東大・数理科学 礒島 伸 (Shin Isojima) 東大・数理科学 村田 実貴生 (Mikio Murata) 東大・数理科学 薩摩 順吉 (Junkichi Satsuma) Graduate School of Mathematical Sciences, The University of Tokyo

1 はじめに

本稿の内容は野邊厚氏(阪大基礎工)と筆者らとの共同研究に基づくものであ る. 超離散化とは差分方程式からセルオートマトンを得る手続きである[1,2]. し かしながら,標準的な超離散化の手続きは負値をとる変数あるいは減算を扱う際 に困難を生じる(超離散化における「負の困難」).最近,筆者らは負の困難の克 服を目指して研究を進めている.成果の1つは sine-Gordon 方程式のある超離散 化を与えたことである[3].本稿ではその他の2つの成果について述べる.第2節 では modified Korteweg-de Vries (mKdV)方程式とその厳密解の超離散化によっ て,高橋,松木平が提出した運搬車付き箱玉系(the box and ball system with a carrier, BBSC)の拡張版とその解の証明を与える[4].第3節では負の値をとる変 数を直接超離散化する一般的な手法を提案し,mKdV方程式にその手法を適用す る[5].

2 離散および超離散 mKdV 方程式とその解

2.1 はじめに

mKdV 方程式

$$\frac{\partial v}{\partial t} + 6v^2 \frac{\partial v}{\partial x} + \frac{\partial^3 v}{\partial x^3} = 0$$
(2.1)

は有名なソリトン方程式の1つである.離散 mKdV (dmKdV) 方程式は mKdV 方 程式の離散類似として辻本,広田により提出された [6].この方程式の N ソリトン 解は丸野,梶原,中尾,及川により提出されている [7].高橋,松木平は超離散化 の方法を用いて mKdV 方程式の超離散類似 (udmKdV) の方程式を導出し,さら に udmKdV 方程式から適当な変換により BBSCを導いた [8].そこでは,BBSC の厳密解が与えられているので,その解から udmKdV 方程式の解も導くことがで きる.しかしながら,mKdV 方程式の N ソリトン解から udmKdV 方程式の解を 導出することはなされておらず,また超離散系の解と mKdV 方程式またはその離 散類似の解との直接の関係は議論されていない.本節では,mKdV 方程式の一つ の離散類似とみなせる方程式について新しい形の解を提出する.そして,その解が 運搬車付き箱玉系の解と直接に対応することを述べる.第2.2小節では,dmKdV 方程式に対して超離散化のために幾つかの従属変数を導入する.第2.3小節では, 従属変数の一つで見たソリトン解に超離散化の手続きを適用する.最後に第2.4小 節では,いくつかの注意点を述べる.

2.2 離散 mKdV 方程式

ここでは dmKdV 方程式を

$$\left\{ \left[1 + \alpha^2 \left(w_{n+1}^m - 1 \right) \right] \left[1 + \alpha^2 \left(w_{n-1}^m - 1 \right) \right] - \alpha^2 \delta^2 w_{n+1}^m w_{n-1}^m \right\} \left(w_n^{m+1} - w_n^{m-1} \right) + \delta \left(1 - \alpha^2 \right) \left[1 - \alpha^2 \left(w_n^{m+1} - 1 \right) \left(w_n^{m-1} - 1 \right) \right] \left(w_{n+1}^m - w_{n-1}^m \right) = 0$$
 (2.2)

と与える. この方程式からは $m \ b \ s/\delta$ で置き換えた後に $\delta \to 0$ の極限をとることで、次の方程式

$$\frac{\partial w_n}{\partial s} + \frac{(1-\alpha^2) \left[1-\alpha^2 \left(w_n-1\right)^2\right] \left(w_{n+1}-w_{n-1}\right)}{2 \left[1+\alpha^2 \left(w_{n+1}-1\right)\right] \left[1+\alpha^2 \left(w_{n-1}-1\right)\right]} = 0$$
(2.3)

を得る. 更に s と n をそれぞれ 6t/ [$\alpha^3 (1 - \alpha^2)$] と $x/\alpha + 6(1 + \alpha^2)t/\alpha^3$ で置き 換えた後に $\alpha \to 0$ の極限をとることで, mKdV 方程式

$$\frac{\partial w}{\partial t} - 6w^2 \frac{\partial w}{\partial x} + \frac{\partial^3 w}{\partial x^3} = 0$$
(2.4)

が得られる.

式 (2.2) は従属変数変換

$$w_n^m = 1 + \frac{1}{\alpha} \frac{f_{n+1}^m g_{n-1}^m - f_{n-1}^m g_{n+1}^m}{f_{n+1}^m g_{n-1}^m + f_{n-1}^m g_{n+1}^m}$$
(2.5)

によって, 双線形方程式系

$$\left(1+a^{-1}d^{-1}\right)f_n^{m+1}g_n^{m-1} = f_{n-1}^m g_{n+1}^m + a^{-1}d^{-1}f_{n+1}^m g_{n-1}^m,$$
(2.6a)

$$(1+a^{-1}d) f_n^{m-1}g_n^{m+1} = f_{n-1}^m g_{n+1}^m + a^{-1}d f_{n+1}^m g_{n-1}^m$$
(2.6b)

に変換される. 但し、 $a = (1 - \alpha) / (1 + \alpha)$, $d = (1 + \delta) / (1 - \delta)$ とした. この式 で特にa = 1 としたものは広田により提出されている [9]. 実は、 $a \neq 1$ のとき既 存の N ソリトン解は存在しないのであるが、そのかわりに以下のような N ソリト

ン解が存在する. いま,
$$p_j, q_j, c_j$$
 $(j = 1, ..., N)$ を関係

$$\exp(2p_j) = \frac{[\exp(2c_j)(1 + ad^{-1}) + 1 + a^{-1}d^{-1}] [\exp(2c_j)(1 + ad) + 1 + a^{-1}d]}{[\exp(2c_j)(1 + a^{-1}d^{-1}) + 1 + ad^{-1}] [\exp(2c_j)(1 + a^{-1}d) + 1 + ad]},$$

$$(2.7a)$$

$$\exp(2\omega_j) = \frac{[\exp(2c_j)(1 + ad^{-1}) + 1 + a^{-1}d^{-1}] [\exp(2c_j)(1 + a^{-1}d) + 1 + ad]}{[\exp(2c_j)(1 + a^{-1}d^{-1}) + 1 + ad^{-1}] [\exp(2c_j)(1 + ad) + 1 + a^{-1}d]}$$

$$(2.7b)$$

を満たすパラメータとし、 $\eta_j^{(0)}$ をソリトンの相対位置を決める(任意の)位相定数とする、パラメータ p_j, ω_j は分散関係

 $(1+ad)(1+a^{-1}d)\sinh\omega_j - (1+d)(1-d)\sinh p_j = 0$ (2.8)

を満たす.更に、位相 η_j と相互作用項 $\exp(A_{jk})$ $(1 \le j < k \le N)$ を

$$\eta_j = \eta_j(n,m) := p_j n + \omega_j m + \eta_j^{(0)}, \qquad (2.9)$$

$$\exp(A_{jk}) := \frac{\sinh^2(c_j - c_k)}{\sinh^2(c_j + c_k)}$$
(2.10)

と定める. そのとき, Nソリトン解は

$$f_n^m = \sum_{\mu \in \{0,1\}^N} \exp\left[\sum_{j=1}^N \mu_j \left(\eta_j + c_j\right) + \sum_{j < k}^N \mu_j \mu_k A_{jk}\right], \quad (2.11a)$$

$$g_n^m = \sum_{\mu \in \{0,1\}^N} \exp\left[\sum_{j=1}^N \mu_j \left(\eta_j - c_j\right) + \sum_{j < k}^N \mu_j \mu_k A_{jk}\right]$$
(2.11b)

と表される. ただし $\mu = (\mu_1, \mu_2, \dots, \mu_N)$ とした. 例えば, 1ソリトンおよび2ソ リトン解は

$$N = 1: \begin{cases} f_n^m = 1 + \exp(\eta_1 + c_1), \\ g_n^m = 1 + \exp(\eta_1 - c_1), \\ N = 2: \begin{cases} f_n^m = 1 + \exp(\eta_1 + c_1) + \exp(\eta_2 + c_2) + \exp(\eta_1 + \eta_2 + c_1 + c_2 + A_{12}), \\ g_n^m = 1 + \exp(\eta_1 - c_1) + \exp(\eta_2 - c_2) + \exp(\eta_1 + \eta_2 - c_1 - c_2 + A_{12}) \end{cases}$$

と書かれる. 変数 w_n^m での1ソリトン解は

$$w_n^m = 1 + \frac{1}{\alpha} \frac{\sinh p_1 \sinh c_1}{\cosh \eta_1 + \cosh p_1 \cosh c_1}$$
(2.13)

と表せる.このソリトンは無限遠方では1に収束し,常に負の振幅を持つ(図 2.1). この性質は連続極限をとった後も保たれる.図 2.2は2ソリトンの相互作用の例で

178

図 2.1: w_n^m の1ソリトン解の例. パラメータは $(c_1, \eta_1^{(0)}, a, d) = (3/2, 0, 16, 4)$. (時刻は m = 0)

図 2.2: 2ソリトン解の例. パラメータは $(c_1, \eta_1^{(0)}, c_2, \eta_2^{(0)}, a, d) = (3/2, 0, 1/2, 0, 16, 4).$

ある.相互作用の様子は mKdV 方程式の2ソリトンの相互作用に似ている. 超離散化のために従属変数

$$\tilde{w}_{n}^{m} = \frac{f_{n+1}^{m}g_{n-1}^{m}}{f_{n-1}^{m}g_{n+1}^{m}}$$
(2.14)

を導入すると、(2.6)から差分方程式

$$\tilde{w}_{n}^{m+1} \frac{1 + a^{-1} d \,\tilde{w}_{n+1}^{m}}{1 + a^{-1} d^{-1} \tilde{w}_{n+1}^{m}} = \tilde{w}_{n}^{m-1} \frac{1 + a^{-1} d \,\tilde{w}_{n-1}^{m}}{1 + a^{-1} d^{-1} \tilde{w}_{n-1}^{m}}.$$
(2.15)

が得られる.式(2.5)と(2.14)から、従属変数の関係式

$$w_n^m = 1 + \frac{1}{\alpha} \frac{\tilde{w}_n^m - 1}{\tilde{w}_n^m + 1}$$
(2.16)

を得る.これは単に一次分数変換であるので、 \tilde{w}_n^m の挙動は w_n^m の挙動とほぼ同じである.

また、運搬車付き箱玉系との対応を見るために、従属変数

$$u_n^m = \frac{f_n^m g_{n-1}^{m-1}}{f_{n-1}^{m-1} g_n^m} \tag{2.17}$$

を導入すると, 変数 u^m について

$$u_n^{m+1} = \frac{1 + a^{-1}d}{1 + a^{-1}d^{-1}} \frac{1 + a^{-1}d^{-1}\prod_{i=-\infty}^0 \left(u_{n+1+i}^{m+i}/u_{n-1+i}^{m+i}\right)}{a^{-1}d\,u_{n+1}^m + \prod_{i=-\infty}^0 \left(u_{n-1+i}^{m+i}/u_{n+i}^{m-1+i}\right)}$$
(2.18)

を得る. 変数 u_n^m での1ソリトン解は

$$u_n^m = \frac{\cosh(\eta_1 - \frac{p_1 + \omega_1}{2}) + \cosh(-c_1 - \frac{p_1 + \omega_1}{2})}{\cosh(\eta_1 - \frac{p_1 + \omega_1}{2}) + \cosh(c_1 - \frac{p_1 + \omega_1}{2})}$$
(2.19)

と表せる. この u_n^m の挙動は \tilde{w}_n^m の挙動とほとんど同じである.

2.3 超離散化

差分方程式 (2.6) と (2.15) および (2.18) に超離散化の手続きを施す. パラメータ および従属変数 $a, d, f_n^m, g_n^m, \tilde{w}_n^m, u_n^m$ をそれぞれ

$$a = \exp\left(\frac{A}{\varepsilon}\right), \qquad d = \exp\left(\frac{D}{\varepsilon}\right), \qquad (2.20a)$$

$$f_n^m = \exp\left(\frac{F_n^m}{\varepsilon}\right), \qquad g_n^m = \exp\left(\frac{G_n^m}{\varepsilon}\right), \qquad (2.20b)$$

$$\widetilde{w}_n^m = \exp\left(\frac{W_n^m}{\varepsilon}\right), \qquad u_n^m = \exp\left(\frac{U_n^m}{\varepsilon}\right)$$
(2.20c)

と置き変えた後に、
$$\varepsilon \to +0$$
の極限をとることで、 F_n^m, G_n^m についての超離散系

$$F_n^{m+1} + G_n^{m-1}$$

$$= \max \left[F_{n-1}^m + G_{n+1}^m - \max(0, -A - D), F_{n+1}^m + G_{n-1}^m - \max(0, A + D) \right],$$
(2.21a)
$$F_n^{m-1} + G_n^{m+1}$$

$$= \max \left[F_{n-1}^m + G_{n+1}^m - \max(0, -A + D), F_{n+1}^m + G_{n-1}^m - \max(0, A - D) \right]$$
(2.21b)

と、W^m についての超離散系

$$W_n^{m+1} + \max(0, W_{n+1}^m - A + D) - \max(0, W_{n+1}^m - A - D)$$

= $W_n^{m-1} + \max(0, W_{n-1}^m - A + D) - \max(0, W_{n-1}^m - A - D)$ (2.22)

と、U^m についての超離散系

$$U_{n}^{m+1} = \min\left[\max(0, A - D) - U_{n+1}^{m}, \sum_{j=-\infty}^{0} U_{n+j}^{m-1+j} - \sum_{j=-\infty}^{0} U_{n-1+j}^{m+j} + \max(0, -A + D)\right] + \max\left[-\max(0, -A - D), \sum_{j=-\infty}^{0} U_{n+1+j}^{m+j} - \sum_{j=-\infty}^{0} U_{n-1+j}^{m+j} - \max(0, A + D)\right]$$

$$(2.23)$$

を得る. $F_n^m, G_n^m \geq W_n^m$ の変数変換は (2.14) から

$$W_n^m = F_{n+1}^m + G_{n-1}^m - F_{n-1}^m - G_{n+1}^m$$
(2.24)

で与えられる. また $F_n^m, G_n^m \ge U_n^m$ の変数変換は (2.17) から

$$U_n^m = F_n^m + G_{n-1}^{m-1} - F_{n-1}^{m-1} - G_n^m$$
(2.25)

で与えられる. U_n^m についての超離散系 (2.23) は

$$L = A - D, \tag{2.26a}$$

$$M = A + D, \tag{2.26b}$$

$$j = \frac{m+n}{2},\tag{2.26c}$$

$$t = \frac{m-n}{2} \tag{2.26d}$$

の変換で

$$U_{j}^{t+1} = \min\left[\max(0, L) - U_{j}^{t}, \sum_{i=-\infty}^{j-1} U_{i}^{t} - \sum_{i=-\infty}^{j-1} U_{i}^{t+1} + \max(0, -L)\right] + \max\left[-\max(0, -M), \sum_{i=-\infty}^{j} U_{i}^{t} - \sum_{i=-\infty}^{j-1} U_{i}^{t+1} - \max(0, M)\right] \quad (2.27)$$

となるから,特に0 < L < M とすれば既知の運搬車付き箱玉系となる[8]. 超離 散系 (2.21), (2.22),および (2.23)は以下に示すように差分系の解から導かれる厳 密解を持つ.

1 ソリトンおよび 2 ソリトン解の超離散極限を考える.そのために, (2.11)のパ ラメータを $p_j = P_j/\varepsilon$, $\omega_j = \Omega_j/\varepsilon$, $c_j = C_j/\varepsilon$, $\eta_j^{(0)} = \Xi_j^{(0)}/\varepsilon$ と置き換え, $\varepsilon \to +0$ の極限をとる.このとき,関係 (2.7) は

$$2P_{j} = \max[2C_{j} + \max(0, A - D), \max(0, -A - D)] + \max[2C_{j} + \max(0, A + D), \max(0, -A + D)] - \max[2C_{j} + \max(0, -A - D), \max(0, A - D)] - \max[2C_{j} + \max(0, -A + D), \max(0, A + D)],$$
(2.28a)
$$2\Omega_{j} = \max[2C_{j} + \max(0, -A + D), \max(0, A + D)] + \max[2C_{j} + \max(0, -A + D), \max(0, A + D)] - \max[2C_{j} + \max(0, -A - D), \max(0, A - D)] - \max[2C_{j} + \max(0, A + D), \max(0, -A + D)]$$
(2.28b)

となる. f_n^m, g_n^m の1ソリトン解に対応する超離散変数 F_n^m, G_n^m は Ξ_j を $\Xi_j = P_j n + \Omega_j m + \Xi_j^{(0)}$ (2.29)

で定め、 P_i, Ω_i が (2.28)を満たすものとして、

$$F_n^m = \max(0, \Xi_1 + C_1), \tag{2.30a}$$

$$G_n^m = \max(0, \Xi_1 - C_1)$$
 (2.30b)

で与えられる. 1 ソリトン解に対応する W_n^m の符号は式のパラメータ $A \ge D$ に よって定まる (図 2.3).

相互作用項 (2.10) の超離散極限は条件 $|C_j| \neq |C_k|$ のもとで

$$2(|C_j - C_k| - |C_j + C_k|) \tag{2.31}$$

で与えられる. この結果を用いると、2ソリトン解に対応する F_n^m, G_n^m は $F_n^m = \max[0, \Xi_1 + C_1, \Xi_2 + C_2, \Xi_1 + \Xi_2 + C_1 + C_2 + 2(|C_1 - C_2| - |C_1 + C_2|)],$ (2.32a) $G_n^m = \max[0, \Xi_1 - C_1, \Xi_2 - C_2, \Xi_1 + \Xi_2 - C_1 - C_2 + 2(|C_1 - C_2| - |C_1 + C_2|)]$ (2.32b)

図 2.3: 三角パルスの例. 左はパラメータが $C_1 = 2, A = 2, D = 1$, 右は $C_1 = 2, A = -2, D = 1$.

と表される. 図 2.4 は (2.32) から得られる W_n^m の挙動を示している.

図 2.4: 超離散系の 2 パルスの例. 式のパラメータは A = 10, D = 6, 解のパラメー タは $(C_1, \Xi_1^{(0)}) = (6, 0)$ および $(C_2, \Xi_2^{(0)}) = (10, 0)$.

変数 U_j^t の解も同様に得ることができる.その解で特に 0 < L < M かつ $C_i > 0$ としたものは [8] で既に得られていた解と一致する.そして,系 (2.27) において $0 < M \le L$ としたときは BBSC で運搬車の容量が箱の容量よりも小さい場合に相 当するが、そのときの解も与えることができる.更に、BBSC においてそれらの 容量が負の場合に対しても厳密解を与える.以下に 0 < L < M, L < M < 0 およ びM < 0 < Lとした場合の変数 U_j^t における 1 ソリトン解の挙動を示す.

<u>0 < L < M</u>の場合: $(C_1, \Xi_1^{(0)}, L, M) = (19/2, -25/2, 4, 7)$

t = 0	0	1	4	4	4	4	2	0	0	0	0	0	0	0	0	0	0	0	0	0	
1	0	0	0	2	4	4	4	4	1	0	0	0	0	0	0	0	0	0	0	0	
2	0	0	0	0	0	3	4	4	4	4	0	0	0	0	0	0	0	0	0	0	
3	0	0	0	0	0	0	0	4	4	4	4	3	0	0	0	0	0	0	0	0	
4	0	0	0	0	0	0	0	0	1	4	4	4	4	2	0	0	0	0	0	0	
5	0	0	0	0	0	0	0	0	0	0	2	4	4	4	4	1	0	0	0	0	
6	0	0	0	0	0	0	0	0	0	0	0	0	3	4	4	4	4	0	0	0	
7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4	3	0	
																				→ ĵ	
					10															U	
L < M < 00)場	合	: (C_1 ,	$\Xi_1^{(t)}$	$\frac{n}{2}, 1$	Σ, Λ	<u>1)</u> =	= (19/	2, 2	5/2	2, —	7, -	-4)						
$t = 0 \mid 0$	1_1	_4	L 4	14	4	4 _	.2	Ω	Ω	Ω	Ω	Ω	Ω	Ο	0	ſ) (n	0	Ο	0
	, 1			т Э	4	1 /	<u> </u>	-1 -	_1	0	0	0	0	0	0	() (n	ñ	0	0 0
3 1	A A									0	Ų.	0	0	0	0	C	· ·	0	U	U.	v
		C	-2	<u>, 2</u>	±	γ_ 	1	_1 _	_1 _	_1	Δ	Ω	Ο	Ο	Ω	ſ) (n	Ω	Ω	Ω
		0 0 0) -2) (+ —) —		4-	-4 -	-4 -	-4	0	0	0	0	0	(0	0	0	0
$ \begin{array}{c c} 1 & 0\\ 2 & 0\\ 3 & 0\\ 4 & 2 \end{array} $) ()) ()) ()) -2) () ($\frac{4}{3} - 0$	-4 - 0 -	-4 - -4 -	-4 - -4 -	-4 -4 ·	0 4	0 -3	0	0 0	0	() () (0 0	0 0	0 0	00
1 0 2 0 3 0 4 0) ()) ()) ()) ()) -2) (() (() () () () —) —)		-4 - 0 - 0	-4 - -4 - 0 -	-4 - -4 - -1 -	-4 -4 · -4 ·	0 4 4	$0 \\ -3 \\ -4 \\ 4$	$0 \\ 0 \\ -4$	$0 \\ 0 \\ -2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	0 0 0) () () (0 0 0	0 0 0	0 0 0	0 0 0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$) () () () () () () () () ()) — 2) (() (() (() () () () () —))	4 3 0 0 0	-4 - 0 - 0	-4 - -4 - 0 - 0	-4 - -4 - -1 - 0	-4 -4 · -4 · 0 ·	0 4 2	$0 \\ -3 \\ -4 \\ -4 \\ -4 \\ -4 \\ -4 \\ -4 \\ -4$	$0 \\ 0 \\ -4 \\ -4$	$0 \\ 0 \\ -2 \\ -4$	0 0 0 -4) ((]) () () (L (0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$) () () () () () () () () () () () () ()) - 2) (() (() (() () () () () () () —))))	4 — 3 — 0 0 0	-4 - 0 - 0 0	-4 - -4 - 0 - 0	-4 - -4 - -1 - 0 0	-4 -4 -4 0 0	0 - 4 - 4 - 2 - 2 - 2 - 0 0	$0 \\ -3 \\ -4 \\ -4 \\ 0$	$0 \\ 0 \\ -4 \\ -4 \\ -3$	$0 \\ 0 \\ -2 \\ -4 \\ -4$	0 0 0 -4 -4	((() () () (1 –	0 0 0 0 4	0 0 0 0	0 0 0 0	0 0 0 0
1 0 2 0 3 0 4 0 5 0 6 0 7 0) ()) ()) ()) ()) ()) ()) — 2) (() (() (() ((2) () () () () () (4	-4 - 0 - 0 0 0	-4 - -4 - 0 - 0 0	-4 - -4 - -1 - 0 0 0	-4 -4 -4 0 0 0	0 - 4 - 4 - 2 - 2 - 0 0 0 0	$0 \\ -3 \\ -4 \\ -4 \\ 0 \\ 0 \\ 0$	$0 \\ 0 \\ -4 \\ -4 \\ -3 \\ 0$	$0 \\ 0 \\ -2 \\ -4 \\ -4 \\ 0$	$0 \\ 0 \\ -4 \\ -4 \\ -4 \\ -4$	((((((((((((((((((() () (1	0 0 0 4 4 -	0 0 0 0 -4 -	0 0 0 0 -3	0 0 0 0 0
1 0 2 0 3 0 4 0 5 0 6 0 7 0) ()) ()) ()) ()) ()) — 2) (() (() () () (2) () () () () () () ($\frac{4}{3} - \frac{3}{0} - \frac{3}$	-4 - 0 - 0 0 0	-4 - -4 - 0 - 0 0	-4 - -4 - -1 - 0 0	-4 -4 0 0 0	0 - 4 - 4 - 2 - 2 - 2 - 0 0 0	$0 \\ -3 \\ -4 \\ -4 \\ 0 \\ 0 \\ 0$	$\begin{array}{c} 0 \\ 0 \\ -4 \\ -4 \\ -3 \\ 0 \end{array}$	$0 \\ 0 \\ -2 \\ -4 \\ -4 \\ 0$	$0 \\ 0 \\ -4 \\ -4 \\ -4$) () (1	0 0 0 4 4 -	0 0 0 0 -4 -	0 0 0 0 -3	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \rightarrow j \end{array}$

M < 0 < Lの場合: $(C_1, \Xi_1^{(0)}, L, M) = (19/2, -25/2, 7, -3)$

t = 0	0	1	4	4	4	4	2	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	4	4	4	4	2	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	1	4	4	4	4	2	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	1	4	4	4	4	2	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	1	4	4	4	4	2	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	1	4	4	4	4	2	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	1	4	4	4	4	2	0	0	0	0	0	0	0	0	0	0	0	0	0
7	0	1	4	4	4	4	2	0	0	0	0	0	0	0	0	0	0	0	0	0
																				$\rightarrow j$

2.4 まとめ

mKdV 方程式の1つの離散類似を与え、その式に新しいタイプのソリトン解が 存在することを示した.その解は超離散極限を通して運搬車付き箱玉系の解に直 接対応する.更に,運搬車付き箱玉系に対して運搬車や箱が負の容量を許容する ように拡張された系を提出し,その系の厳密解を与えた.ただし,この双線型形 式は通常の意味のソリトン解をもたないことから,mKdV 方程式のNソリトン解 に直接に対応した超離散系は別に存在すると考えられる.

3 非正値変数の超離散化

3.1 超離散化における負の困難

超離散化の手続きには2つのポイントがある.1つめは差分系の従属変数 *x* に 対する置き換え

$$x = e^{X/\varepsilon} \ (\varepsilon > 0) \tag{3.1}$$

2つめは超離散極限

$$\lim_{\varepsilon \to \pm 0} \varepsilon \log(*) \tag{3.2}$$

である.しかしながら,置き換えに関してはx > 0でなければ不適当であること, 超離散極限に関しては log の中の式に減算が入っていると極限の評価が困難になる こと,が問題点として挙げられる.これらの問題のため,負の値をとる変数を一 般に超離散化することは困難であった.本節ではそのような変数を超離散化する 手法を提案する.また,具体例として mKdV 方程式にこの手法を適用する.

3.2 差分 mKdV 方程式

ここでは差分 mKdV(dmKdV) 方程式をn, mを独立変数、 δ をパラメータとして

$$\left(\delta^{-1} + \delta v_{n+1}^m v_{n-1}^m\right) \left(v_n^{m+1} - v_n^{m-1}\right) + \left(1 + v_n^{m+1} v_n^{m-1}\right) \left(v_{n+1}^m - v_{n-1}^m\right) = 0 \quad (3.3)$$

で与える. この方程式は (2.2) に対して変換 $w_n^m = 1 - iv_n^m / \alpha$, $\alpha = (1 - a)/(1 + a)$ を施し, a = 1 とおくことによって得られる. 変数変換

$$v_n^m = \gamma v, \quad n = \frac{x}{\gamma} + \frac{6t}{\gamma^3}, \quad m = \frac{6t}{\gamma^3 \delta}$$
 (3.4)

の下で $\delta, \gamma \to 0$ の極限をとれば, (3.3)式はmKdV方程式(2.1)に帰着される.また方程式(3.3)に従属変数の変換

$$v_n^m = i \frac{f_{n+1}^m f_{n-1}^{*m} - f_{n-1}^m f_{n+1}^{*m}}{f_{n+1}^m f_{n-1}^{*m} + f_{n-1}^m f_{n+1}^{*m}}$$
(3.5)

を施し適当に decouple すると, 双線形形式 [9, 10]

$$\begin{cases} \delta^{-1} \left(f_n^{m+1} f_n^{*m-1} - f_n^{m-1} f_n^{*m+1} \right) + f_{n+1}^m f_{n-1}^{*m} - f_{n-1}^m f_{n+1}^{*m} = 0\\ f_n^{m+1} f_n^{*m-1} + f_n^{m-1} f_n^{*m+1} - f_{n+1}^m f_{n-1}^{*m} - f_{n-1}^m f_{n+1}^{*m} = 0 \end{cases}$$
(3.6)

が得られる. (3.5) 式の連続極限は mKdV 方程式の物理変数と r 関数のよく知られ た関係式

$$v = i \frac{(\partial_x f)f^* - f(\partial_x f^*)}{ff^*}$$
(3.7)

に帰着され、この差分化が自然なものであることを示唆している.以下で見るように、差分ソリトン解の振る舞いも連続系のそれとよく似ている.

双線形形式 (3.6) のソリトン解は既に知られており [9, 10], これを (3.5) によっ て変換すれば方程式 (3.3) のソリトン解が得られる. ここでは1 および2 ソリトン 解について述べる. 記法

$$\xi_j := p_j n + \omega_j m + \xi_j^{(0)}$$
(3.8)

$$\delta \sinh p_j + \sinh \omega_j = 0 \tag{3.9}$$

を用いて1ソリトン解は

$$v_n^m = \sinh p_1 \mathrm{sech}\,\xi_1\tag{3.10}$$

と表される. この解はパラメータ *p*₁の符号に合わせてソリトンの振幅の符号が変わるという,連続系のソリトン解と同様の性質を持つ. 2ソリトン解は

$$v_n^m = 2 \frac{\sinh p_1 e^{\xi_1} \left(1 + e^{2\xi_2 + a_{12}}\right) + \sinh p_2 e^{\xi_2} \left(1 + e^{2\xi_1 + a_{12}}\right)}{1 + e^{2\xi_1} + e^{2\xi_2} + e^{2\xi_1 + 2\xi_2 + 2a_{12}} + 2\left(\cosh(p_1 - p_2) - e^{a_{12}}\cosh(p_1 + p_2)\right)e^{\xi_1 + \xi_2}}$$
(3.11)

ただし

$$e^{a_{12}} = \left(\frac{\sinh[(p_1 - \omega_1 - p_2 + \omega_2)/2]}{\sinh[(p_1 - \omega_1 + p_2 - \omega_2)/2]}\right)^2$$
(3.12)

と表される. 2ソリトン解は *p*₁, *p*₂の2つのパラメータを持っている. その一方が 正,もう一方が負のとき,2ソリトン解は連続系と同様に正の振幅のソリトンと 負の振幅のソリトンの相互作用を表す(図3.1参照). このように正値ではない変数 を,指数関数で置き換えるのは不適当である.

注意:連続系の場合と異なり、差分2ソリトン解では2つのソリトン の距離が近くなると特異点を生じる.一般には分母が0になる点があっ て発散するが、定義されている整数点が特異点になることは稀である と考えられる (図 3.2 参照). なお、この特異点は連続極限 (3.4) をとる と消える.

図 3.2: 差分系の2ソリトン解の 発散の様子.図3.1のm=130の 一部を拡大したもの.

図 3.1: 差分系の2ソリトン解の例. パラメー タの値は $p_1 = 2, p_2 = -1, \xi_1^{(0)} = 0, \xi_2^{(0)} = 0, \delta = 1/2.$

3.3 超離散化

正値性が保証されていない変数を超離散化するために、差分系の従属変数 x を

$$x = \frac{e^{X/\varepsilon} - e^{-X/\varepsilon}}{2} = \sinh \frac{X}{\varepsilon}$$
(3.13)

と sinh 関数で置き換えることを提案する. この変換は指数関数での置き換え (3.1) と異なり, x > 0 でない場合も妥当である.

dmKdV 方程式 (3.3) に対して置き換え

$$v_n^m = \sinh \frac{V_n^m}{\varepsilon}, \ \delta = e^{\frac{L}{\varepsilon}}$$
 (3.14)

を施し、減算が表れないよう適当に移項したのちに超離散極限 (3.2) をとると、超離散系

$$\max \left[\max \left[-L, L + \left| V_{n+1}^{m} + V_{n-1}^{m} \right| \right] + \max \left[V_{n}^{m+1}, -V_{n}^{m-1} \right], \\ L + \left| V_{n+1}^{m} - V_{n-1}^{m} \right| + \max \left[-V_{n}^{m+1}, V_{n}^{m-1} \right], \\ \left| V_{n}^{m+1} + V_{n}^{m-1} \right| + \max \left[V_{n+1}^{m}, -V_{n-1}^{m} \right], \\ \left| V_{n}^{m+1} - V_{n}^{m-1} \right| + \max \left[-V_{n+1}^{m}, V_{n-1}^{m} \right] \right]$$

$$= \max \left[\max \left[-L, L + \left| V_{n+1}^{m} + V_{n-1}^{m} \right| \right] + \max \left[-V_{n}^{m+1}, V_{n}^{m-1} \right], \\ L + \left| V_{n+1}^{m} - V_{n-1}^{m} \right| + \max \left[V_{n+1}^{m+1}, -V_{n}^{m-1} \right], \\ \left| V_{n}^{m+1} + V_{n}^{m-1} \right| + \max \left[-V_{n+1}^{m}, V_{n-1}^{m} \right], \\ \left| V_{n}^{m+1} - V_{n}^{m-1} \right| + \max \left[V_{n+1}^{m}, -V_{n-1}^{m} \right] \right]$$

$$(3.15)$$

に帰着される.

また解については

$$V_n^m = \varepsilon \sinh^{-1} v_n^m = \varepsilon \log \left(v_n^m + \sqrt{(v_n^m)^2 + 1} \right) = -\varepsilon \log \left(-v_n^m + \sqrt{(v_n^m)^2 + 1} \right)$$
(3.16)

の $\varepsilon \to +0$ の極限を評価する.常に $\pm v_n^m + \sqrt{(v_n^m)^2 + 1} > 0$ となることが重要である. 1ソリトン解の極限を考えてみよう.まず置き換え

$$p_j = P_j/\varepsilon, \ \omega_j = \Omega_j/\varepsilon, \ \xi_j^{(0)} = \Xi_j^{(0)}/\varepsilon, \ \xi_j = \Xi_j/\varepsilon$$
 (3.17)

を(3.8), (3.9)に施して $\varepsilon \rightarrow +0$ の極限をとると

$$\Xi_j = P_j n + \Omega_j m + \Xi_j^{(0)} \tag{3.18}$$

$$\Omega_j = -\operatorname{sgn}(P_j) \max(0, |P_j| + L)$$
(3.19)

を得る. ここで sgn は符号関数である. 置き換え (3.14) および (3.17) を差分系の 1 ソリトン解 (3.10) に施し, V^m_n について解くと

$$V_n^m = \varepsilon \log \left(\frac{e^{P_1/\varepsilon} - e^{-P_1/\varepsilon}}{e^{\Xi_1/\varepsilon} + e^{-\Xi_1/\varepsilon}} + \sqrt{\left(\frac{e^{P_1/\varepsilon} - e^{-P_1/\varepsilon}}{e^{\Xi_1/\varepsilon} + e^{-\Xi_1/\varepsilon}}\right)^2 + 1} \right)$$
(3.20)

となる. $P_1 \ge \Xi_1$ の大小関係に応じて以下のように変形すると極限評価の見通しがよくなる.

$$V_{n}^{m} = \begin{cases} \varepsilon \log e^{\frac{P_{1} - |\Xi_{1}|}{\varepsilon}} \left(\frac{1 - e^{-2P_{1}/\varepsilon}}{1 + e^{-2|\Xi_{1}|/\varepsilon}} + \sqrt{\left(\frac{1 - e^{-2P_{1}/\varepsilon}}{1 + e^{-2|\Xi_{1}|/\varepsilon}}\right)^{2}} + e^{\frac{-2(P_{1} - |\Xi_{1}|)}{\varepsilon}} \right) \\ (P_{1} > 0, P_{1} - |\Xi_{1}| > 0) \\ \varepsilon \log \left(e^{\frac{P_{1} - |\Xi_{1}|}{\varepsilon}} \frac{1 - e^{-2P_{1}/\varepsilon}}{1 + e^{-2|\Xi_{1}|/\varepsilon}} + \sqrt{\left(e^{\frac{P_{1} - |\Xi_{1}|}{\varepsilon}} \frac{1 - e^{-2P_{1}/\varepsilon}}{1 + e^{-2|\Xi_{1}|/\varepsilon}}\right)^{2}} + 1 \right) \\ (P_{1} > 0, P_{1} - |\Xi_{1}| \le 0) \\ -\varepsilon \log e^{\frac{-P_{1} - |\Xi_{1}|}{\varepsilon}} \left(\frac{1 - e^{2P_{1}/\varepsilon}}{1 + e^{-2|\Xi_{1}|/\varepsilon}} + \sqrt{\left(\frac{1 - e^{2P_{1}/\varepsilon}}{1 + e^{-2|\Xi_{1}|/\varepsilon}}\right)^{2}} + e^{\frac{-2(-P_{1} - |\Xi_{1}|)}{\varepsilon}} \right) \\ (P_{1} < 0, -P_{1} - |\Xi_{1}| > 0) \\ -\varepsilon \log \left(e^{\frac{-P_{1} - |\Xi_{1}|}{\varepsilon}} \frac{1 - e^{2P_{1}/\varepsilon}}{1 + e^{-2|\Xi_{1}|/\varepsilon}} + \sqrt{\left(e^{\frac{-P_{1} - |\Xi_{1}|}{\varepsilon}} \frac{1 - e^{2P_{1}/\varepsilon}}{1 + e^{-2|\Xi_{1}|/\varepsilon}}\right)^{2}} + 1 \right) \\ (P_{1} < 0, -P_{1} - |\Xi_{1}| \ge 0) \end{cases}$$

$$\xrightarrow{\varepsilon \to +0} \begin{cases} P_1 - |\Xi_1| & (P_1 > 0, P_1 - |\Xi_1| > 0) \\ 0 & (P_1 > 0, P_1 - |\Xi_1| \le 0) \\ -(-P_1 - |\Xi_1|) & (P_1 < 0, -P_1 - |\Xi_1| > 0) \\ 0 & (P_1 < 0, -P_1 - |\Xi_1| \le 0) \end{cases}$$
(3.21)

極限 (3.21) は次のように表現できる.

$$V_n^m = \operatorname{sgn}(P_1) \max(0, |P_1| - |\Xi_1|)$$
(3.22)

この関数 (3.22) は、図 3.3 のように $|\Xi_1| \to \infty$ のとき 0 となるパルスを表す.また パラメータ P_1 の符号に合わせてパルスの振幅の符号が変わるという性質があり、 差分系の 1 ソリトン解の特徴を再現している.続いて 2 ソリトン解の極限も考え

図 3.3: 関数 (3.22) のm = 0におけるプロット. パラメータの値は (a) $P_1 = 2, \Xi_1^{(0)} = 0, L = 1$, (b) $P_1 = -2, \Xi_1^{(0)} = 0, L = 1$.

てみよう. 2ソリトン解 (3.11) に対して置き換え (3.14) および (3.17) を施し,同様に極限を評価する. 結果は

$$V_n^m = \operatorname{sgn} \left(S_1 - S_2 \right) \operatorname{sgn} \left(T_1 - T_2 \right) \max \left[0, \max \left[S_1, S_2 \right] - \max \left[T_1, T_2 \right] \right]$$
(3.23)
$$\left(S_1 \neq S_2 \stackrel{\text{tr}}{\to} T_1 \neq T_2 \right)$$

と表される. ただし

$$S_{1} = \max \left[\Xi_{1} + P_{1} + \max \left[0, 2\Xi_{2} + A_{12}\right], \Xi_{2} + P_{2} + \max \left[0, 2\Xi_{1} + A_{12}\right]\right] \quad (3.24)$$

$$S_{2} = \max \left[\Xi_{1} - P_{1} + \max \left[0, 2\Xi_{2} + A_{12}\right], \Xi_{2} - P_{2} + \max \left[0, 2\Xi_{1} + A_{12}\right]\right] \quad (3.25)$$

- $T_1 = \max\left[0, 2\Xi_1, 2\Xi_2, 2\Xi_1 + 2\Xi_2 + 2A_{12}, \Xi_1 + \Xi_2 + |P_1 P_2|\right]$ (3.26)
- $T_2 = \Xi_1 + \Xi_2 + |P_1 + P_2| + A_{12} \tag{3.27}$

$$A_{12} = |P_1 - \Omega_1 - P_2 + \Omega_2| - |P_1 - \Omega_1 + P_2 - \Omega_2|$$
(3.28)

である $(S_1 = S_2 \pm ckt T_1 = T_2 october oct$

図 3.4: 相互作用前 (m = -5) および後 (m = 40)の関数 (3.23) のプロット. パラ メータの値は $P_1 = 3, P_2 = -2, \Xi_1^{(0)} = 1/4, \Xi_2^{(0)} = 1/3, L = -1.$

3.4 まとめ

負の値をとる変数を超離散化するために, sinh 関数を用いた置き換えを提案した. この手続きをmKdV 方程式とそのソリトン解に適用し, 解の極限が差分ソリトン解の性質をよく再現することを示した. ただし方程式は max = max の形になる. この手法を他の方程式に適用し, 新しい超離散系を得ることは今後の課題である.

図 3.5: 相互作用中 (9 ≤ m ≤ 23) の関数 (3.23) のプロット. パラメータの値は図 3.4 と同じ.

参考文献

- T. Tokihiro, D. Takahashi, J. Matsukidaira and J. Satsuma, Phys. Rev. Lett. 76 (1996) 3247.
- [2] J. Matsukidaira, J. Satsuma, D. Takahashi, T. Tokihiro and M. Torii, Phys. Lett. A 225 (1997) 287.
- [3] S. Isojima, M. Murata, A. Nobe and J. Satsuma, Phys. Lett. A 331 (2004) 378.
- [4] M. Murata, S. Isojima, A. Nobe and J. Satsuma, in preparation.
- [5] S. Isojima, M. Murata, A. Nobe and J. Satsuma, in preparation.
- [6] S. Tsujimoto and R. Hirota, RIMS Kokyuroku 933 (1995) 105.
- [7] K. Maruno, K. Kajiwara, S. Nakao and M. Oikawa, Phys. Lett. A 229 (1997) 173.
- [8] D. Takahashi and J. Matsukidaira, J. Phys. A: Math. Gen. 30 (1997) L733.
- [9] R. Hirota, J. Phys. Soc. Jpn. 50 (1981) 3785.
- [10] R. Hirota, J. Phys. Soc. Jpn. 43 (1977) 1424.