
Product state distribution and
reaction dynamics of

O(1D) + N2O → NO + NO

by

Shinnosuke Kawai

Submitted to the Department of Chemistry

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Science

at

Kyoto University

December, 2005





Contents

1 Introduction 3

2 Exit interaction effect on nascent product state distribution of O(1D) + N2O

→ NO + NO 11

2.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 EXPERIMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 QUASICLASSICAL TRAJECTORY CALCULATION . . . . . . . . . . . . . . 15

2.4 RESULTS AND DISCUSSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.2 Half-collision calculation — modified statistical approach . . . . . . . . . 27

2.4.3 Reaction dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 SUMMARY AND CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Quasiclassical trajectory study of O(1D) + N2O → NO + NO: Classification

of reaction paths and vibrational distribution 35

3.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 POTENTIAL ENERGY SURFACE . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 QUASICLASSICAL TRAJECTORY ANALYSES . . . . . . . . . . . . . . . . . 42

3.3.1 Product vibrational distribution . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.2 Initial condition dependence of dynamics . . . . . . . . . . . . . . . . . . 44

3.3.3 Classification of trajectories and analysis of dynamics . . . . . . . . . . . 48

3.3.4 Efficient energy exchange in the direct paths . . . . . . . . . . . . . . . . 60

3.4 SUMMARY AND CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5 APPENDIX:Analytical expression of the potential energy surface . . . . . . . . 64

1



4 Dynamics of near-collinear reaction path of O(1D) + N2O → NO + NO stud-

ied by normal form theory 67

4.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 NORMAL FORM THEORY FOR PATH 1 TRAJECTORIES . . . . . . . . . . 69

4.2.1 Description of trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.2 Taylor expansion of the Hamiltonian around the collinear saddle point . 74

4.2.3 Normal form calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3 ANALYSES OF THE DYNAMICS . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3.1 Evaluation of the couplings . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3.2 Dynamics of the 2-DOF subsystem . . . . . . . . . . . . . . . . . . . . . 84

4.3.3 Mechanism of efficient energy transfer . . . . . . . . . . . . . . . . . . . . 87

4.4 SUMMARY AND OUTLOOK . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.5 APPENDIX A: Derivation of the Hamiltonian (4.6) . . . . . . . . . . . . . . . . 91

4.6 APPENDIX B: Construction of the NF transformation . . . . . . . . . . . . . . 92

Acknowledgements 95

2



Chapter 1

Introduction

It is natural for human beings to hold an interest in things surrounding us and seek for un-

derstanding of what is going on in this world. In ancient times, this question attracted Greek

philosophers1 such as Thales, Anaximenes, Pythagoras, Heraclitus, Parmenides, Empedocles,

etc. Among them, Democritus and his successor Epicurus arrived in the notion of atom, which

was the unit of the world and could not be divided into smaller parts. Whereas their notion was

only a philosophically invented idea, it was brought into modern natural science by Dalton in

order to explain experimental results of gas-phase chemical reactions in the early 19th century.

Dalton’s theory of atoms was successively modified by Avogadro, who introduced the concept

of molecule, which consists of atoms and is the smallest unit of compounds. The theory of

atoms and molecules was further pursued through the research of the kinetic theory of gas, the

Brownian motion, etc. In the early 20th century, it was discovered that the atom is in fact

not an undivided particle, but consists of smaller particles called nucleus and electron. Then

the birth of quantum mechanics2 revealed the structure of the atom and the rules governing

their behaviors. Since then, all the phenomena of the atomic and molecular levels have become

an application of the Schrödinger’s equation,2 and the Hamiltonian equation of motion3 as its

classical approximation. Simply put, the motion of electrons and hydrogen nuclei experiences

a large amount of quantum effect whereas that of the nuclei in the second and lower rows of

the periodic table can well be approximated by classical mechanics.

The establishment of the fundamental rules might appear a final solution of the atomic

and molecular problems. Indeed, calculations based on quantum mechanics have now complete

accuracy in reproducing experimental results of simple chemical reactions such as H + H2.
4,5

However, there are two things we must keep in mind.

First, the Schrödinger’s equation is analytically solvable only for simple systems such as

one-dimensional oscillator, the hydrogen atom, etc. The three-body problem has no exact
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solution neither classically nor quantum mechanically. In contrast, even simplest systems of

chemical interest often contain tens of electrons and three or more nuclei. Therefore, only

approximate calculation is available for such systems and the quality of the approximation

must be tested by comparing the result with experiment. In the experimental viewpoint, the

dynamics of gas-phase chemical reactions have been studied mainly through the rovibrational

and angular distribution of reaction products, because the motion of the reaction products

reflects the motion during the reaction. Compared to the intermediate stage of the reaction,

which is often difficult to detect directly, the reaction product can be more easily detected

before the following collision with another molecule, because under a 100 mTorr background

pressure the typical time scale between collisions is the order of 100 ns, which is accessible

with the time resolution of today’s laser technology. Examples of the study of product state

distributions can be found in textbooks.6,7

Second and more important, understanding is something far beyond the mere reproduction

of the nature. It aims for the extraction of the essential part of the natural phenomenon and

the elucidation of what is really effective in giving rise to such phenomenon. For example,

Polanyi8 examined the effect of the barrier localtion in the model three-atomic reaction

A + BC → AB + C. (1.1)

Regarding the reaction process as a three-body motion of nuclei with the potential energy

given by the expression of London-Eyring-Polanyi-Sato potential,9 he simulated numerically

the trajectories of the reaction. He found that, if the barrier is in the entrance region of the

reaction, the translational energy of A is effective for causing the reaction to occur and the

energy is largely distributed into the vibration of AB in the product. On the other hand, if the

barrier is located in the exit region, the vibration of BC is effective in causing the reaction and

the energy is distributed in the translation of the product. It is such kind of explanation that

the scientific research should aim for.

Compared to the reaction with a barrier, little is known of the reaction system with a well

on the potential energy surface (PES). Wolfrum10 made a benchmark research by simulating

the reaction of O atom with CN molecule:

O(3P) + CN(X2Σ+) → CO(X1Σ+) + N(4S), (1.2)

→ CO(X1Σ+) + N(2D). (1.3)

This reaction system has two potential energy surfaces corresponding to two electronic states.

One (2Σ−) correlates with the electronic ground state X2Π of the NCO radical and leads to the
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production of the electronically excited nitrogen atom N(2D). The region of NCO intermediate

forms a deep well on the PES. The other surface (4Σ−) connects the reactant directly to the

ground state of the nitrogen atom N(4S). This surface makes a simply exothermic reaction

without a barrier or a well. For the surface with a deep well, the intermediate complex NCO

was formed in the course of the reaction and the system was trapped for a long time in the

well. The vibrational distribution of the product CO molecule decreased as the vibrational

quantum number v′ increased. This result can be interpreted that the trapping for a long

time period enabled energy randomization and resulted in a statistical trend of the product

distribution. On the other hand, the direct-type surface resulted in highly excited vibration

of CO with an inverted distribution. The interpretation can be provided in a similar way; if

there is no significant well on the PES, the lifetime of the intermediate is likely to be short and

the energy is distributed in only a part of the rovibrational modes of the products. Since then,

the concept that the product state distribution is closely related to the stability of the reaction

intermediate, that is, the depth of the well, has been generally accepted in the study of the

reaction with a well. However, contradictory experimental results were found for a four-atomic

reaction system.

Suppose a reaction involving four atoms:

A + BCD → AB + CD. (1.4)

In the process, one chemical bond (B-C) dissociates and one (A-B) is newly formed through

the reaction. In the meantime, one bond (C-D) exists both in the reactant and in the product.

The atoms C and D remain connected throughout the reaction process and thus this bond is

apparently not involved in the “reaction.” Such a bond appears first for four-atomic reaction,

whereas in three-atomic reaction [See Eq. (1.1)] there are only a dissociating bond (B-C) and a

newly formed bond (A-B). This fact makes a qualitative change in going from the three-atomic

to the four-atomic reaction system in addition to the mere quantitative increase of the degrees

of freedom. Since the reaction starts with an infinitely large A-B bond length, the available

energy can be regarded as initially localized in the vibration of the A-B bond. The energy

localized in the new bond (A-B) may or may not be transferred to the C-D bond through the

interaction between these two bonds in the course of the reaction. If we follow the argument in

the previous paragraph, the excitation of the C-D vibration requires a long lifetime, that is, a

deep well in the PES compared to the product. In a reaction without a significant well below

the product, the “old” bond C-D is not likely to be excited. Now we test the applicability of

this argument with one example of the four-atomic reaction.
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The reaction of O(1D) with N2O is one of four-atomic reactions.

O(1D) + N2O → NO + NO ∆H◦
f (0) = −341 kJ/mol, (1.5)

O(1D) + N2O → N2 + O2 ∆H◦
f (0) = −520 kJ/mol. (1.6)

The channel (1.5) is known as the major source of stratospheric NO, which is involved in the

ozone destruction process.11,12 Many experimental studies13–22 have been done by measuring the

product state distributions and the vector properties for channel (1.5). The two NO products

should be distinguished from the dynamical viewpoint. Hereafter we use prime symbols for this

purpose and express the reaction as follows:

O(1D) + NN′O′ → NO + N′O′. (1.7)

The newly formed NO originating from O(1D) is called a “new” NO and the N′O′ which

already exists in the reactant N2O is called an “old” NO. The new NO corresponds to the

newly formed molecule AB in Eq. (1.4) and the old NO (N′O′) corresponds to the old C-D

bonds in the same equation. Akagi et al.17,18 distinguished these two kinds of NO by using

isotopically labeled 18O(1D), and measured the individual vibrational state distributions for

v′ ≤ 17. The sum of the distribution of the new and old NO products decreased monotonically

as the vibrational quantum number increased and was very close to the statistical distribution

up to v′ ≈ 10 and became smaller than the statistical one for higher v′. The statistical nature of

the vibrational distribution was further confirmed by the measurement with FTIR spectrometer.

16,21 Furthermore, although the vibrational distribution of the new NO is more excited than

that of the old NO, the populations of both types of the products in each vibrational level are

not significantly different.17,18 This nearly equal energy partitioning between the two kinds of

NO is surprising because neither experiment23,24 nor calculation25–29 has found any deeper well

for this reaction than the cis-planar NO dimer, whose binding energy 8.3 kJ/mol24 relative to

NO + NO is very small compared to the exothermicity of 341 kJ/mol. This result forms a sharp

contrast to the O(1D) + H2O reaction, whose two types of OH products show entirely different

vibrational distributions30,31 although the reaction is considered to proceed with stable H2O2

intermediate.32

The vibrational distribution is, however, not enough to describe the whole product state

distribution, since the product molecules have also the rotational degrees of freedom. Given

the statistical trend of the vibrational distribution explained above, it is of interest to what

extent the rotational distribution has a statistical nature. Significant excitation of the NO
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products was first suggested by Goldstein et al.33 They observed congested rotational lines in

the ∆v = 0 region of the NO A 2Σ+–X 2Π transition but did not make any quantitative analysis.

Tsurumaki et al.19 found that the rotational distribution of NO(v′ = 0) was much more excited

and estimated the rotational temperature to be Trot > 10000 K, which is also close to the

statistical distribution. The near-statistical rotational distribution observed by Tsurumaki et

al.19 is also indicative of efficient energy transfer within the intermediate. However, one cannot

conclude that the rotational distribution of NO(v′ = 0) is really near-statistical since their

measurement is limited to j′ < 50, which covers only the half of the rotational populations

in v′ = 0 level if the statistical or the Boltzmann distribution continues for all the higher

rotational levels. The reason for this limitation is the overlap of the transitions from high-j′

levels of (0, 0) band with (1, 1) and (2, 2) bands of the A–X transition. Due to the widely spread

rovibrational distribution of NO products, such overlap makes the spectral assignment severely

difficult. In Chapter 2 of this thesis, we fully determine the rotational state distributions of

NO(v′ = 0, 1, 2) products by measuring the wide range of LIF spectra (up to j′ ≈ 100) and

by carefully assigning the large number of rotational lines. We confirm the measurement of

Tsurumaki et al. in the low rotational levels, and it is found out that the overall trend of each

rotational state distribution is close to statistical. However, the distribution decreases more

rapidly as j′ increases than the statistical distribution in high rotational levels j′ > 80 for all

these vibrational levels.22

Calculational work is also essential for the understanding of the system since the experi-

mental information is limited. The validity of the calculation must be tested by comparing

it with the experimental results. Once the agreement is obtained between the experiment

and the calculation, then the calculation can provide much detailed information on the sys-

tem. González et al.26 have performed high-level ab initio calculations at the stationary points

for the O(1D) + N2O reaction and obtained the rate constants using transition state theory

and quasiclassical trajectory (QCT) calculation on a fitted pseudotriatomic London–Eyring–

Polanyi–Sato surface. Although they found relatively good agreement with the experimental

results in the rate constants and branching ratios, their ab initio calculation was limited to the

neighborhoods of the stationary points and was not adequate for dynamical studies on global

PES. Takayanagi et al.27–29 constructed a global PES by calculating ab initio energies at about

10,000 grid points of planar configuration and fitted them to an analytical form. Using this 1A′

ground surface, they performed QCT calculation with zero impact parameter29 and quantum

calculations.28,34 They found qualitative agreement with the experimental results on vibrational
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distribution and branching ratio. They also pointed out the existence of “scrambling” process:

O(1D) + NN′O′ → NO′ + N′O, (1.8)

whose contribution was smaller than that of the normal NO channel (1.7) but not negligible.

This PES of Takayanagi et al. will be involved in the Chapter 3 of this thesis. There, we

construct a new global PES function by utilizing a part of Takayanagi et al.’s PES. With the

PES obtained, we perform QCT calculation and obtain relatively good agreement with the

experiment. Then we carry out further analyses with the purpose of clarifying the detailed

reaction mechanism. We show that the reaction dynamics is clearly dependent on the initial

condition and the reactive trajectories can be classified into four paths. One of the paths, which

we call “Path 3,” is found to have long lifetime, being trapped in a newly found well, whereas

the other paths exhibit short lifetime. Contrary to the general notion, we find that the old NO

vibration is highly excited along the short-lifetime paths rather than the long-lifetime one.35

The existence of four totally different pathways35 for this reaction requires a set of separate

analyses for each of the four mechanisms, because one general explanation for these four paths

appears impossible. In Chapter 4 of this thesis, we select one path as the first step of our research

and present a detailed description of that path. That path shows the largest excitation of old

NO of the four paths, even though it has the shortest lifetime of the reaction intermediate.

Therefore this path forms the clearest contrast to the traditional understanding. We adopt the

normal form (NF) theory for analyses of the dynamics of this path. This theory has recently

been introduced in molecular science36–47 in the context of transition state theory. The NF

theory is a perturbation theory in classical dynamics. It consists in starting with an integrable

Hamiltonian as zeroth order and constructing a canonical transformation of the variables based

on Lie transformation48 to convert the Hamiltonian into a desirable form. It has recently been

applied to dynamics in the vicinity of a rank-1 saddle point.36–47 In harmonic approximation at

a rank-1 saddle point, one normal mode direction has an imaginary frequency, which is called

a reactive mode. The others have real frequencies, which are called bath modes. It was found

that the coupling between the reactive and bath modes can be eliminated by transforming

to a new set of coordinates, enabling the extraction of recrossing-free dividing hypersurface

(transition state) and the reaction path in phase space which all reactive trajectories necessarily

follow. These are based on the concept of the normally hyperbolic invariant manifold (NHIM)

and its stable and unstable manifolds. This is due to the fact that the resonance condition,

which causes divergence in perturbation expansion through the problem of small divisor, can

never be met between real and imaginary frequencies. In Chapter 4, our aim is not only the
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elimination of the coupling between the reactive and bath modes, but also the elimination of

as many couplings as possible among the bath modes, since we are interested in the motions

including the stretching vibrations of the two NO bonds. We wish to simplify the coupling

terms as much as possible. Once the number of coupling terms becomes sufficiently small, we

investigate the extent and effect of each term. In spite of the high energy, the dynamics of

this path is shown to be regular with the normal mode picture well conserved with a small

distortion. The energy exchange between the two NO groups is essentially a “beat” between

the symmetric and antisymmetric normal modes, rather than chaotic coupling. Through this

analysis of Chapter 4, it is shown that the NF process is a powerful tool for the analysis of

dynamics, elucidating the coupling terms essential to the dynamics by making the Hamiltonian

as simple as possible. With the number of terms significantly reduced, we can assess which

coupling(s) play important roles in the dynamics. Thus, starting with the normal mode picture

and assessing the effect of anharmonic coupling terms with the NF procedure, we can test

whether the normal mode structure is conserved or not, and, if not, elucidate new phase space

structures caused by the anharmonic couplings.

The energy partitioning in the reaction can be regarded as a negotiation of two factors: the

rate of energy transfer among the vibrational modes of the reaction intermediate and the lifetime

of the intermediate. The product state distribution is often argued only in the connection to

the lifetime, or the depth of the well. Such argument assumes that the rate of energy transfer

is more or less the same order for all the molecular systems. However, this simple consideration

often fails to explain the actual observation of the product state distributions. One significant

example is the reaction of O(1D) + N2O discussed in this thesis. Other examples may be found

in O(1D) + H2O,30,31 H + NO2,
49–51 O(1D) + HCl,52–54 for which the PES have deep wells but

the product state distributions deviate significantly from the statistical trend. Therefore, more

detailed consideration of the rate and then the mechanism of the energy transfer is necessary

for the understanding of these processes. We suggest that there are two possible mechanisms

for the energy transfer within the intermediate. One is energy randomization through chaotic

motion, which may close to the traditional picutre of the deep-well case. The other is the motion

that experiences only a part of the phase space but has similar projections to all the modes

considered. The beat mechanism found in Chapter 4 of this thesis is included in the latter and

responsible for the significant excitation of the old bond for, at least one path of, the reaction

of O(1D) + N2O. For the purpose of clarifying the mechanism of the energy partitioning, the

NF analysis55 we introduce in this thesis can be a powerful method. In the future, it would be

interesting to analyze other paths of this reaction and also other chemical reactions from this

viewpoint.
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Chapter 2

Exit interaction effect on nascent
product state distribution of
O(1D) + N2O → NO + NO

2.1 INTRODUCTION

The reaction of O(1D) with N2O has two major channels:

O(1D) + N2O → NO + NO ∆H◦
f (0) = −341 kJ/mol, (2.1)

O(1D) + N2O → N2 + O2 ∆H◦
f (0) = −520 kJ/mol. (2.2)

These two channels can be characterized by large exothermicity56 and almost gas kinetic rate

constants.57 The branching ratio of the two channels was experimentally determined to be

k1/k2 = 1.6 although there has been no observation which identifies the electronic state of the

nascent O2 products for channel (2.2). Most studies of this reaction were concerned with the

channel (2.1) because of the ease of detection of NO products and its importance in atmospheric

chemistry as a major source of stratospheric NO.

A peculiar feature of the dynamics of this reaction is the release of the large exothermicity

without a deep potential well. For channel (2.1), NO dimer is the known stable species. There

are large amount of spectroscopic study on the cis-planar dimer and its binding energy was

determined to be about 8.5 kJ/mol,23 which is very small compared to the exothermicity of

341 kJ/mol. Ab initio calculations25–29 found no deeper well than the cis-planar ONNO and

showed that this channel has almost no barrier. The very shallow well suggests that the lifetime

of the intermediate of this reaction is short.

The dynamics of the channel (2.1) has been studied by measuring product state distribu-

tions and vector properties,13–21 mostly based on the laser-induced fluorescence (LIF) technique.
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The two NO molecules produced from this reaction should be distinguished from dynamical

viewpoint. The newly formed NO originating from O(1D) is called a “new” NO and the other

NO which already exists in the reactant N2O is called an “old” NO. Using isotopically labeled

18O(1D), Akagi et al.17,18 measured the individual vibrational state distributions of the new

and old NO products for v′ ≤ 17 in a condition where the nascent rotational distributions are

relaxed by collisions after the reaction but vibrational relaxation is negligible. The distribution

decreased monotonically as the vibrational quantum number increased and significant popula-

tions were found up to v′ ≈ 10. The sum of the distribution of the new and old NO products was

very close to the statistical distribution up to v′ ≈ 10 and became smaller than the statistical

one for higher v′. The vibrational distributions measured with FTIR spectrometer16,21 showed

better agreement with the statistical one for such high v′ levels. Furthermore, although the

vibrational distribution of the new NO is more excited than that of the old NO, the populations

of both types of the products in each vibrational level are not significantly different.17,18 This

result forms a sharp contrast to the O(1D)+H2O reaction, whose two types of OH products show

entirely different vibrational distributions30,31 although the reaction is considered to proceed

with stable H2O2 intermediate.32 Akagi et al. compared the observed vibrational distribution

with those for O(1D)+H2O and S(1D)+N2O.58 From the analysis of vibrational couplings, they

concluded that the existence of atoms with similar masses induced enhancement of the energy

transfer, which compensated the short lifetime of the intermediate.

For rotational distribution, significant excitation of the NO products was first suggested

by Goldstein et al.33 They observed congested rotational lines in the ∆v = 0 region of the

NO A 2Σ+–X 2Π transition but did not make any quantitative analysis. As opposed to this

observation, Brouard et al. reported a cold distribution of NO(v′ = 0) almost identical to

a thermal distribution of 300 K.14,15 They found high rotational excitation for NO(v′ ≥ 1)

and thus they suggested that NO(v′ = 0) was produced via stripping mechanism whereas

NO(v′ ≥ 1) was produced through a short-lived complex. On the other hand, Tsurumaki et al.19

found that the rotational distribution of NO(v′ = 0) was much more excited and estimated the

rotational temperature to be Trot > 10000 K, which is also close to the statistical distribution.

They suggested the possibility that the thermalized residual NO contaminated the spectrum

in the measurements of Brouard et al.14,15 The near-statistical rotational distribution observed

by Tsurumaki et al.19 is also indicative of efficient energy transfer within the intermediate.

However, one cannot conclude that the rotational distribution of NO(v′ = 0) is really near-

statistical since their measurement is limited to j′ < 50, which covers only the half of the

rotational populations in v′ = 0 level if the statistical or the Boltzmann distribution continues
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for all the higher rotational levels. The reason for this limitation is the overlap of the transitions

from high-j′ levels of (0, 0) band with (1, 1) and (2, 2) bands of the A–X transition. Due to

the widely spread rovibrational distribution of NO products, such overlap makes the spectral

assignment severely difficult.

In theoretical works, it is only quite recent that this reaction was treated as a four-atomic

system. González et al.26 calculated the potential energies at the stationary points and obtained

the rate constants using transition state theory and quasiclassical trajectory (QCT) calcula-

tion on a fitted pseudotriatomic London–Eyring–Polanyi–Sato surface. Although they found

relatively good agreement with the experimental results in the rate constants and branching

ratios, their pseudotriatomic surface was not adequate to calculate the product state distri-

butions. Takayanagi et al.27–29 calculated the potential energies at about 10000 grid points

of planar configurations of this system and fitted them to an analytical form. Using this 1A′

ground surface, they performed QCT calculation with zero impact parameter29 and quantum

calculations.28,34 They found qualitative agreement with the experimental results on vibrational

distribution and branching ratio. However, the rotational distributions were not calculated.

In this chapter, we have fully determined the rotational state distributions of NO(v′ =

0, 1, 2) products by measuring the wide range of LIF spectra (up to j′ ≈ 100) and by carefully

assigning the large number of rotational lines. It is found out that the overall trend of each

rotational state distribution is close to statistical. However, the distribution decreases more

rapidly as j′ increases than the statistical distribution in high rotational levels j′ > 80 for

all these vibrational levels. Furthermore, we carry out QCT calculations on the ab initio PES

calculated by Takayanagi et al. to predict rotational distributions in these vibrational levels. In

addition to ordinary QCT calculations, we perform another type of calculation which consists

of statistical distribution of the reaction intermediate and usual propagation to the products.

This calculation enables us to separately extract the effects of the PES from the reactant to

the intermediate and from the intermediate to the product, to provide us with deeper insight

into the dynamics. The details of the dynamics of the reaction will be discussed based on the

comparison between the experimental and theoretical results, especially in terms of the effect

of the exit region from the intermediate to the product of the PES.

2.2 EXPERIMENT

The experiment was performed in flow condition at room temperature. Nitrous oxide (Showa

Denko 99.999%) was used without further purification. The sample gas was introduced into
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a stainless steel vacuum chamber and pumped with a rotary pump and a mechanical booster

pump. The pressure was kept at 200 mTorr by controlling the flow rate with a stainless steel

needle valve.

The electronically excited oxygen atom O(1D) was produced from the photodissociation of

N2O with 193 nm light generated by an ArF excimer laser (Lambda Physik EMG 53 MSC).

The product NO(v′ = 0, 1, 2) molecules were probed with LIF via the NO A 2Σ+–X 2Π (0,

0)(0, 1)(0, 2) transitions. To obtain the probe light, a tunable dye laser (Lambda Physik

SCANmate 2E) pumped by a XeCl excimer laser (Lambda Physik COMPex 102) was utilized.

The wavelength of the probe light was 213–248 nm and it was generated by using the laser dyes

Stilbene 3 (213–216 nm, as the doubled output), Coumarin 120 (215–222 nm), Coumarin 2

(220–228 nm), Coumarin 47 (226–239 nm) and Coumarin 102 (239–248 nm) and by frequency

doubling their output with BBO I (220–248 nm) and BBO II (213–221 nm) crystals. The delay

time between the photolysis and the probe lights was set to be 100 ± 20 ns, which has been

proved to be sufficient to neglect the effect of collisional quenching of the nascent distribution.19

In order to minimize the saturation effect, the intensity of the probe laser light was kept about

7–8 µJ/pulse and the dependence of the LIF signal on the intensity of the probe light was

measured in advance. The photolysis and the probe lights were counterpropagated with each

other.

The LIF signal was collected by a synthetic silica lens and focused by another silica lens

on a photomultiplier tube (Hamamatsu R928) mounted in the direction perpendicular to the

laser axis. In order to reduce the strong scattered light and emission arising from the photolysis

laser, a long-pass filter (Corning CS9-54) was placed in front of the photomultiplier tube. The

detected signal was amplified by a fast preamplifier (Comlinear CLC100) and gated by a boxcar

integrator (Stanford Research System SR250). The first 50 ns after the probe laser irradiation

was not included in the integration to avoid the scattering of the probe light. The gate width

was set to 100 ns in consideration of the fluorescence lifetime. The gated signal was digitized

by an A/D converter (Stanford Research System SR245) and stored into a personal computer

via a GPIB interface. The intensities of the photolysis and the probe lights were monitored

with photodiodes (Hamamatsu 1336-5BQ) to normalize the detected LIF signals. The absolute

intensities of the probe laser were also measured with laser power meter (Gentec ED-100A).

The experimental system was operated with a repetition rate of 10 Hz.

As reported previously,19 there exist thermalized residual NO molecules in the reaction

chamber. The contribution of the residual NO to the LIF signal is considerable in the low

j′ levels only for v′ = 0 level. In order to eliminate this background signal, we altered the
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ON/OFF of the photolysis laser shot by shot and subtracted the signal without the photolysis

laser from that with the photolysis laser.

Recent study of Adams et al. detected a spin-forbidden N(4S) + NO channel59 although

the yield was not expected to exceed 1%.60 By examining the dependence of the LIF signal

intensity on the delay time, we confirmed the negligible contribution of the photofragment NO,

which would arise just after the photolysis.

Since NO(A 2Σ+) is known to predissociate,61 we checked the time profile of the fluorescence.

The LIF signals of 16 rotational levels were recorded in a digital storage oscilloscope (Tektronix

TDS30528).

2.3 QUASICLASSICAL TRAJECTORY CALCULATION

In order to understand the origin of observed rotational populations, we have preformed QCT

calculations. We used the PES of Takayanagi et al.,27–29 which is an analytically fitted surface of

ab initio calculations of the lowest 1A′ PES. The details of the PES can be found in Refs. 27–29.

The classical equations of motion for the O(1D)+N2O collision were numerically integrated

by using Bulirsch-Stoer method.62 Energy conservation up to the order of 0.01 cm−1 was con-

firmed. For the coordinate, three Jacobi vectors were employed; one connects the O(1D) atom

and the center-of-mass(CM) of the N2O molecule, another connects the terminal N atom and

CM of NO moiety in N2O, and the other connects the N and O atoms of NO in N2O. Since the

ab initio calculations were performed only for the planar structure of the O(1D)+N2O system,

the three Jacobi vectors were confined in two-dimensional (2D) collision plane. The calculated

population of each rotational state was multiplied by the degeneracy factor 2j′ + 1 to convert

the 2D results to 3D. This conversion is on the assumption that all the 2j′ + 1 states are

populated equally. We consider this assumption valid because the anisotropy of the product

rotational angular momentum in the CM frame was found to be small19 and, as will be shown

in Sec. 2.4.1, we have found only slight preference for one of the Λ-type doublet components to

the other.

To obtain detailed insight into the dynamics, we have carried out two types of calculations.

One is the conventional classical scattering calculation, which we call full-collision calculation.

The other type is named half-collision calculations. In the latter calculation, we have assumed

a statistical distribution in the reaction intermediate ONNO and then observed the resulting

NO state distributions. More precisely, phase space points with fixed distance between the

CM’s of each NO were randomly sampled and trajectories were propagated en route to the
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products. For this sampling, the distance between the CM’s of two NO’s was chosen equal to

the experimentally determined value of NO dimer, i.e. 2.263 Å.63

For the full-collision calculation, collision energy was sampled according to the distribution

of collision energy in the present experimental condition. The distribution was calculated

from the convolution of the velocity distribution of O(1D) and that of thermal N2O by taking

account of the integration of the angle between these two velocity vectors.64 For the velocity

distribution of O(1D), experimentally determined translational energy distribution for the 193

nm photodissociation of N2O (Ref. 65) was used. The mean collision energy 〈Ecol〉 thus obtained

is 52 kJ/mol and the full width at half of maximum of the Ecol distribution is 38 kJ/mol. The

initial rotational energy of N2O was sampled by classical Boltzmann distribution of 300 K

and the vibrational energy was fixed to the zero point energy of the calculated PES. Impact

parameters were sampled up to 6 Å, where the opacity function became negligibly small. For

the half-collision calculation, the total energy of the system was set equal to the collision energy

of O(1D) and N2O plus the zero point energy of N2O. About 200,000 trajectories were run for

each of the two types of the calculation.

2.4 RESULTS AND DISCUSSIONS

2.4.1 Experimental results

The entire LIF spectrum measured in this study is exhibited in Fig. 2.1. The spectral regions of

vibronic bands are shown with their vibrational quantum numbers. Due to the high excitation

of NO products in rotational and vibrational motions, a large number of peaks appeared in the

spectrum and some of them overlapped with each other. We carefully assigned all the peaks by

using the spectroscopic constants found in Ref. 66. Only those peaks which do not overlap with

other peaks were utilized to determine the vibrational and rotational distribution. In Fig. 2.1,

peaks from wide range of j′ were observed. Hence, in order to properly derive the population

from the LIF spectrum, we had to carefully check the experimental conditions and correct the

observed signals accordingly.

First, to examine the effect of saturation, we measured the dependence of the LIF signal

on the dye laser power. Typical results are shown in Fig. 2.2. It is known that the intensity

ILIF of LIF signals is proportional to P [1 − exp[−(A + 2Bρ)∆t] when the rate equation for

the two-state model is solved to take into account the saturation effect.67 Here, P denotes the

population in a specific quantum state, A and B are the Einstein coefficients, ρ expresses the

radiation density, and ∆t is the duration of the laser pulse assumed as rectangular. As shown in
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Figure 2.1: Observed LIF spectra of nascent NO(2Π1/2,3/2). The spectral regions are roughly
shown for each vibronic band with upper and lower state vibrational quantum numbers.
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Figure 2.2: Dependence of the LIF signal intensities on the probe dye laser powers measured
for (a) Q11(47.5) and (b) Q22(67.5) transitions of A–X(0, 0) band. The solid lines represent the
results of least-squares fitting and their slopes are shown.
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Fig. 2.2, this expression can be effectively approximated as C(ρS)nP and we fitted ILIF to this

formula. Here, C and n are fitting parameters, and S denotes the line strength factor. We found

n=0.8–1.0 by least-squares fitting and confirmed that the derived distribution did not change

significantly in this range of n. We adopted n=0.9 for all the rotational lines to determine

the population and Fig. 2.1 shows the spectrum after the correction against the probe laser

intensities with this value. To derive rotational distributions, we divided the signal intensity in

the spectrum by Sn, where S was calculated by taking into account the Hönl-London factors

and the dependence of electronic transition moment on rotational levels.68 The correction due

to the electronic transition moment decreases the line strength factor for j′ ≈ 100 by at most

20% compared to that for j′ ≈ 0.

Second, signal intensity was corrected against the wavelength dependence of the detection

efficiency since the difference of the wavelengths of the fluorescence from the low and high

rotational levels was significant. We calculated the wavelength dependence of the detection

efficiency from the curves of the filter transmission and the photomultiplier sensitivity, which

were taken from their catalogs. With thus obtained efficiency curve, the correction factors for

the LIF detection was determined by considering Franck-Condon factors66 and Hönl-London

factors. The resulting correction factors for NO(A, vA = 0, jA) are shown in Fig. 2.3. The

detection efficiency monotonically decreases with jA and that of jA = 0.5 is 2.5 times higher

than that of jA ≈ 100.

Third, the rotational state dependence of the predissociation rate should be taken into

account. NO (A, vA) is known to predissociate in vA > 3 levels.61 The threshold energy corre-

sponds to jA ≈ 65 for NO(A, vA = 0) although the dissociation rate has not been reported for

such high rotational levels. To clarify the appropriate correction factor, we measured the time

profiles of the LIF signals from NO(A, vA = 0, jA). The time constants of the fluorescence decay

were determined from least-squares fitting analysis of the recorded profiles with the assumption

of single exponential decay. Figure 2.4 shows the lifetimes against the upper state rotational

quantum number jA. As recognized from the figure, clear dependences on jA are not found

although the lifetimes are scattered. Thus, no further correction due to the predissociation

was made for determining the populations. Although this dependence is not a central topic of

this chapter, it is notable that the effects of the rotational energy and vibrational energy are

different for the predissociation of NO(A).

The observed lifetimes ranging from 80 to 100 ns are shorter than the collision-free radiative

lifetime of NO(A) i.e. 200 ns.61 This result indicates that the rate constant of electronic

quenching is about (200 ns)−1 with 200 mTorr of N2O, which corresponds to ≈8×10−10 cm3
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Figure 2.3: Correction factors for the LIF signal whose upper state is NO(A, vA = 0, jA)
calculated from Franck-Condon factors, Hönl-London factors, filter transmission, and photo-
multiplier sensitivity.

molecule−1 s−1. It may imply that the products can suffer collisions in the time scale of our

pump-probe delay under the present pressure. However, the known rate constants of rotational

relaxation of NO with diatomic and triatomic species69 are smaller than the electronic quenching

rate found here and even if we use this electronic quenching rate as the upper limit of the

rotational quenching, at least 80% of NO(X, v′, j′) products generated during the 100 ns delay

time is estimated to be free from collisions before the probe laser irradiation.

Figure 2.5 shows the rotational distributions of NO(v′ = 0, 1, 2) obtained after the correc-

tions described above. The squares and circles in Fig. 2.5 show the rotational populations of

each spin-orbit and Λ-type sublevels. For each sublevel, fine irregularities of the population

against j′ remain even after the averaging of several scans and we do not consider these struc-

tures physically meaningful. The populations were derived from the (0, 0), (0, 1) and (0, 2)

bands, which cover all the rotational levels plotted in the figure. The validity of the correction

procedure is confirmed by the fact that the populations derived from the (1, 0), (1, 1) and (2,
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Figure 2.4: Fluorescence lifetime of NO(A 2Σ+, vA = 0, jA) measured with 200 mTorr N2O.
No significant dependence on either jA or spin-rotation sublevels was found.

2) bands are consistent with those shown in Fig. 2.5. The horizontal bars shown with arrows in

the figure indicate the upper limits of the population of those levels for which we could not find

any peak at the appropriate wavelengths. These limits were set to the largest undulation of

the baseline. Thus the real populations might be lower than these limits. The total population

of each vibrational state is normalized to appear in the same area by utilizing the Boltzmann

fitting described below. In this study, the new and old NO products are not distinguished by

isotopic labeling. The fractions of the old NO in the v′ = 0, 1, and 2 levels are estimated to be

77%, 62%, and 50%, respectively.18

Figure 2.5 shows that the global features of the rotational distributions in the three vi-

brational levels are similar and broad peaks are located at around j′ ≈ 60. The populations

calculated by the phase space theory (PST)70,71 are also shown by dotted lines. The PST

distribution was obtained with the mean collision energy in our experimental condition (52

kJ/mol) and by taking account of the centrifugal barrier in the exit region. In comparison with

the PST distribution, the observed distribution can be characterized as follows. The distribu-

tions for the levels with low rotational quantum number (j′ < 50) are well reproduced by the

statistical theory. The levels with middle j′ (j′ = 50–80) are more populated than predicted by
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Figure 2.5: Rotational state distributions of NO(v′ = 0, 1, 2). Squares and Circles denote the
observed populations (◦,2Π1/2 A′; ¤,2 Π1/2 A′′; •,2Π3/2 A′; ¥,2 Π3/2 A′′). Downward arrows
show upper limits estimated from noise level. Dotted lines are the rotational state distributions
of 2Π1/2 and 2Π3/2 levels calculated by using PST.
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the statistical theory and, in the high-j′ region (j′ = 80–100), the observed populations drops

more rapidly as j′ increases than the statistical ones. There is no population in j′ > 100. The

statistical distribution for NO(v′ = 0, j′ < 50) was already observed by Tsurumaki et al.19

However, the extended measurement of this study up to the higher j′ levels reveals that the

rotational distributions of NO(v′ = 0, 1, 2) gradually deviate from the statistical trend beyond

j′ ≈ 50 and completely differ from the PST predictions in the high-j′ region (j′=80–100). The

possible dynamical reasons for the decrease of high-j′ population will be discussed in the rest

of the chapter.

Integrated populations and mean values of the observed distributions were calculated from

simple analytical functions representing the distributions. Due to the sharp decrease in high-j′

region, the distributions cannot be fitted to a single Boltzmann distribution function, nor a

linear surprisal. Therefore, to fit the distributions, we adopted an effective functional form:

two Boltzmann-type functions switched at a certain value jc, i.e.

P (j′) =

{
A1(2j

′ + 1) exp(−Ej′/kBT1) (j′ < jc)
A2(2j

′ + 1) exp(−Ej′/kBT2) (j′ > jc)
(2.3)

where Ej′ is the rotational energy and kB is the Boltzmann constant. In the least-squares fitting

procedure, Ai’s and Ti’s were determined for a given jc. As an example, Fig. 2.6 shows the

comparison of the observed and the fitted populations of NO (v′ = 0, 2Π3/2 A′). Note that

the form of Eq. (2.3) has no physical meaning related to the reaction dynamics and the fitting

parameters Ai’s and Ti’s are only utilized to find the average of the scattered data and to

interpolate the populations of those levels for which isolated rotational lines were not observed.
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The results of the fitting are shown in Table 2.1. Using these fitted populations, we were

able to determine the mean rotational energies and the vibrational distribution, which are also

shown in Table 2.1. The vibrational distribution decreases with vibrational quantum number

and the relative population agrees to the previous results shown by Akagi et al.18 although a

slight difference can be seen. The ratio of the populations of v′ = 1 and 2 obtained in this work

rather agrees with that obtained by the recent time-resolved FTIR measurement of Hancock

et al.21 The observed mean rotational energies are similar to those of PST, which may reflect

the global statistical feature of the distribution.

It can be seen in Table 2.1 that the rotational excitation of the NO products found in this

study is larger than those observed before. The main rotational temperature T1=39000 K for

NO(v′ = 0, 2Π1/2 A′) is almost four times as high as the previous value for the same sublevel.19

Main reason of this difference is that the previous study19 estimated the rotational temperature

as the lower limit rather than the least-squares fitted value since the highest rotational energy

of j′ ≈ 50 (Erot ≈ 4000 cm−1) was insufficient to precisely determine the rotational temperature

above 10000 K. Furthermore, the present data set have much better quality than the previous

one and the latter scatters around the former. We therefore conclude that the present result

is consistent with the previous one and is much more reliable. For NO(v′ = 1), the mean

rotational energy is also 1.5 times higher than the previous reports.14,15 This discrepancy will

be attributed to the collisional relaxation or lack of high-j′ data in the previous measurement.

The mean rotational energies of NO(v′ = 1, 2) obtained in this work are about 1.5 times higher

than those estimated as the lower limits under the condition where 50 times more collisions

are expected.21 As described above, the rotational distributions are close to the statistical

distribution to some extent and the rotational temperature ≈20000 K is not extraordinarily

high compared with the large exothermicity of this reaction.

As for the fine state dependence of the population, the difference between the two Λ-doublet

states, Π(A′) and Π(A′′), is discernible and a slight preference for Π(A′) can be seen in Table

2.1. As can be recognized from Fig. 2.5, this difference is not so obvious in low j′ levels.

Little preference for one of the Λ-type doublet components indicates that the motion of the

intermediate is not restricted in a plane. This trend is consistent with the observation of the

isotropic angular distribution of product rotational angular momentum relative to the scattering

plane reported for j′ = 34.5 by Tsurumaki et al.19 However, the preference for Π(A′) in the

high-j′ products may indicate the dominance of the in-plane torque to generate highly rotating

products. On the other hand, the difference between the two spin-orbit components, F1 and

F2 levels, is not significant for any j′ level.
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As recognized from Figs. 2.5 and 2.6, the peculiar feature of the rotational population of

all the observed vibrational levels is the sharp decrease of the population in the high-j′ region

(j′ = 80–100). The possible factors giving rise to such distribution as an artifact are the

predissociation above a threshold level and the neglect of the correction for detection efficiency.

Since we carefully inspected such effects and made the proper correction as described above,

we conclude that the sharp decrease of the population in the high-j′ levels is the genuine one.

2.4.2 Half-collision calculation — modified statistical approach

The observed sharp cutoffs in the product state distribution may invoke the idea that a kine-

matic effect such as angular momentum conservation or truncation of the impact parameters

limits the production of high-j′ products. In order to check such effects, we performed the PST

calculations with the maximum total angular momenta Jmax = 100, 220 and 330, where 100 is

the minimum value estimated from the experimental rate constant, 220 corresponds to the im-

pact parameter where the opacity function becomes negligible in our full-collision QCT result,

and 330 is 1.5 times of that value. The calculated distributions did not change significantly

with the maximum total angular momentum. Therefore we can state that the decrease of the

high-j′ populations is not due to this type of kinematic effect.

We adopted a statistical approach to reproduce the sharp decrease of the population in high-

j′ levels since the overall trends of the observed rotational distributions were close to those of the

PST prediction. In this approach, Statistical Adiabatic Channel Model (SACM),72 which is a

modified version of PST, is a suggestive concept. It is well known that the population of high-j′

products calculated by SACM tends to be depressed compared with that calculated by PST.73

In short, this depression results from the difference of the potential of free products and reaction

intermediate. It can be expected that this effect causes the observed sharp decrease in the high-

j′ products in the O(1D)+N2O reaction. However, SACM assumes that the system remains on

the same adiabatic potential curve as going from the intermediate to the product, which means

that the product molecules need to have sufficiently small velocities. It is questionable whether

this condition is satisfied in the O(1D)+N2O reaction since the average departure velocity of

the product NO is large due to the high exothermicity.19

Recently, Larregaray et al.74 combined the statistical assumption for the intermediate and

the interactions in the exit potential, to correct the statistical treatment. They analyzed the

exit channel dynamics of unimolecular reaction of simple triatomic systems. Once they assumed

the statistical ensemble at the transition state, they solved the equations of motion without

any adiabatic assumption on an analytically modeled PES with a harmonic potential whose
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curvature decreases exponentially with the distance between the products. Their result was that

even if the statistical distribution was achieved at the reaction intermediate, the trajectories

starting from this statistical intermediate resulted in less high-j′ population at the products

than the PST prediction. This high-j′ depression is generated by the rotation-translation

interaction in the exit region of PES. Although the ground for the statistical distribution at the

intermediate in our system is not trivial and can be different from that in Larregaray et al.’s

one, the concept of the exit region interaction modifying the statistical distribution to reduce

high-j′ populations may be applicable to the present case.

Stimulated by these statistical approaches, we performed a kind of QCT calculation which

assumes statistical distribution at the intermediate and propagates the trajectory en route to

the products on the ab initio surface calculated by Takayanagi et al.27–29 We call this calculation

“half-collision QCT calculation.” The concept of this calculation may have a lot in common

with SACM and Larregaray et al.’s work74 concerning the exit region interaction, but it does

not depend on adiabatic assumption or analytical model of the potential. The results of the

half-collision calculations are shown by bold lines in Fig. 2.7. In the figure, the observed

distributions are averaged for all the four sublevels of 2Π states for clarity. The decrease of the

high-j′ population is well reproduced in the half-collision calculation. This indicates that the

interaction in the exit region of PES indeed has an effect of yielding small high-j′ populations

as is pointed out in Ref. 74.

The effect of high-j′ depression due to the exit region interaction can be understood by

considering the trajectories in the phase space. Rather than the trajectories propagating from

the intermediate to the products, time-reversed trajectories which start from the product NO’s

and enter into the intermediate are better for describing the exit interaction effect. The use

of time-reversed trajectories is certificated by the fact that the classical equations of motion

are symmetric with respect to the time reversal. Figure 2.8 schematically represents the phase

space of the system where the horizontal axis denotes the distance R between the CM’s of

two NO moieties and the vertical axis represents the rotational degrees of freedom. Since

the free rotational motion of NO’s in R = ∞ correlates mostly to the bending and torsional

vibrations for finite R, certain regions of the phase space are not accessible due to the bending

and torsional potential energy which becomes higher as R decreases. Then we see that some

of the trajectories are reflected due to this R-dependent vibrational potential. In other words,

the product states corresponding to these trajectories cannot be produced by the reaction.

If the product states have high rotational energy, the translational energy will be too small

to surmount the vibrational potential and hence such trajectories have large probability to
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Figure 2.7: Comparison of observed and calculated rotational state distributions of NO(v′ =
0, 1, 2). Squares denote the observed population averaged for all the spin-orbit and Λ-type
sublevels. Dotted, bold and dashed lines are calculated distributions of PST, half-collision
QCT, and full-collision QCT (see text), respectively.
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be reflected. This means that the statistical distribution at the intermediate corresponds to

distribution with depressed high-j′ populations when propagated to the products.

The essential point for the exit interaction effect of depressing the high-j′ populations in the

products is the difference between “the statistical distribution of the intermediate” and that of

the products. In Fig. 2.8, the accessible region at the intermediate is rounded by dotted lines

and that in the product by dashed lines. If the intermediate has the statistical distribution, all

the phase space points within the dotted lines are equally populated. On the other hand, the

statistical distribution of the products, which is calculated with the PST formalism, populates

all the phase space points within the dashed lines. Since there exist reflected trajectories

due to the vibrational potential, the statistical distribution at the intermediate does not yield

statistical distribution in the products.

Despite the improvement of reproducing the sharp decrease in the half-collision calculation,

the calculated distributions are a little biased to the low-j′ region compared to the observed

ones. This difference can be explained in terms of the following two factors, the accuracy of

the PES and the validity of the statistical assumption at the intermediate. If the statistical

assumption works well in describing the real distribution of the intermediate, the present PES

is inaccurate and overestimates the depression of the rotational excitation of the products in the

exit region. On the other hand, if the extent of the depression of the rotational excitation in the

exit region of the present PES is correct, the statistical assumption is invalid. In this case, the

real distribution of the intermediate is more biased toward the phase space points which produce

high-j′ products than the statistical one. These phase space points can be regarded as those

with high bending and/or torsional vibrations since the NO rotation correlates approximately

to the bending and torsional vibrations in the ONNO intermediate.

2.4.3 Reaction dynamics

The validity of the statistical assumption on the current PES can be discussed from the compari-

son between the results of the half-collision calculation and those of the full-collision calculation.

The rotational distributions obtained by the full-collision calculations are shown in Fig. 2.7 as

dashed lines. The distributions are too much rotationally excited for all the vibrational levels

and the agreement with the experimental result is poor. From the failure of the full-collision

calculation, we learn two things. First, the present global PES cannot be considered accurate

enough to describe the product state distribution when it is used in full-collision calculations.

Second, the reaction intermediate on this PES tends to be too much biased toward the phase

space points yielding high-j′ products. Although the accuracy of the current PES is not perfect,
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Figure 2.8: Schematic figure of the phase space of the reaction system. The horizontal axis
represents the distance R between two NO’s. The vertical axis represents the other degrees
of freedom such as bending motions. The points in the gray area are not accessible with the
available energy of the reaction due to the large vibrational potential energy. The inaccessible
region becomes larger as R decreases and the rotational motions of product NO’s change into
bending and torsional vibrations in the intermediate. The “statistical distribution of the inter-
mediate” populates all the phase space points rounded by the dotted lines equally, while the
statistical distribution of the products such as PST distribution populates all the points within
the dashed lines.
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we consider that the success of the half-collision calculation still has its significance from the

following reason. The half-collision calculation starts with the structure which is rather similar

to the two independent NO fragments since the two NO’s are quite distant at 2.263 Å. Fur-

thermore, we found that only negligible amount of trajectories went back to shorter distance

than the initial value. Thus, the trajectories in the half-collision calculation experience rather

limited portion of the global PES than is imagined from the word “half,” although we used

this word for simplicity. Because there is only small anisotropy of the PES in the exit region

except for the hard-core repulsion of the nuclei, we consider that the results of the half-collision

calculation are not very sensitive to the details of the PES. Therefore, if the inaccuracy of

the exit region of the present PES is not so severe, the success of the half-collision calculation

indicates that the statistical assumption for the intermediate represent the real system to some

extent.

As stated in Sec. 2.4.2, the near-statistical distribution with the sharp decrease of the

high-j′ populations can be explained by the balance between the distribution at the ONNO

intermediate and the interaction in the exit region of the PES. Since no deep well exists in the

PES of this reaction, it is plausible that the reaction intermediate does not have the completely

statistical distribution. Although the full-collision calculation hardly reproduced the observed

distributions, the calculated result indicates that the intermediate is biased toward the phase

space points producing high-j′ products. This trend is qualitatively consistent with the bias to

make the half-collision result closer to the experimental one. Therefore, we suggest that the real

dynamics of this reaction consists of the following two factors: (i) an ONNO intermediate with

near-statistical distribution a little biased toward the phase space points correlating with high-j′

products; (ii) the rotation-translation interaction in the exit region similar to the present PES,

which makes this near-statistical intermediate distribution correspond to the experimentally

observed high-j′ depressed distribution of the products.

The occurrence of the near-statistical distribution in this highly exothermic reaction with-

out a stable intermediate is not expected in the traditional understanding of gas-phase chemical

reaction dynamics. As an important factor which causes the considerable energy randomization

in the ONNO intermediate, Akagi et al.58 suggested mass effects. According to their discussions,

the presence of four heavy atoms in the system provides low frequency vibrations to increase

the state density and also causes large momentum coupling among the local vibrational modes.

These effects seem to occur even in the full-collision calculation on the current PES since the

calculated vibrational and rotational state distributions of new and old NO’s are very similar.

However, the discrepancy between the full-collision calculation and experimental observation
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should be attributed to the defect of the current PES since the full-collision calculation al-

ready includes the mass effects. It is found that the vibrational distribution obtained by the

full-collision calculation is less excited than the experimentally observed one,18 in contrast to

the overestimate of the rotational excitation. We therefore consider that poorly reproduced

couplings between the stretching motions and bending/torsional motions of the ONNO system

are the possible defect of the current PES.

In closing this section, it should be emphasized that the comparison between the half-

collision and the full-collision calculations is very helpful to deepen the understanding of what

takes place on a PES during the reaction. This approach will be promising when a more

accurate PES reproducing the product state distribution of this reaction is obtained.

2.5 SUMMARY AND CONCLUSIONS

We have determined the nascent product state distributions of NO(X 2Π, v′=0–2; j′) produced

from the reaction O(1D)+N2O up to j′ ≈ 100 where the distribution decayed under the noise

level and no significant populations were found in higher rotational levels. All the rotational

state distributions in these vibrational levels are similar and near statistical. However, the

populations in high-j′ levels decreased more rapidly than PST prediction. This behavior can

be understood in view of the rotation-translation interaction in the exit region of the PES.

The depression of the high-j′ population was reproduced in half-collision QCT calculations

with the assumption of statistical distribution at the intermediate. We concluded therefore

that near-statistical distribution a little biased toward the high-j′ products is generated at

the intermediate and then this distribution is propagated to yield high-j′ depressed product

distribution due to the exit region interaction.
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Chapter 3

Quasiclassical trajectory study of
O(1D) + N2O → NO + NO:
Classification of reaction paths and
vibrational distribution

3.1 INTRODUCTION

The nascent state distribution of reaction products is the major experimental information

on reaction dynamics. Until today it has been generally believed6 that the product state

distribution is closely related to the stability of the reaction intermediate, that is, the depth of

the well on the potential energy surface (PES) of the system. If the PES possesses a deep well,

the system is expected to be trapped in it for sufficiently long period which enables energy

randomization, resulting in a statistical distribution of the products. On the other hand, if

there is no significant well on the PES, the lifetime of the intermediate is likely to be short and

the energy is distributed in only a part of the rovibrational modes of the products.

However, contradictory experimental results17,18 were found for the reaction of O(1D) with

N2O:

O(1D) + N2O → NO + NO ∆H◦
f (0) = −341 kJ/mol, (3.1)

O(1D) + N2O → N2 + O2 ∆H◦
f (0) = −520 kJ/mol. (3.2)

Many experimental studies13–22 have been done by measuring product state distributions and

vector properties for channel (3.1). The two NO products should be distinguished from dy-

namical viewpoint. Hereafter we use prime symbols for this purpose and express the reaction

as follows:

O(1D) + NN′O′ → NO + N′O′. (3.3)
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The newly formed NO originating from O(1D) is called a “new” NO and the N′O′ which

already exists in the reactant N2O is called an “old” NO. Akagi et al.17,18 distinguished these

two kinds of NO by using isotopically labeled 18O(1D), and measured the individual vibrational

state distributions for v′ ≤ 17. The sum of the distribution of the new and old NO products

decreased monotonically as the vibrational quantum number increased and was very close to the

statistical distribution up to v′ ≈ 10 and became smaller than the statistical one for higher v′.

The statistical nature of the vibrational distribution was further confirmed by the measurement

with FTIR spectrometer. 16,21 Furthermore, although the vibrational distribution of the new

NO is more excited than that of the old NO, the populations of both types of the products in

each vibrational level are not significantly different.17,18 This nearly equal energy partitioning

between the two kinds of NO is surprising because neither experiment23,24 nor calculation25–29

has found any deeper well for this reaction than the cis-planar NO dimer, whose binding

energy 8.3 kJ/mol24 relative to NO + NO is very small compared to the exothermicity of 341

kJ/mol. This result forms a sharp contrast to the O(1D) + H2O reaction, whose two types

of OH products show entirely different vibrational distributions30,31 although the reaction is

considered to proceed with stable H2O2 intermediate.32

In theoretical works, González et al.26 have performed high-level ab initio calculations at

the stationary points for the O(1D) + N2O reaction and obtained the rate constants using tran-

sition state theory and quasiclassical trajectory (QCT) calculation on a fitted pseudotriatomic

London–Eyring–Polanyi–Sato surface. Although they found relatively good agreement with

the experimental results in the rate constants and branching ratios, their ab initio calculation

was limited to the neighborhoods of the stationary points and was not adequate for dynamical

studies on global PES. Takayanagi et al.27–29 constructed a global PES by calculating ab initio

energies at about 10,000 grid points of planar configuration and fitted them to an analyti-

cal form. Using this 1A′ ground surface, they performed QCT calculation with zero impact

parameter29 and quantum calculations.28,34 They found qualitative agreement with the exper-

imental results on vibrational distribution and branching ratio. They also pointed out the

existence of “scrambling” process:

O(1D) + NN′O′ → NO′ + N′O, (3.4)

whose contribution was smaller than that of the normal NO channel (3.3) but not negligi-

ble. Recently, the authors used this PES to calculate the product rotational distribution and

compared the results with experiment.22 To elucidate the dynamics, we carried out two types

of calculation, one of which utilized only exit region of the PES. Although we had relatively
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good agreement with experiment by this type of calculation, the calculation using the full PES

showed less satisfactory results.

In this chapter, our purpose is to clarify the detailed reaction mechanism based on the QCT

analyses. In Sec. 3.2, we construct a new global PES function and characterize it with the

minima and saddles. In Sec. 3.3, we perform the QCT calculations in order to investigate the

dynamical features. We show that the reaction dynamics is clearly dependent on the initial

condition and the reactive trajectories can be classified into four paths. One of the paths is

found to have long lifetime, being trapped in a newly found well, whereas the other paths

exhibit short lifetime. Contrary to the general notion, we find that the old NO vibration is

highly excited along the short-lifetime paths rather than the long-lifetime one. Finally, we

conclude in Sec. 3.4.

3.2 POTENTIAL ENERGY SURFACE

To construct the PES, we performed ab initio calculations for about 10,000 geometries in pla-

nar configuration. Here, we employed CASPT2(10e, 8o)/cc-pVDZ, which is the same level as

Takayanagi et al.27–29 We also note that they showed that calculation of this level provided rea-

sonable results.29,34 These calculated points were fitted to the analytical form given in Sec. 3.5.

In order to reduce fitting errors, we divided the configuration space into seven regions and

performed least-squares fitting procedure separately in each region. Thus the PES is expressed

in the following form with fitted potential functions Vi and weighting functions wi corresponding

to each region i.

V =

∑
i wiVi∑
i wi

. (3.5)

The functions Vi and wi are expressed in analytical forms with nuclear distances (R1, R2, R3,

R4, R5, R6)= (RNN′ , RNO, RN′O, RN′O′ , RNO′ , ROO′) shown in Fig. 3.1(a). Their detailed forms

are shown in Sec. 3.5. The functions for the products (NO + NO and O2 + N2) and reactant

[O(1D) + N2O] regions are same as the Takayanagi PES. The root mean square of the fitting

error is 4.096 kJ/mol and the maximum value of the error is 19.96 kJ/mol. In this chapter, we

used the MOLPRO program for all the ab inito calculations.75

The iterative interpolation method devised by Collins and co-workers76 might be helpful to

construct an ab initio PES with fewer data points for this system, especially in the construction

of non-planar PES. For instance, by utilizing their method, Castillo et al. constructed an
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(a)

(b)

Figure 3.1: Definitions of parameters used in this paper. (a) Nuclear distances
(R1, R2, R3, R4, R5, R6) = (RNN′ , RNO, RN′O, RN′O′ , RNO′ , ROO′). (b) Impact parameter b and
initial orientation angle ψ of N2O.
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ab initio PES for the H + N2O → OH + N2 reaction with only 1400 data points in the six-

dimensional space.77 For the title reaction system, however, we consider that the application

of this method would not reduce the required data points significantly in view of the following

two aspects. Firstly, the CASPT2 gradient and Hessian are difficult to calculate analytically.

In our experience, the interpolant moving least squares methods78 increases the number of

the required data points. Secondly, the large anharmonicity of the title reaction system also

increases the required data points. Namely, the system has a complicated undulating PES,

large exothermicity, and wide range of impact parameters leading to reactive collision, as seen

in the following.

The energy profile with stationary points of the new PES are schematically shown in Fig. 3.2.

The PES has several minima and saddle points rather than a single shallow well. The collinear

saddle (Is), Y-shaped minimum (Ym), and L-shaped saddle (Ls) are newly found in this work.

The imaginary mode at Is corresponds to the isomerization between two trans-shaped minima

(Tm):

O�N− N�O
®

O�
N− N�

O
(3.6)

These two configurations are energetically equivalent and therefore only one of them is shown

in Fig. 3.2, but they must be distinguished in configuration space. As will be shown later in

Sec. 3.3.3, trajectories go downhill along a bath mode direction of Is and then falls into one

of the trans minima following the reactive (imaginary) mode of Is. The Ym plays important

roles, as seen in Sec. 3.3. Particularly, the scrambling process occurs in the Ym well, which

can trap the trajectories for long time. From the additional ab initio calculations, we checked

that the Ym has the real frequency of the out-of-plane vibration mode. Thus, we can consider

that the Y-shaped minimum exists in the real O(1D) + N2O system. This structure might be

expected, by considering that the equilibrium geometry of NO3 molecule is D3h.
79 The electronic

wave functions of both can be described by an single Slater determinant, although Eisfeld and

Morokuma reveals that the insufficient dynamic and static correlations leads to the symmetry

breaking problem for NO3. It is worth noting that the previous density functional theory (DFT)

calculation of this system predicted that the Y-shaped structure is a transition state but not

minimum.80 This fact also shows that DFT level calculation is not appropriate for this system

as emphasized by González et al.26

Table 3.1 shows geometries and energies of stationary points found in our new PES with

those found by González et al.26 and experimental data.24,63,81 At these points, we also calculate
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Figure 3.2: Schematic representation of the stationary points and energy profile of our new
PES. Their names and geometries are shown in the insets.
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the vibrational frequency of the planar normal modes, which are summarized in Table 3.2. Here

we adopt the 14 and 16 AMU for the masses of nitrogen and oxygen, respectively, in order

to compare them with the results of the former works.26,81 The geometrical parameters and

normal mode frequencies of reactant [O(1D) + N2O] and products (NO + NO and O2 + N2)

are the same as Takayanagi PES29 and agree with those of the experiments. The stationary

points listed in Tables 3.1 and 3.2 can be considered to have large effects on dynamics, as

explained in Sec. 3.3.2 and 3.3.3. González et al. found more stationary points through larger

CASSCF(18,14) calculations,26 although we consider that their contribution to the dynamics is

minor to reproduce the product vibrational distribution. The trans-shaped minimum (Tm) and

saddle (Ts) points can be considered to correspond to “MIN B1” and “TS B1” of González et

al., respectively. Our geometries for these points are in good agreement with those of González

et al., while the energies are slightly lower. The normal mode frequencies are in qualitative

agreement, as seen in Table 3.2. The cis-shaped minimum (Cm) corresponds to “MIN D1” of

González et al. and experimentally found NO dimer.23,24,63,81 For this minimum point, we have

obtained better agreement with experiment than González et al. In particular, the RNN for our

PES is considerably (by 0.63 Å) closer to the experimental one than that for the González et

al.
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Table 3.1: Geometies and energies of stationary points. Results of higher level calculation in
Ref. 26 are shown in parentheses, when available. The available experimental data are shown
in brackets.

Stationary
point

RNN / Å RNO / Å ∠NNO / deg. Dihedral / deg. Energy /
kJ mol−1

Is 1.1409 1.2120,1.2120 180.0,180.0 180 -196
Tm 1.2597 1.1971,1.1971 141.4,141.4 180 -260

(1.2700)a (1.2099,1.2099)a (137.7,137.7)a (180)a (-277)ae

(-174)af

Ts 1.5015 1.1814,1.1814 127.9,127.9 180 -232
(1.4578)b (1.1892,1.1892)b (129.5,129.5)b (180)b (-258)be

(-167)bf

Ym 1.2977 2.2056,1.2817 31.0,117.5 180 -209
Ls 1.2407 1.4540,1.1679 87.7,179.3 180 -69
Cm 2.4376 1.1527,1.1527 94.3,94.3 0 -351

(3.0623)c (1.1603,1.1603)c (90.8,90.8)c (0)c (-345)ce

(-329)cf

[2.2630]d [1.1515,1.1515]d [97.2,97.2]d [0]d [-353]g

a MIN B1 of Ref. 26.
b TS B1 of Ref. 26.
c MIN D1 of Ref. 26.
d Experimental data taken from Ref. 63.
e CASPT2//CASSCF(18,14) level calculation of Ref. 26.
f CASSCF(18,14) level calculation of Ref. 26.
g Experimental data derived from Ref. 24 and Ref. 81.

3.3 QUASICLASSICAL TRAJECTORY ANALYSES

In QCT calculations, the classical equations of motion for the O(1D) + N2O collision were

numerically integrated by fourth-order Runge-Kutta method with variable time step.62 Energy

conservation was confirmed up to 10 cm−1. Since the ab initio PES is only available for

planar configurations, the dynamics calculations were confined in two-dimensional collision

plane. However, we can consider that this planar dynamics contains the essential features of

this reaction because of the good agreement with the experimental results as we will see in

Sec. 3.3.1. To compare our results with the experiments of Akagi et al.,17,18 we employed the
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Table 3.2: Harmonic vibrational frequencies (in cm−1) of in-plane normal modes at the sta-
tionary points. The symmetries of the vibrational modes are given in parentheses. Results of
higher level calculation in Ref. 26 are shown in parentheses, when available. The available
experimental data are shown in brackets.

Stationary point ω1 ω2 ω3 ω4 ω5

Is 688.6i (πg) 2658.0 (σ+
g ) 1258.2 (σ+

u ) 906.4 (σ+
g ) 316.2 (πu)

Tm 2080.7 (ag) 1486.9 (bu) 858.1 (ag) 622.2 (ag) 485.3 (bu)
(1672.4)a (1520.2)a (810.2)a (496.6)a (401.8)a

Ts 750.9i (ag) 1611.2 (ag) 1538.1 (bu) 442.8 (ag) 415.8 (bu)
(561.4i)b (1610.5)b (1604.7)b (398.4)b (611.1)b

Ym 1907.7 (a1) 1465.2 (b2) 1324.9 (a1) 692.6 (a1) 254.1 (b2)
Ls 661.0i (a′) 2223.7 (a′) 1195.4 (a′) 689.0 (a′) 368.8 (a′)
Cm 1877.5 (a1) 1862.8 (b1) 460.7 (b1) 214.3 (a1) 156.1 (a1)

(1890.5)c (1886.2)c (113.2)c (85.0)c (31.2)c

[1863.4]d [1776.3]d [242.9]d [299.3]d [175.4]d

a MIN B1 of Ref. 26.
b TS B1 of Ref. 26.
c MIN D1 of Ref. 26.
d Experimental data taken from Ref. 81.

nuclear masses of 18O +14 N14N16O and the collision energy was fixed to 20.9 kJ/mol, which

corresponds to the mean value under their experimental condition.

3.3.1 Product vibrational distribution

Figure 3.3(a) shows the calculated product vibrational distributions for N18O (new NO) and

N16O (old NO) with the experimental ones of Akagi et al.18 and Hancock et al.21 The results of

Hancock et al., which do not distinguish the two NO’s, appear mainly in the region between the

two distributions of Akagi et al. In QCT calculation, we sampled about 200, 000 trajectories

whose initial conditions are chosen according to the classical Boltzmann distribution of N2O

rotation at 300 K and the zero-point vibrational energy of the present PES. As mentioned above,

there are two channels to NO+NO: the normal product channel (3.3) and the scrambled channel

(3.4). The experiment of Akagi et al.18 distinguished the two O atoms by using isotopically

labeled 18O(1D) but not the N atoms. Thus, in order to make comparison with their experiment,

we show in Fig. 3.3(a) the sum of the population of NO and N′O by downward open triangles,

and that of N′O′ and NO′ by upward open triangles. The former corresponds to “new NO”

of Ref. 18 and the latter to “old NO.” The computational and experimental distributions

agree well on their qualitative features in that both distributions decrease monotonically as
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increasing product vibrational energy and the difference between the vibrational distributions

of N18O and N16O is small, although the QCT underestimates vibrational excitation slightly.

Taking into account the fact that our QCT calculations do not include the out-of-plane motion,

the agreement between the measured and calculated results is so good that we can consider that

our planar model includes the essential features of this reaction. We also calculated the product

vibrational distributions for each channel. The results are shown in Fig. 3.3(b). The closed

triangles show the vibrational distribution of the normal product channel (3.3), with downward

triangles depicting “new NO”(NO) and upward ones “old NO”(N′O′). The gray triangles show

the distribution of the scrambled channel (3.4), with downward triangles depicting N′O and

upward ones NO′. The product vibrational distributions for the normal product channel are

very similar to the total ones, while the contributions of the scrambled channel is minor, but

not negligible.

For further investigation of the dynamics, we first examined the effect of initial rovibrational

motion of the reactant N2O, by performing additional QCT calculations where N2O is initially

fixed to its equilibrium configuration with zero rovibrational momenta. Fig. 3.3(c) shows the

resulting product vibrational distributions. Comparing Fig. 3.3(c) with (b), we can see that

the vibrational excitation is diminished probably due to the smaller amount of total energy.

However, the qualitative features like the similarity between the two NO’s are well conserved.

Therefore we can consider that the effect of initial rovibrational motion is minor and most of the

important dynamical features of this system are still contained in the dynamics with the zero

rovibrational energy of initial N2O. The reason of this is likely to be the large exothermicity of

this reaction. The sum of zero-point energy and 300 K rotational energy of N2O amounts to

ca. 2000 cm−1, which is less than 10 % of the exothermicity and therefore is not likely to affect

the dynamics. This result allows us to investigate the dynamics with fixed initial condition of

N2O.

This simplification enables us to easily elucidate the initial condition dependence of the

dynamics, because now we can specify the initial condition with only two parameters: impact

parameter b and initial orientation angle ψ of N2O as defined in Fig. 3.1(b). In Sec. 3.3.2 we

will examine the reaction dynamics by analyzing the dependence on these two parameters.

3.3.2 Initial condition dependence of dynamics

We have seen in Sec. 3.3.1 that the initial condition of this reaction system can be specified

with only two parameters. Here we analyze the dynamics by plotting various properties of

trajectories on two-dimensional space of initial conditions parameterized by b and ψ. First, the
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(a) (b)

(c)

Figure 3.3: Vibrational distribution NO produced from O(1D) + N2O obtained from experi-
ment and calculation. (a) Comparison of the QCT and experimental results. Open triangles
depict the results of QCT calculation. Closed triangles show experimental results of Akagi
et al. 18 Gray circles show the results of Hancock et al. 21 (b) Results of QCT calculation
of this work. Initial rovibrational state of N2O is sampled by thermal rotational distribu-
tion and zero-point vibrational energy. Closed triangles denote the vibrational distribution of
O(1D) + NN′O′ → NO + N′O′ reaction channel. Gray triangles show those of N′O + NO′ chan-
nel. Sum of these two channels is shown by open triangles. (c) Same as (b) except that N2O is
initially fixed to its equilibrium geometry with zero rovibrational energy.
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final product channels of trajectories are plotted in Fig. 3.4. For each combination of (b, ψ), the

final product channel of the trajectories starting with that initial condition is shown by colors.

White region means that no reaction occurs for that (b, ψ). The initial conditions leading to

O2 + N2 channel are localized in the region with relatively large |ψ|, which corresponds to the

approach of O(1D) to the O-end side of N2O. For those leading to NO products, we need to

distinguish the normal (NO + N′O′) and the scrambled (NO′ + N′O) channels. The former is

shown by yellow color and the latter by blue color in Fig. 3.4. In the figure, some regions are

covered only by yellow color (NO + N′O′), while other regions have a mosaic pattern with yellow

and blue (NO′ + N′O). The other channels, atom exchange reactions like NN′O + O′, are minor

and almost imperceptible in the figure. Although some parts of the initial condition space have

mosaic pattern for the final channel, the mosaic pattern is localized in certain regions. The

initial conditions leading to O2 + N2 and NO + N′O′ channel are also localized. Thus we can

state that this system has a kind of regularity, in that the initial condition space may be divided

into some regions which have different dynamical properties.

To obtain further insight into the dynamics, we calculated the following two quantities

for each trajectory. One is the lifetime of the reaction intermediate. To estimate the life-

time, we needed to define the regions of “reactant,” “product,” and “reaction intermediate.”

By using the nuclear distances, geometries with RON, RON′ , ROO′ > 2 Å were regarded as

“reactant”(O + NN′O′), those with RNO′ , RON′ , RNN′ , ROO′ > 2.5 Å as “normal NO + N′O′

product”, those with RNO, RO′N′ , RNN′ , ROO′ > 2.5 Å as “scrambled NO′ + N′O product,” and

those with RON, RO′N′ , RO′N, RON′ > 2 Å as “O2 + N2 product.” These values were determined

by inspecting the PES and specifying the region where the interaction of the two molecules is

negligible. If the system is in none of these four regions, it was regarded as “intermediate,” and

its “lifetime” τ is defined as the length of time during which the system has “intermediate”

geometry. The “lifetime” τ thus defined can be interpreted as the “time delay” between the

beginning of the interaction (entrance into the “intermediate” region) and the formation of the

product (exit from the “intermediate” region). Mart́ınez et al.82 called a similar quantity “col-

lision time,” although they defined the intermediate region by using center-of-mass distances,

not nuclear distances. With all this ambiguity of terminology, we will use the word “lifetime”

for this quantity τ in all what follows, because we regard the word suitable for describing such

concepts as “long-lived intermediate,” etc. The other quantity is an abstract “distance” from

the stationary points (shown in Fig. 3.2), which are meant to estimate how close to these points

the system comes in the course of reaction. Here we use the nuclear distances R1, . . . , R6 and
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Figure 3.4: Final product channel of the reaction is plotted against the initial conditions b and ψ
(see Fig. 3.1(b) for definition). Magenta, yellow, and blue colors mean that a trajectory starting
with that initial condition leads to product channel O2 + N2, NO + N′O′, and N′O + NO′,
respectively.
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define an abstract distance D as

D
def
=

[
6∑

i=1

(
Ri −R0

i

)2

]1/2

, (3.7)

where R0
i is the value of the nuclear distances at the stationary points. Given one trajectory

and one of the stationary points, we calculated the distance D for each time and its minimum

value was taken to be plotted in the followings. Although the geometry of the system has

only five degrees of freedom in the planar model, we use all six internuclear distances in the

definition (3.7) of D, in order to give equal weight to all four atoms and to distinguish cis and

trans geometries.

Figure 3.5 shows the initial condition dependence of the lifetime τ . In this figure we notice

that the region with large τ value, which is shown in dark colors, and that with small value,

which is shown by light colors, are clearly divided in the b-ψ plane. Figure 3.6(a) shows the

initial condition dependence of the minimum value of distance D from the Y-shaped minimum

point. Hereafter we refer to this value as Dmin(Ym). In this figure again, we can see clear

distinction of the region with large Dmin(Ym) value, which is shown in light colors and that

with small value, which is shown in dark colors. Distinction of the trajectories with large and

small Dmin(Ym) is clear also in the histogram plot of its distribution shown in Fig. 3.6(b).

There we can see two components of the distribution with a gap at 0.8 Å.

3.3.3 Classification of trajectories and analysis of dynamics

The peculiar dependence on the initial condition shown in Sec. 3.3.2 implies that there are

several classes of trajectories which have different reaction mechanisms. Thus we suggest here

the following classification of the trajectories leading to NO products. By using ψ,Dmin(Ym),

and τ introduced above and referring to Figs. 3.5 and 3.6, we have set up four groups with the

definitions listed below:

Path 1 :Dmin(Ym) > 0.8 Å, −80◦ < ψ < 20◦,

Path 2 :Dmin(Ym) > 0.8 Å, ψ < −80◦ or ψ > 20◦,

Path 3 :Dmin(Ym) < 0.8 Å, τ > 160 fs,

Path 4 :Dmin(Ym) < 0.8 Å, τ < 160 fs. (3.8)

Distribution of these paths is shown in Fig. 3.7, where the colors indicate which path the initial

condition belongs to. As can be predicted from the plots of Dmin(Ym) and τ , there is a clear
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Figure 3.5: The lifetimes of the reaction intermediate (see text for definition) are plotted against
the initial condition. Light and dark colors denote short and long lifetime, respectively.
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(a)

(b)

Figure 3.6: Initial condition dependence and the distribution of the minimum distance
Dmin(Ym) from the Y-shaped minimum point. (a) Value of Dmin(Ym) is plotted against the
initial condition. Light colors denote larger value and dark colors denote smaller value. (b)
Histogram plot of the distribution of Dmin(Ym). Note that there are two components with a
gap at 0.8 Å.
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distinction of these paths without any mosaic pattern. Trajectories of Path 3 and 4 come close

to the Y-shaped minimum point while those of Path 1 and 2 do not. This distinction is well

justified since there is a clear gap in the distribution of Dmin(Ym), as seen in Fig. 3.6(b). The

distinction of Path 1 and 2 can also be clearly seen in Fig. 3.7, because ψ for these paths are well

separate from each other. On the contrary, the distinction of Path 3 and 4 might be artificial,

since the distribution of the lifetime has no gap at τ = 160 fs. Both of these paths go through

the Y-shaped well and the regions of these paths in the initial condition space are next to each

other. Yet, we can see that the short-lifetime component is clearly localized in a certain region

of the initial condition space in Fig. 3.5, and this short-lifetime component yields only normal

product channel (NO + N′O′) as can be seen in Fig. 3.4. Therefore we decided to analyze the

short-lifetime component (Path 4) separately from the long-lifetime one.

As tabulated in Table 3.3, the Path 3 have the largest contribution of 43 %, which is 4

times as large as the contribution of Path 4. The contributions of Path 1 and 2 are about 20 %,

respectively. Then, all four paths have non-negligible amount of contribution to the reaction.

In what follows,we characterize these paths in more detail.

51



Figure 3.7: Classification of the reactive trajectories. Yellow, orange, green, and red colors
show those regions where the initial conditions belong to Path 1, 2, 3, and 4, respectively. See
text for the details of the definition for each path.
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Table 3.3: Contribution, mean vibrational energies, and lifetime of each path.

Path 1 Path 2 Path 3 Path 4 Total
Contribution / % 24 23 43 10 100
〈Evib〉 / cm−1

NO 4600 2900 3200 4300 3600
3200 (7400a)

N′O — — 1500 — 1500
N′O′ 6400 2100 1400 900 3000

3000 (3800a)
NO′ — — 3000 — 3000

〈τ〉 / fs 80 140 1100 100

a Calculated from experimental data of Ref. 18.

Path 1: Direct mechanism through collinear approach to trans min-
imum

As can be seen from the definition (3.8), Path 1 does not approach the Y-shaped minimum and

has initial orientation of almost collinear O-N-N′-O′ structure. An example of the trajectory

of this path is shown as snapshot pictures in Fig. 3.8. The initial conditions were taken to be

(b, ψ) = (0 Å, 5◦). The figure shows that the system has indeed collinear approach and then goes

to the trans-type structures associated with Tm. Figure 3.12(a) shows the lifetime distribution

of Path 1. There we can see that the trans-shaped intermediate has a short lifetime probably

because of the small height of trans-shaped saddle. Thus, reaction of Path 1 proceeds through

almost “direct” mechanism with the lifetime less than 100 fs for most of the trajectories.

To investigate the contribution of this path to the vibrational distribution, we have sepa-

rately calculate the vibrational distribution of only Path 1. A considerable excitation of old NO

is observed in the result shown in Fig. 3.13(a). This indicates that large amount of energy flow

from new NO to old NO has occurred in spite of the short lifetime. This result is contradictory

to the conventional understanding of the reaction dynamics and it is implied that there is a

need to consider strong coupling among the vibrational modes within ONNO intermediate,

especially between the two stretching vibrations of NO bonds.
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Path 2: Direct mechanism through bent approach to trans minimum

Trajectories of Path 2 as well as Path 1 do not approach the Y-shaped minimum. The difference

from Path 1 is the direction of approach. Figure 3.9 shows an example of trajectory whose initial

conditions are (b, ψ) = (0 Å,−90◦). There we can see that the O atom approaches the N-end

of the NN′O′ through bent geometry. The system then takes L-shaped structure and bending

motions are excited, causing cis-trans isomerization. The intermediate dissociates immediately

to the products, as we have seen for Path 1.

The lifetime for Path 2, shown in Fig. 3.12(b) is a little longer than that for Path 1, but is still

short (50-200 fs). In the vibrational distribution shown in Fig. 3.13(b), old NO is considerably

excited, though the amount of excitation is a little less than that of Path 1. Broadly, Path

2 has a similar property to Path 1, and therefore indicates strong vibrational coupling in the

intermediate stage of this reaction. A little less amount of old NO excitation of Path 2 than

Path 1 implies somewhat weaker coupling in the bent structure than in the collinear one.

Path 3: Complex mechanism trapped in Y-shaped minimum

Figure 3.10 shows an example trajectory of Path 3 with (b, ψ) = (0 Å,−75◦). As can be

seen from the definition (3.8), trajectories of this path form a long-lived Y-shaped complex.

Figure 3.12(c) shows that the intermediate has long lifetime extending to ps order. This long

lifetime is probably due to the large barrier height at the L-shaped saddle point relative to

the Y-shaped minimum. In the geometry of the Y-shaped minimum shown in Fig. 3.2, the

two O atoms are equivalent except for their masses. Therefore, once the system is equilibrated

after being trapped in the well, it has almost equal probability to dissociate into both of

NO + N′O′ and N′O + NO′ channels, because the isotopic labeling is not likely to affect the

dynamics considerably. After passing over the barrier at the L-shaped saddle point, the system

dissociates immediately to the product [Fig. 3.10(f)-(h)].

Figure 3.13(c) shows vibrational distribution of Path 3. The two product channels (NO + N′O′

and NO′ + N′O) have similar branching ratio and distribution. This is because of the equiv-

alence of the two O atoms in the Y-shaped complex as was noted above. In each of the two

channels, the two NO products have quite different vibrational energies. To be more precise,

NO has larger vibrational energy than N′O′ in the normal product (NO + N′O′) channel, and

NO′ has larger energy than N′O in the scrambled (NO′ + N′O) channel. In both channels, the

product containing the N atom has larger vibrational energy than that containing the N′ atom.

It should also be noted that the vibrational distributions of N-containing products (NO and
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NO′) are very close, and those of N′-containing products (N′O′ and N′O) are also close. For

the total distributions of N18O and N16O, the difference between N-containing products and

N′-containing products are canceled out through summing up the distributions of NO and N′O,

and those of N′O′ and NO′, as shown by green symbols in Fig. 3.13(c).

The difference in the vibrational distribution of the two NO molecules produced in the same

product channel in spite of the long lifetime can be understood by noting the high barrier at

the L-shaped saddle. This saddle point is 0.71 eV below the reactant, and this amount of

energy is likely to be equilibrated after a long lifetime in the Y-shaped reaction intermediate.

However, almost 80 % of the total exothermicity is released after the system surmounts the

barrier, Ls. As we have seen in Fig. 3.10, the system spends only short time in the exit region

before dissociating to the product, and therefore the exothermicity released in the exit region

of the PES has no reason to be equilibrated. At the L-shaped saddle, the NO (or NO′) bond

length is longer than the equilibrium distance (1.15 Å) of isolated NO molecule, while the N′O′

(or N′O) bond has almost the same length as isolated NO. Therefore, the product molecule

containing the N atom is likely to be vibrationally excited more than that containing the N′

atom. This explains the trend seen in Fig. 3.13(c).

Path 4: Direct mechanism through Y-shaped minimum

The snapshots of an example trajectory of Path 4 shown in Fig. 3.11 look much similar to those

of Path 3, because it also goes through the Y-shaped well, surmounts the L-shaped saddle and

then dissociates to the products. The marked difference from Path 3 is short lifetime, which can

be seen from the definition (3.8) and Fig. 3.12(d). In spite of the large depth of the Y-shaped

well, the system immediately reaches the L-shaped saddle point, after the O atom bounces back

at the N′ atom. This path yields only normal product (NO + N′O′) and the resulting vibrational

distribution [Fig. 3.13(d)] shows the largest difference between the two NO products in the four

paths.

It is worth noting here that a deep well does not always ensure a long lifetime, nor yet

energy randomization. Similar situation was also found in O(1D) + HCl reaction.82 We should

also note that this short-lifetime component of Y-shaped path is localized in the initial condition

space (see Figs. 3.5 and 3.7). This implies that some sort of regular behavior appears in spite

of the large energy above the minimum point.
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(a) 200 fs

(b) 284 fs (c) 296 fs

(d) 316 fs (e) 344 fs

Figure 3.8: Snapshots of a trajectory which belongs to Path 1. The zero of the time is arbitrary.
The initial condition is set to be (b, ψ) = (0 Å, 5◦). The O atom makes a collinear approach
to the N-end of the N2O (a, b). Then the system takes a trans-type structure (c) and directly
dissociates to the products (d, e).
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(a) 232 fs (b) 308 fs

(c) 332 fs (d) 364 fs

(e) 380 fs (f) 400 fs

(g) 416 fs

Figure 3.9: Snapshots of a trajectory which belongs to Path 2. The initial condition is set to
be (b, ψ) = (0 Å,−90◦). The O atom approaches the N-end of the NN′O′ making L-shaped
structure (a-c). Then the O atom rotates around the N atom, causing cis-trans isomerization
(d, e), and directly dissociates to the products (f, g).
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(a) 224 fs (b) 304 fs

(c) 328 fs (d) 344 fs

(e) 1044 fs (f) 1080 fs

(g) 1100 fs (h) 1116 fs

Figure 3.10: Snapshots of a trajectory which belongs to Path 3. The initial condition is set to
be (b, ψ) = (0 Å,−75◦). The O atom attacks the central N′ atom of the NN′O′ (a-c). Then
the system is trapped in Y-shaped structure (d). After a long period about 1 ps, the central
N′ atom inserts itself between N and O atom (e) and the system goes through the L-shaped
saddle point (f). Then it immediately dissociates to the products (g, h).
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(a) 232 fs

(b) 308 fs (c) 344 fs

(d) 368 fs (e) 396 fs

Figure 3.11: Snapshots of a trajectory which belongs to Path 4. The initial condition is set
to be (b, ψ) = (0 Å,−45◦). The O atom attacks the central N′ atom of the NN′O′ and forms
Y-shaped structure (a, b). Without being trapped for a long time, the O atom bounces back at
the N′ atom and L-shaped structure appears immediately (c, d), which then directly dissociates
to the products (e).
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3.3.4 Efficient energy exchange in the direct paths

In Sec. 3.3.1, we showed that our planar dynamics on the new PES reproduces the experimental

results qualitatively. The QCT analyses showed that the trajectories of this reaction can be

classified into four paths, which we named Path 1, 2, 3, and 4. The largest contribution

comes from Path 3, in which the trajectories are trapped for long time in the Y-shaped well.

However, Path 1 and 2, which have short lifetimes, are not negligible. In these paths, the N′O′

vibration are excited larger than that in Path 3, although the trajectories have short lifetimes

(see Table 3.3). In order to characterize the energy distribution more qualitatively, we refer

here to the ratio of the vibrational energies of the two NO products. In Path 3, NO′ has 2.0

times larger energy than N′O in the scrambled channel (N′O + NO′), and NO has 2.3 times

larger vibrational energy than N′O′ in the normal product (NO + N′O′) channel. For Paths 1

and 2, which only form NO + N′O′ channel, the ratio takes much lower values of 0.7 and 1.4,

respectively. This means that Paths 1 and 2 have larger excitation of the old NO in spite of

their direct mechanisms.

One possible reason for the excitation of the old NO in these direct paths is the change of the

equilibrium nuclear distance along the reaction path. If the N′O′ bond length changes largely

along the reaction path, the force is exerted in the direction of N′O′ bond during the reaction,

resulting in excitation of N′O′ vibration. From Fig. 3.2, we can see that the equilibrium length

of N′O′ changes slightly in going through the reactants, trans-type geometries (Tm and Ts)

and the products. However, we consider that it does not fully explain the similar amount of

excitation of NO and N′O′, because the change of the N′O′ bond length is rather small compared

to that of the new NO. Therefore, we must consider the coupled motion of the NO and N′O′

stretching modes, rather than independent excitation of these two which accidentally have the

similar amount.

There are two possible scenarios for the coupled motion of the two NO stretching modes.

First one is that fully chaotic motion is developed in a short period and results in near-statistical

distribution of the product. Second possibility is that the motion is a regular type, but this

regular motion has similar projections onto both of the two NO vibrations. This regular motion

might be something like, for example, symmetric or antisymmetric stretching motion of two

NO bonds, in which the two bonds vibrate with the same amplitude. At present, we consider

that the latter is more probable, because we have found that the vibrational distribution of

Path 1 has a non-Boltzmann type shape peaked at v = 2-3 [see Fig. 3.13(a)], which indicates

incomplete randomization. For validating either of these two scenarios, it is necessary to further

investigate the motion of the direct paths in terms of the geometrical structure of the phase

space. Analyses in this direction will be shown in Chap. 4.
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(a) Path 1 (b) Path 2

(c) Path 3 (d) Path 4

Figure 3.12: Lifetime distribution of each path. Note that the scale of the horizontal axis is
different for Path 3, reflecting its long lifetime.
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(a) Path 1 (b) Path 2

(c) Path 3 (d) Path 4

Figure 3.13: Product vibrational state distribution of each path. For Paths 1,2, and 4, only the
sum of two channels is shown, because production of N′O + NO′ are negligible for these paths.
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3.4 SUMMARY AND CONCLUSIONS

We have created a new PES for the reaction of O(1D) + N2O, using parts of the former surface

of Takayanagi et al.,27–29 and performed QCT calculation on the PES. The QCT calculation

reproduced semi-quantitatively the experimental vibrational distribution, 17,18,21 especially the

similar excitation of the two NO products.

It is newly found that the trajectories of this reaction can be classified into four paths,

and the extent and mechanism of the vibrational excitation of the “old NO” are different for

these paths. In Path 1 and 2, the reaction proceeds through trans-type geometry with direct

mechanism. The difference of these two is the direction of approach of the O(1D) atom. In

Path 1, the reactants approach in collinear geometry, while in Path 2 they approach through

L-shaped geometry. In spite of the short lifetime, these two paths produce similar excitation of

NO and N′O′. In Path 3 and 4, the system passes by the Y-shaped minimum structure, which

is newly found in this work. Path 3 has a long lifetime in the Y-shaped well and produces

almost equal amount of normal (NO + N′O′) and scrambled (NO′ + N′O) products. In spite of

the long lifetime, the difference in vibrational energy of the two NO products is relatively large,

because most of the exothermicity is released after the barrier. Path 4 exhibits a short lifetime

in spite of the deep Y-shaped well, and yields only normal (NO + N′O′) channel products. This

path has the largest difference in the distribution of the two NO’s. Trajectories belonging to

each of these four paths are localized in regularly shaped regions in the initial condition space.

Especially, the regularity of the region of Path 4 implies that a deep well does not always ensure

chaotic behavior.

The present work is the first recognition of the existence of more than one mechanism for

this reaction. Although our calculation is an approximation with reduced dimension, it is

sensible to consider that full-dimensional calculation will also exhibit several different paths.

Thus, for true understanding of the dynamics of this system, separate analysis on each of the

paths is inevitable. We have also shown for the first time the existence of the short lifetime

paths (Path 1 and 2) with unexpectedly efficient energy exchange, whereas a short lifetime

for this reaction has been only “expected” from the absence of low-energy intermediate. For

further understanding of the mechanism for this efficient energy transfer, calculations like those

dealing with mass effect would be desirable in the future. Also, full-dimensional calculation,

although difficult, would be necessary for full understanding of the dynamics.
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3.5 APPENDIX:Analytical expression of the potential

energy surface

With the nuclear distances (R1, R2, R3, R4, R5, R6) defined in Fig. 3.1(a), the potential V (R1,R2,

R3,R4,R5,R6) is expressed in the following form:

V (R1, R2, R3, R4, R5, R6) =
w0V0 +

∑6
i=1

[
wiVi + w̃iṼi

]

w0 +
∑6

i=1 [wi + w̃i]
, (3.9)

where V0 = V0(R1, R2, R3, R4, R5, R6) is Takayanagi PES,27–29 Vi = Vi(R1, R2, R3, R4, R5, R6) for

i = 1, . . . , 6 are potential functions newly constructed in this work, wi =wi(R1,R2,R3,R4,R5,R6)

for i = 0, 1, . . . , 6 are weighting functions, and tildes denote the permutation of nuclei:

w̃i(R1, R2, R3, R4, R5, R6) = wi(R1, R5, R4, R3, R2, R6), (3.10)

Ṽi(R1, R2, R3, R4, R5, R6) = Vi(R1, R5, R4, R3, R2, R6). (3.11)

Takayanagi PES V0 is symmetric with respect to the four nuclear permutations:

V0(R1, R2, R3, R4, R5, R6) = V0(R1, R4, R5, R2, R3, R6)

=V0(R1, R5, R4, R3, R2, R6) = V0(R1, R3, R2, R5, R4, R6), (3.12)

and other functions Vi (i = 1, . . . , 6) are symmetric only under the exchange of NO and N′O′:

Vi(R1, R2, R3, R4, R5, R6) = Vi(R1, R4, R5, R2, R3, R6). (3.13)

To define the weighting functions, we first introduce the following function S:

S(x; a, b)
def
=

e1(x; a, b)

e1(x; a, b) + e2(x; a, b)
(a < b), (3.14)

e1(x; a, b)
def
=

{
0 (x ≤ a)
exp

(− b−a
x−a

)
(x > a)

, (3.15)

e2(x; a, b)
def
=

{
exp

(− b−a
b−x

)
(x < b)

0 (x ≥ b)
. (3.16)

This function S takes the value 0 for x < a and 1 for x > b. By this function, the weighting

functions are defined as follows:

w1 =S(R2; 0.7, 0.8)
{
1− S(R2; 1.5, 1.7)

}
S(R4; 0.7, 0.8)

{
1− S(R4; 1.5, 1.7)

}

S(R1; 0.7, 0.8)
{
1− S(R1; 7.0, 7.5)

}
S(R6; 0.7, 0.8)

{
1− S(R6; 7.0, 7.5)

}
{
1− S(R1; 1.4, 1.5)

}
S(R3; 1.4, 1.6)S(R5; 1.4, 1.6)S(R6; 1.6, 1.7)S(R3 + R5; 3.6, 3.65)[

1− {
1− S(R3; 2.3, 2.5)S(R5; 1.4, 1.6)

}{
1− S(R5; 2.3, 2.5)S(R3; 1.4, 1.6)

}

{
1− S(R1 + R6; 3.8, 4.0)

}]

S(R3 − 6R2;−7.3,−7.1)S(R5 − 6R4;−7.3,−7.1)
{
1− S(R2 + R4, 2.8, 2.9)

}
, (3.17)
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w2 =S(R2; 0.7, 0.8)
{
1− S(R2; 1.5, 1.7)

}
S(R4; 0.7, 0.8)

{
1− S(R4; 1.5, 1.7)

}

S(R1; 0.7, 0.8)
{
1− S(R1; 7.0, 7.5)

}
S(R6; 0.7, 0.8)

{
1− S(R6; 7.0, 7.5)

}

S(R3 + R5; 3.4, 4.0)S(R1 + R6; 3.0, 3.2)S(R1; 1.6, 1.7)S(R6; 1.6, 1.7)[
1− {

1− (1− S(R3; 1.7, 1.85)) S(R3; 1.05, 1.15)
}

{
1− (1− S(R5; 1.7, 1.85)) S(R5; 1.05, 1.15)

}]
, (3.18)

w3 =S(R2; 0.7, 0.8)
{
1− S(R2; 1.5, 1.7)

}
S(R4; 0.7, 0.8)

{
1− S(R4; 1.5, 1.7)

}

S(R1; 0.7, 0.8)
{
1− S(R1; 7.0, 7.5)

}
S(R6; 0.7, 0.8)

{
1− S(R6; 7.0, 7.5)

}

S(R1; 1.6, 1.7)S(R3; 1.7, 1.8)S(R5; 1.7, 1.8)
{
1− S(R6; 2.1, 2.2)

}
S(R1 + R6; 3.4, 3.8)S(R3 + R5; 3.8, 4.0), (3.19)

w4 =S(R2; 0.7, 0.8)
{
1− S(R2; 1.5, 1.7)

}
S(R4; 0.7, 0.8)

{
1− S(R4; 1.5, 1.7)

}

S(R1; 0.7, 0.8)
{
1− S(R1; 7.0, 7.5)

}
S(R6; 0.7, 0.8)

{
1− S(R6; 7.0, 7.5)

}

S(R1; 1.3, 1.4)
{
1− S(R1; 1.7, 1.8)

}
S(R3; 1.7, 1.8)S(R5; 1.7, 1.8)

S(R6; 1.85, 2.15)S(R1 + R6, 3.6, 4.2)S(R3 + R5, 3.3, 3.4), (3.20)

w5 =S(R2; 0.7, 0.8)
{
1− S(R2; 1.5, 1.7)

}
S(R4; 0.7, 0.8)

{
1− S(R4; 1.5, 1.7)

}

S(R1; 0.7, 0.8)
{
1− S(R1; 7.0, 7.5)

}
S(R6; 0.7, 0.8)

{
1− S(R6; 7.0, 7.5)

}

S(R1; 1.6, 1.7)S(R3; 1.6, 1.7)S(R5; 1.6, 1.7)

S(R6; 1.9, 2.1)
{
1− S(R6; 3.1, 3.2)

}

S(R1 + R6; 3.6, 4.2)S(R3 + R5; 3.0, 3.4), (3.21)

w6 =S(R2; 0.7, 0.8)
{
1− S(R2; 1.5, 1.7)

}
S(R4; 0.7, 0.8)

{
1− S(R4; 1.5, 1.7)

}

S(R1; 0.7, 0.8)
{
1− S(R1; 7.0, 7.5)

}
S(R6; 0.7, 0.8)

{
1− S(R6; 7.0, 7.5)

}

S(R1; 1.6, 1.7)S(R3; 1.7, 1.8)S(R5; 1.7, 1.8)S(R6; 3.0, 3.1)

S(R1 + R6; 3.8, 4.2)S(R3 + R5; 3.8, 4.0), (3.22)

w0 =
6∏

i=1

(1− wi) (1− w̃i) , (3.23)

where the unit of the nuclear distance is Å. Briefly, the function w1 extracts the region with

small NN′ distance, w2 extracts O-N-O′-N′ or N-O-N′-O′-type structures, w3 extracts N-O-O′-

N′-type structures, w4 extracts the region with medium NN′ distance, w5 extracts the region
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with large NN′ distance and relatively small OO′ distance, and w6 extracts the region with

large NN′ distance and relatively large OO′ distance.

As in Takayanagi PES, each part of potential function is expressed in the following form:

Vi(R1, R2, R3, R4, R5, R6) =VNN(R1) + VNO(R2) + VNO(R3) + VNO(R4) + VNO(R5) + VOO(R6)

+ VNNO(R1, R2, R3) + VNNO(R1, R4, R5)

+ VNOO(R2, R6, R5) + VNOO(R3, R6, R4)

+ V
(4)
i (R1, R2, R3, R4, R5, R6), (3.24)

V
(4)
i (R1, R2, R3, R4, R5, R6) =

∑

k

ci,kρ1
k1ρ2

k2ρ3
k3ρ4

k4ρ5
k5ρ6

k6 , (3.25)

ρj =Rj exp
(−αj(Rj −R0

j )
)
. (3.26)
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Chapter 4

Dynamics of near-collinear reaction
path of O(1D) + N2O → NO + NO
studied by normal form theory

4.1 INTRODUCTION

The investigation of geometrical structure of multidimensional phase space provides crucial

information to solve various problems in general physics ranging from chemical reactions to

planet motions. For a system with 2 degrees-of-freedom (DOF), it is well known that its

phase space structure can easily be visualized by Poincaré surface of section (SOS). However, it

becomes difficult to capture the essence of dynamics in higher dimensional systems because the

increase of the SOS dimension makes the visualizations of the SOS impossible. Hence it would

be desirable to introduce a low-dimensional model which may effectively describe the essential

dynamics of the systems in question. For the problems of characterizing molecular vibrations

around an equilibrium point, 2-DOF models with some of the bond lengths and/or angles

fixed in advance have been often used to study the phase space structure below the dissociation

energy [83–92]. It has been shown that the simple description by normal modes becomes invalid

as the energy increases, and that new types of periodic orbits (POs) emerge through bifurcation

then. The new types of POs have been characterized as local modes [83–86], precessional

modes [88], dissociation modes [90, 91], and so forth, according to the energy and the types of

couplings. Such effective 2-DOF models have been constructed based on empirical intuitions.

In contrast to vibrations of bound molecules, dimensions of reacting systems involving bond-

forming and breaking cannot be reduced by those intuitions. An appropriate theory without

any empirical intuitions is needed to extract a small essential subspace from the multiple-DOF

phase space.
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In this respect, the Normal Form (NF) theory is a powerful tool for such dimension reduc-

tion. This theory provides considerable information on phase space geometry around station-

ary points by simplifying the form of Hamiltonian as much as possible. It has been applied

to many systems to characterize the dynamics around rank-1 saddles as phase space struc-

tures [36–45, 47, 93, 94]. At a rank-1 saddle point, that is, an equilibrium point with one

negative Hessian eigenvalue, one reactive mode and the other non-reactive bath modes have

one imaginary and multiple real frequencies, respectively. It was found [36–44,93] that up to a

certain high energy, the reactive mode defined in the phase space could be separated from all

the bath DOF by the application of the NF theory, even when the nonlinear couplings wash out

all the constants of motion in the bath space. In other words, the reactive and bath spaces can

be investigated independently if the NF theory is utilized. The dynamics in the bath space in

the vicinity of a saddle can be mathematically referred to the motion in the normally hyperbolic

invariant manifold (NHIM) [95, 96], which generalizes PO dividing surface in 2-DOF systems.

Recently, Li et al. [47, 94] applied this method to a 3-DOF model Hamiltonian regarded as

a prototype of isomerization reaction. The dynamics in NHIM was easily examined by SOS

because the system is reduced to 2-DOF after the separation of the reactive mode. However, for

systems with more DOF than three, we can no longer carry out the SOS analysis to investigate

the dynamics in NHIM, because the NHIM has still more than three DOF.

In this paper, we present a dimension reduction scheme to look into the phase space geometry

of the internal structure of high-dimensional NHIM. In addition to the separation of the reactive

mode, we eliminate as many couplings as possible among the bath modes. By simplifying the

bath mode couplings, we can construct a subsystem which describes the essential aspects of

the process. We apply our dimension reduction method to the most characteristic path, named

Path 1 in Capter 3 and Ref. 35, of the planar reaction of O(1D) with N2O:

O(1D) + NN′O′ → NO + N′O′, (4.1)

where prime symbols are used to distinguish the two NO products. Due to the high dimen-

sionality of this system, it is crucial to look into the possibility to reduce the dimensionality of

the bath space after it is separated from the reactive DOF, in order to reveal the complexity

of the reaction dynamics. The profile of the analytic potential energy surface (PES) function

constructed with CASPT2 calculations [35] is schematically shown in Fig. 3.2.

The quasi-classical trajectory study of this system revealed that the reactive trajectories of

this system can be classified into four categories which were named Path 1–4. Along Path 1, the

trajectories pass through three stationary points, the collinear saddle (denoted by the symbol
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Is), the trans minimum (Tm), and the trans saddle (Ts). The initial stage of this reaction,

where the nearly collinear approach of the O(1D) atom to N2O takes place, can be regarded

as a motion along a bath mode direction of Is. The system then falls into Tm following the

reactive direction of Is. Since the large energy difference between Is and the reactant is mostly

released along the bath direction, the bath mode oscillation at Is is expected to have a large

amplitude. Therefore the bath modes are subject to large nonlinear couplings. It is not at all

trivial to what extent we can reduce the dimensionality of the system.

The analyses of the motion around Is are interesting from the viewpoint of product energy

disposal, which provide important information for clarifying the chemical reaction dynamics.

Traditionally it has been believed that the deeper the potential well of the reaction intermediate

becomes, the more statistically the product states distribute, since the long residence time in

the well allows the considerable energy mixing [97]. However, Path 1 of the reaction (4.1)

shows nearly equal excitation of two NO vibrations despite its short residence time [35]. Of

the two NO products, the one originating in O(1D) is called “new NO” and the other from

the reactant N2O is called “old NO.” At the initial stage of the reaction, the new NO part

has an infinite nuclear distance whereas the old NO has almost the same distance as in the

product. Thus, the equal vibrational energy of the products indicates that an efficient energy

transfer has taken place from the new NO to the old despite the short residence time. This is

in clear contrast to the traditional picture [97] mentioned above. As will be shown in Sec. 4.2,

the characteristic energy exchange along Path 1 occurs when the trajectory is passing by the

collinear saddle point (Is). Thus, careful analysis of the phase space around Is is quite crucial

for understanding the underlying mechanism of the efficient energy exchange.

4.2 NORMAL FORM THEORY FOR PATH 1 TRA-

JECTORIES

In this section we first perform numerical simulations of Path 1 trajectories and describe their

properties in Sec. 4.2.1. Then we describe the procedure and the results of the normal form

(NF) calculation. The NF procedure consists of the following two steps. First, in Sec. 4.2.2, the

Hamiltonian is expanded as the Taylor series around the collinear saddle point (Is). The error

of the expansion can serve as a measure of how close the system is to the stationary point. By

using this measure, we find that the excitation of the old NO vibration begins when the system

comes close to Is. This means that the analysis of the dynamics in the vicinity of Is is crucial

for understanding the energy transfer from the new NO to the old NO. Second, in Sec. 4.2.3, we
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perform a NF transformation to represent the Hamiltonian in a simpler form where the coupling

terms are eliminated as much as possible. This transformation is constructed as a perturbation

series. The convergence of the series is checked by the energy difference45 between the true

Hamiltonian H and the transformed Hamiltonian H̄ along each trajectory. If the difference

is small along the reaction trajectories, we consider that the transformed Hamiltonian H̄ is a

sufficient approximation for analyzing the dynamics of the reaction.

4.2.1 Description of trajectories

Throughout the chapter, we adopt the nuclear masses of 18O(1D) + 14N14N16O for which the

experiment18 and the calculation35 have been done. We fix the initial rovibrational energy of

N2O to zero and the impact parameter b [see Fig. 4.1(a) for the definition] is confined to zero.

This makes the total angular momentum of the system zero. We have confirmed that freezing

the initial rovibrational motion of N2O does not change the product vibrational distribution

significantly. As will be shown below, we find significant vibrational excitation of the old NO

for the motion with b = 0. Therefore the analysis of the motion with b = 0 is an important

step for understanding the energy exchange in this system.

The numerical simulation of the trajectories is performed by using the Cartesian components

of three Jacobi vectors r0, r1, r2. The vector r0 = (x0, y0) goes from the mass-center of NO to

that of N′O′, r1 = (x1, y1) goes from N to O, and r2 = (x2, y2) goes from N′ to O′. In these

variables, the Hamiltonian takes the following form:

H =
2∑

`=0

1

2m`

(
px`

2 + py`

2
)

+ V, (4.2)

where px`
and py`

(` = 0, 1, 2) are the conjugate momenta to x` and y`, respectively. V is the

global PES function which we recently constructed based on the CASPT2 calculations, and

m0 =
(mN + mO)(mN′ + mO′)

mN + mO + mN′ + mO′
, (4.3)

m1 =
mNmO

mN + mO

, (4.4)

m2 =
mN′mO′

mN′ + mO′
, (4.5)

with mO, mN, mN′ , and mO′ being the nuclear masses of O, N, N′, and O′, respectively. In the

following trajectory simulations, the equations of motion for the Jacobi vectors are numerically

integrated by fourth-order Runge-Kutta method with variable time steps.62

To describe the trajectories, we plot the time evolution of Jacobi coordinates (r0, r1, r2, χ1, χ2)

as defined in Fig. 4.1(b). We denote the internuclear distances of NO and N′O′ moieties as r1
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(a) (b)

Figure 4.1: Definition of the parameters used in this paper. (a) Impact parameter b and the
initial orientation ψ of N2O. (b) Jacobi coordinates.

and r2, respectively. The distance between the mass-centers of the two NO’s is denoted by r0.

χ1 and χ2 are the angles between the line connecting the mass centers of NO’s and the nuclear

axes of NO and N′O′, respectively. These Jacobi coordinates will also be used as the starting

coordinates for the normal form calculation in Sec. 4.2.3. For zero total angular momentum,

the Hamiltonian takes the following form:

H =
2∑

`=1

[
1

2m`

pr`

2 +

(
1

2m`r`
2

+
1

2m0r0
2

)
pχ`

2

]

+
1

2m0

pr0

2 +
1

m0r0
2
pχ1pχ2 + V (r0, r1, r2, χ1, χ2), (4.6)

where pr0 , pr1 , pr2 , pχ1 , and pχ2 are the conjugate momenta to r0, r1, r2, χ1, and χ2, respectively.

The derivation of this expression is given in Sec. 4.5.

The time evolution of the Jacobi coordinates is shown in the upper panels of Fig. 4.2(a)-(d)

for four different initial orientations ψ of N2O, where ψ is defined in Fig. 4.1(a). The initial

conditions are generated as follows: At t = 0, the O(1D) atom is placed in the distance of 8

Å from the mass-center of N2O with the impact parameter b = 0 and the translational energy

20.9 kJ/mol = 3.47 × 10−20 J, which corresponds to the experimental condition of Ref. 18.

N2O is placed with the orientation ψ = 0, 5, 10, and 13◦ for (a), (b), (c), and (d) of Fig. 4.2,

respectively, with fixed rovibrational energy. Note that, for b = 0, trajectories of Path 1

cover the range of |ψ| ≈ 0-15◦ (See Fig. 3.7), and that there is a symmetry with respect

to the reflection ψ 7→ −ψ so that we have only to consider the trajectories with ψ = 0-15◦.

The trajectory of ψ = 0 has an exactly collinear configuration and thus experiences no force

along the bending direction because of the symmetry. Therefore it remains in the collinear

configuration (χ1 = π, χ2 = 0) for all the time and never falls into the trans region. In other

words, collinear configurations form an invariant set in the phase space. After the normal form

calculation, we will see in Sec. 4.3 that this invariant set is a subset of the NHIM, as long as
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(a) ψ = 0◦ (b) ψ = 5◦

(c) ψ = 10◦ (d) ψ = 13◦

Figure 4.2: Time evolution of Jacobi coordinates and the residual error of Taylor expansion
of the potential energy shown for four different initial conditions of ψ. Upper panels: Time
evolution of r0(thin solid line), r1(medium solid line), r2(thick solid line), χ1(thin dotted line),
and χ2(thick dotted line). Lower panels: Residual error of Taylor expansion up to the 2nd
(thin line), 3rd (medium line), and 4th order (thick line).
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Figure 4.3: A contour plot of the potential as a function of the O-N distance r1 (the vertical
axis) and the bond angle θ = ∠ONN′= ∠NN′O′ (the horizontal axis). Contours are spaced with
0.3 kJ/mol. Thin (thick) lines denote the value of the potential lower (higher) than that of the
reactant O(1D) + N2O. The left part of the figure corresponds to the reactant. The N-N′ and
N′-O′ distances are fixed to 1.14 Å and 1.18 Å, respectively, which correspond to the equilibrium
values at the reactants (O + NN′O′). The two minima correspond to the trans-minima (Tm)
and the saddle point between them corresponds to the collinear saddle point (Is).

the system is in the vicinity of the saddle point, where the NHIM exists. The other trajectories

of Path 1, that is, the trajectories with ψ 6= 0 start with near-collinear configurations (χ1 ≈ π,

χ2 ≈ 0). After they pass by the regions near the collinear saddle, they fall into trans-type

configurations (χ1 < π, χ2 < 0). Thus, in the early stage of the reaction, that is, when the

system is in near-collinear configurations, the motion can be well approximated by the motion

for ψ = 0.
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4.2.2 Taylor expansion of the Hamiltonian around the collinear sad-
dle point

Here we perform the Taylor expansion of the Hamiltonian (4.6) around the collinear saddle

point (Is). This saddle point connects two trans-shaped minima (Tm):

O�N− N�O
®

O�
N− N�

O
. (4.7)

These two minimum configurations can be distinguished from each other in the planar system,

although only one of them is shown in Fig. 3.2. Figure 4.3 shows the contour plot of the

potential as a function of the O-N distance (r1) and the bond angle ∠ONN′ with the system

restricted to trans geometries. As was shown in Chap. 3, trajectories go downhill along a bath

mode direction of Is until they pass by the region near Is, and then fall into either Tm following

the reactive mode at Is.

After the polynomial expansion up to the nth order, the potential takes the following form:

V ≈ V (n)

= V st +
∑

2≤P` j`≤n

vj(δr0)
j1(δr1)

j2(δr2)
j3(δχ1)

j4(δχ2)
j5 . (4.8)

Here, V (n) is the nth order approximation to the potential energy V . The suffix “st” means

the potential energy at the stationary point, δ means the deviation from the value at the

stationary point. The components of the integer vector j = (j1, j2, j3, j4, j5) are the exponents

in the polynomial expansion. vj ’s are the expansion coefficients. In Eq. (4.8), the summation in

j` covers all the zero or positive values of j` satisfying 2 ≤ ∑5
`=1 j` ≤ n. Here, we have calculated

the expansion coefficients up to fourth-order. To obtain the expansion coefficients, we calculated

the Lagrange’s interpolation polynomial62 with potential energy values at grid points around

Is, while the analytic expansion form for the kinetic term can be obtained straightforwardly.

In the lower panels of Fig. 4.2(a)-(d), the error ∆V (n) = V (n)−V of the nth order polynomial

approximation for the potential is shown for each initial condition. If the error is small, it means

that the system is in the vicinity of the saddle point. In order to judge whether the error is

small or not, it must be compared with the typical energy per one degree of freedom, which is

of the order of 10−19 J for this system. For the trajectory of ψ = 0 [Fig. 4.2(a)], the error ∆V (4)

is one order of magnitude smaller than this value in the time range of t ≈280-305 fs. For ψ = 5◦

and 10◦, the time range for ∆V (4) . 10−20 is t ≈283-293 fs, and t ≈287-291 fs, respectively.

Thus, the trajectories with ψ ≤ 10◦ come sufficiently close to the collinear saddle point. The
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Mode 1
Trans bending (reactive)

129i ps−1

Mode 2
NN stretch

500 ps−1

Mode 3
Antisymmetric stretch

234 ps−1

Mode 4
Symmetric stretch

166 ps−1

Mode 5
Cis bending

59 ps−1

Figure 4.4: Normal modes at the collinear saddle point.

trajectories with ψ ≤ 10◦ cover 2/3 of the whole Path 1 trajectories, since the trajectories of

Path 1 cover ψ = 0-15◦ as stated in Sec. 4.2.1. This means that a significant proportion of

the Path 1 trajectories approach the collinear saddle point. Moreover, the excitation of the old

NO, r2, begins when the system comes close to the saddle point. This is revealed by the fact

that the excitation of r2 (i.e., the vibration of the old NO) starts when the errors for ∆V (4)

are small (i.e., when the system is close to the collinear saddle Is). These facts validate the

analysis of the collinear saddle for the purpose of understanding the energy exchange from the

new to the old NO vibration. Thus, we focus below on the dynamics in the vicinity of Is.

4.2.3 Normal form calculation

Here we perform the NF calculation on the fourth-order PES [Eq. (4.8)]. First, by diagonalizing

the harmonic part of the Hamiltonian obtained by the Taylor expansion at Is, we transform

the Jacobi coordinates to normal mode coordinates qr
1, . . . , q

r
5, which are expressed as linear

combinations of the original Jacobi coordinates

qr
` = c`,1δr0 + c`,2δr1 + c`,3δr2 + c`,4δχ1 + c`,5δχ2, (4.9)

75



where c`,m (`,m = 1, . . . , 5) are the coefficients of the linear transformation. Thus the quadratic

part of the Hamiltonian becomes

H =
λ

2

{
(pr

1)
2 − (qr

1)
2} +

5∑

`=2

ω`

2

{
(pr

`)
2 + (qr

`)
2}

+
∑

P
`(j`+k`)≥3

ar

jk

5∏

`=1

(qr
`)

j` (pr
`)

k` . (4.10)

In this equation, iλ is the imaginary frequency of the reactive mode, ω`’s (` = 2, . . . , 5) are the

(real) frequencies of the bath modes, and pr
`’s (` = 1, . . . , 5) are the conjugate momenta of qr

`’s.

The integer vectors j = (j1, j2, j3, j4, j5) and k = (k1, k2, k3, k4, k5) denote the set of exponents

of qr
`’s and pr

`’s, and ar

jk’s are the coefficients in the polynomial expression. We have defined

mode 1 as the reactive mode and the bath modes are numbered in the decreasing order of their

frequencies. The displacements and the frequencies of the normal modes at the collinear saddle

point are shown in Fig. 4.4. We further introduce the following coordinates (complex for the

bath modes) for convenience in the later calculation:

qc
1 =

qr
1 + pr

1

21/2
, pc

1 =
pr

1 − qr
1

21/2
, (4.11)

qc
` =

qr
` − ipr

`

21/2
, pc

` =
pr

` − iqr
`

21/2
, (` = 2, . . . , 5). (4.12)

In these coordinates, the Hamiltonian becomes

H =λqc
1p

c
1 +

5∑

`=2

iω`q
c
`p

c
`

+
∑

P
`(j`+k`)≥3

ac

jk

5∏

`=1

(qc
`)

j` (pc
`)

k` , (4.13)

where the coefficients ac

jk’s are calculated by substituting Eqs. (4.11) and (4.12) into Eq. (4.10).

The action variables for the harmonic approximation are defined as follows:

I1 =qc
1p

c
1 =

1

2

{
(pr

1)
2 − (qr

1)
2} , (4.14)

I` =iqc
`p

c
` =

1

2

{
(pr

`)
2 + (qr

`)
2} , (` = 2, . . . , 5). (4.15)

After the above prescription, we transform the Hamiltonian using a new set of variables

(q̄c, p̄c), which are called NF coordinates, to reduce the number of the coupling terms in the

Hamiltonian when expressed in these new coordinates. This transformation is constructed as
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a perturbation from the original variables (qc,pc) and expressed in polynomial series:

q̄c
m =qc

m +
∑

P
`(j`+k`)≥3

f c

m,jk

5∏

`=1

(qc
`)

j` (pc
`)

k` , (4.16)

p̄c
m =pc

m +
∑

P
`(j`+k`)≥3

gc

m,jk

5∏

`=1

(qc
`)

j` (pc
`)

k` , (4.17)

where f c

m,jk’s and gc

m,jk’s are the coefficients of the polynomials. Real-valued NF coordinates

(q̄r, p̄r) are defined by

q̄r
1 =

q̄c
1 − p̄c

1

21/2
, p̄r

1 =
p̄c

1 + q̄c
1

21/2
, (4.18)

q̄r
` =

q̄c
` + ip̄c

`

21/2
, p̄r

` =
p̄c

` + iq̄c
`

21/2
, (` = 2, . . . , 5). (4.19)

When we put Eqs. (4.11), (4.12), (4.18), and (4.19) into Eqs. (4.16) and (4.17), we obtain the

relations of real-valued coordinates:

q̄r
m =qr

m +
∑

P
`(j`+k`)≥3

f r

m,jk

5∏

`=1

(qr
`)

j` (pr
`)

k` , (4.20)

p̄r
m =pr

m +
∑

P
`(j`+k`)≥3

gr

m,jk

5∏

`=1

(qr
`)

j` (pr
`)

k` , (4.21)

where the coefficients f r

`,jk’s and gr

`,jk’s can be calculated from f c

`,jk’s and gc

`,jk’s. The

summations are taken only for the terms with even |k| ≡ ∑5
`=1 k` in Eq. (4.20) and odd |k| in

Eq. (4.21) because of time-reversal symmetry. Details of the NF transformation are given in

Sec. 4.6 and also in literatures.42–44,48

After the NF transformation, the Hamiltonian is expressed in the polynomial of (q̄c, p̄c).

This new Hamiltonian is denoted as H̄(q̄c, p̄c). In the Hamiltonian, the off-diagonal terms, that

is, terms with different powers of q̄c
` and p̄c

`, denote couplings among the modes. This can be

seen as follows. If all the off-diagonal terms are eliminated from the Hamiltonian through the

NF transformation, that is, if the transformed Hamiltonian H̄ takes the following form,

H̄(q̄c, p̄c)

= λq̄c
1p̄

c
1 +

5∑

`=2

iω`q̄
c
` p̄

c
` +

∑
P

` j`≥2

āc

j

5∏

`=1

(q̄c
` p̄

c
`)

j` , (4.22)

where āc

j ’s are the coefficients of the polynomial, then all of the new action variables Ī1 = q̄c
1p̄

c
1,

and Ī` = iq̄c
` p̄

c
` (` = 2, . . . , 5) are constants of motion and the system is fully integrable. The
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Hamiltonian H̄ of the form (4.22) is called a full normal form (corresponding to a classical

analog of Dunham Hamiltonian in molecular spectroscopy). In many occasions, however, elim-

ination of certain coupling terms results in divergence of the perturbation series and thus the

transformation cannot be constructed. Such coupling terms should be included in the NF

Hamiltonian H̄. Which terms can be eliminated and which terms should be included in H̄

must be determined based on convergence of the transformed Hamiltonian.

In this chapter we use the energy error45 ∆E(n) = |H̄(n)−H| as a criterion of the convergence,

where H̄(n) is the NF Hamiltonian up to the nth order and H is the true Hamiltonian. We

have found that the terms listed in Table 4.1 should be kept in the transformed Hamiltonian,

since their elimination results in a larger error ∆E(4) than the error ∆E(2) of the harmonic

approximation. The transformed Hamiltonian takes the following form:

H̄ =λq̄c
1p̄

c
1 +

5∑

`=2

iω`q̄
c
` p̄

c
` +

∑
P

` j`≥2

āc

j

5∏

`=1

(q̄c
` p̄

c
`)

j`

+
∑

d

∑

(j−k)∝d

āc

jk

5∏

`=1

(q̄c
`)

j` (p̄c
`)

k` , (4.23)

where āc

j ’s and āc

jk’s are the coefficients of the diagonal and the off-diagonal terms, respectively,

and the integer vector d covers all the terms listed in Table 4.1. The Hamiltonian of the form

(4.23) is called Partial Normal Form (PNF) in contrast to the full NF (4.22). Note that, even

with the off-diagonal terms, the form (4.23) is still much simpler than the original form (4.13).

Namely, a fourth-order polynomial with 10 variables has 1001 terms, whereas there are only 12

types (listed in Table 4.1) of coupling terms in Eq. (4.23).

In observing the terms listed in Table 4.1, we note the following facts. First, all of the terms

listed in Table 4.1 have zero in their first component, which means that the PNF Hamiltonian

contains only those terms with j1 = k1. Therefore Ī1 = q̄c
1p̄

c
1 is a local constant of motion. This

means that the motion along mode 1 is separable from the others. Similar situations are found

in former studies.36–44,46,47,98 It is attributed to the fact that there can be no resonance between

imaginary and real frequencies.99 Second, terms which contain both positive and negative (j`−
k`) like 0 : 1 : 0 : −3 : 0 can be understood in view of “resonance” effect. Namely, the

harmonic frequencies for mode 2 and 4 are nearly in the ratio of 3:1 and thus the terms with

(j2 − k2) : (j4 − k4) = 1 : −3 can give rise to small divisors in the NF process. Therefore we

excluded the corresponding terms from the generating function (see Sec. 4.6). Third, Table 4.1

also contains those terms for which all (j` − k`)’s are nonnegative, such as 0 : 0 : 1 : 0 : 0 and

0 : 0 : 2 : 1 : 0. These are the terms which are not of the “resonance” type but cannot be
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Table 4.1: Types of the terms which cannot be eliminated from the NF Hamiltonian. j` and k`

are the exponents of q̄c
` and p̄c

` in H̄ [See Eq. (4.23)].

(j1 − k1) : (j2 − k2) : (j3 − k3) : (j4 − k4) : (j5 − k5)
0 1 0 -3 0
0 0 1 -1 0
0 1 -1 -2 0
0 0 0 0 2
0 0 0 2 -2
0 0 1 0 0
0 0 1 1 0
0 1 -2 0 0
0 0 1 -2 0
0 0 0 1 0
0 0 2 -1 0
0 0 2 1 0

eliminated from the PNF Hamiltonian. To the best of our knowledge, no literature has given

an explanation to the existence of such terms. We consider that the values of the actions for

mode 3 and 4 are so large that they cannot be eliminated by perturbation.

4.3 ANALYSES OF THE DYNAMICS

4.3.1 Evaluation of the couplings

First, we analyze the time development of the vibrational energy of each of the PNF coordi-

nates. The upper panels of Fig. 4.5 show the values of ω`Ī`, that is, a rough estimation of

the vibrational energy of each mode, calculated along the trajectories shown in Fig. 4.2. The

lower panels of the same figure show the energy errors of the harmonic (thin solid lines) and

the PNF (thick solid lines) Hamiltonian, respectively. There the trajectories are calculated by

using the original Hamiltonian as in Fig. 4.2. Then, the PNF actions Ī` = q̄c
` p̄

c
` and the PNF

Hamiltonian H̄(q̄c, p̄c) are calculated from original Jacobi coordinates (r0, r1, r2, χ1, χ2) using

the transformation given by Eqs. (4.9), (4.11), (4.12), (4.16), and (4.17). The PNF Hamilto-

nian and actions are calculated up to the fourth order of polynomial. Here we can see that,

for ψ ≤ 10◦, the PNF calculation shows convergence for the time region in which trajectories

are in the vicinity of the saddle point (when compared with Fig. 4.2). Moreover, the action

value for mode 1 is nearly constant, as can be predicted from the form of the PNF Hamiltonian
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(4.23) and Table 4.1. On the other hand, the actions of mode 3 and 4 decrease at earlier times

(e.g., 280-290 fs for Ī3 and 280-295 fs for Ī4 at ψ = 0 ) with nonconstant decrease rates and

increase at later times (e.g., t > 290 fs for Ī3 and t > 295 fs for Ī4 at ψ = 0 ) . Their time

evolutions cannot be simply interpreted based on resonances (between modes 3 and 4), which

have the effect of decreasing some of the actions and increasing others at the same time. On

the contrary, the simultaneous decrease of Ī3 and Ī4 implies that non-resonance type terms,

that is, the terms for which all (j`− k`)’s are nonnegative in Table 4.1, play important roles for

the changes of these actions.

Now, we will discuss, in terms of the NHIM, that only a part of the degrees of freedom

contribute to the efficient energy transfer, and construct an effective Hamiltonian to describe

the basic mechanism of the energy transfer. The NHIM is defined in terms of (q̄c, p̄c) as

MNHIM ={(p̄c
1, · · · , p̄c

5, q̄
c
1, · · · , q̄c

5) | p̄c
1 = q̄c

1 = 0;

H̄(Ī1 = 0, q̄c
2, q̄

c
3, q̄

c
4, q̄

c
5, p̄

c
2, p̄

c
3, p̄

c
4, p̄

c
5) = E}, (4.24)

at a given energy E. Because the reactive degree of freedom is decoupled from the bath space in

the (q̄c, p̄c) coordinate system, the NHIM forms an invariant set. Normal hyperbolicity implies

that the degree of freedom normal to it (i.e., the reactive mode) is hyperbolic while the degrees

of freedom tangent to it (i.e., the bath modes) are elliptic, or in general, are weakly hyperbolic

compared with the normal hyperbolicity.

The system approaches the collinear saddle (Is) in a perpendicular direction to the reactive

degree of freedom at Is before falling into one of the two trans-shaped minima (see Fig. 4.3).

Therefore, the dynamics near Is, where PNF theory is valid, can be well represented as that

on the NHIM. More precisely, the “approaching” trajectory with ψ = 0 form an invariant set

with the constantly zero actions of modes 1 and 5, which are “bending” motions (See Fig. 4.4).

This invariant set of the collinear configurations given by q̄c
1 = p̄c

1 = q̄c
5 = p̄c

5 = 0 is a subset of

the NHIM (q̄c
1 = p̄c

1 = 0), which exists in the vicinity of the saddle, where PNF works. Note

that the invariance of the collinear configurations is due to their symmetry whereas that of the

NHIM is due to the topological feature of rank-1 saddle where no resonance takes place among

one reactive mode and the bath modes.

Note that the trajectories with ψ ≤ 10◦ have qualitatively similar properties to each other as

seen in the plots of the Jacobi coordinates (Fig. 4.2) and the PNF actions (Fig. 4.5). This can

be understood based on the property of the NHIM as follows. The behavior of trajectories near

the NHIM is decomposed into the motion along it and that normal to it. Then, the similarity

of the trajectories with ψ ≤ 10◦ is attributed to this decomposition of the dynamics near the
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(a) ψ = 0◦ (b) ψ = 5◦

(c) ψ = 10◦ (d) ψ = 13◦

Figure 4.5: Results of PNF calculation shown for four initial conditions which are the same as
Fig. 4.2. Upper panels: Time evolution of the action variables multiplied by the corresponding
harmonic frequencies. The values for mode 1, 2, 3, 4, and 5 are shown by thin dotted, thin solid,
medium solid, thick solid, and thick dotted lines, respectively. Lower panels: Energy errors.
Thin solid line depicts the difference ∆E(2) between the true Hamiltonian and the harmonic
approximation. Thick solid line depicts the difference ∆E(4) between the true Hamiltonian and
fourth-order PNF Hamiltonian.
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NHIM. We can judge whether they stay near the NHIM or not by Fig. 4.2 and Fig. 4.5, and

confirm that these trajectories behave similarly to the one with ψ = 0 near the NHIM. Thus,

the motion of the bath modes, which includes the vibrations of the new and old NO bonds, can

be understood by the motions in the NHIM. Therefore, we now focus on the case of ψ = 0 to

extract the underlying mechanism of why energy transfer takes place quite efficiently despite

of the lack of the long residence inside the potential well.

Based on the above discussions, we can treat the system locally as an effective 3-DOF

(degrees of freedom) system with an effective Hamiltonian given by

Heff(q̄c
2, q̄

c
3, q̄

c
4, p̄

c
2, p̄

c
3, p̄

c
4) =

H̄(q̄c
1 = 0, q̄c

2, q̄
c
3, q̄

c
4, q̄

c
5 = 0, p̄c

1 = 0, p̄c
2, p̄

c
3, p̄

c
4, p̄

c
5 = 0), (4.25)

when the system is in the neighborhood of the collinear saddle Is. The dynamics of Heff takes

place in a subspace of the NHIM.

We further simplify the above Hamiltonian by taking into account the coupling terms listed

in Table 4.1. In order to assess their effects, we have plotted, in Fig. 4.6, the values of these

terms along the trajectory of ψ = 0. Here the non-resonance type terms which include modes

3 and/or 4, such as “0 : 0 : 1 : 0 : 0,” “0 : 0 : 2 : 1 : 0,” etc, show large values. On the

other hand, among the coupling terms including mode 2, only the “0 : 1 : -2 : 0 : 0” term

has nonnegligible value, but it is still smaller than the coupling terms between modes 3 and

4. Thus, modes 3 and 4 have large anharmonicity and are strongly coupled with each other,

whereas mode 2 is coupled only with mode 3 through one term. Therefore we can gain more

insight into the dynamics by making the following separation of the Hamiltonian:

Heff(q̄c
2, q̄

c
3, q̄

c
4, p̄

c
2, p̄

c
3, p̄

c
4)

=H̄34(q̄
c
3, q̄

c
4, p̄

c
3, p̄

c
4) + ω2Ī2 +

∑
āc

jk

4∏

`=2

(q̄c
`)

j` (p̄c
`)

k` , (4.26)

where

H̄34(q̄
c
3, q̄

c
4, p̄

c
3, p̄

c
4) = Heff(q̄c

2 = 0, q̄c
3, q̄

c
4, p̄

c
2 = 0, p̄c

3, p̄
c
4). (4.27)

In Eq. (4.26), the first term can be interpreted as Hamiltonian of a 2-DOF subsystem consisting

of modes 3 and 4, the second term is harmonic energy of mode 2, and the third term contains

all the other terms which can be interpreted as the coupling between the 2-DOF subsystem and

mode 2. Figure 4.7 shows the values of H̄34 and ω2Ī2 as functions of time. We have obtained
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Figure 4.6: Values of the coupling terms in NF Hamiltonian as functions of time calculated for
the trajectory with ψ = 0.
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Figure 4.7: Values of the energy H̄34 of 2-DOF subsystem and the harmonic energy ω2Ī2 of
mode 2 (see text for more detailed definition). They are calculated for the trajectory with
ψ = 0 and shown as functions of time t.

a monotonic decrease of H̄34 in contrast to the increase of Ī2. This is consistent with the idea

presented above, that is, the coupling between mode 2 and the 2-DOF subsystem is due to only

one resonance, the “0 : 1 : -2 : 0 : 0” term.

Now the dynamics of the system has been decomposed into that of mode 2 and that of the

2-DOF subsystem consisting of modes 3 and 4. In the next subsection, we look deeply into this

2-DOF subsystem.

4.3.2 Dynamics of the 2-DOF subsystem

Figure 4.8(a) shows the Poincaré surface of section (SOS) of the 2-DOF Hamiltonian H̄34 for

q̄r
4 = 0, p̄r

4 > 0 with the horizontal and vertical axes being q̄r
3 and p̄r

3, respectively. The value of

the Hamiltonian H̄34, i.e., the energy of these trajectories, is chosen as follows: After calculating

the trajectory of ψ = 0 by the original Hamiltonian up to t = 283 fs, we transform the Jacobi

coordinates at t = 283 fs by Eqs. (4.9), (4.11), (4.12), (4.16), (4.17), and (4.19), to (q̄r, p̄r).

The resulting values are indicated in the caption of Fig. 4.8(b). Substituting their values into

the Hamiltonian H̄34, we obtain H̄34 = 3.5010× 10−19 J relative to the top of the saddle.

In Fig. 4.8(a), we can see the existence of regular tori in the outer region, whereas the

inner region shows irregular behavior. To find which region corresponds to the actual reaction

trajectories, we have plotted, in Fig. 4.8(b), the SOS for five trajectories. The initial conditions

of these five trajectories are chosen as follows. First, we calculate the trajectory with ψ = 0

using the original Hamiltonian up to five different times t =283, 290, 295, 300, and 305 fs.
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The values of the Jacobi coordinates and their conjugate momenta at these five instances are

transformed to the values of (q̄r, p̄r) to give the five initial conditions (q̄r
3, q̄

r
4, p̄

r
3, p̄

r
4). Then,

we perform the 2-DOF trajectory calculations and plot the SOS in Fig. 4.8(b). The five 2-

DOF trajectories have different values of H̄34 because of the coupling with mode 2. Since the

trajectory stays near the saddle in the time interval 283 fs. t . 305 fs [see Fig. 4.5(a)], we can

see from these plots which part of the section corresponds to the actual reaction trajectories.

In Fig. 4.8(b), the system first appears in the intermediate region between the center and the

outermost ellipse. This is because the reaction trajectories start with an elongation of the new

NO bond, which corresponds to simultaneous excitation of the symmetric and antisymmetric

stretches. At early times, the system is found in the region of regular torus structure. Then

the torus shrinks as the time passes, due to the coupling with mode 2, and finally enters

into the inner irregular region after t = 290 fs. The tori found in the early time period are

topologically the same as those of the harmonic case ((q̄r
3)

2 + (p̄r
3)

2 = const.) although they are

distorted. Strictly speaking, their shapes are distorted from the true circle. We should also

note that the coordinates used in Fig. 4.8 are the PNF coordinates, whose main parts are the

normal mode coordinates but they are not exactly the same. However, bifurcation into the

local modes [83–86] or other types of periodic orbits [87–92] does not occur for this system (at

least in the region corresponding to the reaction trajectories). This means that the normal

mode picture is qualitatively conserved for the reaction trajectories in spite of its high energy.

Hereafter, we refer to this motion as “distorted normal mode.”

So far we have limited our attention to the trajectory of ψ = 0, which is collinear and thus

contained in the NHIM. This is based on the idea that the deviation from ψ = 0 mainly results

in the displacement in the direction of the reactive mode (mode 1), and that it has little effect

on the bath mode dynamics. However, its effect on the bath modes is not exactly zero and

thus it is worth investigating whether it is really negligible. This is performed by taking the

initial value of (q̄r
3, q̄

r
4, p̄

r
3, p̄

r
4) from trajectories with ψ 6= 0. Figure 4.9 shows similar plots to

that in Fig. 4.8(b), where initial values are chosen from the values of the Jacobi coordinates at

t = 285, 290 fs for ψ = 5◦, and t = 290 fs for ψ = 10◦, respectively. Here again, we can see the

distorted normal mode type structure.

The chaotic motion in the inner region does not appear for these trajectories. This is

because their residence times in the vicinity of the saddle point is finite, whereas the collinear

trajectory (ψ = 0) remains in the NHIM all the time. Their residence times become shorter as

their deviation from the NHIM is larger. This is due to the fact that we have narrower time
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(a) (b)

Figure 4.8: Poincaré surface of section for the 2-DOF subsystem consisting of modes 3
and 4 calculated with the polynomial Hamiltonian H̄34. (a) Total Poincaré surface of sec-
tion with q̄r

4 = 0 and p̄r
4 > 0 plotted with q̄r

3 and p̄r
3. The unit is 10−17 kg1/2ms−1/2.

The energy is H̄34 = 3.5010 × 10−19 J, which corresponds to the value of (q̄r
3, q̄

r
4, p̄

r
3, p̄

r
4)

at t = 283 fs for the actual reaction trajectory with ψ = 0. (b) Poincaré surface
of section is drawn for five different initial values of (q̄r

3, q̄
r
4, p̄

r
3, p̄

r
4). Blue:(q̄r

3, q̄
r
4, p̄

r
3, p̄

r
4) =

(3.70912,−4.12055, 1.39117,−2.40706), which corresponds to the values at t = 283 fs for ψ = 0.
Red:(q̄r

3, q̄
r
4, p̄

r
3, p̄

r
4) = (−0.74253,−2.24372,−2.84153, 2.42701), which corresponds to the val-

ues at t = 290 fs for ψ = 0. Green:(q̄r
3, q̄

r
4, p̄

r
3, p̄

r
4) = (−3.51209, 2.00635, 1.34369, 2.30668),

which corresponds to the values at t = 295 fs for ψ = 0. Orange:(q̄r
3, q̄

r
4, p̄

r
3, p̄

r
4) =

(1.57224, 4.38929, 2.35114,−0.30151), which corresponds to the values at t = 300 fs for ψ = 0.
Purple:(q̄r

3, q̄
r
4, p̄

r
3, p̄

r
4) = (2.51367, 3.27718,−1.11494,−3.95697), which corresponds to the value

at t = 305 fs for ψ = 0.
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(a) (b)

Figure 4.9: Poincaré surface of section for the 2-DOF subsystem consisting of modes 3 and
4 calculated with the polynomial Hamiltonian H̄34. The initial values are as follows: (a)
Outer ellipse:(q̄r

3, q̄
r
4, p̄

r
3, p̄

r
4) = (3.76265, -4.33988, 0.66964, -1.68103), which corresponds to the

values at t = 285 fs for ψ = 5◦. Inner ellipse: (q̄r
3, q̄

r
4, p̄

r
3, p̄

r
4) = (0.78110, -3.21763, -2.81286,

2.02043 ), which corresponds to the values at t = 290 fs for ψ = 5◦. (b) (q̄r
3, q̄

r
4, p̄

r
3, p̄

r
4) =

(3.65408,−4.39855, 0.38768,−0.78467), which corresponds to the value at t = 290 fs for ψ =
10◦.

ranges for convergence of the NF calculations for 0 ≤ ψ . 10◦, such as 283 fs . t . 293 fs for

ψ = 5◦, and 287 fs . t . 291 fs for ψ = 10◦ [see Fig. 4.5(a)], respectively.

From Fig. 4.9, we can see that these trajectories do not have enough time to travel into

the inner region while being in the vicinity of the saddle. Thus we can conclude that the

distorted normal mode picture is not broken by the deviation from ψ = 0 and the non-collinear

trajectories also have the distorted normal mode structure when they enter into the vicinity of

the saddle point.

4.3.3 Mechanism of efficient energy transfer

Basic mechanism of the efficient energy transfer can be obtained using the distorted normal

mode picture, which was found in Sec. 4.3.2. Here we propose a “beat” model for the excitation

of the old NO vibration as follows: Qualitatively, the symmetric (q̄r
4) and antisymmetric (q̄r

3)

coordinates can be expressed in the following equations:

q̄r
4 ≈ qr

4 ∼
δr1 + δr2

21/2
, (4.28)

q̄r
3 ≈ qr

3 ∼
δr1 − δr2

21/2
, (4.29)
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where δr1 and δr2 are the deviation of the bond length of the new and old NO, respectively, from

their equilibrium values. Since the normal mode picture is conserved with a little distortion,

the time evolution of q̄r
4 and q̄r

3 are approximately described by simple trigonometric functions:

q̄r
4 ≈ A cos(ω4t), (4.30)

q̄r
3 ≈ A cos(ω3t). (4.31)

Thus, the vibrations of the new and old NO bonds are

δr1 ∼qr
4 + qr

3

21/2
≈ 2−1/2A [cos(ω4t) + cos(ω3t)]

=21/2A cos

(
ω4 − ω3

2
t

)
cos

(
ω4 + ω3

2
t

)
, (4.32)

δr2 ∼qr
4 − qr

3

21/2
≈ 2−1/2A [cos(ω4t)− cos(ω3t)]

=21/2A sin

(
ω4 − ω3

2
t

)
sin

(
ω4 + ω3

2
t

)
. (4.33)

The interpretation of the right hand sides are that they are oscillating with the mean frequency

(ω4 + ω3)/2 while their amplitudes vary with 21/2A cos(ω4 − ω3)t/2 and 21/2A sin(ω4 − ω3)t/2.

This change of amplitudes is called “beat” and the frequency (ω4 − ω3)/2 is called the beat

frequency. Note that initially (t = 0) the amplitude of the new NO vibration is at its maximum

value and that of the old NO vibration is zero. At the time τ which satisfies

ω4 − ω3

2
τ =

π

4
, (4.34)

the two NO bonds are oscillating with the same amplitudes. Therefore, the time scale for the

excitation of the old NO bond can be estimated by

τ =
π

2(ω4 − ω3)
. (4.35)

If we use the values shown in Fig. 4.4, it becomes

τ =
π

2(234 ps−1 − 166 ps−1)
≈ 23 fs, (4.36)

which is of the same order as the residence time in the vicinity of the collinear saddle point,

as we can see in Fig. 4.2(a)-(d). This means that the residence time near the collinear saddle

is sufficient to allow the excitation of the old NO vibration. Here, the important point is that

the energy transfer takes place very fast, since the period of the beat is short. Even though

the lifetime of the reaction intermediate is very short compared to complex-mode reactions
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which often involve intermediates of ps order lifetimes, the time scale of the beat is comparable

to the lifetime of the reaction intermediate and thus causes a significant excitation of the old

bond. The short time scale of the beat derives from the relatively large difference between the

frequencies of the symmetric and antisymmetric stretches. Thus, we conclude that the origin of

the old NO excitation is the preservation of the normal mode picture in spite of the high energy

and the relatively large difference between the frequencies of the symmetric and antisymmetric

stretches.

Note also that the regularity is not strictly required for the “beat” model. Even in the

case of chaos, it is possible that the system sees vague tori100,101 and follows a similar orbit to

that of the normal mode picture for some short time period, whereas it traverses in a wider

region of the phase space for a longer time period. The “beat” model can, then, be applied

for the dynamics of the system in a short time range. The important aspect is the existence of

two different mechanisms for the energy transfer. One is the randomization by strong chaos,

where the system travels around in the potential well. This is close to the traditional picture of

the energy transfer, that is, the randomization after a long lifetime in a deep well. The other

mechanism is the motion of the distorted normal mode type, where the system experiences only

a part of the phase space but the motion is represented as a superposition of a few distorted

normal modes. If the periods of the beats are short enough, efficient energy transfer takes place.

In particular, this mechanism works not only in the well but also near the saddle. The present

work shows the importance of the latter by showing that the “beat” mechanism explains the

efficient energy exchange of the reaction of O(1D) + N2O → NO + NO.

4.4 SUMMARY AND OUTLOOK

The dynamics of the short lifetime trajectories with near-collinear approach, which have been

named “Path 1,” of the reaction O(1D) + N2O → NO + NO was investigated for zero total

angular momentum. This reaction was found to exhibit a significant energy transfer from the

new to the old NO vibration in spite of its short lifetime.18 To clarify the origin of this efficient

energy exchange, analyses of the Path 1 trajectories were performed by using the normal form

(NF) theory. First we performed fourth-order Taylor expansion of the potential energy around

the collinear saddle point. By examining the time evolution of the Jacobi coordinates and the

error of the expansion, we showed that a significant proportion of the trajectories came close to

the saddle and that the excitation of the old NO vibration began in the vicinity of the saddle.

We performed a coordinate transformation to PNF coordinates. In these coordinates, the
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number of the coupling terms in Hamiltonian decreased drastically compared to the original

coordinates, which simplified the analysis. By examining the remaining coupling terms, we

found that the reactive mode was completely separable from the other modes. Moreover, the

symmetric and antisymmetric stretching modes, which include the vibrations of the new and

old NO bonds, were strongly coupled to each other, whereas the other two modes were only

weakly coupled to these modes. Therefore we reduced the essence of the dynamics into the

2-DOF system consisting of the two stretching modes of the NO bonds.

Analyses of the 2-DOF subsystem revealed a distorted normal mode picture, which is topo-

logically the same as the normal mode, in spite of their high energy above the saddle point.

This offered the basic mechanism of the efficient energy transfer as a “beat” between the sym-

metric and the antisymmetric stretching modes. The period of the beat was of the order of 10

fs, due to the large difference between the frequencies of the symmetric and the antisymmetric

stretching modes. Comparison of the period to the residence time near the collinear saddle

revealed that the time scale of the beat was short enough to cause excitation of the old NO

vibration. Thus we concluded that the origin of the efficient energy transfer from the new to

the old NO vibration is the distorted normal mode structure and the large difference between

the frequencies of the symmetric and the antisymmetric stretching modes.

The extraction of the essence of the efficient energy transfer was made possible by the

power of the NF calculations. The NF calculations enable us to elucidate the coupling terms

essential to the dynamics by making the Hamiltonian as simple as possible. For our system, a

fourth-order polynomial with 10 variables has 1001 terms, whereas the number of the remaining

couplings after the NF calculations are only 12 as is listed in Table 4.1. With the number of

terms drastically reduced to 12 from 1001, we assessed which couplings play important roles in

the dynamics by plotting the value of each term as in Fig. 4.6. Thus we succeeded in showing

that the dynamics of this system is regular with the distorted normal mode structure well

conserved.

Our PNF method55 presented here is generally applicable to any systems of many degrees

of freedom and provides us with an essential clue of the underlying geometrical structure of

the multidimensional phase space. For example, chemical reactions; O(1D) + HCl [52–54],

O(1D) + H2O [30,31], and H + NO2 [49–51], are also quite interesting systems because the PES

have deep wells but the product state distributions deviate significantly from the statistical

distributions. These require systematic scrutiny of the phase space in the region of potential

well. Our dimension reduction by PNF will be of great help to capture the phase space prop-

erties of any stationary point. To be sure, it depends on the system to what extent we can
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reduce the dimension of the system. Poincaré surface of section is a powerful tool only for the

cases where the system can be reduced to a two-DOF system. However, even if the system

can only be reduced to an m(≥ 3)-DOF system, this makes the analyses much simpler than

the original n(> m)-DOF system. Moreover, it is a significant information by itself which

modes are separated and which modes are strongly coupled to the other modes. This reveals

a nonuniform character of the phase space highly contrasted to a simple statistical description

where all the DOF are completely mixed. Thus, our PNF method is expected to capture the

dynamical structure of the system and thereby shed light on the origin of complicated behavior

in chemical reaction dynamics.

4.5 APPENDIX A: Derivation of the Hamiltonian (4.6)

Here we present the derivation of the Hamiltonian (4.6) starting from Eq. (4.2). First we

introduce the polar coordinates for each Jacobi vector:

x` = r` cos φ`, (4.37)

y` = r` sin φ`, (4.38)

for ` = 0, 1, 2. Then the Hamiltonian is expressed as

H =
2∑

`=0

1

2m`

(
pr`

2 +
pφ`

2

r`
2

)
+ V. (4.39)

The Jacobi angles χ1, χ2 can be introduced by the following transformations:

χ1 = φ1 − φ0, (4.40)

χ2 = φ2 − φ0, (4.41)

Θ = φ0. (4.42)

To make the transformation canonical, the conjugate momenta to (χ1, χ2, Θ) are given as

follows:

pχ1 = pφ1 , (4.43)

pχ2 = pφ2 , (4.44)

J = pφ0 + pφ1 + pφ2 , (4.45)
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where J is the conjugate momentum of Θ and has the physical meaning of the total angular

momentum of the system. When we put these equations into Eq. (4.39), we obtain

H =
1

2m0

pr0

2 +
2∑

`=1

[
1

2m`

pr`

2 +
1

2m`r`
2
pχ`

2

]

+
1

2m0r0
2

(J − pχ1 − pχ2)
2 + V. (4.46)

Here we make an important observation that the kinetic part of the Hamiltonian (4.46) does

not contain Θ. Moreover, the potential energy V depends only on the internal coordinates

(r0, r1, r2, χ1, χ2) and not on Θ. Therefore the time derivative of J is

d

dt
J = −∂H

∂Θ
= 0, (4.47)

which means the conservation of the total angular momentum. Thus we can regard the system

as an effective 5-DOF system with five position coordinates (r0, r1, r2, χ1, χ2) and the Hamilto-

nian (4.46) with J being treated as a constant parameter. In the meantime, the time evolution

of Θ is given by

d

dt
Θ =

∂H

∂J
=

1

m0r0
2

(J − pχ1 − pχ2) . (4.48)

The appearance of the internal coordinates such as pχ1 in the equation of
d

dt
Θ is a consequence

of the so-called “falling cat problem,”102–104 that is, the system can rotate under the effect of

the internal motion. In contrast, the effect of the rotational motion on the internal motion is

only through constant J as seen in Eq. (4.46). Since the rotational motion is not our principal

interest in this chapter, we treat the internal motion as a 5-DOF system given by Eq. (4.46).

Substituting J = 0 into Eq. (4.46) yields Eq. (4.6).

4.6 APPENDIX B: Construction of the NF transforma-

tion

Here we describe briefly the construction of the NF transformation from the original (normal

mode) coordinates (qc,pc) to the NF coordinates (q̄c, p̄c). We follow the formulation by Dragt

and Finn.105 We start by writing the Hamiltonian in a power series of a small parameter σ,

H(qc,pc, σ) =
∞∑

n=0

σnH(0)
n (qc, pc), (4.49)
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where H
(0)
0 is the harmonic part of the Hamiltonian [see Eq. (4.13)]:

H
(0)
0 (qc,pc) = λqc

1p
c
1 +

5∑

`=2

iω`q
c
`p

c
`. (4.50)

To introduce a small parameter, we scale the coordinates (qc,pc) 7→ (σqc, σpc) and H 7→ σ−2H.

After the transformation is constructed, the parameter σ is set equal to 1. The canonical trans-

formation (qc,pc) 7→ (q̄c, p̄c) is constructed by successive operations of Lie transformations:

q̄` = exp(−σF1) exp(−σ2F2) · · · exp(−σNFN)q`, (4.51)

p̄` = exp(−σF1) exp(−σ2F2) · · · exp(−σNFN)p`, (4.52)

where N is the order of the perturbation and Fn (n = 1, . . . , N) is an operation of Poisson

bracket with a function fn:

Fn = {·, fn}. (4.53)

Then, the transformation of the Hamiltonian H(qc, pc, σ) 7→ H̄(q̄c, p̄c, σ) is given by

H̄ = exp(σNFN) · · · exp(σ2F2) exp(σF1)H. (4.54)

If we define H̄(m)(q̄c, p̄c, σ) and H̄
(m)
n (q̄c, p̄c) by

H̄(m) = exp(σmFm)H̄(m−1)

= exp(σmFm) · · · exp(σ2F2) exp(σF1)H, (4.55)

H̄(m) =
∞∑

n=0

σnH̄(m)
n , (4.56)

we can readily obtain the following recursion formulae for H̄
(m)
n

n < m : H̄(m)
n =H̄(m−1)

n (4.57)

n = m : H̄(m)
m =H̄(m−1)

m + FmH̄
(0)
0 (4.58)

n > m : H̄(m)
n =H̄(m−1)

n +
∞∑

s=1

(Fm)s

s!
H̄

(m−1)
n−sm . (4.59)

In the final Hamiltonian H̄ = H̄(N) =
∑∞

n=0 σnH̄
(N)
n , the terms of the order n is

H̄(N)
n = H̄(N−1)

n = · · · = H̄(n)
n =H̄(n−1)

n + FnH̄
(0)
0 , (4.60)

because of Eqs. (4.57) and (4.58). Thus, Fn can be determined so that the function H̄
(N)
n has

a “desired” form.
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In the present case, H̄
(n−1)
n is expressed in the form of a polynomial:

H̄(n−1)
n (qc,pc) =

∑
P

`(j`+k`)=n+2

α
(n)

jk

5∏

`=1

(qc
`)

j` (pc
`)

k` , (4.61)

where α
(n)

jk
is the coefficient of the polynomial. Moreover, FnH̄

(0)
0 =

{
H̄

(0)
0 , fn

}
and H̄

(0)
0 = H

(0)
0

has the form of Eq. (4.50). Therefore, if we are to eliminate the terms with certain values of

(j, k) from the final Hamiltonian H̄, we set

fn =
∑

(j, k)

αjk

γjk

5∏

`=1

(qc
`)

j` (pc
`)

k` , (4.62)

where the divisor γjk is defined as follows:

γjk = λ(j1 − k1) + i
∑

`

ω`(j` − k`). (4.63)

To obtain a well-defined transformation, the range of the summation in Eq. (4.62) is determined

so that the polynomial series converges. If we have γjk ≈ 0 for certain combinations of (j,k),

then the corresponding coefficients of Eq. (4.62) take large values and cause divergence of the

series. This is the notorious problem of small divisors.106 This situation arises when the bath

mode frequencies ω2, . . . , ω5 are nearly in the ratio of integers and called the “resonance” effect.

Such values of (j,k) cannot be included in the summation of Eq. (4.62) and therefore have to

be kept in H̄. In this chapter we investigate which values of (j,k) can or cannot be eliminated

from H̄, by checking the energy error as described in Sec. 4.2.3. After that process we obtain

the results shown in Eq. (4.23) and Table 4.1.
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(2003).

[78] T. Ishida and G. C. Schatz, Chem. Phys. Lett., 314, 369 (1999).

[79] W. Eisfeld and K. Morokuma, J. Chem. Phys., 113, 5587 (2000).

[80] M. A. Vincent, I. H. Hillier, and L. Salsi, Phys. Chem. Chem. Phys., 2, 707 (2000).

[81] L. Krim and N. Lacome, J. Phys. Chem. A, 102, 2289 (1998).

[82] T. Mart́ınez, M. L. Hernández, J. M. Alvariño, F. J. Aoiz, and V. Sáez Rábanos, J. Chem.
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