem 2.1

vn(z) = gn(z) z€X

un(z) = Max [gn(z), E[vn (Xn+1)]]
zeX, 0<n<N-1

where E, is the one-step expectation operator induced from the Markov transition matriz
p(|) -
h(Xe)) = ) h(v)p(y|2).
yeX

Proof. The proof is done through an equivalent Markov decision problem in the
following section. O

2.1 Optimal stopping time
Theorem 2.2 The stopping time 7* :

™ (w) = min{n : v(zs) = gn(zn)} w=2oz1 - 2§y €Q

is optimal :
Exo [g'r‘] > Ez'o[gT] VT € ‘T(]JV'

Let two sequences of functions {f,}Y, {hs}y on X be given. Then the process
{f2(Xn)}Y is said to be supermartingale (resp. martingale, submartingale) if fn(z) >
(resp. =, <) Tfanl(z) z€X, 0<n <N -1, where

Tfos1(z) = Eg[fnr1(Xnt1)]-

In this case, we say that the sequence of functions {f,} is ezcessive.

The process {fn(X,)} is said to dominate the process {hn(X,)} if fa(z) > ha(z) T €
, 0 < n < N. We also say that {f,} is majorant of {h,}.

A supermartingale {f,(X,)} which dominates {h,(Xy)} is said to be minimal if every
supermartingale which dominates {h,(X,)} dominates {fn(X,)}. In this case, we say
that {f,} is the smallest excessice majorant of {h,}.

Theorem 2.3 (Characterization) The value process {v,(Xn)} is the minimal super-
martingale which dominates the stopping-reward process {gn(Xn)}-

It is also said that the value functions {v,} is the smallest ezcessive majorant of {g,}.
Let a stopping time 7 and a reward sequence f = {f,} be given. Then we define a stopped

process f™ = {f7} by

f:; = f‘r/\n or fT/\n(X'r/\n)(w) = f-r(w)An(XT(w)An(w)) w € Q, 0 <n< N.
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We note that

fn(Xn(W)) T(w) > n

filw) = ff(w)An(XT(w)An(w)) = {fr(w) (XT(W) (w)) 7(w) <mn.

Then {fran(Xran)} is called the stopped process for process {fn(X,)} by the stopping
time 7. Thus the stopped process {fran(Xran)} is supermatingale if and only if for each
n(0<n<N-1)

f—r(w)An (xf(w)/\n) e Ex,.(w),\n [f'r(w)/\(n+1) (X7(w)A(n+l))] a.e.
This implies for each n

on {7—2 n+ 1}7 fn(xn) _>. E:cn[ n+1(Xn+1)]
on {T = n}7 fn(xn) > Ez,.(w)[ff(w)(XT(w))]

on {T1<n—1},  frw)(@rw) 2 Bo [ frw)(Xrw)l-

and

The latter two inequalities are satisfied with the equality. The supermartingaleness is
equivalent to the first inequality.

Theorem 2.4 (Martingale) The stopped process v™ = {vrepn(Xroan)} of process {vn(X,)}
by the optimal stopping time T* is a martingale.

Proof. = We see that for each n

on {T* >n+ 1}1 Un(-’ffn) = E,, ["n+l (Xn+1)]' a

Theorem 2.5 (Optimality) A stopping time 7 is optimal if and only if (i) the stopped
rewards are equal : v = g, a.e., and (ii) the stopped process v7 = {Uran(Xran)} 15 @
martingale.

3 Additive Process

In this section, we assume, in addition, that r, : X — R! be a continuation reward for
0<n<N-1

We consider the problem of maximizing an expected value of stopped process with
additive criterion [5]:

Max E[ro+7 +---+7ro1 + g1

Aolz) st. TeTY.
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We note that the expected value of additive reward is the following sum of multiple
sums :

Ez:o[r0+ T +gr]

= Z Z [Z’"k(xk)"‘gn(wn)}P($1|$0)P(1‘2|371)"'P(mnlxn_l).

n=0 {r=n} L k=0
Then we have the corresponding recursive equation :
Theorem 3.1
un(z) = gn(z) zeX

Un (%) = Max [ ga(2), Ez[ra(z) + vat1(Xn+1)] ] (1)
z€X, 0<n<N-1

Here we remark that the linearity of expectation operator admits
E;[ra(2) + Un41(Xns1)] = ra(2) + Ezlvps1 (Xnta)]-
Theorem 3.2 The stopping time T* :
™(w) = min{n : v, (zs) = gn(2n)} w=20z1 - TN
18 optimal :
Ezy[ro+ -+ Tp_1+Gre ]| > Egglro+---+7r1+9.] VTET.

Let two sequences {f,}¥, {hs}Y be given. Then the process {fa(X,)}{ is said to be
r-supermartingale if f,(z) > Rfpt1(z) € X, 0 <n < N -1, where

Rfny1(2) = Ex[ra(2) + far1(Xnt)]-
We also say that the sequence {f,} is r-ezcessive.

Theorem 3.3 (Characterization) The value process {v,(Xy)} is the minimal r-supermartingale
which dominates the stopping-reward process {gn(Xn)}.

It is also said that the value function {v,} is the smallest r-ezcessive majorant of {gn}.

3.1 DP Solution

Let us condider an two-state two-stage model (2-2 model) for additive criterion

Max E:r,o[TO(XO) +---+ TT—I(XT«I) + g‘r(XT)}
st. (i) 7€ T2

where the continue/stop reward {ro, 71; go, g1, g2} is given in Table 1 :
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Ln S1 52
g()(.'llo) To(.’Eo) 09 0.2{06 0.1
g1($1) 7‘1(11,'1) 0.7 0.0 ] 0.8 0.2
92(z2) 0.7 0.6

Table 3 stop/continue reward

and the transition matrix is symmetric (p = ¢ = 1/2).
Let us find an optimal stopping time by solving recursive equation. First, the backward
recursion (1) yields an optimal solution in Markov class II ; optimal value functions

vo = vo(Zo), v1 = (1), v2 = v2(T2)

and an optimal policy
7" = {%(20), 1i(z1)}-

’02(81) = 0.7
'02(82) = 0.6

1 1
vl(sl) = Ma.x[ 07, 0.0 + '2-07 + '2-06] = 0.7
71 (s1) = stop
v1(s2) = Max[0.8, 0.2 +

1 (s2) = continue

%0.7 + %0.6] =0.85

vo($1) = Max[0.9, 0.2 + %0.74— %0.85] = 0.975
Y5 (s1) = continue

vp(s2) = Max[0.9, 0.1 + %O.T-i- %0.85] =0.90
v (82) = stop.

The optimal solution is tabulated as

T, || valza) | v1(z1) ¥ (z1) | volzo) 7§ (z0)
5 0.7 0.7 s 0975 ¢
S 0.6 0.85 ¢ 0.9 s

where s and ¢ denote stop and continue, respectively.
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Finally, an optimal stpping time 7* from zy = s; is described through Theorem 3.2.
In fact, for any path w = zoz122, 7*(w) takes the following time :

T*(Slslxz) =1
0.975 = ’U()(Sl) > 90(31) =0.9
0.7= ’U1(81) = g1(5‘1) = 0.7

T (518281) = 2
0.975 = vo(s1) > go(s1) = 0.9
0.85 = v;(s2) > g1(s2) = 0.8
0.7 = va(s1) = g2(s1) = 0.7

7*(818282) =2
0.975 = vo(s1) > go(s1) = 0.9
0.85 = v1(s2) > g1(s2) = 0.8
0.6 = v(s2) = ga(s2) = 0.6

4 Minimum Process

We consider the problem of maximizing an expected value of stopped process with mini-
mum criterion ( [3,9,16,19]. As for nonstopping but control problems, see [6-8,10-12]):

Max Eg[roAriA-+-ATr1 A gy
Mo (.’Eo) N
st. T€Ty.
The expected value of minimum reward is the sum of multiple sums as follows :
Ezo[f'o ANeosATr 1 A g‘r]
N
= 3 3 [ro@o) A+ ATna(@n) A gn(2a) ] p(@1|20)p(@2l21) - - Pl En)-
n=0 {T:n}
Here we mention that the linearity of expectation operator does not admit the equality
ElcAZ)=cAE[Z]
where c is a constant and Z is a random variable.
So, we imbed My(zo) into a new class of additional parametric subproblems [2, 13].

First we define the past-valued (cumulative) random variables {A,} up to n-th stage and
the past-value sets {A,} they take :

Ao 2 Xo where ) is larger than or equal to gn(z), 7s(x)

A, = ro(Xo) A+ ATp_i(Xn1) 1<n <N,

Ao £ (Ao}

A, 2 {/\n An = To(Zo) A+ - ATn1(Zn_1),

(gy... 1Tp—1) EX X x X

} 1<n<N.
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The minimum criterion is terminal now :
TQ(XQ) JANCIERIVAN TT_l(X7_1) A gT(XT) = A’r A g-,-(XT)
We have

Lemma 4.1 (Forward recursive formulae)

Ao= o

/~\n+1 =A, Arp(Xn) 0<n< N-1,

Ao = {Xo}

A ={AAr(@) | e, z€ X} 0<n<N-1L - (2)

Let us now expand the original state space X to a direct product space :
Y, 2XxA, 0<n<N.
We define a sequence of stopping reward functions {G,}Y by
Ca(@ ) EANG(E)  (55)) €Y,
and a nonstationary Markov transition law g = {g,}d ~* by

A [ plylz) if AAT.(z) =1
Gyl A) = )
0 otherwise.

Then {(X,,A,)}¥ is a Markov process on state spaces {Y,} with transition law g. We
consider the terminal criterion {G}{ on the expanded process :

To(ve)  Max E,[G] st. reT¥

where gy = (zo; Xo), and ‘3",’,‘( is the set of all stopping times which take values in {n,n +
1,...,N} on the new Markov chain.
Now we take a subprocess which starts at state y, = (zn; An)(€ Ys) on n-th stage :

Ta(ya)  Max E,[G,] st 7TV
Let v,(ys) be the maximum value of T,(y,) , where

un(yn) S Gn(yy)  un € Ya.

Then we have the the backward recursive equation :
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Corollary 4.1

'UN(y) = GN(?J) y€E€Yy
Un(y) = Max [Gn(y)a Ey[vn+1(yn+1)]]
yel, 0<n<N-1
where E, is the one-step ezpectation operator induced from the Markov transition proba-
bilities qn (") :
Eyh(Yar)l = D h(y)anlzly).
2€Yn 41
Corollary 4.2 The stopping time 7* :
7 (w) =min{n : va(yn) = Ga(¥n)} @ =voy1--- U~

is optimal : _
Ey,[Gr] 2 Ey[G:] V7€ TN,

Then we have the corresponding recursive equation for the original process with min-
imum reward :

Theorem 4.1
vn(z, ) = AN gn(T) z€X, A€AN
Un(z, A) = Max [ A A gn(@), Ez[vnt1(Xns1, A ATa(2))]] (3)

zeX, A€eA,, 0<n<N-1
Theorem 4.2 The stopping time 7* :
™(W) =min{n : vp(Tn, An) = A Agn(Tn)} w= (o, Xo) (@1, A1) -+ - (TN, AN)
is optimal :
Ep[roN - Ars 1 Agr] > Egg[roN-- AT7_1Ag:] VT E 7.
4.1 DP Solution

A 2-2 model is specified by :

Max Exo[ro(Xg) A=A TT_I(X _1) A g-r(X-,-)]
st. () T€T2

where the continue/stop reward {ro, 71; go, 91, g2} is given in Table 2 :



Tn S1 S2
go(.’ro) To(.’L‘o) 05 0.8106 0.9
g91(z1) ri(z1) ||07 0.8 (04 0.6
g2 (:L‘g) 0.7 0.6

Table 2 stop/continue reward

and the transition matrix is symmetric (p = ¢ = 1/2).

First, the forward recursion (2) generates the following past-value sets :

AO = {10}, A]_ = {0.8, 09}, Az = {0.6, 08}
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Second, the backward recursion (3) yields an optimal solution in expanded Markov

class IT; optimal value functions
vg = vo(Zo; Ao), V1 = v1(T1; A1), va = v2(Z2; A2)
and an optimal policy
v = {75 (Zo; o), 71 (z1; M)}
vy_(s;, 06) =0.6A 92(81) =06A07=0.6
1)2(82, 06) =06A 92(52) =06A06=0.6
v2(81,0.8) = 0.8 A go(s1) = 0.8 A0.7=0.7
’1)2(82, 08) =0.8A 92(82) =0.8A06=0.6

1 1
1(91,0.8) = Max[0.8 A 0.7, =0.7+ =0.6] = 0.7

2 2
71 (81,0.8) = stop
1
v1(82,0.8) = Max[0.8 A 0.4, %_0.6 +50.6]=06

71 (82,0.8) = continue

1
1 (81,0.9) = Max[0.9 A 0.7, %0.7+ 506]=07
71 (s1,0.9) = stop
1
'01(82, 09) = Ma.x[ 0.9A 04, %06 + 506] =0.6

Y; (82, 0.9) = continue

1
vo(s1,1.0) = Max[1.0 A 0.5, %0.74- 50.6] = 0.65

Yp(81,1.0) = continue

1
vo(82,1.0) = Max[1.0 A 0.6, %o.n- 50.6] =065

71 (82, 0.8) = continue.

The optimal solution is tabulated as
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| v2(Z2; Aa)
51 0.6 0.7
S92 0.6 0.6
v1(z; M) 1z M) | volzo; 1) (203 1)
T\ An 0.8 0.9 1.0
S1 07 s 07 s 0.66 s
S 06 ¢ 06 ¢ 0.65 s

Finally, an optimal stpping time ¢* from (zo,\¢) = (s1,1.0) is described through
Theorem 4.2. In fact, for any path @ = (z9,1.0)(z1, A1) (22, A2), o*(@) takes the following
time :

o*((s1,1.0)(s1,0.8)(z2, A2)) = 1
0.65 = vp(81,1.0) > L.OA go(51) =1.0A0.5=0.5
0.7 = vy(51,0.8) = 0.8 A g1(s1) = 0.8 A 0.7 = 0.7
o*((81,1.0)(s2,0.8)(s1,0.6)) = 2
0.65 = vp(s1,1.0) > 1.0A go(s1) = LOA 0.5 = 0.5
0.7 = v1(s2,0.8) > 0.8 A g1(s2) = 0.8 A 0.4 = 0.4
0.6 = v3(s1,0.6) = 0.6 A ga(51) = 0.6 A 0.7 = 0.6

*((s1,1.0)(s2,0.8)(s2,0.6)) = 2
0.65 = v9(s1,1.0) > 1.0A go(81) =1.0A0.5=0.5
0.7=1v1(82,0.8) > 0.8 A g1(s2) =0.8A04 =04
0.6 = va(s2,0.6) = 0.6 A ga(s2) = 0.6 A 0.6 = 0.6

Similarly the stopping time o* also turns out to be optimal from zy = sa.
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