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Strategies for an Optimized simulation of granular particles
in a Newtonian Fluid, Part 1: Basics

Hans-Georg Matuttis,
University of Electro-Communications, Department of Mechanical Engineering and

Intelligent Systems, Chofu, Chofugaoka 1-5-1, Tokyo 182-8585 Japan
Abstract; In this article, an outline is given for an an “ideal” simulation of
granular particles in fluids with respect to CPU-effort, accuracy etc. which
features should be incorporated in the underlying simulation, and which nu-
merical techniques should be used with respect to the time integration.

1 Introduction
Though many features of granular materials , especially those in connection with static
or quasi-static regimes (heap-formation, arching), a whole class or granular phenomena is
influenced by the surrounding fluid:

Fluidized beds and Sedimentation are the terms used to describe systems where
grains in various concentrations interact with the surrounding fluid under the influence
of gravity.

Pattern formation processes like rippling and dune formation take place in in air
and under water. Hydrological phenomena like the formation of coastlines, the formation
and destruction of river banks and and the change of river beds also belongs in this class.

Dust avalanches of powder snow, where the avalanche is supposed to ride on a
cushion of compressed air, are much faster, far reaching and more destructive than the
fluid-tike avalanches of ”sherbet-like” snow,

Pneumatic transport is the field which deals with the intentional or unintentional
movement of granular materials by fluids, ranging from vacuum cleaners over devices in
$\mathrm{c}\mathrm{h}\mathrm{e}$ mical engineering to sandstorm $\mathrm{f},,$ .

Porous Media is the field where the surrounding ”granular matrix” is considered to
be stationary, and only the fluid it contains in the pore space is supposed to mover

Landslides are the result of an interaction between a granulaJ matrix of a slope and
a pore fluid which destabilizes the whole system.

We will outline which features must be incorpo-
rated in a simulation to access the widest range of
the above phenomena with the minim um amount of
computational effort while retaining physical valid-
ity. The granular materials shall be modeled on the
particle level (Lagrangian method), to be able to in-
vestigate micro-mechanic mechanisms of macroscopic
phenomena. The surrounding fluid should be simu- Figure 1: Grid artifact: Though

lated in a grid-based discretization as Newtonian fluid the relative position of particle Pi

(Eulerian method), so that artifacts introduced by versu $\mathrm{s}$ P2 is the same as that of

some grid-based methods (Lattice-Gas automata[9], particle P3 versus P4, in the first

Lattice Boltzmann simulations$[6, 17]$ , see Fig. 1) are case the path between the parti-

avoided. Particle based methods (moving particle cles is blocked, only in the latter

sem i-im plicit MPS $[16, 15]$ , smoothed particle dynam- case there is a path for the fluid,

$\mathrm{i}\mathrm{c}\mathrm{s}$ , SPH$[10, 22])$ for the modelization of the fluid will
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not be considered here, as they lead to shot-noise due to the discrete nature of the flow
and will not be practicable. The resulting combination of granular particles and Newto-
nian Fluid will of course not necessarily behave like a Newtonian Fluid, The aim is to
develop a simulation for granular materials in fluids which is ”optimal” in the sense that
1. it allows the input of realistic conditions (particle shape, friction, etc),
2. is able to reproduce the macroscopic (rippling, . . . ) and mesoscopic (saltation, collapse
of fluid-filled cavities, . . ) behavior,
3. can be used for low (sedimentation) and high (porous media) granular density alike,
4. uses the ninimurn amount of computer time and storage in comparison with other
com putational methods and
5. maybe is even faster (in real time) than a purely “dry” simulation or a pure liquid due
to a-priori considerations which will be explained below.

Previous simulations have dealt with the incorporation of particles into a fluid by
using a straightforward approach, using the standard square grid with MAC[12] (marker
and cell) and the standard granular particle simulation with round particles. Apart from
thle problem that the blocking of flow by particles cannot be treated with round particles,
most of the algorithmic effort went into the treatment of the incomm ensurability of the
straight grids and curved grain boundaries. Kajishima[14] used a brute-force approach,
putting sub-meshes around the particles several orders of magnitude smaller than the
particle diam etcr; the accuracy gained in the description of the particle outline lead to a
huge blowup of the number of mesh-points, and accordingly, the CPU-effort is gigantic.
Schwarzer et $\mathrm{a}1[29.,$13,30] tried to match the particles with a sirriilar-sized mesh, coupling
the particle motion to tracer particles in the fluid: In a sense, the fluid goes “through”
the particle, which are $’\backslash \mathrm{f}\mathrm{i}\mathrm{x}\mathrm{e}\mathrm{d}^{\backslash }$

’ to the flow lines with “springs”. These ”
$\mathrm{s}\mathrm{p}\mathrm{r}\mathrm{i}\mathrm{n}\mathrm{g}\mathrm{s}’\backslash$ (cou-

pling constants) introduce additional degrees of freedom (stiffness, damping), for which
the timescale is difficult to predict, which leads to numerically instable choices of the
time-step. Moreover, most of the Computer time (99 %) goes in the solution of the
MAC-pressure-iteration for the incompressibility-condition, due to incommensurability of
particle boundaries and grid positions. In this article, we will explain how to circumvent
the above problems by not choosing the most straightforward approach in the model-
ing of the primitives of the simulation (round particles, quadrilateral grid), but with tlie
advantage th at the treated ent of the particle-fluid interface becomes straightforward.

1.1 $\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{u}\mathrm{u}\mathrm{m}/$ Fluid part
The sound velocity $c$ of a continuum solid can be calculated from its Young modulus $Y$

and its density $\rho$ as $c=\sqrt{Y/\rho}$ The sound velocity of a chain made of spherical particles is
about 10 % of that of the continuum material the particles are made of: $c_{chain}\approx 0.1\mathrm{c}$ . The
sound velocity of a th ee-dim ensional disordered packing of mono-disperse particles $c_{\mathrm{d}\mathrm{j}\mathrm{s}}$

is again on order of magnitude less, so that the relation $c_{\mathrm{d}}\mathrm{i}\mathrm{s}$
$\approx 0.\mathrm{l}\mathrm{c}\mathrm{c}\mathrm{h}\mathrm{a}\mathrm{i}\mathrm{n}\approx 0.0\mathrm{l}\mathrm{c}$ hold[25].

Therefore, the sound velocity of the granular part can be considered considerably lower
than that of the fluid part, which itself is about that of a continuum solid. Therefore, the
fluid part will be best approxim ated as an incompressible fluid. If, as a starting point,
the fluid is to be approximated as a Newtonian fluid, this means that the incompressible
Navier-Stokes equation can be used to model the fluid part
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(a) Spherical smooth glass (b) Smooth non-spherical (c) Rough, “crushed” glass
beads beads

Figure 2: Effect of elongation and surface structure of glass beads on the critical angle

1.2 Particle Modeling

The bulk properties of assemblies of circular $/\mathrm{s}\mathrm{p}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{l}$ granular particles differ consider-
ably from that of non-spherical particles: Whereas the angle of repose for dry spherical
glass beads in Fig. $2(\mathrm{a})$ is about 20 degrees, if “straight” slopes can be identified at all,
for the elongated non-spherical particles in Fig. $2(\mathrm{b})$ one obtains a more sand-like angle of
repose of about 30 degrees. Surface roughness of the grains and the size dispersion rela-
tion also effects the angle of repose, as the angle of repose for the rough glass’s in Fig. $2(\mathrm{c})$

shows. Another quantitative difference can be seen in the stress-strain diagram, where the
maximal yield strength of elongated polydisperse particles is twice that of round particles
(Fig. $3(\mathrm{a})$ ) $)$ and the differences in the density-strain diagram also shows that the internal
structure must be different (Fig. $3(\mathrm{b})$ ). For these reasons, a simulation of granular parti-
cles in a fluid should make use of non-spherical particles, so that e.g. for sedim entation,
the resulting slopes can be computed with acceptable stability and precision.

$\mathrm{J}\Omega\underline{\underline{0\alpha(n}}$

(a) Stress-strain, scaled by the external pres- (b) Density-strain scaled by the density be-
fore $\mathrm{c}\mathrm{o}$ mpression

$\mathrm{i}>\iota\iota \mathrm{r}\mathrm{e}$

Figure 3: Granular properties of a typical single run of biaxial compression of mono-
disperse round particles (full line), polydisperse round particles (dashed line) and poly-
disperse elongated particles (dotted line) [21].

As the friction coefficient has also considerable influence on the bulk properties, the
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appropriate lubricated solid friction for particles under water has to be impiemented:
This means that there is still static friction as in the dry case, but the coefficient of fric-
thon will be smaller. For the modeling of static friction, the computation of the contact
$\mathrm{p}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}/\mathrm{a}\mathrm{r}\mathrm{e}\mathrm{a}$ between the particles is necessary, no matter whether a tangential dash-pot-
spring model [7] or the numerical exact implementation via differential algebraic equations
(” Conctact dynamics” $\mathrm{c}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{m}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{u}88,\mathrm{m}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{u}89$, or Ref. $\mathrm{c}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{H}\mathrm{a}\mathrm{i}\mathrm{r}\mathrm{e}\mathrm{r}:93$, p. 199) is used : This
excludes the possibility of modeling the particles with elliptic potentials[32], which gives
only a force direction, but not a traceable contact point. All in all, the use of polygo-
nal (polyhedral in three dimensions) particles in connection with a surrounding fluid is
preferable to e.g. particles with curved boundaries, because the geometric information is
geometrically better defined.

Finally, the use of soft particle models (with finite young modulus) is preferable over
“rigid particles” (infinite young modulus) in event-driven particle simutations$[19, 20]$ or in
contact mechanics $[23, 24]$ : Event-driven simulations allow only the simulation of binary
collisions, and as there is a suspicion that the net interaction of particles submerged
under water is attractive, this would disturb agglomeration. Contact mechanics can treat
multiple contact (at considerable larger algorithmic effort than the event-driven method);
A drawback is that modeling the granular particles with rigid contacts results in an infinite
sound velocity, which is physically dubious and in the presence of an incompressible fluids
may lead to serious numerical instabilities due to thhe interference of two infinite signal
velocities.

1.3 Statistical Physics

In accuracy benchmarks in fluid mechanics, e.g. the flow behind an obstacle, “idealized”
boundary conditions for the likewise idealized Newtonian fluid are chosen so that solutions
can be given or at least defined in arbitrary precision; in the case of Karm an vortices, this
will be an ideal circle or sphere as obstacle. For low Reynolds numbers, this will be the
flow lines, for higher Reynolds numbers, where no stationary solution exists, one can still
expect the existence of probability distributions for e.g the size of vortices in the Karman
vortex street which should be reproduced exactly by simulations and experiments alike.
Physically, the relevance of such definitions may be actually doubtful, as experimentally
already for Reynolds numbers as low as 20, huge deviations have been found in the
streamlines of flow through a small orifice for polar and non-polar-simulations, on the
one hand, and the numerical practically exact simulation on the other hand ([31] and
References therein); A-priory, it is unclear why the experimentally used fluids (distilled
water, ethanol and liquid paraffin) deviate so strongly from ideal Newtonian behavior.

In granular material research from the point of statistical physics, on the other hand,
one is not so much interested in single particle problems with arbitrary precision, but
tries to derive the macroscopic quantities based on the microscopic mechanisms. In that
respect, for the sedimentation of granular particles in a fluid, the experimental verification
should not be a verification of the particle trajectory (impossible, because it is obviously
a nonlinear-chaotic problem), but the speed of the sedimentation fronts, and the angle of
the resulting slopes.

Whereas, as discussed in the previous paragraph, “high accuracy” is not an issue due
to the lack of “high accuracy reference data ”, “high stability” has to be retained at a1
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costs: No fluctuating noise terms due to lack of precision in the solution of the continuity
equation should be introduced, because they might lead to unphysically oscillatory force
laws, so that the granular phase would become fiuidized more than is physically realistic.

Figure 4: Delaunay-Triangulation$\mathrm{s}$ of a square-grid deformed with Gaussian-distributed
random numbers ( $\sigma=0/Fr\mathrm{i}edr\mathrm{i}chs-K$eller - Grid, 0.05, 0.1, 0.2 )

1.4 The Grid
Structured grids have the advantage that the resulting system of equation is character-
ized by a band Matrix, so that conventional LU-Solvers can be used. The disadvantage is
that for complicated simulation geometries, the construction of the grid is an arbitrarily
complex task, even more so if the neighborhood relation of the grid points must be taken
into account as an additional constraint. If two granular particles approach each other,
the space between them can become arbitrarily narrow: The treatment of the fluid with
a more or less uniform grid spacing, as prevalent in the MAC-method, is not suitable for
this case, because if the regular grid with the smallest grid size (smallest particle distance)
is used, this leads to unnecessary many degrees of freedom.

Unstructured grids give the largest freedom for the distribution of the mesh-points,
and can therefore be optimally adapted to the particle- and flow-geometry. The disadvan-
tage is that “numerically exact” LU-Solvers become inefficient, ad sparse matrix methods
have to employed, which are numerically considerably less stable.

Figure 5:
Friedrichs
Keller Grid
and modification
with a square
particle in the
middle, but the
same number of
elements.

To simulate polygonal particles with a shape-matching grid, triangular elements gen-
erated via Delaunay triangulation will be easier to handle than quadrilateral elem ents,
because for each point distribution, a Delaunay-grid can be constructed (see Fig. 4). In
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technical applications, usually for some prevalent flow directions, elements are often cho-
sen longer the direction of the dominant flow. Because we cannot assum $\mathrm{e}$ any prevalent
anisotropic flow between the granular particles, a “good” computational grid should not
be distorted, but be as regular as possible, as realized in the AGl&I-package $[3, 4]$ .

There is a philosophy in fluid dynamics of immersed bodies which tries to to retain
a rectangular grid structure for the fluid simulation at all costs, but introduce the inter-
faces between the fluid and the particle surface with computer science techniques (Ghost
Fluid method, CIP/Multi-Moment,MARS, Level Set method). We refrain from imple-
menting such methods, because each additional interface in a medium introduces a new
wave $\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{i}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{c}\mathrm{e}/$ mechanical impedance for the signal- or momentum-propagation in that
medium, and the scattering properties of the above interfaces are far from clear: In the
worst caseh it rna7 serve as a source of noise which prevents the build-up of static con-
figurations. Instead, particles form$\mathrm{n}$ the boundaries of the fluid (see Fig. 1.4), and the
additional, unphysical degrees of freedom are a nuisance anyway because they increase
the computational complexity and the CPU-time alike. Chimera-Grids are popuiar for
si nulations of few particles of complicated shape inside a fluid, e.g. for the cross-section
of wings, usually in connection with quadrilateral grids; due to our choice of granular
particles as polygons and the flexibility of the finite element method, the implementation
of Chimera Grids or finer meshes is not necessary

1.5 Discretization Schemes for the fluid
For the grid part of the simulation, thle algorithm with the least degrees of freedom is
desirable: The least com putation effort for lattice methods (Partial Differential Equations,
Lattice fermions . . ) for $N$ lattice points can in som $\mathrm{e}$ cases be obtained for a single
timestep within $N\log N$ operations (if Fourier-Type methods can be employed), more
realistic for general problems is a cost of $N^{2}$ operations per timestep. Therefore, the
number of grid points should be reduced as much as possible. This can be accomplished
by using larger meshes with higher-order discretization methods and by choosing the
particle boundary as boundary of the fluid, so that the corresponding grid points are
determined by the $\mathrm{g}\mathrm{r}\epsilon‘ \mathrm{L}\mathrm{I}\mathrm{l}\mathrm{u}\mathrm{l}\mathrm{a}\mathrm{r}$ simulation, and inputted as boundary conditions into the
fluid part of the simulation.

Finite Differences have the advantage of being ”simple”, in the sense that the
discretized equations still resemble the original differential equations. The disadvantage
is that they work best (”computationa 1 most efficient”) for rectangular grids, which
don’t work well with the polygonal particles we want to use.

The Finite Volume method has problems with strongly varying mesh sizes, and also
maybe with topological changes of the grid. The whole formalism is considerably metre
complicated than the finite difference method.

The Galerkin Finite Element Method (GFEM) is, as complicated as finite volume
method (but not more so, as has been argued in Ref. [26]): it uses the weak form of the
PDE, which means that not the original differential equations are approximated, but their
integral This leads to more benign behavior for strongly varying solutions (the integral
over a non-differentiable funciton is likely to be differentiable), but it also introduces
additional degress of freedom (oscillatory solutions additionally to the advective solutions
in the original system), which have to be taken care of. Because the GFEM is the most
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versatile method for complicated boundaries and unstructured meshes, we will base our
simulation of granular particles in fluids on this method. The Navier-Stokes equations in
the “strong formulation” can be written as

$\frac{\partial u}{\partial t}=-\frac{\partial(u^{2})}{\partial x}-\frac{\partial(uv)}{\partial y}-\frac{\partial\phi}{\partial x}+f_{x}+\iota/(\frac{\partial^{2}u}{\partial x^{2}}+\frac{\partial^{2}u}{\partial y^{2}})$ (1)

$\frac{\partial v}{\partial t}=-\frac{\partial(vu)}{\partial x}-\frac{\partial(v^{2})}{\partial y}-\frac{\partial\phi}{\partial y}+f_{y}+"(\frac{\partial^{2}v}{\partial x^{2}}+\frac{\partial^{2}v}{\partial y^{2}})$ (2)

$0= \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}$ (3)

with the pressure fields $p$ , and the velocity field $u$ , $v$ for the flow in $\mathrm{x}/\mathrm{y}$ direction, and
with dynamic viscosity $l/$ . The last equation, $\mathrm{e}\mathrm{q}\mathrm{n},3$ , the ”continuity equation”, assures
the incompressibility. as in the “weak formulation”, , the equations have been integrated
over with basis functions (for $\mathrm{f}\mathrm{i}\mathrm{r}\mathrm{s}\mathrm{t}/\mathrm{s}\mathrm{e}\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{d}$ order finite elements, with polynomials of
$\mathrm{f}\mathrm{i}\mathrm{r}\mathrm{s}\mathrm{t}/\mathrm{s}\mathrm{e}\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{d}$ order respectively) and then integrated out;

$\int\phi(\frac{\partial u}{\partial t})=\int\phi(-\frac{\partial(u^{2})}{\partial x}-\frac{\partial(uv)}{\partial y}-\frac{\partial\phi}{\partial x}+f_{x}+\iota/(\frac{\partial^{2}u}{\partial x^{2}}+\frac{\partial^{2}u}{\partial y^{2}}))$ (4)

$\int\phi(\frac{\partial v}{\partial t})=\int\phi(-\frac{\partial(vu)}{\partial x}-\frac{\partial(v^{2})}{\partial y}-\frac{\partial\phi}{\partial y}+f_{y},[perp]\iota/(\frac{\partial^{2}v}{\partial x^{2}}+\frac{\partial^{2}v}{\partial y^{2}}))$ (5)

$0= \int\phi(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y})$ $\backslash (6)$

There is considerable freedom in the choice of elements, i.e. which points on a grid should
be integrated out, and in which order the approximation should be performed, as can
be seen in Fig. 6. Nowadays, there is a $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{u}\mathrm{s}[27_{\rfloor}^{\rceil}$ that because the Navier-Stokes
equation is of second order in velocity and first order in pressure, the approximation for
the velocities should be one order higher than for the pressure, which at least eliminates
the $P_{1}^{+}P1$-element (first order in velocity, first order in pressure) in Fig. $6(\mathrm{a})$ . This still
leaves considerable freedom for second order elements. Because $P_{2}(P_{1}+\mathrm{p}_{\mathrm{q}})$ conserves
the element mass, we expect problems due to the volume change of elements induced
by moving boundaries (granular particles), so we will not use this element. The $P_{2}P_{-1}$

-element has no pressure points on the element boundaries, so that no forces on granular
particles which act as element boundaries can be computed, so the use of th is element
is also excluded. This leaves basically $P_{2}^{+}P_{1}$ and $P_{2}P_{1}$ , the latter being simplest second
order element, which we will choose for our implementation.

2 Time Integration

2.1 Time consumption
Meaningful criteria for “the fastest algorithms” are not easy to come by. In the field
of onte-Carlo simulations, ”updates per second” (UPS) are a common criterion, albeit
not a very meaningful one: Different updating methods come at different computational
costs, but lead also to different relaxation times; a meaningful criterion would be the the
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{ $\mathrm{a})$ $P_{1}^{+}P1$ (b) PfPl (c) $P_{2}^{+}P_{1}$ (e) $P_{2}P_{-1}$
(d) $P_{2}(P_{1}+$

$P_{0})$

Figure 6: Various elements for fluid flow where $0$ indicates continuous velocities and con-
tinuous pressures, $\bullet$ indicates continuous velocities and ix indicates discontinuous pres-
sures.

UPS, divided by the half-life time $\tau$ which characterizes the relaxation time. Likewise,
for ordinary differential equations, some time integration methods are more costly per
time-step, than others, e.g. in general implicit Runge-Kutta methods are more costly than
explicit Runge-Kutta methods. though implicit predictor corrector methods ( $\mathrm{G}\mathrm{e}\mathrm{a}\mathrm{r}/$ Back-
ward $\mathrm{D}\mathrm{i}\mathrm{f}\mathrm{f}\mathrm{e}\mathrm{r}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{e}/\mathrm{B}\mathrm{D}\mathrm{F}$) are not necessarily more costly than explicit (Adam s-Bashforth)
methods. Higher order Runge-Kutta (RK) methods are more costly than lower meth-
ods because they need more function evaluations per timestep than lower order meth-
ods (n-th order methods RK methods need at least $\mathrm{n}$ function evaluations), whereas for
Predictor-Corrector methods usually a single function evaluation per time step is suffi-
cient. $.\backslash \mathrm{I}\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{t}\mathrm{h}\mathrm{e}1\mathrm{e}\mathrm{f}^{\backslash },\mathrm{b}$, the decisive factor is the maximal size of the time step $dt_{\mathrm{r}\mathrm{n}\mathrm{a}\mathrm{x}}$ (called
“radius of stability” in the numerical literature) which can be used, so that a meaningful
criterion for the fastest integrator is the the largest possible timestep for a given problem
$dt,$ , divided by the number of necessary function evaluations. For particles of mass $m\epsilon \mathrm{x}t\mathrm{n}\mathrm{d}$

Young modulus $Y$, the characteristic frequency of the corresponding undamped harmonic
oscillator is $\omega$ $=\sqrt{Y/rr\iota}$ . That 1eans that over a wide range of velocities, the contact time
$T$ for a single collision can be approxim ated well as $T=2\pi/\omega$ . Wc have found that for
suitable integrators (Gear-Predictor-Corrector/BDF). the timestep $dt_{1\mathrm{n}\mathrm{a}\mathrm{x}}$ can be chosen
of the order of $dt\approx T/10$ . For particles in a fluid, the motion is additionally damped: Thle
contact time becomes larger and larger time steps seem possible. Under the assumptions
that the surfaces and the motion granular particles erase vortices of small $\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{e}\mathrm{r}/$ small
$\mathrm{t}\mathrm{i}$ me scale, larger grid sizes and larger time steps seem possible for the fluid part of the
simulation than for the simulation without particles.

2.2 Method of Lines
The discretization 1n the time direction will not be done by finite elements with a compo-
nent in the time domain but with the method of lines[28], i.e. the partial time derivative
is treated as an ordinary derivative, and the solution can then be obtained with conven-
tional ordinary differential equation solvers, making use of the substantial theory with
respect to accuracy and stability of that field[ll, 8]. For the simulation of partial dif-
ferential equations with explicit integrators (linearization of the time evolution), the size
of the maximal timestep is usually proportional to the lattice spacing. This criterion
based on von Neuman stability analysis (linearization of the time evolution operator for
each eigenmode) is usually not valid for implicit integrators, which are derived without
linearization and offer therefore additional potential for performance gains
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2,3 Relaxation vs. ”numerically exact” methods

In the MAC-method, the time integration is performed without taking the incompress-
ibility into account. Instead, at the new time step, the velocity is equilibrated with the
relaxation condition

$v^{n+1,k+2}=v^{n+1,k+1}-\delta t\nabla(p^{n+1,k+1}-p^{n+1,k})$ , $k\geq 0$ .

This relaxation may take ”arbitrarily long” because the non-locality of the Navier-Stoke $\mathrm{s}$

equation may lead to P-U-V-configurations with very large error; moreover, the relaxation
step $k$ does not have the meaning of a real time, but is unphysical.

Nobody would treat a particle on a $\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{n}\mathrm{g}/$ rigid pendulum$\mathrm{n}$ with a relaxation dynam -

$\mathrm{i}\mathrm{c}\mathrm{s}\backslash$

’ where first the pendulum is advanced to a point which corresponds to a change of
the length, and afterwards the length is adapted again, Instead, the ”numerically exact”
treatment of the time integration which conserves the constraint with “zero error” is the
Lagrange multiplier formalism$\mathrm{n}$ in Fig. 7,

For a pendulurn of mass 771 of unit length at Inserting this in the equation for $\ddot{g}(\mathrm{q})$ , on
position $\mathrm{q}=$ ( $\mathrm{x}_{1}$ , X2) and unit length, the obtains
constraint equation (center at the

$\dot{g}(\mathrm{q})=\frac{\mathrm{f}+\hat{\mathrm{f}}}{m}\mathrm{q}+\dot{\mathrm{q}}\cdot\dot{\mathrm{q}}=0$ .
$g( \mathrm{q})=\frac{1}{2}(\mathrm{q}\cdot \mathrm{q}-1)=0$ .

From the principle of virtual work (con-Additional equations follow fo $\mathrm{r}$

straint forces may not perform work on a
$\dot{g}(\mathrm{q})$ $=$ $\mathrm{q}\cdot\dot{\mathrm{q}}=0$ , system) follows that
$\ddot{g}(\mathrm{q})$ $=$ $\ddot{\mathrm{q}}$ . $\mathrm{q}+\dot{\mathrm{q}}\cdot\dot{\mathrm{q}}=0$ ,

$\mathrm{f}\dot{\mathrm{q}}=0$ ,
by taking the derivative of the constraint
$g(q)$ with respect to time. From Newton’s so that the constraint force $\hat{\mathrm{f}}$ must be par-
equation of motion follows that the acceler- allel to the coordinate vector $\mathrm{q}$ , i.e. $\hat{\mathrm{f}}=$ Aq,
motion $\mathrm{q}$ depends on the constraint force $\hat{f}$ with the Lagrange multiplier A so that
and the external forces $f$ as

$\ddot{\mathrm{q}}=f+\hat{f}/m$ .
$\mathrm{A}=\frac{-\mathrm{f}\cdot \mathrm{q}-m\mathrm{q}\cdot \mathrm{q}}{\mathrm{q}\cdot \mathrm{q}}$ . (7)

Figure 7: Lagrange Multiplier Formalism for a single pendulum

2.4 Generalized Formulations
In the above example for the single pendulum, the Newton equations of motion have been
rewritten from a second-order equation to first order equations

$M\dot{u}$ $=$ $f(q)$ $u)$ ,
$\dot{q}$ $=$ $u$ ,
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for the masses $M$ coordinates $q$ , velocities $u$ and forces $f(q, u)$ . The constraints $g(q)$ were
introduced via their Jacobian $G^{T}(q)=\nabla g(q)$ ,

$M\dot{u}$ $=$ $f(q, u)-G^{T}(q)\lambda$

$\dot{q}$ $=$ $u$

0 $=$ $g(q)$ ,

where, A is the vector of Lagrange multipliers and $M$ must be invertible. This differential
algebraic equation (DAE, ordinary differential equation with algebraic constraints) can
be rewritten in a so-called index-l formulation as

$(\begin{array}{ll}M G^{T}(q)G(q) 0\end{array})(\begin{array}{l}u’\lambda\end{array})$ $=$ $(\begin{array}{ll}f(q u)-g_{qq}(u_{j} u)\end{array})$

where $M$ must not be invertible. It can be shown[27] that the GFEM discretization of
the Navier-Stokes equation with implicit-Euler-time discretization takes the form

$\ovalbox{\tt\small REJECT}$

$\frac{1}{\triangle t_{n}}lVI$

$+K[perp] N(u_{n+1})C^{T}$ $C\mathrm{O}]$ $(\begin{array}{l}u_{n+1}P_{n+1}\end{array})$ $=$ $(\begin{array}{l}\frac{1}{\Delta t_{n}}\mathit{1}\mathrm{v}Iu_{n}+f_{n+1}g_{n+1}\end{array})$ .

In other words, one sees that in the generalized index-l formulation for DAE’s, the pres-
sees in the incom pressible Navier-Stokes equations take the role of Lagrange-multipliers.
Similar forms are obtained for other time integrators, see Ref. [27] The choice of initial
conditions for the DAE’s is much more complex than for Ordinary Differential Equations
(ODE’s), For the ordinary differential equations of a spring moving in two dimensions,
any initial conditions can be specified; for the rigid pendulum in eq. 7, only initial con-
ditions make sense where the absolute value of the position is equal to the length of the
pendulum, and the velocity vector is orthogonal on the position vector. If these initial
conditions are not given, the solution diverges rapidly (within few time-steps) towards
infinity, DAE’s need consistent initial conditions, in contrast to ODE’s. For the solution
of the Navier Stokes equation, this means that for initial state the continuity equation
must be fulfilled. The initial condition can be computed as the solution of the stationary
Navier Stokes equation via New ton-Raphson iteration (details in the part II of this paper).

3 Summary and Conclusions
For $\mathrm{p}\mathrm{o}\mathrm{l}\mathrm{y}\mathrm{g}\mathrm{o}\mathrm{n}\mathrm{a}\mathrm{l}/\mathrm{p}\mathrm{o}\mathrm{l}\mathrm{y}\mathrm{h}\mathrm{e}\mathrm{d}\mathrm{r}\mathrm{a}\mathrm{l}$ granular particles, we have shown that there is a geometrically
ideal discretization of the surrounding incompressible flow in the framework of triangular
Galerkin Finite Elements. Though this approach is geometrically more demanding than
the conventional pairing of quadrilateral grids with round particles, one is rewarded with
a much more straightforward combination of particles and fluid. The time integration
performed with the method of lines yields differential algebraic equations with the pres-
sure as Lagrange-parameter, so that no pressure iteration for the incompressible Navier
Stokes equations is necessary The whole concept will be only fruitful if implemented
on unstructured grids, so the whole concept hinges on the availability of ”cheap” and
accurate solution of the nonlinear system in each timestep. Such a solution method will
be discussed in the following article.

(References at the end of the second part of the article on the following pages


