The automorphism groups of certain commutant subalgebras of lattice vertex operator algebras

佐久間伸也 (Shinya Sakuma)

東京大学数理科学研究科・学振研究員 PD (Graduate School of Mathematical Sciences. The university of Tokyo)

1 Introduction

An element e of weight 2 of a vertex operator algebra V is called an Ising vector if the vertex subalgebra generated by e is isomorphic to the simple Virasoro VOA $L(\frac{1}{2},0)$ with central charge $\frac{1}{2}$. Any Ising vector e defines an automorphism τ_e of V with $\tau_e^2 = 1$ by using representation of $L(\frac{1}{2},0)$. In the case of the Moonshine VOA V^{\natural} , τ_e gives a 2A-involution of the Monster simple group $\mathbb{M} = \operatorname{Aut}(V^{\natural})$. An Ising vector e is called σ -type if $\tau_e = 1$. An Ising vector e of σ -type defines an automorphism σ_e of V with $\sigma_e^2 = 1$. It is known that if a set E of Ising vectors of σ -type such that $\sigma_e(f) \in E$ for any $e, f \in E$, the subgroup of $\operatorname{Aut}(V)$ generated by $\{\sigma_e | e \in E\}$ is 3-transposition group. Matsuo classified all 3-transposition groups defined by such a set E of Ising vectors of σ -type.

Let R be a root lattice. Let $V_{\sqrt{2}R}$ be the lattice vertex operator algebras associated to the lattice whose norm is twice of R's and $V_{\sqrt{2}R}^+$ the fixed point subalgebra of the lattice VOA $V_{\sqrt{2}R}$ by the lift of (-1)-isometry on R. There are a lot of Ising vectors (of σ -type) and conformal vectors in $V_{\sqrt{2}R}^+$. We consider the commutant subalgebra M_R of a conformal vector $\tilde{\omega}_R$ fixed by $\operatorname{Aut}(R)$ in $V_{\sqrt{2}R}^+$. Then $\operatorname{Aut}(R)/\langle -1 \rangle$ acts on M_R faithfully.

This talk is about the result obtained by a joint work with Ching Hung Lam of National Cheng Kung University in Taiwan and Hiroshi Yamauchi of the University of Tokyo. We study the classification of Ising vectors of $V_{\sqrt{2}R}^+$.

Then we apply our results to study commutant subalgebras M_R related to root lattice R. We completely classify all Ising vectors in such commutant subalgebras. Moreover, we show that M_R is generated by Ising vectors and determine their full automorphism groups.

2 Ising vectors and σ -involutions

An element $e \in V_2$ is a conformal vector with central charge $c \in \mathbb{C}$ if $L_{(n)} := e_{(n+1)}, n \in \mathbb{Z}$ satisfy the Virasoro relation

$$[L_{(m)}, L_{(n)}] = (m+n)L_{(m-n)} + \delta_{m+n,0} \frac{m^3 - m}{12}c$$

for $m, n \in \mathbb{Z}$. A conformal vector e of a VOA V with central charge $\frac{1}{2}$ is called an *Ising vector* if the subalgebra Vir(e) generated by e is isomorphic to the simple Virasoro VOA $L(\frac{1}{2},0)$ with central charge $\frac{1}{2}$. It is well-known that the Virasoro VOA $L(\frac{1}{2},0)$ is rational and has exactly three irreducible modules $L(\frac{1}{2},0), L(\frac{1}{2},\frac{1}{2}), L(\frac{1}{2},\frac{1}{16})$.

Let e be an Ising vector of a VOA V. Since Vir(e) is rational, V is a semisimple Vir(e)-module. For h = 0, 1/2, 1/16, denote by $V_e(h)$ the sum of all irreducible Vir(e)-submodules of V isomorphic to $L(\frac{1}{2}, h)$. Then we have the isotypical decomposition:

$$V=V_e(0)\oplus V_e(rac{1}{2})\oplus V_e(rac{1}{16})$$

Define a linear automorphism τ_e on V by

$$au_e = \left\{ egin{array}{ll} 1 & on & V_e(0) \oplus V_e(rac{1}{2}) \\ -1 & on & V_e(rac{1}{16}). \end{array}
ight.$$

Then, τ_e is an automorphism of V with $\tau_e^2 = 1$. On the $\langle \tau_e \rangle$ -fixed point subalgebra $V^{\langle \tau_e \rangle} = V_e(0) \oplus V_e(\frac{1}{2})$, define a linear automorphism σ_e by

$$\sigma_e = \left\{ egin{array}{ll} 1 & on & V_e(0) \ -1 & on & V_e(rac{1}{2}). \end{array}
ight.$$

Then, σ_e is an automorphism of $V^{\langle \tau_e \rangle}$ with $\sigma_e^2 = 1$. We will refer $\tau_e \in \operatorname{Aut}(V)$ (resp. $\sigma_e \in \operatorname{Aut}(V^{\langle \sigma_e \rangle})$) to as the τ -involution (resp. σ -involution). An Ising vector e of V is called of σ -type if τ_e defines identity on V i.e. $V_e(\frac{1}{16}) = 0$.

We consider a VOA $V = \bigoplus_{n=0}^{\infty} V_n$ with $V_0 = \mathbb{C}1$ and $V_1 = 0$. Then the weight two subspace V_2 equipped with the product

$$a \cdot b := a_{(1)}b, \ a, b \in V_2$$

forms a commutative algebra with an symmetric bilinear form $\langle \cdot, \cdot \rangle$ defined by

$$a_{(3)}b = \langle a, b \rangle \mathbf{1}, \ a, b \in V_2,$$

and satisfying

$$\langle a \cdot b, c \rangle = \langle a, b \cdot c \rangle, \ a, b, c \in V_2.$$

This algebra is called the Griess algebra of V. If $e \in V_2$ is a conformal vector with central charge $c, \frac{1}{2}e$ is an idempotent of the Griess algebra V_2 and $\langle e, e \rangle = \frac{c}{2}$. About σ -involutions, the following is known.

Theorem 2.1 (Miyamoto). Assume that $V_0 = \mathbb{C}1$, $V_1 = 0$ and $\langle \cdot, \cdot \rangle$ is positive-definite. If $e, f \in V_2$ are Ising vectors of σ -thpe and $e \neq f$, then the order of $\sigma_e \sigma_f$ is 2 or 3, and

(1) If $|\sigma_e \sigma_f| = 2$, then $\langle e, f \rangle = 0$ and $e \cdot f = 0$.

(2) If $|\sigma_e \sigma_f| = 3$, then $\langle e, f \rangle = \frac{1}{32}$ and $e \cdot f = \frac{1}{4}(e + f - e^{\sigma_f})$.

Ising vectors of $V_{\sqrt{2}R}^+$

Let R be a root lattice with root system $\Phi(R)$. Let ℓ be the rank of R and h the Coxeter number of R. We denote by $\sqrt{2R}$ the lattice whose norm is twice of R's. Let $V_{\sqrt{2}R}$ be a lattice VOA associated to the lattice $\sqrt{2}R$. For any isometry g on R, g is extended to a linear automorphism of $V_{\sqrt{2}R}$ by setting

$$\tilde{g}(\alpha_{(-n_1)}^1 \dots \alpha_{(-n_k)}^k e^{\sqrt{2}\alpha}) = g(\alpha^1)_{(-n_1)} \dots g(\alpha^k)_{(-n_k)} e^{\sqrt{2}g(\alpha)}$$

for $\alpha^1, \ldots, \alpha^k, \alpha \in R$. This extension gives an automorphism of the VOA $V_{\sqrt{2}R}$ and \tilde{g} is called a *lift* of g. We consider the lift θ of (-1)-isometry on R and the fixed point subalgebra

$$V_{\sqrt{2}R}^+ = \{v \in V | \theta(v) = v\}$$

of the lattice VOA $V_{\sqrt{2}R}$. It is clear that $V_{\sqrt{2}R}^+$ has a grading $V_{\sqrt{2}R}^+ = \bigoplus_{n\geq 0} (V_{\sqrt{2}R}^+)_n$ such that $(V_{\sqrt{2}R}^+)_0 = \mathbb{C}\mathbf{1}$ and $(V_{\sqrt{2}R}^+)_1 = 0$, and

$$\omega = \frac{1}{4h} \sum_{\alpha \in \Phi(R)} \alpha_{(-1)}^{2} \mathbf{1}$$

is the Virasoro vector of $V_{\sqrt{2}R}^+$.

We give a classification of Ising vectors of $V_{\sqrt{2}R}^+$. For $\alpha \in \Phi(R)$ we set

$$\omega^{\pm}(\alpha) = \frac{1}{8}\alpha_{(-1)}^{2}\mathbf{1} \pm \frac{1}{4}\left(e^{\sqrt{2}\alpha} + e^{-\sqrt{2}\alpha}\right).$$

It is easy to show that $\omega^{\pm}(\alpha)$, $\alpha \in \Phi(R)$, are Ising vectors of σ -type. of $V_{\sqrt{2}R}^{+}$. Set

$$s_R = \frac{2}{h+2} \sum_{\alpha \in \Phi(R)} \omega^{-}(\alpha)$$

$$= \frac{1}{4(h+2)} \sum_{\alpha \in \Phi(R)} \alpha_{(-1)}^2 \mathbf{1} - \frac{1}{h+2} \sum_{\alpha \in \Phi(R)} e^{\sqrt{2}\alpha}$$

and

$$\tilde{\omega}_R = \omega - s_R$$

$$= \frac{2}{h+2}\omega + \frac{1}{h+2} \sum_{\alpha \in \Phi(R)} e^{\sqrt{2}\alpha}.$$

Then s_R and $\tilde{\omega}_R$ are mutually orthogonal Ising vectors which are fixed under the action of Aut(R). The central charge \tilde{c}_R of $\tilde{\omega}_R$ is given by the following:

In particular, $\tilde{\omega}_{E_8}$ is also an Ising vector of σ -type of $V_{\sqrt{2}R}^+$. For $x \in R$, define

$$\varphi_x = exp\left(\frac{\pi\sqrt{-2}}{2}x_{(0)}\right).$$

Then φ_x is an automorphism of $V_{\sqrt{2}R}^+$ with $\varphi_{2x}=1$. We set

$$I_R = \{ \omega^{\pm}(\alpha) \mid \alpha \in \Phi(R) \},$$

$$\tilde{I}_R = \{ \varphi_x \tilde{\omega}_R \mid x \in R \}.$$

The inner products of these elements is given by

$$\langle \omega^{+}(\alpha), \omega^{-}(\alpha) \rangle = 0,$$

$$\langle \omega^{\pm}(\alpha), \omega^{\pm}(\beta) \rangle = \langle \omega^{\pm}(\alpha), \omega^{\mp}(\beta) \rangle = \frac{1}{32} \langle \alpha, \beta \rangle^{2},$$

$$\langle \omega^{\pm}(\alpha), \varphi_{x} \tilde{\omega}_{R} \rangle = \frac{1 \pm (-1)^{\langle x, \alpha \rangle}}{2(h+2)},$$

$$\langle \tilde{\omega}_{R}, \varphi_{x} \tilde{\omega}_{R} \rangle = \begin{cases} 0 & \text{if } \langle x, x \rangle = 4\\ \frac{1}{32} & \text{if } \langle x, x \rangle = 2\\ \frac{1}{4} & \text{if } x \in 2E_{8} \end{cases}$$

for distinct $\alpha, \beta \in \Phi(R)$ and $x \in R$.

It is known that $V_{\sqrt{2}D_{2n}}^+$ and $V_{\sqrt{2}E_8}^+$ are code VOAs and Lam classified Ising vectors of σ -type of a code VOA. We denote by I(V) the set of Ising vectors of a VOA V. Then, the following hold.

Theorem 3.1. we have

$$(1) \ I(V_{\sqrt{2}D_{2n}}^+) = I_{D_{2n}}$$

(2)
$$I(V_{\sqrt{2}E_8}^+) = I_{E_8} \cup \tilde{I}_{E_8}$$

Since a root lattice of ADE type is contained in E_8 or D_{2n} for sufficient large n, by using the above theorem, the Ising vectors of $V_{\sqrt{2}R}^+$ are given by the following.

Theorem 3.2. For any root lattice
$$R$$
, $I(V_{\sqrt{2}R}^+) = I_R \cup \left(\bigcup_{K \subset R, K \simeq E_8} \tilde{I}_K\right)$

4 Commutant subalgebras M_R

For a VOA V and a conformal vector e of V, we define the commutant subalgebra $\mathrm{Com}_V(e)$ by

$$Com_V(e) = \{ v \in V | e_{(0)}v = 0 \}.$$

Let R be a root lattice and let us fix $\gamma \in \Phi(E_8)$. We set

$$M_R = \operatorname{Com}_{V_{\sqrt{2}R}^+}(\tilde{\omega}_R)$$

and

$$M'_{E_8} = \operatorname{Com}_{V_{\sqrt{2}E_8}^+}(\tilde{\omega}_{E_8}) \cap \operatorname{Com}_{V_{\sqrt{2}E_8}^+}(\omega^+(\gamma)).$$

We have $M_R \cap E = \{e \in E \mid \langle \tilde{\omega}_R, e \rangle = 0\}$ for a set E of Ising vectors. By Theorem 3.2 and (*), the Ising vectors of $V_{\sqrt{2}R}^+$ are given by the following.

Theorem 4.1. (1) $I(M_R) = M_R \cap I(V_{\sqrt{2}R})$ and

$$\begin{array}{rcl} M_R \cap I_R & = & \{\omega^-(\alpha) \, | \, \alpha \in \Phi(R)\}, \\ M_{E_8} \cap \tilde{I}_{E_8} & = & \{\varphi_x(\tilde{\omega}_{E_8}) \, | \, x \in E_8, \, \langle x, x \rangle = 4\}. \end{array}$$

(2)
$$I(M'_{E_8}) = (M'_{E_8} \cap I_{E_8}) \cup (M'_{E_8} \cap \tilde{I}_{E_8})$$
 and

$$\begin{array}{lcl} M'_{E_8} \cap I_{E_8} & = & \{\omega^-(\alpha) \, | \, \alpha \in \Phi(E_8), \, \langle \alpha, \gamma \rangle \in 2\mathbb{Z} \}, \\ M'_{E_8} \cap \tilde{I}_{E_8} & = & \{\varphi_x \tilde{\omega}_{E_8} \, | \, x \in E_8, \, \langle x, x \rangle = 4, \, \langle x, \gamma \rangle \in 1 + 2\mathbb{Z} \}. \end{array}$$

For $E \subset I(V)$ satisfying $\sigma_e(f) \in E$ for any $e, f \in E$, we define

$$\operatorname{Aut}(E,\langle,\rangle) = \{g \in \operatorname{Sym}_E \mid \langle g(e), g(f) \rangle = \langle e, f \rangle, e, f \in E\}.$$

Set

$$I_R^- = \{ \omega^-(\alpha) \mid \alpha \in \Phi(R) \}.$$

Then the following hold.

Proposition 4.2. The map $\phi: \operatorname{Aut}(R) \to \operatorname{Aut}(I_R^-, \langle, \rangle)$, $g \mapsto \tilde{g}|_{I_R^-}$ is a surjective group homomorphism with $\operatorname{Ker} \phi = \langle -1 \rangle$. Therefore,

$$\operatorname{Aut}(I_R^-, \langle, \rangle) \simeq \operatorname{Aut}(R)/\langle -1 \rangle.$$

On the other hand, we proved

Theorem 4.3. If R is a root lattice of ADE type and VOA V is M_R or M'_{E_8} ,

(1) V is generated by the weight 2 subspace V_2 , in paticular, by I(V).

(2) The map $\operatorname{Aut}(V) \to \operatorname{Aut}(I(V), \langle, \rangle), \rho \mapsto \rho|_{I(V)}$ is an injective homomorphism.

By Proposition 4.2 and Theorem 4.3,

Theorem 4.4. If $R \neq E_8$, then $\operatorname{Aut}(M_R) \simeq \operatorname{Aut}(R)/\langle -1 \rangle$.

In the case that $R = E_8$, the following hold.

Theorem 4.5.

$$\operatorname{Aut}(M_{E_8}) \simeq \operatorname{Aut}(I(M_{E_8}), \langle, \rangle) \simeq \operatorname{Sp}_8(2)$$

 $\operatorname{Aut}(M'_{E_9}) \simeq \operatorname{Aut}(I(M'_{E_9}), \langle, \rangle) \simeq \operatorname{O}_8^-(2)$