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Abstract
We describe our experiences with sparse solvers for the stationary incompress-
ible Navier-Stokes equation on a Friedrichs Keller grid with various boundary
conditions. We simulate polygonal granular particles in a surrounding in-
compressible fluid in a $\mathrm{P}2\mathrm{P}1$ Galerkin finite element discretization, whereby
Newton-Raphson iteration turns out to be surprisingly robust. For the inver-
sion of the Jacobian, it turns out that from the various sparse algebraic solvers
in use in the numerical community, even GMRES does not reach the necessary
accuracy, and only BiCGSTAB(l) gives satisfying results.

4 Introduction
The simulation of the interaction between fluids and granular material involves many
preliminary steps which simplifies or decrease the degree of freedorn of the initial problem.
The findings in research introduced in the article are preliminary for the $\mathrm{i}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{e}\mathrm{m}\mathrm{e}\mathrm{I}\grave{[perp]}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$

of a full simulation containing polygonal granular particles modeled with the discrete
element method and the fluid modeled with the Galerkin finite element discretization of
the incompressible Navier Stokes equation.

For an efficient implem entation, the use of unstructured grids is necessary, as well as
the solution of the nonlinear system of equations resulting from the discretization, with
sparse matrix algorithm$\mathrm{n}\mathrm{s}$ . In this work, we investigate which of the considerable variety of
Krylov-space iterative solvers gives satisfying results for structured grids and is therefore
a candidate for the use with unstructured grids.

We are dealing exclusively here with solution of the stationary Navier-Stokes equation.
though our final aim is an implementation of the time-dependent equations, because the
solution of the stationary problem is necessary to obtain consistent starting values for
the time-dependent Navier-Stokes equation in the DAE-form ulation (see the first part of
this article on the previous pages). From the structure of the problem , it is clear that
the non-stationary case is numerically more benign, because the mass-term dominates,
where the non-linearities and the stiffness-matrix are rescaled with the time-step and their
contribution is much smaller than in the stationary problem.

5 Discretization and Band structure
As the work-horse for this investigation, we choose the Flow5-code by John $\mathrm{B}\mathrm{u}\mathrm{r}\mathrm{k}_{\epsilon}\mathrm{a}\mathrm{r}\mathrm{d}\mathrm{t}[5])$

which we $\mathrm{r}\mathrm{e}$-engineered and optimized for MATLAB. It simulates the incompressible
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Figure 8: The structure of the Jacobian for the Friedrichs Keller grid (left, here for cavity
flow) is a band matrix (right)

Navier-Stokes equation

$u \frac{\partial u}{\partial x}+v\frac{\partial u}{\partial y}+\frac{1}{\rho}\frac{\partial p}{\partial x}-\iota/\ovalbox{\tt\small REJECT}\frac{\partial^{2}u}{\partial x^{2}}+\frac{\partial^{2}u}{\partial y^{2}}\ovalbox{\tt\small REJECT}=0$ , (S)

$u \frac{\partial v}{\partial x}\dashv- v\frac{\partial v}{\partial y}+\frac{1}{\rho}\frac{\partial p}{\partial y}-\iota/\ovalbox{\tt\small REJECT}_{\frac{\partial u}{\partial x}\frac{\partial vv2\ovalbox{\tt\small REJECT}}{\partial y}}^{\frac{\partial^{2}\mathrm{s})}{\partial x^{2}}+\frac{\partial^{2}}{+\partial y}}==00$

,
$(10)(9)$

for the $\mathrm{v}\mathrm{e}\mathrm{l}\mathrm{o}\mathrm{c}\mathrm{i}\mathrm{t}\mathrm{y}- \mathrm{f}\mathrm{i}\mathrm{e}\mathrm{l}\mathrm{d}\epsilon$ ; $?\iota.v$ in $x$ , $y$ -direction and the pressure field with dynamic viscosity
$lJ$ in a Galerkin Finite Elem ent Method with $\mathrm{P}2\mathrm{P}1$ elements. The discretized problem
is a system of nonlinear equations with velocities $u_{i}$ and $v_{i}$ x- and $\mathrm{y}$-direction on all $\mathrm{i}$

integration points, as well as on the pressures $\hat{p}_{k}$ on all integration points $k$ (which for the
$\mathrm{P}2\mathrm{P}1$ -elements is only a subset of the $\mathrm{i}$ mesh-points of the velocities), so that the vector
of all variables

$X=$ $(u_{12,\ldots i^{l}1}, uu\mathrm{L}’, v_{2}, \ldots v_{i},p_{1}j’ p_{2}, \ldots p_{k})$ .

The stationary Navier-Stokes equations eqns. (8-10) consist formally a field problem $\mathcal{F}(u, v, p)=$

$0$ , and the corresponding discretized problem

$\overline{F}(X)=0$ ,

is a conventional root-finding problem for non-linear equations. The iterative solution by
the Newton-Raphson method

$\vec{X}_{n+1}=\vec{X}_{n}-(\nabla\vec{F}(\vec{X}_{n}))^{-1}\vec{F}(X_{n})\neg$ (10)

proved to be stable enough during the whole of the investigations; no additional stabiliza-
tions had to be introduced, and the convergence was independent from the initial value$\mathrm{s}$
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$X_{0}$ . The kernel of the iteration is the solution of the linear system

$\triangle\vec{X}=\check{x}(\nabla\vec{F}(\overline{X}_{n}))\ovalbox{\tt\small REJECT}_{A}\vec{F}(\vec{X})-1\mathrm{m}_{b}^{7b}$

’ (12)

where $A$ is matrix of the Jacobian and $\triangle x$ is the residual of the solution. We have started
the Newton-Raphson iteration with constant non-zero initial guesses, the initialization
with zero initial guess is both unphysical and gave spurious convergence for some iterative
solvers. For most boundary conditions investigated, three iteration steps were enough,
after that the solution changed only marginally.

Figure 9: Friedrichs-Keller grids used for the simulation of pipe flow and pipe How below
a protruding step (inflow on the left, outflow on the right, i.e. open boundaries on the left
and right end with a nonzero velocity gradient and fixed boundaries on top and bottom).
The grid points around the step in the grid on the right were chosen to minimize the
dislocation of the other grid points, not to minimize the error in the spacial discretization.

For a finite-element discretization with $\mathrm{I}^{)}2\mathrm{P}1$ -elem ents, one element has approximately
$n=15$ degrees of freedom, 6 points for $u$ , 6 points for $v$ and 3 points for $p$ , though a point
belongs on average to $m=3$ elements. The dimensions of $\nabla F$ for a $\mathrm{F}\mathrm{r}\mathrm{i}\mathrm{e}\mathrm{d}\mathrm{r}\mathrm{i}\mathrm{c}\mathrm{h}\iota \mathrm{i}\sigma- \mathrm{K}\mathrm{e}\mathrm{l}\mathrm{l}\mathrm{e},\mathrm{r}$ grid
(the usual Finite-Element grid, see Fig. 8, left) with $b$ $=(2\cross l_{x}\mathrm{x} ly)$ elements has the
linear dimension $l=$ $(2\cross l_{x}\cross l_{y})\mathrm{x}$ $n/m$ . Because there are only entries for adjacent degrees
of freedom, the matrix is sparse and banded with bandwidth $(l_{x}\mathrm{x} ly)$ (see Fig. 8, right).

For the reference runs, we have used the $\mathrm{L}\mathrm{U}$ -decomposition (for the formulation of VF as
full matrix) and the incomplete $\mathrm{L}\mathrm{U}$-decomposition (threshold $10^{-10}$ , for the formulation
of $\nabla\vec{F}$ as sparse matrix). For general problems with $l$ variables, the number of operations
necessary for a solution with the $\mathrm{L}\mathrm{U}$-decornposition is of the order of $l^{3}$ , which would
be prohibitive for a general matrix which occurs for unstructured grids. For the banded
matrix of the Friedrichs-Keller-Grid, the number of operations is one order of magnitude
less, only $lb^{2}$ .

6 Eigenvalue Analysis

For finite difference discretizations, the discretized solution of the flow-lines corresponds
directly to the continuum solution. and the properties can be compared directly For the
Gaierkin Finite Element method, which introduces basis functions and additional degrees
of freedom via integration, such a comparison is more problematic. One possible strategy
is to analyze the problem[26] in terms of the eigenvalue spectrum of the Jacobian. The
central, most time consuming part of the GFEM-simulation of the stationary flow is the
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solution of the linear system in eq. (12) with the Jacobian $\nabla\vec{F}(\vec{X}_{n})$ . Because the choice
of Krylov-space solvers depends on the eigenvalue spectrum of the matrix of the linear
system, it is worthwile to investigate the eigenvalue spectrum of the Jacobian to develop
an in sight about the convergence of the algorithms depending on the physical problem.
It turns out that the eigenvalues of the Jacobian depend crucially on the vorticity in the
problem and the eigenvalues change with each Newton-Raphson iteration eq. (11). In the
following, we have performed the Newton-Raphson iteration with $\mathrm{L}\mathrm{U}$-based inversion of
the Jacobian with constant initial vector.

For the pipe flow (Fig. 9 left), the eigenvalues for the first Newton-Raphson iteration
are along the cor plex axis, along the real axis, and a third group is spread out fan-like
symmetrically around the real axis (Fig. 10). With proceeding iterations, the eigenvalues
of the fan-like group are drawn towards the real axis. The Newton-Raphson iteration
eq. (12) converged basically within three steps to ten digits accuracy . as can be seen by
the fact that in the plot of thle eigenvalues, (Fig. 10, left), the symbols for the second
iteration $(’\backslash +’.)$ are basically in the center of the symbols for the third iteration $(^{\rangle\backslash }’ 0")$ .
Convergence within three steps was also observed for the geometries below. For the flow
below a step (Fig. 9 right), the eigenvalue distribution is about the same as for the pipe
flow, (Fig. 11, note the different scale of the real axis in comparison to Fig. 10.) After thle
third iteration, some butterfly-like clouds remain relatively far from the real axis. For
the pipe-flow below a step, the Jacobian has larger eigenvalues (Fig. 11, left) than the
Jacobian for unperturbed pipe-flow (Fig. 10, left), whereas the streamlines for the flow
around the obstacle show smaller velocities at the boundary near the obstacle (Fig. 11,
right) than for the unperturbed flow (Fig. 10 right). As the Jacobian enters the Newton-
Raphson iteration eq. 12 in the denominator, so that its large eigenvalues cause sm all
contributions, plausible to conclude that the small structures in the flow correspond to
large eigenvalues in the Jacobean, and vice versa.

In case of cavity flow, at the first Newton-Raphson iteration the eigenvalues are near
the axis, and during the iterations spread out into similar butterfly-like structures (Fig. 12,
left) as in the case of the flow below a step (Fig. 11). As the similarity between the cavity-
fiow and the flow below the step, one can conclude that the butterfly-like structures in
the eigenvalue spectrum are associated with the vorticity in the system.

In the case of laminar flow with nearly straight streamlines (pipe flow without oh
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Figure 12: Eigenvalues Spectrum of the Jacobian Matrix for cavity flow using Friedrichs
Keller grid and the final solution for the velocity vector field. The upper boundary has
a constant flow in $\mathrm{x}$-direction and zero velocity in $\mathrm{y}$-direction imposed, at all other walls
fixed boundary conditions are set. The right boundary is at $x=1.\mathrm{O}$ , only the vector for
thle velocity of the upper right boundary point extends beyond.

stacles), the eigenvalue spectrum is “almost purely reai” . The eigenvalue analysis of the
Jacobean initialized with the correct final solution (Hagen-Poiseulle flow) might give the
$\mathrm{i}$ mpression that purely real solvers are suitable for the problem. In case of cavity flow,
with the approach to the stationary numeric solution the eigenvalues runs away from the
real axis, and the necessity for solvers for problems with complex eigenvalue spectrum
becomes clear. Because the im aginary part of the eigenvalues can become arbitrary large
in the presence of vortices, linear solvers are needed which are explicitly constructed for
problems where the corresponding matrix can contain complex eigenvalues.

6.1 Choice of solvers

There are two classes of iterative solvers which can be used on unstructured grids: Station-
$\mathrm{a}\mathrm{r}\mathrm{y}/\mathrm{R}\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{x}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ methods, which are basically improved versions of the Jacobi-Iteration,

and Non-Stationary/Krylov-Space Methods, which are basically improved versions of the
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Conjugate Gradient method. The drawback of the original relaxation methods (Jacobi,
Gauss-Seidel, Successive Overrelaxation) was the slow convergence due to the small cur-
$\mathrm{v}\mathrm{a}\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{e}/$ large length-scale introduced by the “smoothing” inherent in the relaxation. This
problem can be overcome in the Multigrid methods, which solve the equations simuita-
neously also on coarser grids, so that the information is transferred between the length
scales. The appealing feature of transferring length scales of the solution directly in geo-
metrical terms becomes lost when unstructured meshes are used, where so-called algebraic
multi grid method have to be use to compensate for the loss of geometrical information
in the corresponding matrix. The manuals of such algebraic multi grid packages (e.g.
$\mathrm{U}\mathrm{G}[2])$ are usually already much thicker than some books on linear algebra, and learning
the handling even as black boxes takes considerable time. As we want to put our effort in
the solution of the Navier-Stokes equations, not in the underlying algebraic methods, we
choose instead Krylov-space solvers for sparse matrix methods, which are based more on
algebraic than on geometric considerations. Apart from the fact that the replacement of
the $\mathrm{L}\mathrm{U}$-decomposition in the original code is straightforward, a further advantage is that
there are criteria irr terms of eigenvalues, although there is no guarantee of convergence
(in the case of Relaxation method, there isn’t, either.)

Figure 13: Devi-
than of the solu-

tion for the final
Newton-Raphson
iteration (dark:
correct, with $\mathrm{L}\mathrm{U}$ ,
light: incorrect
with GMR ES) for
the velocity field;
the insert shows
the magnification
of the solution in
the upper right
corner, where
thle largest error
occurs

6.2 Nonstationary Iterative Methods(Krylov Space Methods)

The ancestor of Krylov-Space methods (see Ref. [1] for an overview), which try to solve
a linear system $Ax=b$ by minimizing the residuum vector $r=Ax-b$, is the Conjugate
Gradient method (GC), which works only for positive definite $A$ . Newer methods have
been developed for more general cases. We did not use preconditioners, because for
solutions of flow with granular particles in a fluid, this will also be impracticable because it
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is unclear what a good” preconditioner might be. All standard methods like Bi-conjugate
Gradient, Conjugate Gradient Squared and Bi-conjugate Gradient Stabilized failed for
the solution, both in the MATLAB-implementation as well as in the Implementation of
Ref. [1]. Only with GMRES and BiCGSTAB(l)[lS] , solutions for the Newton-Iteration
could be obtained at all

6.3 GMRES - a surprising failure
The Generalized Minimal Residual Method (GMRES) is widely used in fluid mechanics
in the so-called Newton-GM RES-method for the Navier-Stokes equation for compressible
flows. For our incompressible problem, it never converged to the exact(LU) solution with
more than three digits accuracy. This would not so bad for the velocity in Fig. 13, but it
is unacceptable for the pressure in Fig. 14, as the violation of the continuum equation in
a DAE-formulation will lead to a degeneration of the solution away from the constraint
manifold. We tried out different initial solutions, but this did not improve the convergence
in any way. The bad convergence of the Newton-Raphson iteration with GMRES is even
more surprising as the Newton-Raphson iteration is a second order method, i.e. it doubles
the accuracy of the solution in each iteration. This has the downright magic effect that
with a preliminary solution $x_{n}$ and a Jacobian or its approximant which are correct to

$\mathrm{k}$ digits in the n-th step, the next solution $x_{n+1}$ will exhibit $2k$ correct number of digits.
Not even this formidable property seems to further the accuracy of the solutions obtained
with GMRES so we have to conclude that for our incompressibility problem, GMRES is
inherently inapplicable.

Figure 14: Comparison between pressure vectors obtained via GMRES and LU respec-
tively, for the 3rd iteration of the system in Fig. 8; the GM RES-pressure deviates from
the “numerically exact” $\mathrm{L}\mathrm{U}$ pressure constantly over the whole grid.

6.4 BiCGSTAB(1)- the successful solver

BiCGSTAB(l) - Bi-Conjugate Gradient Stabilized(l) [18] , is newer than other methods,

so it has not yet found its way in standard references like Ref. [1]. It was explicitly
built for problems with complex eigenvalues spectra to overcome the problems inherent
in BiCGSTAB and GMRES and it was the only iterative linear solver which converged
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within the desired tolerance. In contrast to other Krylov-Space methods. BiCGSTAB(l)
does not only use the residual $r.–Ax$ $-b$ , but also the ”shadow residual” $r\sim=\tilde{x}^{T}A-\tilde{b}^{T}$ .
Using a zero-vector for the initialization lead to spurious convergence, so instead we
choose a constant non-zero vector. We use BiCGSTAB(4) as well as BiCGSTAB(8) and,
apart from manually adjustment of the tolerance and the maximum number of iterations,
there were no problem $\mathrm{s}$ with the convergence. BiCGSTAB(l) seems to the best choice for
the time-dependent solution of the Navier-Stoke Equation for incom pressible flow with
vortices or further more solver for the granular-particle - fluid system sil ulation.

Figure 15: Convergence diagram of BiCGSTAB(4) for the system in Fig, 8

Fig. 15 shows the convergence of the no rm of the residual $|r|=|b-Ax^{(\mathrm{i})}|$ with
BiCGSTAB(4) to a given accuracy of $10^{-\mathrm{S}}$ . The solver converges to tolerance approxi-
mately 10 after about 8000 BiCGSTAB(l)-iterations . For each Newton-Raphson iter-
ation, e.g. three, these 8000 BiCGSTAB(l)-iterations must be repeated, so that a total
of 24.000 BiCGSTAB(l)-iterations is necessary. This looks like a relatively costly perfor-
mance, but for a simulation of the time-dependent Navier Stokes equation, only for the
initial timestep the solution has to be computed from scratch, using this many iterations
in the linear solver; for the subsequent time-steps, the previous flow patterns can be used
as an initial guess which reduces the number of BiCGSTAB(l)-iterations, and usually,
only a single Newton-Raphson iteration is necessary.

7 Summary and Conclusions
We have investigated the solution of the stationary Navier-Stokes equations for the in-
comnpressible case with Newton-Raphson solution of the equations resulting Galerkin-
Finite element discretization for various geometries and have compared the perform ance
of different linear solvers for the inversion of the Jacobian in the Newton-Raphson pro-
cedure. Convergence was reached within three to five iterations. Except GMRES and
BiCGSTAB(l), all other solvers among the large variety of Krylov-Space solvers failed to
converge or crashed already in the initial problem. Though GMRES is a popular solver for
the compressible Navier-Stokes equations, as documented by the existence of the Newton-
GMRES ethod, GMRES exhibited considerable convergence proble ns and was insuffi
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cient for all problems we investigated. Only BiCGSTAB(l), with $l\geq 4$ gave satisfying
solutions for all test cases in comparison with the ”numerical exact” solution for LU-
decomposition. The next step in the investigation will be the solution of time-dependent
problem for the same boundary conditions, using the stationary solutions obtained in this
work as initial guess.
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