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Abstract

The unsteady buffeting forces and the gust response prediction of bridges in the atmospheric
turbulent flows is recently attracted more attention due to uncertainties in both experiment and
analytical theory. The correction functions such as the aerodynamic admittance function and the
spatial coherence function have been supplemented to cope with limitations of the quasi-steady
theory and strip one so far. Concretely, so-called single-variate quasi-steady aerodynamic
admittance functions as the transfer functions between the wind turbulence and induced buffeting
forces, as well as coherence of wind turbulence has been widely applied for the gust response
prediction. Recent literatures, however, pointed out that the coherence of force exhibits higher
than that of turbulence. These correction functions, in the other words, contain their uncertainties

which are required to be more understanding.

Proper orthogonal decomposition (POD), known as the Karhunen-Loeve decomposition has
been applied popularly in many engineering fields. Main advantage of the POD is that the
multi-variate correlated random fields/processes can be decomposed and described in such
simplified way as a combination of limited number of orthogonally low-order dominant
eigenvectors (or turbulent modes) which is convenient and applicable for order-reduced
representation, simulation of the random fields/processes such as the turbulent fields,
turbulent-induced force fields and stochastic response prediction as well. The POD and its proper
transformations based on either zero-time-lag covariance matrix or cross spectral one of random
fields/processes have been branched by either the covariance proper transformation (CPT) in the
time domain or the spectral proper transformation (SPT) in the frequency domain. So far, the
covariance matrix-based POD and its covariance proper transformation in the time domain has
been used almost in the wind engineering topics due to its simplification in computation and

interpretation.

In this research, the unsteady buffeting forces and the gust response prediction of bridges with



emphasis on the POD applications have been discussed. Investigations on the admittance function
of turbulent-induced buffeting forces and the coherence one of the surface pressure as well as the
spatial distribution and correlation of the unsteady pressure fields around some typically
rectangular cylinders in the different unsteady flows have been carried out thanks to physical
measurements in the wind tunnel. This research indicated effect of the bluff body flow and the
wind-structure interaction on the higher coherence of buffeting forces than the coherence of
turbulence, thus this effect should be accounted and undated for recent empirical formulae of the
coherence function of the unsteady buffeting forces. Especially, the multi-variate nonlinear
aerodynamic admittance function has been proposed in this research, as well as the
temporo-spectral structure of the coherence functions of the wind turbulence and the buffeting
forces has been firstly here using the wavelet transform-based coherence in order to detect
intermittent characteristics and temporal correspondence of these coherence functions. In POD
applications, three potential topics in the wind engineering field have been discussed in the
research: (i) analysis and identification, modeling of unsteady pressure fields around model
sections; (i1) representation and simulation of multi-variate correlated turbulent fields and (iii)
stochastic response prediction of structures and bridges. Especially, both POD branches and their
proper transformations in the time domain and the frequency one have been used in these
applications. It found from these studies that only few low-order orthogonal dominant modes are
enough accuracy for representing, modeling, simulating the correlated random fields (turbulence
and unsteady surface pressure, unsteady buffeting forces), as well as predicting stochastic
response of bridges in the time and frequency domains. The gust response prediction of bridges
has been formulated in the time domain at the first time in this research using the covariance
matrix-based POD and its covariance proper transformation which is very promising to solve the
problems of the nonlinear and unsteady aerodynamics. Furthermore, the physical linkage between
these low-order modes and physical causes occurring on physical models has been interpreted in

some investigated cases.
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Chapter 1

General Introduction

1.1 Long-span bridges and wind effects

It is generally agreed that only last two decades of the 20™ century, many large-scale bridges
have been successfully built around over the world. Long-span bridges typically imply for
cable-supported bridges, consisting of suspension bridges (SB) and cable-stayed ones (CSB).
Recently, the Akashi-Kaikyo bridge (SB,1991m,Japan) and the Tatara bridge
(CSB,890m,Japan), in which information inside brackets denotes to type of bridge, main span
length and construction countries, are holding the world longest span records, besides number
of other typical long-span cable-supported bridges around the world should be mentioned as
Minami Bisan-Seto bridge (SB,1723m,Japan), Great Belt bridge (SB,1623m,Denmark),
Tsing Ma bridge (SB,1377m,Hong Kong), Normandy bridge (CSB,856m,France), Yangpu
bridge (CSB,602m,China), Meiko bridge (CBS,590m,Japan), Tsurumi Tsubasa bridge
(CBS,510m,Japan), Ikuchi bridge (CSB,490m,Japan), Oresund bridge
(CSB,490m,Denmark) and many others. It can be seen some typically super-span
cable-supported bridge projects are under construction or being soon started in different parts of
the world such as Stonecutter bridge (CSB,1018m,Hong Kong), Messina Strait bridge
(SB,3300m,Italy), Gibralta Strait bridge (SB,8400m,Spain-Morocco), SuThong bridge
(CSB,1088m,China) and others, are going to hold the new world records in their main span
length of the bridge types after completion. Furthermore, many super long-span bridges across
the seas have been proposed in the feasibility studies in many counties like Japan, Korea, China
and other. In Japan, some huge overseas bridge projects have been scheduled for discussion and
consideration. Apart from three overseas bridge routs linking main Honshu and Shikoku islands
are now under traffic service that are holding the world longest spans of their types, some
other Ho-yo, Kitan and Tsugaru strait-crossing bridge projects are under the consideration and
the pre-feasibility studies that many exciting problems concerning to design and analysis will
be exhibited. Undoubtedly, the long-span bridges gain more advantageous to build new

sea-crossing or strait-crossing routines to compare with another structural alternatives such as



underground tunnel, floating tunnel. It seems that the longer spans, the more slender structures
and the higher strength materials are still hinged tendency on the world bridge engineering in
the few coming decades.

The design and analysis of the long-span bridges or super long-span bridges emerge some

critical engineering problems as follows:

(1) Dynamic behaviors of bridges due to the traffic live loads, the earthquake and the
atmospheric wind flows play very important role and more concerns in the design and
analysis.

(2) New structural design, new technologies in fabrication and construction as well as new
high strength materials are favorable to be applied, thus many new engineering
problems are accordingly faced, especially in the aspect of natural hazardous reduction

and mitigation.

It is strongly agreed that the long-span bridges are prone to the wind effects, the
wind-induced vibrations and the aeroelastic instability problem as well. In the past lesson, the
complete collapse of the Tacoma Narrow bridge (SB,980m,USA) in 1940 at USA reminded
civil engineers and scientists to be much aware of the important role of the aerodynamic

phenomena and the wind-induced vibrations, see Figure 1.1.

Fig. 1.1 Extreme amplitude vibration and collapse of Tacoma Narrow bridge in USA, 1940
Evaluation of the wind-induced vibrations or the wind resistance design has become the
more and more concern for design and analysis of the long-span bridges, especially the

problems relate to the aeroelastic instability and the random response due to the turbulent wind.

1.2 Bridge aerodynamics and classification



Bridge structures under the atmospheric wind flows can exhibit to one of the aerodynamic
phenomena, of the wind-induced vibrations, or many as the aerodynamic interference and
coupling to be occurred. Their classification of the aerodynamic phenomena can be based on
some ways. Typically, it can be classified based on the fundamental bluff-body aerodynamics,
the fluid dynamics and characteristics of around-body flow that cored in the wind-structure
interaction as formation of flow separation and reattachment, local separation bubble,
vortex-shedding, one or two shear layers on structure surface (Matsumoto 2000). He also
discussed that (1) simultaneous modification of approaching flow and around-structure flow by
structure’s shape, scale, movement and wind’s velocity, relative attack angle and; (2) local
pressure distribution at leading edge zone of structure surface played very important role to
explain in generation mechanisms of aerodynamic phenomena and wind-induced vibrations.

As simpler approach and practical application, however classification of bridge
aerodynamics can be based on their characteristics on amplitude of response and effects. Bridge
responses subjected to the wind loading can be divided into two main categories:
limited-amplitude and divergent-amplitude wind-induced vibrations. The former comprises the
vortex-induced vibrations, buffeting, wake-induced vibrations and rain-wind-induced vibrations
with their effects of dynamic fatigue and serviceable discomfort, whereas the later consist of

flutter, galloping and wake instability with their structural instability and catastrophe, see

Figure 1.2.
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Fig.1.2 Classification of bridge aerodynamics and aeroelastics

Basing on amplitude of response depending on the nondimensional reduced wind velocity

(U,, =U/nB; where U: mean wind velocity, n: frequency, B: deck width), it can be generalized

that the vortex-induced phenomena usually occur at low velocity range, the buffeting

phenomena is significant at medium velocity range up to high velocity range, whereas the



aeroelastic phenomena occur at high velocity range, see Figure 1.3.
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Fig. 1.3 Response amplitude of wind-induced vibrations versus reduced wind velocity

Some main points of the above-mentioned bridge aerodynamics will be briefly presented

hereinafter.

(1) The vortex-induced vibrations are the limited-amplitude aerodynamic oscillation
induced by either the typical Karman vortex shedding at the wake of structure or
another vortex shedding on the surface and wake of structure. Vortex shedding is
generated by characteristics of the ongoing wind flows, structural geometry and motion
of structure. It is paid much attention on the vortex-induced vibration of bridges due to
large response amplitude at resonant state that well-known as frequency ‘lock-in’
phenomenon and happened at low critical velocity range. Vibrational amplitude,
however, is decayed due to structural damping and wind velocity come out of the
critical velocity range. In the resonant state, moreover, vortex-induced forces have no
longer forced but non-linear motion-induced ones. For bridge design, the critical
velocity range and maximum response are purposed to investigate on vortex-induced
vibration through means of wind tunnel experiments and theoretical analyses. Some
studies indicated that streamlined sections usually exhibit larger response due to the
vortex-induced vibration than bluffer sections as stiffen truss girders or IT-shaped
girders.

(2) The buffeting phenomenon is defined as the random aerodynamic vibration in the
turbulent wind flows due to unsteady wind forces or unsteady buffeting forces generated

by the fluctuating velocity components or wind turbulence. Gust response is classified



into the limited-amplitude phenomena due to effect of structural damping. Maximum
gust response of bridges in the turbulent wind must be required for the buffeting
evaluation and random aerodynamic response. The gust response is predicted via
experimental and analytical investigation in either the frequency domain or the time
domain. However, some assumptions and limitation of the unsteady buffeting forces due
to approximation and simplification of the quasi-steady theory and the strip theory
which are still used so far. Correction functions such as the aerodynamic admittance
function, the coherence function are supplemented in account for frequency dependence
and spatial correlation of the unsteady buffeting forces. Assumptions and usage of the
correction functions bring uncertainties in the buffeting response evaluation. Analytical
method in the frequency domain proposed by Davenport (1962) still validates and is
applied so far.

(3) The wind-induced dry-state vibration and the rain-wind-induced vibration observed at
inclined stayed cables of cable-stayed bridges in the windy and stormy days can respond
excessive amplitude. Mechanism of the wind-induced dry-state and rain-wind-induced
vibrations relates to formation of upper water rivulet and axial shear flow,
three-dimensional Karman vortex shedding on surface, along and in wake of the
inclined cables (Matsumoto et al. 1997, Matsumoto 2000, Matsumoto et al. 2005).

(4) The galloping instability was firstly observed by excessive response amplitude of the
iced electric transmission lines under the strong wind and is classified into type of the
divergent-amplitude vibration that associated with mechanism of negative slope of
aerodynamic coefficients against relative attack angle (based on the well-known Den
Hartog’s criterion). Analytical models carried out under linear and nonlinear behavior
for non-circular sections (Matsumoto 2000).

(5) The flutter instability also belongs to the divergent-amplitude self-controlled vibration
generated by the wind-structure interaction and negative aerodynamic damping
mechanism. Flutter instability is one of the most critical concerns to bridge
aerodynamics and aeroelastics at the high velocity range due to its catastrophic behavior.
Critical wind velocity at which the flutter instability occurring can be determined by
either the numerical analytical methods or the experimental tools.

(6) The wake-induced vibrations and wake instability can be generated when bridges or
their structural components are located on the wake of upstream adjacent structures.
Wake-induced vibrations also are known as interference and proximity phenomena,
moreover, only can be investigated under the means of experiments or full-scale

measurements.



1.3 Background and objectives of study

Among above-mentioned bridge aerodynamic and aeroelastic phenomena, the stochastic gust
response due to the random buffeting forces in the atmospheric turbulent wind and the flutter
instability due to the self-excited aerolastic forces and the wind-structure interaction are usually
required more concerns and interests. These phenomena and their effects must be considered
carefully in the design and construction stages, especially for the long-span bridges constructed
in coastal and stormy, windy areas which are high risks from the aerodynamic and aeroelastic
effects. It is generally agreed that the aeroelastic instability is only favorable to occur in the
cases of the high velocity range, the bluff girder sections with low torsional stiffness, however
these conditions are seldom met with the modern girder sections of streamlining and high
torsional stiftness. Therefore, critical wind velocity which the flutter instability occurs usually
exhibits much higher than natural wind velocity at the bridge sites. Additionally, experimental
and analytical tools for the aeroelastic instability evaluation seem to be accuracy and reliable
enough so far. It seems that the aeroelastic instability is usually studied and experimented under
the smooth wind flows which are proved in almost cases to exhibit more critical conditions than
naturally turbulent wind flows (Scanlan 1990, Matsumoto et al. 1996). In the some extent, the
aeroelastic instability is seldom to occur with the modern bridges. Evidently, there is no
aeroelastic catastrophe observed after the Tacoma Narrow bridge since 1940.

Recently, the unsteady buffeting forces and the stochastic gust response of bridges attract
more attention due to its potential effects and uncertainties on bridges such as aerodynamic
fatigue and unpredicted extreme deflection and sectional forces as well as analytical risk on
overestimation, underestimation of the its response prediction. As far as concerned, the gust
response prediction of bridges has been treated thanks to some assumptions and theories such as
the quasi-steady theory and the strip theory which are no longer to be accuracy so far. The
buffeting forces determined under scope of two theories can be considered as quasi-steady
buffeting forces. So-called correction functions, however, such as aerodynamic admittance
function, spatial coherence function have been supplemented to cope with limitations of these
two theories. In this case when the correction functions are added, the unsteady buffeting forces
are determined.

Aerodynamic admittance function is defined as transfer function between output
turbulent-induced buffeting forces and input wind turbulence in the frequency domain. This
experimental approach of the transfer function will compensate deference between turbulence
and turbulent-induced forces due to their deference in spectral distribution in the frequency
domain. Thus, the aerodynamic admittance is frequency dependant function. However, recent

approach of the transfer function measurement and analytical method contains some



uncertainties as follows: (i). In the direct measurement of output aerodynamic forces, it is
difficult to defer contribution proportion of turbulent-induced forces (due to turbulence) and
self-excited forces (due to wind-structure interaction), thus the transfer function between input
turbulence and output aerodynamic forces contain the self-excited forces which considerably
influence from medium to high wind velocity ranges and flexible girder bridges; (ii). In the gust
response analysis, it is assumed that longitudinal turbulent component u(t) and vertical
turbulent one w(t) contribute equally on power spectra of output turbulent-induced forces in the
frequency domain, this means that the transfer function between the longitudinal turbulence and
the output turbulent-induced forces is correspondent to that between the vertical turbulence and
input forces. Simplified model of the frequency-dependant aerodynamic admittance function
(so-called single-variate quasi-steady the aerodynamic admittance) has been widely applied in
the gust response prediction of bridges so far. Recently, some further approaches such as
nonlinear, multivariate and complex aerodynamic admittance functions have been mentioned
anywhere in some literatures.

Spatial coherence function is defined as normalized quantity between cross spectra and auto
spectra in order to characterize for the spatial distribution of the full-scale buffeting forces. It is
assumed so far that the coherence of buffeting forces is similar to that of the wind turbulence,
therefore the empirical exponential formulae based on coherence of turbulence have been
widely used in the gust response theory. However, some literatures pointed out that the
coherence of force exhibits higher than that of turbulence thanks to series of physical
measurements (eg., Larose et al. 1997, Jakobsen et al. 1997, Kimura et al. 1997, Matsumoto et
al. 2003). Mechanism of the higher coherence of the buffeting forces as well as effects of not
only the spanwise separation, the ongoing flow conditions but also of the bluff body flow due to
wind-structure interaction on the coherences of turbulence and buffeting forces should be
investigated for more understanding and clarification. Intermittent distribution and
instantaneous correspondence in both the frequency domain and the time domain between the
coherence of turbulence and that of forces also require to be studied.

The buffeting response analysis of bridges can be treated by either frequency-domain or
time-domain approach. The frequency-domain buffeting analysis has first introduced for civil
engineering applications by Davenport (1962), Irwin (1974) thanks to spectral analysis method
and so far still applied dominantly and consistently, however, the most disadvantageous is that
this only applies for linear behavior analysis. Recently, linear and non-linear buffeting response
analysis can be solved under the time-domain approach. Time-domain buffeting forces can be
transferred into frequency-domain ones thanks to the Fourier Transform, moreover, the spectral
analysis method and modal analysis technique in generalized coordinates has been applied for

step transforms from spectral functions of 2D buffeting forces to that of 3D buffeting ones, and



from spectral function of 3D buffeting forces to that of response, and from response of single
mode to that of multi-modes. The correction functions have been added to carry out such step
transforms. This method is effective and dominant practices in civil engineering applications,
however, incapable to deal with non-linear structural behavior that being common sense for
buffeting response analysis of recently long-span flexible cable-supported bridges. In the
time-domain buffeting analysis, the external wind forces can be treated as multi-dimensional
stationary random processes and subjected to discrete nodes in structure. Discretization of
time-history wind forces at structural nodes is due to simulation techniques of random
processes. Time-history analysis has been used to predict the buffeting response. The most
applicable advantage is that so far non-linear structural behavior only solved under this method,
therefore some non-linear finite element method computer programs with time-history analysis
can be exploited for non-linear buffeting response prediction. This time-domain method,
however, is time-consuming and complicated due to simulating of the random turbulent field as
well as modeling and transforming the frequency-dependant correction functions such as the
admittance function into time-dependant functions.

As a principle, the multi-degree-of-freedom motion equations of structures are decoupled
into the generalized coordinates and the structural modes due to the structural modal
transformation. Conventional methods of the gust response prediction of structures has used
concept of the joint acceptance function to decompose the full-scale turbulent-induced forces,
then to be associated with the generalized structural coordinates (Davenport 1962). New
approach of the gust response prediction has been proposed recently by Carassale et al. 1999,
Solari and Carassale 2000 with concept of the double modal transformations. In this approach,
the structural modes are associated with turbulent-induced loading modes that are decomposed
by proper transformations in order to determine the gust response of structures. The proper
transformations can be carried out by new technique, known as proper orthogonal
decomposition.

Proper orthogonal decomposition, or known as Karhunen-Loeve decomposition (Lumley
1970), has been applied popularly in many engineering fields including random processes/fields,
stochastic methods, image processing, data compression, system identification and control and
so on (Liang et al. 2002). In the wind engineering, the proper orthogonal decomposition has
been used in the three following topics: i) stochastic decomposition and order-reduced
modeling of random processes/fields and induced pressure/forces, ii) representation and
simulation of random turbulent fields and iii) stochastic response of structures. The proper
orthogonal decomposition has been applied to optimally approximate the multi-variate random
processes through use of low-order basic orthogonal vectors from modal decomposition

(eigenvector problem) of either zero-time-lag covariance matrix or cross spectral density one of



this multi-variate random field. According to type of basic matrix in the modal decomposition,
the proper orthogonal decomposition has been branched by either covariance proper
transformation or spectral proper transformation (Solari and Carassale 2000). Main advantage
of the proper orthogonal decomposition is that the multi-variate correlated random processes/
fields can be decomposed and described in such simplified way as a combination of a few
low-order dominant eigenvectors (modes) and omitting higher-order ones that is convenient for
order-reduced representation of the random field, including random-induced force modeling
and random response prediction. Furthermore, because the random field is described via few
dominantly low-order orthogonal modes, therefore it is usually expected that these dominant

modes can represent to any typically physical cause occurring on structure.

Objectives of studies in this dissertation are hinged as follows:

Firstly, mechanism of high correlation of the buffeting forces and effects of the turbulent
flow conditions and bluff body flows on this high correlation are going to be studied via the
spatial distribution and correlation coefficients of the unsteady pressure fields in the unsteady
flows

Secondly, correction functions such as the aerodynamic admittance function and the spatial
coherence function which are used so far in the unsteady buffeting forces and gust response
prediction of bridges are going to be discussed thanks to some new approaches such as the
nonlinear, multivariate aerodynamic admittance and the wavelet transform-based coherence.
Effects of the ongoing flow conditions, the bluff body flow, the Karman vortex on the force
coherence as well as the temporo-spectral distribution of coherence will be investigated for
more knowledge on the spatial coherence function.

Finally, the proper orthogonal decomposition and its proper transformation branches are
going to be applied and discussed for some recent topics in the wind engineering field: (i)
analysis and identification of unsteady pressure field; (ii) representation and simulation of the
random turbulent field; stochastic gust response prediction of bridges and (iii) the gust response

prediction of bridges.

1.4 Structure and outlines of study

The dissertation aims to present and discuss about the unsteady buffeting forces and the gust
response prediction of bridges with investigation on recent limitations and uncertainties in
usage of the admittance function and coherence one as well as with emphasis on the proper
orthogonal decomposition applications and its proper transformation branches. Moreover,

higher correlation of the buffeting forces and influence of the bluff body flow will be



investigated on the spatial distribution and correlation of the unsteady pressure fields around
physical cylinders. Three potential applications of the proper orthogonal decomposition to the
wind engineering so far will be presented consisting of (i) simulation of the multi-variate
spatially-correlated turbulent field around bridge deck; (ii) analysis and identification of the
random pressure fields around some typical rectangular sections; and (iii) new approach in the
gust response prediction of bridges. Both the physical measurements in the wind tunnel

experiments and numerical examples will be used in this thesis.

The dissertation is organized by the 10 chapters including the general introduction and the

conclusion. The outlines of main chapters are briefly presented as follows:

In the Chapter 2, the unsteady buffeting forces and gust response prediction of bridges
formulated in the frequency domain and the time domain are going to be discussed as
background research. Current assumptions and uncertainties in the unsteady buffeting forces
and gust response evaluation which are mainly related to usage of the correction functions such
as the frequency-dependant aerodynamic admittance function and the spatial coherence

function are reviewed.

In the Chapter 3, the spatial distribution and correlation of the unsteady pressure fields
around some rectangular cylinders under some typical unsteady flows are going to be studied
with emphasis on higher correlation mechanism of the buffeting forces and influence of the
bluff body flow around experimental models. Physical measurements of the unsteady pressure
fields on some rectangular cylinders B/D=1 (without and with installation of splitter plate at the

wake of model) and B/D=5 in some unsteady flows are carried out in the wind tunnel.

In the Chapter 4, the aerodynamic admittance functions between turbulence and induced
buffeting forces will be studied with new concepts of nonlinear and multivariate admittance.
Wind turbulence and turbulent-induced buffeting forces are measured directly on some physical
models B/D=5 and B/D=20 under the turbulent flows in the wind tunnel.

In the Chapter 5, the temporal-spectral coherent structures of wind and pressure will be
studied using both Fourier coherence and wavelet coherence. Effects of spanwise separations,
bluff body flow and turbulent flow conditions on coherent structures of turbulence and pressure,
comparison between wind and pressure coherence as well as intermittent distribution of wavelet
spectrum and wavelet coherence will be discussed. Physical measurements of the surface

pressure and turbulence have been carried out on some typical rectangular cylinders with side



ratios B/D=1 (without and with splitter plate at wake region) and B/D=5 under the artificial

turbulent flows in the wind tunnel.

In the Chapter 6, the proper orthogonal decomposition and its proper transformations of the
fluctuating pressure fields on some typical rectangular cylinders will be presented. Both recent
branches: the covariance matrix and the cross spectral matrices of these pressure fields are
applied. Analysis, identification and order-reduced reconstruction of the pressure fields will be
carried out basing on characteristic functions resulted from both covariance matrix-branched
and cross spectral matrix-branched proper orthogonal decompositions: covariance eigenvalues,
covariance eigenvectors (covariance modes), covariance principal coordinates and spectral
eigenvalues, spectral eigenvectors (spectral modes). Moreover, the linkage between the lowest
modes and the physical phenomena can be revealed with combination of past understanding
and knowledge of the bluff body flows and physical causes. The fluctuating pressure field has
been determined through physical measurements on some rectangular models with side ratios of
B/D=1 and B/D=5 in the turbulent flows in the wind tunnel.

In the Chapter 7, the representation, modeling and simulation of the multi-variate
spatially-correlated turbulent field are going to be presented with emphasis on spectral
representation methods using the proper orthogonal decomposition and its spectral proper
transformation. Simulation of the multi-variate turbulent field along a bridge girder will be

carried out as a numerical example.

In the Chapter 8, the spectral matrix-based proper orthogonal decomposition and its spectral
proper transformation will be presented and application to decoupling the multi-variate
turbulent loading processes. New comprehensive approach on the gust response prediction of
structures then will be formulated using the spectral proper transformation with emphasis on
numerical example of cable-stayed bridge. The turbulent-induced forces based on corrected
quasi-steady theory with aerodynamic admittance also are used for more refinement. Numerical

example of cable-stayed bridge will be taken into account for illustration and demonstration

In the Chapter 9, it is presented the application of the covariance matrix-branched proper
orthogonal decomposition and its covariance proper transformation to decompose the random
turbulent loading processes, then to formulate the time-domain gust response of structures. The
Newton-beta integration method is also applied to obtain the time-domain solution of the gust
responses in the generalized and global coordinates. Numerical example of cable-stayed bridge

will be also taken into account for illustration and demonstration.



Chapter 2

Unsteady Buffeting Forces and Gust Response of Bridges

2.1 Introduction

The gust response prediction of bridges due to the turbulent-induced buffeting forces is usually
required a must among aerodynamic responses, especially for long-span bridges. The gust
response in the atmospheric turbulent flows can affect an extreme deflection and aerodynamic
fatigue of bridge and its structural components. Conventionally, the buffeting forces for bridge
sections are commonly determined under two main theories: (i) quasi-steady theory and (ii) strip
theory which both are origin from the aeronautical field. In the former, it implies that the
buffeting forces do not depend on the frequency and are proportional to instantaneous turbulent
components as well as some linearized approximations are used to formulate the quasi-steady
buffeting forces , whereas the buffeting forces on each deck element is not influenced by those on
neighboring elements in the latter. However, two theories are not valid in the almost cases of
practical engineering structures, and many certainties can be produced. In the modern buffeting
analysis theory, some correction functions such as aerodynamic admittance function and spatial
coherence function have been supplemented to treat with limitations of both the quasi-steady
theory and strip one. Many literatures, however, indicated that recent models of the correction
functions themselves contain limitations and uncertainties. The unsteady buffeting forces can be
formulated in cases the correction functions are added. Moreover, it is observed that the unsteady
aerodynamic forces are produced due to the wind-structure interaction and the bluff body flow at
low reduced velocities, so-call ‘fluid memory effect’ should be considered in order to be taken the
past histories into account for the present response. Therefore, the complete unsteady buffeting
forces which account the fluid memory effect can be formulated in the time domain using either
the indicial response function or impulse response function with convolution integration

operation.

In this chapter, the unsteady buffeting forces and gust response prediction of full-scale bridges



in the frequency domain and the time domain will be presented as background research. Current
assumptions and uncertainties due to the quasi-steady theory and the strip theory, as well as usage
of correction functions in the unsteady buffeting forces and the gust response prediction of

bridges will be discussed.

2.2 Methodological background

It is generally agreed that the gust response prediction of bridges can be treated by either
analytical methods or experimental approaches. Analytical gust response of bridges can be
formulated in either the frequency domain analysis or the time domain, in which the
frequency-domain buffeting analysis has been applies for linear structural behaviors in the former,
whereas the time-domain analysis has been applied to treat with geometrical and aerodynamic
nonlinearities, unsteady aerodynamic forces as well that being increasingly common-sense for
buffeting response prediction of ‘flexible’ long-span bridges in the later.

In the frequency-domain approach or indirect buffeting analysis, the Fourier transform is
applied in associated with statistical computation and spectral analysis technique. The correction
functions have been added in transformation steps. Furthermore, the modal analysis technique in
generalized coordinates has been applied for decomposition from the multi-degree-of-freedom
motion system into the single-degree-of-freedom. Thus, the core of the computational
frequency-domain buffeting analysis relates to modal decomposition method and modal-based
response superposition technique that are associated with the spectral analysis method. Stepwise
procedure for the gust response prediction of bridge in the frequency domain is expressed in
Figure 2.1. Spectral transformations in frequency-domain gust response are shown in Figure 2.2.

In the time-domain approach or direct buffeting analysis, the turbulent loading can be treated
as multi-variate random Gaussian processes and acting on discrete structural nodes. Simulation
techniques are usually used in many cases to generate the turbulent loading at structural nodes.
Either unsteady buffeting forces (using correction functions as the aerodynamic admittance and
coherence functions) or complete unsteady buffeting forces (using the indicial response functions
or the impulse response function) are formulated in the time and frequency domain. Discrete
frequency-dependant functions can be transformed into the continuous time functions using some
techniques as the rational function approximation. Direct integration methods are applied to
obtain time-history solutions of the generalized responses, and time-histories of global responses
can be estimated accordingly. Geometrical nonlinearity and aerodynamic one can be taken into

account in this time-domain buffeting analysis. Time domain procedure is shown in Figure 2.3.
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2.3 Literature reviews on buffeting forces and gust response prediction

It is supposed that the earliest works on computational buffeting response carried out for
airplane’s wings and airfoils carried out by some authors as Wagner 1925, Kusner 1936, Sears
1941 and Liepmann 1952. In their approach, the indicial function in the time domain was used to
express relationship between the unsteady aerodynamic lift forces and instantaneous angle of
attack, instantaneous force coefficient. In the Wagner 1925, the indicial functions were expressed
under empirical form of polynomial one on the Laplace variable. Kusner 1936 developed the
Wagner’s problem to solve unsteady aerodynamic response of airfoil under uniform gust flow,
whereas Sears 1941 obtained solution for the vertical gust flow. Liepmann 1952 went further with
the theoretical buffeting analysis for the airplane’s wings which the spectral and statistical
analyses were introduced. Liepmann 1952, moreover, proposed the empirical formula for the
frequency-dependant aerodynamic admittance as approximation of the Sears function. Two
theories as the strip theory and the quasi-steady theory have been applied as the main milestone
for the gust response problem. It is generally agreed that, however, framework on the buffeting
forces and the gust response prediction of civil structures like towers and bridges in the frequency
domain proposed by Davenport 1962 which the spectral analysis and statistical computation in
associated with the modal-based structural analysis were cored in his theory on the gust response
prediction of bridges. He also proposed to use so-called correction functions such as aerodynamic
admittance function, coherence function to treat with some limitations of the quasi-steady theory
and the strip theory. This spectral-based computational procedure (the Davenport’s method) for
the gust response prediction of towers, tall buildings and bridges has still been applied so far.
Though some assumptions and uncertainties accepted for their existence, but the Davenport’s
method basically validates for the gust response prediction of practical structures and bridges.
Iwin 1977 discussed about the Davenport’s method with some developments and his practical
application for the gust response analysis of the Lions’ Gate suspension bridge. He suggested
usage of the von Karman-typed power spectral densities for the atmospheric turbulence and
coherence of the buffeting forces.

The buffeting forces generally depend on the geometrical configuration of bridge deck,
ongoing turbulent flow and reduced frequency. The quasi-steady buffeting forces firstly proposed
using the quasi-steady theory in the time domain. These buffeting forces are corrected by
supplementing the frequency-dependant aerodynamic admittance function to account difference
between the turbulence and the buffeting forces in the frequency domain as well as to cope with

limitation of the quasi-steady theory (Davenport 1962, Iwin 1977). With account of the spatial



distribution characteristic of the buffeting forces, the spatial coherence function is added to treat
with limitation of the strip theory, the unsteady buffeting forces are formulated. At low reduced
velocities, however, the wind-structure interaction and the bluff body flow affect considerably on
the unsteady buffeting forces, the so-called unsteady fluid memory effect must be taken into
account (Scanlan 1974, Lin an Yang 1983, Chen and Kareem 2002). In these cases, the unsteady
response of structures is affected by not only present state but also past history of response. The
complete unsteady buffeting forces are also modeled comprehensively in the time domain using
either the indicial response functions (Wagner 1925, Kussner 1936, Scanlan 1976&1993, Costa et
al. 2007) or the impulse response functions (Lin and Yang 1983, Scanlan 1993, Chen and Kareem
2002), the convolution operation is also used in this time-domain formulation. Discrete
frequency-dependant functions in the frequency domain can be transformed into the time-domain
continuous function by using some techniques such as the rational function approximation (Chen
and Kareem 2002).

Coupling between the buffeting forces and self-excited aeroelastic forces must be taken into
account for the gust response prediction of structures because the unsteady aerodynamic forces
are combined potentially by the turbulent-induced buffeting forces and the self-excited flutter
ones in high reduced velocity range. It should be born in mind that the self-excited flutter forces
can influence on the gust response of structures due to the aeroelastic forces related directly to
response of structures themselves, but inversely the turbulent-induced forces can not affect on the
critical condition of the aeroelastic instability of structures due to the aerodynamic
damping-related mechanism. Frequency-domain formulation of the gust response prediction of
bridges with the aeroelastic forces coupling developed and discussed by some authors (eg.,
Matsumoto et al. 1994, Jain et al. 1996, Katsuchi et al. 1997 and so on). Some studies and
experiments (Matsumoto et al. 1997, Scanlan et al. 1999) indicated that the flutter derivatives
determined in the turbulent wind are more favorable condition for critical instability than that in
smooth wind, however, some recent studies also pointed out in some cases that flutter derivatives
in the turbulent wind impress the flutter instability. The gust response of bridges is formulated in
the time domain using the rational function approximation and the state-space transformation in
some literatures (eg., Matsumoto et al. 1996, Chen, Matsumoto et al. 2000, Aas-Jakobsen and
Strommen 2001, Borri et al. 2005 and so on).

Prospectively, the state-of-the-art buffeting response prediction have cored on some
computational techniques and research orientations, new fronts such as follows: (i) New
approaches on the correction functions as the aerodynamic admittance and coherence for
refinement of the gust response prediction; (ii) Time-domain gust response prediction and the

gust response controls in coupling with the aeroelastic forces and with account of geometrical and



aerodynamic nonlinearities; and (iii) New approaches on the gust response prediction using some

other tools such as the proper orthogonal decomposition (POD).

2.4 Current assumptions and uncertainties

Until now, the unsteady buffeting forces and the gust response prediction of bridges still exist
some main assumption and uncertainties as follows:

(1) Wind simulation: Unsteady buffeting loading formulated from atmospheric turbulence is
considered as the stationary random processes. So far, the ongoing wind turbulence itself
is assumed as stationary Gaussian random processes, however, the turbulence is generated
by not only ongoing turbulent flow itself, but the wind-structure interaction and the bluff
body flow. Some studies indicated that unsteady turbulence and forces can be generated
due to wind-structure interaction at high reduced velocities and the fluid memory effect
should be taken into account for the unsteady buffeting forces. Moreover, turbulent
simulation that is used for the unsteady forces in the time domain always contain source
of input uncertainty. Therefore, accurate modeling, representation and simulation of the
wind turbulence still remain further interesting questions.

(2) Quasi-steady theory: The static aerodynamic coefficients with the relative attacked
angles for modeling the unsteady forces have been approximately linearized around
balanced attacked angle (usual as zero angle) in the quasi-steady theory. The relative
unsteady velocity, moreover, also has been simplified and linearized under the
quasi-steady theory. Another interpretation of this quasi-steady theory is the instantaneous
buffeting forces are proportional to the instantaneous fluctuating velocities, or spectral
contribution of the buffeting forces is similar to that of the turbulence in the frequency
domain. Although, the quasi-steady theory is corrected via using the frequency-dependant
aerodynamic admittance, but uncertainty still remains from linearized approximations and
expansion used in this theory.

(3) Strip theory: It is assumed that the unsteady buffeting forces on certain finite element
(or strip) are generated by only the turbulence on this element. However, the turbulent
field behaviors as typical coherent, in which the turbulence at any point is affected from
surrounding points in the field. Spatial distribution characteristic of the unsteady buffeting
forces play very important role in the gust response of bridges. It is generally agreed that
the strip theory can be applied for the buffeting response prediction when some following
conditions are validated: (i) The scale of turbulence (L,x) are much higher than the
chord-wise width of bridge deck. This condition might be invalid in case the reattachment
and the local separation bubble occur in the chordwise model surface. Influence of ratios
of L,x/B and B/D on the occurrence of separation bubble, reattachment and spatial



distribution of fluctuating surface pressure must be clarified on further studies; (ii) Only
2D wind-structure interaction is taken in consideration, the influence of 3D interaction or
one of structural components (stays, towers, curb, handrail...) on the ongoing flow might
not occur, this also means that structure do not obstacle in the ongoing flow; (iii) The
wind direction might be relatively normal to structure axis.

It seems that the strip theory is valid with streamlined girders and thin plates, however, it
is inapplicable in cases of the bluffer bodies, when the wind-structure interaction and the
bluff body flow exhibit strongly.

(4) Correction functions: The aerodynamic admittance function and the spatial coherence
function have been used to treat with limitations of the quasi-steady theory and the strip
one as well as to formulate the unsteady buffeting forces. Firstly, the frequency-dependant
aerodynamic admittance is used to compensate difference between the spectrum of
turbulence and the spectrum of unsteady buffeting forces in the frequency domain. So far,
the quasi-steady single-variate aerodynamic admittance function is extracted from
physical measurements as the transfer function between the turbulences and the bufteting
forces. Recently, some literatures discussed new approaches on determination of the
admittance function using nonlinear and multi-variate admittance functions, complex
admittance function and so on. Secondly, the spanwise coherence is used in account of
spanwise distribution of the full-scale buftfeting forces. It is also assumed coherence of
forces is similar to that of turbulence, thus the turbulent coherence has been used for
replacing the force coherence in the experiments and for formulating empirical formula of
the force coherence. Some recent researches pointed out that the force coherence always
exhibits more-correlated than turbulent coherence. This higher coherence can be
convinced with the wind-structure interaction and the bluff body flow (Matsumoto et al.
2003).

(5) Coupling between structural modes: Under the assumption that natural frequencies are not
be close enough that multimode coupling might not occur, thus the structural responses
are superposed among modal responses (mode-by-mode superposition) thanks to the
Squared Root of Sums of Squares (SRSS) principle. Also the superposition principle of
the response of each mode can be applied under the linear behavior of structure. For
long-span flexible bridges (cable-supported bridges), free frequencies of fundamental
modes trend low values and close together, thus under mechanical oscillations and
aerodynamic vibrations, they must have coupled. When fundamental modes couple or
nonlinear approach accounts, the modal superposition and generalization might not be
active. Further superposition techniques of generalized response should be proposed.



2.5 Unsteady buffeting forces

In the time domain, the uniform buffeting forces per unit deck length (consisting of Lift, Drag,
Moment: L (t), D, (t), M, (t)) are determined in the time domain from the turbulent field u(t), w(t)

due to the corrected quasi-steady theory (Davenport 1962):

Ly (=1 pUBIC, <a0>zLu<n>2”()+<c () + Co (@ )00 (M) () (2.1-a)
D, ()= PU*BIC (@) 0, (M 22+ (€ ()~ C (aO»ZDW(n)W“)] (2.1-b)
My (6= AU *B2[C (@) 210 () 25+ Co (@) 2 () ) 2.1-¢)

whereC_,C,,C,, : aerodynamic static coefficients at balanced angle of attack ¢, (usuale, =0°);

C..C,,C, : first derivatives with respect to angle of attack at balanced angle

~_dC
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functions between turbulent components and turbulent-induced forces (their absolute magnitudes

w0 F=LD,M 5y, (n) (F=LD,M;o=u,w) : aerodynamic transfer

refer as aerodynamic admittance functions); p, B, U: air density, width and mean velocity,
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respectively.

Fig. 2.4 Uniform buffeting forces on bridge deck

In the frequency domain, transforming the time-domain uniform buffeting forces into a form
of power spectral density using second-order Fourier transform, omitting cross correlation
components between u(t) and w(t), the power spectral densities of the uniform buffeting forces
can be obtained:

S, (= (% _AUB) [CLzLu(m“Sw(”)

(n)

+(CL+Cp)’ ZLW(”) ] (2.2-2)
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where S, (n),S,(n),S,,(n): power spectra of lift, drag and moment, respectlvely; S, (n),S,,,(n):

auto power spectra of uni-variate turbulent processes u(t), w(t).

It is indicated that at low and medium reduced velocity ranges, however, the unsteady fluid
dynamics must account for both past and present motion histories, therefore the fluid memory
effect of the unsteady fluid flow should be considered in the unsteady buffeting forces. Therefore,
complete unsteady buffeting forces can be formulated comprehensively in the time domain using
convolution integration operation and response functions. The response functions can exploit
either the indicial response functions or the impulse response functions.

The unsteady buffeting forces using the indicial response functions are determined in the time
domain as follows (Scanlan 1974, Chen and Kareem 2002, Borri et al. 2005):

L,(t)= %pU ZB{__[ 2C D (t —r)%dr + j;(C'L +C,)o,, (t- T)?dl‘} (2.3-a)
D,(t) = %pU 2B{jAZCD(I)Du (t —z‘)?dr + j;)(C,'3 -C D, (t— r)?dr} (2.3-b)

M (t)—— U’B {jc @, (t— T)U(T)dT+JC;\,,(DMW('[—T)WL(JT)

dr} (2.3-¢)
where @, D, Py, Ppy> P> Py Indicial response functions defined as relation functions
between lift, drag, moment and indicial first-order derivatives of turbulent components u(t), w(t).

The unsteady buffeting forces using the impulse response functions are modeled in the time
domain as follows (Lin and Yang 1983, Chen and Kareem 2002):

L(t)_%pu {f (- T)U(T)d +jwhw(t—r)?dr} (2.4-a)
D (t)——pU {f o (t = T)u( ) dz +jIDW(t—r)%dr} (2.4-b)

1 u(s) I W)
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dz} (2.4-¢)

where |, 1 > loys Tows lwus Iww @ 1mpulse response functions defined as relation functions

between lift, drag, moment and impulse turbulent components u(t), w(t).



The inter-relations between the indicial response functions and the impulse response functions
can be deduced as follows (Chen and Kareem 2002):

1,,(s) =2BC, @, (0)5(s) + @, (5)], 1,,(5)=B(C, +Cp)|®,,(0)5(s)+ D, (5)] (2.5-a)
10 (8) = 2BCo @0, (0)5(5) + D, ()], 15, (8) = B(Cyy —C |00, (0)5(5) + 1 ()] (2.5-D)
11y (8) = 2BC,y [, (0)5(5) + Dy (5)], 144y(5) = B, |04, (0)5(5) + D, (5)]  (2.50)
where s: time-nondimensional variable s=Ut/B; & : Dirac delta function.

The inter-relations among parameters of the unsteady buffeting forces such as aerodynamic
admittance functions, indicial functions and impulse functions can be obtained as follows (Chen
and Kareem 2002):

T'w=2BC_z,(N); lw=B(C,+C.)z. (N (2.6-a)
Tou =2BCp 75, (N); Tow = B(Cpy —C ) oy (M) (2.6-b)
Twe =2B%Cyy 240, (N) 3 Tuw = B2Cy,y 24 (N) (2.6-C)
®r, = 26, (N) (2.6-d)

where 1r,: Fourier transform of the impulse response functions (F=L,D,M v=u,w) as

IFu:

O 3

I, (De ' “dt = j I, (s)e™ds; @, : Laplace transform of the indicial response functions
0

(F=LD.M v=uw)as @, =(ik)[ D¢, (s)e"ds.
0

2.6 Frequency-domain gust response prediction

The spectral-based gust response prediction of full-scale bridges in the frequency domain is
briefly presented hereafter. Multi-degree-of-freedom motion equation of structures immersed in

the atmospheric turbulent flow subjected to the turbulent-induced forces is expressed:

MX (t) + CX (t) + KX (t) = F, (t) (2.7)
where M, C, K: globally mass, damping and stiffness matrices, respectively; X, X, X : deflection
vector and its derivative vectors; Fp(t): full-scale buffeting forces.

Transforming into generalized coordinates normalized by the mass matrix using M truncated

low-order structural modes (M << M , M: number of dynamic degree-of-freedom of structure), it

satisfies:
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where £ : generalized coordinate vector &(t) ={& (1),&,(1),...&, (1) ; ® : modal matrix
<D=[¢1,¢2,...,¢M]; I: unit matrix; =: diagonal damping matrix; Q: diagonal stiffness matrix
containing squared natural frequencies Q=diag(o,’,®,’,...,@,") . Single-degree-of-freedom

motion equation in the i-th generalized coordinate excited by generalized buffeting forces can be

obtained accordingly:
GO+2U@&EO+ oS O=4TF, (1) (2.9)
where & (t) : i-th generalized coordinate; w,,¢; : circular frequency and damping ratio,

respectively.

Uniform buffeting forces in unit length has been defined in Egs.(2.1-a,b,c). However, the
buffeting forces are correlated due to their spatial distribution, thus the full-scale bufteting forces
must be taken into account this spatial force distribution. Difficulty here is how to decompose the
full-scale buffeting forces onto the generalized coordinate in order to determine the generalized
response. Davenport 1962 proposed a decomposition technique basing on the joint acceptance
function which characterize for combination between the coherence function and the structural
modal functions.

The single-degree-of-freedom equation Eq.(2.9) in the i-th generalized coordinates is

transformed in to frequency domain using second-order Fourier transform:

SLi(M=HM) " ¢7Se (Mg, (2.10)
where S, (n), Sg;(n): power spectral densities of the i-th generalized response and of
generalized full-scale buffeting forces, respectively; |H(n,)|*: mechanical admittance function or
frequency response function corresponding to natural frequency n; of the i-th structural mode as
(H@)P=la-n?/ny w42 /]

Three displacement components of bridges can be expressed such following forms as:
h(xt) = Y ROBE®;: PG = Y B (OBE®D; a(xt) =Y a(0&1  (2.11)

where x: spanwise local coordinate; h,(x), p;(X),;(X) : modal values corresponding to vertical,

lateral and rotational displacement components.
Thus, power spectral densities of the full-scale buffeting forces associated with the i-th

generalized coordinate can be obtained:
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where L,,L,,D,,D,,M,M, : force coefficients defined as L, =%pU ’C,B*, L, =%pU ‘c B?,
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COH , (X,,Xg,N) : spanwise coherence function of turbulent component v (t) between two points
xa and xg, o(t) =u(t) or w(t).

It is noted that in the practical applications, some availably empirical formulae have been used
to determine: (i) Auto spectral density function of the longitudinal and vertical turbulent

components S, (n),S,,, () ; (i1) Aerodynamic admittance functions
Ye,(N),F=L,D,M and v=u,w; (iii) Spanwise coherence functions COH  (X,,Xz,N).

Covariance of the generalized response can be obtained accordingly:
ol =S, (madn (2.12)
0

Covariance of the global response can be estimated due to the squared root of the sums of the

squares (SRSS) principle as follows:

\/2@ r(X)or, (2.14)

where 1: displacement components r=h, p,a; ¢, ;: modal vector of i-th mode in displacement

component r; N number of combined modes for displacement component r; &, :

B when r=horp

parameter §, =
1L whenr=«a

Due to influence of the frequency response function, the resonant responses occur locally at



the structural natural frequencies and background one at other frequencies outside these natural
ones. Contribution of the resonant and background responses on the global responses can be

estimated as follows:
oy =04 +0p (2.15)

2 2 . .
where o,05: background response and resonant one, which are determined as:

ol = \/ 52r2(x)j S,;(nydn (2.16-a)

:\/i 5i2ri2(x)%sg,i(ni) (2.16-b)

In practical applications, the resonant response dominates the global response for flexible
long-span structures, especially for vertical and rotational displacements, whereas the background

response generally dominates for column-like structures such as tall buildings, towers.
2.7 Time-domain gust response prediction

In the time-domain gust response prediction, the time histories of turbulence acting on structural
nodes are input data. The turbulent field is considered as multi-variate spatially-correlated
random Gaussian processes. Since it is difficult to obtain the time histories of turbulence field in
the structural site, therefore the digital simulation techniques must be required to generate the
time histories of turbulence field. So far, digital simulation of the turbulent field is based on two
approaches: spectral representation methods and time series representation ones. In the former,
decomposition techniques such as the Cholesky’ decomposition and modal one have been applied,
whereas some methods such as the auto-regressive technique (AR), moving-average technique
(MA) and auto-regressive and moving average technique (ARMA) include in the later.

Either the unsteady buffeting forces using the aerodynamic admittance or the complete
unsteady buffeting forces using the indicial response functions or the impulse response function
can be used for the time-domain buffeting analysis. Relationship between the aerodynamic
admittance and the indicial response function, the impulse response function has been established.
The aerodynamic admittance functions determined as discrete frequency-dependant ones which
are required to transform into the continuous functions in the time-domain analysis. Rational
function approximation, known as the Roger’s approximation is the mostly utilized for this

purpose. Aerodynamic transfer functions can be expanded using rational function approximation:
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where A. A, ;..»dp,; frequency-dependant coefficients (j=1,2,...,m.,) determined by nonlinear

curve-fitting technique.
Then the indicial response function, the impulse response functions and the unsteady buffeting

forces can be determined as follows (Chen and Kareem 2000):
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where g, ;(t) : augmented aerodynamic state coefficient. Noting that components of lift force

due to w-turbulence are expressed here for sake of brevity. Similar formulation for other buffeting
force components due to u-,w-turbulences can be deduced.

Full-scale buffeting forces over entire length L can be determined (Chen and Kareem 2000):
L
L1 =L[[, - @)+, - )L, (0B (2.19)
0

where subscript ¢ denotes to the center of the element; J  (t),J,,(t): impulse functions whose

Fourier transform counterparts J (t),jLW (t) referred as the joint acceptance functions.
Solution of the single-degree-of-freedom equation Eq.(2.9) can be found thanks to any direct
integration methods as Newton-beta or fourth-order Runge-Kutta methods. Accordingly, the time

histories of generalized response and global response can be obtained.
2.8 Conclusion
Modeling of the unsteady buffeting forces and background of the gust response prediction of

full-scale bridges has been presented in this chapter. Moreover, limitation and uncertainties in the

theory of the gust response prediction of bridge have been also discussed.
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Chapter 3

Spatial Distribution and Correlation of Unsteady Pressure
Fields around Rectangular Cylinders

3.1 Introduction

One of the key elements the gust response prediction of structures is to determine characteristic
of the spatial distribution of the turbulent-induced forces (known as the buffeting forces), because
atmospheric turbulence is considered as typical coherent field in which spatially mutual influence
of point-like turbulences and point-like turbulent-induced forces plays very important role. This
is known as limitation and uncertainty of the strip theory which has been applied for the gust
response problem of airplane wings in the aeronautical field, and so far become the key point for
modern analytical method to predict the random gust response of bridges and structures due to
turbulent wind. Davenport 1962 mentioned about the strip theory as follow: “... that the
structures (or structural members) are sufficiently slender for the secondary spanwise flow and
redistribution of pressures to be neglected, such the pressure on any section of the span are only
due to the wind incident on that section,...”. This declaration suggests that the influence of
structure on the ongoing turbulent flow must be not negligible. For spaced structures, spatial
distribution of the buffeting forces can be considered in all three direction of turbulence
corresponding to three axes of structure to which are deepwise, chordwise and spanwise
directions of structural section in the cases of line-like structures such as bridges. Dimensions of
turbulence can be defined via nine scales of turbulence in the three direction of turbulent wind
with respect to the three structural axes. Accordingly, the strip theory might be valid only in cases
that the dimensions of structures are smaller than those of ongoing turbulences in which the
wind-structure interaction does not occur. Concretely, some experience indicated that this strip
theory validated for the case of buffeting drag forces due to the turbulent wind where the scale of
longitudinal turbulence (=100+200m) is much higher (about 100 times) than the depth of
structures, whereas in the case of buffeting vertical forces the scale of vertical turbulence in the

chordwise direction (*30+50m) is about 10 times higher than the width of structure (Larose



2003). This means that validation can be met only with small-size structural components
immersed in large turbulence, but not to satisfy with the modern large-scale structures. Davenport
1962 also discussed that this assumption was reasonable for such structures as open lattice truss
girders and cables, but not likely to be reasonable for large-scale structures such as bridges,
buildings and spaced structures and so on.

In the modern large-scale structures, when the spatial scales of turbulence exhibit not much
higher than structural dimensions as validation of the strip theory required, the wind-structure
interaction occurs with appearance of the bluff body flow and secondary flow on the sectional
surface. Therefore, effects of the bluff body flow and the secondary flow induce the redistribution
of the unsteady pressure field and buffeting forces on structures as well (Davenport 1962,
Matsumoto 2000). The redistribution of the unsteady pressure field on the sectional surface is
convincing for the failure and uncertainty of the strip theory assumption in determination of the
full-scale buffeting forces and the gust response prediction of structures. Relation between the
wind turbulence and turbulent-induced pressure/ forces contains uncertainties from limitation of
the quasi-steady theory and the strip theory (Kawai 1983). Theoretically, spatial distribution of
the unsteady pressure and buffeting forces exhibits in all the three directions of structures,
however, only the spanwise distribution play important role and is usually taken into account for
the line-like structures and bridges. In the gust response analysis of bridges, the spanwise
distribution of the buffeting forces is considered via the spanwise coherence function in the nodal
(point-like) buffeting forces or the so-called joint acceptance function in the full-scale (line-like)
buffeting forces and structurally generalized coordinates.

It is agreed that spatial distribution and coherence of the buffeting forces can be determined by
experimental approach. In many practical cases, however, it is difficult to obtain characteristics of
the spatial distribution of the buffeting forces. Therefore, it is generally assumed as the simplified
approach that the spatial distribution and coherence of the buffeting forces are similar to those of
the ongoing turbulences which are more appropriately obtained by both the experimental tools
and empirical formulae. Some recent literatures, however, indicated that the spatial distribution
and spanwise coherence function of the buffeting loading are better correlated than those of wind
turbulence (Matsumoto et al. 2003, Larose 2003). Full-scale measurements of the buffeting lift
forces accompanying with model test observations in the boxed girder deck of Ikara bridge also
confirmed again the result above. Accordingly, the uncertainty of the strip theory and the
coherence model so far can cause underestimation or overestimation of the buffeting response
prediction.

Further studies on the spatial distribution of buffeting forces must be required for more

understanding and clarification of mechanism of the better correlation of the buffeting forces than



the turbulence. The better correlation mechanism of the buffeting forces is related to the bluff
body flow and secondary one which are associated with the wind-structure interaction
phenomena such as formations of separation bubble and reattachment flow, of vortex shedding on
the sectional surface. Obviously, as above-mentioned the mechanism of higher correlation of the
buffeting forces can not be clarified by the forces themselves, but the unsteady pressure field
around sectional surface. Moreover, the buffeting forces are obtained easily by the integration of
unsteady pressures in chordwise strips and distributed area of pressure taps on the model section.
In this chapter, the spatial distribution and spanwise correlation of the fluctuating pressures
will be discussed to be more understanding of the high correlation of the pressure and buffeting
forces than the ongoing turbulence. Physical measurements of the unsteady pressure fields are
carried out on some typical rectangular cylinders B/D=1 and B/D=5 in some unsteady flow
conditions of smooth, turbulent and fluctuating flows with emphasis on the effect of the bluff

body flow on the better correlation of the buffeting forces.

3.2 Some literature reviews on spatial distribution and correlation of
unsteady pressure field

In the wind engineering and the wind effects on structures, the experimental studies of unsteady
pressure fields around physical models in the wind tunnels play very important role. Especially, it
is very essential in studying on the bluff body aerodynamics and mechanism of wind-structure
interaction phenomena (Matsumoto 2000). It is discussed that the local pressure distribution at
the leading edge zone of models can reveal generation mechanisms of aerodynamic phenomena
and wind-induced vibrations (Matsumoto et al. 1996, Matsumoto 2000). Moreover, the buffeting
forces (drag, lift and moment) can be estimated thanks to the spatial integration of the fluctuating
pressure field around the sectional model. Chordwise distribution of the unsteady pressure field
on the harmonic oscillatory models can be used for identification of the aerodynamic derivatives
of the self-excited flutter forces (Matsumoto et al. 1996), that on motionless models can reveal
the bluff body flow pattern around model’s surface (Hiller and Cherry 1981) and so on. Studying
on the spanwise distribution of the unsteady pressure field on the physical models can clarify
mechanism of correlation and coherence of the buffeting forces and its dependence on the bluff
body flow (Matsumoto et al. 20003, Larose 2003).

In order to investigate the relationship between chordwise distribution of the unsteady pressure
field and the wind-structure interaction phenomena, Hiller et al. 1981 and Cherry et al. 1984
carried out the physical measurements of the surface pressure on the rectangular section as

semi-infinity flat plate with slenderness ratio B/D=16 in smooth and turbulent flows associated



with the smoke visualization. They obtained that occurrence of the high pressure region (both
normalized mean pressures and fluctuating pressures) in an effect of the separation bubble,
moreover, the reattaching point appeared at transition of low mean pressure or near afterward
peak of pressure fluctuation. Furthermore, the effect of free-stream turbulence affected the
dimension of separation bubble in which the lengths of separation bubble were 5D (D: model
depth) in the smooth flow and 3D in the turbulent flow, especially, the spanwise scale of
longitudinal velocity fluctuation was found to enlarge near reattachment region. Kiya et al. 1983
also investigated the pressure distribution on the semi-infinite rectangular model. They found that
the enhancement of rolled-up vortices associated with the separation bubble produced larger and
larger vortices out of the separation bubble.

Matsumoto et al. 2003 focused on clarification the mechanism of higher spanwise coherence
of buffeting forces due to both distribution of surface pressure and the wind-body interaction.
Series of experiments on two rectangular and hexagonal sections with B/D=5 in the different
unsteady flows: smooth, turbulent and 2D fluctuating flows were carried out. It is discussed the
the formation of separation bubble from the leading edge to roughly 7B/8 long in smooth flow
and 3B/8 long in turbulent flow with rectangular section, whereas expanding almost B in both
flow conditions with hexagonal section. They suggested that the secondary spanwise flow or 3D
separating bluff body flow affected by the formation of separation bubble and reattachment on
model and the approaching flow itself. Investigation on surface pressure of B/D=5 sectional
model in two unsteady flows: 2D (uniform) and 3D (non-uniform) gust flows were also presented
by Matsumoto et al. 2004, Matsumoto et al. 2005a, Shirato, Matsumoto et al. 2005 with
description of around-body flow pattern. They argued that the elongation of separation bubble
due to reduced frequencies of gust flow, the formation of vortex shedding near the leading edge
and the movement toward the trailing edge affected to the spanwise distribution of surface
pressure. Effect of harmonic motion on pressure distribution, power spectral densities and
spanwise coherence have been investigated by Matsumoto et al. 2004, they observed that
pressure distribution, spanwise coherence did not be affected by the harmonic body motion.

Larose et al. 1998, Larose 2003 measured the pressure fields on streamlined boxed models
with the different side ratios and with respect to different turbulent flow characteristics, attacked
angles and geometrical configuration (with and without barriers). Haan et al. 1998 carried out
physical measurements of the unsteady pressure field on rectangular boxed section in different
turbulent flow conditions to investigate the effects of turbulence on the spanwise coherence of the
surface pressures. He showed how the aerodynamic lift and moment are correlated over spanwise
separations larger than any characteristic length of the turbulent flows, and discussed on how this

correlation reduces with increase of intensities of turbulence and increase of scales of turbulence.



3.3 Wwind tunnel experiments

Direct measurements of the unsteady surface pressures on some typical rectangular cylinders with
slender ratio B/D=1, B/D=5are carried out on the open-circuit wind tunnel of the Bridge and
Wind Engineering Laboratory at the Kyoto University, with a working section of 1.0m wide x
1.8m high x 6.55m long under some unsteady flows of the smooth flows, turbulent flows and
three-dimensional fluctuating flows as well. In some cases of usage of the model B/D=1, the
Splitter Plate (S.P) is also installed at the wake of model B/D=1 in order to study the effect of the
wake flow and the Karman vortex shedding on the spatial distribution of unsteady pressure fields.

It can be predicted from previous studies that model B/D=1 is favorable for dominant
formation of Karman vortex shedding in the wake of model, whereas model B/D=5 is typical for
formation of separated and reattached flows on model surface. In case the splitter plate was
installed in the wake of model B/D=1 in order to suppress the wake flow and effect of Karman
vortex shedding. Identification of the bluff body flow is usually required for understanding flow
behavior and mechanism of oscillation on physical model. The bluff body flow can be identified
directly due to flow visualization techniques. Pressure distribution is also used for this purpose

with experience and knowledge of flow behavior on some typical models.
3.3.1 Experimental apparatus in turbulent flows

Motionless models of the rectangular cylinders B/D=1 and B/D=5 are used, in which the model
B/D=1 is installed without/with the Splitter Plate. Turbulent flows are generated artificially by
grid devices which was located in 750mm upstream from the model’s leading edge. Wind
turbulence and unsteady pressures are measured in the three turbulent flows corresponding to
three mean wind velocities U=3, 6 and 9m/s (flow case 1, flow case 2 and flow case 3,
respectively). Basic turbulent flow parameters are determined as the turbulent intensities as
follows: 1,=11.56%, 1,=11.23% (case 1), [,=10.54%, 1,=9.28% (case 2), 1,=9.52%, 1,=6.65%
(case 3). Pressure taps are arranged on one surface of models, consisting of 10 pressure taps of
model B/D=1 and 19 pressure taps of the model B/D=5 in the chordwise direction (see Figure
3.1). Mean and turbulent components of the basic turbulent flow (without installation of the
model) are measured thanks to the hot-wire anemometer using x-type probes (Model 0252,
Kanomax Japan, Inc.) and calibrated and linearized by a constant-temperature anemometer (CTA)
(Models 1013, 1011, Kanomax Japan, Inc.). Unsteady surface pressures are measured by

multi-channel pressure measurement system (ZOC23, Ohte Giken, Inc.). It is noted that turbulent



components and surface pressures are imultaneously obtained in order to investigate in the time
domain. Electric signals were filtered by 100Hz low-pass filters (E3201, NF Design Block Co.,
Ltd.) before passed through A/D converter (Thinknet DF3422, Pavec Co., Ltd.) with sampling
frequency at 1000Hz in 100 seconds.

B/D=1 B/D=1 with S.P B/D=5
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Fig. 3.1 Experimental models and pressure tap arrangement

a. Model B/D=1 b . Model B/D=5

Fig. 3.2 Images of experimental models in wind tunnel test: a. model B/D=1, b. model B/D=5
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Fig. 3.3 Flow generation devices: a. grid turbulent generator, b. 3D fluctuating flow generator

3.3.2 Experimental apparatus in fluctuating flows

Motionless model of the rectangular cylinder B/D=5 with dimension of 300mm wide x 60mm
deep x 890mm is used. Mean wind velocity and fluctuating velocity are measured by the hot-wire
anemometer with x-type probes (model 0252, Kanomax Co., Ltd.). Though 779 pressure holes
including 19 chordwise and 41 spanwise columns are arranged on one side of the model surface,
but only limited number of pressure taps in region between Omm and 250mm in the spanwise
direction is used in this study. Three-dimensional fluctuating flow is generated by specific devide
(see Figure 3.3b) which is located in 600mm (=10D, D: model depth) upstream from the model’s
leading edge. This device consists of the three parts: two side parts with motionless blades which
produce the smooth flows and the center one with harmonic moving blades which generate the
fluctuating sinusoidal flow. Spanwise convection between the smooth flows in the side parts and
the sinusoidal one in the center part produces the so-called three-dimensional fluctuating flow.

It is noted that the moving blades in the center part is driven harmonically by electric motor at
fixed frequency of 3Hz (also known as characteristic frequency of the fluctuating flow). The

reduced frequencies (k =bw/U where w: circular frequency of fluctuating flow, b: half of



model widthb = B/2) are controlled in the range between 0.72 and 1.92, corresponding to the
reduced velocities (U,, =U / fD, D: model depth) between 22.22 and 8.33 (see Table 3.1 ) which

must be higher than a potential reduced frequency of vortex-based motion-induced vibration

according to Kiya et al. 1983 ( fLy, /U =0.7, L, : separation bubble length from leading edge to

reattachment point, thus reduced frequency of motion-induced vibration k ~2.4+2.7).

Unsteady surface pressures are also measured simultaneously by multi-channel pressure
measurement system (ZOC23, Ohte Giken, Inc.). Electric signals are filtered by 50Hz low-pass
filters (E3201, NF Design Block Co., Ltd.) before passed through A/D converter (Thinknet
DF3422, Pavec Co., Ltd.) with the sample rate at 1000Hz over 100s.

The longitudinal and vertical intensities of turbulence of the fluctuating flow are measured as
[,=5.12% and 1,=4.12%, respectively. The scales of turbulence are determined as L,x=73.94mm,
Lyx=73.66mm in the chordwise direction and L,;;=23.59mm and L,=22.99mm in the spanwise

direction.

Tab. 3.1 Parameters of fluctuating flows

B(m) | f(Hz) | U(mss) Ure k 035
03 | 3.00 1.47 833 | 1.92
03 | 3.00 1.64 925 [ 173
0.3 3.00 1.97 111 | 144 | £
03 | 3.00 2.20 1246 | 1.28
03 | 3.00 232 13.13 | 122 N
03 | 3.00 2.95 16.66 | 0.96 - »
03 | 3.00 3.93 222 [ 072 ; ‘ | [

-250 -150 -50 50 150 250

Spanwise (mm)

Fig. 3.4 Amplitude of wvertical velocity
fluctuation at base reference points
[Matsumoto,Shirato et al. 2005]

The vertical fluctuating velocity (w-turbulence) is measured at different spanwise positions at
center of model location (but measurement without model) to study the effectiveness of the
fluctuating flow at the mean velocity U=7m/s (see Figure 3.4). It can be seen in Figure 3.4 that
the wind fluctuation varies in the spanwise direction corresponding to characteristic of the
ongoing fluctuating flow: sinusoidal flow and smooth flow and the transit region between two

these flows.



3.4 Chordwise pressure distribution

The chordwise pressure distribution in the turbulent flows is discussed at first, then that in the
fluctuating flows at next. In some extent, knowledge about the wind-structure interaction
phenomena and the bluff body flow which are usually characterized by formation of separated
and reattached flows with separation bubble and that of vortex shedding as well can be obtained
based on distributions of mean and fluctuating pressures in the chordwise direction (Hillier and
Cherry 1981 and Cherry et al. 1984). Normalized mean pressures and normalized
root-mean-square fluctuating pressures in the chordwise positions can be determined from

measured time series of unsteady pressures as following formulae:

Cp,mean = # (31'3)

\/I/N S(p-p)
Cp e =1
p.rms 0.50U 2

(3.1-b)

where p : mean value; p: unsteady pressure; 0.5pU?: dynamic pressure.

Normalized mean and fluctuating pressure distributions in the chordwise positions in three
models are expressed in Figure 3.5. As can be seen that the normalized mean and fluctuating
pressures distribute homogeneously on the models B/D=1 without/with the Splitter Plate,
whereas distribute locally near leading edge on the model B/D=5. Normalized mean and
fluctuating pressures on model B/D=1 without splitter plate exhibit higher than those on the same
model but with splitter plate. Moreover, the distributions of the fluctuating pressures depend on
the turbulent flow conditions, whereas the mean pressure distributions on three models seem not
to with respect to turbulent flow conditions.

Figure 3.6 shows the power spectral densities of the fluctuating pressures at some referred
positions on the three models in the three turbulent flows. Peak frequencies are observed at
4.15Hz, 8.79Hz and 12.94Hz corresponding to three turbulent flows in the case of model B/D=1
without Splitter Plate. It is clear that the Karman vortex formed and shed in the wake in which the
Karman vortex frequency depends on the Strouhal number (S;) which can be determined at
S=0.1285 in these cases. Therefore, the bluff body flow is separated at sharp corners, dominated
by formation of Karman vortex and frequently shed in the wake on the model B/D=1 without
Splitter Plate. In case of the model B/D=1 with Splitter Plate, no frequency peaks are observed,
the Karman vortex is suppressed by the splitter plate. It is supposed the bluff body flow separated

at the sharp corners, expanded all model surface and reattached at the splitter plate.
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In case of the model B/D=5, frequency peaks are observed at 1.22Hz and 2.44Hz (case 1); at
2.44Hz, 4.88Hz, 7.32Hz (flow case 2); at 3.42Hz and 6.84Hz (flow case 3). According to Hiller
and Cherry 1981; Cherry et al. 1984, reattachment point of separated flow may locate at near
after the peak position of fluctuating pressure, and the observed frequency peaks are induced by
rolled-up turbulent vortices shed away at reattachment points toward trailing edge. Thus, bluff
body flow is separated and reattached on the model surface to form separation bubble.
Reattachment points can be determined at roughly positions 6, 7, 8 with respect to an increase of
mean velocities. High mean and fluctuating pressures are observed locally at the leading edge

region in the influence of separation bubble due to local circulation of turbulent vortex inside it.

Figure 3.7 shows distributions of the normalized mean pressures and the normalized
fluctuating pressures in the chordwise direction corresponding to different reduced frequencies in
the fluctuating flows. As can be seen that both the mean pressures and fluctuating pressures
reduce with decrease of the reduced frequencies or increase of the reduced velocities. Peak
locations of the fluctuating pressures seem to move forward to trailing edge with respect to
decrease of the reduced frequencies, this also means that the locations of reattachment point of
separated flows on the model surface move forward with increase of reduced velocities. In
comparison with results of the turbulent flows, moreover, it is noted that the mean pressures
change with the increase of the reduced velocities (or mean velocities) in the fluctuating flows,
whereas the mean pressures stay constant with the increase of the mean velocities in the turbulent

flows.

a. Normalized mean pressure b. Normalized fluctuating pressure
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Fig. 3.7 Normalized mean and fluctuating pressure distributions on chordwise direction in
different fluctuating flows [Matsumoto, Shirato et al. 2005]
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Figure 3.8 shows power spectral densities of all chordwise pressures corresponding to
different fluctuating flows. It is observed that spectral peaks of physical events appear which
might relate to occurrence and movement of roll-up vortices on surface of the experimental

models.
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As can be seen from 3.8, it is supposed that large-scale vortex appear and move on the model
surface at frequency 8.04Hz in the fluctuating flow conditions k=1.92, k=1.45, this large-scale
vortex does not appear at low reduced frequency k=0.72 (or high reduced velocity U;=22.22).
The frequency peaks at multiple frequencies 31.02Hz, 62.03Hz, 93.05Hz occur at all investigated
fluctuating flows k=1.92, 1.45 and 0.72. These multiple frequencies are due to small-scale
rolled-up vortices which break up into smaller vortices during moving from the leading edge to
the trailing edge. However, energy contribution of rolled-up vortices reduces with increase of the
reduced velocities, for example in the case U,=22.22, occurrence of these frequency peaks of the
rolled-up vortices is not clear (see Figure 3.8).

Instantaneous pressures distributions in the chordwise direction at different time points on one
cycle T of the fluctuating flows in different reduced frequencies k=0.72+1.92 are shown in Figure
3.9. High instantaneous pressure regions distribute at leading edge of the model, moreover, the
instantaneous pressures reduce with respect to increase of reduced velocities. It seems that the
instantaneous pressure distribution recover after half of cycle T, this corresponds to the
characteristic of ongoing flows as the sinusoidal fluctuating flow. This finding can be used to

estimate chordwise pressure distribution on other side of model.



Comparisons of the chordwise mean and fluctuating pressures on three experimental models
depending on the ongoing flow conditions (smooth and turbulent ones) are expressed in Figures
3.10+3.12. In the model B/D=1, both mean and fluctuating pressures on the turbulent flow
exhibit higher than those on the smooth flow, especially large difference in the fluctuating
pressures can observed (see Figure 3.10). Due to effect of the Splitter Plate installed at model
wake, there is no difference in the mean pressures between smooth and turbulent flows, but the
fluctuating pressures in the smooth flow express higher than those in turbulent ones at U=3m/s,
6m/s (see Figure 3.11). In the model B/D=S5, it is seen that mean and fluctuating pressures in the
turbulent flow distribute strongly at local leading edge region, whereas those in the smooth flow
distribute wider forward trailing edge. Moreover, the fluctuating pressures in the turbulent flows

exhibit larger than those in the smooth flows.

3.5 ldentification of bluff body flow pattern

As mentioned above, the bluff body flow around B/D=1 is dominated by separated flow on the
model surface and formation of the Karman vortex and shedding at the model wake. With model
B/D=1 with the Splitter Plate, the separated flow is formed at sharp corners of the leading edges,
however reattachment does not occur on the model surface, but stagnate at the wake and no
Karman vortex occurs, this flow is known as time-integrated flow field. In the case of model
B/D=5, it is supposed that both separated and reattached flows occur on the model surface. The
bluff body flow patterns on models B/D=1, B/D=1 with S.P and B/D=5 are expressed in Figure
3.13.

B/D=1 B/D=1 with S.P B/D=5

Wind .
Wind Wind

E> E> DTS TN TN REY

[HANEEENNN] AN NERNT .2 e =/ »
‘// -

— U=3m/s — _ U=6m/s — . U=9mis
Fig. 3.13 Bluff body flow pattern of three experimental models in turbulent flows
[Matsumoto, Shirato et al. 2006]

The bluff body flow patterns at the chorwise direction on the model B/D=5 in the different

fluctuating flows can be identified based on the chordwise distribution of instantaneous surface



pressure and the relative angle of attack (defined by quasi-steady formula: ¢, ~w/U, w:

amplitude of gust flow) as can be shown in Figure 3.14. As a result, the formation of separation
bubble due to the instability of shear layer and formation of vortex-shedding on surface model are

the potential cause to change from the ongoing fluctuating flow on model.
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Fig. 3.14 Bluff body flow patterns in cycle T of fluctuating flows
[Shirato, Matsumoto et al. 2005]

In the case of high reduced frequency k=1.92 (low reduced velocity Ur=8.33) in the
fluctuating flow, it is supposed the separated and reattached flow with formation of vortex
shedding on model surface characterize for the bluff body flow. Moreover, the vortex moves
forward to trailing edge due to change of attack angles. Frequency of this vortex is supposed at
8.04Hz. This well corresponds to the finding in Matsumoto et al. 1986 about the onset of the
shear layer instability enhancement around the frequency k=1.88. 2D-like separation bubble,
furthermore, forms and almost spreads on the entire model surface at the low reduced frequency
k=0.72 (high reduced velocity U,=22.22).



3.6 Spatial distribution of unsteady pressure fields

Spatial distribution of normalized mean and fluctuating pressures that is taken into account area
of whole chordwise length and 200mm spanwise width on the model B/D=5 in the different
turbulent flows is shown in Figure 3.15. It is commented that the spatial distribution of both the
mean and fluctuating pressures in the three turbulent flows (corresponding to mean velocities
U=3m/s,6m/s and 9m/s) concentrates locally at the leading edge region in the chordwise direction,
and exhibit constantly in the spanwise direction.

Figure 3.16 expresses the spatial distribution of normalized mean and fluctuating pressures on
model B/D=5 in different fluctuating flows k=1.92+0.72 (Ur=8.33+22.22). It is noted that the
spanwise length between Omm-+125mm is in scope of the fluctuating flow, whereas the spanwise
length between 125mm-+200mm is in scope of the smooth flow. As can be seen from Figure 3.16
that the mean pressures distribute constantly in the spanwise direction and localize at leading
edge region in the chordwise direction at the investigated reduced frequencies. At the high
reduced frequencies (low reduced velocities), however, the fluctuating pressures distributes
strongly near leading edge in the influence part of the fluctuating flow, moreover, these
fluctuating pressures also distribute considerably in the part of the smooth flow. The fluctuating
pressures distribute more homogeneously in influence of both fluctuating and smooth flows at the
low reduced frequencies (high reduced velocities), furthermore, the fluctuating pressure
distribution at two flows seems to be similar together.

This can be explained that at the high reduced frequencies (low reduced velocities) the
convection between two fluctuating and smooth flows in the spanwise direction occurs weaker

than that at the low reduced frequencies (high reduced velocities).
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Fig 3.15 Spatial distribution of normalized mean and fluctuating pressures on model B/D=5
in different turbulent flows [Matsumoto, Shirato et al. 2006]
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Instantaneous normalized pressure distribution at time intervals of a cycle T of the 3D
fluctuating flows at different reduced frequency k=1.92, 1.44, 0.96 and 0.72, corresponding to the
reduced velocities U,.=8.33, 11.11, 16.67 and 22.22 are expressed in Figures 3.17+3.20. As can
be seen in Figure 3.17, the high pressure regions (both negative and positive pressures) appear in
the fluctuating part on the model surface at the high reduced frequency k=1.92 (or low reduced
velocity U,;=8.33), moreover, the movement of these high pressure regions from leading edge to
trailing edge corresponding to each time interval in the cycle T of the fluctuating flow. On the
contrary, the high pressure regions and its movement also are observed on model surface at the
low reduced frequencies (high reduced velocities), but the high pressure region distributes
spanwise more homogenously on both parts of fluctuating and smooth flows (see Figures 3.18,
3.19 and 3.20). In comparison, the pressure values appear higher at the high reduced frequencies
than the low reduced ones.

It also can be discussed that at the high reduced frequency of the fluctuating flow the
convection or secondary spanwise flow between the fluctuating and smooth flows happens to be
very weak, this can explain why the high pressure region locally appear on only fluctuating flow
part where the fluctuating flow dominates on contribution of the surface pressure fluctuation and
not to spread into smooth flow one, whereas this secondary spanwise flow seems to be strong at
the low reduced frequencies that deduce the spanwise distribution of surface pressure. In the
other word, the spanwise secondary flow and spanwise distribution of the surface pressure have
strengthened corresponding to decrease of the reduced frequency (or increase of reduced
velocities), and low reduced frequencies (high reduced velocities) influence stronger on the

spanwise distribution of the surface pressure.
3.7 Spatial correlation of unsteady pressure field

Spatial correlation coefficient of the fluctuating pressures on three experimental models and at
some flow conditions is studied here. The spanwise correlation coefficient which characterize for
the cross correlation of two time series in the time domain is defined as normalized ratio between

auto correlation and covariance as follows:
Roo, () ot y)u;(t,y +A4y)
%0 Ut y) vty +Ay)?
— Rpipj (Ay) — pi (ta y)pj(tay+Ay)
T0%p A Pi(t.Y) | Pty +AY)

C,o, (Ay)= (3.2-2)

(3.2-b)

C PiPj (Ay)



where: v denotes to turbulence (v =u(t) or w(t)); p denotes to fluctuating pressures; Ay :
spanwise separation.

Figures 3.21+3.23 express the spatial correlation coefficients of chordwise fluctuating
pressures in the spanwise direction at the turbulent flows corresponding to mean velocities
U=3m/s, 6m/s and 9m/s on models B/D=1, B/D=1 with S.P and B/D=5, respectively. Figure 3.24
show the spanwise correlation coefficients of chordwise fluctuating pressures on model B/D=5 at
the fluctuating flows. It is generally agreed that the correlation coefficients in the spanwise
direction depend on concretely investigated positions on the chordwise direction, this is supposed
due to effects of wind-structure interaction and bluff body flow on the model surface.

As can be seen from Figure 3.21 that in the model B/D=1 the correlation coefficients of the
fluctuating pressures in the leading edge exhibits higher that those in the trailing edge. Therefore,
high span correlation of the fluctuating pressures can be observed in the region of high pressure
distribution at the leading edge. In the case of model B/D=1 with Splitter Plate, it seems that the
spanwise correlation coefficients reduce gradually from leading edge positions to trailing edge
ones, however, no much difference in the spanwise correlation of the chordwise fluctuating
pressures can be seen (see Figure 3.22). Thus, installation of the Splitter Plate at the model wake
has suppressed the local distribution of high pressure region at the leading edge and high
spanwise correlation coefficients at this region are not accordingly appeared. As can be seen in
Figure 3.23 as the case of model B/D=5, the spanwise correlation affects to close spanwise
separations between Omm and 125mm, the spanwise correlation decays after this distant
separation 125mm for all cases of mean velocities U=3m/s, 6m/s and 9m/s. Moreover, the high
spanwise correlation is observed at positions 3,4 near the leading edge and in the influence of
separation bubble formed in the model surface. In the fluctuating flows as shown in Figure 3.24,
the spanwise correlation strongly depends on investigated positions. It seems that the high
spanwise correlation occurs at the leading edge region where the high pressure region is observed
at the high reduced frequencies k=1.92 and k=11.11. However, at the low reduced frequency
k=0.72, the high spanwise correlation is observed not in the leading edge region, but in the
trailing edge one.

Spanwise correlation coefficients are compared between smooth and turbulent flows, between
without S.P and with S.P by measurements at some chordwise positions Nos.2,4,6 and 8 in model
B/D=1, effect of Karman vortex on correlation coefficients is also investigated. As can be seen in
Figure 3.25, in the investigated case of model B/D=1, the spanwise correlation in the smooth
flows exhibit larger that that in the turbulent ones. Moreover, it is observed that the spanwise
correlation on model without S.P expresses higher that on model with S.P in both the smooth

flows and turbulent ones.
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3.25 Comparison of correlation coefficients between smooth and turbulent flows and

between without S.P and with S.P, effect of Karman vortex on correlation

coefficients

This finding implies that the Karman vortex (in the case without S.P) increases the spanwise

correlation in such a way as enhancement of the spanwise convection. In almost investigated

cases, furthermore, difference between without S.P and with S.P in the turbulent flows exhibit

larger than that in the smooth flow. Therefore, it is commented that the effect of the Karman

vortex on higher spanwise correlation in the turbulent flows is higher than that in the smooth flow
(see Figure 3.25).
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Fig. 3.26 Comparison of correlation coefficients in different turbulent conditions and effect of

intensities of turbulence on correlation coefficients

Figure 3.26 shows comparison of the correlation coefficients in different turbulent conditions
and effect of turbulent intensities on correlation coefficients as well. Here the turbulent conditions
and the turbulent intensities correspond to mean velocities U=3m/s, 6m/s and 9m/s in the
turbulent flow. As can be seen that no much difference in the spanwise correlation can be
observed with respect to intensities of turbulence, especially on models B/D=1 without S.P and
B/D=5. In comparison, however, higher spanwise correlation can be seen at high intensity of

turbulence (low mean velocity) on the models B/D=1 with S.P and B/D=5.
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Fig. 3.27 Comparison of spanwise correlation coefficients between wind turbulence and induced

pressure, and between experimental models at different turbulent flows

Figure 3.27 shows comparison of spanwise correlation coefficients between wind turbulence
and induced pressure, that between experimental models B/D=1, B/D=1 with S.P and B/D=5 at
different turbulent flows (corresponding to mean velocities U=3m/s, 6m/s and 9m/s). Physical
pressure data have measured at some chordwise positions Nos. 2,4,6 and 8 on the model B/D=1
and Nos. 2,6,10 and 18 on model B/D=5, whereas the fluctuating velocities measured along
spanwise centerline of the models but without installation of the models.

In comparison of the spanwise correlation between the three models, it is observed that the
spanwise correlation coefficients of the induced pressures gradually reduce from the model
B/D=1 without S.P, to the model B/D=1 with S.P and the model B/D=5. It is discussed that the
spanwise correlation reduces with increase of slender ration B/D in the investigated cases. Its is
also supposed that dependence of the spanwise correlation on the spanwise separations decreases
with respect to increase of the slender ratios, as can be seen that the spanwise correlation on
model B/D=5 affect on only separations Omm-125mm, whereas on separations 0mm-+200mm on

model B/D=1. In comparison in the spanwise correlation between u-turbulence and w-turbulence



in the turbulent flows, it is seen that the spanwise correlation of the u-turbulence expresses little
higher that that of the w-turbulence. However, the spanwise correlation of the wind turbulence
decays fast with respect to increase of the spanwise separations. Concretely, the spanwise
correlation of the turbulence only affects at very close separation 0mm-~75mm, the turbulence is
uncorrelated after 75mm in the spanwise direction in these measurements. Obviously, the

spanwise correlation of the pressures exhibits larger than that of the turbulence.

3.8 Conclusion

Spatial distribution and correlation of the pressures has been studied here. Physical measurements
of the pressure and turbulence have been carried out on some experimental models B/D=1,
B/D=5 in some ongoing flows including the smooth flows, the turbulent flows and the
three-dimensional fluctuating flows. With the model B/D=1, the installation of Splitter Plate at
the model wake has been used in some cases in account of investigation of the Karman vortex
effect on the spanwise correlation.

It can be concluded as some following points:

(1) Fluctuating pressure distribute strongly and locally on the leading edge region. In the
fluctuating flows, the spanwise convection and the spanwise distribution of the surface
pressure have been strengthened with respect to decrease of the reduced frequencies
(increase of reduced velocities). It is supposed that the low frequency components can
play more important role on spanwise distribution of induced pressure than high

frequency ones.

(2) Generally, the spanwise correlation depends strongly on such parameters as flow
conditions, investigated positions, experimental models and their slender ratios B/D in the
investigated cases. High spanwise correlation has observed at some positions near the
leading edge regions where the high pressure region localized. The spanwise correlation
in the smooth flows is larger than that in the turbulent ones. Moreover, the effect of
Karman vortex (in the case without S.P) on increases of the spanwise correlation is also
seen. It is discussed that the spanwise correlation reduces with increase of slender ration
B/D.

(3) From the physical measurements, it is verified obviously that the spanwise correlation of
the turbulent-induced forces always exhibits larger than that of the turbulence. The
wind-structure interaction and the bluff body flow reason for the higher mechanism of

spanwise correlation of induced forces than that of the turbulence.
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Chapter 4

Aerodynamic admittance of unsteady buffeting forces on
rectangular cylinders

4.1 Introduction

It is generally agreed that until now the buffeting forces and the gust response of bridges are
being treated under two main assumptions of (1) the quasi-steady theory and (2) the strip theory.
The quasi-steady theory assumes that the turbulent-induced buffeting forces apply the linear
approximation and expansion of instantaneous force coefficients and instantaneous relative
velocity. Moreover, correspondence in the spectral distribution and contribution between the
turbulence and the turbulent-induced buffeting forces in the frequency domain has been accepted
in this quasi-steady theory, this implies that the buffeting forces do not depend on the frequency.
However, behavior of the buffeting forces exhibits much more complicated than that of
turbulence due to representation of the wind-structure interaction and the bluff body flow
phenomena. Dependence of the quasi-steady buffeting forces on the frequency has been observed
due to series of physical measurements. A lot of attempts have been proposed to cope with the
limitation of the buffeting forces. The corrected quasi-steady approach in the frequency domain
proposed by Davenport (1962) with usage of the frequency-dependant aerodynamic admittance
function.

The aerodynamic admittance function is determined as transfer function in the frequency
domain between the input turbulence and the output turbulent-induced forces. This transfer
function compensates deference between the turbulence and turbulent-induced forces of their
spectral distribution in the frequency domain. Therefore, the aerodynamic admittance function
can be experimentally obtained by simultaneous measurements of the turbulence and the
buffeting forces in wind tunnels. However, the physical measurements and recent researches on
the aerodynamic admittance exist some limitations. Firstly, the aerodynamic admittance function
is usually determined from the quasi-steady theory in which some quantities such as the static

aerodynamic coefficients and the relative velocity are linearized, thus nonlinear effects on the



quasi-steady aerodynamic admittance need to be further discussed. Secondly, in the direct
measurements of the output aerodynamic forces in many cases, it can not differ between
turbulent-induced buffeting forces (due to the turbulence) and self-excited flutter forces (due to
the wind-structure interaction) in the measured aerodynamic forces, thus the transfer function
contains influence of the self-excited forces. However, it is believed that the measured
aerodynamic forces on the motionless fixed models are considered as unique contribution of the
turbulent-induced buffeting forces. Thirdly, it is usually assumed that contributions of the
longitudinal turbulence u(t) and the vertical turbulence are equal to the aerodynamic admittance.
Therefore, the aerodynamic admittance between the longitudinal turbulence and the buffeting
forces is similar to that between the vertical turbulence and the forces. Simplified model of the
frequency-dependant aerodynamic admittance function, so-called single-variate quasi-steady
admittance has been widely used in the gust response prediction of bridges so far. Recently, some
further approaches such as nonlinear, multivariate and complex aerodynamic admittance
functions have been mentioned anywhere in some literatures. By using the time-domain indicial
function approach, furthermore, the mechanical relationship between the aerodynamic admittance
and the flutter derivatives has been discussed. It is discussed, moreover, that the pressure
redistribution occurs on surface models due to effects of the wind-structure interaction and the
bluff body flow, in the other words, the aerodynamic admittance might be affected by the bluff
body flow. However, this effect of the bluff body is still not clarified by any literature.

This chapter will discuss on the aerodynamic admittance function in comparison with some
new approaches of the nonlinear and multivariate admittance functions, as well as the mechanical
relationship between the aerodynamic admittance and the flutter derivatives is going to be
mentioned. Wind turbulence and turbulent-induced buffeting forces are measured directly on

some physical models B/D=5 and B/D=20 under the different turbulent flows in the wind tunnel.

4.2 Literature reviews

Sears 1941 developed analytical solution for the unsteady aerodynamic response of the airfoil in
the vertical gust flows, that used the indicial function and initial works of Wagner 1925 and
Kusner 1936. Sears 1941 used so-called Sears function to establish spectral relation between
unsteady aerodynamic forces and wind turbulence, thus this Sears functions was treated as the
aerodynamic admittance function. Theoretically, the Sears function is only valid for the unsteady
aerodynamic response prediction of airfoil or thin plate. Liepmann 1952 proposed the theoretical
buffeting analysis for subject of airplane wing that based on both spectrum analysis and statistical

computation, he also proposed the empirical formula for the aerodynamic admittance as



approximation solution from the Sears function which is the most commonly used for the lift
force aerodynamic admittance of the airfoil and the thin plate in the fully-correlated gust flow
(Liepmann 1952). Davenport 1962 firstly introduced a framework method for buffeting analysis
of bridges and tower structures, that combined by spectrum analysis and statistical computation in
the structural modal space. Some correction functions such as the aerodynamic admittance, the
coherence and the joint acceptance function have been used in the Davenport’s theory. He also
approached the empirical formula for the drag force aerodynamic admittance. However, by series
of physical measurements on practical sections (i.e., bluff bodies), many literatures (eg., Konishi,
Shiraishi and Matsumoto 1975, Walshe and Wyatt 1983, Jancauskas and Melbourne 1986,
Sankaran and Jancauskas 1992) discussed the aecrodynamic admittance exhibits differently from
empirical formulae such as Sears function, Liepmann function, Davenport one. The empirical
formulae can be applicable to few certain types of structures. Konishi, Shiraishi and Matsumoto
1975 modified the Sear function for evaluation of the lift force the aerodynamic admittance of
bridge sections, so-called equivalent Sear function proposed to validate with physical
measurements on thin plate and stiffness girder. Some authors (eg., Larose 1999, Scanlan 2001)
discussed on the aerodynamic admittance function in account of spatial distribution of the
aerodynamic forces by evaluation of the coherence function and the joint acceptance functions.

In the time-domain approach of both the buffeting forces and self-excited flutter ones using the
classical indicial function, the relationship between the aerodynamic admittance and the flutter
derivatives is established. Equivalent aerodynamic admittance can be determined via the indicial
functions by some authors (Scanlan 2001, Hatanaka and Tanaka 2002, Tubino 2005). Chen and
Kareem 2002, however, approximated the aerodynamic admittance via the rational function
rather than via the indicial function in the impulse response function, but the approximation of the
impulse response function and the aerodynamic admittance is significantly employed for the

self-excited flutter forces, but not for the buffeting forces and the aerodynamic admittance.

4.3 Quasi-steady aerodynamic admittance and empirical models
4.3.1 Quasi-steady aerodynamic admittance

The unsteady aerodynamic forces (Lift, Drag and Moment) acting on bridge section are
determined to be proportional to the relative velocity and the relative aerodynamic force

coefficient as follows:
L(t)=3 AV (OBC, (@1); D= pV*OBC,(@(0); M= AV OBC, (a(V) @1

where V(t): relative velocity; C.(a(t)),F=L,DorM : relative mean force coefficients with



respect to wind angle of attack «(t).

x(;t)

Fig. 4.1 Quasi-steady forces on bridge section

The relative velocity can be expanded and approximated linearly as follows:
Vi) =U +U+X) +(W+2)" =U> +U% +X* +2UU+2UX + 2uX + W + 2° +2w2°  (4.2-a)
V2(t) ~U? +2Uu(t) (4.2-b)
Moreover, the relative mean force coefficients can be expanded by the Taylor’s series at the

balanced angle of attack (a = 0), only linear components are taken into account, we have:

2
Cela®)=a'Cry, o +a oD s CE D s oG FLDM (43)

Because of very small attacked angles, sinusoidal approximation is accepted as follows:

. W+ 2 w
axsina=¢+——=p+— (4.4)
U+u+X
After expansion, the unsteady aerodynamic forces are determined due to the quasi-steady

theory as follows (only the unsteady lift force in account for a sake of brevity):

=l pBuch0]+[ pBU2C,, L +C| —)+[——pBUC 1+ BUC g+ ..
U 2
(4.5)
PBUU'C, ¢ - L B°UnC, ¢ - pBUC, X +2pBUC, %]

where the first term is the mean force, the second one is the buffeting forces, the last one is the
aeroelastic flutter forces.

As a result, the buffeting forces on deck section due to the quasi-steady theory are expressed:

L(t)_ U B[C 2‘&“) (C.-C )""(t)} (4.6-a)



D(t):% AU 25{0,3 200 | o +CL)$} (4.6-b)
M (t)=%pU 2BZ[CM %+ o %t)} (4.6-c)

Power spectral densities of the uniform buffeting forces are obtained thanks to second-order

Fourier transformation (cross spectra between two turbulent components S, (n) are omitted):

Su(n)= (% PUB)[4C, 7, (S, (M +C* 1, (MS,,(M)] (4.7-2)
Sp(N) = (% PUB)[4C; 75, (MS, (M) +Cp 75, (NS, (M)] (4.7-b)
Sw(n) = (% PUB?)*[4Cy 2 (WS, (M) + Ci 2y (NS, ()] (4.7-¢)

In the formulae above, the frequency-dependant aerodynamic admittance functions are added
in order to compensate difference between the unsteady forces and the quasi-steady ones in the

frequency domain.
Furthermore, it is usually assumed that contribution of the longitudinal turbulence is similar to

that of the vertical turbulence on the buffeting forces as yZ,(n) = z2,(N) = z¢ (n);F =L,D,M .
Accordingly, the quasi-steady aerodynamic admittance functions can be determined as follows:

u’s,(n)

x ()= 2075, (M + L°S.(m) (4.8-a)
2o Uy ]
2o ()= 4D2S,(n)+ DS, (n) (4.8-D)
P — AU (4.8-0)

4MS,(n)+ M S, (n)

where LozépUZBCL; L'=%pU23c:L;DO=%puzscD;D':%pUZBC'D;MozépUZBZCM;

M’ =%pU2520'M

In many cases of the symmetrical sections and the rectangular sections, some force
coefficients at the balanced attacked angle are equal zeros asC, = 0; C,, ~0; C, ~ 0. Therefore,

more simplified quasi-steady aerodynamic admittance can be obtained as follows:

2y YIS oo USy(n) L UPS, (n)
ZL(n) - L'ZSW(n) 7ZD(n) 4D028u(n) 9ZM (n) M 'ZSW(n) (49)



4.3.2 Empirical models

The Sears function is usually used for the aerodynamic admittance of lift force on the airplane

wings and thin plate section expressed by the Bessel functions of first kind (Fung 1955):

#(k) =C(K)[JI,(k)—1J,(K)]+1J,(k) (4.10)
where J, (k) : Bessel function of first kind and 0 order; J,(k): Bessel function of first kind and 1
order; k: reduced frequency; C(k): Theodorsen’s complex circulation function:

H” (k)
HJ? (k) +iHg (k)

C(k) = (4.11)

where H/”(k): Hankel function of second rank and 1 order; H{” (k) : Hankel function of second

rank and O order.
Konishi, Shiraishi and Matsumoto (1975) modified the Sears function which is valid only for
the thin plate, airfoil to be the so-called equivalent Sear function which can be applied as the

aerodynamic admittance function of lift force on various girder types.

c
Peq (K) = p(K) - (4.12)
2
where C, : first-order derivative of lift force coefficients (C, =dC (a)/da)
a. Thin plate Agq b. Stiffness truss girder
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Fig 4.2 Comparison between aerodynamic admittance and Sears function [Matsumoto 20001
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Fig 4.3 Sears function [Matsumoto 2006] and Liepmann function



Liepmann (1953) proposed new formula of the aerodynamic admittance as approximation of
the Sears function, as well as Davenport (1962) introduced the aerodynamic admittance of the
drag force:

e (K m (4.13-)
| 7(M) |2=ﬁ[ck* —1+exp(—ck™)] (4.13-b)

where c: decay factor (c=8); k™ : reduced frequency (k~ =nD/U )

Comparison between the Sears function and the Liepmann one is given in Figure 4.3.

4.4 Nonlinear and multivariate aerodynamic admittance
4.4.2 Nonlinear aerodynamic admittance

Because the instantaneous velocity can be written in the nonlinear expansion Eq.(4.3-a) on
account with squared velocity components u(t)’, w(t)* as V2(t)=U?+u’+w?>+2Uu. Then

transforming in the frequency domain, omitting cross spectra between u and v, u and w, w and v,
we have power spectral density of lift force as:

2 S,(n) 0 S, (N) ) 2( )
S ()= (—PU B)’ x: (n)[4C} TE +C/ E +Cl——— O

Therefore, the nonlinear aerodynamic admittance functions of the buffeting forces can be

S (n)

+(2C2+CH ] (4.14)

estimated as follows:

U*s, (n)
‘(n) = , L , 4.15-
AL P TEVET L2078, (M) + L3S, () + (L + 2L)S, (n) (4-15-2)
U*s,(n)
2(n)= , D , 4.15-b
7o(M =530 (n+ DUS.(n) + D2S,.(n) +(DZ +2D7)S, (n) (4.15-0)
4
22 (n) = U'S, () (4.15-c)

AM2U?S,(n)+ M 2US,(n) + M2S () +(M +2M ?)S, ()

Thus, squared turbulent components are taken into account in the nonlinear admittance.

4.4.3 Multivariate aerodynamic admittance

As above-mentioned, linear or nonlinear models of aerodynamic admittance contain spectral

2 2
components of u, w and u”, w~ , however, one assumes that such turbulence components play the



equal role on contribution to the buffeting forces. Thus, single-variate aerodynamic admittance
has been applied for both linear and nonlinear models. Relationship between spectral components
of turbulence, their squares and spectral components of forces can be treated as the multi-input

and single-output system (MISO) as following scheme:

Xum) Yuln)
- Hu(n) i
u EEE— N(n)
| Bm g l
Input Xu'(n) Y'(n) » LDM
Xw(n) Yw(n) Output
- Hy(n) i
\%% —
T Bm .
Xyw'(n) Yw'(n)

Fig. 4.4 Scheme of multivariate aerodynamic admittance

In Figure 4.2, X(n) and Y(n): power spectra of input and output; H(n): transfer functions
(also frequency response function); N(n): system noise. Relationship between the input
turbulence and the output buffeting forces can be expressed as following sums (here lift is taken
for instance):

SL(M=3S,,(M+S,.(M)+S,,(N)+S,,.(N)+Sy(n) (4.16-a)
S, (M) =/ Hyy (M S, (04| H . (M S, () 4] Hyy (M) F S, (M4 H (0[S0 (1) + S, () (5.16:b)
where  [H (M, [H .M, |H,MPF,|H_ .(n)| : transfer functions between input

turbulent-related components u(t), u’(t), w(t), w*(t) and output lift L(t); Sy(n): noise signal

spectrum.

System identification of the transfer functions can be obtained as follows:

s s s.(m[ s
H,,(n)P=Po 2 mP=22 0l e 2V 4017
[HL()] 5.(n) JIH (M= s,. (") sIH LM 5.(n) [H,: ()] 5,.(n) (4.17)

Thus, comprehensive form of the nonlinear approach with multivariate admittance functions is
S (N)=4L%yx.,(n) ”( )+L2 () R W( ) iy 2 (n)—=¥ 5 (1 )+(2L2+L2);(LW (n) W( )(4 18)

As a result, the multivariate admittance functions of lift force can be obtained as follows:



U?[H, (] U?|H,0[
;zfu(n)=—4té ;sz(n)=L—.L2 (4.19-a)
U*IH .(n)[ U*IH (M
L= () =— 4.19-b
W, E X (M) o+ L) ( )

Similarly, the multivariate admittance functions of drag force and moment can be determined

in the same manner.

R TR (420-0)
Ko ()= U4|H+§2(n)|2; 25, (N) = v ;;ﬂ’f g%'z (4.20-b)
i (M) = %  Zo(0) = U'TA—(”)' (4.20-¢)
o= e OF 2 ) U [Hy, (OF (4.20-d)

M 2M?*+M})

Therefore, all multivariate aerodynamic admittance functions are obtained.
4.5 Relationship between aerodynamic admittance and derivatives

Due to time-domain formulation of the buffeting forces and aeroelastic flutter ones using the
classical indicial response functions or impulse response ones, the relationships between the
aerodynamic admittance and the aerodynamic derivatives, indicial response functions, impulse
response functions have been already established (Scanlan 2001, Hatanaka and Tanaka 2002,
Tubino 2005).

Accordingly, six different aerodynamic admittances can be formally derived from the some

aerodynamic derivatives as follows (Scanlan 2001):

2C 7, (n) = K[H; —iH:1;(CL +Cp) g, (M) =—K[H, —iH,] (4.21-a)
2C, xpu(N) = K[Pl* - iP4*] ;(C;J -Cxpu(N) = K[Ps* - iP()*] (4.21-b)
4Cy 2o (M) = K[A —iAT152C, 24 (N) = KA —iA] (4.21-¢)

In the above-mentioned equations, in many cases of practical analyses and experiments the
aerodynamic derivatives corresponding to lateral direction with subscripts 5 and 6 are negligible,

thus remaining important aerodynamic admittances y,,(N), ¥\, (N) can be obtained by this

approach from the aerodynamic derivatives.



4.6 Experimental apparatus

Physical measurements of the turbulence and the turbulent-induced forces are carried out in the
Kyoto University’s open-circuit wind tunnel. Two models of rectangular sections with slender
ratios B/D=5 and B/D=20 are used in experiments. Models are rigidly fixed by support. Turbulent
flows are artificially generated by the grid configuration in the wind tunnel at different mean
wind velocities U=3m/s, 6m/s and 9m/s, corresponding to the flow case 1, case 2 and case 3.
Intensities of turbulence are I,=11.46%, 1,,=11.23% (case 1); [,=10.54%, [,=9.28% (case 2) and
[,=9.52%, 1,=6.65% (case 3). Two turbulent components: longitudinal u(y) and vertical w(t) are
measured by the X-probe hot-wire thermal constant anemometer (CTA): X-probe (Model 1011,
Kanomax Inc., Japan), CTA and linearization (Model DC Voltmeter 1008, Nihon Kagaku Kogyo,
Japan). Three force components: drag, lift and moment are measured thanks to the dynamic
multi-component loadcells (Model LMC 3505-30N, Nissho Electric Works, Co., Japan). Electric
signals of measured forces are amplified by the 8-channel conditioner (Model DCM 8A, Kyowa
Corp., Japan), then are filtered by 100Hz low-pass filters (E3201, NF Design Block Co., Ltd.).
Signals of the turbulence and the forces are digitally sampled by A/D converter at the sampling
rate 1000Hz over 100 seconds (Thinknet DF3422, Pavec Co., Ltd., USA). Experimental set-ups

are shown in Figure 4.5.

Model B/D=5 Model B/D=20

et ras§ | e -
| = | | —

L N/l

oy 8 ¥ =

=, , -.
Fig. 4.5 Experimental set-ups and models

Static aerodynamic coefficients and their first-order derivatives also are determined thanks to
the force measurements using the loadcells with respect to change of various attacked angles of
-10°, -6°, -2°, 0°, 2°, 4°, 6°, 8° 10° at two referred mean velocities U=8m/s, 12m/s. The static

aerodynamic coefficients with respect to different attacked angles of two experimental models



B/D=5 and B/D=20 are shown in Figure 4.6 and Figure 4.7. Aerodynamic coefficients and the

first-order derivatives at the balanced angle (¢ = 0°) are determined and given in Table 4.1.
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Fig. 4.6 Aerodynamic force coefficients on models B/D=5 [Matsumoto et al. 2006]
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Table 4.1 Static aerodynamic coefficients and their first-order derivatives

B/D=5
CL Co Cum Cv Cp’ Cw’
0 1.098 0 6.412 0 0.609
B/D=20
CL Co Cum Cv Cp’ Cw’
0 1.423 0 7.067 0 0.701

The static aerodynamic coefficients and its derivatives are used in further computation here,

with notice that some force coefficients C,,C,,,C, are zero.

4.7 Results and discussion

Figure 4.8 shows the power spectral densities of turbulence and buffeting forces (lift and
moment) on two physical models B/D=5 and B/D=20 at three turbulent flows corresponding to
mean velocities U=3m/s, 6m/s and 9m/s. As can be seen that the spectra of lift force on model
B/D=20 are generated higher than those on model B/D=5 at all flow conditions, however, the
spectra of moment on the B/D=5 are larger than those on B/D=20.

Figure 4.9 expresses the quasi-steady aerodynamic admittances of lift and moment under three
turbulent flows in comparison between models B/D=5 and B/D=20. It is also seen that the
admittance function of lift force on the model B/D=20 exhibit higher than that on the model
B/D=20, but the admittance of moment on B/D=20 is smaller than that on B/D=5, these
correspond to the spectra of forces as observed in Figure 4.8. Moreover, some spectral peaks are
observed on the aerodynamic admittance to correspond to those on the spectra of forces.

Effect of intensities of turbulence corresponding to three mean velocities on the aerodynamic
admittance of the lift and moment on two models is expressed on Figure 4.10. It seems that the
admittances reduce with decrease of the intensity of turbulence (increase of mean velocity) at low
frequency range (0+0.3Hz), however, the admittances increase with respect to increase of
intensity of turbulence (decrease of mean velocity) at high frequency range (higher than 0.3Hz).
This finding is also observed at the admittances of both the lift and the moment and on both the

models.
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Fig. 4.8 Power spectral densities of turbulence and forces: a. turbulence, b. lift, c. moment

Comparison between quasi-steady aerodynamic admittances and nonlinear aerodynamic

admittances of lift and moment on two models is shown in Figure 4.11. Squared turbulent

components u?(t) and w(t) are taken into account for the aerodynamic admittance to extend the

nonlinear approximation in the quasi-steady theory. As can be seen from Figure 4.11, the

nonlinear admittances express smaller than the quasi-steady ones in all investigated cases.

Therefore, the nonlinear velocity components influence on the aerodynamic admittance in such

the way to reduce the aerodynamic admittances, accordingly to reduce the buffeting forces as

well.
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Fig. 4.11 Comparison between quasi-steady aerodynamic admittance and nonlinear aerodynamic

admittance: a. lift, b. moment

Contributions from multi inputs (turbulent components u(t), w(t) and their squared
components u’(t), w(t), including cross correlation between them u(t)w(t) can be simultaneously
taken into account as inputs) on the output forces can be determined using the multivariate
variable model and the system identification technique. Figure 4.12 expresses the multivariate
admittances corresponding to spectral contributions of spectra of w-turbulence and its squared

component on spectra of forces, as well as comparison between the quasi-steady aerodynamic

admittance and multivariate ones, in which y7(n), z7,(n), ;(fwz(n) denote to the quasi-steady

aerodynamic admittance, multivariate admittance due to the w-turbulence and squared
w-turbulence, respectively. It is seen that the multivariate admittances due to w-turbulence is
similar to that of quasi-steady admittances.

Figure 4.13 shows the multivariate transfer functions between lift and u-turbulence, lift and
w-turbulence, moment and u-turbulence, moment and w-turbulence. The transfer function can
characterize for contribution of each input turbulent components (u(t), w(t), uz(t), w?(t)) on the
output forces. As can be seen, there is different on contributions of each input components on the

buffeting forces, this contradicts to the assumption of the quasi-steady aerodynamic admittances.
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Fig. 4.12 Comparison between quasi-steady aerodynamic admittance and multi-variate
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4.8 Conclusion

Quasi-steady aerodynamic admittance and new concept of nonlinear and multivariate
aerodynamic admittances have been discussed and investigated in this chapter. It can be

concluded with some following points:

(1) It is found that the squared turbulent components influence on the aerodynamic admittance.
How much and how importance of their contributions on the output buffeting forces need to
be further studied with series of physical measurements on different physical models in
different unsteady flows. It is supposed that effect of the squared velocity components on
the admittance is not considerable in such cases that behaviors of ongoing flow and bluff
body flow are not complicated. However, effect of these squared components is supposed to
increase with complexity of bluff body flow and ongoing flow. In these investigations,

influence of u-turbulence and its squared component on multivariate admittance can not

evaluated due to their relating force coefficients C, =0,C,, =0,C, = 0 are zero.

(2) New comprehensive approach to determine the aerodynamic admittance has been studied,
in which contributions from multi inputs (turbulent components u(t), w(t) and their squared
components u’(t), w’(t), including cross correlation between them u(t)w(t) can be
simultaneously taken into account as inputs) on the output forces can be determined using
the multivariate variable model and the system identification technique

Further studies on the aerodynamic admittances should be needed to clarify influence of bluff
body flows on the aerodynamic admittances as well as to verify application of multivariate

aerodynamic admittance.
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Chapter 5

Spanwise Coherence of Wind Turbulence and Induced
Pressure on Rectangular Cylinders

5.1 Introduction

The gust response prediction of structures or long-span bridges immersed in atmospheric
turbulent flows subjected by turbulent-induced forces (or buffeting forces) has been based on a
strip theory, by which the spatial distribution characteristic of forces on structure must be taken
into account. For a sake of simplification, however, the spatial distribution of turbulent field can
represent for that of the induced force one. Thus, it is assumed that the spanwise coherence of the
induced forces is similar to that of the ongoing turbulence (or velocity fluctuating components)
that was simplified as an exponential coherent formula in the gust response prediction (Davenport
1963). Recent literatures, however, found out that the coherence of the buffeting forces was larger
than that of the ongoing turbulence (Larose 1996; Jakobsen 1997; Kimura et al. 1997; Matsumoto
et al. 2003). This suggests that influence of structure on the ongoing turbulent flow must not be
negligible, and interaction phenomena between ongoing flow and structure might have involved
in modification of the ongoing turbulent flow around the structure (one is mentioned as a bluff
body flow). Moreover, relationship between turbulence and induced pressure/ forces contains
uncertainties due to limitation of the quasi-steady theory and the strip theory as discussed in
somewhere (Kawai 1983). Uncertainty from the force coherence higher than the turbulent
coherence can cause either underestimation or overestimation on the gust response prediction of
structures. Mechanism of higher force coherence, coherent structures of turbulence and induced
forces as well as effect of bluff body flow on the force coherence should be further clarified in
order to reduce the analytical uncertainty. Coherent structure of the turbulent-induced forces has
been studied ideally by the mean of surface pressure measurement by which the induced forces
can be deducted by integration of the surface pressure field around structural section.
Identification of bluff body flow around structural section (such as separation bubble, flow

reattachment, vortex shedding), furthermore, can be roughly obtained thanks to previous



experience and chordwise distribution of mean and fluctuating pressures which has been verified
by means of smoke visualization (Hiller and Cherry 1981; Cherry et al. 1984).

The Fourier transform has been most popularly and conventionally used to study in
spectral-based computations, physical data analysis, coherent structures in the frequency domain
so far. No time information, however, can be obtained from the Fourier transform-based tools
such as Fourier coefficient, auto power spectrum, cross power spectrum, coherence and phase
difference which have been applied to identify the dominant frequency components and the cross
correlation between two given time series in the frequency domain. These tools, moreover, is
accurately applicable only for purely stationary time series. Wavelet transform has been recently
proposed to represent any time series in a time-scale (frequency) plane, known as a
time-frequency analysis (Daubechies 1992). First-order wavelet coefficient has been used almost
so far, however, some wavelet transform-based advanced tools corresponding to conventional
Fourier transform-based ones such as wavelet power spectrum, wavelet coherence and wavelet
phase difference can be developed to express and detect auto, cross correlations of any time series
and between two time series in the time-frequency plane (Torrence and Compo 1998; Kareem
and Kijewski 2002). The wavelet transform-based tools, furthermore, are advantageous over the
Fourier transform as powerfully analyzing tool for non-stationary, non-linear and intermittent
time series.

In this chapter, the temporal-spectral coherent structures of wind and pressure will be studied
using both Fourier coherence and wavelet coherence. Effects of spanwise separations, bluff body
flow and turbulent flow conditions on coherent structures of turbulence and pressure, comparison
between wind and pressure coherence as well as intermittent distribution of wavelet spectrum and
wavelet coherence will be discussed. Physical measurements of the surface pressure and
turbulence have been carried out on some typical rectangular cylinders with side ratios B/D=1
(without and with splitter plate at wake region) and B/D=5 under the artificial turbulent flows in

the wind tunnel.
5.2 Fourier transform-based coherence

The Fourier transform-based coherence is approximately expressed as the normalized correlation
coefficient of two spectral quantities of X(t) and Y(t) in the frequency domain (Bendat and Piersol
2000):

COHfW(f)ZM (5.1)

VSx (F)S,(F)



where| |: absolute operator; f: Fourier frequency variable;S, (f),S,(f),S,, (f): Fourier auto
power spectra and Fourier cross power spectrum at/between two separated points, respectively
defined as:

Sx(F)=E[X(DX(H)TL S, () =EN (P ()T S (H=EX(FN(HT]  (52)
where E[]: expectation operator; * T: complex conjugate and transpose operators; X(f),Y(f):
Fourier transform coefficients of time series X(t),Y (t)respectively. The Fourier coherence is

normalized between 0 and 1, thus two time series X(t), Y(t) are fully-correlated, coherence is unit,

whereas coherence is zero, two time series are uncorrelated in the frequency domain.

5.3 Wavelet transform-based coherence
5.3.1 Definition

The wavelet transform (also called as continuous wavelet transform) of the given time series X(t)

is defined as the convolution operator between X(t) and the wavelet function y_(t):

WY (2,8) = (X, ) = [ X (0w et (5.3)

wherew/ (s,7): the wavelet coefficients at translation r and scale s in the time-scale plane; the
brackets (,) denote the convolution operator; y_ (t): wavelet function at translation  and
scale s of the basic wavelet function y (t) (the mother wavelet):

v, () =%w(t%j (5.4)

The wavelet coefficients W/ (s,z)can be considered as a correlation coefficient and a measure

of similitude between wavelet and given time series in the time-scale plane. The wavelet scale
has its meaning as an inverse of the Fourier frequency, thus inter-relationship between the
wavelet scale and the Fourier frequency can be obtained. One would like to develop wavelet
transform-based tools such as the wavelet auto spectra and the wavelet cross spectrum at time

shift index i and scale s of two signals X(t) and Y(t), based on their wavelet coefficients w, (s),
W, ,(s) can be defined as following formulae:

WPS 15 (8) = (W, (S, (8)); WS, (5) = (Wyi (SWyyi (8)); WPS 1, (5) = (W (S, (5)) (5-5)
where WPS,, .(s),WPS,,,(s): wavelet auto spectra of X(t),Y(t); wps,,,(s): wavelet cross spectrum

between X(t) and Y(t);( )denotes smoothing operator in both time and scale directions.



With respect to the Fourier coherence, the squared wavelet coherence of X(t), Y(t) is defined as
the absolute value squared of the smoothed wavelet cross spectrum, normalized by the smoothed
wavelet auto spectra (Torrence and Compo, 1998):

|(s"WCS,, ()
<571 [WPS () | ><571 [WPSyy(s) | >

WCO, " (s) = (5.6)

where | |denotes the absolute operator; s is used to convert to an energy density.

Note that the wavelet coherence WCOXYiZ(S) €[0,1] has the same meaning as the Fourier

coherence, which wavelet coherence comes to unit, two signals X(t), Y(t) are fully-correlated,
whereas wavelet coherence reduces to zero, two signals X(t), Y(t) are uncorrelated, however, its
advantage over the conventional Fourier coherence is to represent the spectral correlation in both
the frequency- and the time-domains.

Interrelation between the central frequency, wavelet scale and the Fourier frequency can be

determined approximately as follows:

e (5.7)

where f,: sampling frequency of given time series.

5.3.2 Complex Morlet wavelet
The complex Morlet wavelet is the most applicable for physical measurement analysis in the
wavelet transform, thanks to its containing of harmonic components and its analogs to the Fourier
transform (see Figure 6.1):
w(t)=Q2r)""? exp(iZ;zfot)eXp(—t2 /2) (5.8-a)
p(st) = 2m) " expl27*(sf - 1, ) (5.8-b)

where f;, s: central frequency and wavelet scale of the complex Morlet wavelet.

Complex Morlet wavalet Fourier transform
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Fig. 5.1  Complex Morlet wavelet and its Fourier transform
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5.3.3 Time and scale smoothing and end-effect elimination

Averaging in both time and scale directions must be required in the wavelet transform, especially
in computing the wavelet spectrum and wavelet coherence. The averaging techniques of the
wavelet spectrum in time and scale at the time-shifted index p can be expressed as (Torrence and
Compo 1998):

Time domain smoothing <WPSi2 (s)> = %\I Zz“|WPSi () (5.9-a)
i 2
Scale domain smoothing (Wps;(s)) = 5]% Z|WPSi (SJ)% (5.9-b)
9 j=i J

where j assigned between j; and jo; N,: number of averaged points (N, = j, — j, +1); dj,dt: factor

of window width and sampling period ; Cs: constant.

Because the wavelet transform deals with finite-length of time series, errors and bias values
usually occur at two ends of time series, known as the end effect. One simple solution to
eliminate the end effect is to truncate number of discrete results at two ends of time series after
the wavelet transform is completed. Removed number, however, depend on the wavelet scale,

thus so-called cone of influence should be estimated for more accuracy.
54 Experimental apparatus

Analyzing data were obtained by physical measurements in the Kyoto University’s open-circuit



wind tunnel. Physical models of rectangular cylinders with slender ratios B/D=1 and B/D=5 were
used, in which model B/D=1 was installed without/with a splitter plate (S.P) in the wake of
model on account of effect of wake flow. Motionless models were fixed on a working section.
Turbulent flow was generated artificially by grid devices which was located in 750mm upstream
from model’s leading edge. Wind turbulence and surface pressures were measured in the three
turbulent flows at mean wind velocities U=3, 6 and 9m/s corresponding to flow case 1, flow case
2 and flow case 3, respectively. Basic turbulent flow parameters were given as turbulent
intensities [,=11.56%, 1,=11.23% (case 1), [,=10.54%, 1,=9.28% (case 2), 1,=9.52%, [,=6.65%
(case 3). Pressure taps were arranged on one surface of models, consisting of 10 pressure taps of
model B/D=1 and 19 pressure taps of the model B/D=5 in the chordwise direction (see Figure
5.3). Mean and turbulent components (fluctuating velocity components) of the basic turbulent
flow (without model) were measured thanks to a hot-wire anemometer using x-type probes
(Model 0252, Kanomax Japan, Inc.) and calibrated and linearized by a constant-temperature
anemometer (CTA) (Models 1013, 1011, Kanomax Japan, Inc.). Unsteady surface pressures were
measured by multi-channel pressure measurement system (ZOC23, Ohte Giken, Inc.). It is noted
that turbulent components and surface pressures were simultaneously obtained in order to
investigate in the time domain. Electric signals were filtered by 100Hz low-pass filters (E3201,
NF Design Block Co., Ltd.) before passed through A/D converter (Thinknet DF3422, Pavec Co.,
Ltd.) with sampling frequency at 1000Hz in 100 seconds.

B/D=1 B/D=1 with S.P B/D=5
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Fig. 5.3  Experimental models and pressure tape layout



Though large number of pressure taps have been arranged on model surfaces, concretely 10
rows and 21 columns on the model B/D=1, 19 rows and 41 columns on the model B/D=5, but
only pressure taps arranged columns at spanwise distances y=0, 25, 75, 125 and 225mm were

used in this study (Figure 5.3).
5.5 Chordwise pressure distribution and bluff body flow pattern

Flow around models due to interaction between ongoing flow and model section is usually known
as the bluff body flow, which characterized by formation of separated and reattached flows with
separation bubble and that of vortex shedding as well. It can be predicted from previous studies
that model B/D=1 is favorable for dominant formation of Karman vortex shedding in the wake of
model, whereas model B/D=5 is typical for formation of separated and reattached flows on model
surface. In case the splitter plate was installed in the wake of model B/D=1 in order to suppress
the wake flow and effect of Karman vortex shedding. Identification of the bluff body flow is
usually required for understanding flow behavior and mechanism of oscillation on physical model.
The bluff body flow can be identified directly due to flow visualization techniques. Pressure
distribution is also used for this purpose with experience and knowledge of flow behavior on
some typical models.

Normalized mean pressures and normalized root-mean-square fluctuating pressures in the
chordwise positions can be determined from measured time series of unsteady pressures as

follows:

cO . =p"/0.5007) (5.10-a)

p,mean

ct  =a® /(0.50U°) (5.10-b)

p.rms

where i: index of pressure time series at chordwise positions; 0.50U’: dynamic pressure; p:

mean value of pressure time series; o : standard deviation of pressure time series.

Figure 5.4 shows normalized mean and fluctuating pressure distributions on the chordwise
positions. As can be seen that the normalized mean and fluctuating pressures distribute
homogeneously on the models B/D=1 without/with the splitter plate, whereas distribute locally
near leading edge on the model B/D=5. Normalized mean and fluctuating pressures on model
B/D=1 without splitter plate exhibit higher than those on the same model but with splitter plate.
Moreover, normalized mean pressure distributions on three models seem not to with respect to

turbulent flow conditions.
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Fig. 54  Normalized mean and fluctuating pressure distributions on chordwise positions

Power spectral densities (PSD) of the fluctuating pressures at some represented positions on
the three experimental models in the turbulent flow case 1 are expressed in Figure 5.5. As can
be seen with the model B/D=1 (without splitter plate) that peaked frequencies are observed at
4.15Hz, 8.79Hz and 12.94Hz respective to the three turbulent flow conditions. It is agreed that
the Karman vortex formed and shed in the wake in which the Karman vortex frequency depends
on the Strouhal number (St) of model section and mean wind velocity. Moreover, the Strouhal
number can be determined as St=0.1285. Thus, on the model B/D=1 without splitter plate the
bluff body flow is separated at sharp corners, dominated by formation of Karman vortex and
frequently shed in the wake. In case of the model B/D=1 with splitter plate, no frequency peaks
are observed, this means that the Karman vortex is suppressed by the splitter plate. It is supposed
the bluff body flow separated at the sharp corners, expanded all model surface and reattached at
the splitter plate. In case of the model B/D=5, frequency peaks are observed at 1.22Hz and
2.44Hz (flow case 1); at 2.44Hz, 4.88Hz, 7.32Hz (flow case 2); at 3.42Hz and 6.84Hz (flow case
3). According to Hiller and Cherry 1981; Cherry et al. 1984, reattachment point of separated flow
may locate at near after the peak position of fluctuating pressure, and the observed frequency
peaks are induced by rolled-up turbulent vortices shed away at reattachment points toward

trailing edge. Thus, bluff body flow is separated and reattached on the model surface to form



separation bubble. Reattachment points can be determined at roughly positions 6, 7, 8 with
respect to an increase of mean velocities. High mean and fluctuating pressures are observed
locally at the leading edge region in the influence of separation bubble due to local circulation of

turbulent vortex inside it.
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Fig. 5.5  Auto power spectra of normalized fluctuating pressures at three turbulent flows: a.
B/D=1, b. B/D=1 with splitter plate, c. B/D=5 [Matsumoto, Shirato et al. 2006]
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Fig. 5.6  Bluft body flow patterns around experimental models [Matsumoto,Shirato et al.2006]

The bluff body flow patterns around three models can be predicted as shown in Figure 6.6



5.6 Spectral coherence of turbulence and pressure

Effects of spanwise separations, pressure positions, turbulent flow conditions and Karman vortex
on the spectral coherent structures of turbulence and pressure have been investigated using the

Fourier coherence. Figure 5.7 shows the effect of spanwise separations ( Ay = 25,75,125,225mm ) on

the pressure coherence (with all models B/D=1, B/D=1 with S.P and B/D=5) and turbulent
coherence on frequency band 0+100Hz and in the flow case 1. It is agreed that the coherences of
turbulences and pressures reduce considerably with respect to an increases of the spanwise

separations and of observed frequencies.

a. B/D=1 . - . - ) o
Fluctuating pressure at position 1 Fluctuating pressure at position 3 Fluctuating pressure at position 5
1 1
— y=25mm
0.9] - y=75mm
eeens y=125mm 09
o8l = y=200mm 08
0.7 0.7|
g 09 o 06
g
2 o5 § 05
§ 2
04 8 0.4
03] 0.3]
0.2 0.2]
0.1 0.1
T q [y o 0 o
10 10' 10 10 10 o 10 0
Frequency n(Hz) Frequency n(H2) Frequency n(Hz)
b.B/D=1SP " N reaueneyntn Fredueney i
Fluctuating pressure at position 1 Fluctuating pressure at position 3 Fluctuating pressure at position 5
1 1
0.9 0.9
08 08
0.7 07
0.6 0.6
: :
05 05
2 2
8 04 8 oa
03 03
0.2 0.2
0.1 01
10" 10° 10 ° 10 10" o°
C. B/D=5 Frequency n(Hz) Frequency n(Hz) Frequency n(Hz)
Fluctuating pressure at position 1 Fluctuating pressure at position 3 Fluctuating pressure at position 5

10" 10° ? 10" 10° 10" 10
Frequency n(Hz) Frequency n(Hz) Frequency n(Hz)

d. Turbulences wurbuience uurbulence
7

10 10 10
Frequency n(Hz) Frequency n(Hz)

Fig. 5.7  Effect of spanwise separations on pressure and turbulent coherences in the flow case
1: a. B/D=1, b. B/D=1 with S.P, c. B/D=5, d. turbulences



Coherences of both turbulence and pressure dominate only at low frequency band roughly
lower than 50Hz, and they decay fast beyond this frequency. Furthermore, separation influences
on the pressure coherence stronger than on the turbulent one. The turbulent coherence is
significant in close separation (y=25mm), but inconsiderable in another ones (y=75, 125 and
225mm). The pressure coherence, however, suddenly rises even in distant separations at some
certain frequencies where any physical phenomenon occurs on model surface, here are the
Karman vortex shedding at wake and the rolled-up vortex shedding at reattachment point. Thus, it
i1s discussed that wind-structure interaction influences higher pressure coherence than the
turbulent one due to enhancing spanwise flow convection.

Figure 5.8 shows pressure coherences at positions Nos. 1, 3, 5, 7, 9 (models B/D=1 without
and with S.P) and Nos. 1, 4, 8, 19 (model B/D=5) and at separations y = 25,75and 125mm. As can

be seen from Figure 5.8, the pressure coherences on models B/D=1 seem to be not different,
except at frequencies of vortex shedding phenomena, whereas difference in the pressure
coherences on model B/D=5 has been observed. In model B/D=5, the coherence at position 1 (at
the leading edge) seem to be strong in the close separation y=25mm and to be small at the distant
separations y=75,125mm; strong in all separations at position 4 (in the separation bubble); small
in all separations at position 8 (at the attachment point); and seem to be small in close separation
y=25mm and strong in distant separations y=75, 125mm at position 19 (at the trailing edge) (see
Figure 5.8¢). Thus, it might be supposed that the pressure coherences seem to be relatively high
at positions in the separation bubble region, to be relatively small at positions near the
reattachment region. Effect of pressure positions and bluff body flow must be involved for higher

mechanism of the pressure coherence.
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Effect of the turbulent flow conditions on pressure and turbulent coherences of pressure at
represented separation y=25mm is presented in Figure 5.9. It seems that the pressure coherence
and turbulent one reduce with increase of intensity of turbulence (corresponding to decrease of
mean velocity in grid turbulent flow). It might be explained that high intensity of turbulence is to
ruin formation of separation bubble and vortex shedding to resist the spanwise convection of the
bluff body flow. Thus, both the turbulent and pressure coherences depend on parameters of the

ongoing turbulent flow, not only the mean velocity.
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Fig. 5.11 Effect of Karman vortex shedding on pressure coherence: a. position 1, b. position 3

Figure 5.10 expresses the comparison between the turbulent and pressure coherences at the
spanwise separations y=25, 75 and 125mm, in which the pressure coherences are determined in
tap positions 3, 7 at all three experimental models. Obviously, the pressure coherences exhibit
higher than the turbulent coherence at the same separations. In the comparison, the coherence of
u-turbulence seems to be higher than that of w-turbulence at the close separations y=25, 75mm,
but not to be different at the distant one y=125mm. Moreover, the pressure coherences on the
three models decrease respectively from model B/D=1 without S.P, B/D=1 with S.P to model
B/D=5. Effect of the Karman vortex shedding on the pressure coherences is more clarified by
using the models B/D=1 without S.P (formation of the Karman vortex) and with S.P (suppression
of the Karman vortex) as seen in Figure 5.11. Clearly, the pressure coherence in presence of the
Karman vortex exhibits larger than that in without Karman vortex. It implies that the Karman
vortex enhances spanwise convection of the bluff body flow, and consequently increases the
spanwise coherence. In some extent, side ratio B/D of rectangular sections is basic parameter to
characterize for the bluff body flow patterns, it can be generalized that the pressure coherence or
force one within influenced spanwise separations reduce with respect to increase of side ratio B/D
and parameters relating bluff body flow modification such as the splitter plate at the flow wake,

cutting-sharp corners at trailing edge and so on.



5.7 Temporo-spectral coherence of turbulence and pressure

Temporo-spectral coherent structures of pressure and turbulence have been studied in the
time-frequency plane using the wavelet transform-based tools. The wavelet coefficients, wavelet
auto spectra and wavelet cross spectra of pressure and turbulence have been calculated before the
wavelet coherence has been estimated. Figure 6.12 shows the wavelet coherences of pressure and
turbulences corresponding to three experimental models, separations y=25, 75 and 125mm, on
1+50Hz band and 5+95 second interval.

As can be seen from Figure 5.12, some discussions can be given as follows. Firstly, similar to
the previous results from the Fourier coherence, the wavelet coherence maps also indicate that
coherence reduce with increase of the spanwise separations, furthermore, the pressure coherences
are higher than the turbulent ones at the same separations. However, the coherences of pressure
and turbulence are represented in the time-frequency plane in which the coherences are localized
and temporo-spectral information determined. Secondly, the coherences of pressure and
turbulence are also distributed intermittently and discretely in the time-frequency plane. This
implies that intermittent distributions of turbulent and pressure coherences are observed as the
nature of coherence in the time-frequency plane. Thirdly, high coherence events (even to be
nearly fully-correlated at some local zones) still exist in both the turbulent and pressure
coherences at distant spanwise separations but in localized time-frequency areas, this can not
clarified from the conventional Fourier coherence where averaging technique in the time domain
has been carried out. Finally, high coherence events of pressure and turbulence do not correspond
in the time-frequency plane, although time series of pressure and turbulence have been measured

simultaneously.
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Fig. 5.13 Comparison between wavelet coherence and Fourier coherence

A comparison between the Fourier coherences and wavelet ones is presented in Figure 6.13, in
which pressure coherences on model B/D=1 without S.P and at some spanwise separations is
studied. As can be seen from Figure 6.13, there is correspondence in dominant spectral
components between the wavelet coherence and the Fourier one. The Fourier coherence is

appropriate to detect dominant frequencies of high coherence events, while the wavelet coherence



i1s to track frequency bands of these ones. However, there is no time information of high
coherence events obtained at any observed frequencies in the Fourier coherence, but eventual

time of those can be given in the wavelet coherence.

5.8 Conclusion

The coherent structures of turbulence and surface pressure have been discussed in the
frequency domain and the time-frequency plane using the Fourier coherence and wavelet one. As
above-discussed, some conclusions can be given as follows:

(1) Obviously, the pressure coherence exhibits higher than the turbulent one at influenced
spanwise separations due to effect of the wind-structure interaction and the bluff body
flow on model surface. Thus, existing formula of the force coherence based on turbulent
field contain a lot of uncertainties.

(2) Coherent structures of turbulence and induced pressure depend on some parameters such
as the ongoing flow, the spatial separations, the bluff body flow. It is reasonable that
empirical formula for the coherence function of turbulent-induced forces must account for
these parameters, not only as the ongoing flow characteristics (including parameters
relating turbulent flow dimension as turbulent intensities and turbulent scales) and the
spanwise separation in existing formulae, but effect of the bluff body flow should be
included in the coherence formula. The side ratio B/D is suggested as one parameter
relating to effect of the bluff body flow in the force coherence for cases of rectangular
cylinders.

(3) The coherent structures of the turbulence and pressure depend on not only the frequency,
but the time. Coherence is significant at the low spectral band and distribute intermittently
and locally in the time domain. Thus, intermittency in time domain and low frequency
bands can be considered as nature of the coherent structures.

(4) High coherent events distribute on localized areas in the time-frequency plane can be
observed on the temporo-spectral structures of turbulence and pressure coherences, even
at large separations.  However, this finding can not obtain via the Fourier
transform-based coherence. Thus, existence of localized high coherent events is the nature
of coherence structure.

(5) No correspondence and simultaneous occurrence between high coherence events of
turbulence and induced pressure have been observed in the time-frequency plane. This can
add to uncertainties in the turbulent-induced response prediction of structures relating to

the quasi-steady theory of turbulent-induced forces built from the turbulent components.
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Chapter 6

Analysis and Identification of Random Pressure Fields
on Rectangular Cylinders using Proper Transformations

6.1 Introduction

Aerodynamic phenomena and response of structures due to the atmospheric wind flows are
generated by spatial distribution and correlation of the fluctuating pressure field around structural
section. This pressure field is usually represented as spatially-correlated multi-variate random
processes. More understanding and knowledge of the random pressure field as well as its spatial
distribution, correlation are always required and it is possible to interpret mechanisms of
excitations, identification and response of aerodynamic phenomena occurring on structures. Due
to the nature of random field, however, the fluctuating pressure field is considered as
superposition from some causes and excitation of dominant physical phenomena. It is logical
thinking to decompose the total pressure field by sums of independently partial pressure fields,
which can be related to a particular mechanism of excitation and certain physical phenomena.
The random pressure field, moreover, can be represented under the matrix forms, and then the
decomposition of this pressure field is carried out via that of its matrices. There are two
decomposition methods widely used so far: Cholesky decomposition and modal decomposition.
Accordingly, the matrix representation of the pressure field is decomposed by product of lower
triangle matrix and upper triangle one in the former, or by sum of independently orthogonal
functions in the later. The later is also named as the proper orthogonal decomposition. The main
purpose of pressure field decomposition is to describe the complicated random pressure field as
more simplified ways which is convenient to model aerodynamic forces and to estimate response
from this pressure field.

Proper orthogonal decomposition, or known as Karhunen-Loeve decomposition (Lumley
1970), has been applied popularly in many engineering fields including random processes/fields,
stochastic methods, image processing, data compression, system identification and control and so

on (Liang et al. 2002). In the wind engineering, the proper orthogonal decomposition has been



used in the three following topics: 1) stochastic decomposition and order-reduced modeling of
random processes/fields and induced pressure/forces, ii) representation and simulation of random
turbulent fields and iii) stochastic response of structures. The proper orthogonal decomposition
has been applied to optimally approximate the multi-variate random processes through use of
low-order basic orthogonal vectors from modal decomposition (eigenvector problem) of either
zero-time-lag covariance matrix or cross spectral density one of this multi-variate random field.
According to type of basic matrix in the modal decomposition, the proper orthogonal
decomposition has been branched by either covariance proper transformation or spectral proper
transformation (Solari and Carassale 2000). Main advantage of the proper orthogonal
decomposition is that the multi-variate correlated random processes/ fields can be decomposed
and described in such simplified way as a combination of a few low-order dominant eigenvectors
(modes) and omitting higher-order ones that is convenient for order-reduced representation of the
random field, including random-induced force modeling and random response prediction.
Furthermore, because the random field is described via few dominantly low-order orthogonal
modes, therefore it is usually expected that these dominant modes can represent to any typically
physical cause occurring on structure.

This chapter will present the proper orthogonal decomposition and its proper transformations
of the fluctuating pressure fields on some typical rectangular cylinders, which are based both
recent branches: the covariance matrix and the cross spectral matrices of these pressure fields.
Analysis, identification and order-reduced reconstruction of the pressure fields will be carried out
basing on characteristic functions resulted from both covariance matrix-branched and cross
spectral matrix-branched proper orthogonal decompositions: covariance eigenvalues, covariance
eigenvectors (covariance modes), covariance principal coordinates and spectral eigenvalues,
spectral eigenvectors (spectral modes). Moreover, the linkage between the lowest modes and the
physical phenomena can be revealed with combination of past understanding and knowledge of
the bluff body flows and physical causes. The fluctuating pressure field has been determined
through physical measurements on some rectangular models with side ratios of B/D=1 and

B/D=5 in the turbulent flows in the wind tunnel.

6.2 Literature reviews

The proper orthogonal decomposition also has been widely used for many fields such as analysis,
simulation of random fields (including the random pressure field), numerical analysis, dynamic
system identification, dynamic response and so on. Several literatures presented the proper

orthogonal decomposition’s application to decompose the spatially-correlated and multi-variate



random pressure fields into uncorrelated random processes and basic orthogonal vectors (also
called as modes or shape functions). The proper orthogonal decomposition has been branched by
either covariance matrix-based or spectral matrix-based proper orthogonal decompositions and
associated proper transformations, which depend on how to build up a basic matrix from either
zero-time-lag covariance or cross spectral matrices of the multi-variate random processes.

Up to now, analyses of the random pressure fields almost have based on the covariance
matrix-branched proper orthogonal decomposition due to its straightforward in computation and
interpretation. Some authors used the proper orthogonal decomposition to analyze random
pressure field and to find out relation between the covariance modes and physical phenomena.
Bienkiewicz et al. 1995 used the proper orthogonal decomposition analysis of mean and
fluctuating pressure fields around low-rise building directly measured due to turbulent flows. A
linkage between pattern of the pressure distribution and covariance modes, especially first two
modes was discussed and interpreted, in which the 1" mode was compatible to the pattern of the
fluctuating pressure distribution, whereas the 2" mode similar to the mean pressure pattern.
Holmes et al. 1997, however, reviewed that that no consistent linkages between physical
phenomena and covariance mode due to series of physical measurements and proper orthogonal
decomposition analyses of pressure fields in low-rise buildings. Effect of pressure tap positions
on the same measured pressure area (uniform and non-uniform arrangements) on the covariance
modes studied by Jeong et al. 2000, by which the covariance modes observed differently in two
cases. Kikuchi et al. 1997 applied the proper orthogonal decomposition to pressure field of tall
buildings, then fluctuating pressure field was reconstructed due to only few dominant covariance
modes, used to estimate aerodynamic forces and corresponding responses. Tamura et al.
1997&1999 indicated distortion and wrong interpretation of the covariance modes due to
presence of mean pressure data in the analyzed pressure field. Matsumoto et al. 2006 carried out
the proper orthogonal decomposition analysis of the fluctuating pressure fields around oscillatory
rectangular section B/D=4, then linkage between the first covariance modes and some typical
physical causes such as Karman vortex shedding and motion-induced vortex shedding on the
model surface can be clarified in some cases. It is argued that the proper orthogonal
decomposition is appropriate tool to reveal physical phenomena on from experimental data where
correspondence between the covariance modes and physical causes from the fluctuating pressure
field. However, some others discussed that interpretation from the covariance modes is aprioristic
and arbitrary based from previous knowledge of system behavior and response.

Because the low-order eigenvectors contribute to most of energy of the fluctuating pressure
field, it is expected that those eigenvectors are likely to be associated with dominant physical

phenomena and physical causes occurred on physical model. Many literatures have tried to



follow this direction to find out obvious linkage between low-order eigenvectors and physical
phenomena, however, there is somewhat pessimistic that these relations are valid for few certain
cases, most of others are fictitious based on past knowledge and experience of authors.
Considering about the fictitious relationship between the eigenvectors (or modes) and the

underlying physical phenomena, some authors have indicated in their literatures that:

“... there is no reason to suppose that spatial variation of the pressure fluctuations due to one
physical cause are necessarily orthogonal with respect to that due to another cause. The
mathematical constraints caused by orthogonality condition could therefore mean that in some cases,
a unique physical cause cannot be associated with each eigenvector.”

Armitt, J. 1968

“... the shapes of the modes are constrained by the requirement of orthogonality, and hence any
physical interpretation of these modes could be at least misleading, and probably fictitious in many
cases. The most useful aspect of the proper orthogonal decomposition techniques is that it is an
economical form for describing the spatial and temporal wind pressure variations on a buildings, or
other bluff body, and is especially useful for relating the pressures to structural load effects.”
Holmes, J.D. 1997

This is explained that due to the mathematical constraints of orthogonality conditions from the
random processes/ fields, unique physical cause cannot be associated with dominant eigenvector,
moreover, fictitious interpretation about these relations between the covariance modes and
physical causes may be based on past knowledge and previous experience about the flow
behaviors. Many effects such as number of pressure positions, pressure position arrangement,
presence of mean pressure values and so on can influence sensitively to resulting covariance
modes (Tamura et al. 1999, Jeong et al. 2000). The covariance proper transformation, however,
has effectively used few dominant covariance modes to approximate random-induced forces and
response prediction of buildings and spaced structures (Kikuchi et al. 1997, Uematsu et al. 1997).
Spectral matrix-based application to decompose the random field is rare due to its complexities in
computation and interpretation, but it is promising due to its complete decoupling solution at
every frequency, consequently decoupling in the time domain including zero-time-lag condition.
De Grenet and Ricciardelli 2004 discussed in using the spectral proper transformation to study

the fluctuating pressure fields around squared cylinder and boxed-girder deck.



6.3 Representation of unsteady surface pressure field

Similar to the turbulent fields, the wind-induced pressure field on structures is considered as
multi-variate spatially-correlated random fields, in which the pressure at any point in the field is
influenced by surrounding pressures at adjacent points. Thus, one calls the pressure field as
coherent one. The unsteady surface pressure at any point in the field is expressed as summation
between mean value and fluctuating pressure as:

P(v,t) = p(v) + p(v,t) (6.1)
where P(v,t) : unsteady pressure; p(v) : mean pressure; p(v,t) : fluctuating pressure; o :
dimensional variables (v =x;y;z). Fluctuating pressure field p(v,t) is usually represented as

N-variate random process with zero mean containing sub-processes at N points in the field:

p,t) = {p, (1), P, (O, ),..., Py LD} (6.2)
Zero-time-lag covariance matrix and cross power spectrum density matrix are commonly used
to characterize for the N-variate spatially-correlated random pressure field p(t) in the time domain

and in the frequency one, which are defined as follows:

[R,, (0) R, (0) - R, (0

R, =[R, , (0)]= R"Z‘?(O) R"”’f(o) R"Z":“(O) (6.3-a)
|Rpn (0 Ry, (0) R, o, (0)
(S, (M) S, (M - S, (n)

S, =[S,,, (M= szp;‘(n) szp?(n) szp?(n) (6.3-b)
_Sprl(n) SprZ(n) SprN(n)

where R,,S,: zero-time-lag covariance and cross spectral matrices, respectively; Rpp (0),S, , (N):
elements of the covariance matrix and the cross power spectral one between p, (tyand p,(t) at

nodes k and I, are determined as follows:
Rpk Y] (0) = E[ pk (t) pIT (t)] (64-3)
Spn (M =1/S,, (NS, (NCOH , , (n,A,) (6.4-b)

where E[],T denote to the expectation and transpose operators; n: frequency variable;

S, (M.S,, (n): auto power spectral densities of p,(t) and p(); COH,,(n,A,): coherence

function between two separated nodes k, 1 accounting for spatial correlation of the random

sub-processes in the frequency domain which can be determined by either empirical model or



physical measurement.
It is noted that the zero-time-lag covariance matrix is symmetric, real and positive definite,
whereas the cross spectral one is symmetric, real (because the quadrature spectrum has been

neglected) and Hermitian semi-positive definite at each frequency.
6.4 Proper orthogonal decomposition of pressure field

Proper orthogonal decomposition usually implies for the Karhunen-Loeve decomposition to
differ to some other sister decomposition methods such as the principal component analysis and
the singular value decomposition. Equivalence among these methods, however, was discussed by
Liang et al. 2002.

The proper orthogonal decomposition is considered as optimum approximation of
multi-variate random processes in which a set of orthogonal basic vectors is found out in order to
expand the random process into a sum of products of these time-independent basic orthogonal
vectors and time-dependant uncorrelated single-variate random processes. Let consider the

multi-variate random process v(t) containing correlated N-subprocesses

o(t) = {U1 (©),0,(1),..., 0y (t)}T is approximated as follows:
b(t) = X7 O = 3 %, 1)) (6.5)

where v(t) : multi-variate random process with zero-mean; x(t) : principal coordinate vector
X(t) = {X, (1), X, (1),..., X, (1)} in whichx,(t): i-th principal coordinate as zero-mean single-variate
random subprocess; © : modal matrix or shape function matrix ©=[6,,6,....,6, ]| in which 6 :
i-th basic orthogonal vector.

In mathematical expression of optimality is to find out shape function matrix ® to maximize

the projection of random process o(t)onto this shape function, suitably normalized due to the

mean square basis (Lumley 1970):

N (y®6))

g (6.6)
el

where (®),<> ,I,[|| denote to inner product, expectation, absolute and Euclidean squared norm

operators, respectively.
Optimum approximation of the random process in Eq.(6.1) using the shape function matrix
defined as Eq.(6.2) is known as the Karhunen-Loeve decomposition. It is proved that the shape

function matrix in this optimality can be found out as eigenvector solution of eigen problem from



basic matrix that are either covariance matrix or cross spectral matrix formed by the multi-variate
random process.

Multi-variate spatially-correlated random pressure field can be expressed by following
optimum approximation, in which this pressure field is expand into a sum of products of
time-independent basic orthogonal vectors and time-dependant uncorrelated random processes as
follows:

P(v,1) = x(1) D) = 3 X; (D)4, (V) (6.7)
j=1

wherea;(t): j-th principal coordinate as uni-variate zero-time random processes E[aj(t)J:O;
¢;(v) : J-th basic orthogonal vector g (L)' g (v)=0; ( o; : Kronecker delta);
X(t) = {x1 (1), X, (1),..., X (t)},db(u) = [g/}l (),8,(V),.... 0, (u)]. It is also notable that eigenvalues gained

from this eigen solution usually reduce fast, accordingly, only very few number of low-order
eigenvectors associated with low-order high eigenvalues can obtain optimum approximation in

Eq.(6.1) and describe the whole random process.
N
o(t) = Y % (1), (6.8)
i=1

where N : number of truncated shape functions (eigenvectors or modes) N <<N .
6.5 Covariance and spectral proper transformations of pressure field

The covariance matrix-based orthogonal vectors are found as the eigenvector solutions of the
zero-time-lag covariance matrix R (n) of the N-variate random pressure field p(t) :

R®,=T,0, (6.9)
where ©, =[0,,,0,,,..0,,1 , T, =diag(y,,,7,,.--7,y) : covariance eigenvalue and eigenvector
(covariance turbulent mode) matrices, which satisfy the orthonormal conditions:

T_- T_
0,0,=1,0,C0,=T, (6.10)
Accordingly, the turbulence field and its covariance matrix can be expressed as optimum

approximation as follows:

p(t) =0,%,(t) ~ Zemim (t) (6.11-a)

N
R, =0,,0,(n)~ Z,Hp,ypﬁ; (6.11-b)
J:



where X, (t) = {X, (1), X, (... .X 5 3" . covariance-based turbulent principal coordinates as the

N-variate uncorrelated random process; N : number of truncated turbulent modes (N << N ). This
approximation is called the Covariance Proper Transformation (CPT).

Covariance principal coordinates can be determined from observed data:

%,(0=0,"p) = POO, = 2P, (10, (6.12)

Similarly, the spectral eigenvalues and eigenvectors are found based on to the eigen problem

of the cross spectral matrix S (n) of random pressure process p(t) :

S,(M¥,(n)=A (N¥,(n) (6.13)
where A (n) =diag(4,,(n),4,,(N),... A (M), ¥, (N) =[yw,,(N),y,,(N),...r ,, (N)] : spectral eigenvalue and
eigenvector (spectral turbulent mode) matrices, which also satisfy the orthonormal conditions:

Y I(MW, ) =15 T (NS, (MY, (n)=A,(n) (6.14)
Thus, the Fourier transform and the cross spectral density matrix S (n)can be represented

approximately under the Spectral Proper Transformation (SPT) as follows:

(M) = o (M, (M) = Dy (M (1) (6.15-a)

$,(0) =¥, (A, (¥] (M) = Y w7y (N2 (M (1) (6.15-b)
j=1

where § (n): spectral-based turbulent principal coordinates as Fourier transforms of uncorrelated

single-variate random processes; N : number of truncated turbulent modes (N << N ); *,T denote

to complex conjugate and transpose operation, respectively.
6.6 Gust response based on order-reduced pressure field

In many cases, the gust response prediction of spaced structure is required via measurement of
fluctuating pressure field surrounding the structure in wind tunnel tests. The covariance proper
transformation can be applied to represent the random fluctuating pressure field into simplified
order-reduced model using truncated number of low-order covariance eigenvectors and

associated covariance principal coordinates:

p(t) =0© X, (t) ~ Zepjxpj (t) (6.16)



where p(t): multi-variate  correlated random  pressure field around @ structure

p(®) = {p, (1), P, (D)..... py (O} 5 ©,: covariance modes of the pressure field ®, =|9,.6, ,...0, |;

P2 py 2t

Xx,(t) : covariance principal  coordianate  containing uncorrelated  subprocesses

X, () =fa, (1.2, )., O -
Full-scale turbulent-induced loading can be estimated via order-reduced model of surrounding

pressure field:
N N
Fb(t):ZCAjpj(t)zZCAjé’pjxpj(t) (6.17)
j=t j=1

where C Aj’ representative area at node j.

Accordingly, generalized turbulent-induced loading can be expended as follows:

N N
fi (D) =R, (0 = 4D Ca0,, X%, (1) = D A, X, () (618)
i=l j=1
{ i
where A = Z A= Zﬂc a0, 1 CrOSS modal factors between the covariance modes and structural
j=] j=l ] J

ones.
Thus, the single-degree-of-freedom motion equation can be obtained directly in the time

domain:
ED+20040+ 25D =Y A X, O (6.19)

Generalized responses can also be solved directly in the time domain using the direct
integration methods such as the Newmark-beta or the fourth-order Runge-Kutta methods. Then,

the globally structural responses are also obtained accordingly.
6.7 Wind tunnel experiments

Physical pressure measurements were carried out in the Kyoto University’s open-circuit wind
tunnel. Three typical rectangular models with slender ratios B/D=1, B/D=1(with Splitter Plate),
B/D=5 were used. Artificial turbulent flows were generated in the wind tunnel at mean wind
velocities 3m/s (casel), 6m/s (case 2) and 9m/s (case 3), corresponding to intensities of
turbulence were [,=11.46%,1,=11.23%; 1,=10.54%,1,=9.28%;1,=9.52%,1,=6.65%, respectively.
Pressure measurement holes were arranged inside, in chordwise direction and on one surface of
models in which model B/D=1 labeled pressure positions from 1 to 10, whereas model B/D=5

from 1 to 19. Unsteady surface pressures were simultaneously measured by the multi-channel



pressure measurement system (ZOC23 system: Z (Zero), O (Operation), C (Calibration)). Electric
signals were filtered by 100Hz low-pass filters (E3201, NF Design Block Co., Ltd.) before passed
through A/D converter (Thinknet DF3422, Pavec Co., Ltd.) with sampling frequency at 1000Hz

in 100 seconds.
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Fig. 6.2 Experimental models

Flow around models due to interaction between ongoing flow and model section is usually
known as the bluff body flow, which characterized by formation of separated and reattached
flows with separation bubble and formation of vortex shedding as well. It can be predicted from
the past knowledge and previous understanding that model B/D=1 is favorable for formation of
the Karman vortex shedding, where model B/D=5 is typical for formation of separated and
reattached flows on model surface. The splitter plate was added to model B/D=1 in order to

suppress effect of the Karman vortex shedding.

6.8 Surface pressure distribution and bluff body flow pattern

For convenient uses, mean and root-mean-square fluctuating pressure coefficients have been



normalized by dynamic pressure component from measured unsteady pressure data as follows:
Cpmen = 0/(0.50U2) (6.20-a)
Corms =, /(0.5pU2) (6.20-b)

where 0.5pU2: dynamic pressure; p : mean value; o, standard deviation of unsteady pressure.

Figure 6.3 shows the chordwise distributions of normalized fluctuating pressures on models at
three turbulent flow conditions. As can be seen that the fluctuating pressure distributes steadily on
whole surface of models B/D=1 but distributes dominantly on the leading region of the model
B/D=5. The fluctuating pressures, furthermore, reduce with respect to decrease of intensities of

turbulence.
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Fig. 6.3 Normalized fluctuating pressure distribution on chordwise positions
[Matsumoto, Shirato et al. 2006]

Figure 6.4 indicates power spectra of the fluctuating pressures at some chordwise positions
with three models and turbulent conditions. As can be seen with the model B/D=1 (without
splitter plate) that peaked frequencies are observed at 4.15Hz, 8.79Hz and 12.94Hz respective to
the three turbulent flows. It is explained that the Karman vortex formed and shed at the wake of
model. Shedding frequency depends on the Strouhal number (St) of cross section, moreover, the
Strouhal number can be determined St=0.1285. In case B/D=1 with splitter plate, no peaked
frequency is observed, it also means that no Karman vortex occurred and the splitter plate has
suppressed effect of the Karman vortex. In case of the model B/D=5, spectral peaks are also
observed at frequencies 1.22Hz and 2.44Hz (U=3m/s); at 2.44Hz, 4.88Hz, 7.32Hz (case 2); at
3.42Hz and 6.84Hz (case 3). It is predicted that the bluff body flow is separated and reattached
one. Reattachment points are at roughly positions 6, 7, 8 with respect to an increase of mean
velocities. It is supposed that the observed spectral peaks are induced by rolled-up vortices shed

away at reattachment points toward trailing edge. This agrees well with findings presented in the



literatures of Hiller and Cherry 1981 and Cherry et al. 1984 which were proposed empirical
formula to estimate frequency of rolled-up vortices shedding at reattachment point depending on

mean velocity and length of separation bubble.
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Fig. 6.4 Power spectra of fluctuating pressures at some chordwise positions [Matsumoto 2006]
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Fig. 6.5 Bluff body flow patterns around experimental models [Matsumoto, Shirato et al. 2006]
The bluff body flow patterns around three experimental models can be predicted as shown in

Figure 6.5 (here flows on one surface are drawn).



6.9 Covariance matrix-branched proper orthogonal decomposition

Eigenvalues and eigenvectors (covariance modes) have been determined from covariance matrix
of chordwise fluctuating pressures. Figure 6.6 shows first four covariance modes along chordwise
positions at three turbulent flows case.

It is noted that all first modes look alike to the fluctuating pressure distributions (see with
Figure 6.4).
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Fig. 6.6 First four covariance modes of experimental models at different turbulent flows
It is interesting in Figure 6.6 that all covariance eigenvectors (covariance modes) express

almost the same shape and values, not to depend on the turbulent flow conditions, except the



second covariance mode in the model B/D=5 have changes its sign. Thus, it is appropriate to
think that the low-order covariance modes can characterize and represent for any known physical
cause, phenomenon as well as these dominant modes with the high energy contribution can be
associated with any pattern of the bluff body flow on the model surface. However, it is impossible
to identify the physical causes and the bluff body flow pattern from these dominant covariance
modes without previous understanding and knowledge about physical causes or behavior of bluff

body flows which have been studied from direct flow visualization techniques.

Tab. 6.1 Energy contribution of covariance modes (unit: %)
Mode B/D=1 B/D=1 with S.P B/D=5

3m/s 6m/s 9m/s 3m/s 6m/s 9m/s 3m/s 6m/s 9m/s
76.92 77.46 7536 6529 62.79 6330 43.77 4486 65.9
13.27 13.25 14.41 2097 22.61 22.08 22.02 23.14 13.29
469 423 462 6.14 629 6.10 15.18 15.14 9.48
287 286 3.17 4.04 432 441 598 5.68 34
1.27 132 145 199 228 245 476 411 279

[ N O R S

Energy contributions of the lowest five covariance modes of the fluctuating pressure fields
corresponding to the three models and three turbulent flows are given in Table 6.1. Obviously, the
first covariance mode contributes dominantly to the random pressure fields. The first covariance
modes contribute 76.92%, 65.29%, 43.77% to total energy at the turbulent flow case 1; 77.46%,
62.79%, 44.86% at the flow case 2; 75.36%, 63.30%, 65.9% at the flow case 3 corresponding to
three physical models: B/D=1, B/D=1 with the splitter plate and B/D=5, respectively. If the first
two covariance modes are taken into account, the energy contribution of two covariance modes
holds up to 90.19%, 86.26%, 65.79% of total energy at the flow case 1; 90.71%, 85.40%, 68.00%
at the flow case 2; 89.77%, 85.38%, 79.19% at the flow case 3, corresponding to three
above-mentioned models. In the other words, the first covariance modes contribute dominantly,
and the first two modes contribute almost on the energy of the pressure fields. It is also seen that
the energy contribution of the first covariance modes in the B/D=5 model is lower than those in
the models B/D=1, thus it might be supposed that the contribution of the first modes reduce with
more complicated expression of the pressure fields on surface.



a. U=3m/s
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c. U=9m/s
B/D=1 B/D=1 with S.P B/D=5
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Fig. 6.7 First four principal coordinates and their corresponding power spectral densities at
different flow conditions: a. U=3m/s, b. U=6m/s, c. U=9m/s

Covariance principal coordinates associated with the covariance modes to build up the original
pressure field has been determined from the measured pressure data following Eq.(6.11). It is
noted that the covariance principal coordinates are time-dependant uncorrelated processes. The
first four covariance principal coordinates corresponding to the three physical models and three
turbulent flows, and their power spectral densities are shown in Figure 6.7.

It is noteworthy that only the first and the second covariance principal coordinates express
considerable amplitudes, whereas the amplitudes of the other coordinates are small and
inconsiderable. In the aspect of power spectrum, furthermore, all the first covariance coordinates
not only dominate in their power spectral densities but they also contain all frequency
characteristics of the physical causes of the random pressure field, whereas the other coordinates
do not contain these frequencies.

Thus, it can be commented that the first covariance modes and associated principal
coordinates play important role in the description and identification of the random pressure field
due to their dominant energy contribution and frequency containing of hidden physical events of

the random pressure field.



6.10 Spectral matrix-branched proper orthogonal decomposition

Next, the proper orthogonal decomposition has been carried out in the spectral matrix branch.
The three-dimensional frequency-dependant cross spectral matrix of the random pressure field
has been formed, and the eigen problem of this cross spectral matrix has been solved to find out
frequency-dependant spectral eigenvalues and spectral eigenvectors (or spectral modes). Figure
6.8 shows the first five spectral eigenvalues on frequency band 0+50Hz at three flow cases and

corresponding to three experimental models.
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Fig. 6.8 First five spectral eigenvalues of experimental models
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As can be seen from Figure 6.8, all the first spectral eigenvalues corresponding to three
experimental models and three flow conditions exhibit much dominantly than the others.
Especially theses first spectral eigenvalues also contain all frequency peaks of the physical causes
of the random pressure fields, whereas the others do not hold these frequency peaks.

Figures 6.9, 6.10 and 6.11 show the first three spectral modes of the pressure fields of the three
models, which are associated with the spectral eigenvalues, corresponding to three turbulent
flows, respectively. As can be seen, the spectral modes look alike corresponding to the order of
modes at different turbulent flows. However, a linkage between the spectral modes and the
physical cause on models is not clear.
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Fig. 6.9 First three spectral modes of experimental models at turbulent flow U=3m/s
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Fig. 6.11 First three spectral modes of experimental models at turbulent flow U=9m/s

Energy contributions in the percentage of the first five spectral eigenvalues and associated

spectral modes corresponding to three models and three turbulent flows are given in Table 6.2 as
below:

Tab. 6.2 Energy contribution of spectral modes (unit: %)

Mode B/D=1 B/D=1 with S.P B/D=5
3m/s 6m/s 9m/s 3m/s 6m/s 9m/s 3m/s 6m/s 9m/s
1 86.04 85.84 83.02 81.30 77.48 77.88 74.77 73.59 83.93
2 8.08 8.08 992 10.15 1236 11.98 12.68 14.03 7.69
3 328 320 368 444 514 500 568 556 3.57
4
5

140 1.62 194 205 263 270 275 286 1.86
0.64 072 081 109 128 134 144 145 1.06

Similar to the covariance modes, the first spectral modes contribute dominantly on the energy
of the pressure fields. Concretely, the first spectral modes contain 86.04%, 81.30%, 74.77%,
respectively to the three experimental models at the turbulent flow U=3m/s; and 85.84%, 77.48%,
73.59% at the turbulent flow U=6m/s; and 83.02%, 77.88%, 83.93% at the turbulent flow
U=9m/s. Thus, the first spectral modes dominate in the energy contribution at all three turbulent

flows, this differs slightly from results of the covariance matrix analysis branch where the first



covariance mode reduce with more complicated distribution of the pressure fields as the case of
model B/D=5. This suggests that the first spectral mode may express the better solution than the
first covariance mode, because of higher energy contribution of the first spectral mode than the
first covariance one. If the first two spectral modes are accounted, they contribute almost
94.12%,91.45%,87.45% on total energy of the pressure fields on three experimental models
B/D=1, B/D=1 with splitter plate, B/D=5, respectively at the flow case 1; and 93.92%, 89.84%,
87.62% at the flow case 2; and 92.94%, 89.86%, 91.62% at flow case 3. In the other words, the
first spectral modes contribute dominantly on energy of the pressure fields on all experimental
models and at all three turbulent flows, moreover, the first two spectral modes contribute almost

on the energy of these pressure fields.

6.11 Order-reduced modeling and reconstruction of pressure field

As above-mentioned, the original pressure fields can be reconstructed by using limited number of
the low-order covariance modes or the low-order spectral modes. This simplified description is
known as the order-reduced modeling of the random pressure field which has been applied for
effectively modeling turbulent-induced buffeting forces and for effectively estimating gust
responses of structures due to these buffeting forces. Effects of basic and cumulative modes on
the pressure field reconstruction, as well as role of the first mode on the field identification are
going to be verified and investigated here.

Figure 6.12 expresses the reconstruction of original fluctuating pressure at position 5 (near
leading edge of models) corresponding to three models at the turbulent flow U=3m/s due to usage
and contribution of the basic covariance modes (form the first covariance mode to the fourth
covariance one). Figure 7.13 shows the pressure reconstruction at position 5 due to cumulative
covariance modes using the first mode and the first two modes. Noting that only position 5 and at
the flow case 1 are presented here on account of brevity, the another pressure positions on models
and at the another flow conditions (U=6m/s, U=9m/s) have the same results. Verification in term
of the spectral contribution between these covariance modes and the original pressure (as target)
has been carried out.

As can be seen from Figure 6.12 that reconstructed pressure time series using the first mode is
similar to the original pressure, especially its contribution portion contains the frequency peaks
can be used to identify hidden characteristics and physical phenomena of the original pressure. In
a comparison, reconstructed pressure portions using the second mode, the third mode, the fourth
mode are minor contributions to the original pressure, moreover, these contribution portions do

not contain the hidden frequency peaks in the original pressure.
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Fig. 6.12 Effect of covariance modes on pressure reconstruction at turbulent flow U=3m/s
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Fig. 6.13 Effect of cumulative covariance modes on pressure reconstruction at turbulent flow
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It is also seen in Figure 6.12 in the power spectral densities, reconstructed pressure at the
position 5 using the first covariance mode seems to be good agreement to the original pressure at
low frequency range between 0+10Hz in the models B/D=1 both without and with the splitter
plate, but there is spectral difference between reconstructed pressure and original one at high
frequency range 10+100Hz. It implies that the first covariance mode is accuracy enough for
reconstructing the original pressure at the low frequency range 0+10Hz as well as for identifying
the physical causes on all models, however, more cumulative covariance modes are required to
reconstruct the original pressure at the high frequency range.

Although the reconstructed pressure due to the first covariance mode in all experimental
models contain the typical frequencies of the physical causes, but it observes the first mode is not
enough to reconstruct the original pressure in a case of the model B/D=5 because there is much
difference in the power spectral contribution between its reconstructed pressure and the original
one. This can be explained due to the energy contribution of the first covariance mode in the case
of B/D=5 exhibits small proportion as 43.77% to total energy of the pressure field. In the model
B/D=S5, in the other words, the first mode can be used to identify the pressure field, but it is not
accuracy enough to reconstruct the original pressure, and more low-order modes should be
needed for the pressure reconstruction due to more complicated distribution of this pressure field.

In the Figure 6.13, the reconstructed pressures using number of the low-order covariance
modes (the first mode, the first two modes, the first three modes and the first fourth modes) as
well as their corresponding power spectral contributions are observed. It can be seen that the first
covariance mode is enough to reconstruct the original pressure in the models B/D=1 without and
with the splitter plate, but the first two modes should be needed in the model B/D=5. In the
favorable condition, although all the first four covariance modes are used to reconstruct the
original pressure, but it is only good agreement at the low frequency range, and it is not accuracy
at the higher frequency range.

Figure 6.14 shows effects of basic spectral modes (basic four modes) and cumulative spectral
modes (first mode and first two modes) on reconstructing auto spectra densities of the original

pressures on all three experimental models at the reference position 5 and at the turbulent flow
U=3m/s.
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Fig. 6.14 Effects of basic and cumulative spectral modes on auto spectral reconstruction of

pressure at turbulent flow U=3m/s



As can be seen from Figure 6.14, the first spectral modes also play very important role in the
pressure reconstruction. Only the first spectral modes are enough for reconstruction and
identification of the pressure fields. However, the first spectral modes exhibit the better than the
first covariance ones in reconstructing the original pressure, because the good agreement at all
frequency range can be observed with the first spectral modes whereas the good fit at the low
frequency range with the first covariance one. This is very important to the first spectral mode
rather than the first covariance one.

This agrees with the high energy contribution of the first spectral modes on the total energy of

the pressure field at all experimental models and all turbulent flows.

6.12 Conclusion

Analysis and identification of the fluctuating pressure field around some typical rectangular
sections using both the covariance matrix-based and spectral matrix-based proper orthogonal

decompositions have been presented in this paper. Some points are concluded as follows:

(1) Significant role of the first covariance mode and the first spectral mode has been verified.
The first mode contains certain frequency peaks of hidden physical phenomena,
moreover, it contributes dominantly on the field energy. Thus the first mode is significant

and accuracy enough to reconstruct and identify the pressure field for many cases.

(2) In cases of the high frequency range and of complicated pressure distributions and flows,
it is suggested that more cumulative modes should be needed to reconstruct the pressure
field. The more complicated the pressure field distributes and the bluff body flow
behaviors, the less important the first mode contributes and the more cumulative modes

are needed to reconstruct the pressure field.

(3) In the comparison, the first spectral mode expresses the better than the first covariance
mode in reconstructing the pressure field.

(4) The linkage between the POD modes and physical events is valid only in the concrete
cases when the pressure field behaviors simply and steadily as well as the physical events
occur apparently. Because the POD modes, eigenvalues, principal coordinates modify
sensitively with respect to pressure positions, pressure tap arrangements, measured region
and area, so on, therefore it is supposed such linkage only can be obtained in some

limited cases.
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Chapter 7

Representation and Simulation of Spatially-correlated
Random Turbulent Field using Proper Transformations

7.1 Introduction

It is agreed that the analysis and experiment of the wind-induced vibration and response of
structures always require a carefully modeling and representation of the wind turbulent field. The
velocity field of the atmospheric wind is usually considered as unsteady one which comprise a
time-independent mean velocity and three time-dependant fluctuating components, called as
atmospheric turbulence, which are longitudinal, lateral and vertical turbulent components,
respectively. It is the atmospheric turbulence to reason for generating aecrodynamic phenomena,
vibration and response of structures. So far, the atmospheric turbulence is defined as a zero-mean
random Gaussian process. The spatial turbulent field is known as the typically coherent one in
which turbulent time series at different spatial points are multi-variate and spatially-correlated in
field space, moreover, the spatial correlation of the turbulent field can be characterized by either
correlation coefficients in the time domain or coherence functions in the frequency one. Although
each turbulent component is correlated itself, but the cross correlation between two turbulent
components is usually omitted due to its small effect. In the other words, the longitudinal
turbulence is uncorrelated with the lateral turbulence and the vertical one. Representation and
modeling of the turbulent fields play very important role for both the analytical and experimental
methods.

Because the turbulent wind fields are considered as the nature of randomness and spatial
coherence, thus representation and modeling of these fields are usually expressed via the
statistical functions. In the time domain, first-order statistical moments such as mean or
expectation value; second-order statistical moments such as variance, mean square, correlation
functions, correlation coefficients have been widely used. In the frequency domain, the
second-order Fourier transform-based functions such as power spectral density functions and

coherence function have been commonly applied. Furthermore, the multi-variate



spatially-correlated turbulent fields can be described comprehensively under matrix forms of
either the zero-time-lag covariance matrix in the time domain or the cross spectral density matrix
in the frequency domain in which cross correlation between two spatial points is accounted via
either correlation coefficient function or coherence function.

Simulation of the turbulent fields is usually required for the wind-excited response analysis of
structures in the time domain. It is generally agreed that the turbulent wind fields are usually
considered as the multi-variate spatial-correlated stationary Gaussian random processes/ fields
with zero mean. The Monte Carlo technique for generating random variables is the most widely
employed to simulate the random processes/ fields in the scientific and engineering topics. Digital
simulation of the random processes/ fields can be categorized by either spectral representation
methods or time parametric methods.

Proper orthogonal decomposition, or the Karhunen-Loeve decomposition (Lumley 1970), has
been applied widely in many scientific and engineering fields including random processes/fields,
stochastic methods, numerical methods, image processing, data compression, system
identification and control and so on. In the wind engineering, the proper orthogonal
decomposition can be used to decompose and reconstruct the turbulent wind fields with new
concept of order-reduced modeling. The advantage of the proper orthogonal decomposition is that
the multi-variate correlated random processes/ fields can be described and represented by such
simplified way as a combination of limited number of low-order orthogonal eigenvectors (or
modes), which are determined as the modal decomposition (the eigen problem) from
comprehensive matrix forms of the random field such as the zero-time-lag covariance matrix and
the cross spectral matrix.

In this chapter, the representation, modeling and simulation of the multi-variate
spatially-correlated turbulent field are going to be presented with emphasis on spectral
representation methods using the proper orthogonal decomposition and its spectral proper
transformation. Simulation of the multi-variate turbulent field along a bridge girder will be

carried out as a numerical example.

7.2 Literature review on turbulent simulation

Simulation of the multi-variate spatially-correlated random turbulent field surrounding structures
is usually required for evaluating the turbulent-induced forces and estimating the gust response in
the time-domain analysis. Digital simulation of the random processes/ fields can be commonly
branched in either the spectral representation methods or the time series parametric methods. In

the both branches, the cross spectral density matrix of the random field has been usually used,



because it is the convenient way to build up this cross spectral matrix from available auto power
spectral densities of single-variate turbulent processes and spatial coherence function which
characterize for cross spatial correlation of the turbulent processes between two spatial points.

In the branch of the time series parametric representation methods, there are favorable
techniques such as the auto-regressive technique (AR), moving-average technique (MA) and
auto-regressive and moving average technique (ARMA). Auto-regressive and moving-average
method has presented and developed recently by some authors as Samaras et al. 1985, Migolet et
al. 1987, Li et al. 1990, Kareem et al. 1992, Meada et al. 1992.

The spectral representation methods have been widely applied so far due to direct approach of
decomposition techniques of the cross spectral matrix of the random field. All spectral
representation methods, moreover, depend on two decomposition techniques of the cross spectral
density matrix through either the Cholesky decomposition (eg., Shinozuka and Jan 1972; Cao et
al. 2000) or modal decomposition (eg., Shinozuka et al. 1990; Di Paola and Gullo 2001; Chen
and Kareem 2005; Tubino and Solari 2005). In the former, the cross spectral matrix is
decomposed by product of two lower triangle and upper triangular matrices, whereas the modal
decomposition uses spectral eigenvectors (spectral modes) and spectral eigenvalues obtained
from the spectral matrix-branched proper orthogonal decomposition in the later.

Shinozuka 1971 firstly introduced the simulation technique of the multi-variate Gaussian
random processes which was developed from that of single-variate random process and based on
the Cholesky decomposition of the cross spectral matrix of the random field. Simulation
technique of the multi-variate Gaussian random processes was enhanced by using Fast Fourier
Transform (FFT) discussed by Schuller and Shinozuka 1986, Shinozuka and Deodatis 1996.
Simulation procedures of the multi-variate turbulent field around bridge girder were modified by
Yang et al. 1997, Nguyen et al. 1999, Cao et al. 2000, however, they were based on the Cholesky
decomposition of the cross spectral matrix. Shinozuka et al. 1990 proposed new approach of
decomposition technique of the cross spectral matrix using some dominant eigenvectors
determined from eigen problem of the cross spectral matrix. This technique was called as modal
decomposition or modal factorization. This simulation method followed and developed by some
authors such as Di Paola and Gullo 2001, Chen and Kareem 2005; Tubino and Solari 2005. Main
advantage of using the spectral proper transformation in simulating the multi-variate random
turbulent field is that only few number of the low-order dominant spectral modes and associated
spectral eigenvalues is accuracy enough, moreover, the spectral modes and spectral eigenvalues
contain their physical significance.



7.3 Representation and modeling of spatially-correlated turbulent field
7.3.1 Mechanism of turbulent generation

Mechanism of the turbulent generation is convincing to study the unsteady turbulent-induced
forces (or buffeting forces), that relates to the oncoming flow characteristics, the wind-structure
interaction of stationary or motioned structures in the atmospheric wind flows. The turbulent
generation mechanism can explain spatial distribution of buffeting forces, correction functions
such as the aerodynamic admittance function and coherence one. It is generally said that the
uncertainties in the turbulent generation can induce limitations of the strip theory and
quasi-steady theory and inaccuracy in the buffeting response as well. The turbulent flows can be
generated from such following sources:

(1) Due to oncoming turbulent flow: Turbulence is as the nature of atmospheric wind.
Atmospheric turbulence is generated by such main reasons as friction, terrain and
topography, meteorological impacts such as atmospheric pressure, temperature and
oceanic flows. Effect of the atmospheric wind on civil engineering structures usually
behaviors under the law of the atmospheric boundary layer.

(2) Due to wind-structure interaction: Interaction phenomena due to separated and reattached
flow and vortex shedding formation usually occur on structural surface of bluff bodies to
modify around-structure flow (or bluff body flow). These interaction phenomena can
generate turbulence in even ongoing smooth flow and modify turbulent conditions in the
ongoing turbulent flow. Due to the movement of flexible structures such as long-span
cable-supported bridges in the wind flows, furthermore, the wind-structure interaction
relating to self-excited forces and aerodynamic damping can be generated
structure-surrounding turbulence.

(3) Due to wake response: By effect of upstream structures, the oncoming flow creates and
modifies wake turbulent flows to downstream structures. It is also known as the wake

phenomena or signature, proximity.

Among above-mentioned sources of the turbulent generation, the turbulent flow generated by
the wind-structure interaction is the most concern to the bluff sections. According to the
Matsumoto (2000), moreover, in the bluff-body flow behaviors such as separation bubble,
reattachment and vortex-shedding still occur whether or not oncoming flow is turbulence or
smoothness due to the wind-structure interaction. This confirms that the wind-structure
interaction and the bluff-body aerodynamics are convincing to explain the aerodynamic

phenomena as well as to study the unsteady turbulent-induced forces.



7.3.2 Turbulent wind field modeling

The total wind velocity in the atmospheric wind fields at reference point M(x,y,z) due to
approaching turbulent wind flow can be expressed by comprehensive manner as sum of mean

velocity component and turbulent ones as follows (Tubino and Solari 2005):
U(xy, 2,0 =U (X y,2) +U (XY, 2,1) (7.1)
whereU (x,y,2),U (x,y,zt): mean wind velocity and turbulent vectors corresponding to three

directions: longitudinal (x), lateral (y) and vertical (z), which are represented as

U6y, = U (% y,2,00] and U'(xy,2,0) = u(x, y,2,0,V(%, ¥, 2,1),W(x, y,2,D)]"

%Turbulent wind flow

Fig. 7.1 Atmospheric wind field

Mean wind velocity is obtained due to the logarithmic law or power law in the atmospheric

boundary layer theory as following formulae (Simiu and Scanlan 1976):

U(z) = %u* In(-%) (Logarithmic Law) (7.2-a)
YA

0

U(z)=U, (zo)(zi)“ (Power Law) (7.2-b)

0

where k: scale factor (k=0.4); zo: roughness length depending on ground terrain condition (open
terrain zo=0.3m); u+: shear or friction wind velocity: u™ =o? /B, . B, =44+84; U,(z,): wind

velocity recorded at reference altitude zo, (in practical codes zy=10m); « : terrain coefficient.

Eq.(7.2-b) can be expressed an influence of terrain coefficient in the simplified exponential



formula:
YA
U(2) :UR(ZO)ln(Z_) (7.3)
0
The longitudinal and vertical turbulent components u(t), w(t) (lateral turbulent component v(t)
is omitted due to very small effect to structure) are considered as two multi-variate
spatially-correlated Gaussian random turbulent processes with zero mean. These turbulent fields

at N discrete nodes are expressed as follows:
u(t) = {U, (), U, (0),... ,uy (1)} (7.4)
W(t) = (W (1), Wy (0),..., Wy (1)} (7.5)

Because the turbulent field has its nature of random and coherent field, thus this field can be
represented and modeled under conventionally statistical functions: first-order statistical
moments such as mean or expectation value; second-order statistical moments such as variance,
mean square, correlation functions, correlation coefficients in the time domain; or power spectral

density functions, coherence function in the frequency domain.
7.3.3 Power spectral density function of turbulence

Energy contribution of any time series corresponding to spectral components in the frequency
range is characterized by the power spectral density function as second-order Fourier
transformation. Many empirical formulae can be applied for the auto power spectral densities of
the longitudinal turbulence u(t) and the vertical one w(t). Von Karman 1948 firstly introduced a
practical empirical formula of the auto power spectral density based on ongoing turbulent flow
conditions such as mean velocity, intensities of turbulence, length scale of turbulence and so on.
So far, methodology of von Karman has been exploited by some authors to develop their
empirical formulae. Some empirical formulae are widely used for the auto power spectral
densities of u-, w-turbulence Sy(n), Syw(n) in the practical application introduced hereafter (Simiu
and Scanlan 1976, Matsumoto 2000):

Kaimal’s, Bush and Panofsky’ spectra:
200 fu? 3.36fu’
S,(N)=———=: S,(N)= 7.6
o) n(1+50f)" " n(1+101°7) (7.6)
where f: non-dimensional Monin coordinates, f =nz/U ; n: frequency variable (Hz); U, z: mean

velocity (m/s) and altitude z (m), respectively; u*: friction or shear velocity (m/s),

u, =kU /In(z/ z,) , k, zo: scale factor and roughness length (m).



Von Karman’s spectra:

2 2
5 (m)=r40ibs /U s =(2awlw/u)|1+188.8(n2LW1X/£U)2| a
[1+70.78(nL, /U | [1+70.78(nL,, /U )]

where 0, o, : standard derivatives; L, L,,: chordwise length scales of u-,w-turbulences.

It is supposed that von Karman’s spectra express the better approach because of their
dependence on basic configuration of the ongoing turbulent flow such as mean velocity (U),
variances o,,0, , length scales L,,L, , but not on height z, whereas the Kaimal’s,

Bush-Panofsky’s spectra only depend on mean velocity and height, but not on dimension of

turbulence.
7.3.4 Coherence function of turbulence

The cross correlation in the space between two time series in the frequency domain is
characterized by the spatial coherence function. The spatial coherence function between two
processes v, (t)and v,(t)is defined as their cross spectral density normalized by their auto
spectral ones as follows:

Spu, (A)_[S77 (A +[S7 (n,A)F
5,(MS,, (M~ 5, (MS, ()

Co Qu . : :
where S, (n,A),S,, (n,A): co-spectrum and quadrature spectrum as real and imaginary parts

10

COH;, (n,A)= (7.8)

of complex cross spectral density. In the homogenous turbulent flow, however, the quadrature

spectrum is usually eliminated due to its less effect, we have:
[S... (LAY [S,, (n,4)]

COH? (n,A)= (7.9)
o S, (MS,,(n) 3, (MS,, (n)
Spatial coherence functions are usually expressed under empirical formula as follows:
COH (n)=exp(—nf) (7.10)
where f: decay factor depending on spatial parameters, obtained as:
B T A R e R IR { et i Al S 70 A

0.5U(z,))+U(z,)] 0.5[U(z,))+U(z,)]
C,,C,: Exponent decay coefficients are experimentally determined; xi, X2, y1, y2, Z1, Z2: spatial
coordinates of two points in the turbulent field corresponding to lateral (chordwise), longitudinal
(spanwise), vertical directions in the structural axes AX=|X, —X, [,Ay =y, - Y, |,Az =z, -7, ].

It is noted in almost practical cases, however, the length scale of turbulence in the chordwise



direction (L, L,, ) is higher than structural width (B) and height (D), thus the buffeting forces are

considered as fully-correlated coherence in the chordwise and vertical directions of structure, and
only the cross correlation and the coherence of turbulence and buffeting forces in the spanwise
direction is significant to be accounted for. It also assumed that the spanwise coherence of the
longitudinal turbulence is similar to that of vertical one in many applications.

Some empirical coherence functions have been widely used for coherence of turbulence and
introduced as follows (Davenport 1962, Irwin 1974, Simiu and Scanlan 1976, Matsumoto 2000,
Larose 2001):

Davenport’s empirical coherence:

COH,,, (n,Ay) = exp(— c, %‘yj (7.12)
where c¢y: decay factor in the spanwise direction, in which 8 <c, <16, for example ¢, =c,, =7
(Davenport 1962), c, =10, c,, =6.5 (Solari and Tubino 2005).

Von Karman’s empirical coherence:

COH, (n, Ay) = F(SZ/ 6)@ {K%(n) —g Km(n)} (7.13-a)

_2 (" vk ) _
COH,, (n,Ay) = F(5/6)(2j {KS/G (m)+ 3772 +5(Aykl)2 77K1/6(77)} (7.13-b)

where K, ¢, K; : modified Bessel function of the second kind; I': Gamma function; L, L, :

spanwise length scale of u-,w-turbulences; 7: von Karman collapsing parameter defined as

1/2
Ay® { 1 27/m
n= (Ayzklz + LZ ] = klAy 1+W 5 kl = T (714)
wy I —wy

In the isotropic turbulent field, the modification of von Karman’s coherence

follows:

11/6
COHum,Ay)=0.994{775“&/6(77”)—’“TKUM)} (7.15-a)
, 77 11/6
COH,,(n,Ay) =0.9941,> °K - W K 7.15-b
w(N,AY) {Uw s/6(Mw) 1+188.7(nIW/U)2 1/6(77W)} ( )
n n
n. = 0747 \/1+70.8(ﬂ)2, 77W:0.747i\/1+70.8(ﬂ)2 (7.15-c)
4L, U 4.5L, U



It is also supposed that the von Karman’s coherence model of turbulence seems the better
expression than the Davenport’s one, because this empirical formula is related to basic parameters

of the ongoing turbulent flows as the length scales of turbulence
7.3.5 Cross spectral matrix of the random turbulent fields

As above-mentioned, the auto power spectral density function and spatial coherence one have
been used to characterize for at any single point and correlation between two single points in the
spatial field of turbulence in the frequency domain. Thus, one has used so-called cross spectral
matrix to characterize for the spatial fields of turbulence in the frequency domain. The cross
spectral density matrix of the N-variate turbulent field at N separated points is defined as:

Sy, (M) v Sym.

SUZUI (n) SUZUZ (n)

s, (n) = (7.16)

Sy (M Sy, (M) oo S, (M)
where S (n): cross spectral density matrix, known as positive-definite symmetrical squared one,
in which elements (S, , (n),i =1,...N') in the main diagonal are auto spectral density functions at
each point and elements (Suiuj (n),i# j,i,j=1,...N ) outside the main diagonal are cross spectral

ones between two points 1 and j; v denotes to either longitudinal turbulence u(t) or vertical one

w(t). Elements of the cross spectral matrix are determined as follows:
S,.., (M =EBms,mT]. s, (m=E[pmo,m7] (7.17)
where Oi(n),ﬁj(n) : Fourier transform functions of time series of turbulence at points i1 and j; E:

expectation operator; *, T : complex conjugate and transpose operators.

In practical applications, however, it is difficult to obtain direct measurement of time series of
turbulence at every point in the spatial field. Available empirical functions of the auto spectral
density function at different points and available coherence function between two separated
points are usually used to build up the cross spectral matrices of the turbulent fields. By this way,

the cross spectral elements S;(n)between two points i and j can be determined via the
corresponding auto spectral ones and spatial coherence function as follows:
Sy, (M) = Js (mS, , (MCOH,,, (n,A) (7.18)

where S, (n), SU,.UJ. (n): auto spectral density functions at nodes 1 and j; COHUiUJ_ (n) : Coherence




function.

In many computational applications and simulation in the frequency domain, the cross spectral
matrix of any field is usually used. However, it is difficult to exploit in such comprehensive form,
thus decomposition techniques must be used to decouple this cross spectral matrix under form of
expansion. The most applicable techniques to decouple this matrix are the Cholesky

decomposition and modal one.
7.4 Proper orthogonal decomposition and spectral proper transformation

The spectral matrix-based orthogonal vectors are found as eigenvector solutions of the eigen

problem from the cross spectral density matrix S (n)of any multi-variate random field as follows:
S, (¥, (n) = A, (M ¥, (n) (7.19)
where S (n): cross spectral density matrix; A, (n),'¥,(n): spectral eigenvalue and eigenvector
matrices A (n) =diag(4,,(n),4,,(N),.. 4, (N) » ¥, (N)=[w,,(N),w,,(N),.p,M] . It is noted that
spectral eigenvalues are real and positive, its spectral eigenvectors (also called as spectral modes)
are generally complex, however, if cross spectral matrix is real then spectral modes are also real
ones. The spectral eigenvalues and the spectral modes satisfy such orthogonal conditions as

follows:

W), ()= 15 FT (S, (M, ()= A, (n) (7.20)
Accordingly, the Fourier transform and the cross spectral density matrix of o(t) can be
represented as optimum approximation due to terms of the spectral eigenvalues and eigenvectors

as follows:

6(n) =¥, (MY, (M) = 3y, (MY,;(M) (7.21-a)
j=1

S, (M) =¥, (MA, (M, (M) = 3w, (VA (M (n) (7.21-b)

where H(n): Fourier transform of process o(t);y, (n): spectral principal coordinates as Fourier

transforms of uncorrelated random subprocesses; M : number of truncated spectral modes
(M <<N); * denotes to complex conjugate operator. Frequency-domain approximation in
Eq.(7.15) is also known as spectral proper transformation (SPT).
The spectral principal coordinates have some characteristics as follows:
E[g; (3. (" |=5;. E[g5(m)]=2,() (7.22)

Thus, when two effective random turbulent fields of the longitudinal and vertical turbulent



components u(t), w(t) are taken into account, the Fourier transform vectors or spectral density
matrix of the two turbulent fields can be approximated due to the spectral proper transformation

as follows:

000 = (I, () = Dy (M9, (03 S, = ¥ WAL (M) = Dy, A,y () (723-2)

w(n) =¥, (nN)y,(n) ~ Zc//wj (MY, ()5 S, (N) =¥, (MA(MP] (M)~ D w, (MA, (N, (n) (7.23-b)
J=l j=1

These approximations of the spectral proper transformation will be used for simulating the

turbulent fields hereafter.

7.5 Turbulent simulation procedures
7.5.1 Turbulent simulation using Cholesky decomposition

Here comprehensive form of the cross spectral matrix of the multi-variate turbulent field is
decomposed by the Chelesky’s factorization technique in which this cross spectral matrix is

factorized by product between the lower triangle matrix and upper triangle one as follows:
S,(M=H, (mH,(m7" (7.24-a)
H,, (N 0

HU2U| (n) HUZUZ (n)

H, (n) = (7.24-b)

HUNUI (n) HUNUZ (n) HUNUN (n)
where H,(n): complex lower triangle matrix.

The multi-variate random turbulent field can be expressed in the frequency domain using the

factorized lower triangle matrix as follows:

v = Vz(An)Zj:i| Hujuk (Ng) [cos(2an,t —6; (ny) + @) (7.25)

k=1 I=1

where j: index of structural node; k: index of moving node; I: index of moving point in frequency
range; N : number of frequency intervals; An: frequency interval An=n, / N ; N, : upper
cutoff frequency; n,,: frequency point on frequency range n, = (I —1)An+kAn/N ; HUJ_Uk (Ny):
element of complex lower-triangle matrix; 6;(n,): complex phase angle of H,  (n); 4, :

a Im(HuM ()

, which
Re(HUiUI (ny))

random phase angles, uniformly distributed over [0,2n] as 6,(n,) = tan



are generated by Monte Carlo technique.
Elements in the complex lower triangle matrix H_ (n) can be calculated in the practical form

of the turbulent field around bridges in cases of deck nodes spaced in similar distance and similar

elevation as follows (Cao et al. 2000):

0 when1<i< j<N
H,,,, ()= /Suiu,. (nN)COH ' when j=1 (7.26)
S,, (NCOH"11-C* when2< j<i<N
where Suluj(n): auto spectral density function of subprocess Y at node j; N: number of deck
nodes; C: spanwise coherence function between two adjacent nodes.

In many cases, the cross spectral matrix is real (phase lags are negligible), thus the lower

triangle matrix is real too, therefore phase &, (n,) =0, thus spectral matrix-based simulation of

single-variate turbulent subprocess in the multi-variate random turbulent field is determined as:

U; )=+ Z(An)ii’ A/ Sujuj (n)ij (Ny) cos(2anyt + ¢) (7.27)

k=1 1=1
7.5.2 Turbulent simulation using spectral proper transformation

Simulation of the multi-variate random turbulent process using spectral representation method is
widely used so far and will be presented here, in which the cross spectral matrix is decomposed

by the proper spectral transformation. Accordingly, the N-variate random turbulent process
o) = {ul(t),uz(t),...,uN ('[)}T can be represented (Di Paola and Gullo 2001; Chen and Kareem
2005; Tubino and Solari 2005):

o(t) = Texp(izmt)dsu(n) (7.28)

—00

where BU(n)z{Bul(n),BUZ(n),...,BUN (n)}: mean-zero uncorrelated orthogonal increment process
satisfying as E|dB, (n)|=0, dB, (n)=dB, (n)", E|dB, (n,)dB, (n) |=5,5,S,(ndn ; S,(n) :
cross spectral matrix.

Using the spectral proper transformation Eq.(13) to decompose and approximate the cross

N N
spectral matrix S, (n)= 'S, (n) =¥, (MA, (MY, ()= >, (N4, (N, (1), the multi-variate

i= i=t

random turbulent process can be decomposed and approximated by summation of N N-variate



processes independent orthogonal:

o(t) = y Y, (t) = y m% ()[4, (N)e p(i27znt)dnj (7.29)
; ] Z(J. ] J X

j=1

—o0

Subprocesses of the N-variate random turbulent process o(t) can be simulated in the discrete
frequency domain as:
NN
v)=2> > v, (N)J4, (N)AN, exp(i2zn;t) (7.30)
=1 1=l
where i: index of simulated subprocess; j: index of spectral modes; I: index of frequency

points; n, : frequency value at moving point I; N : number of frequency intervals; n,: frequency

interval at moving point 1.
If the frequency domain is discretized constantly at every frequency interval An, then the
Eq.(7.29) can be expanded as follows:
N N
o®=2JANY. Yy, ()[4, (0) cos@Qmt+6, (n)+¢) (7.31)
=l 1=l

where An,: frequency interval at point |I; An: constantly frequency interval An=n_ / N and

n, =(-1An, n,: upper cut-off frequency; ¢ : phase angle considered as random variable

up *

uniformly distributed over [0,27]; g, (n) phase angle of complex eigenvector

v, (M) =y, (n)[exp(ig, (n)), determined as:

 Im V,, (n)
HUJ_ (n|) = tan R‘e;m; (732)

In many cases, the spectral eigenvectors are real due to auto spectral densities are real and

positive, Eq.(7.30) can be simplified as follows:
N N
v, (t) =24An w, (N) A, (n)cosmnt+dg) (7.33)
JZ_:, ; S AL I |

The phase angles can be randomly generated using the Monte Carlo technique. This technique
also is considered as the random phase generation to defer from the random amplitude
generation.

More details on recent applications of the proper orthogonal decomposition in simulating
multi-variate turbulent process, including parametric time representation methods using
autoregressive (AR) model can refer to Di Paola and Gullo 2002; Chen and Kareem 2005; Tubino
and Solari 2005.



7.6 Numerical example

In this numerical example, the spectral proper transformation has been applied to simulate the
two  multi-variate  turbulent fields at 30 discrete nodes along a  bridge
deck:u(t) = {u, (t), U, (t),....u,, (D, W(t) = (W, (£), W, (t),....0;, (1)} . Time series of the turbulent fields
at 30 nodes have been simulated at different mean velocities U=5,10,20,30 and 40m/s. Sampling
rate of simulated turbulent time series is 1000Hz for total time interval 100 seconds. Time
interval is set at 0.001 second. The cross spectral density matrices of u-,w-turbulences have been
formulated based on auto spectral densities and spanwise coherence function. Targeted auto
power spectral density functions of u-, w-components are used the Kaimail’s and Panofsky’s
spectral models in Eq(7.6). Coherence function between two separated nodes along bridge deck,
moreover, is used by exponentially empirical model in Eq.(7.12) with decay factors

¢, =10,c,, =6.5.

30

ui(t)'

w X
u

5O W w

Fig. 7.2 Effective turbulent fields at bridge deck nodes
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Fig. 7.3 Auto power spectral densities of u-,w-turbulences corresponding to mean velocity
U=20m/s



Figure 7.3 shows targeted auto spectral density functions of u-,w-turbulences at mean velocity
U=20m/s and in frequency range 0.01+--10Hz with some input parameters such as deck height
z=20m, scale factor k=0.4, roughness length zy=0.025m.

Cross spectral matrices S, (n), S, (n) of two turbulent fields u(t), w(t) at the 30 deck nodes have

been formulated as 30x30 symmetrical squared matrices. It is noted that the cross spectral
matrices comprise three dimensions, in which the third one represents for the frequency domain
and all spectral elements at i-th row represent for auto spectral density at the node i and cross
spectral ones between the node 1 and adjacent nodes. Figure 7.4 shows spatial distribution of the
power spectral densities of w-turbulence at different nodes 3, 5, 10 and 15. As can be seen that
the power spectral densities at i-th node distribute dominantly around this i-th node, and it decays

fast with respect to an increases of frequencies and spatial distances.

a. Node 3 b. Node 5
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Fig. 7.4 Spatial power spectral densities of w-turbulence at some nodes 3, 5, 10 and 15



The cross spectral matrices have been decomposed using the proper orthogonal decomposition
to find out pairs of the spectral eigenvectors and corresponding spectral eigenvalues. There are
totally 30 pairs. Figure 7.5 shows the first five spectral eigenvalues A4 (n)+ As(n)on frequency

band 0.01+10Hz at the mean velocity U=20m/s. It is observed that the first spectral eigenvalue
2,(ny exhibits much higher than the others on the very low frequency band 0.01+0.2Hz with the

u-turbulence, 0.01+0.5Hz with the w-turbulence, however, all spectral eigenvalues not to differ

beyond these frequency thresholds. These are considered as the effective frequency ranges.

a. u-turbulence b. w-turbulence
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Fig. 7.5 First five spectral eigenvalues at U=20m/s: a. u-turbulence, b. w-turbulence
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The first three spectral turbulent modes w ,(n),y,,(n),y ,(n); v=u,w on the same spectral

band 0+10Hz at the mean wind velocity U=20m/s is expressed in Figure 7.6. It can be seen that
the turbulent modes of u-,w-components look like as symmetrically and asymmetrically
sinusoidal waves, in which number of wave halves increases incrementally with the order of
eigenvectors. It is also commented that because the shape of the spectral turbulent modes does
not change with the frequency, thus the frequency characteristics of auto spectral densities of
u-,w-turbulence depend completely on the spectral eigenvectors. It seems that the spectral
eigenvalues should be considered for interpretation of physical characteristics of the ongoing
turbulences.

Effect of change of mean wind velocities in turbulent flows on the spectral eigenvalues and the
spectral turbulent modes is investigated herein in order to find out linkage between the spectral
quantities and characteristics of the ongoing turbulent flows. Spectral eigenvalues and spectral
turbulent modes are analyzed at different mean velocities U=5, 10, 20, 30 and 40m/s, and shown
in Figures 7.7+7.10. Obviously, it is observed that the shape of spectral turbulent modes exhibit
constantly, not to depend on the change of the mean wind velocities. Only spectral eigenvalues
strongly depend on the frequency. Therefore, the spectral eigenvalue can characterize for energy
contribution of associated spectral eigenvectors to the whole system. Accordingly, the spectral
eigenvalues can interpret to characteristics of the ongoing turbulent flows. It is expected the
relationship between the spectral eigenvalues (associated spectral eigenvectors as well) and
physical events of the ongoing turbulent flow exists.

As can be seen from Figure 7.7, in some cases the spectral eigenvalues contain frequency
peaks, which these peaks increase with an increase of order of the spectral eigenvalues. In
comparison at different mean velocities, it is observed that effective frequency ranges widen with
increase of mean velocities. Moreover, scale of the spectral eigenvalues and their corresponding
spectral peaks increase with respect to increase of the mean velocities as indicated in Figure 7.8.

The hidden events of the turbulent flows can be revealed that multi-scale eddies always exist
on the turbulent flows. Large-scale eddies contain high energy, but move at low frequency, and
inversely, small-scale hold small energy, but high frequency. However, the large-scale eddies
tendency unstable, they break up into smaller eddies. Unstable large-scale eddies contain no
energy contribution and frequency information. The scale of eddies and their corresponding
frequency increase with respect to increase of the mean velocities. These characteristics of eddies
in the turbulent flows can be determined via those of the spectral eigenvalues as mentioned above,

therefore it is supposed that the spectral eigenvalues can interpret the scale of eddies.



Time series of two turbulent fields u(t), w(t) are simulated due to the spectral proper
transformation of the cross spectral matrices of these two fields. All 30 spectral turbulent modes
have been used for this turbulent simulation, therefore the simulated time series are considered as
targeted time series. Figures 7.11+7.14 show simulated time series of these turbulent processes at
first ten deck nodes (from node 1 to node 10) during 100-second interval, corresponding to

various mean wind velocities U=10, 20, 30 and 40m/s.
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Fig. 7.11 Simulated time series at mean velocity U=10m/s: a. u-turbulence, b. w-turbulence
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Fig. 7.12 Simulated time series at mean velocity U=20m/s:
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b. w-turbulence
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Fig. 7.14 Simulated time series at mean velocity U=40m/s: a. u-turbulence, b. w-turbulence



Simulated time series have been verified accuracy and consistence to satisfy statistical
functions, power spectral densities and spatial correlation with respect to targeted conditions. It is
noted that due to a sake of brevity, only verification of the simulated time series at mean velocity
U=20m/s are taken into account (checking simulated time series at another turbulent conditions
corresponding the mean velocities U=10, 30 and 40m/s can be carried out as the same manner,
but not to present here). Characteristics of the simulated time series of u-,w-turbulences such as
mean values, standard deviation and intensities of turbulence at the ten deck nodes are expressed
in Table 7.1. There are good correspondence in the statistical characteristics among the simulated

time series of u-,w-turbulences can be observed.

Tab. 7.1 Characteristics of simulated time series of u-,w-turbulences
nodel node2 node3 noded4 node5 node6 node7 node8 node9 nodell

u-turbulence
U (m/s) 3E-06 -4E-05 -9E-06 2E-05 SE-05 -9E-07 2E-06 -5E-05 -3E-05 -2E-05
o,(m/s) 3.0981 2.9232 3.2833 2.8647 2.9405 3.3427 3.1242 2.5777 2.7094 2.6757
I,(%) 1549 14.616 16416 14.324 14.703 16.713 15.621 12.889 13.547 13.378

w-turbulence
U (m/s) -1E-05 4E-05 -2E-05 1E-05 -2E-05 3E-05 -1E-07 7E-06 -2E-05 1E-05
o,(m/s) 1.6312 1.5704 1.5761 1.5793 1.6425 1.597 1.6078 1.617 1.5779 1.6785
I,(%) 8.1558 7.8522 7.8805 7.8963 8.2126 7.9852 8.0389 8.0851 7.8897 8.3925

S,.(n) (mfs)

simulated at node 1
L[| = simulated at node 3
10 g - simulated at node 5
simulated at node 10

10°H simulated at node 1
- simulated at node 3 FR )
----- simulated at node 5 IR
simulated at node 10 H
—— simulated at node 15
—— targeted spectrum

T

L[| — simulated at node 15
10§ — targeted spectrum

L L )" L
10” 10" 10° 10! 10? 10" 10° 10"
Frequency n(Hz) Frequency n(Hz)

Fig.7.15 Verification between power spectral densities of simulated time series and targeted

spectral densities at mean velocity U=20m/s



Figure 7.15 shows the auto power spectral densities (PSD) of simulated time series of
subprocesses in the random turbulent fields u(t), w(t) at the turbulent flow U=20m/s in some
representative deck nodes in verification with the targeted spectral densities. It is seen that there
are good agreement between the auto spectral densities of the simulated time series and targeted
ones.

Effect of number of truncated low-order spectral modes on simulation of the turbulent fields is
investigated. Figure 7.16 shows the simulated time series of u-turbulence and w-turbulence at
reference nodes 5 and 15 contributed by 5 modes, 10 modes, 20 modes and 30 modes as targeted
time series.

a. Node 5

Node 5: u(t) Node 5: w(t)
10 T T T T T T . . .

5 modes
o
5 modes
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Fig. 7.16 Effect of spectral modes on simulated time series in nodes 5&15 at U=20m/s
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Fig. 7.17 Effect of spectral modes on simulated time series in nodes 5&15 during 10 seconds

Table 7.2 Characteristics of simulated time series of u-,w-turbulences at nodes 5&15

U (m/s)
o, (m/s)
1, (%)

U (m/s)
o, (m/s)
1, (%)

u-turbulence

w-turbulence

Smodes 10modes 20modes 30modes S5modes 10modes 20modes 30modes
node 5
2E-05 -2E-05 -1E-06 -1E-05 -7E-06  4E-07 9E-06 -3E-06
2.5009 2.5704  2.8184  3.4195 0.9658 1.1766 1.3573 1.6698
12.505  12.852 14.092 17.097 4.8292 5.8828  6.7867  8.3491
node 15
2E-06  -2E-05 3E-07 -4E-05 -2E-07  2E-05 9E-06 -9E-06
24328  2.6552  3.1036  3.1368 0.9353  1.0547 1.4118 1.6403
12.164  13.276 15.518 15.684 4.6765 52733  7.0592  8.2017

Figure 7.17 shows the time histories of simulated turbulences due to contribution of first 5
modes, 10 modes, 20 modes and 30 modes over the 10 second time interval. Furthermore, the
characteristics of simulated time series at two nodes 5 and 15 corresponding to number of
turbulent modes are indicated in Table 7.2. Comparison in the power spectral densities between
simulated time series due to number of the turbulent modes is shown in Figure 7.18. As can be

seen from Table 7.2 and Figure 7.18, there is difference in statistic characteristics and power

spectral densities between simulated time series.
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Simulating time series of the random turbulent fields acting on discrete deck nodes will be

used as input data to predict the gust response of structure using the covariance proper
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transformation in the time domain.

7.7 Conclusion

Representation and simulation of the multi-variate spatially-correlated random turbulent field has
been presented in this chapter with emphasis on application of the spectral proper transformation.

The effect of number of spectral turbulent modes on the turbulent simulation also is discussed.

Some conclusion can be given as follows:
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(1) Digital simulation of multi-variate turbulent field using cross spectral matrix-based
proper orthogonal decomposition and the spectral proper transformation is another
approach including to conventional Cholesky decomposition in the spectral representation
methods. Effect of number of the spectral turbulent modes on simulated time series has
been investigated with verification for accuracy and consistence. It can be argued that it is
not accurate enough for the turbulent simulation with using just few fundamental

turbulent modes, many turbulent modes should be required.

(2) Physical meaning of the spectral eigenvalues and turbulent modes relating to hidden
events in the ongoing turbulent flow has been tried to establish. Because the spectral
eigenvectors express constantly with respect to the different mean velocities and the
frequencies, and the spectral eigenvalues contain frequency information. Therefore, it is
expected that the spectral eigenvalues can characterize for scale of the turbulent eddies of
the ongoing turbulent flow. However, further studies on the relationship between the
spectral eigenvalues, associated spectral turbulent modes and physical phenomena inside
the ongoing turbulent flows will be required for more clarification of this physical

linkage.
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Chapter 8

Gust Response of Bridges using Spectral Proper
Transformation

8.1 Introduction

Gust response prediction of structures subjected to the turbulent-induced forces in the
atmospheric turbulent flow requires as a must among wind effects and wind-induced vibrations.
General formulation of gust response prediction of line-like structures has proposed by Davenport,
1962. Recent development in the buffeting response analysis of bridges in the frequency domain
with emphasis on aeroelastic force coupling has been presented in some literatures (eg.,
Matsumoto et al. 1994, Jain et al. 1996, Katsuchi et al. 1999). As a principle, the
multi-degree-of-freedom (MDOF) motion equations of structures were decomposed orthogonally
in the generalized coordinates and vibrational mode shapes thanks to the structural modal
transformation (SMT). However, there were inevitable difficulties to generalize external turbulent
forces, which then are associated with generalized coordinates. So far, the joint acceptance
function (JAF) has been applied to determine the generalized turbulent forces and gust response
analysis of bridges in both the frequency and time domains (Davenport, 1992; Chen et al., 2000).
Proper orthogonal decomposition (POD), also known as Karhunen-Loeve decomposition has
been applied. Basing upon a formulation of basic matrix in the proper transformation, the proper
orthogonal decomposition has been divided into two branches: i. the covariance-matrix-based
POD and covariance proper transformation (CPT) in the time domain and 1ii. the
spectral-matrix-based POD and spectral proper transformation (SPT) in the frequency domain
(Carassale et al. 1999; Solari et al. 2000, Chen and Kareem 2005). In the former, the basic matrix
is based on the zero-time-lag covariance matrix of turbulent loading processes in the time domain,
whereas cross spectral density matrix of these processes used in the frequency domain in the
later. It is generally agreed that almost literatures, however, have been discussed on the
covariance-based POD and CPT in the time domain. The spectral-based POD and SPT is very
promising to apply for stochastic response analysis, but it burdens much in complicated

computation rather than the CPT. Recently, new approach of the gust response analysis of



structures, so-called double modal transformations (DMT) has been proposed by Carassale et al.,
1999, by which the structural modes decomposed by the SMT are associated with the so-called
orthogonally turbulent loading modes decomposed by the SPT to determine the gust response in
both the generalized and structural coordinates. Advantage of the POD applications on the gust
response analysis of structures has hinged on comprehensive approach for the generalized gust
force formulation in which the fully-correlated turbulent field is directed accounted. Especially,
the lowest turbulent loading modes that have been decomposed from the fully-correlated
turbulent field thanks to the POD analysis can contribute dominantly on the structurally
generalized responses of the lowest structural modes. The DMT using the the spectral-based POD
and SPT has been applied for the gust response prediction of simple frames, buildings by some
authors (Carassale et al. 1999; Solari et al. 2000; Chen and Kareem 2005), and for that of bridges
(Solari and Tubino 2005, Le and Nguyen 2006). Time domain gust response analysis of bridges
using the covariance-based POD and CPT has firstly presented by Matsumoto et al. 2007. In
previous applications of spectral-based DMT, however, the simple quasi-steady theory has been
accounted for the turbulent-induced forces.

In this chapter, the spectral-matrix-based POD and its SPT will be presented and application to
decoupling the multi-variate turbulent loading processes. New comprehensive approach on the
gust response prediction of structures then will be formulated using the SPT with emphasis on
numerical example of cable-stayed bridge. The turbulent-induced forces based on corrected

quasi-steady theory with aerodynamic admittance also are used for more refinement.

8.2 Spectral Proper Transformation

The main idea of the POD is to find out a set of orthogonal vector basis which can represent a
multi-variate random process into a sum of products of these basic orthogonal vectors and
single-variant uncorrelated random processes. The spectral-based orthogonal vectors are found as
the eigenvector solutions of the eigen problem of the cross spectral density matrix as:

S, (MW, (M) = A, (MY, (n) 8.1)
where S (n): cross spectral density matrix formed from multi-variate random process o(t);
A,(n),%,(n) : spectral eigenvalue and eigenvector matrices A (n)= diag(4,, (n), 4,,(N)....4, (M)
¥, =y, (N,y,,(N),..y,, (M]» in which spectral eigenvector y, (n) associated with spectral

eigenvalue 2, (n); n: frequency variable.

Since the cross spectral density matrix S (n)is a Hermitian and positive definite one, thus its

spectral eigenvalues are real and positive, its spectral eigenvectors are generally complex, satisfy



the orthonormal conditions as follows:
(M), () = 15 T ()S, ()Y, (n) = A, (n) (8.2-2)

v My, (=5 v (S, (M, ()=4, (6, (8.2-b)
Thus, the Fourier transform and the cross spectral density matrix of o(t) can be represented in

terms of the orthogonal eigenvectors ¢ (n)as follows:

6(M) = ¥, (M, () = Dy (9, (") (83-a)

S, (M) ="F,(MA,(M¥,"(N) = > w,;(N)4;(My; (n) (8.3-b)

j=1
where § (n): turbulent principal coordinates as Fourier transforms of uncorrelated single-variate
random processes; N: dimension of cross spectral matrixs (n); *,T: denote to both complex

conjugate and transpose operators.

The spectral-based quantities can be approximately reconstructed by using limited number of
the lowest spectral eigenvectors (assumed that the spectral eigenvectors rearranged in reduced
order of their corresponding spectral eigenvalues) as follows:

o(n) ~ ZV/U,- (N, (M (8.4-a)

S,(n) = Z%,- (M4, My (M) (8.4-b)

where M : number of truncated spectral eigenvectors (M << N ).

These approximations are known as the Spectral Proper Transformation (SPT) in the
frequency domain.

Two multi-variate uncorrelated turbulent processes containing longitudinally and vertically
velocity fluctuations u(t), w(t) (lateral turbulent component v(t) is omitted due to very small
effect) are represented at N discrete nodes along the bridge deck as two N-variate Gaussian

random processes:
U(t) = {U, (), Uy (D, Uy (D} 5 W(E) = (W (), W, (D)., Wy (D} (8.5)
The cross spectral matrix S (n) of the turbulent fields which comprise auto and cross spectral

densities components at each node and between two nodes are given in following form:



Sy, (M) Sy, (M) .o Sy, () Suw, (M) Sy, (M) o S, (M)
Su u (n) Su u (n) b Su u (n) SW W, (n) SW W. (n) A SW W, (n)
n 2? co T psem= o S

Sue, (M) Sy (M) o S, (M Suyw (M Sy, (M) o Sy, (M)

where S, | (n),S, ,, (n): auto spectral density elements of turbulent components u(t), w(t) at

5,(n) = (8.6)

node m;S, , (n),S, , (N): cross spectral density elements between two nodes m, k; m or

> UL Uy
k=1,2..N. The cross spectral density elements can be determined from the auto spectral density

ones due to such following relationship as:

Sy (M=3,, (MCOH,(n,A); S, (M)=S,, (NCOH,(NA.) (8.7)
where COH,(n,A,,),COH,,(n,A,, ) : coherence functions between two separated nodes m, k at
spanwise separation A_ =y -y, |5 YmYk : Spanwise coordinates of nodes m, k.

Two N-variate Gaussian random turbulent processes u(t), w(t) can be decomposed and

transformed into the spectral principal coordinates using the spectral proper transformation:

l,j(n) = LPu(n)yu(n) ~ Zl//uj(n)yuj(n) (88'3)

W(n) =, (M), () = Xy (M9, (n) (8.8-b)
i=1

where (i(n), W(n) : Fourier transforms of u(t), v(t); ¥,(n), Y, (n): the spectral principal coordinates

as Fourier transform of independent random processes; M << N.

Furthermore, the cross spectral matrices are reconstructed as follows:

M
S,(N) = ¥, MA, M7 (N) = Yy (A, (M (n) (8.9-a)
j=1
M
S, (M) = W, (A, (M, (M) = Dy, (M, (M (N) (8.9-b)
j=1
where A (n),A,(n),'Y,(n),'¥,(n) : spectral eigenvalues and corresponding spectral

eigenvectors: A, (n) = diag(4, (n), 4, (n),...,4, (N); A, (n) =diag(4, (n), 4, (N),...,4, ()
¥, (0 ={y, (M).w,, (N,....y, (M} 5 ¥, ={w, ().p, (),...p, (N} determined from

spectral matrix-based proper orthogonal decomposition of the random turbulent processes u(t),
w(t) following Eq.(8.1).

8.3 Frequency-domain buffeting forces



Uniform buffeting forces per unit deck length (consisting of lift, drag, moment: L (t), D, (t), M, (t),

see Figure 8.1) are determined from random turbulent field u(t), w(t) due to the corrected
quasi-steady theory (Davenport 1962), in which frequency-dependant aerodynamic admittance
functions are supplemented.

Lo(®=3 PUBIC, (@) 20 (M2 (€ (@) + Co @) 7MUY (8.10-0)
D, ()= PU*BIC (@) 70, (M 212+ (C (@) ~ €. ()2 () W“’] (8.10-b)
M, (6= U B[Cyy (@) 2, () 2“(’+c (00) e (1 )W“)] (8.10-¢)

whereC, ,C,,C,, : aecrodynamic static coefficients at balanced angle of attack ¢, (usuallya, =0°);

C,.C,.C, : first derivatives with respect to angle of attack at balanced angle

C, - dC. (a%a

between turbulent components and turbulent-induced forces (their absolute magnitudes refer as

w0 F=LD,M; x¢,(n) (F=L,D,M;v=u,w): acrodynamic transfer functions

aerodynamic admittance functions); o , B, U: air density, width and mean velocity,

Ly(t)
p(t)
U
ﬁﬁﬂ\r% 0
=
/ %

/

respectively.

Fig. 8.1 Uniform buffeting forces on bridge deck

Then full-scale buffeting forces acting on whole structure can be formulated due to linearized

lumping of the uniform buffeting forces at each deck node:

Ly(1)= {Luy (), Lyp (), Loy (D))= pUB [CLru(MLu2u®)+C i, (MLuw®)]  (8.11-a)

Dy (1)=1{Dy; (1), Dy (1), . Dyy (t)}——PUB[CDZDU(n)l-u2U(t)+CDZDW(n)LwW(t)] (8.11-b)



My (©)={Mp, (), My (1), My (D)} = pUB [Cut Zaas (MLo2U(®)+Cyy 2 (MLaW(D)] (8.11-¢)

or in such following form as (Solari and Tubino 2005)

1
Fy ()= PUB[C, 7e, (MU(®) + €, 2p, (MWCD)] (8.12-a)
) | 2C,L (CL+ColL| 0.5y,~y,l, =1
Fo(®)=| Dy(®) [C, = pUB| 2CoL [:C, = (C, —C L ;L=diag(L,);L; ={0.5] y,., - ¥, 1 <i <N (9.12-b)
M, (t) 2BC,, L BC,, L 0.5]yy —Yyylr i=

where C,,C,, : full-scale force coefficient matrices; L;: influenced distance at node 1i; y:

longitudinal structural coordinate
In the frequency domain, transforming the uniform buffeting forces into a form of power
spectral density using second-order Fourier transform, omitting cross correlation components

between u(t) and w(t), the power spectral densities of the uniform buffeting forces are obtained:

S.(M)= (3 AU BYIC 2 (M €+t >D] (s.130)
S, ()= (;pu BY[C2 3, (M ”+(c c:)zDW(n)SWWm)] (8.13-b)
S, ()= (5 PU B[S 7 (M) =" ““(”) 22 (”)] (8.13-0)

where S (n),S,(n),S,, (n): power spectra of lift, drag and moment, respectively; S, (n),S,, (n):

auto power spectra of uni-variate turbulent processes u(t), w(t). Accordingly, the power spectral

densities of the full-scale buffeting forces can be determined as:
Se, (1) = (5 PUBY'[CE 72, (S, () + Ci, (WS, (0) (8.14)

The buffeting forces formulated here are used for predicting the gust response of bridges.
8.4 Gust response formulation

Multi-degree-of-freedom motion equations of structures subjected to the buffeting forces can be
expressed by means of the Finite Element Method (FEM):

MU +CU + KU = F,(t) (8.15)
where F, () : full-scale buffeting forces; M,C,K : structural mass, damping and stiffness
matrices, respectively; U = {h(t)T, p(t)T,a(t)T}: displacement vector containing three vertical,

lateral and rotational displacements; u,u: velocity and acceleration vectors.



Transforming into the mass matrix-nornalized structural generalized coordinates using the
modal analysis and the Structural Modal Transformation (SMT):

M
Ut =DEt)~ D 450" MO=1;0"KO=Q;DP'CP=E (8.16)
i=1
where £(t) : structural generalized coordinates; ®: modal matrix ® =[¢,,d,,....4,1 ; @ : i-th

structural mode; 1,Q,=: unit and diagonalized matrices; M : number of truncated structural

modes M << M , M: number of dynamic degree-of-freedom of structure.

Single-degree-of-freedom motion equation in the i-th generalized coordinate is expressed

EM) + 2508 (1) + W& () =4 F (D) (8.17-a)
égu(t) + 2§iwi9éi O+ 0’51 =4 %pUB[CuZFu, (Mu®) +C, 7, (n)W(t)] (8.17-b)

where o, ,m;i: circular frequency, damping ratio, mass or inertia at the i-th generalized

coordinate.
Power spectral density of generalized response at the i-th generalized coordinates can be

obtained in the frequency domain thanks to the first-order Fourier transform:
. 1 . A
G(n) = EpUB [Hi() | 4 [Cu)tpui (Mu(n) +C, 7¢,, (n)W(n)] (8.18)

where fi(n): Fourier transform of generalized response at the i-th generalized coordinate;

a(n),W(n) : Fourier transform of u-,w- random turbulent processes; |H,(n)|*: Frequency

Response Function (FRF) or mechanical admittance function at natural frequency n;.
Here the Fourier transform components of u(t), w(t) are decomposed and approximated due to
the Spectral Proper Transformation (SPT) following Eqgs.(8.8-a, 8.8-b), we have:

éi(n) = %pUB | Hi(n) | |:ZFui (n)ZﬂTCul/juj(n)yuj (N + Zew, (n)z¢iTCw‘//wj Yui (n)} (8.19)

j= j=

or

ééi (n)= %pUB |H;(n)| |:}(Fui (n)z A\nj (n)yuj (n)+ Xew, (n)Z A\Nij (n)ywj (n)i| (8.20-a)

A (n)= Z A ()= z¢iT C, w,;(N); A,(n)= z A (n) = z¢iT Cw‘//wj (n) (8.20-b)
j=1 j=1 j=1 j=

where A;(n) = ' Cyr;(n), A;; () = ¢'C () = cross modal coefficients which represent the
interaction between the i-th structural mode ¢ and the j-th turbulent one ;.

Power spectral densities of the generalized responses can be obtained thanks to the



second-order Fourier transform as follows:
1
S.(n)= (E/DUB)2 | H, () (¢ )Z[Cj)(éu(n)su (n)+ Cfvziw(n)sw(n)] (3.21)

where S, (n): power spectra of the generalized response of the i-th generalized coordinate;

S,(n),S,(n): cross spectral matrices.

Optimum approximations of the cross spectral matrices are used following Eqgs.(8.9-a, 8.9-b),

we have:

S.(n)= (%pUB)Z | H(n) [ {z (MY BCw; (M A, (M (B + 22, (M BCow (M A (M (n)} (8.22)

i= i=1

and
1 i d .
S.(M=( pUB)2|:Z|§u (M H; () Ay (MAG(MAT (M) + 22, (M H () Y AL (A, (M)A (n)} (8.23)
j=1 j=1
The power spectral densities of generalized response can be obtained in the comprehensive
formsuch S.(n)=H(n)S, (N)H (n)" as follows:
S.(n)= (% AUB)? [H(n)(I)Cj‘Pu (MA,(NE, KN’ O H(N) T + HNDCP, (MA,, (N, K(n)>*d" H(n)" ](8.24)
and
1 .
(1) = (7 PUB) [H (A (WA, (MK(0)” AT(MHT (1) + HM A, (WA MK(0)* AT (H)'] (8:25)
where H(Nn): Frequency Response Function matrix in the structurally generalized coordinates,
H(n) =diag(| H,(n) || H,(N) |,... |[H;(N) [); K(n)*: squared aerodynamic admittance function.
As the result, the power spectral densities of global response are determined:
Sy (N)=d'S,(N)d (8.26)
where S (n): power spectra of the global response.

Then, the mean square of the structural response is obtained

1 o0
ol = - { S, (n)dn (8.27)

where o : Mean square of the global response

Finally, global responses with respect to vertical, longitudinal and rotational directions can be
combined from single-modal responses due to the principle of the squared root of the sum of the
squares (SRSS):



Ml’
o (=3 c};r=hpa (8.28)
i=1

where r denotes to displacement components: vertical (h), longitudinal (p), rotational (a); M::

number of component modes in response combination;
8.5 Numerical example

A concrete cable-stayed bridge was taken for numerical example using the above-mentioned
computational procedures. Bridge was spanned by 40.5+97+40.5=178m. 3D frame model was
built thanks to the finite element method (FEM). There were 30 discrete nodes in the bridge deck.
Total 30 nodes were on the bridge deck, while nodes 8, 23 at pylons. First ten structural modes
were analyzed. Natural frequencies of the first ten structural modes vary between 0.61Hz+1.86Hz.
Damping ratios of every structural mode were assumed to be 0.005. It is also assumed that the
buffeting forces act on the bridge deck only, and the forces on towers and cables are negligible.

Aerodynamic static coefficients of cross section at balanced angle (¢, =0°) and their first
derivatives were experimentally determined as follows: C, =0.158, C,=0.041,C,, =0.174,
C, =3.73, C,~0, C,, =2.06. Two 30-variate turbulent loading processes u(t), w(t) are obtained
at the deck nodes: U(t) = {U, (t),u,(1),... ,U,, (1)}  and W(t) = {W,(t), W, (t),... ,W,, (1)} .

One-sided auto spectral density functions of u-, w-turbulent components were obtained due to
the Kaimail’s and the Panofsky’s spectral models, respectively (Simiu and Scanlan 1976).

Spanwise coherence function was used the Davenport’s empirical exponential function with

decay factors (Davenport 1962) with decay factorsc, =10, ¢, =6.5.

Aerodynamic admittance function was used the Liepmann’s empirical function as

approximation of the Sears’ function as follows (Liepmann 1958):

2 1
i) =————— 8.29
1+
U
Mechanical admittance function was determined as follows:
2 n2 2 2 n2 1
[Hi(n) = [0 -5)" + 47 )] (8.30)

Global responses of bridge is required to be predicted at referred mean velocity U=20m/s.



Tab.8.1 Modal characteristics of fundamental structural modes

Mode | Eigenvalue | Frequency Period Modal Feature
shape o’ (Hz) (s)
1 1.47E+01 0.609913 1.639579 S-V-1
2 2.54E+01 0.801663 1.247406 A-V-2
3 2.87E+01 0.852593 1.172893 S-T-1
4 5.64E+01 1.194920 0.836876 A-T-2
5 6.60E+01 1.293130 0.773318 S-V-3
6 8.30E+01 1.449593 0.689849 A-V-4
7 9.88E+01 1.581915 0.632145 S-T-P-3
8 1.05E+02 1.630459 0.613324 S-V-5
9 1.12E+02 1.683362 0.594049 A-V-6
10 1.36E+02 1.857597]  0.53830 S-V-7
Note :  S: Symmetric mode T: Torsional mode shape
A: Asymmetric mode P: Horizontal mode shape

V: Heaving mode shape
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Fig. 8.2 Fundamental structural mode shapes



a. Vertical component
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Fig. 8.3 Normalized amplitudes of structural modes: a. vertical displacement, b. rotational,

C.

Cross spectral matrices of the random turbulent processes u(t), w(t) acting on 30 deck nodes
are constructed from available auto spectral densities S (n),S,, (n)and coherence functions

COH,(n,A),COH,(n,A) . The cross spectral matrices are determined as three-dimensional

lateral

symmetrical squared matrices, in which the third dimension contains frequency information.

8.6

The cross spectral matrices of the random turbulent processes are decomposed thanks to the eigen
problem to find out entire 30 pairs of spectral eigenvalues and associated spectral eigenvectors
depending on the frequency. Because the spectral eigenvectors create the orthogonality basis at

Results and discussions

every frequency, thus called as the spectral turbulent modes.



Figure 8.4 shows the first five spectral eigenvalues A (n)+A,(n)on the frequency band
0.01+10Hz. It is observed that the first spectral eigenvalue £, (n)exhibits much higher than the
others on the very low frequency band 0.01+0.2Hz with the case of u-turbulence, 0.01+0.5Hz
with that of w-turbulence, however, all spectral eigenvalues seem not to differ beyond these
frequency thresholds. This can imply that only first pair of spectral eigenvalue and spectral
eigenvector seems to be accuracy enough for representing and simulating the random turbulent

processes at the low frequency bands, however, more pairs should be required at the higher
frequency bands.
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Fig. 8.4 First five spectral eigenvalues: a. u-turbulence, b. w-turbulence

The first four spectral eigenvectors w, (n),y,,(n),w,,(n); v =u,w(the spectral turbulent modes)

on the same spectral band 0+10Hz is expressed in Figure 8.5. It can be seen that the turbulent
modes of u-,w-turbulences look like as symmetrically and asymmetrically waves, in which
number of wave halves increases incrementally with order of the spectral turbulent modes. Shape
of the turbulent modes of u-,w-turbulent components, moreover, are unchanged during
structurally natural frequency band (0.61+1.85Hz). Moreover, the spectral turbulent modes do not
changed with the frequency, because the spectral modes do not change their values but sign on
the frequency domain.

Figure 8.6 expresses more details the first five spectral turbulent modes at the first five
structural natural frequencies, in which thick solid line, dashed one, dotted one, dot dashed one
and light solid exhibit the first five turbulent modes, respectively. As can be seen from Figure 8.6,
the first turbulent modes of both u-turbulence and w-one keep constant their shape and sign at
structural natural frequencies, whereas the others change their sign at the natural frequencies.
Spectral modes of the u-turbulence are similar to corresponding spectral modes of the
w-turbulence in both their shapes and values.
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Turbulent modes of u-turbulence Turbulent modes of w-turbulence
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Fig. 8.6 First five spectral turbulent modes at natural frequencies: thick solid: 1* turbulent mode,
dashed: 2™ mode, dotted: 31 mode; dot dashed: 4h mode, light solid: 5" mode
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Fig. 8.7 Effect of number of spectral turbulent modes on reconstruction of auto spectral
densities at nodes 5 and 15: a. u-turbulence, b. w-turbulence



Figure 8.7 shows the reconstruction of auto power spectra of u-,w-turbulences at referred
mid-span node 15 using limited number of truncated spectral turbulent modes, M =1;3;5:10;30,
here totally 30 turbulent modes imply for targeted value. Auto spectral values using truncated
turbulent modes differ with increase of frequency band. At very low frequencies, only first or few
turbulent modes are sufficient to reconstruct the auto spectral densities of turbulent field, however,
many turbulent modes should be used at high frequencies. This finding is similar to that comment
from Figure 8.4. Effect of number of the spectral turbulent modes on reconstruction of the auto
power spectra of the u-,w-turbulences at another deck nodes also have similar results, but do not
present here for the sake of brevity.

Effect of number of truncated turbulent modes on power spectral densities of the generalized
responses (consisting of the vertical and rotational displacements) at referred mid-span node 15
corresponding to some structural modes is expressed in Figure 8.8. Numbers of truncated spectral
modes used for computation are the first spectral turbulent mode, the first five modes, the first ten

modes and total thirty modes (as targeted response).
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Fig.8.8 Effect of number of turbulent modes on power spectral densities of generalized vertical

and rotational displacements at mid-span node 15

Figure 8.9 shows the power spectral densities of the global responses at mid-span node 15
(representative node 15 is illustrated here for a sake of brevity) and effect of number of truncated
turbulent modes on the global responses. As can be seen from Figure 8.9, there is no much
different among contribution of truncated turbulent modes on the global vertical and rotational
displacements. It also indicates that the first turbulent mode significantly contributes on the

power spectral densities of the global responses. Power spectra of resonant responses, moreover,



can be observed at the structural modal frequencies due to influence of frequency response

functions at these modal frequencies.
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Figure 8.10 expresses the root mean squares (RMS) of the global responses at all deck nodes
with emphasis on effect of truncated turbulent modes on the global responses. The important role
of the first turbulent mode on the global response can be also observed, because there is no much
difference of the global response contribution between the first spectral mode and the total 30
spectral turbulent modes.

Tab. 8.2 Effect of spectral modes on maximum global amplitude

N.modes | Node 5| % |Nodel5| % N.modes | Node 5| % |Nodel5| %
30 0.067 | 100 | 0.147 100 30 0069 | 100 | 0.015 100
10 0.066 99 0.147 99 10 .0068 98 0.015 99
5 0.064 95 0.144 97 5 .0065 93 0.014 95
1 0.058 86 0.131 88 1 .0059 84 0.012 80

For example, the first turbulent mode, first 5 modes, first 10 modes contribute 13.1cm(88%),
14.4cm(97%), 14.7cm(99%) on 14.7cm-maximum vertical displacement (totally 30 turbulent
modes) and 0.012°(80%), 0.014°(95%), 0.015°(99%) on 0.015°-maximum rotational displacement
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Fig.8.11 Cross modal coefficients between spectral turbulent modes and structural modes at every
natural frequency



Influence of the spectral turbulent modes on structural ones has been investigated by the cross
modal coefficients. Figure 8.11 shows the cross modal coefficients between first 15 spectral
turbulent modes of u-,w-turbulences and first 10 structural modes for lift or vertical displacement
and moment or rotational displacement. It is found out that few turbulent modes (in this case,
only first 9 turbulent modes) can excite structural modes, and higher turbulent modes are
orthogonal to the structural modes. For more detail, first heaving mode corresponding to the first
structural mode and first torsional mode corresponding to the third structural modes are excited
by the first spectral turbulent mode and the third spectral turbulent mode, respectively. Thus, the
gust response can be obtained by only accounting effective cross modal coefficients. This
suggests that the prediction of dominant gust response of structures can be simplified by
combination between few turbulent modes and few structural ones based on effective cross modal

factors. These results are also good agreements with the findings in Solari and Tubino 2005.

8.7 Conclusion

This chapter has presented the application of the proper orthogonal decomposition and its spectral
proper transformation to predict the gust response of full-scale bridges due to the randomly
buffeting forces. Moreover, effect of the orthogonally turbulent loading modes on the generalized
and global responses of bridges also is investigated.

Some conclusions are given as follows:

(1) New and comprehensive approach on the gust response prediction of bridges in the
frequency domain using the proper orthogonal decomposition-based spectral proper
transformation has been presented here. The main points are that the multi-variate
spatially-correlated random turbulent field acting on bridge deck has been formulated in
the comprehensive form due to the cross spectral matrix of this random turbulent field,
then the random turbulent field is decomposed and approximated by low-order spectral

turbulent modes which are used to estimate the gust response.

(2) Only limited number of low-order spectral turbulent modes dominantly contributes on
structural gust response. In many cases, the first spectral turbulent mode play very
significant role and seems to be accuracy enough in predicting the gust response of

bridges in the frequency domain, especially in the low frequency range.

Further development in the application of the spectral proper transformation in predicting the
gust response of structures is going to be accounted the coupling effect between the buffeting

forces and the aeroelastic forces (or flutter self-excited forces).
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Chapter 9

Gust Response of Bridges using Covariance Proper
Transformation

9.1 Introduction

Gust response prediction of long-span bridges subjected to the turbulent-induced forces (the
buffeting forces) requires more concern among wind-induced vibrations and their aerodynamic
responses. General formulation of gust response prediction of bridges was proposed by
Davenport 1962 in the frequency domain. Recently, the state-of-the-art buffeting response
analysis of bridges in coupling with the aeroelastic forces in the time domain has been carried out
by some authors (eg., Matsumoto et al. 1994, Matsumoto and Chen 1996, Boonyapinyo et al.
1999, Chen at al. 2000). Computational difficulties are to decompose spatially-correlated
full-scale buffeting forces into the structurally generalized coordinates which are decomposed
thanks to the structural modal transformation (SMT) in order to estimate the generalized
responses in the generalized coordinates and then the global responses of structures. In
conventional methods in both the frequency-domain and the time-domain, the so-called joint
acceptance function (JAF) has been used to decompose the full-scale buffeting forces into the
structurally generalized coordinates.

Karhunen-Loeve decomposition, also known as the proper orthogonal decomposition (POD)
(Lumley 1970), has been applied in many engineering fields (Liang et al. 2002). In the wind
engineering topics, the proper orthogonal decomposition has been applied for analysis and
order-reduced modeling of the random fields (Tamura et al. 1999, Matsumoto et al. 2006),
representation and simulation of the random fields (Tubino and Solari 2005), stochastic dynamic
response (Carassale et al. 1999, Solari and Carassale 2000, Chen and Kareem 2005). Basing on
the basic matrix of either the zero-time-lag covariance matrix or cross spectral density matrix of
the random field, the proper orthogonal decomposition has been branched by either the
covariance proper transformation (CPT) or the spectral proper transformation (SPT). New
approach of the gust response analysis of structures has been proposed recently by Carassale et al.

1999 in which the structural modes decomposed by the structural modal transformation are



associated with either the covariance turbulent loading modes or the spectral turbulent loading
modes decomposed from proper transformations in order to determine the generalized responses
and the global responses of structures. Combination manner between the structural modes and the
turbulent loading modes for predicting the stochastic response of structures is named by
Carassale et al. 1999 and Solari and Carassale 2000 as the double modal transformations (DMT).
So far, almost literatures on the proper orthogonal decomposition application to the stochastic
response of structures are formulated based on the spectral proper transformation in the frequency
domain (Carassale et al. 1999, Solari and Carassale 2000, Chen and Kareem 2005). The
frequency-domain gust response of structures using the spectral proper transformation has been
formulated in the previous chapter. The stochastic response of structures formulated in the time
domain using the covariance proper transformation is very promising because of its direct and
capable solutions for nonlinear problems and unsteady aerodynamics. However, digital
simulation of the time series of the random turbulent field and the direct integration methods of
generalized dynamic equations are usually required that are associated with time-consumed and
difficult computation.

This chapter will present the application of the covariance matrix-branched proper orthogonal
decomposition and its covariance proper transformation to decompose the random turbulent
loading processes, then to formulate the time-domain gust response of structures. The
Newton-beta integration method is also applied to obtain the time-domain solution of the gust
responses in the generalized and global coordinates. Numerical example of cable-stayed bridge

will be taken into account for illustration and demonstration.
9.2 Covariance proper transformation

The main idea of the covariance matrix-based proper orthogonal decomposition and its
covariance proper transformation is to find out a set of orthonormal basic vectors which can
expand a multi-variate spatially-correlated random turbulent field into a sum of products of these
basic orthogonal vectors (turbulent loading modes) and single-variate uncorrelated random
processes (principal coordinates) based on the covariance matrix of this random field. The
covariance matrix-based orthogonal vectors are found as the eigenvector solutions of the eigen

problem of the zero-time lag covariance matrix R (0) of N-variate random turbulent processo(t):
RO, =I0, 9.1)
where R (0) : zero-time-lag covariance matrix of o(t) ; TI,,® : covariance eigenvalue and

eigenvector matrices 0, =[6, .6, ...0, | , T, =diag(y,.7, .7, ) - Because the zero-time lag

Y



covariance matrix is positive-definite symmetrical squared one, thus its covariance eigenvalues
are real and positive, and covariance eigenvectors are also real, satisfy the orthonormal
conditions:
T_1- T _
006, =I;6,C0, =T, (9.2)
Then, the random turbulence field and its covariance matrix can be expressed such optimum

approximation as follows:

N
v(t) =0, %, (t) = D6, (t) (9.3-a)
j=1
N
R,(0)=©,I,0(N) =Y 6,70, (9.3-b)
j=1

where %, (t) = {%, (1), %, (t),... ,%, }' : covariance matrix-based principal coordinates (shortly, the
covariance principal coordinates) as the N-variate uncorrelated Gaussian random subprocesses
that represents as image of the random turbulent field in the covariance-based space; N : number

of truncated covariance eigenvectors (N << N ). The covariance principal coordinates can be

determined from observed data under following expression:
N

x,()=0, v(t)=0®)®, = 3 1, (9-4)
i=1

These approximations are known as the Covariance Proper Transformation in the time domain.

Two N-variate turbulent processes u(t), w(t) acting on the N structural nodes:
u(t) = {u,(t),u, (... ,u (O} and W(t) = {w,(t),W,(t),... ,w, (t)}" are represented under the
zero-time lag covariance matrices in the following form:

R, (0 R, (0 .. R, (0) Ruw () Ryu. (0) . R, (0)

Ruzu, (0) Ruzu2 (O) RuzuN (0) szwl (O) szw2 (0) szwN (0)

R,(0) = ;R,(0)= (9.5)

R (© R, 0 ... R, (0) Ruw (0 R, (©0) .. R,, (0)
where R, , (0), mewm (0): mean square or variance elements of the single-variate turbulent
subprocesses at structural node m;R, , (0),R, , (0): cross correlation elements between two
structural nodes m, k; m or k=1,2..N:
R,... (0) = Elu,®u,@®" kR, , (0) = Elu, (), )] (9.6-a)
Ruy, (0) = Ew 0w, (07 R, (0) = Elw, ow, 0] (9.6:b)

where E[] denotes to expectation operator.



Two N-variate Gaussian random turbulent processes u(t), w(t) can be transformed and
approximated into the covariance principal coordinates due to the Covariance Proper

Transformation:

U =0,%,1 =30, %, O 9.7-2)

Wt = ©,%,0 = 310, ® 9.7-b)
=

where X, (1), X,,(t) : the covariance principal coordinates of u-,w-turbulences, respectively.
As the same way, the covariance matrices can be approximated as follows:

N
R(0)=0,1,0] ~>0, 7,0, (9.8-a)

j=1
. N

RW(O) = ®WFW®V\-I|- ~ Z w; 7w w; (98'b)
j=1

whereI,I,,0,,0,: covariance eigenvalues and corresponding covariance eigenvectors (or

covariance turbulent modes) : T, =diag(y, .7, »- 7, )> Tw =189y >V, 55V, ) 5
=1{0,.0,,.--,6,} :0,=10,.0,...,0, } determined from the covariance matrix-based

proper orthogonal decomposition of the random turbulent processes u(t), w(t) following
Eq.(10.1).

9.3 Time-domain buffeting forces

Uniform quasi-steady buffeting forces per unit deck length (Lift, Drag and Moment) are
determined due to the quasi-steady theory that is corrected by frequency-dependant aerodynamic
admittance functions as follows:

2u(t) W(t)

Lo(©)=3 PUBIC 1, (M 224 (€L +Co ), (M (9.9-)
D, (1)=3 U BICo 70, (1) 2““)+(c —CO) om0 W“) 9.9-b)
M (= PU B[y 21, (M 2124y 210, (0) WS) 9.9.0)

whereC,,C,,C,, : aerodynamic static coefficients (at balanced angle of attack);C,_,C,,C,,

first-order derivatives; y. (n) (F=L,D,M;v=u,w): aerodynamic transfer functions between



turbulent components and turbulent-induced forces (their absolute magnitudes refer as

aerodynamic admittance functions).
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Fig. 9.1 Uniform buffeting forces on bridge deck (in time-domain formulation)

Quasi-steady buffeting forces, however, do not exactly reflect unsteady characteristics as
nature of these random forces, which depend on not only geometric configuration of bridge decks,
oncoming wind turbulence, but frequency-dependant parameters due to wind-structure interaction
and bluff body flow. Additionally, it is indicated that unsteady fluid dynamics at low, medium
flow velocity ranges must account for both past and present motion histories, thus the so-called
“memory effect” of the unsteady fluid flow should be included in modeling of unsteady buffeting
forces.. So far, the unsteady buffeting forces can be determined via either the indicial response
functions (Scanlan 1993) or the impulse response functions (Lin 1984, Chen and Kareem 2000)
thanks to convolution integration operation. Recently, the impulse response functions are usually

used for modeling the unsteady buffeting forces in the time domain as follows:

L (t)—%pU {J. I, (t=7) (T)dr+j;|,_w(t—r)¥dr} (9.10-a)
D(t)——pU {j 1o, (t - r)“(f)dﬂjlw(t—r)%dr} (9.10-b)

M (t)——pU {j | (= r)”(s)dﬂleW(t—r)WL(f)

dz} (9.10-c)

where | .1, 1ou Tows Imus e - Impulse response functions which are usually obtained thanks

Lw>
to available admittance functions such following formulae as (Scanlan et al , Chen and Kareem
2002):

Tw=2BC_x,(N); lw=B(C, +Cy)x.(N (9.11-a)



Tou =2BCp p,(N); Tow =B(Cp —C) 75 (N) (9.11-b)
T =2B°Cyy 73y ()5 T = B*Cyy 24, (M) (9.11-c)

where |r, : Fourier transform of the impulse response functions (F=L,D,M v=uw) :

lro

O’qéﬁ

-, (he it = j I, (s)e™ds.

However, the aerodynamic admittance functions determined by either empirical formula or
experimental measurement are expressed at discrete values of reduced frequency. Therefore, it is
essential to approximate discrete frequency-dependant function to continuous one. Rational
function approximation, known as the Roger’s approximation is the mostly utilized for this

purpose. Aerodynamic transfer functions can be expanded using rational function approximation:

e AFU j+l1

Zro(N) = AF01+(|K)ZK . (9.12)

Fo,j

where A, A, ;.,»dg,; frequency-dependant coefficients (j=12,...,m.,) determined by nonlinear

curve-fitting technique.
Then the impulse response functions and the unsteady buffeting forces (here only

I.,(s),L,(t) areexpended as example) can be determined as follows:

I.,(8)=B(Cp + CL)|:[A|_W,1 + Zui ALW,j+1]5(S) - Zui ALw,j+1de,je_dLW’js:| (9.13-a)
j=1 j=1

(5 =5 PUB(C, +C)KALM+§ALW,H]W“) f m,m} (9.13-b)

W(t)

¢Lw,j (t) == LW J ¢LW ](t) ALW j+l (913'0)

where ¢, ;(t) : augmented aerodynamic state coefficient.

Then full-scale bufteting forces acting on whole structure can be formulated due to linearized

lumping of the uniform buffeting forces at each deck node:

1
R, (1) = PUB[C, 7e, (MU(V) + C,, 25, (MW(D)] (9.14-a)
() 1 ¢, L (CL+Co)L | 0.5y, =y, =l
Fo®=| Dy(t) [C, =2 AUB 2CoL |:C, =| (Co ~CoL [L=diag(L )L, =10.5yy, ;. [ <i<N O-14-D)
M, (t) 2BC,, L BC, L 0.5y —Yyyl i=

where C,,C,, : full-scale force coefficient matrices; L;: influenced distance at node 1i; y:



longitudinal structural coordinate
9.4 Gust response formulation

Multi-degree-of-freedom motion equations of structures subjected to the full-scale buffeting
forces can be expressed thanks to Finite Element Method (FEM):

MU +CU + KU = F, (1) (9.15)
where U :{h(t)T, p(t)T,a(t)T} : displacement vector containing three vertical, lateral and
rotational displacements; U,U : velocity and acceleration vectors; F,(t): full-scale buffeting

forces.
Structurally global responses can be expressed into the mass matrix-normalized generalized

coordinates thanks to the Structural Modal Transformation as follows:
M
Ut)=D&t) =D ¢& (9.16)
i=1

where é‘(’[):{ffl(t),é"z(t),...,é",\,I (t)}: structural generalized coordinates; @ =[g@.,d,,....d, ] :

modal matrix; M : number of truncated structural modes (M <<M);
Therefore, single-degree-of-freedom motion equation of the i-th generalized coordinate is

determined:

E®+20 040+ 0750 =4 PUB[CUD + C ) 9.17)

where w,, £ : circular frequency, damping ratio of the i-th generalized coordinate.

Using the covariance proper transformation in Eqs(10.7-a),(10.7-b), the multi-variate random
turbulent processes u(t), w(t) can be approximated by uncorrelated subprocesses and covariance
eigenvectors (or covariance turbulent modes). Thus, the IDOF motion equation is expressed such

following forms as:
ED+2005M) +0lE 1) = %pUB[céfcu 2 05¥5 (O +47C > OV (t)} (9.18-a)
j=1 j=1

. : 1 M M

EO+ 2600+ 0’1 = EpUB{Z A O+ X A Yo (t)} (9.18-b)
i=1 i=1

where A, =4C,0,; A,; =¢C,0,;: cross modal participation coefficients accounting for

interaction between structural modes and covariance turbulent modes;

Yo = {¥y, (0 Yy, ©s, Vo, OF 5 ¥ () = {Yy, (1), Yy, (O, Y, (D)7 ¢ covariance  principal



coordinates, which are determined from original turbulent fields as follows
yu (t) = u(t)®ua yuj (t) = u(t)euj (919_3')
Yo () =W(HO,; y, ®)=wWb8, (9.19-b)

Therefore, the 1DOF motion equations associated with vertical, horizontal and rotation
structural principal coordinates can be expressed as follows:

ghi (t+ Zghia’hiéhi (t)+ a)rfighi (t) = %pUB|:Z AJLIj Yii (t)+ Z Abij Yui (t)} (9.19-a)
j=1 j=1
&)+ 28058 (0 + 05y (D) = %pUB[Z A Y O+ 2 A Y (t)} (9-19-b)

‘§a| (t) + 2é,a| aléai (t) + w;ié:ai (t) = %pUB[Z Ajl\lljl yuj (t) + z A\/';/ilj ywj (t):| (9 19'C)
j=1 j=1

where A,"ij,AA",ij,Afi’j,Aﬁj,Am,A%: cross modal participation coefficients between structural

modes and covariance turbulent modes which are correspondent to u-,w-turbulences and
turbulent-induced lift, drag, moment.
Ay = $iCubs Ay = 8iCublis Ay = :C 045 Ay = 8iCub,ys Al = 44C" 055 ALy =44C4' 6,

The 1DOF motion equations system is formulated in the time domain. Finding out solution of
this system can be obtained based on the direct integration methods such as the Newmark-beta
method, the fourth-order Runge-Kutta method and so on.

As a result, the structural global responses (vertical, lateral and rotational displacements) of

structure can be determined based on the superposition principle as follows:

Vertical %“ @i (D (9.20-a)
Lateral U, = 3 ¢p,§p, ) (9.20-b)
Rotational u =% > ua) (9.20-c)

Where U,,U_U,: global vertical, lateral and rotational displacements, respectively; ¢,,4,,4,:

structural modes corresponding to three responses; r: numbers of component modes in

combination of responses.



9.5 Numerical example

A concrete cable-stayed bridge was taken for numerical example using the above-mentioned
computational procedures. Bridge was spanned by 40.5+97+40.5=178m. 3D frame model was
built thanks to the finite element method (FEM). There were 30 discrete nodes in the bridge deck.
Total 30 nodes were on the bridge deck, while nodes 8, 23 at pylons. First ten structural modes
were analyzed. Natural frequencies of the first ten structural modes vary between 0.61Hz+1.86Hz.
Damping ratios of every structural mode were assumed to be 0.005. Aerodynamic static

coefficients of cross section at balanced angle (g, =0°) and their first derivatives were
experimentally determined as follows: C, =0.158, C_ =0.041,C,, =0.174, C, =373, C,~0,
C,, =2.06. Some fundamental modal shapes of bridges and characteristics of free vibration modes

have been presented in the Chapter 9.

One-sided auto spectral density functions of u-, w-turbulent components were obtained due to
the Kaimail’s and the Panofsky’s spectral models, respectively (Simiu and Scanlan 1976).
Coherence function was used the Davenport’s empirical exponential function with decay factors

with decay factors ¢, =10, ¢, = 6.5(Davenport 1962). Aerodynamic admittance function was

used the Liepmann’s empirical function as approximation of the Sears’ function (Liepmann 1958).
Mechanical admittance function was determined corresponding to structural generalized
coordinates.

In this example, the global responses of bridge are required to be predicted at some different
mean velocity range between Om/s and 40m/s. It is also assumed that the buffeting forces act on
the bridge deck only, and the forces on towers and cables are negligible. Therefore, 30-variate

turbulent loading processes u(t), w(t) are obtained at the deck
nodes: U(t) = {U,(t),U,(t),... ,U;o (1)} and W(t) = {w,(t), W, (t),... ,W,,(t)}" . In the branch of the

covariance proper transformation, the covariance matrix is formulated in the time domain, thus
time series of the turbulent fields u(t), w(t) must be required to be simulated at all deck nodes.
The spectral representation methods using the Cholesky decomposition and the modal
decomposition which were presented in the Chapter 8 are used here to simulate time series of
u-,w-turbulences at 30 deck nodes based on the cross spectral matrices of the turbulent fields
which are constructed thanks to available frequency-dependant auto spectral densities of
single-variate turbulent processes and spatial coherence functions. Accuracy of simulated
turbulent time series has been verified by comparing between power spectral densities of
simulated turbulent time series and targeted ones, as well as between coherence of simulated time

series and targeted coherence.



Simulated time series of u-,w-turbulences at referred ten deck nodes during 100-second
interval at the mean velocity U=20m/s is expressed in Figure 9.2. Simulated time series of the

turbulences at another mean velocities and deck nodes are omitted for a sake of brevity.
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9.6 Results and discussion

Simulated turbulent fields u(t), w(t) have been used to formulate the zero-time-lag covariance
matrix. Then, the covariance eigenvectors (or covariance turbulent modes) and associated
eigenvalues have been found out from the eigen solution of these covariance matrices. The
covariance principal coordinates is determined based on simulated turbulent fields.

Figure 9.3 shows totally 30 covariance eigenvalues of u-,w-turbulences. Energy contribution
of the covariance turbulent modes is expressed in Figure 9.4. It notes that the energy contribution

of the covariance turbulent modes does not decay fast.

a. u-turbulence b. w-turbulence
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Fig.9.3 Covariance eigenvalues: a. u-turbulence, b. w-turbulence
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Fig. 9.4 Energy contribution of covariance eigenvectors: a. u-turbulence, b. w-turbulence



First ten covariance turbulent modes corresponding to u-turbulence and w-turbulence are

indicated in Figure 9.5. Figure 10.6 shows the first ten covariance principal coordinates of the

u-,w-tubulences.
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20 20
0 OMM
20 Coordinate 1 20 Coordinate 2
10 20 30 40 50 60 70 80 90 100 0O 10 20 30 40 50 60 70 80 90 100
20 20
o] o]
20 Coordinate 3 20 Coordinate, 4
10 20 30 40 50 60 70 80 90 100 0O 10 20 30 40 50 60 70 80 90 100
20
0
-20 . Coordi

O 10 20 30 40 50 60 70 80 90 100

20
0 WW
-2 Coordinate.8 |

L L L L L L i O L L L L L
O 10 20 30 40 50 60 70 80 90 100 O 10 20 30 40 50 60 70 80 90 100
20

(0]

. . . . . . Coordi R . . . . . . Coordi
O 10 20 30 40 50 60 70 80 90 100 O 10 20 30 40 50 60 70 80 90 100

Time (sec.) Time (sec.)

b. w-turbulence

20 20

o] 0
20 Coordinate 1 20 Coordinate 2

0O 10 20 30 40 50 60 70 80 90 100 0O 10 20 30 40 50 60 70 80 90 100
20 20

o] 0
20 Coordinate 3 20 Coordinate 4

O 10 20 30 40 50 60 70 80 90 100 0O 10 20 30 40 50 60 70 80 90 100
20 20

0 OMWM
20 Coordinate 5 20 Coordinate 6

O 10 20 30 40 50 60 70 80 90 100 0O 10 20 30 40 50 60 70 80 90 100
20 20
ool . Coordinate 7 ) Coordinate, 8

0O 10 20 30 40 50 60 70 80 90 100 0O 10 20 30 40 50 60 70 80 90 100
20 20
OWMWW 0

Coordinate 9 ~ . . Coordinate 10

0O 10 20 30 40 50 60 70 80 90 100 0O 10 20 30 40 50 60 70 80 90 100
Time (sec.) Time (sec.)

Fig. 9.6 First ten covariance turbulent coordinates: a. u-turbulence, b. w-turbulence

Time series of the global responses (vertical, rotational and lateral displacements) at deck
nodes 5&15 in different mean velocities U=10, 20, 30, 40m/s have been shown from Figure 9.7
to Figure 9.10. Maximum and minimum displacements can be determined thanks to these time

series of global responses.
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5&15 at mean velocity U=10m/s:
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Fig. 9.9  Time histories of global responses at nodes 5&15 at mean velocity U=30m/s: a.

vertical, b. rotational, c. lateral displacement
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Fig. 9.10 Time histories of global responses at nodes 5&15 at mean velocity U=40m/s:
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Figure 9.11 shows the global response envelopes of the vertical and rotational displacements

of bridge in referred nodes 5 and 15 in the mean velocity range between Om/s and 40m/s.
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Fig. 9.11 Minimum and maximum global responses at nodes 5 & 15 corresponding to mean

wind velocity range between 0+40m/s

Tab. 9.1 Effect of covariance modes on maximum global amplitude

N.modes | Node 5| % |Nodel5| % N.modes | Node 5| % |Nodel5| %
30 0.040 [ 100 | 0.093 100 30 .0027 | 100 .0078 100
20 0.037 93 0.080 86 20 .0026 96 .0075 96
10 0.028 70 0.069 74 10 .0021 78 .0071 91
5 0.023 58 0.053 57 5 .0018 67 .0049 63
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Effect of truncated number of the covariance turbulent modes in the covariance proper
transformation on the global responses has been investigated here. Figure 9.12 indicates the

maximum structural responses on whole bridge deck at U=20m/s corresponding to number of

turbulent modes (M = 30;20;10and 5, in which 30 modes imply for targeted response).

It can be seen that maximum responses reduce with respect to decrease of truncated number of
turbulent modes. Number of turbulent modes to some extent does not influence considerably on
global responses. For example, the maximum vertical amplitudes at midspan node 15 are 9.3cm
(100%), 8.0cm (86%), 6.9cm (74%) and 5.3cm (57%) and the maximum torsional amplitudes at
node 15 are 0.0078° (100%), 0.0075° (96%), 0.0071° (71%) and 0.0049° (63%) corresponding to
30, 20, 10 and 5 modes taken into account. Therefore, higher number of low-order covariance

turbulent modes should be used for estimating the gust responses of bridge.



9.7 Conclusion

This chapter has presented the application of the proper orthogonal decomposition and its
covariance proper transformation for the gust response prediction of full-scale bridges in the time
domain. Effect of number of orthogonally turbulent loading modes on the generalized and global
responses of bridges also is investigated accordingly.

Some main points can be concluded as follows:

(1) New framework on the gust response prediction of bridges has been formulated in the
time domain using the covariance matrix-based proper orthogonal decomposition and its
covariance proper transformation. Time series of the multi-variate random turbulent fields
have been simulated via the spectral proper transformation to be used in this time-domain
gust response prediction of bridges. It seems that the computational procedure presented
here is very promising for the buffeting analysis and the gust response in the time domain
with its advantages to treat with aerodynamic and geometrical nonlinearities.

(2) It is argued that the high number of lower-order covariance turbulent modes should be
required for accuracy estimation of the gust response of bridges. In comparison with
effect of number of the spectral turbulent modes, in some extent and in this investigated
case, it is commented that the low-order covariance turbulent modes play less important

role than spectral ones in their contributions on the gust response of bridge.

Further development in the applications of the proper orthogonal decomposition and the
covariance proper transformation for the gust response prediction of bridges in the time domain is
going to focus on the comprehensive model of unsteady buffeting forces model using the impulse

response functions which can capture the “unsteady fluid memory effect”.
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Chapter 10

Conclusions

The main aims of this dissertation are to discuss on the unsteady buffeting forces and the gust
response prediction of bridges as well as to investigate on recent limitations and uncertainties in
the usage of the correction functions: the aerodynamic admittance function and the spatial
coherence function. Furthermore, the proper orthogonal decomposition (POD) applications are
also in scope and other aim of this dissertation. The all three main applications of the POD and its
proper transformations in the wind engineering fields have been revised here. Firstly, the POD is
used for analysis and identification of the pressure fields around some rectangular cylinders,
moreover, the linkage between the POD modes and physical causes of the bluff body flow has
been established. Secondly, the digital simulation of the random turbulent fields around the
bridge deck has been studied using the spectral matrix-based POD and its spectral proper
transformation. Finally, new approaches on the gust response prediction of bridges in both the
time domain and the frequency domain also are considered as the main core of contribution and
achievement in this dissertation. Especially, both branches of the proper orthogonal
decomposition based on the covariance matrix and the cross spectral matrix as well as their
covariance proper transformation and the spectral proper transformation have been applied. One
of the additional contents presented inside is to investigate the spatial distribution and correlation
on some physical models in some unsteady flows.

Two methodological approaches including the physical measurements in the wind tunnel and
the analytical method using numerical examples have been exploited in this dissertation. The
physical measurements of the surface pressure fields have been carried out on three physical
models with slender ratio B/D=1, B/D=1 with the splitter plate at flow wake and B/D=5 under
some unsteady flows including the smooth flows, turbulent flows and the fluctuating flows in
order to investigate the spatial pressure distribution, the spanwise correlation and spanwise
coherence. Moreover, the three components of the buffeting forces comprising lift, drag and
moment have been directly measured on experimental models B/D=5 and B/D=20 under the

turbulent flows in order to study the aerodynamic admittance functions. In the numerical example



for analytical method, the full-scale three-dimensional finite-element model of the cable-stayed

bridges has been exploited.

The main contributions and results of this thesis are concluded herein as follows:

Chapter 2 has reviewed on background of the buffeting forces and the gust response prediction
of bridges formulated in both the time domain and the frequency domain as well as recent
limitations and uncertainties produced from the quasi-steady theory and the strip theory. Although,
the correction functions as the aerodynamic admittance function and the spatial coherence
function have been supplemented to treat with limitations of these theories, but the correction
functions themselves contain uncertainties in their measurements and the empirical models.
Therefore, further studies and developments on correction functions should be required for more
refinements of the buffeting forces and the response prediction, as well as new approach for the

gust response prediction.

Chapter 3 has discussed on spatial distribution and correlation of the pressure fields on some
rectangular models and in some unsteady flows. It is found that the normalized fluctuating
pressure distributes strongly and locally in the chordwise direction on the leading edge region,
moreover, distributes homogeneously in the spanwise direction in the turbulent flows. In the
fluctuating flows, the spanwise convection and the spanwise distribution of the surface pressure
have been strengthened with respect to decrease of the reduced frequencies (increase of reduced
velocities). It is supposed that the low frequency components can play more important role on
spanwise distribution of induced pressure than high frequency ones.

The spanwise correlation depends strongly on such parameters as flow conditions, investigated
positions, experimental models and their slender ratios B/D in the investigated cases. High
spanwise correlation has observed at some positions near the leading edge regions where the high
pressure region localized. The spanwise correlation in the smooth flows is larger than that in the
turbulent ones. Moreover, the effect of Karman vortex (in the case without S.P) on increases of
the spanwise correlation is also found. It is discussed that the spanwise correlation reduces with
increase of slender ration B/D. It is again verified that the spanwise correlation of the
turbulent-induced pressure always exhibits larger than that of the turbulence. The wind-structure
interaction and the bluff body flow reason for the higher mechanism of spanwise correlation of

induced forces than that of the turbulence.

Chapter 4 has investigated on the aerodynamic admittance as the spectral-based transfer



functions between the turbulence and the induced forces on some physical models B/D=5 and
B/D=20 in the turbulent flows. New approaches of the nonlinear admittance function and the
multi-variate admittance functions, as well as relationship between the aerodynamic admittance
and the aerodynamic derivatives have been discussed and compared with the conventional
quasi-steady admittance function. It is found that the contribution of squared fluctuating
velocities on the output forces is not considerable in investigated cases, thus these nonlinear s
components can be omitted without lost of accuracy. Moreover, comprehensive form of the
multi-variate aerodynamic admittance has been determined by using the system identification

technique.

Chapter 5 has studied on the spanwise coherence functions of the surface pressures and wind
turbulences using both the Fourier transform-based and the wavelet transform-based tools, as
well as some effects on coherent structure have been investigated. Firstly, it is found obviously
that the pressure coherence expresses higher than the turbulent one, this can be convinced due to
the effect of the wind-structure interaction and the bluff body flow on the model surface.
Empirical formulae of the turbulent coherence, moreover, used in the gust response prediction so
far contain obviously a lot of uncertainties.

Secondly, coherent structures of the turbulence and the pressure depend on some parameters
not only the frequency, the ongoing flow, the spatial separations as usual, but the bluff body flow
and the time. It is suggested, therefore, that the empirical formulae of coherence must account for
the effect of bluff body flow. The side ratio B/D is recommended as the parameter of the bluff
body flow in some cases of rectangular cylinders.

Thirdly, it is observed thanks to the Fourier coherence and the wavelet coherence that the
coherences of the turbulence and the pressure are significant at the low spectral band and
distribute intermittently in the time domain. High coherent events, moreover, distribute on
localized areas in the time-frequency plane can be observed on the temporo-spectral structures of
turbulence and pressure coherences, even at large separations. Thus, existence of localized high
coherent events is the nature of coherence structure.

Finally, no correspondence and simultaneous occurrence between high coherence events of
turbulence and induced pressure have been observed in the time-frequency plane. This can add to
uncertainties in the turbulent-induced response prediction of structures relating to the

quasi-steady theory of turbulent-induced forces built from the turbulent components.

Chapter 6 has applied the POD for analysis and identification of the chordwise pressure field

around the rectangular cylinders, moreover, the linkage between the POD modes and the physical



causes has been found out in these investigated cases. Two POD branches using the covariance
matrix and the cross spectral matrix has been presented. It is discussed that the first covariance
turbulent mode and the first spectral turbulent mode play very significant role which can
characterize for whole pressure field. Concretely, the first covariance mode, the first spectral one
contain certain spectral peaks of hidden physical evens, moreover, it contributes dominantly on
the field energy. Therefore, only the first mode is accuracy enough to reconstruct and identify the
whole pressure field.

Obviously, the POD is effective to describe the pressure field by using limited number of
low-order modes and eigenvalues and associated principal coordinates. In cases of the high
frequency range and of complicated pressure distributions, it is suggested that more cumulative
modes should be needed to reconstruct the pressure field. In the other words, the more
complicated the pressure field distributes and the bluff body flow behaviors, the less important
the first mode contributes and the more cumulative modes are needed to reconstruct the pressure
field. In the comparison, the first spectral mode expresses the better than the first covariance
mode in reconstructing the pressure field.

It is discussed that, however, the linkage between the POD modes and physical events is valid
only in the concrete cases when the pressure field behaviors simply and steadily as well as the
physical events occur apparently . Because the POD modes, eigenvalues, principal coordinates
modify sensitively with respect to pressure positions, pressure tap arrangements, measured region
and area, so on, therefore it is supposed such linkage only can be obtained in some limited cases.

The usage of the POD, moreover, for interpreting aerodynamic interference is not clear so far.

Chapter 7 has applied the spectral matrix-based POD and its spectral proper transformation for
simulating the multi-variate turbulent field. Effect of number of the spectral turbulent modes on
simulated time series has been investigated with verification for accuracy and consistence.
Moreover, the physical meaning of the spectral eigenvalues and turbulent modes relating to
hidden events in the ongoing turbulent flow has been tried to establish. It can be argued that it is
not accurate enough for the turbulent simulation with using just few fundamental turbulent modes,
many turbulent modes should be required.

Because the spectral eigenvectors express constantly with respect to the different mean
velocities and the frequencies, and the spectral eigenvalues contain frequency information.
Therefore, it is expected that the spectral eigenvalues can characterize for scale of the turbulent
eddies of the ongoing turbulent flow. However, further studies on this relationship should be

required for more clarification.



Chapter 8 has used the spectral matrix-based POD and the spectral proper transformation to
formulate the gust response of bridges in the frequency domain. The new approach on the gust
response prediction of bridges has been carried out with usage of the comprehensive form of the
cross spectral matrices of the multi-variate random turbulent fields, in which the spatial
correlation of the turbulent fields has been taken into account in these matrices using the spatial
coherence function. Full-scale buffeting forces have been decomposed completely and projected
into generalized coordinates and the structural modes without usage of the joint acceptance
function as applied in the conventional methods. Moreover, the effect of the spectral turbulent
modes on the generalized and global responses has been investigated. It is discussed that only
limited number of low-order spectral turbulent modes dominantly contributes on structural gust
response. In these cases, the first spectral turbulent mode play very significant role and seems to be
accuracy enough in predicting the gust response of bridges in the frequency domain, especially in the low

frequency range.

Chapter 9 has applied the covariance matrix-based POD and the covariance proper
transformation to formulate the gust response prediction of bridges in the time domain. New
framework on the gust response prediction of bridges in the time domain has been proposed with
usage of the comprehensive form of the covariance matrices of the multi-variate random
turbulent fields. The effect of the orthogonally covariance turbulent modes on the global
responses of bridges also is investigated. It is concluded that the higher number of lower-order
covariance turbulent modes should be required for estimating the gust response of brides. To
compare with the spectral turbulent modes, it seems the covariance turbulent modes play less

important role than the spectral turbulent modes on the gust response prediction.

Some further works and developments are intended in the coming time as follows:

Firstly, the applications of the POD and its proper transformations for the gust response
prediction of bridges in both frequency domain and the time domain is going to focus on further
works with coupling effects with the aeroelastic flutter forces, moreover, the complete unsteady

buffeting forces which can capture the unsteady fluid memory effect are going to be exploited.

Secondly, the limitations and uncertainties on the usages of the correction functions on the

buffeting theory are going to be studied for further clarification.






