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Abstract 
 
 
 
The unsteady buffeting forces and the gust response prediction of bridges in the atmospheric 
turbulent flows is recently attracted more attention due to uncertainties in both experiment and 
analytical theory. The correction functions such as the aerodynamic admittance function and the 
spatial coherence function have been supplemented to cope with limitations of the quasi-steady 
theory and strip one so far. Concretely, so-called single-variate quasi-steady aerodynamic 
admittance functions as the transfer functions between the wind turbulence and induced buffeting 
forces, as well as coherence of wind turbulence has been widely applied for the gust response 
prediction. Recent literatures, however, pointed out that the coherence of force exhibits higher 
than that of turbulence. These correction functions, in the other words, contain their uncertainties 
which are required to be more understanding.  
 
 Proper orthogonal decomposition (POD), known as the Karhunen-Loeve decomposition has 
been applied popularly in many engineering fields. Main advantage of the POD is that the 
multi-variate correlated random fields/processes can be decomposed and described in such 
simplified way as a combination of limited number of orthogonally low-order dominant 
eigenvectors (or turbulent modes) which is convenient and applicable for order-reduced 
representation, simulation of the random fields/processes such as the turbulent fields, 
turbulent-induced force fields and stochastic response prediction as well. The POD and its proper 
transformations based on either zero-time-lag covariance matrix or cross spectral one of random 
fields/processes have been branched by either the covariance proper transformation (CPT) in the 
time domain or the spectral proper transformation (SPT) in the frequency domain. So far, the 
covariance matrix-based POD and its covariance proper transformation in the time domain has 
been used almost in the wind engineering topics due to its simplification in computation and 
interpretation.  
 
 In this research, the unsteady buffeting forces and the gust response prediction of bridges with 



 

emphasis on the POD applications have been discussed. Investigations on the admittance function 
of turbulent-induced buffeting forces and the coherence one of the surface pressure as well as the 
spatial distribution and correlation of the unsteady pressure fields around some typically 
rectangular cylinders in the different unsteady flows have been carried out thanks to physical 
measurements in the wind tunnel. This research indicated effect of the bluff body flow and the 
wind-structure interaction on the higher coherence of buffeting forces than the coherence of 
turbulence, thus this effect should be accounted and undated for recent empirical formulae of the 
coherence function of the unsteady buffeting forces. Especially, the multi-variate nonlinear 
aerodynamic admittance function has been proposed in this research, as well as the 
temporo-spectral structure of the coherence functions of the wind turbulence and the buffeting 
forces has been firstly here using the wavelet transform-based coherence in order to detect 
intermittent characteristics and temporal correspondence of these coherence functions. In POD 
applications, three potential topics in the wind engineering field have been discussed in the 
research: (i) analysis and identification, modeling of unsteady pressure fields around model 
sections; (ii) representation and simulation of multi-variate correlated turbulent fields and (iii) 
stochastic response prediction of structures and bridges. Especially, both POD branches and their 
proper transformations in the time domain and the frequency one have been used in these 
applications. It found from these studies that only few low-order orthogonal dominant modes are 
enough accuracy for representing, modeling, simulating the correlated random fields (turbulence 
and unsteady surface pressure, unsteady buffeting forces), as well as predicting stochastic 
response of bridges in the time and frequency domains. The gust response prediction of bridges 
has been formulated in the time domain at the first time in this research using the covariance 
matrix-based POD and its covariance proper transformation which is very promising to solve the 
problems of the nonlinear and unsteady aerodynamics. Furthermore, the physical linkage between 
these low-order modes and physical causes occurring on physical models has been interpreted in 
some investigated cases.  
 
 
 
 
 
 
 



 

 
 

Contents 
 
 
 

List of figures…………………………………………………………………………………..vii 

List of tables…………………………………………………………………………………...viii 

Preface………………………………………………………………………………………….xiii     
 
1 General introduction 

1.1   Long-span bridges and wind effects…………………………………………………..1 
1.2 Bridge aerodynamics and classification….……………………………………………2 
1.3  Background and objectives of study…………………………………………………..6 
1.4  Structure and outlines of study….……………………………………………………..8 

 
2  Unsteady buffeting forces and gust response prediction of bridges  

2.1 Introduction……………………………………………………………………..……12 
2.2 Methodological background………………………………………………………….13 
2.3  Literature reviews on buffeting forces and gust response prediction…..…………….15 
2.4 Current assumptions and uncertainties…...…………………………………………..17  
2.5 Unsteady buffeting forces…………………………………………………………….19 
2.6 Frequency-domain gust response prediction………………………………………….21 
2.7  Time-domain gust response prediction………………………………………………..24 
2.8 Conclusion…………………………………………………………………………….25 
References…………………………………………………………………………………....26 

 
3  Spatial distribution and correlation of unsteady pressure fields on rectangular 

cylinders 

3.1  Introduction……………………………………………………………………………27 
3.2  Literature reviews on spatial distribution and correlation of pressure fields……..…...29  
3.3 Wind tunnel experiments………………………………………………………………31  

3.3.1 Experimental apparatus in turbulent flow……………………..………………......31 



 

3.3.2 Experimental apparatus in fluctuating flow……………….………………………33 
3.4  Chordwise pressure distribution……………………………………………………….35 
3.5 Identification of bluff body flow pattern…..…………………………………………..42 
3.6  Spatial distribution of unsteady pressure fields………………………………………..44 
3.7 Spatial correlation of unsteady pressure fields….……………………………………..52 
3.8  Conclusion…..…………………………………………………………………………62  
References…..………………………………………………………………………………...63  
 

4 Aerodynamic admittance of buffeting forces on rectangular cylinders  

4.1  Introduction….………………………………………………………………………...65 
4.2  Literature reviews……………………….……………………………………………..66   
4.3  Quasi-steady aerodynamic admittance and empirical models….……………………...67 

4.3.1 Quasi-steady aerodynamic admittance.…………………………..………………..68 
4.3.2 Empirical models.………………………………………………………………….70 

4.4  Nonlinear and multivariate aerodynamic admittance….……………………………….71 
4.4.1 Nonlinear aerodynamic admittance………………………………………..………71 
4.4.2 Multivariate aerodynamic admittance.…………………………………………….71 

4.5 Relationship between aerodynamic admittance and derivatives……………………….…73 
4.6  Experimental apparatus….……….…………………………………………………….73 
4.7  Results and discussion….………………………………………..……………………..74 
4.8  Conclusion…..………………………………………………………………………….83 
References…..…………………………………………………………………………………84 

 
5  Spanwise coherence of wind turbulence and induced pressure on rectangular 

cylinders 
5.1  Introduction…..……………………………………………….………………………..85 
5.2  Fourier transform-based coherence…..……………………….………………………..86 
5.3  Wavelet transform-based coherence…..……………………….……………………….87 

5.3.1 Definition………………………………………………….……………………….87 
5.3.2 Complex Morlet wavelet…….…………………………….………………………88 
5.3.3 Time and scale smoothing and end-effect elimination…………………………….89 

5.4  Experimental apparatus……..………………………………………………………….89 
5.5  Chordwise pressure distribution and bluff body flow pattern…..……………………...91 
5.6  Spectral coherence of turbulence and pressure…..…………………………………….94 
5.7  Temporo-spectral coherence of turbulence and pressure…..…………………………..99 



 

5.8  Conclusion…..…………………………………………………………………………102 
References….………………………………………………………………..………………..103 

 
6  Analysis and identification of random pressure fields on rectangular cylinders using 

proper transformations 

6.1  Introduction……………………………..……………………………………………..104 
6.2  Literature reviews…..………………………………………………………………….105 
6.3  Representation of unsteady surface pressure fields……………………………………108 
6.4  Proper orthogonal decomposition of pressure fields…………………………………..109  
6.5  Covariance and spectral proper transformations of pressure fields…………………... 110 
6.6  Gust response based on reduced-order pressure field…………………………….……111 
6.7  Wind tunnel experiments………………………………………………………………112 
6.8  Surface pressure distribution and bluff body flow pattern…………………………….114  
6.9  Covariance matrix-branched Proper orthogonal decomposition……………………....116 
6.10  Spectral matrix-branched Proper orthogonal decomposition………………………….120  
6.11  Order-reduced modeling and reconstruction of pressure field………………………...124 
6.12  Conclusion……………………………………………………………………………..129  
References…………………………………………………………………………………….130 

 
7  Representation and simulation of spatially-correlated random turbulent fields using 

proper transformations 

7.1  Introduction……………………………………………………………………………131  
7.2  Literature review on turbulent simulation……………………………………………..132 
7.3  Representation and modeling of spatially-correlated turbulent field………………….134 

7.3.1 Mechanism of turbulent generation……………………………………………….….134 
7.3.2 Turbulent wind field modeling………………………..……………………….….135 
7.3.3 Power spectral density function of turbulence…………………………………….136 
7.3.4 Spatial coherence function of turbulence………………………………………….137 
7.3.5 Cross spectral matrix of random turbulent fields……………..………………..….139 

7.4  Proper orthogonal decomposition and spectral proper transformation…………….…..140 
7.5  Turbulent simulation procedures……………………………………….……………...141 

7.5.1 Turbulent simulation using Cholesky decomposition………………………….….141 
7.5.2 Turbulent simulation using Spectral Proper Transformation………………..…….142 

7.6  Numerical example………………………………………………………………….…144  



 

7.7  Conclusion……………………………………………………………………………..157 
References…………………………………………………………………………………….159 

 
8  Gust response of bridges using spectral proper transformation 

8.1  Introduction…………………………………………..…………………………….….160  
8.2  Spectral proper transformation………………………………………………………...161 
8.3  Frequency domain buffeting forces……………………………………………………163 
8.4  Gust response formulation……………………………………………………………..165  
8.5  Numerical example…………………………………………………………………….168 
8.6  Results and discussions…………………………………………………………..……170 
8.7  Conclusion……………………………………………………………………………..177 
References…………………………………………………………………………………….178 

 
9  Gust response of bridges using covariance proper transformation 

9.1  Introduction……………………………………..……………………………………..179 
9.2  Covariance proper transformation……………………………………………………..180 
9.3  Time domain buffeting forces…………………………………………………………182  
9.4  Gust response formulation……………………………………………………………. 185 
9.5  Numerical example…………………………………………………………………….187 
9.6  Results and discussions………………………………………………………………..189 
9.7  Conclusion……………………………………………………………………………..198 
References…………………………………………………………………………………….199 

 
10 Conclusions      
 
 
 
 
 
 
 
 
 
 



 

 
 

List of figures 
 
 
 
Figure 1.1 Extreme amplitude vibration and collapse of Tacoma Narrow bridge in USA,1940..2 

Figure 1.2 Classification of bridge aerodynamics and aeroelastics…………………………..…3  

Figure 1.3 Response amplitude of wind-induced vibrations versus reduced wind velocity…….4 

Figure 2.1 Stepwise flow for gust response prediction in the frequency domain………………14 

Figure 2.2 Spectral transformations in frequency-domain gust response………………………14 

Figure 2.3 Stepwise flow for gust response prediction in the time domain…………….………14 

Figure 2.4 Uniform buffeting forces on bridge deck……….………………………………..…19 
Figure 3.1 Experimental models and pressure tap arrangement……………………..…………32 
Figure 3.2 Images of experimental models in wind tunnel test: a. model B/D=1, 
 b. model B/D=5………………….......................................................................……32 
Figure 3.3 Flow generation devices: a. grid turbulent generator,  
   b. 3D fluctuating flow generator.................................................................................33 
Figure 3.4 Amplitude of vertical velocity fluctuation at base reference points...........................34 
Figure 3.5 Normalized mean and fluctuating pressures at chordwise positions  
 in turbulent flows…………………………………………………………………...36 
Figure 3.6 Power spectral densities of fluctuating pressures in turbulent flows………….…....36 
Figure 3.7 Normalized mean and fluctuating pressure distributions  
   on chordwise direction in different fluctuating flows………………………………37 
Figure 3.8 Power spectral densities of normalized chordwise pressures in fluctuating flow….38 
Figure 3.9 Instantaneous normalized pressure distribution of chordwise positions 
   on a cycle T of 3D fluctuating flow at different reduced frequencies……………...39 
Figure 3.10 Comparison of pressures on model B/D=1 due to turbulent and smooth flows…....40 
Figure 3.11 Comparison of pressures on model B/D=1 with S.P  
   due to turbulent and smooth flows…………………………………………………40 
Figure 3.12 Comparison of pressures on model B/D=5 due to turbulent and smooth flows…...41 
Figure 3.13 Bluff body flow pattern of three experimental models in turbulent flows………...42 
Figure 3.14 Bluff body flow patterns in cycle T of fluctuating flows………………………….43 



 

Figure 3.15 Spatial distribution of normalized mean and fluctuating pressures 
   on model B/D=5………………………………………………….……………..…45 
Figure 3.16 Spatial distribution of normalized mean and fluctuating pressures 
   on model B/D=5 in different fluctuating flows……………………………….…..47 
Figure 3.17 Instantaneous normalized pressure distribution in a cycle T of  
   fluctuating flow at reduced frequency k=1.92 (Ure=8.33)………...………………48 
Figure 3.18 Instantaneous normalized pressure distribution in a cycle T of  
   fluctuating flow at reduced frequency k=1.44 (Ure=11.11)………..………………49 
Figure 3.19 Instantaneous normalized pressure distribution in a cycle T of  
   fluctuating flow at reduced frequency k=0.96 (Ure=16.67)………..………………50 
Figure 3.20 Instantaneous normalized pressure distribution in a cycle T of  
   fluctuating flow at reduced frequency k=0.72 (Ure=22.22)………..………………51 
Figure 3.21 Spatial correlation coefficients of chordwise fluctuating pressures  
   at turbulent flows (B/D=1)…………………………………………………………54 
Figure 3.22 Spatial correlation coefficients of chordwise fluctuating pressures 
   at turbulent flows (B/D=1 with S.P)………..……………………………………...54 
Figure 3.23 Spatial correlation coefficients of chordwise fluctuating pressures 
   at turbulent flows (B/D=5)……………..……..……………………………………55 
Figure 3.24 Spatial correlation coefficients of chordwise fluctuating pressures  
   at fluctuating flows (B/D=5)………..……………………………………………...55 
Figure 3.25 Comparison of correlation coefficients between smooth and  
 turbulent flows and between without S.P and with S.P,  
 effect of Karman vortex on correlation coefficients…..……………………………57 

Figure 3.26 Comparison of correlation coefficients in different turbulent conditions 
  and effect of intensities of turbulence on correlation coefficients……………….…59 
Figure 3.27 Comparison of spanwise correlation coefficients between  
   wind turbulence and induced pressure, and between experimental models 
   at different turbulent flows……………………………………………………….…61 
Figure 4.1 Quasi-steady forces on bridge section………………………………………………68 
Figure 4.2 Comparison between aerodynamic admittance and Sears function………………...70 
Figure 4.3 Sears function and Liepmann function……………………………………………...70 

Figure 4.4  Scheme of multivariate aerodynamic admittance…………………………………...72 

Figure 4.5 Experimental set-ups and models……………………………………..….…………74 
Figure 4.6 Aerodynamic force coefficients on models B/D=5………………………….……...75 



 

Figure 4.7 Aerodynamic force coefficients on models B/D=20………………………………..75 

Figure 4.8 Power spectral densities of turbulence and forces: a. turbulence, b. lift, 
  c. moment……………………………………………………………………..……77   
Figure 4.9 Quasi-steady aerodynamic admittance: a. lift, b. moment…………………………78 

Figure 4.10 Effect of turbulent intensities on quasi-steady aerodynamic admittance:  
 a. model B/D=5, b. model B/D=20………….......................................................…78 
Figure 4.11 Comparison between quasi-steady aerodynamic admittance and  

   nonlinear aerodynamic admittance: a. lift, b. moment..............................................79 

Figure 4.12 Comparison between quasi-steady aerodynamic admittance and 

   multi-variate aerodynamic admittance: a. model B/D=5, b. model B/D=20............80 

Figure 4.13 Transfer functions between input turbulent components and output buffeting 

   forces on model B/D=5: a. lift and u-turbulence, b. lift and w-turbulence, 

c. moment and u-turbulence, d. moment and w-turbulence.....................................81 

Figure 5.1 Complex Morlet wavelet and its Fourier transform..................................................88 

Figure 5.2 Morlet wavelet at time shift τ=2 seconds and at scales s=1,2 and 4seconds  

 (solid line : real part & dashed line: imaginary parts)………………......................89 
Figure 5.3 Experimental models and pressure tape layout…………........................................90 

Figure 5.4 Normalized mean and fluctuating pressure distributions on chordwise positions...92 

Figure 5.5 Auto power spectra of normalized fluctuating pressures  

   at three turbulent flows: a. B/D=1, b. B/D=1 with splitter plate, c. B/D=5.............93 

Figure 5.6 Bluff body flow patterns around experimental models............................................93 

Figure 5.7 Effect of spanwise separations on pressure and turbulent coherences 

   in the flow case 1: a. B/D=1, b. B/D=1 with S.P, c. B/D=5, d. turbulences............94 

Figure 5.8 Effect of pressure positions on pressure coherence: a. B/D=1,  
  b. B/D=1 with S.P, c. B/D=5...................................................................................96 
Figure 5.9 Efect of turbulent flow conditions of pressure coherence: a. B/D=1,  
  b. B/D=1 with S.P, c. B/D=5, d. u-turbulence, e. w-turbulence..............................97 
Figure 5.10 Comparison between turbulent coherence and pressure coherence:  
  a. at position 3, b. at position 7...............................................................................97 
Figure 5.11 Effect of Karman vortex shedding on pressure coherence:  

   a. position 1, b. position 3.......................................................................................98 



 

Figure 5.12 Wavelet coherence maps of pressure in turbulent flow case 1:  
  a. B/D=1, B/D=1 with S.P, c. B/D=5, d. u-turbulence, e. w-turbulence................100 
Figure 5.13 Comparison between wavelet coherence and Fourier coherence..........................101 

Figure 6.1 Wind tunnel configuration, experimental set-ups and experimental models….....113 
Figure 6.2 Experimental models..............................................................................................113 
Figure 6.3 Normalized fluctuating pressure distribution on chordwise positions...................114 
Figure 6.4 Power spectra of fluctuating pressures at some chordwise positions.....................115 
Figure 6.5 Bluff body flow patterns around experimental models...........................................115 
Figure 6.6 First four covariance modes of experimental models at different turbulent flows..116 
Figure 6.7 First four principal coordinates and their corresponding power spectral 
   densities at different flow conditions: a. U=3m/s, b. U=6m/s, c. U=9m/s...............119 
Figure 6.8 First five spectral eigenvalues of experimental models  
    at different turbulent flows: a. U=3m/s, b. U=6m/s, c. U=9m/s..............................120 
Figure 6.9 First three spectral modes of experimental models at turbulent flow U=3m/s........121 
Figure 6.10 First three spectral modes of experimental models at turbulent flow U=6m/s........122 
Figure 6.11 First three spectral modes of experimental models at turbulent flow U=9m/s........123 
Figure 6.12 Effect of covariance modes on pressure reconstruction at turbulent flow U=3m/s.125 
Figure 6.13 Effect of cumulative covariance modes on pressure reconstruction  
   at turbulent flow U=3m/s.........................................................................................126 
Figure 6.14 Effects of basic and cumulative spectral modes on auto spectral 
   reconstruction of pressure at turbulent flow U=3m/s...............................................128 
Figure 7.1 Atmospheric wind field............................................................................................135  
Figure 7.2 Effective turbulent fields at bridge deck nodes........................................................144 
Figure 7.3 Auto power spectral densities of u-,w-turbulences corresponding to  
  mean velocity U=20m/s............................................................................................144 
Figure 7.4 Spatial power spectral densities of w-turbulence at some nodes 3, 5, 10 and 15.....145 
Figure 7.5 First five spectral eigenvalues at U=20m/s: a. u-turbulence, b. w-turbulence..........146 
Figure 7.7 Effect of change of wind velocities on first five spectral eigenvalues 
    of u-,w-turbulences………….…………………………………………………......147 
Figure 7.8 Effect of change of wind velocities on each first five spectral eigenvalue 
    of u-,w-turbulences…………………………………………………………………147 
Figure 7.9 Effect of change of wind velocities on spectral turbulent modes of u-turbulence…148 
Figure 7.10 Effect of change of wind velocities on spectral eigenvectors of w-turbulence…….149 
Figure 7.11 Simulated time series at mean velocity U=10m/s: a. u-turbulence, 
   b. w-turbulence…………………………………………………………………..…151 



 

Figure 7.12 Simulated time series at mean velocity U=20m/s: a. u-turbulence, 
   b. w-turbulence…………………………………………………………………..…152 
Figure 7.13 Simulated time series at mean velocity U=30m/s: a. u-turbulence,  
  b. w-turbulence…………………………………………………………………..…153 
Figure 7.14 Simulated time series at mean velocity U=40m/s: a. u-turbulence,  

 b. w-turbulence…………………………………………………………………..…153 

Figure 7.15 Verification between power spectral densities of simulated time series 

  and targeted spectral densities at mean velocity U=20m/s………..……………..…154 
Figure 7.16 Effect of spectral modes on simulated time series in nodes 5&15 at U=20m/s……155 
Figure 7.17 Effect of spectral modes on simulated time series in nodes 5&15 
 during 10 seconds…………………………………………………………………..156 
Figure 7.18 Effect of number of spectral modes on power spectral densities of  
 simulated time series at mean velocity U=20m/s…………………………………..157 
Figure 8.1 Uniform buffeting forces on bridge deck…………………………………………..164 
Figure 8.2 Fundamental structural mode shapes…………………..…………………………..169 
Figure 8.3 Normalized amplitudes of structural modes: a. vertical displacement, 
 b. rotational, c. lateral…………………………………………….………………..170 
Figure 8.4 First five spectral eigenvalues: a. u-turbulence, b. w-turbulence….……………....171 
Figure 8.5 Spectral turbulent modes: a. u-turbulence, b. w-turbulence……….……………....172 
Figure 8.6 First five spectral turbulent modes at natural frequencies:  
  thick solid: 1st turbulent mode, dashed: 2nd mode, dotted: 3rd mode;  
  dot dashed: 4th mode, light solid: 5th mode………………………..……………....173 
Figure 8.7 Effect of number of spectral turbulent modes on reconstruction of 
   auto spectral densities at nodes 5 and 15: a. u-turbulence, b. w-turbulence………173 
Figure 8.8 Effect of number of turbulent modes on power spectral densities of  
   generalized vertical and rotational displacements at mid-span node 15…….….…174 
Figure 8.9 Effect of number of turbulent modes on power spectral densities of  
  global vertical and rotational displacements at mid-span node 15………….….…175 
Figure 8.10 Effect of number of turbulent modes on RMS of global responses at  
 whole deck nodes…………………………………………………………….….…175 
Figure 8.11 Cross modal coefficients between spectral turbulent modes and  
  structural modes at every natural frequency………………………………….……176 
Figure 9.1 Uniform buffeting forces on bridge deck (in time-domain formulation)…….……183 
Figure 9.2  Simulated turbulent time series at 10 deck nodes corresponding to 

mean wind velocity U=20m/s: a. u-turbulence, b. w-turbulence…………….……188  
Figure 9.3 Covariance eigenvalues: a. u-turbulence, b. w-turbulence……….………….……189 

 



 

Figure 9.4 Energy contribution of covariance eigenvectors: a. u-turbulence,  
   b. w-turbulence………………………………………..…………………….….…189 
Figure 9.5 First ten covariance turbulent modes: a. u-turbulence, b. w-turbulence…….….…190 
Figure 9.6 First ten covariance turbulent coordinates: a. u-turbulence, b. w-turbulence.….…191 
Figure 9.7 Time histories of global responses at nodes 5&15  

at mean velocity U=10m/s: a.vertical, b. rotational, c. lateral displacement.…..…192 
Figure 9.8 Time histories of global responses at nodes 5&15  

at mean velocity U=20m/s: a.vertical, b. rotational, c. lateral displacement.…..…193 
Figure 9.9 Time histories of global responses at nodes 5&15  

at mean velocity U=30m/s: a.vertical, b. rotational, c. lateral displacement.…..…194 
Figure 9.10 Time histories of global responses at nodes 5&15  

at mean velocity U=40m/s: a.vertical, b. rotational, c. lateral displacement.…..…195 
Figure 9.11 Minimum and maximum global responses at nodes 5 & 15 
 corresponding to mean wind velocity range between 0÷40m/s………………..…196 
Figure 9.12 Effect of number of truncated covariance turbulent modes on  

global responses at all deck nodes in case of mean velocity U=20m/s:  
a. vertical displacement, b. rotational displacement…………………….……..…197 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 

List of tables 
 
 
 
Table 3.1 Parameters of fluctuating flows…………………………………………………….33 

Table 4.1 Static aerodynamic coefficients and their first-order derivatives…………………..76 

Table 6.1 Energy contribution of covariance modes (unit: %)………………………………..117 

Table 6.2 Energy contribution of spectral modes (unit: %)…………………………………...123 

Table 7.1 Characteristics of simulated time series of u-,w-turbulences……..………………..154 

Table 7.2 Characteristics of simulated time series of u-,w-turbulences at nodes 5&15…..…..156 

Table 8.1 Modal characteristics of fundamental structural modes………………………..…..169 

Table 8.2 Effect of spectral modes on maximum global amplitude…………..…………..…..176 

Table 9.1 Effect of covariance modes on maximum global amplitude………..………..…….196 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 



 

 
 

Preface 
 
 
 
The research presented here has been carried out as the partial fulfillment of the requirements of 
my International Doctoral Program in Engineering at the Bridge and Wind Engineering 
Laboratory, the Department of Civil and Earth Resources Engineering of the Kyoto University, 
Japan between October 2004 and September 2007.   
 
 It backs to my memory about my initial interest in the wind engineering and long-span bridge 
aerodynamics dated back to my days and my duties during I worked for the Institute of Transport 
Science and Technology (ITST), the Ministry of Transport Vietnam and I studied the graduate 
course at the Graduate Center for Engineering Mechanics, the Vietnam National University at 
Hanoi. It seems to be new topics of the bridge aerodynamics at Vietnam, where various long-span 
bridges were under construction and planed to be constructed. I found myself my aspiration and 
motivation to focus my studies in this topic. I received many supports and encouragements from 
many persons, to whom I would like to express my grateful thanks.        
 
 It is my great pleasure to avail this opportunity to express my sincere gratitude to all respective 
persons who helped and contributed to make my research in reality and possibility. Firstly, I 
would like to express my sincere gratitude to my academic supervisor Prof. MASARU 
MATSUMOTO for his reception, guidance, support and encouragements to my pursuit and 
fulfillment of my doctoral research at his Laboratory. He has taught me first lessons on the 
importance and essentials of the bluff body flow aerodynamics and its relationship to mechanism 
and fundamentals of the aerodynamic and aeroelastic phenomena with usage of the physical 
experiments and the wind tunnel tools. 
 
 I would like to express the special thanks Ass. Prof. Hiromichi SHIRATO at the Bridge and 
Wind Engineering Laboratory for his enthusiastic helps, advices and continuous guidance in the 
buffeting research group and in my individual as well. The many thanks would be expressed to 
Assi. Prof. Tomomi YAGI for his daily helps, caring and administrative management concerning 
to me, and keeping track on my application procedures as well. The advices and helps from Prof. 



 

Junichi MORI, the Chief of Center for Foreign Students and person-in-charge with Foreign 
Cooperation and Relations, Kyoto University and from Ms. Toshiko OHASHI, person-in-charge 
with Foreign Students in the International Doctoral Programs in Engineering, Graduate School of 
Engineering, Kyoto University for my daily life, campus life and Japanese culture would be 
acknowledged. I also would acknowledge Prof. Dong-Anh NGUYEN, President of Scientific 
Committee, Institute of Mechanics （IMech）, Vietnamese Academy for Science and Technology 
(VAST) for his personal communication, academic assistance and scientific information.     
 
 The examining committee of my doctoral dissertation was composed of Prof. Masaru 
MATSUMOTO, Prof. Hiromasa KOWAI (Disaster Prevention Research Institute- DPRI, Kyoto 
University), Prof. Hiromichi SHIRATO. I would like to express my thanks to them and their 
significant suggestions, revisions and helps would be acknowledged.     
 
 Let me save this chance to express my grateful thanks to the International Doctoral Program in 
Engineering at Kyoto University, the Japanese Government’ s Mobukagakusho Scholarship 
Program for the financial support. Special thank also would be expressed to the Japanese 
Government’s Japanese International Cooperation Agency (JICA), who invited me to participate 
the three-month training course in Osaka, Japan and gave me a precious chance to contact and 
visit the Bridge and Wind Engineering Laboratory, Kyoto University.   
 
 I was also grateful for the friendship, hospitality, helps and contributions of the graduate 
students in my research laboratory during the three-year period when I have been studied, who I 
can not present all their names here, including the individuals in my research groups: Messrs 
Tetsuro MIZUNO, Kenji YAMANE, Takuro FURUKAWA, Yuya SUMIKURA and VanBao 
NGUYEN. 
 
 Last but not least, I would delicate this research to my Parent, my Wife and two little Sons. 
 
 Kyoto University, July 2007. 
        
 
 
 
 
 



 

 
 

Chapter 1 
 

General Introduction 
 
 
 
1.1 Long-span bridges and wind effects 
 
It is generally agreed that only last two decades of the 20th century, many large-scale bridges 
have been successfully built around over the world. Long-span bridges typically imply for 
cable-supported bridges, consisting of suspension bridges (SB) and cable-stayed ones (CSB). 
Recently, the Akashi-Kaikyo bridge (SB,1991m,Japan) and the Tatara bridge 
(CSB,890m,Japan), in which information inside brackets denotes to type of bridge, main span 
length and construction countries, are holding the world longest span records, besides number 
of other typical long-span cable-supported bridges around the world should be mentioned as 
Minami Bisan-Seto bridge (SB,1723m,Japan), Great Belt bridge (SB,1623m,Denmark), 
Tsing Ma bridge (SB,1377m,Hong Kong), Normandy bridge (CSB,856m,France), Yangpu 
bridge  (CSB,602m,China), Meiko bridge  (CBS,590m,Japan), Tsurumi Tsubasa bridge 
(CBS,510m,Japan), Ikuchi bridge  (CSB,490m,Japan), Oresund bridge 
(CSB,490m,Denmark) and many others. It can be seen some typically super-span 
cable-supported bridge projects are under construction or being soon started in different parts of 
the world such as Stonecutter bridge (CSB,1018m,Hong Kong), Messina Strait bridge 
(SB,3300m,Italy), Gibralta Strait bridge (SB,8400m,Spain-Morocco), SuThong bridge 
(CSB,1088m,China) and others, are going to hold the new world records in their main span 
length of the bridge types after completion. Furthermore, many super long-span bridges across 
the seas have been proposed in the feasibility studies in many counties like Japan, Korea, China 
and other. In Japan, some huge overseas bridge projects have been scheduled for discussion and 
consideration. Apart from three overseas bridge routs linking main Honshu and Shikoku islands 
are now under traffic service that are holding the world longest spans of their types, some  
other Ho-yo, Kitan and Tsugaru strait-crossing bridge projects are under the consideration and 
the pre-feasibility studies that many exciting problems concerning to design and analysis will 
be exhibited. Undoubtedly, the long-span bridges gain more advantageous to build new 
sea-crossing or strait-crossing routines to compare with another structural alternatives such as 



 

underground tunnel, floating tunnel. It seems that the longer spans, the more slender structures 
and the higher strength materials are still hinged tendency on the world bridge engineering in 
the few coming decades.  
 The design and analysis of the long-span bridges or super long-span bridges emerge some 
critical engineering problems as follows:   

(1) Dynamic behaviors of bridges due to the traffic live loads, the earthquake and the 
atmospheric wind flows play very important role and more concerns in the design and 
analysis.  

(2) New structural design, new technologies in fabrication and construction as well as new 
high strength materials are favorable to be applied, thus many new engineering 
problems are accordingly faced, especially in the aspect of natural hazardous reduction 
and mitigation.     

 
 It is strongly agreed that the long-span bridges are prone to the wind effects, the 
wind-induced vibrations and the aeroelastic instability problem as well. In the past lesson, the 
complete collapse of the Tacoma Narrow bridge (SB,980m,USA) in 1940 at USA reminded 
civil engineers and scientists to be much aware of the important role of the aerodynamic 
phenomena and the wind-induced vibrations, see Figure 1.1.  
 

 
Fig. 1.1 Extreme amplitude vibration and collapse of Tacoma Narrow bridge in USA, 1940 
 
 Evaluation of the wind-induced vibrations or the wind resistance design has become the 
more and more concern for design and analysis of the long-span bridges, especially the 
problems relate to the aeroelastic instability and the random response due to the turbulent wind. 
 
1.2 Bridge aerodynamics and classification 
 



 

 Bridge structures under the atmospheric wind flows can exhibit to one of the aerodynamic 
phenomena, of the wind-induced vibrations, or many as the aerodynamic interference and 
coupling to be occurred. Their classification of the aerodynamic phenomena can be based on 
some ways. Typically, it can be classified based on the fundamental bluff-body aerodynamics, 
the fluid dynamics and characteristics of around-body flow that cored in the wind-structure 
interaction as formation of flow separation and reattachment, local separation bubble, 
vortex-shedding, one or two shear layers on structure surface (Matsumoto 2000). He also 
discussed that (1) simultaneous modification of approaching flow and around-structure flow by 
structure’s shape, scale, movement and wind’s velocity, relative attack angle and; (2) local 
pressure distribution at leading edge zone of structure surface played very important role to 
explain in generation mechanisms of aerodynamic phenomena and wind-induced vibrations.  
 As simpler approach and practical application, however classification of bridge 
aerodynamics can be based on their characteristics on amplitude of response and effects. Bridge 
responses subjected to the wind loading can be divided into two main categories: 
limited-amplitude and divergent-amplitude wind-induced vibrations. The former comprises the 
vortex-induced vibrations, buffeting, wake-induced vibrations and rain-wind-induced vibrations 
with their effects of dynamic fatigue and serviceable discomfort, whereas the later consist of 
flutter, galloping and wake instability with their structural instability and catastrophe, see 
Figure 1.2. 
 

Fig.1.2 Classification of bridge aerodynamics and aeroelastics  
 
 Basing on amplitude of response depending on the nondimensional reduced wind velocity 
( nBUUre = ; where U: mean wind velocity, n: frequency, B: deck width), it can be generalized 

that the vortex-induced phenomena usually occur at low velocity range, the buffeting 
phenomena is significant at medium velocity range up to high velocity range, whereas the 
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aeroelastic phenomena occur at high velocity range, see Figure 1.3.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1.3 Response amplitude of wind-induced vibrations versus reduced wind velocity 
 
 Some main points of the above-mentioned bridge aerodynamics will be briefly presented 
hereinafter.   

(1) The vortex-induced vibrations are the limited-amplitude aerodynamic oscillation 
induced by either the typical Karman vortex shedding at the wake of structure or 
another vortex shedding on the surface and wake of structure. Vortex shedding is 
generated by characteristics of the ongoing wind flows, structural geometry and motion 
of structure. It is paid much attention on the vortex-induced vibration of bridges due to 
large response amplitude at resonant state that well-known as frequency ‘lock-in’ 
phenomenon and happened at low critical velocity range. Vibrational amplitude, 
however, is decayed due to structural damping and wind velocity come out of the 
critical velocity range. In the resonant state, moreover, vortex-induced forces have no 
longer forced but non-linear motion-induced ones. For bridge design, the critical 
velocity range and maximum response are purposed to investigate on vortex-induced 
vibration through means of wind tunnel experiments and theoretical analyses. Some 
studies indicated that streamlined sections usually exhibit larger response due to the 
vortex-induced vibration than bluffer sections as stiffen truss girders or Π -shaped 
girders.  

(2) The buffeting phenomenon is defined as the random aerodynamic vibration in the 
turbulent wind flows due to unsteady wind forces or unsteady buffeting forces generated 
by the fluctuating velocity components or wind turbulence. Gust response is classified 
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into the limited-amplitude phenomena due to effect of structural damping. Maximum 
gust response of bridges in the turbulent wind must be required for the buffeting 
evaluation and random aerodynamic response. The gust response is predicted via 
experimental and analytical investigation in either the frequency domain or the time 
domain. However, some assumptions and limitation of the unsteady buffeting forces due 
to approximation and simplification of the quasi-steady theory and the strip theory 
which are still used so far. Correction functions such as the aerodynamic admittance 
function, the coherence function are supplemented in account for frequency dependence 
and spatial correlation of the unsteady buffeting forces. Assumptions and usage of the 
correction functions bring uncertainties in the buffeting response evaluation. Analytical 
method in the frequency domain proposed by Davenport (1962) still validates and is 
applied so far.  

(3) The wind-induced dry-state vibration and the rain-wind-induced vibration observed at 
inclined stayed cables of cable-stayed bridges in the windy and stormy days can respond 
excessive amplitude. Mechanism of the wind-induced dry-state and rain-wind-induced 
vibrations relates to formation of upper water rivulet and axial shear flow, 
three-dimensional Karman vortex shedding on surface, along and in wake of the 
inclined cables (Matsumoto et al. 1997, Matsumoto 2000, Matsumoto et al. 2005).  

(4) The galloping instability was firstly observed by excessive response amplitude of the 
iced electric transmission lines under the strong wind and is classified into type of the 
divergent-amplitude vibration that associated with mechanism of negative slope of 
aerodynamic coefficients against relative attack angle (based on the well-known Den 
Hartog’s criterion). Analytical models carried out under linear and nonlinear behavior 
for non-circular sections (Matsumoto 2000).  

(5) The flutter instability also belongs to the divergent-amplitude self-controlled vibration 
generated by the wind-structure interaction and negative aerodynamic damping 
mechanism. Flutter instability is one of the most critical concerns to bridge 
aerodynamics and aeroelastics at the high velocity range due to its catastrophic behavior. 
Critical wind velocity at which the flutter instability occurring can be determined by 
either the numerical analytical methods or the experimental tools. 

(6) The wake-induced vibrations and wake instability can be generated when bridges or 
their structural components are located on the wake of upstream adjacent structures. 
Wake-induced vibrations also are known as interference and proximity phenomena, 
moreover, only can be investigated under the means of experiments or full-scale 
measurements.    

 



 

1.3 Background and objectives of study 
 
Among above-mentioned bridge aerodynamic and aeroelastic phenomena, the stochastic gust 
response due to the random buffeting forces in the atmospheric turbulent wind and the flutter 
instability due to the self-excited aerolastic forces and the wind-structure interaction are usually 
required more concerns and interests. These phenomena and their effects must be considered 
carefully in the design and construction stages, especially for the long-span bridges constructed 
in coastal and stormy, windy areas which are high risks from the aerodynamic and aeroelastic 
effects. It is generally agreed that the aeroelastic instability is only favorable to occur in the 
cases of the high velocity range, the bluff girder sections with low torsional stiffness, however 
these conditions are seldom met with the modern girder sections of streamlining and high 
torsional stiffness. Therefore, critical wind velocity which the flutter instability occurs usually 
exhibits much higher than natural wind velocity at the bridge sites. Additionally, experimental 
and analytical tools for the aeroelastic instability evaluation seem to be accuracy and reliable 
enough so far. It seems that the aeroelastic instability is usually studied and experimented under 
the smooth wind flows which are proved in almost cases to exhibit more critical conditions than 
naturally turbulent wind flows (Scanlan 1990, Matsumoto et al. 1996). In the some extent, the 
aeroelastic instability is seldom to occur with the modern bridges. Evidently, there is no 
aeroelastic catastrophe observed after the Tacoma Narrow bridge since 1940.  
 Recently, the unsteady buffeting forces and the stochastic gust response of bridges attract 
more attention due to its potential effects and uncertainties on bridges such as aerodynamic 
fatigue and unpredicted extreme deflection and sectional forces as well as analytical risk on 
overestimation, underestimation of the its response prediction. As far as concerned, the gust 
response prediction of bridges has been treated thanks to some assumptions and theories such as 
the quasi-steady theory and the strip theory which are no longer to be accuracy so far. The 
buffeting forces determined under scope of two theories can be considered as quasi-steady 
buffeting forces. So-called correction functions, however, such as aerodynamic admittance 
function, spatial coherence function have been supplemented to cope with limitations of these 
two theories. In this case when the correction functions are added, the unsteady buffeting forces 
are determined. 
 Aerodynamic admittance function is defined as transfer function between output 
turbulent-induced buffeting forces and input wind turbulence in the frequency domain. This 
experimental approach of the transfer function will compensate deference between turbulence 
and turbulent-induced forces due to their deference in spectral distribution in the frequency 
domain. Thus, the aerodynamic admittance is frequency dependant function. However, recent 
approach of the transfer function measurement and analytical method contains some 



 

uncertainties as follows: (i). In the direct measurement of output aerodynamic forces, it is 
difficult to defer contribution proportion of turbulent-induced forces (due to turbulence) and 
self-excited forces (due to wind-structure interaction), thus the transfer function between input 
turbulence and output aerodynamic forces contain the self-excited forces which considerably 
influence from medium to high wind velocity ranges and flexible girder bridges; (ii). In the gust 
response analysis, it is assumed that longitudinal turbulent component u(t) and vertical 
turbulent one w(t) contribute equally on power spectra of output turbulent-induced forces in the 
frequency domain, this means that the transfer function between the longitudinal turbulence and 
the output turbulent-induced forces is correspondent to that between the vertical turbulence and 
input forces. Simplified model of the frequency-dependant aerodynamic admittance function 
(so-called single-variate quasi-steady the aerodynamic admittance) has been widely applied in 
the gust response prediction of bridges so far. Recently, some further approaches such as 
nonlinear, multivariate and complex aerodynamic admittance functions have been mentioned 
anywhere in some literatures.     
   Spatial coherence function is defined as normalized quantity between cross spectra and auto 
spectra in order to characterize for the spatial distribution of the full-scale buffeting forces. It is 
assumed so far that the coherence of buffeting forces is similar to that of the wind turbulence, 
therefore the empirical exponential formulae based on coherence of turbulence have been 
widely used in the gust response theory. However, some literatures pointed out that the 
coherence of force exhibits higher than that of turbulence thanks to series of physical 
measurements (eg., Larose et al. 1997, Jakobsen et al. 1997, Kimura et al. 1997, Matsumoto et 
al. 2003). Mechanism of the higher coherence of the buffeting forces as well as effects of not 
only the spanwise separation, the ongoing flow conditions but also of the bluff body flow due to 
wind-structure interaction on the coherences of turbulence and buffeting forces should be 
investigated for more understanding and clarification. Intermittent distribution and 
instantaneous correspondence in both the frequency domain and the time domain between the 
coherence of turbulence and that of forces also require to be studied.  
 The buffeting response analysis of bridges can be treated by either frequency-domain or 
time-domain approach. The frequency-domain buffeting analysis has first introduced for civil 
engineering applications by Davenport (1962), Irwin (1974) thanks to spectral analysis method 
and so far still applied dominantly and consistently, however, the most disadvantageous is that 
this only applies for linear behavior analysis. Recently, linear and non-linear buffeting response 
analysis can be solved under the time-domain approach. Time-domain buffeting forces can be 
transferred into frequency-domain ones thanks to the Fourier Transform, moreover, the spectral 
analysis method and modal analysis technique in generalized coordinates has been applied for 
step transforms from spectral functions of 2D buffeting forces to that of 3D buffeting ones, and 



 

from spectral function of 3D buffeting forces to that of response, and from response of single 
mode to that of multi-modes. The correction functions have been added to carry out such step 
transforms. This method is effective and dominant practices in civil engineering applications, 
however, incapable to deal with non-linear structural behavior that being common sense for 
buffeting response analysis  of recently long-span flexible cable-supported bridges. In the 
time-domain buffeting analysis, the external wind forces can be treated as multi-dimensional 
stationary random processes and subjected to discrete nodes in structure. Discretization of 
time-history wind forces at structural nodes is due to simulation techniques of random 
processes. Time-history analysis has been used to predict the buffeting response. The most 
applicable advantage is that so far non-linear structural behavior only solved under this method, 
therefore some non-linear finite element method computer programs with time-history analysis 
can be exploited for non-linear buffeting response prediction. This time-domain method, 
however, is time-consuming and complicated due to simulating of the random turbulent field as 
well as modeling and transforming the frequency-dependant correction functions such as the 
admittance function into time-dependant functions.  
 As a principle, the multi-degree-of-freedom motion equations of structures are decoupled 
into the generalized coordinates and the structural modes due to the structural modal 
transformation. Conventional methods of the gust response prediction of structures has used 
concept of the joint acceptance function to decompose the full-scale turbulent-induced forces, 
then to be associated with the generalized structural coordinates (Davenport 1962). New 
approach of the gust response prediction has been proposed recently by Carassale et al. 1999, 
Solari and Carassale 2000 with concept of the double modal transformations. In this approach, 
the structural modes are associated with turbulent-induced loading modes that are decomposed 
by proper transformations in order to determine the gust response of structures. The proper 
transformations can be carried out by new technique, known as proper orthogonal 
decomposition. 
 Proper orthogonal decomposition, or known as Karhunen-Loeve decomposition (Lumley 
1970), has been applied popularly in many engineering fields including random processes/fields, 
stochastic methods, image processing, data compression, system identification and control and 
so on (Liang et al. 2002). In the wind engineering, the proper orthogonal decomposition has 
been used in the three following topics: i) stochastic decomposition and order-reduced 
modeling of random processes/fields and induced pressure/forces, ii) representation and 
simulation of random turbulent fields and iii) stochastic response of structures. The proper 
orthogonal decomposition has been applied to optimally approximate the multi-variate random 
processes through use of low-order basic orthogonal vectors from modal decomposition 
(eigenvector problem) of either zero-time-lag covariance matrix or cross spectral density one of 



 

this multi-variate random field. According to type of basic matrix in the modal decomposition, 
the proper orthogonal decomposition has been branched by either covariance proper 
transformation or spectral proper transformation (Solari and Carassale 2000). Main advantage 
of the proper orthogonal decomposition is that the multi-variate correlated random processes/ 
fields can be decomposed and described in such simplified way as a combination of a few 
low-order dominant eigenvectors (modes) and omitting higher-order ones that is convenient for 
order-reduced representation of the random field, including random-induced force modeling 
and random response prediction. Furthermore, because the random field is described via few 
dominantly low-order orthogonal modes, therefore it is usually expected that these dominant 
modes can represent to any typically physical cause occurring on structure.     
  
Objectives of studies in this dissertation are hinged as follows: 
 Firstly, mechanism of high correlation of the buffeting forces and effects of the turbulent 
flow conditions and bluff body flows on this high correlation are going to be studied via the 
spatial distribution and correlation coefficients of the unsteady pressure fields in the unsteady 
flows 
 Secondly, correction functions such as the aerodynamic admittance function and the spatial 
coherence function which are used so far in the unsteady buffeting forces and gust response 
prediction of bridges are going to be discussed thanks to some new approaches such as the 
nonlinear, multivariate aerodynamic admittance and the wavelet transform-based coherence. 
Effects of the ongoing flow conditions, the bluff body flow, the Karman vortex on the force 
coherence as well as the temporo-spectral distribution of coherence will be investigated for 
more knowledge on the spatial coherence function.  
 Finally, the proper orthogonal decomposition and its proper transformation branches are 
going to be applied and discussed for some recent topics in the wind engineering field: (i) 
analysis and identification of unsteady pressure field; (ii) representation and simulation of the 
random turbulent field; stochastic gust response prediction of bridges and (iii) the gust response 
prediction of bridges.   
 
1.4 Structure and outlines of study   
 
The dissertation aims to present and discuss about the unsteady buffeting forces and the gust 
response prediction of bridges with investigation on recent limitations and uncertainties in 
usage of the admittance function and coherence one as well as with emphasis on the proper 
orthogonal decomposition applications and its proper transformation branches. Moreover, 
higher correlation of the buffeting forces and influence of the bluff body flow will be 



 

investigated on the spatial distribution and correlation of the unsteady pressure fields around 
physical cylinders. Three potential applications of the proper orthogonal decomposition to the 
wind engineering so far will be presented consisting of (i) simulation of the multi-variate 
spatially-correlated turbulent field around bridge deck; (ii) analysis and identification of the 
random pressure fields around some typical rectangular sections; and (iii) new approach in the 
gust response prediction of bridges. Both the physical measurements in the wind tunnel 
experiments and numerical examples will be used in this thesis.  

 The dissertation is organized by the 10 chapters including the general introduction and the 
conclusion. The outlines of main chapters are briefly presented as follows:  
 
 In the Chapter 2, the unsteady buffeting forces and gust response prediction of bridges 
formulated in the frequency domain and the time domain are going to be discussed as 
background research. Current assumptions and uncertainties in the unsteady buffeting forces 
and gust response evaluation which are mainly related to usage of the correction functions such 
as the frequency-dependant aerodynamic admittance function and the spatial coherence 
function are reviewed.   
 
 In the Chapter 3, the spatial distribution and correlation of the unsteady pressure fields 
around some rectangular cylinders under some typical unsteady flows are going to be studied 
with emphasis on higher correlation mechanism of the buffeting forces and influence of the 
bluff body flow around experimental models. Physical measurements of the unsteady pressure 
fields on some rectangular cylinders B/D=1 (without and with installation of splitter plate at the 
wake of model) and B/D=5 in some unsteady flows are carried out in the wind tunnel. 
 
 In the Chapter 4, the aerodynamic admittance functions between turbulence and induced 
buffeting forces will be studied with new concepts of nonlinear and multivariate admittance. 
Wind turbulence and turbulent-induced buffeting forces are measured directly on some physical 
models B/D=5 and B/D=20 under the turbulent flows in the wind tunnel.   

 
 In the Chapter 5, the temporal-spectral coherent structures of wind and pressure will be 
studied using both Fourier coherence and wavelet coherence. Effects of spanwise separations, 
bluff body flow and turbulent flow conditions on coherent structures of turbulence and pressure, 
comparison between wind and pressure coherence as well as intermittent distribution of wavelet 
spectrum and wavelet coherence will be discussed. Physical measurements of the surface 
pressure and turbulence have been carried out on some typical rectangular cylinders with side 



 

ratios B/D=1 (without and with splitter plate at wake region) and B/D=5 under the artificial 
turbulent flows in the wind tunnel. 

 In the Chapter 6, the proper orthogonal decomposition and its proper transformations of the 
fluctuating pressure fields on some typical rectangular cylinders will be presented. Both recent 
branches: the covariance matrix and the cross spectral matrices of these pressure fields are 
applied. Analysis, identification and order-reduced reconstruction of the pressure fields will be 
carried out basing on characteristic functions resulted from both covariance matrix-branched 
and cross spectral matrix-branched proper orthogonal decompositions: covariance eigenvalues, 
covariance eigenvectors (covariance modes), covariance principal coordinates and spectral 
eigenvalues, spectral eigenvectors (spectral modes). Moreover, the linkage between the lowest 
modes and the physical phenomena can be revealed with combination of past understanding 
and knowledge of the bluff body flows and physical causes. The fluctuating pressure field has 
been determined through physical measurements on some rectangular models with side ratios of 
B/D=1 and B/D=5 in the turbulent flows in the wind tunnel. 
 
 In the Chapter 7, the representation, modeling and simulation of the multi-variate 
spatially-correlated turbulent field are going to be presented with emphasis on spectral 
representation methods using the proper orthogonal decomposition and its spectral proper 
transformation. Simulation of the multi-variate turbulent field along a bridge girder will be 
carried out as a numerical example.   
 
 In the Chapter 8, the spectral matrix-based proper orthogonal decomposition and its spectral 
proper transformation will be presented and application to decoupling the multi-variate 
turbulent loading processes. New comprehensive approach on the gust response prediction of 
structures then will be formulated using the spectral proper transformation with emphasis on 
numerical example of cable-stayed bridge. The turbulent-induced forces based on corrected 
quasi-steady theory with aerodynamic admittance also are used for more refinement. Numerical 
example of cable-stayed bridge will be taken into account for illustration and demonstration  
 
 In the Chapter 9, it is presented the application of the covariance matrix-branched proper 
orthogonal decomposition and its covariance proper transformation to decompose the random 
turbulent loading processes, then to formulate the time-domain gust response of structures. The 
Newton-beta integration method is also applied to obtain the time-domain solution of the gust 
responses in the generalized and global coordinates. Numerical example of cable-stayed bridge 
will be also taken into account for illustration and demonstration. 



  

 
 

Chapter 2 
 

Unsteady Buffeting Forces and Gust Response of Bridges 
 
 
 
2.1 Introduction 
 
The gust response prediction of bridges due to the turbulent-induced buffeting forces is usually 
required a must among aerodynamic responses, especially for long-span bridges. The gust 
response in the atmospheric turbulent flows can affect an extreme deflection and aerodynamic 
fatigue of bridge and its structural components. Conventionally, the buffeting forces for bridge 
sections are commonly determined under two main theories: (i) quasi-steady theory and (ii) strip 
theory which both are origin from the aeronautical field. In the former, it implies that the 
buffeting forces do not depend on the frequency and are proportional to instantaneous turbulent 
components as well as some linearized approximations are used to formulate the quasi-steady 
buffeting forces , whereas the buffeting forces on each deck element is not influenced by those on 
neighboring elements in the latter. However, two theories are not valid in the almost cases of 
practical engineering structures, and many certainties can be produced. In the modern buffeting 
analysis theory, some correction functions such as aerodynamic admittance function and spatial 
coherence function have been supplemented to treat with limitations of both the quasi-steady 
theory and strip one. Many literatures, however, indicated that recent models of the correction 
functions themselves contain limitations and uncertainties. The unsteady buffeting forces can be 
formulated in cases the correction functions are added. Moreover, it is observed that the unsteady 
aerodynamic forces are produced due to the wind-structure interaction and the bluff body flow at 
low reduced velocities, so-call ‘fluid memory effect’ should be considered in order to be taken the 
past histories into account for the present response. Therefore, the complete unsteady buffeting 
forces which account the fluid memory effect can be formulated in the time domain using either 
the indicial response function or impulse response function with convolution integration 
operation.  

 In this chapter, the unsteady buffeting forces and gust response prediction of full-scale bridges 



  

in the frequency domain and the time domain will be presented as background research. Current 
assumptions and uncertainties due to the quasi-steady theory and the strip theory, as well as usage 
of correction functions in the unsteady buffeting forces and the gust response prediction of 
bridges will be discussed.   

 
2.2 Methodological background 
 
It is generally agreed that the gust response prediction of bridges can be treated by either 
analytical methods or experimental approaches. Analytical gust response of bridges can be 
formulated in either the frequency domain analysis or the time domain, in which the 
frequency-domain buffeting analysis has been applies for linear structural behaviors in the former, 
whereas the time-domain analysis has been applied to treat with geometrical and aerodynamic 
nonlinearities, unsteady aerodynamic forces as well that being increasingly common-sense for 
buffeting response prediction of ‘flexible’ long-span bridges in the later.  
 In the frequency-domain approach or indirect buffeting analysis, the Fourier transform is 
applied in associated with statistical computation and spectral analysis technique. The correction 
functions have been added in transformation steps. Furthermore, the modal analysis technique in 
generalized coordinates has been applied for decomposition from the multi-degree-of-freedom 
motion system into the single-degree-of-freedom. Thus, the core of the computational 
frequency-domain buffeting analysis relates to modal decomposition method and modal-based 
response superposition technique that are associated with the spectral analysis method. Stepwise 
procedure for the gust response prediction of bridge in the frequency domain is expressed in 
Figure 2.1. Spectral transformations in frequency-domain gust response are shown in Figure 2.2. 
 In the time-domain approach or direct buffeting analysis, the turbulent loading can be treated 
as multi-variate random Gaussian processes and acting on discrete structural nodes. Simulation 
techniques are usually used in many cases to generate the turbulent loading at structural nodes. 
Either unsteady buffeting forces (using correction functions as the aerodynamic admittance and 
coherence functions) or complete unsteady buffeting forces (using the indicial response functions 
or the impulse response function) are formulated in the time and frequency domain. Discrete 
frequency-dependant functions can be transformed into the continuous time functions using some 
techniques as the rational function approximation. Direct integration methods are applied to 
obtain time-history solutions of the generalized responses, and time-histories of global responses 
can be estimated accordingly. Geometrical nonlinearity and aerodynamic one can be taken into 
account in this time-domain buffeting analysis. Time domain procedure is shown in Figure 2.3. 



  

 
Fig 2.1 Stepwise flow for gust response prediction in the frequency domain 
 
 
 
 
 
 
 
 
 
 
Fig. 2.2 Spectral transformations in frequency-domain gust response (Davenport 1967)    

 
Fig 2.3 Stepwise flow for gust response prediction in the time domain 
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2.3 Literature reviews on buffeting forces and gust response prediction 
 
It is supposed that the earliest works on computational buffeting response carried out for 
airplane’s wings and airfoils carried out by some authors as Wagner 1925, Kusner 1936, Sears 
1941 and Liepmann 1952. In their approach, the indicial function in the time domain was used to  
express relationship between the unsteady aerodynamic lift forces and instantaneous angle of 
attack, instantaneous force coefficient. In the Wagner 1925, the indicial functions were expressed 
under empirical form of polynomial one on the Laplace variable. Kusner 1936 developed the 
Wagner’s problem to solve unsteady aerodynamic response of airfoil under uniform gust flow, 
whereas Sears 1941 obtained solution for the vertical gust flow. Liepmann 1952 went further with 
the theoretical buffeting analysis for the airplane’s wings which the spectral and statistical 
analyses were introduced. Liepmann 1952, moreover, proposed the empirical formula for the 
frequency-dependant aerodynamic admittance as approximation of the Sears function. Two 
theories as the strip theory and the quasi-steady theory have been applied as the main milestone 
for the gust response problem. It is generally agreed that, however, framework on the buffeting 
forces and the gust response prediction of civil structures like towers and bridges in the frequency 
domain proposed by Davenport 1962 which the spectral analysis and statistical computation in 
associated with the modal-based structural analysis were cored in his theory on the gust response 
prediction of bridges. He also proposed to use so-called correction functions such as aerodynamic 
admittance function, coherence function to treat with some limitations of the quasi-steady theory 
and the strip theory. This spectral-based computational procedure (the Davenport’s method) for 
the gust response prediction of towers, tall buildings and bridges has still been applied so far. 
Though some assumptions and uncertainties accepted for their existence, but the Davenport’s 
method basically validates for the gust response prediction of practical structures and bridges. 
Iwin 1977 discussed about the Davenport’s method with some developments and his practical 
application for the gust response analysis of the Lions’ Gate suspension bridge. He suggested 
usage of the von Karman-typed power spectral densities for the atmospheric turbulence and 
coherence of the buffeting forces.    
  The buffeting forces generally depend on the geometrical configuration of bridge deck, 
ongoing turbulent flow and reduced frequency. The quasi-steady buffeting forces firstly proposed 
using the quasi-steady theory in the time domain. These buffeting forces are corrected by 
supplementing the frequency-dependant aerodynamic admittance function to account difference 
between the turbulence and the buffeting forces in the frequency domain as well as to cope with 
limitation of the quasi-steady theory (Davenport 1962, Iwin 1977). With account of the spatial 



  

distribution characteristic of the buffeting forces, the spatial coherence function is added to treat 
with limitation of the strip theory, the unsteady buffeting forces are formulated. At low reduced 
velocities, however, the wind-structure interaction and the bluff body flow affect considerably on 
the unsteady buffeting forces, the so-called unsteady fluid memory effect must be taken into 
account (Scanlan 1974, Lin an Yang 1983, Chen and Kareem 2002). In these cases, the unsteady 
response of structures is affected by not only present state but also past history of response. The 
complete unsteady buffeting forces are also modeled comprehensively in the time domain using 
either the indicial response functions (Wagner 1925, Kussner 1936, Scanlan 1976&1993, Costa et 
al. 2007) or the impulse response functions (Lin and Yang 1983, Scanlan 1993, Chen and Kareem 
2002), the convolution operation is also used in this time-domain formulation. Discrete 
frequency-dependant functions in the frequency domain can be transformed into the time-domain 
continuous function by using some techniques such as the rational function approximation (Chen 
and Kareem 2002).     
 Coupling between the buffeting forces and self-excited aeroelastic forces must be taken into 
account for the gust response prediction of structures because the unsteady aerodynamic forces 
are combined potentially by the turbulent-induced buffeting forces and the self-excited flutter 
ones in high reduced velocity range. It should be born in mind that the self-excited flutter forces 
can influence on the gust response of structures due to the aeroelastic forces related directly to 
response of structures themselves, but inversely the turbulent-induced forces can not affect on the 
critical condition of the aeroelastic instability of structures due to the aerodynamic 
damping-related mechanism. Frequency-domain formulation of the gust response prediction of 
bridges with the aeroelastic forces coupling developed and discussed by some authors (eg., 
Matsumoto et al. 1994, Jain et al. 1996, Katsuchi et al. 1997 and so on). Some studies and 
experiments (Matsumoto et al. 1997, Scanlan et al. 1999) indicated that the flutter derivatives 
determined in the turbulent wind are more favorable condition for critical instability than that in 
smooth wind, however, some recent studies also pointed out in some cases that flutter derivatives 
in the turbulent wind impress the flutter instability. The gust response of bridges is formulated in 
the time domain using the rational function approximation and the state-space transformation in 
some literatures (eg., Matsumoto et al. 1996, Chen, Matsumoto et al. 2000, Aas-Jakobsen and 
Strommen 2001, Borri et al. 2005 and so on).  
 Prospectively, the state-of-the-art buffeting response prediction have cored on some 
computational techniques and research orientations, new fronts such as follows: (i) New 
approaches on the correction functions as the aerodynamic admittance and coherence for 
refinement of the gust response prediction; (ii) Time-domain gust response prediction and the 
gust response controls in coupling with the aeroelastic forces and with account of geometrical and 



  

aerodynamic nonlinearities; and (iii) New approaches on the gust response prediction using some 
other tools such as the proper orthogonal decomposition (POD).  
 
2.4 Current assumptions and uncertainties 
 
Until now, the unsteady buffeting forces and the gust response prediction of bridges still exist 
some main assumption and uncertainties as follows:  

(1) Wind simulation: Unsteady buffeting loading formulated from atmospheric turbulence is 
considered as the stationary random processes. So far, the ongoing wind turbulence itself 
is assumed as stationary Gaussian random processes, however, the turbulence is generated 
by not only ongoing turbulent flow itself, but the wind-structure interaction and the bluff 
body flow. Some studies indicated that unsteady turbulence and forces can be generated 
due to wind-structure interaction at high reduced velocities and the fluid memory effect 
should be taken into account for the unsteady buffeting forces. Moreover, turbulent 
simulation that is used for the unsteady forces in the time domain always contain source 
of input uncertainty. Therefore, accurate modeling, representation and simulation of the 
wind turbulence still remain further interesting questions.   

(2) Quasi-steady theory:  The static aerodynamic coefficients with the relative attacked 
angles for modeling the unsteady forces have been approximately linearized around 
balanced attacked angle (usual as zero angle) in the quasi-steady theory. The relative 
unsteady velocity, moreover, also has been simplified and linearized under the 
quasi-steady theory. Another interpretation of this quasi-steady theory is the instantaneous 
buffeting forces are proportional to the instantaneous fluctuating velocities, or spectral 
contribution of the buffeting forces is similar to that of the turbulence in the frequency 
domain. Although, the quasi-steady theory is corrected via using the frequency-dependant 
aerodynamic admittance, but uncertainty still remains from linearized approximations and 
expansion used in this theory.    

(3) Strip theory:  It is assumed that the unsteady buffeting forces on certain finite element 
(or strip) are generated by only the turbulence on this element. However, the turbulent 
field behaviors as typical coherent, in which the turbulence at any point is affected from 
surrounding points in the field. Spatial distribution characteristic of the unsteady buffeting 
forces play very important role in the gust response of bridges. It is generally agreed that 
the strip theory can be applied for the buffeting response prediction when some following 
conditions are validated: (i) The scale of turbulence (Lux) are much higher than the 
chord-wise width of bridge deck. This condition might be invalid in case the reattachment 
and the local separation bubble occur in the chordwise model surface. Influence of ratios 
of Lux/B and B/D on the occurrence of separation bubble, reattachment and spatial 



  

distribution of fluctuating surface pressure must be clarified on further studies; (ii) Only 
2D wind-structure interaction is taken in consideration, the influence of 3D interaction or 
one of structural components (stays, towers, curb, handrail…) on the ongoing flow might 
not occur, this also means that structure do not obstacle in the ongoing flow; (iii) The 
wind direction might be relatively normal to structure axis.   
It seems that the strip theory is valid with streamlined girders and thin plates, however, it 
is inapplicable in cases of the bluffer bodies, when the wind-structure interaction and the 
bluff body flow exhibit strongly.  

(4) Correction functions: The aerodynamic admittance function and the spatial coherence 
function have been used to treat with limitations of the quasi-steady theory and the strip 
one as well as to formulate the unsteady buffeting forces. Firstly, the frequency-dependant 
aerodynamic admittance is used to compensate difference between the spectrum of 
turbulence and the spectrum of unsteady buffeting forces in the frequency domain. So far, 
the quasi-steady single-variate aerodynamic admittance function is extracted from 
physical measurements as the transfer function between the turbulences and the buffeting 
forces. Recently, some literatures discussed new approaches on determination of the 
admittance function using nonlinear and multi-variate admittance functions, complex 
admittance function and so on. Secondly, the spanwise coherence is used in account of 
spanwise distribution of the full-scale buffeting forces. It is also assumed coherence of 
forces is similar to that of turbulence, thus the turbulent coherence has been used for 
replacing the force coherence in the experiments and for formulating empirical formula of 
the force coherence. Some recent researches pointed out that the force coherence always 
exhibits more-correlated than turbulent coherence. This higher coherence can be 
convinced with the wind-structure interaction and the bluff body flow (Matsumoto et al. 
2003). 

(5) Coupling between structural modes: Under the assumption that natural frequencies are not 
be close enough that multimode coupling might not occur, thus the structural responses 
are superposed among modal responses (mode-by-mode superposition) thanks to the 
Squared Root of Sums of Squares (SRSS) principle. Also the superposition principle of 
the response of each mode can be applied under the linear behavior of structure. For 
long-span flexible bridges (cable-supported bridges), free frequencies of fundamental 
modes trend low values and close together, thus under mechanical oscillations and 
aerodynamic vibrations, they must have coupled. When fundamental modes couple or 
nonlinear approach accounts, the modal superposition and generalization might not be 
active. Further superposition techniques of generalized response should be proposed.      

 
 
 



  

2.5 Unsteady buffeting forces 
 
In the time domain, the uniform buffeting forces per unit deck length (consisting of Lift, Drag, 
Moment: )(tLb , )(tDb , )(tMb ) are determined in the time domain from the turbulent field u(t), w(t) 

due to the corrected quasi-steady theory (Davenport 1962):   
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where MDL CCC ,, : aerodynamic static coefficients at balanced angle of attack 0α (usual o00 =α ); 
''' ,, MDL CCC : first derivatives with respect to angle of attack at balanced angle 
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functions between turbulent components and turbulent-induced forces (their absolute magnitudes 
refer as aerodynamic admittance functions); ρ , B, U: air density, width and  mean velocity, 

respectively. 
 
 
 
 
 
 
 
 
 
Fig. 2.4 Uniform buffeting forces on bridge deck 
 
 In the frequency domain, transforming the time-domain uniform buffeting forces into a form 
of power spectral density using second-order Fourier transform, omitting cross correlation 
components between u(t) and w(t), the power spectral densities of the uniform buffeting forces 
can be obtained: 
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where )(),(),( nSnSnS MDL : power spectra of lift, drag and moment, respectively; )(),( nSnS wwuu : 

auto power spectra of uni-variate turbulent processes u(t), w(t).  
 It is indicated that at low and medium reduced velocity ranges, however, the unsteady fluid 
dynamics must account for both past and present motion histories, therefore the fluid memory 
effect of the unsteady fluid flow should be considered in the unsteady buffeting forces. Therefore, 
complete unsteady buffeting forces can be formulated comprehensively in the time domain using 
convolution integration operation and response functions. The response functions can exploit 
either the indicial response functions or the impulse response functions.  
 The unsteady buffeting forces using the indicial response functions are determined in the time 
domain as follows (Scanlan 1974, Chen and Kareem 2002, Borri et al. 2005): 
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where MwMuDwDuLwLu ΦΦΦΦΦΦ ,,,,, : indicial response functions defined as relation functions 

between lift, drag, moment and indicial first-order derivatives of turbulent components u(t), w(t).    
 The unsteady buffeting forces using the impulse response functions are modeled in the time 
domain as follows (Lin and Yang 1983, Chen and Kareem 2002):   
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where MwMuDwDuLwLu IIIIII ,,,,, : impulse response functions defined as relation functions 

between lift, drag, moment and impulse turbulent components u(t), w(t).    



  

 The inter-relations between the indicial response functions and the impulse response functions 
can be deduced as follows (Chen and Kareem 2002): 

 [ ])()()0(2)( ' ssBCsI LuLuLLu Φ+Φ= δ , [ ])()()0()()( '' ssCCBsI LwLwDLLw Φ+Φ+= δ  (2.5-a) 

 [ ])()()0(2)( ' ssBCsI DuDuDDu Φ+Φ= δ , [ ])()()0()()( '' ssCCBsI DwDwLDDw Φ+Φ−= δ (2.5-b) 

 [ ])()()0(2)( ' ssBCsI MuMuMMu Φ+Φ= δ , [ ])()()0()( '' ssBCsI MwMwMMw Φ+Φ= δ  (2.5-c) 

where s: time-nondimensional variable BUts = ; δ : Dirac delta function.  

 The inter-relations among parameters of the unsteady buffeting forces such as aerodynamic 
admittance functions, indicial functions and impulse functions can be obtained as follows (Chen 
and Kareem 2002): 
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where υFI : Fourier transform of the impulse response functions ( wuMDLF ,,, == υ ) as 
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2.6 Frequency-domain gust response prediction  
 
The spectral-based gust response prediction of full-scale bridges in the frequency domain is 
briefly presented hereafter. Multi-degree-of-freedom motion equation of structures immersed in 
the atmospheric turbulent flow subjected to the turbulent-induced forces is expressed: 

 )()()()( tFtKXtXCtXM b=++ &&&  (2.7) 

where M, C, K: globally mass, damping and stiffness matrices, respectively; XXX &&& ,, : deflection 

vector and its derivative vectors; Fb(t): full-scale buffeting forces. 
 Transforming into generalized coordinates normalized by the mass matrix using M  truncated 
low-order structural modes ( MM << , M: number of dynamic degree-of-freedom of structure), it 
satisfies:  
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where ξ : generalized coordinate vector { }T
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motion equation in the i-th generalized coordinate excited by generalized buffeting forces can be 
obtained accordingly: 
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where )(tiξ : i-th generalized coordinate; ii ζω , : circular frequency and damping ratio, 

respectively.  
 Uniform buffeting forces in unit length has been defined in Eqs.(2.1-a,b,c). However, the 
buffeting forces are correlated due to their spatial distribution, thus the full-scale buffeting forces 
must be taken into account this spatial force distribution. Difficulty here is how to decompose the 
full-scale buffeting forces onto the generalized coordinate in order to determine the generalized 
response. Davenport 1962 proposed a decomposition technique basing on the joint acceptance 
function which characterize for combination between the coherence function and the structural 
modal functions.   
 The single-degree-of-freedom equation Eq.(2.9) in the i-th generalized coordinates is 
transformed in to frequency domain using second-order Fourier transform: 
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where )(, nS
iξ , )(, nS iF : power spectral densities of the i-th generalized response and of 

generalized full-scale buffeting forces, respectively; 2|)(| inH : mechanical admittance function or 

frequency response function corresponding to natural frequency ni of the i-th structural mode as 
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 Three displacement components of bridges can be expressed such following forms as:  
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where x: spanwise local coordinate; )(),(),( xxpxh iii α : modal values corresponding to vertical, 

lateral and rotational displacement components. 
 Thus, power spectral densities of the full-scale buffeting forces associated with the i-th 
generalized coordinate can be obtained:   
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),,( nxxCOH BAυ : spanwise coherence function of turbulent component υ (t) between two points 

xA and xB, )()()( twortut =υ .   

 It is noted that in the practical applications, some availably empirical formulae have been used 
to determine: (i) Auto spectral density function of the longitudinal and vertical turbulent 
components )(),( nSnS wwuu ; (ii) Aerodynamic admittance functions 

wuandMDLFnF ,,,),( == υχ υ ;  (iii) Spanwise coherence functions ),,( nxxCOH BAυ .  

  Covariance of the generalized response can be obtained accordingly:    
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Covariance of the global response can be estimated due to the squared root of the sums of the 
squares (SRSS) principle as follows: 
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 Due to influence of the frequency response function, the resonant responses occur locally at 



  

the structural natural frequencies and background one at other frequencies outside these natural 
ones. Contribution of the resonant and background responses on the global responses can be 
estimated as follows:     

 222
RBX σσσ +=  (2.15) 

where 22 , RB σσ : background response and resonant one, which are determined as:  
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 In practical applications, the resonant response dominates the global response for flexible 
long-span structures, especially for vertical and rotational displacements, whereas the background 
response generally dominates for column-like structures such as tall buildings, towers. 
 
2.7 Time-domain gust response prediction 
 
In the time-domain gust response prediction, the time histories of turbulence acting on structural 
nodes are input data. The turbulent field is considered as multi-variate spatially-correlated 
random Gaussian processes. Since it is difficult to obtain the time histories of turbulence field in 
the structural site, therefore the digital simulation techniques must be required to generate the 
time histories of turbulence field. So far, digital simulation of the turbulent field is based on two 
approaches: spectral representation methods and time series representation ones. In the former, 
decomposition techniques such as the Cholesky’ decomposition and modal one have been applied, 
whereas some methods such as the auto-regressive technique (AR), moving-average technique 
(MA) and auto-regressive and moving average technique (ARMA) include in the later.  
 Either the unsteady buffeting forces using the aerodynamic admittance or the complete 
unsteady buffeting forces using the indicial response functions or the impulse response function 
can be used for the time-domain buffeting analysis. Relationship between the aerodynamic 
admittance and the indicial response function, the impulse response function has been established.  
The aerodynamic admittance functions determined as discrete frequency-dependant ones which 
are required to transform into the continuous functions in the time-domain analysis. Rational 
function approximation, known as the Roger’s approximation is the mostly utilized for this 
purpose. Aerodynamic transfer functions can be expanded using rational function approximation:      



  

 ∑
=

+

+
+=

υ

υ

υ
υυχ

Fm

j jF

jF
FF diK

A
iKAn

1 ,

1,
1, )()(  (2.17) 

where 1,1, , +jFF AA υυ , jFd ,υ  frequency-dependant coefficients ( υFmj ,,...2,1= ) determined by nonlinear 

curve-fitting technique.    
 Then the indicial response function, the impulse response functions and the unsteady buffeting 
forces can be determined as follows (Chen and Kareem 2000): 
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where )(, tjFwφ : augmented aerodynamic state coefficient. Noting that components of lift force 

due to w-turbulence are expressed here for sake of brevity. Similar formulation for other buffeting 
force components due to u-,w-turbulences can be deduced.  
 Full-scale buffeting forces over entire length L can be determined (Chen and Kareem 2000):  
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where subscript c denotes to the center of the element; )(),( tJtJ LwLu : impulse functions whose 

Fourier transform counterparts )(),( tJtJ LwLu referred as the joint acceptance functions.  

 Solution of the single-degree-of-freedom equation Eq.(2.9) can be found thanks to any direct 
integration methods as Newton-beta or fourth-order Runge-Kutta methods. Accordingly, the time 
histories of generalized response and global response can be obtained.   
 
2.8 Conclusion 
 
Modeling of the unsteady buffeting forces and background of the gust response prediction of 
full-scale bridges has been presented in this chapter. Moreover, limitation and uncertainties in the 
theory of the gust response prediction of bridge have been also discussed.    
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Chapter 3 
 
Spatial Distribution and Correlation of Unsteady Pressure 
Fields around Rectangular Cylinders 
 
 
 
3.1 Introduction 
 
One of the key elements the gust response prediction of structures is to determine characteristic 
of the spatial distribution of the turbulent-induced forces (known as the buffeting forces), because 
atmospheric turbulence is considered as typical coherent field in which spatially mutual influence 
of point-like turbulences and point-like turbulent-induced forces plays very important role. This 
is known as limitation and uncertainty of the strip theory which has been applied for the gust 
response problem of airplane wings in the aeronautical field, and so far become the key point for 
modern analytical method to predict the random gust response of bridges and structures due to 
turbulent wind. Davenport 1962 mentioned about the strip theory as follow: “… that the 
structures (or structural members) are sufficiently slender for the secondary spanwise flow and 
redistribution of pressures to be neglected, such the pressure on any section of the span are only 
due to the wind incident on that section,…”. This declaration suggests that the influence of 
structure on the ongoing turbulent flow must be not negligible. For spaced structures, spatial 
distribution of the buffeting forces can be considered in all three direction of turbulence 
corresponding to three axes of structure to which are deepwise, chordwise and spanwise 
directions of structural section in the cases of line-like structures such as bridges. Dimensions of 
turbulence can be defined via nine scales of turbulence in the three direction of turbulent wind 
with respect to the three structural axes. Accordingly, the strip theory might be valid only in cases 
that the dimensions of structures are smaller than those of ongoing turbulences in which the 
wind-structure interaction does not occur. Concretely, some experience indicated that this strip 
theory validated for the case of buffeting drag forces due to the turbulent wind where the scale of 
longitudinal turbulence (≈100÷200m) is much higher (about 100 times) than the depth of 
structures, whereas in the case of buffeting vertical forces the scale of vertical turbulence in the 
chordwise direction (≈30÷50m) is about 10 times higher than the width of structure (Larose 



  

2003). This means that validation can be met only with small-size structural components 
immersed in large turbulence, but not to satisfy with the modern large-scale structures. Davenport 
1962 also discussed that this assumption was reasonable for such structures as open lattice truss 
girders and cables, but not likely to be reasonable for large-scale structures such as bridges, 
buildings and spaced structures and so on.  
 In the modern large-scale structures, when the spatial scales of turbulence exhibit not much 
higher than structural dimensions as validation of the strip theory required, the wind-structure 
interaction occurs with appearance of the bluff body flow and secondary flow on the sectional 
surface. Therefore, effects of the bluff body flow and the secondary flow induce the redistribution 
of the unsteady pressure field and buffeting forces on structures as well (Davenport 1962, 
Matsumoto 2000). The redistribution of the unsteady pressure field on the sectional surface is 
convincing for the failure and uncertainty of the strip theory assumption in determination of the 
full-scale buffeting forces and the gust response prediction of structures. Relation between the 
wind turbulence and turbulent-induced pressure/ forces contains uncertainties from limitation of 
the quasi-steady theory and the strip theory (Kawai 1983). Theoretically, spatial distribution of 
the unsteady pressure and buffeting forces exhibits in all the three directions of structures, 
however, only the spanwise distribution play important role and is usually taken into account for 
the line-like structures and bridges. In the gust response analysis of bridges, the spanwise 
distribution of the buffeting forces is considered via the spanwise coherence function in the nodal 
(point-like) buffeting forces or the so-called joint acceptance function in the full-scale (line-like) 
buffeting forces and structurally generalized coordinates.  
 It is agreed that spatial distribution and coherence of the buffeting forces can be determined by 
experimental approach. In many practical cases, however, it is difficult to obtain characteristics of 
the spatial distribution of the buffeting forces. Therefore, it is generally assumed as the simplified 
approach that the spatial distribution and coherence of the buffeting forces are similar to those of 
the ongoing turbulences which are more appropriately obtained by both the experimental tools 
and empirical formulae. Some recent literatures, however, indicated that the spatial distribution 
and spanwise coherence function of the buffeting loading are better correlated than those of wind 
turbulence (Matsumoto et al. 2003, Larose 2003). Full-scale measurements of the buffeting lift 
forces accompanying with model test observations in the boxed girder deck of Ikara bridge also 
confirmed again the result above. Accordingly, the uncertainty of the strip theory and the 
coherence model so far can cause underestimation or overestimation of the buffeting response 
prediction.  
 Further studies on the spatial distribution of buffeting forces must be required for more 
understanding and clarification of mechanism of the better correlation of the buffeting forces than 



  

the turbulence. The better correlation mechanism of the buffeting forces is related to the bluff 
body flow and secondary one which are associated with the wind-structure interaction 
phenomena such as formations of separation bubble and reattachment flow, of vortex shedding on 
the sectional surface. Obviously, as above-mentioned the mechanism of higher correlation of the 
buffeting forces can not be clarified by the forces themselves, but the unsteady pressure field 
around sectional surface. Moreover, the buffeting forces are obtained easily by the integration of 
unsteady pressures in chordwise strips and distributed area of pressure taps on the model section.  
 In this chapter, the spatial distribution and spanwise correlation of the fluctuating pressures 
will be discussed to be more understanding of the high correlation of the pressure and buffeting 
forces than the ongoing turbulence. Physical measurements of the unsteady pressure fields are 
carried out on some typical rectangular cylinders B/D=1 and B/D=5 in some unsteady flow 
conditions of smooth, turbulent and fluctuating flows with emphasis on the effect of the bluff 
body flow on the better correlation of the buffeting forces.            
 
3.2 Some literature reviews on spatial distribution and correlation of 

unsteady pressure field 
 
In the wind engineering and the wind effects on structures, the experimental studies of unsteady 
pressure fields around physical models in the wind tunnels play very important role. Especially, it 
is very essential in studying on the bluff body aerodynamics and mechanism of wind-structure 
interaction phenomena (Matsumoto 2000). It is discussed that the local pressure distribution at 
the leading edge zone of models can reveal generation mechanisms of aerodynamic phenomena 
and wind-induced vibrations (Matsumoto et al. 1996, Matsumoto 2000). Moreover, the buffeting 
forces (drag, lift and moment) can be estimated thanks to the spatial integration of the fluctuating 
pressure field around the sectional model. Chordwise distribution of the unsteady pressure field 
on the harmonic oscillatory models can be used for identification of the aerodynamic derivatives 
of the self-excited flutter forces (Matsumoto et al. 1996), that on motionless models can reveal 
the bluff body flow pattern around model’s surface (Hiller and Cherry 1981) and so on. Studying 
on the spanwise distribution of the unsteady pressure field on the physical models can clarify 
mechanism of correlation and coherence of the buffeting forces and its dependence on the bluff 
body flow (Matsumoto et al. 20003, Larose 2003).       
 In order to investigate the relationship between chordwise distribution of the unsteady pressure 
field and the wind-structure interaction phenomena, Hiller et al. 1981 and Cherry et al. 1984 
carried out the physical measurements of the surface pressure on the rectangular section as 
semi-infinity flat plate with slenderness ratio B/D=16 in smooth and turbulent flows associated 



  

with the smoke visualization. They obtained that occurrence of the high pressure region (both 
normalized mean pressures and fluctuating pressures) in an effect of the separation bubble, 
moreover, the reattaching point appeared at transition of low mean pressure or near afterward 
peak of pressure fluctuation. Furthermore, the effect of free-stream turbulence affected the 
dimension of separation bubble in which the lengths of separation bubble were 5D (D: model 
depth) in the smooth flow and 3D in the turbulent flow, especially, the spanwise scale of 
longitudinal velocity fluctuation was found to enlarge near reattachment region. Kiya et al. 1983 
also investigated the pressure distribution on the semi-infinite rectangular model. They found that 
the enhancement of rolled-up vortices associated with the separation bubble produced larger and 
larger vortices out of the separation bubble. 
 Matsumoto et al. 2003 focused on clarification the mechanism of higher spanwise coherence 
of buffeting forces due to both distribution of surface pressure and the wind-body interaction. 
Series of experiments on two rectangular and hexagonal sections with B/D=5 in the different 
unsteady flows: smooth, turbulent and 2D fluctuating flows were carried out. It is discussed the 
the formation of separation bubble from the leading edge to roughly 7B/8 long in smooth flow 
and 3B/8 long in turbulent flow with rectangular section, whereas expanding almost B in both 
flow conditions with hexagonal section. They suggested that the secondary spanwise flow or 3D 
separating bluff body flow affected by the formation of separation bubble and reattachment on 
model and the approaching flow itself. Investigation on surface pressure of B/D=5 sectional 
model in two unsteady flows: 2D (uniform) and 3D (non-uniform) gust flows were also presented 
by Matsumoto et al. 2004, Matsumoto et al. 2005a, Shirato, Matsumoto et al. 2005 with 
description of around-body flow pattern. They argued that the elongation of separation bubble 
due to reduced frequencies of gust flow, the formation of vortex shedding near the leading edge 
and the movement toward the trailing edge affected to the spanwise distribution of surface 
pressure. Effect of harmonic motion on pressure distribution, power spectral densities and 
spanwise coherence have been investigated by Matsumoto et al. 2004, they observed that 
pressure distribution, spanwise coherence did not be affected by the harmonic body motion.        
 Larose et al. 1998, Larose 2003 measured the pressure fields on streamlined boxed models 
with the different side ratios and with respect to different turbulent flow characteristics, attacked 
angles and geometrical configuration (with and without barriers). Haan et al. 1998 carried out 
physical measurements of the unsteady pressure field on rectangular boxed section in different 
turbulent flow conditions to investigate the effects of turbulence on the spanwise coherence of the 
surface pressures. He showed how the aerodynamic lift and moment are correlated over spanwise 
separations larger than any characteristic length of the turbulent flows, and discussed on how this 
correlation reduces with increase of intensities of turbulence and increase of scales of turbulence.      



  

3.3 Wind tunnel experiments  
 

Direct measurements of the unsteady surface pressures on some typical rectangular cylinders with 
slender ratio B/D=1, B/D=5are carried out on the open-circuit wind tunnel of the Bridge and 
Wind Engineering Laboratory at the Kyoto University, with a working section of 1.0m wide x 
1.8m high x 6.55m long under some unsteady flows of the smooth flows, turbulent flows and 
three-dimensional fluctuating flows as well. In some cases of usage of the model B/D=1, the 
Splitter Plate (S.P) is also installed at the wake of model B/D=1 in order to study the effect of the 
wake flow and the Karman vortex shedding on the spatial distribution of unsteady pressure fields. 
 It can be predicted from previous studies that model B/D=1 is favorable for dominant 
formation of Karman vortex shedding in the wake of model, whereas model B/D=5 is typical for 
formation of separated and reattached flows on model surface. In case the splitter plate was 
installed in the wake of model B/D=1 in order to suppress the wake flow and effect of Karman 
vortex shedding. Identification of the bluff body flow is usually required for understanding flow 
behavior and mechanism of oscillation on physical model. The bluff body flow can be identified 
directly due to flow visualization techniques. Pressure distribution is also used for this purpose 
with experience and knowledge of flow behavior on some typical models. 
 
3.3.1 Experimental apparatus in turbulent flows 
 
Motionless models of the rectangular cylinders B/D=1 and B/D=5 are used, in which the model 
B/D=1 is installed without/with the Splitter Plate. Turbulent flows are generated artificially by 
grid devices which was located in 750mm upstream from the model’s leading edge. Wind 
turbulence and unsteady pressures are measured in the three turbulent flows corresponding to 
three mean wind velocities U=3, 6 and 9m/s (flow case 1, flow case 2 and flow case 3, 
respectively). Basic turbulent flow parameters are determined as the turbulent intensities as 
follows: Iu=11.56%, Iw=11.23% (case 1), Iu=10.54%, Iw=9.28% (case 2), Iu=9.52%, Iw=6.65% 
(case 3). Pressure taps are arranged on one surface of models, consisting of 10 pressure taps of 
model B/D=1 and 19 pressure taps of the model B/D=5 in the chordwise direction (see Figure 
3.1). Mean and turbulent components of the basic turbulent flow (without installation of the 
model) are measured thanks to the hot-wire anemometer using x-type probes (Model 0252, 
Kanomax Japan, Inc.) and calibrated and linearized by a constant-temperature anemometer (CTA) 
(Models 1013, 1011, Kanomax Japan, Inc.). Unsteady surface pressures are measured by 
multi-channel pressure measurement system (ZOC23, Ohte Giken, Inc.). It is noted that turbulent 



  

components and surface pressures are imultaneously obtained in order to investigate in the time 
domain. Electric signals were filtered by 100Hz low-pass filters (E3201, NF Design Block Co., 
Ltd.) before passed through A/D converter (Thinknet DF3422, Pavec Co., Ltd.) with sampling 
frequency at 1000Hz in 100 seconds. 

 
Fig. 3.1 Experimental models and pressure tap arrangement 
 

 
Fig. 3.2 Images of experimental models in wind tunnel test: a. model B/D=1, b. model B/D=5 
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Fig. 3.3 Flow generation devices: a. grid turbulent generator, b. 3D fluctuating flow generator  
 
3.3.2 Experimental apparatus in fluctuating flows 
 
Motionless model of the rectangular cylinder B/D=5 with dimension of 300mm wide x 60mm 
deep x 890mm is used. Mean wind velocity and fluctuating velocity are measured by the hot-wire 
anemometer with x-type probes (model 0252, Kanomax Co., Ltd.). Though 779 pressure holes 
including 19 chordwise and 41 spanwise columns are arranged on one side of the model surface, 
but only limited number of pressure taps in region between 0mm and 250mm in the spanwise 
direction is used in this study. Three-dimensional fluctuating flow is generated by specific devide 
(see Figure 3.3b) which is located in 600mm (=10D, D: model depth) upstream from the model’s 
leading edge. This device consists of the three parts: two side parts with motionless blades which 
produce the smooth flows and the center one with harmonic moving blades which generate the 
fluctuating sinusoidal flow. Spanwise convection between the smooth flows in the side parts and 
the sinusoidal one in the center part produces the so-called three-dimensional fluctuating flow.  
 It is noted that the moving blades in the center part is driven harmonically by electric motor at 
fixed frequency of 3Hz (also known as characteristic frequency of the fluctuating flow). The 
reduced frequencies ( Ubk /ω= where ω : circular frequency of fluctuating flow, b: half of 

a. Turbulent grid b. 3D fluctuating flow generator 



  

model width 2/Bb = ) are controlled in the range between 0.72 and 1.92, corresponding to the 
reduced velocities ( fDUU re /= , D: model depth) between 22.22 and 8.33 (see Table 3.1 ) which 

must be higher than a potential reduced frequency of vortex-based motion-induced vibration 
according to Kiya et al. 1983 ( 7.0/ =UfLsb , sbL : separation bubble length from leading edge to 

reattachment point, thus reduced frequency of motion-induced vibration 7.24.2 ÷≈k ). 
 Unsteady surface pressures are also measured simultaneously by multi-channel pressure 
measurement system (ZOC23, Ohte Giken, Inc.). Electric signals are filtered by 50Hz low-pass 
filters (E3201, NF Design Block Co., Ltd.) before passed through A/D converter (Thinknet 
DF3422, Pavec Co., Ltd.) with the sample rate at 1000Hz over 100s.  
 The longitudinal and vertical intensities of turbulence of the fluctuating flow are measured as 
Iu=5.12% and Iw=4.12%, respectively. The scales of turbulence are determined as Lux=73.94mm, 
Lwx=73.66mm in the chordwise direction and Luy=23.59mm and Lwy=22.99mm in the spanwise 
direction.  
 
Tab. 3.1 Parameters of fluctuating flows 

 
 
 
  
The vertical fluctuating velocity (w-turbulence) is measured at different spanwise positions at 
center of model location (but measurement without model) to study the effectiveness of the 
fluctuating flow at the mean velocity U=7m/s (see Figure 3.4). It can be seen in Figure 3.4 that 
the wind fluctuation varies in the spanwise direction corresponding to characteristic of the 
ongoing fluctuating flow: sinusoidal flow and smooth flow and the transit region between two 
these flows. 
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Fig. 3.4 Amplitude of vertical velocity 
fluctuation at base reference points 
[Matsumoto,Shirato et al. 2005] 



  

3.4 Chordwise pressure distribution 
 
The chordwise pressure distribution in the turbulent flows is discussed at first, then that in the 
fluctuating flows at next. In some extent, knowledge about the wind-structure interaction 
phenomena and the bluff body flow which are usually characterized by formation of separated 
and reattached flows with separation bubble and that of vortex shedding as well can be obtained 
based on distributions of mean and fluctuating pressures in the chordwise direction (Hillier and 
Cherry 1981 and Cherry et al. 1984). Normalized mean pressures and normalized 
root-mean-square fluctuating pressures in the chordwise positions can be determined from 
measured time series of unsteady pressures as following formulae: 

 2, 5.0 U
pC meanp ρ
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∑ −
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where p : mean value; p: unsteady pressure; 25.0 Uρ : dynamic pressure.  

 Normalized mean and fluctuating pressure distributions in the chordwise positions in three 
models are expressed in Figure 3.5. As can be seen that the normalized mean and fluctuating 
pressures distribute homogeneously on the models B/D=1 without/with the Splitter Plate, 
whereas distribute locally near leading edge on the model B/D=5. Normalized mean and 
fluctuating pressures on model B/D=1 without splitter plate exhibit higher than those on the same 
model but with splitter plate. Moreover, the distributions of the fluctuating pressures depend on 
the turbulent flow conditions, whereas the mean pressure distributions on three models seem not 
to with respect to turbulent flow conditions. 
 Figure 3.6 shows the power spectral densities of the fluctuating pressures at some referred 
positions on the three models in the three turbulent flows. Peak frequencies are observed at 
4.15Hz, 8.79Hz and 12.94Hz corresponding to three turbulent flows in the case of model B/D=1 
without Splitter Plate. It is clear that the Karman vortex formed and shed in the wake in which the 
Karman vortex frequency depends on the Strouhal number (St) which can be determined at 
St=0.1285 in these cases. Therefore, the bluff body flow is separated at sharp corners, dominated 
by formation of Karman vortex and frequently shed in the wake on the model B/D=1 without 
Splitter Plate. In case of the model B/D=1 with Splitter Plate, no frequency peaks are observed, 
the Karman vortex is suppressed by the splitter plate. It is supposed the bluff body flow separated 
at the sharp corners, expanded all model surface and reattached at the splitter plate.   



  

Fig. 3.5 Normalized mean and fluctuating pressures at chordwise positions in turbulent flows 
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Fig. 3.6 Power spectral densities of fluctuating pressures in turbulent flows 
[Matsumoto, Shirato et al. 2006]



  

 In case of the model B/D=5, frequency peaks are observed at 1.22Hz and 2.44Hz (case 1); at 
2.44Hz, 4.88Hz, 7.32Hz (flow case 2); at 3.42Hz and 6.84Hz (flow case 3). According to Hiller 
and Cherry 1981; Cherry et al. 1984, reattachment point of separated flow may locate at near 
after the peak position of fluctuating pressure, and the observed frequency peaks are induced by 
rolled-up turbulent vortices shed away at reattachment points toward trailing edge. Thus, bluff 
body flow is separated and reattached on the model surface to form separation bubble. 
Reattachment points can be determined at roughly positions 6, 7, 8 with respect to an increase of 
mean velocities. High mean and fluctuating pressures are observed locally at the leading edge 
region in the influence of separation bubble due to local circulation of turbulent vortex inside it. 
 
 Figure 3.7 shows distributions of the normalized mean pressures and the normalized 
fluctuating pressures in the chordwise direction corresponding to different reduced frequencies in 
the fluctuating flows. As can be seen that both the mean pressures and fluctuating pressures 
reduce with decrease of the reduced frequencies or increase of the reduced velocities. Peak 
locations of the fluctuating pressures seem to move forward to trailing edge with respect to 
decrease of the reduced frequencies, this also means that the locations of reattachment point of 
separated flows on the model surface move forward with increase of reduced velocities. In 
comparison with results of the turbulent flows, moreover, it is noted that the mean pressures 
change with the increase of the reduced velocities (or mean velocities) in the fluctuating flows, 
whereas the mean pressures stay constant with the increase of the mean velocities in the turbulent 
flows.   

Fig. 3.7 Normalized mean and fluctuating pressure distributions on chordwise direction in 
different fluctuating flows [Matsumoto, Shirato et al. 2005] 
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Fig. 3.8 Power spectral densities of normalized chordwise pressures in fluctuating flows  
[Matsumoto, Shirato et al. 2005] 

 
 Figure 3.8 shows power spectral densities of all chordwise pressures corresponding to 
different fluctuating flows. It is observed that spectral peaks of physical events appear which 
might relate to occurrence and movement of roll-up vortices on surface of the experimental 
models.  
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Fig. 3.9 Instantaneous normalized pressure distribution of chordwise positions on a cycle T of 3D 
fluctuating flow at different reduced frequencies [Shirato, Matsumoto et al. 2005] 
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Fig. 3.10 Comparison of pressures on model B/D=1 due to turbulent and smooth flows 
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Fig. 3.11 Comparison of pressures on model B/D=1 with S.P due to turbulent and smooth 
flows [Matsumoto, Shirato et al. 2006] 

[Matsumoto, Shirato et al. 2006]



  

Fig. 3.12 Comparison of pressures on model B/D=5 due to turbulent and smooth flows 
        [Matsumoto, Shirato et al. 2006]   
        
 As can be seen from 3.8, it is supposed that large-scale vortex appear and move on the model 
surface at frequency 8.04Hz in the fluctuating flow conditions k=1.92, k=1.45, this large-scale 
vortex does not appear at low reduced frequency k=0.72 (or high reduced velocity Ur=22.22). 
The frequency peaks at multiple frequencies 31.02Hz, 62.03Hz, 93.05Hz occur at all investigated 
fluctuating flows k=1.92, 1.45 and 0.72. These multiple frequencies are due to small-scale 
rolled-up vortices which break up into smaller vortices during moving from the leading edge to 
the trailing edge. However, energy contribution of rolled-up vortices reduces with increase of the 
reduced velocities, for example in the case Ur=22.22, occurrence of these frequency peaks of the 
rolled-up vortices is not clear (see Figure 3.8).        
 Instantaneous pressures distributions in the chordwise direction at different time points on one 
cycle T of the fluctuating flows in different reduced frequencies k=0.72÷1.92 are shown in Figure 
3.9. High instantaneous pressure regions distribute at leading edge of the model, moreover, the 
instantaneous pressures reduce with respect to increase of reduced velocities. It seems that the 
instantaneous pressure distribution recover after half of cycle T, this corresponds to the 
characteristic of ongoing flows as the sinusoidal fluctuating flow. This finding can be used to 
estimate chordwise pressure distribution on other side of model.      
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 Comparisons of the chordwise mean and fluctuating pressures on three experimental models 
depending on the ongoing flow conditions (smooth and turbulent ones) are expressed in Figures 
3.10÷3.12. In the model B/D=1, both mean and fluctuating pressures on the turbulent flow 
exhibit higher than those on the smooth flow, especially large difference in the fluctuating 
pressures can observed (see Figure 3.10). Due to effect of the Splitter Plate installed at model 
wake, there is no difference in the mean pressures between smooth and turbulent flows, but the 
fluctuating pressures in the smooth flow express higher than those in turbulent ones at U=3m/s, 
6m/s (see Figure 3.11). In the model B/D=5, it is seen that mean and fluctuating pressures in the 
turbulent flow distribute strongly at local leading edge region, whereas those in the smooth flow 
distribute wider forward trailing edge. Moreover, the fluctuating pressures in the turbulent flows 
exhibit larger than those in the smooth flows.     
 
3.5 Identification of bluff body flow pattern 
 
As mentioned above, the bluff body flow around B/D=1 is dominated by separated flow on the 
model surface and formation of the Karman vortex and shedding at the model wake. With model 
B/D=1 with the Splitter Plate, the separated flow is formed at sharp corners of the leading edges, 
however reattachment does not occur on the model surface, but stagnate at the wake and no 
Karman vortex occurs, this flow is known as time-integrated flow field. In the case of model 
B/D=5, it is supposed that both separated and reattached flows occur on the model surface. The 
bluff body flow patterns on models B/D=1, B/D=1 with S.P and B/D=5 are expressed in Figure 
3.13.     
 

Fig. 3.13 Bluff body flow pattern of three experimental models in turbulent flows  
[Matsumoto, Shirato et al. 2006] 

 
 The bluff body flow patterns at the chorwise direction on the model B/D=5 in the different 
fluctuating flows can be identified based on the chordwise distribution of instantaneous surface 
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pressure and the relative angle of attack (defined by quasi-steady formula: Uwre /≈α , w : 

amplitude of gust flow) as can be shown in Figure 3.14. As a result, the formation of separation 
bubble due to the instability of shear layer and formation of vortex-shedding on surface model are 
the potential cause to change from the ongoing fluctuating flow on model. 
 
 

 
Fig. 3.14 Bluff body flow patterns in cycle T of fluctuating flows 

[Shirato, Matsumoto et al. 2005] 
 
 In the case of high reduced frequency k=1.92 (low reduced velocity Ur=8.33) in the 
fluctuating flow, it is supposed the separated and reattached flow with formation of vortex 
shedding on model surface characterize for the bluff body flow. Moreover, the vortex moves 
forward to trailing edge due to change of attack angles. Frequency of this vortex is supposed at 
8.04Hz. This well corresponds to the finding in Matsumoto et al. 1986 about the onset of the 
shear layer instability enhancement around the frequency k=1.88. 2D-like separation bubble, 
furthermore, forms and almost spreads on the entire model surface at the low reduced frequency 
k=0.72 (high reduced velocity Ur=22.22). 
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3.6 Spatial distribution of unsteady pressure fields 
 
Spatial distribution of normalized mean and fluctuating pressures that is taken into account area 
of whole chordwise length and 200mm spanwise width on the model B/D=5 in the different 
turbulent flows is shown in Figure 3.15. It is commented that the spatial distribution of both the 
mean and fluctuating pressures in the three turbulent flows (corresponding to mean velocities 
U=3m/s,6m/s and 9m/s) concentrates locally at the leading edge region in the chordwise direction, 
and exhibit constantly in the spanwise direction.   
 Figure 3.16 expresses the spatial distribution of normalized mean and fluctuating pressures on 
model B/D=5 in different fluctuating flows k=1.92÷0.72 (Ur=8.33÷22.22). It is noted that the 
spanwise length between 0mm÷125mm is in scope of the fluctuating flow, whereas the spanwise 
length between 125mm÷200mm is in scope of the smooth flow. As can be seen from Figure 3.16 
that the mean pressures distribute constantly in the spanwise direction and localize at leading 
edge region in the chordwise direction at the investigated reduced frequencies. At the high 
reduced frequencies (low reduced velocities), however, the fluctuating pressures distributes 
strongly near leading edge in the influence part of the fluctuating flow, moreover, these 
fluctuating pressures also distribute considerably in the part of the smooth flow. The fluctuating 
pressures distribute more homogeneously in influence of both fluctuating and smooth flows at the 
low reduced frequencies (high reduced velocities), furthermore, the fluctuating pressure 
distribution at two flows seems to be similar together.  
 This can be explained that at the high reduced frequencies (low reduced velocities) the 
convection between two fluctuating and smooth flows in the spanwise direction occurs weaker 
than that at the low reduced frequencies (high reduced velocities). 
  
 
 



  

Fig 3.15 Spatial distribution of normalized mean and fluctuating pressures on model B/D=5  
in different turbulent flows [Matsumoto, Shirato et al. 2006] 
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Fig. 3.16 Spatial distribution of normalized mean and fluctuating pressures on model B/D=5 in 
different fluctuating flows [Matsumoto, Shirato et al. 2005] 
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Fig. 3.17 Instantaneous normalized pressure distribution in a cycle T of fluctuating flow at 

reduced frequency k=1.92 (Ure=8.33) [Matsumoto, Shirato et al. 2005] 
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Fig. 3.18 Instantaneous normalized pressure distribution in a cycle T of fluctuating flow at 
reduced frequency k=1.44 (Ure=11.11) [Matsumoto, Shirato et al. 2005] 
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Fig. 3.19 Instantaneous normalized pressure distribution in a cycle T of fluctuating flow at 
reduced frequency k=0.96 (Ure=16.67) [Matsumoto, Shirato et al. 2005] 
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Fig. 3.20 Instantaneous normalized pressure distribution in a cycle T of fluctuating flow at 
reduced frequency k=0.72 (Ure=22.22) [Matsumoto, Shirato et al. 2005] 
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 Instantaneous normalized pressure distribution at time intervals of a cycle T of the 3D 
fluctuating flows at different reduced frequency k=1.92, 1.44, 0.96 and 0.72, corresponding to the 
reduced velocities Ure=8.33, 11.11, 16.67 and 22.22 are expressed in Figures 3.17÷3.20. As can 
be seen in Figure 3.17, the high pressure regions (both negative and positive pressures) appear in 
the fluctuating part on the model surface at the high reduced frequency k=1.92 (or low reduced 
velocity Ur=8.33), moreover, the movement of these high pressure regions from leading edge to 
trailing edge corresponding to each time interval in the cycle T of the fluctuating flow. On the 
contrary, the high pressure regions and its movement also are observed on model surface at the 
low reduced frequencies (high reduced velocities), but the high pressure region distributes 
spanwise more homogenously on both parts of fluctuating and smooth flows (see Figures 3.18, 
3.19 and 3.20). In comparison, the pressure values appear higher at the high reduced frequencies 
than the low reduced ones. 
 It also can be discussed that at the high reduced frequency of the fluctuating flow the 
convection or secondary spanwise flow between the fluctuating and smooth flows happens to be 
very weak, this can explain why the high pressure region locally appear on only fluctuating flow 
part where the fluctuating flow dominates on contribution of the surface pressure fluctuation and 
not to spread into smooth flow one, whereas this secondary spanwise flow seems to be strong at 
the low reduced frequencies that deduce the spanwise distribution of surface pressure.  In the 
other word, the spanwise secondary flow and spanwise distribution of the surface pressure have 
strengthened corresponding to decrease of the reduced frequency (or increase of reduced 
velocities), and low reduced frequencies (high reduced velocities) influence stronger on the 
spanwise distribution of the surface pressure. 
 
3.7 Spatial correlation of unsteady pressure field 
 
 Spatial correlation coefficient of the fluctuating pressures on three experimental models and at 
some flow conditions is studied here. The spanwise correlation coefficient which characterize for 
the cross correlation of two time series in the time domain is defined as normalized ratio between 
auto correlation and covariance as follows:  
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where: υ denotes to turbulence (υ =u(t) or w(t)); p denotes to fluctuating pressures; yΔ : 

spanwise separation. 
 Figures 3.21÷3.23 express the spatial correlation coefficients of chordwise fluctuating 
pressures in the spanwise direction at the turbulent flows corresponding to mean velocities 
U=3m/s, 6m/s and 9m/s on models B/D=1, B/D=1 with S.P and B/D=5, respectively. Figure 3.24 
show the spanwise correlation coefficients of chordwise fluctuating pressures on model B/D=5 at 
the fluctuating flows. It is generally agreed that the correlation coefficients in the spanwise 
direction depend on concretely investigated positions on the chordwise direction, this is supposed 
due to effects of wind-structure interaction and bluff body flow on the model surface. 
 As can be seen from Figure 3.21 that in the model B/D=1 the correlation coefficients of the 
fluctuating pressures in the leading edge exhibits higher that those in the trailing edge. Therefore, 
high span correlation of the fluctuating pressures can be observed in the region of high pressure 
distribution at the leading edge. In the case of model B/D=1 with Splitter Plate, it seems that the 
spanwise correlation coefficients reduce gradually from leading edge positions to trailing edge 
ones, however, no much difference in the spanwise correlation of the chordwise fluctuating 
pressures can be seen (see Figure 3.22). Thus, installation of the Splitter Plate at the model wake 
has suppressed the local distribution of high pressure region at the leading edge and high 
spanwise correlation coefficients at this region are not accordingly appeared. As can be seen in 
Figure 3.23 as the case of model B/D=5, the spanwise correlation affects to close spanwise 
separations between 0mm and 125mm, the spanwise correlation decays after this distant 
separation 125mm for all cases of mean velocities U=3m/s, 6m/s and 9m/s. Moreover, the high 
spanwise correlation is observed at positions 3,4 near the leading edge and in the influence of 
separation bubble formed in the model surface. In the fluctuating flows as shown in Figure 3.24, 
the spanwise correlation strongly depends on investigated positions. It seems that the high 
spanwise correlation occurs at the leading edge region where the high pressure region is observed 
at the high reduced frequencies k=1.92 and k=11.11. However, at the low reduced frequency 
k=0.72, the high spanwise correlation is observed not in the leading edge region, but in the 
trailing edge one.        
 Spanwise correlation coefficients are compared between smooth and turbulent flows, between 
without S.P and with S.P by measurements at some chordwise positions Nos.2,4,6 and 8 in model 
B/D=1, effect of Karman vortex on correlation coefficients is also investigated. As can be seen in 
Figure 3.25, in the investigated case of model B/D=1, the spanwise correlation in the smooth 
flows exhibit larger that that in the turbulent ones. Moreover, it is observed that the spanwise 
correlation on model without S.P expresses higher that on model with S.P in both the smooth 
flows and turbulent ones.    
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Fig.3.21 Spatial correlation coefficients of 
chordwise fluctuating pressures at 
turbulent flows (B/D=1)   
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Fig.3.22 Spatial correlation coefficients of 
chordwise fluctuating pressures at 
turbulent flows (B/D=1 with S.P)   
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Fig.3.23 Spatial correlation coefficients of 
chordwise fluctuating pressures at 
turbulent flows (B/D=5)   

Fig.3.24 Spatial correlation coefficients of 
chordwise fluctuating pressures at 
fluctuating flows (B/D=5)   
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Fig. 3.25  Comparison of correlation coefficients between smooth and turbulent flows and 

between without S.P and with S.P, effect of Karman vortex on correlation 
coefficients 

 
 
 This finding implies that the Karman vortex (in the case without S.P) increases the spanwise 
correlation in such a way as enhancement of the spanwise convection. In almost investigated 
cases, furthermore, difference between without S.P and with S.P in the turbulent flows exhibit 
larger than that in the smooth flow. Therefore, it is commented that the effect of the Karman 
vortex on higher spanwise correlation in the turbulent flows is higher than that in the smooth flow 
(see Figure 3.25).  
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Fig. 3.26 Comparison of correlation coefficients in different turbulent conditions and effect of 

intensities of turbulence on correlation coefficients 
 
 Figure 3.26 shows comparison of the correlation coefficients in different turbulent conditions 
and effect of turbulent intensities on correlation coefficients as well. Here the turbulent conditions 
and the turbulent intensities correspond to mean velocities U=3m/s, 6m/s and 9m/s in the 
turbulent flow. As can be seen that no much difference in the spanwise correlation can be 
observed with respect to intensities of turbulence, especially on models B/D=1 without S.P and 
B/D=5. In comparison, however, higher spanwise correlation can be seen at high intensity of 
turbulence (low mean velocity) on the models B/D=1 with S.P and B/D=5.  
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Fig. 3.27 Comparison of spanwise correlation coefficients between wind turbulence and induced 

pressure, and between experimental models at different turbulent flows 
 
 Figure 3.27 shows comparison of spanwise correlation coefficients between wind turbulence 
and induced pressure, that between experimental models B/D=1, B/D=1 with S.P and B/D=5 at 
different turbulent flows (corresponding to mean velocities U=3m/s, 6m/s and 9m/s). Physical 
pressure data have measured at some chordwise positions Nos. 2,4,6 and 8 on the model B/D=1 
and Nos. 2,6,10 and 18 on model B/D=5, whereas the fluctuating velocities measured along 
spanwise centerline of the models but without installation of the models.  
 In comparison of the spanwise correlation between the three models, it is observed that the 
spanwise correlation coefficients of the induced pressures gradually reduce from the model 
B/D=1 without S.P, to the model B/D=1 with S.P and the model B/D=5. It is discussed that the 
spanwise correlation reduces with increase of slender ration B/D in the investigated cases. Its is 
also supposed that dependence of the spanwise correlation on the spanwise separations decreases 
with respect to increase of the slender ratios, as can be seen that the spanwise correlation on 
model B/D=5 affect on only separations 0mm÷125mm, whereas on separations 0mm÷200mm on 
model B/D=1. In comparison in the spanwise correlation between u-turbulence and w-turbulence 
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in the turbulent flows, it is seen that the spanwise correlation of the u-turbulence expresses little 
higher that that of the w-turbulence. However, the spanwise correlation of the wind turbulence 
decays fast with respect to increase of the spanwise separations. Concretely, the spanwise 
correlation of the turbulence only affects at very close separation 0mm÷75mm, the turbulence is 
uncorrelated after 75mm in the spanwise direction in these measurements. Obviously, the 
spanwise correlation of the pressures exhibits larger than that of the turbulence.  
 
3.8 Conclusion 
 
Spatial distribution and correlation of the pressures has been studied here. Physical measurements 
of the pressure and turbulence have been carried out on some experimental models B/D=1, 
B/D=5 in some ongoing flows including the smooth flows, the turbulent flows and the 
three-dimensional fluctuating flows. With the model B/D=1, the installation of Splitter Plate at 
the model wake has been used in some cases in account of investigation of the Karman vortex 
effect on the spanwise correlation. 
 It can be concluded as some following points:  

(1) Fluctuating pressure distribute strongly and locally on the leading edge region. In the 
fluctuating flows, the spanwise convection and the spanwise distribution of the surface 
pressure have been strengthened with respect to decrease of the reduced frequencies 
(increase of reduced velocities). It is supposed that the low frequency components can 
play more important role on spanwise distribution of induced pressure than high 
frequency ones. 

(2) Generally, the spanwise correlation depends strongly on such parameters as flow 
conditions, investigated positions, experimental models and their slender ratios B/D in the 
investigated cases. High spanwise correlation has observed at some positions near the 
leading edge regions where the high pressure region localized. The spanwise correlation 
in the smooth flows is larger than that in the turbulent ones. Moreover, the effect of 
Karman vortex (in the case without S.P) on increases of the spanwise correlation is also 
seen. It is discussed that the spanwise correlation reduces with increase of slender ration 
B/D. 

(3) From the physical measurements, it is verified obviously that the spanwise correlation of 
the turbulent-induced forces always exhibits larger than that of the turbulence. The 
wind-structure interaction and the bluff body flow reason for the higher mechanism of 
spanwise correlation of induced forces than that of the turbulence.  
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Chapter 4 
 

Aerodynamic admittance of unsteady buffeting forces on 
rectangular cylinders 
 
 
 
4.1 Introduction 
 
It is generally agreed that until now the buffeting forces and the gust response of bridges are 
being treated under two main assumptions of (1) the quasi-steady theory and (2) the strip theory. 
The quasi-steady theory assumes that the turbulent-induced buffeting forces apply the linear 
approximation and expansion of instantaneous force coefficients and instantaneous relative 
velocity. Moreover, correspondence in the spectral distribution and contribution between the 
turbulence and the turbulent-induced buffeting forces in the frequency domain has been accepted 
in this quasi-steady theory, this implies that the buffeting forces do not depend on the frequency. 
However, behavior of the buffeting forces exhibits much more complicated than that of 
turbulence due to representation of the wind-structure interaction and the bluff body flow 
phenomena. Dependence of the quasi-steady buffeting forces on the frequency has been observed 
due to series of physical measurements. A lot of attempts have been proposed to cope with the 
limitation of the buffeting forces. The corrected quasi-steady approach in the frequency domain 
proposed by Davenport (1962) with usage of the frequency-dependant aerodynamic admittance 
function. 
 The aerodynamic admittance function is determined as transfer function in the frequency 
domain between the input turbulence and the output turbulent-induced forces. This transfer 
function compensates deference between the turbulence and turbulent-induced forces of their 
spectral distribution in the frequency domain. Therefore, the aerodynamic admittance function 
can be experimentally obtained by simultaneous measurements of the turbulence and the 
buffeting forces in wind tunnels. However, the physical measurements and recent researches on 
the aerodynamic admittance exist some limitations. Firstly, the aerodynamic admittance function 
is usually determined from the quasi-steady theory in which some quantities such as the static 
aerodynamic coefficients and the relative velocity are linearized, thus nonlinear effects on the 



  

quasi-steady aerodynamic admittance need to be further discussed. Secondly, in the direct 
measurements of the output aerodynamic forces in many cases, it can not differ between 
turbulent-induced buffeting forces (due to the turbulence) and self-excited flutter forces (due to 
the wind-structure interaction) in the measured aerodynamic forces, thus the transfer function 
contains influence of the self-excited forces. However, it is believed that the measured 
aerodynamic forces on the motionless fixed models are considered as unique contribution of the 
turbulent-induced buffeting forces. Thirdly, it is usually assumed that contributions of the 
longitudinal turbulence u(t) and the vertical turbulence are equal to the aerodynamic admittance. 
Therefore, the aerodynamic admittance between the longitudinal turbulence and the buffeting 
forces is similar to that between the vertical turbulence and the forces. Simplified model of the 
frequency-dependant aerodynamic admittance function, so-called single-variate quasi-steady 
admittance has been widely used in the gust response prediction of bridges so far. Recently, some 
further approaches such as nonlinear, multivariate and complex aerodynamic admittance 
functions have been mentioned anywhere in some literatures. By using the time-domain indicial 
function approach, furthermore, the mechanical relationship between the aerodynamic admittance 
and the flutter derivatives has been discussed. It is discussed, moreover, that the pressure 
redistribution occurs on surface models due to effects of the wind-structure interaction and the 
bluff body flow, in the other words, the aerodynamic admittance might be affected by the bluff 
body flow. However, this effect of the bluff body is still not clarified by any literature.     
 This chapter will discuss on the aerodynamic admittance function in comparison with some 
new approaches of the nonlinear and multivariate admittance functions, as well as the mechanical 
relationship between the aerodynamic admittance and the flutter derivatives is going to be 
mentioned. Wind turbulence and turbulent-induced buffeting forces are measured directly on 
some physical models B/D=5 and B/D=20 under the different turbulent flows in the wind tunnel.   
 
4.2 Literature reviews 
 
Sears 1941 developed analytical solution for the unsteady aerodynamic response of the airfoil in 
the vertical gust flows, that used the indicial function and initial works of Wagner 1925 and 
Kusner 1936. Sears 1941 used so-called Sears function to establish spectral relation between 
unsteady aerodynamic forces and wind turbulence, thus this Sears functions was treated as the 
aerodynamic admittance function. Theoretically, the Sears function is only valid for the unsteady 
aerodynamic response prediction of airfoil or thin plate. Liepmann 1952 proposed the theoretical 
buffeting analysis for subject of airplane wing that based on both spectrum analysis and statistical 
computation, he also proposed the empirical formula for the aerodynamic admittance as 



  

approximation solution from the Sears function which is the most commonly used for the lift 
force aerodynamic admittance of the airfoil and the thin plate in the fully-correlated gust flow 
(Liepmann 1952). Davenport 1962 firstly introduced a framework method for buffeting analysis 
of bridges and tower structures, that combined by spectrum analysis and statistical computation in 
the structural modal space. Some correction functions such as the aerodynamic admittance, the 
coherence and the joint acceptance function have been used in the Davenport’s theory. He also 
approached the empirical formula for the drag force aerodynamic admittance. However, by series 
of physical measurements on practical sections (i.e., bluff bodies), many literatures (eg., Konishi, 
Shiraishi and Matsumoto 1975, Walshe and Wyatt 1983, Jancauskas and Melbourne 1986, 
Sankaran and Jancauskas 1992) discussed the aerodynamic admittance exhibits differently from 
empirical formulae such as Sears function, Liepmann function, Davenport one. The empirical 
formulae can be applicable to few certain types of structures. Konishi, Shiraishi and Matsumoto 
1975 modified the Sear function for evaluation of the lift force the aerodynamic admittance of 
bridge sections, so-called equivalent Sear function proposed to validate with physical 
measurements on thin plate and stiffness girder. Some authors (eg., Larose 1999, Scanlan 2001) 
discussed on the aerodynamic admittance function in account of spatial distribution of the 
aerodynamic forces by evaluation of the coherence function and the joint acceptance functions.      
 In the time-domain approach of both the buffeting forces and self-excited flutter ones using the 
classical indicial function, the relationship between the aerodynamic admittance and the flutter 
derivatives is established. Equivalent aerodynamic admittance can be determined via the indicial 
functions by some authors (Scanlan 2001, Hatanaka and Tanaka 2002, Tubino 2005). Chen and 
Kareem 2002, however, approximated the aerodynamic admittance via the rational function 
rather than via the indicial function in the impulse response function, but the approximation of the 
impulse response function and the aerodynamic admittance is significantly employed for the 
self-excited flutter forces, but not for the buffeting forces and the aerodynamic admittance.  
 
4.3 Quasi-steady aerodynamic admittance and empirical models 
4.3.1 Quasi-steady aerodynamic admittance 
 
The unsteady aerodynamic forces (Lift, Drag and Moment) acting on bridge section are 
determined to be proportional to the relative velocity and the relative aerodynamic force 
coefficient as follows:  
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where V(t): relative velocity; MorDLFtCF ,)),(( =α : relative mean force coefficients with 



  

respect to wind angle of attack )(tα .  

 
 
 
 
 
 
 
 
 
 
Fig. 4.1 Quasi-steady forces on bridge section 
 
 The relative velocity can be expanded and approximated linearly as follows:   
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 Moreover, the relative mean force coefficients can be expanded by the Taylor’s series at the 
balanced angle of attack ( 0=α ), only linear components are taken into account, we have:  
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 Because of very small attacked angles, sinusoidal approximation is accepted as follows:  
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 After expansion, the unsteady aerodynamic forces are determined due to the quasi-steady 
theory as follows (only the unsteady lift force in account for a sake of brevity):   
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where the first term is the mean force, the second one is the buffeting forces, the last one is the 
aeroelastic flutter forces. 
 As a result, the buffeting forces on deck section due to the quasi-steady theory are expressed: 
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 Power spectral densities of the uniform buffeting forces are obtained thanks to second-order 
Fourier transformation (cross spectra between two turbulent components )(nSuw are omitted):   
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 In the formulae above, the frequency-dependant aerodynamic admittance functions are added 
in order to compensate difference between the unsteady forces and the quasi-steady ones in the 
frequency domain.  
 Furthermore, it is usually assumed that contribution of the longitudinal turbulence is similar to 

that of the vertical turbulence on the buffeting forces as MDLFnnn FFwFu ,,);()()( 222 === χχχ . 

Accordingly, the quasi-steady aerodynamic admittance functions can be determined as follows:  

 
)()(4

)()( 2'2
0

2
2

nSLnSL
nSUn

wu

L
L +

=χ  (4.8-a) 

 
)()(4

)()( 2'2
0

2
2

nSDnSD
nSUn

wu

D
D +

=χ  (4.8-b) 

 
)()(4

)()( 2'2
0

2
2

nSMnSM
nSUn

wu

M
M +

=χ  (4.8-c) 

where LBCUL 2
0 2

1 ρ= ; '2'

2
1

LBCUL ρ= ; DBCUD 2
0 2

1 ρ= ; '2'

2
1

DBCUD ρ= ; MCBUM 22
0 2

1 ρ= ; 

'22'

2
1

MCBUM ρ=  

 In many cases of the symmetrical sections and the rectangular sections, some force 

coefficients at the balanced attacked angle are equal zeros as 0;0;0 ' ≈≈≈ DML CCC . Therefore, 

more simplified quasi-steady aerodynamic admittance can be obtained as follows: 
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4.3.2 Empirical models 
 
The Sears function is usually used for the aerodynamic admittance of lift force on the airplane 
wings and thin plate section expressed by the Bessel functions of first kind (Fung 1955): 
 )()]()()[()( 110 kiJkiJkJkCk +−=φ  (4.10) 

where )(0 kJ : Bessel function of first kind and 0 order; )(1 kJ : Bessel function of first kind and 1 

order; k: reduced frequency; C(k): Theodorsen’s complex circulation function: 
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where )()2(
1 kH : Hankel function of second rank and 1 order; )()2(

0 kH : Hankel function of second 

rank and 0 order.  
 Konishi, Shiraishi and Matsumoto (1975) modified the Sears function which is valid only for 
the thin plate, airfoil to be the so-called equivalent Sear function which can be applied as the 
aerodynamic admittance function of lift force on various girder types.   
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LC : first-order derivative of lift force coefficients ( αα ddCC LL )(' = ) 

Fig 4.2 Comparison between aerodynamic admittance and Sears function [Matsumoto 2000] 
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Fig 4.3 Sears function [Matsumoto 2006] and Liepmann function 



  

 Liepmann (1953) proposed new formula of the aerodynamic admittance as approximation of 
the Sears function, as well as Davenport (1962) introduced the aerodynamic admittance of the 
drag force: 
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where c: decay factor (c=8); *k : reduced frequency ( UnDk =* ) 

 Comparison between the Sears function and the Liepmann one is given in Figure 4.3. 
 
4.4 Nonlinear and multivariate aerodynamic admittance 
4.4.2 Nonlinear aerodynamic admittance 
 
Because the instantaneous velocity can be written in the nonlinear expansion Eq.(4.3-a) on 

account with squared velocity components u(t)2, w(t)2 as UuwuUtV 2)( 2222 +++= . Then 

transforming in the frequency domain, omitting cross spectra between u and v, u and w, w and v, 
we have power spectral density of lift force as:  
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 Therefore, the nonlinear aerodynamic admittance functions of the buffeting forces can be 
estimated as follows: 
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 Thus, squared turbulent components are taken into account in the nonlinear admittance. 
 
4.4.3  Multivariate aerodynamic admittance 
 

As above-mentioned, linear or nonlinear models of aerodynamic admittance contain spectral 
components of u, w and u2, w2 , however, one assumes that such turbulence components play the 



  

equal role on contribution to the buffeting forces. Thus, single-variate aerodynamic admittance 
has been applied for both linear and nonlinear models. Relationship between spectral components 
of turbulence, their squares and spectral components of forces can be treated as the multi-input 
and single-output system (MISO) as following scheme:  
  
 
 
 
 
 
 
 
 
 
 
Fig. 4.4 Scheme of multivariate aerodynamic admittance 
 
 In Figure 4.2, X(n) and Y(n): power spectra of input and output;  H(n): transfer functions 
(also frequency response function); N(n): system noise. Relationship between the input 
turbulence and the output buffeting forces can be expressed as following sums (here lift is taken 
for instance):   
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where |)(|,|)(|,|)(|,|)(| 22
222 nHnHnHnH

LwLwLuLu : transfer functions between input 

turbulent-related components u(t), u2(t), w(t), w2(t) and output lift L(t); )(nSN : noise signal 

spectrum.   
 System identification of the transfer functions can be obtained as follows: 
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 Thus, comprehensive form of the nonlinear approach with multivariate admittance functions is   
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 As a result, the multivariate admittance functions of lift force can be obtained as follows: 
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 Similarly, the multivariate admittance functions of drag force and moment can be determined 
in the same manner.  
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 Therefore, all multivariate aerodynamic admittance functions are obtained. 
 
4.5 Relationship between aerodynamic admittance and derivatives 
  
Due to time-domain formulation of the buffeting forces and aeroelastic flutter ones using the 
classical indicial response functions or impulse response ones, the relationships between the 
aerodynamic admittance and the aerodynamic derivatives, indicial response functions, impulse 
response functions have been already established (Scanlan 2001, Hatanaka and Tanaka 2002, 
Tubino 2005). 
 Accordingly, six different aerodynamic admittances can be formally derived from the some 
aerodynamic derivatives as follows (Scanlan 2001):  
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 In the above-mentioned equations, in many cases of practical analyses and experiments the 
aerodynamic derivatives corresponding to lateral direction with subscripts 5 and 6 are negligible, 
thus remaining important aerodynamic admittances )(),( nn MwLw χχ can be obtained by this 

approach from the aerodynamic derivatives.  



  

4.6 Experimental apparatus 
 
Physical measurements of the turbulence and the turbulent-induced forces are carried out in the 
Kyoto University’s open-circuit wind tunnel. Two models of rectangular sections with slender 
ratios B/D=5 and B/D=20 are used in experiments. Models are rigidly fixed by support. Turbulent 
flows are artificially generated by the grid configuration in the wind tunnel at different mean 
wind velocities U=3m/s, 6m/s and 9m/s, corresponding to the flow case 1, case 2 and case 3. 
Intensities of turbulence are Iu=11.46%, Iw=11.23% (case 1); Iu=10.54%, Iw=9.28% (case 2) and 
Iu=9.52%, Iw=6.65% (case 3). Two turbulent components: longitudinal u(y) and vertical w(t) are 
measured by the X-probe hot-wire thermal constant anemometer (CTA): X-probe (Model 1011, 
Kanomax Inc., Japan), CTA and linearization (Model DC Voltmeter 1008, Nihon Kagaku Kogyo, 
Japan). Three force components: drag, lift and moment are measured thanks to the dynamic 
multi-component loadcells (Model LMC 3505-30N, Nissho Electric Works, Co., Japan). Electric 
signals of measured forces are amplified by the 8-channel conditioner (Model DCM 8A, Kyowa 
Corp., Japan), then are filtered by 100Hz low-pass filters (E3201, NF Design Block Co., Ltd.). 
Signals of the turbulence and the forces are digitally sampled by A/D converter at the sampling 
rate 1000Hz over 100 seconds (Thinknet DF3422, Pavec Co., Ltd., USA). Experimental set-ups 
are shown in Figure 4.5.  

Fig. 4.5 Experimental set-ups and models 
 
 Static aerodynamic coefficients and their first-order derivatives also are determined thanks to 
the force measurements using the loadcells with respect to change of various attacked angles of 
-10o, -6o, -2o, 0o, 2o, 4o, 6o, 8o, 10o at two referred mean velocities U=8m/s, 12m/s. The static 
aerodynamic coefficients with respect to different attacked angles of two experimental models 

Model B/D=5 Model B/D=20 



  

B/D=5 and B/D=20 are shown in Figure 4.6 and Figure 4.7. Aerodynamic coefficients and the 

first-order derivatives at the balanced angle ( o0=α ) are determined and given in Table 4.1. 

 
Fig. 4.6 Aerodynamic force coefficients on models B/D=5 [Matsumoto et al. 2006] 

 
Fig. 4.7 Aerodynamic force coefficients on models B/D=20 [Matsumoto et al. 2006] 
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Table 4.1 Static aerodynamic coefficients and their first-order derivatives 
B/D=5 

CL CD CM CL’ CD’ CM’ 
0 1.098 0 6.412 0 0.609 

B/D=20 
CL CD CM CL’ CD’ CM’ 
0 1.423 0 7.067 0 0.701 

 
 The static aerodynamic coefficients and its derivatives are used in further computation here, 

with notice that some force coefficients ',, LML CCC  are zero. 

 
4.7 Results and discussion 
 
Figure 4.8 shows the power spectral densities of turbulence and buffeting forces (lift and 
moment) on two physical models B/D=5 and B/D=20 at three turbulent flows corresponding to 
mean velocities U=3m/s, 6m/s and 9m/s. As can be seen that the spectra of lift force on model 
B/D=20 are generated higher than those on model B/D=5 at all flow conditions, however, the 
spectra of moment on the B/D=5 are larger than those on B/D=20.    
 Figure 4.9 expresses the quasi-steady aerodynamic admittances of lift and moment under three 
turbulent flows in comparison between models B/D=5 and B/D=20. It is also seen that the 
admittance function of lift force on the model B/D=20 exhibit higher than that on the model 
B/D=20, but the admittance of moment on B/D=20 is smaller than that on B/D=5, these 
correspond to the spectra of forces as observed in Figure 4.8. Moreover, some spectral peaks are 
observed on the aerodynamic admittance to correspond to those on the spectra of forces.   
 Effect of intensities of turbulence corresponding to three mean velocities on the aerodynamic 
admittance of the lift and moment on two models is expressed on Figure 4.10. It seems that the 
admittances reduce with decrease of the intensity of turbulence (increase of mean velocity) at low 
frequency range (0÷0.3Hz), however, the admittances increase with respect to increase of 
intensity of turbulence (decrease of mean velocity) at high frequency range (higher than 0.3Hz). 
This finding is also observed at the admittances of both the lift and the moment and on both the 
models.     
 
 
 



  

 
Fig. 4.8 Power spectral densities of turbulence and forces: a. turbulence, b. lift, c. moment   
 
 Comparison between quasi-steady aerodynamic admittances and nonlinear aerodynamic 
admittances of lift and moment on two models is shown in Figure 4.11. Squared turbulent 
components u2(t) and w2(t) are taken into account for the aerodynamic admittance to extend the 
nonlinear approximation in the quasi-steady theory. As can be seen from Figure 4.11, the 
nonlinear admittances express smaller than the quasi-steady ones in all investigated cases. 
Therefore, the nonlinear velocity components influence on the aerodynamic admittance in such 
the way to reduce the aerodynamic admittances, accordingly to reduce the buffeting forces as 
well.    
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Fig. 4.9 Quasi-steady aerodynamic admittance: a. lift, b. moment 
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Fig. 4.10 Effect of turbulent intensities on quasi-steady aerodynamic admittance:  
a. model B/D=5, b. model B/D=20 



  

 
Fig. 4.11 Comparison between quasi-steady aerodynamic admittance and nonlinear aerodynamic 

admittance: a. lift, b. moment  
 
 Contributions from multi inputs (turbulent components u(t), w(t) and their squared 
components u2(t), w2(t), including cross correlation between them u(t)w(t) can be simultaneously 
taken into account as inputs) on the output forces can be determined using the multivariate 
variable model and the system identification technique. Figure 4.12 expresses the multivariate 
admittances corresponding to spectral contributions of spectra of w-turbulence and its squared 
component on spectra of forces, as well as comparison between the quasi-steady aerodynamic 

admittance and multivariate ones, in which )(),(),( 222
2 nnn LwLwL χχχ denote to the quasi-steady 

aerodynamic admittance, multivariate admittance due to the w-turbulence and squared 
w-turbulence, respectively. It is seen that the multivariate admittances due to w-turbulence is 
similar to that of quasi-steady admittances.   
 Figure 4.13 shows the multivariate transfer functions between lift and u-turbulence, lift and 
w-turbulence, moment and u-turbulence, moment and w-turbulence. The transfer function can 
characterize for contribution of each input turbulent components (u(t), w(t), u2(t), w2(t)) on the 
output forces. As can be seen, there is different on contributions of each input components on the 
buffeting forces, this contradicts to the assumption of the quasi-steady aerodynamic admittances.  
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Fig. 4.12 Comparison between quasi-steady aerodynamic admittance and multi-variate 

aerodynamic admittance: a. model B/D=5, b. model B/D=20   
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Fig 4.13 Transfer functions between input turbulent components and output buffeting forces on 

model B/D=5: a. lift and u-turbulence, b. lift and w-turbulence, c. moment and 
u-turbulence, d. moment and w-turbulence   
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4.8 Conclusion 
 
Quasi-steady aerodynamic admittance and new concept of nonlinear and multivariate 
aerodynamic admittances have been discussed and investigated in this chapter. It can be 
concluded with some following points:  

(1) It is found that the squared turbulent components influence on the aerodynamic admittance. 
How much and how importance of their contributions on the output buffeting forces need to 
be further studied with series of physical measurements on different physical models in 
different unsteady flows. It is supposed that effect of the squared velocity components on 
the admittance is not considerable in such cases that behaviors of ongoing flow and bluff 
body flow are not complicated. However, effect of these squared components is supposed to 
increase with complexity of bluff body flow and ongoing flow. In these investigations, 
influence of u-turbulence and its squared component on multivariate admittance can not 

evaluated due to their relating force coefficients 0,0,0 ' === DML CCC are zero.  

(2) New comprehensive approach to determine the aerodynamic admittance has been studied, 
in which contributions from multi inputs (turbulent components u(t), w(t) and their squared 
components u2(t), w2(t), including cross correlation between them u(t)w(t) can be 
simultaneously taken into account as inputs) on the output forces can be determined using 
the multivariate variable model and the system identification technique 

 
 Further studies on the aerodynamic admittances should be needed to clarify influence of bluff 
body flows on the aerodynamic admittances as well as to verify application of multivariate 
aerodynamic admittance.  
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Chapter 5 
 

Spanwise Coherence of Wind Turbulence and Induced 
Pressure on Rectangular Cylinders 
 
 
 
5.1 Introduction 
 
The gust response prediction of structures or long-span bridges immersed in atmospheric 
turbulent flows subjected by turbulent-induced forces (or buffeting forces) has been based on a 
strip theory, by which the spatial distribution characteristic of forces on structure must be taken 
into account. For a sake of simplification, however, the spatial distribution of turbulent field can 
represent for that of the induced force one. Thus, it is assumed that the spanwise coherence of the 
induced forces is similar to that of the ongoing turbulence (or velocity fluctuating components) 
that was simplified as an exponential coherent formula in the gust response prediction (Davenport 
1963). Recent literatures, however, found out that the coherence of the buffeting forces was larger 
than that of the ongoing turbulence (Larose 1996; Jakobsen 1997; Kimura et al. 1997; Matsumoto 
et al. 2003). This suggests that influence of structure on the ongoing turbulent flow must not be 
negligible, and interaction phenomena between ongoing flow and structure might have involved 
in modification of the ongoing turbulent flow around the structure (one is mentioned as a bluff 
body flow). Moreover, relationship between turbulence and induced pressure/ forces contains 
uncertainties due to limitation of the quasi-steady theory and the strip theory as discussed in 
somewhere (Kawai 1983). Uncertainty from the force coherence higher than the turbulent 
coherence can cause either underestimation or overestimation on the gust response prediction of 
structures. Mechanism of higher force coherence, coherent structures of turbulence and induced 
forces as well as effect of bluff body flow on the force coherence should be further clarified in 
order to reduce the analytical uncertainty. Coherent structure of the turbulent-induced forces has 
been studied ideally by the mean of surface pressure measurement by which the induced forces 
can be deducted by integration of the surface pressure field around structural section. 
Identification of bluff body flow around structural section (such as separation bubble, flow 
reattachment, vortex shedding), furthermore, can be roughly obtained thanks to previous 



  

experience and chordwise distribution of mean and fluctuating pressures which has been verified 
by means of smoke visualization (Hiller and Cherry 1981; Cherry et al. 1984).      
 The Fourier transform has been most popularly and conventionally used to study in 
spectral-based computations, physical data analysis, coherent structures in the frequency domain 
so far. No time information, however, can be obtained from the Fourier transform-based tools 
such as Fourier coefficient, auto power spectrum, cross power spectrum, coherence and phase 
difference which have been applied to identify the dominant frequency components and the cross 
correlation between two given time series in the frequency domain. These tools, moreover, is 
accurately applicable only for purely stationary time series. Wavelet transform has been recently 
proposed to represent any time series in a time-scale (frequency) plane, known as a 
time-frequency analysis (Daubechies 1992). First-order wavelet coefficient has been used almost 
so far, however, some wavelet transform-based advanced tools corresponding to conventional 
Fourier transform-based ones such as wavelet power spectrum, wavelet coherence and wavelet 
phase difference can be developed to express and detect auto, cross correlations of any time series 
and between two time series in the time-frequency plane (Torrence and Compo 1998; Kareem 
and Kijewski 2002). The wavelet transform-based tools, furthermore, are advantageous over the 
Fourier transform as powerfully analyzing tool for non-stationary, non-linear and intermittent 
time series.  
 In this chapter, the temporal-spectral coherent structures of wind and pressure will be studied 
using both Fourier coherence and wavelet coherence. Effects of spanwise separations, bluff body 
flow and turbulent flow conditions on coherent structures of turbulence and pressure, comparison 
between wind and pressure coherence as well as intermittent distribution of wavelet spectrum and 
wavelet coherence will be discussed. Physical measurements of the surface pressure and 
turbulence have been carried out on some typical rectangular cylinders with side ratios B/D=1 
(without and with splitter plate at wake region) and B/D=5 under the artificial turbulent flows in 
the wind tunnel. 
 
5.2 Fourier transform-based coherence 
 
The Fourier transform-based coherence is approximately expressed as the normalized correlation 
coefficient of two spectral quantities of X(t) and Y(t) in the frequency domain (Bendat and Piersol 
2000):  

 
)()(

|)(|)(2

fSfS
fSfCOH

YX

XY
XY =  (5.1) 



  

where : absolute operator; f: Fourier frequency variable; )(),( fSfS YX , )( fSXY : Fourier auto 

power spectra and Fourier cross power spectrum at/between two separated points, respectively 
defined as:  

 ])(ˆ)(ˆ[)(];)(ˆ)(ˆ[)(];)(ˆ)(ˆ[)( *** T
XY

T
Y

T
X fYfXEfSfYfYEfSfXfXEfS ===  (5.2) 

where E[]: expectation operator; *,T: complex conjugate and transpose operators; )(ˆ),(ˆ fYfX : 

Fourier transform coefficients of time series )(),( tYtX respectively. The Fourier coherence is 

normalized between 0 and 1, thus two time series X(t), Y(t) are fully-correlated, coherence is unit, 
whereas coherence is zero, two time series are uncorrelated in the frequency domain. 
 
5.3 Wavelet transform-based coherence 
5.3.1 Definition  
  
The wavelet transform (also called as continuous wavelet transform) of the given time series X(t) 
is defined as the convolution operator between X(t) and the wavelet function )(, tsτψ : 

 ∫
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∞−

== dtttXXsW ssX )()(,),( *
,, ττ

ψ ψψτ  (5.3) 

where ),( τψ sWX : the wavelet coefficients at translation τ  and scale s in the time-scale plane; the 

brackets ,  denote the convolution operator; )(, tsτψ : wavelet function at translation τ  and 

scale s of the basic wavelet function )(tψ (the mother wavelet): 
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 The wavelet coefficients ),( τψ sWX can be considered as a correlation coefficient and a measure 

of similitude between wavelet and given time series in the time-scale plane. The wavelet scale 
has its meaning as an inverse of the Fourier frequency, thus inter-relationship between the 
wavelet scale and the Fourier frequency can be obtained. One would like to develop wavelet 
transform-based tools such as the wavelet auto spectra and the wavelet cross spectrum at time 
shift index i and scale s of two signals X(t) and Y(t), based on their wavelet coefficients )(sW iX , 

)(sW iY  can be defined as following formulae: 

 )()()(;)()()(;)()()( *** sWsWsWPSsWsWsWPSsWsWsWPS T
YiXiXYi

T
YYiYiYYi

T
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where )(sWPS iXX , )(sWPS iYY : wavelet auto spectra of X(t),Y(t); )(sWPS iYY : wavelet cross spectrum 

between X(t) and Y(t); denotes smoothing operator in both time and scale directions.   



  

 With respect to the Fourier coherence, the squared wavelet coherence of X(t), Y(t) is defined as 
the absolute value squared of the smoothed wavelet cross spectrum, normalized by the smoothed 
wavelet auto spectra (Torrence and Compo, 1998):   
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where denotes the absolute operator; s-1 is used to convert to an energy density. 

 Note that the wavelet coherence ]1,0[)(2
∈sWCO iXY  has the same meaning as the Fourier 

coherence, which wavelet coherence comes to unit, two signals X(t), Y(t) are fully-correlated, 
whereas wavelet coherence reduces to zero, two signals X(t), Y(t) are uncorrelated, however, its 
advantage over the conventional Fourier coherence is to represent the spectral correlation in both 
the frequency- and the time-domains. 
 Interrelation between the central frequency, wavelet scale and the Fourier frequency can be 
determined approximately as follows:  

 
s
fff s0=  (5.7) 

where sf : sampling frequency of given time series. 

 
5.3.2 Complex Morlet wavelet   
The complex Morlet wavelet is the most applicable for physical measurement analysis in the 
wavelet transform, thanks to its containing of harmonic components and its analogs to the Fourier 
transform (see Figure 6.1):  
 ( ) ( )2/exp2exp)2()( 2

0
2/1 ttfit −= − ππψ  (5.8-a) 

 ( )( )2
0

22/1 2exp)2()(ˆ fsfsf −= − ππψ  (5.8-b) 

where 0f , s: central frequency and wavelet scale of the complex Morlet wavelet.  

 
  
 
 
 
 
 
 
Fig. 5.1 Complex Morlet wavelet and its Fourier transform 
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Fig. 5.2 Morlet wavelet at time shift τ=2 seconds and at scales s=1,2 and 4seconds (solid line : 

real part & dashed line: imaginary parts) 
 
5.3.3 Time and scale smoothing and end-effect elimination 
 
Averaging in both time and scale directions must be required in the wavelet transform, especially 
in computing the wavelet spectrum and wavelet coherence. The averaging techniques of the 
wavelet spectrum in time and scale at the time-shifted index p can be expressed as (Torrence and 
Compo 1998):   
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where j assigned between j1 and j2; Na: number of averaged points ( 112 +−= jjNa ); tj δδ , : factor 

of window width and sampling period ; Cδ: constant.  
 Because the wavelet transform deals with finite-length of time series, errors and bias values 
usually occur at two ends of time series, known as the end effect. One simple solution to 
eliminate the end effect is to truncate number of discrete results at two ends of time series after 
the wavelet transform is completed. Removed number, however, depend on the wavelet scale, 
thus so-called cone of influence should be estimated for more accuracy. 
 
5.4 Experimental apparatus 
 
Analyzing data were obtained by physical measurements in the Kyoto University’s open-circuit 
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wind tunnel. Physical models of rectangular cylinders with slender ratios B/D=1 and B/D=5 were 
used, in which model B/D=1 was installed without/with a splitter plate (S.P) in the wake of 
model on account of effect of wake flow. Motionless models were fixed on a working section. 
Turbulent flow was generated artificially by grid devices which was located in 750mm upstream 
from model’s leading edge. Wind turbulence and surface pressures were measured in the three 
turbulent flows at mean wind velocities U=3, 6 and 9m/s corresponding to flow case 1, flow case 
2 and flow case 3, respectively. Basic turbulent flow parameters were given as turbulent 
intensities Iu=11.56%, Iw=11.23% (case 1), Iu=10.54%, Iw=9.28% (case 2), Iu=9.52%, Iw=6.65% 
(case 3). Pressure taps were arranged on one surface of models, consisting of 10 pressure taps of 
model B/D=1 and 19 pressure taps of the model B/D=5 in the chordwise direction (see Figure 
5.3). Mean and turbulent components (fluctuating velocity components) of the basic turbulent 
flow (without model) were measured thanks to a hot-wire anemometer using x-type probes 
(Model 0252, Kanomax Japan, Inc.) and calibrated and linearized by a constant-temperature 
anemometer (CTA) (Models 1013, 1011, Kanomax Japan, Inc.). Unsteady surface pressures were 
measured by multi-channel pressure measurement system (ZOC23, Ohte Giken, Inc.). It is noted 
that turbulent components and surface pressures were simultaneously obtained in order to 
investigate in the time domain. Electric signals were filtered by 100Hz low-pass filters (E3201, 
NF Design Block Co., Ltd.) before passed through A/D converter (Thinknet DF3422, Pavec Co., 
Ltd.) with sampling frequency at 1000Hz in 100 seconds.   
 

 
 
Fig. 5.3 Experimental models and pressure tape layout 
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 Though large number of pressure taps have been arranged on model surfaces, concretely 10 
rows and 21 columns on the model B/D=1, 19 rows and 41 columns on the model B/D=5, but 
only pressure taps arranged columns at spanwise distances y=0, 25, 75, 125 and 225mm were 
used in this study (Figure 5.3).   
 
5.5 Chordwise pressure distribution and bluff body flow pattern 
 
Flow around models due to interaction between ongoing flow and model section is usually known 
as the bluff body flow, which characterized by formation of separated and reattached flows with 
separation bubble and that of vortex shedding as well. It can be predicted from previous studies 
that model B/D=1 is favorable for dominant formation of Karman vortex shedding in the wake of 
model, whereas model B/D=5 is typical for formation of separated and reattached flows on model 
surface. In case the splitter plate was installed in the wake of model B/D=1 in order to suppress 
the wake flow and effect of Karman vortex shedding. Identification of the bluff body flow is 
usually required for understanding flow behavior and mechanism of oscillation on physical model. 
The bluff body flow can be identified directly due to flow visualization techniques. Pressure 
distribution is also used for this purpose with experience and knowledge of flow behavior on 
some typical models. 
 Normalized mean pressures and normalized root-mean-square fluctuating pressures in the 
chordwise positions can be determined from measured time series of unsteady pressures as 
follows: 

 ( )2)()(
, 5.0 UpC

ii
meanp ρ=  (5.10-a)  

 ( )2)()(
, 5.0 UC i

p
i
rmsp ρσ=  (5.10-b) 

where i: index of pressure time series at chordwise positions; 25.0 Uρ : dynamic pressure; p : 

mean value of pressure time series;  pσ : standard deviation of pressure time series.  

 Figure 5.4 shows normalized mean and fluctuating pressure distributions on the chordwise 
positions. As can be seen that the normalized mean and fluctuating pressures distribute 
homogeneously on the models B/D=1 without/with the splitter plate, whereas distribute locally 
near leading edge on the model B/D=5. Normalized mean and fluctuating pressures on model 
B/D=1 without splitter plate exhibit higher than those on the same model but with splitter plate. 
Moreover, normalized mean pressure distributions on three models seem not to with respect to 
turbulent flow conditions. 
 
 



  

 

 
Fig. 5.4 Normalized mean and fluctuating pressure distributions on chordwise positions 
 
 Power spectral densities (PSD) of the fluctuating pressures at some represented positions on 
the three experimental models in the turbulent flow case 1 are expressed in Figure 5.5.  As can 
be seen with the model B/D=1 (without splitter plate) that peaked frequencies are observed at 
4.15Hz, 8.79Hz and 12.94Hz respective to the three turbulent flow conditions. It is agreed that 
the Karman vortex formed and shed in the wake in which the Karman vortex frequency depends 
on the Strouhal number (St) of model section and mean wind velocity. Moreover, the Strouhal 
number can be determined as St=0.1285. Thus, on the model B/D=1 without splitter plate the 
bluff body flow is separated at sharp corners, dominated by formation of Karman vortex and 
frequently shed in the wake.  In case of the model B/D=1 with splitter plate, no frequency peaks 
are observed, this means that the Karman vortex is suppressed by the splitter plate. It is supposed 
the bluff body flow separated at the sharp corners, expanded all model surface and reattached at 
the splitter plate.  In case of the model B/D=5, frequency peaks are observed at 1.22Hz and 
2.44Hz (flow case 1); at 2.44Hz, 4.88Hz, 7.32Hz (flow case 2); at 3.42Hz and 6.84Hz (flow case 
3). According to Hiller and Cherry 1981; Cherry et al. 1984, reattachment point of separated flow 
may locate at near after the peak position of fluctuating pressure, and the observed frequency 
peaks are induced by rolled-up turbulent vortices shed away at reattachment points toward 
trailing edge. Thus, bluff body flow is separated and reattached on the model surface to form 
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separation bubble. Reattachment points can be determined at roughly positions 6, 7, 8 with 
respect to an increase of mean velocities. High mean and fluctuating pressures are observed 
locally at the leading edge region in the influence of separation bubble due to local circulation of 
turbulent vortex inside it.    

Fig. 5.5 Auto power spectra of normalized fluctuating pressures at three turbulent flows: a. 
B/D=1, b. B/D=1 with splitter plate, c. B/D=5 [Matsumoto, Shirato et al. 2006] 

Fig. 5.6 Bluff body flow patterns around experimental models [Matsumoto,Shirato et al.2006] 
 The bluff body flow patterns around three models can be predicted as shown in Figure 6.6 
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5.6 Spectral coherence of turbulence and pressure  
 
Effects of spanwise separations, pressure positions, turbulent flow conditions and Karman vortex 
on the spectral coherent structures of turbulence and pressure have been investigated using the 
Fourier coherence. Figure 5.7 shows the effect of spanwise separations ( mmy 225,125,75,25=Δ ) on 

the pressure coherence (with all models B/D=1, B/D=1 with S.P and B/D=5) and turbulent 
coherence on frequency band 0÷100Hz and in the flow case 1. It is agreed that the coherences of 
turbulences and pressures reduce considerably with respect to an increases of the spanwise 
separations and of observed frequencies. 

Fig. 5.7 Effect of spanwise separations on pressure and turbulent coherences in the flow case 
1: a. B/D=1, b. B/D=1 with S.P, c. B/D=5, d. turbulences  
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Coherences of both turbulence and pressure dominate only at low frequency band roughly 

lower than 50Hz, and they decay fast beyond this frequency. Furthermore, separation influences 
on the pressure coherence stronger than on the turbulent one. The turbulent coherence is 
significant in close separation (y=25mm), but inconsiderable in another ones (y=75, 125 and 
225mm). The pressure coherence, however, suddenly rises even in distant separations at some 
certain frequencies where any physical phenomenon occurs on model surface, here are the 
Karman vortex shedding at wake and the rolled-up vortex shedding at reattachment point. Thus, it 
is discussed that wind-structure interaction influences higher pressure coherence than the 
turbulent one due to enhancing spanwise flow convection. 

Figure 5.8 shows pressure coherences at positions Nos. 1, 3, 5, 7, 9 (models B/D=1 without 
and with S.P) and Nos. 1, 4, 8, 19 (model B/D=5) and at separations mmandy 12575,25= . As can 

be seen from Figure 5.8, the pressure coherences on models B/D=1 seem to be not different, 
except at frequencies of vortex shedding phenomena, whereas difference in the pressure 
coherences on model B/D=5 has been observed. In model B/D=5, the coherence at position 1 (at 
the leading edge) seem to be strong in the close separation y=25mm and to be small at the distant 
separations y=75,125mm; strong in all separations at position 4 (in the separation bubble); small 
in all separations at position 8 (at the attachment point); and seem to be small in close separation 
y=25mm and strong in distant separations y=75, 125mm at position 19 (at the trailing edge) (see 
Figure 5.8c). Thus, it might be supposed that the pressure coherences seem to be relatively high 
at positions in the separation bubble region, to be relatively small at positions near the 
reattachment region. Effect of pressure positions and bluff body flow must be involved for higher 
mechanism of the pressure coherence. 
 
 
 
 
 
 
 
 
 
 
 
 



  

 
Fig. 5.8 Effect of pressure positions on pressure coherence: a. B/D=1, b. B/D=1 with S.P, c. 

B/D=5 
 
Effect of the turbulent flow conditions on pressure and turbulent coherences of pressure at 

represented separation y=25mm is presented in Figure 5.9. It seems that the pressure coherence 
and turbulent one reduce with increase of intensity of turbulence (corresponding to decrease of 
mean velocity in grid turbulent flow). It might be explained that high intensity of turbulence is to 
ruin formation of separation bubble and vortex shedding to resist the spanwise convection of the 
bluff body flow. Thus, both the turbulent and pressure coherences depend on parameters of the 
ongoing turbulent flow, not only the mean velocity.        
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Fig. 5.9 Efect of turbulent flow conditions of pressure coherence: a. B/D=1, b. B/D=1 with S.P, c. 
B/D=5, d. u-turbulence, e. w-turbulence 

 
Fig. 5.10 Comparison between turbulent coherence and pressure coherence: a. at position 3, b. at 
  position 7 
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Fig. 5.11 Effect of Karman vortex shedding on pressure coherence: a. position 1, b. position 3  
  
 Figure 5.10 expresses the comparison between the turbulent and pressure coherences at the 
spanwise separations y=25, 75 and 125mm, in which the pressure coherences are determined in 
tap positions 3, 7 at all three experimental models. Obviously, the pressure coherences exhibit 
higher than the turbulent coherence at the same separations. In the comparison, the coherence of 
u-turbulence seems to be higher than that of w-turbulence at the close separations y=25, 75mm, 
but not to be different at the distant one y=125mm. Moreover, the pressure coherences on the 
three models decrease respectively from model B/D=1 without S.P, B/D=1 with S.P to model 
B/D=5. Effect of the Karman vortex shedding on the pressure coherences is more clarified by 
using the models B/D=1 without S.P (formation of the Karman vortex) and with S.P (suppression 
of the Karman vortex) as seen in Figure 5.11. Clearly, the pressure coherence in presence of the 
Karman vortex exhibits larger than that in without Karman vortex. It implies that the Karman 
vortex enhances spanwise convection of the bluff body flow, and consequently increases the 
spanwise coherence. In some extent, side ratio B/D of rectangular sections is basic parameter to 
characterize for the bluff body flow patterns, it can be generalized that the pressure coherence or 
force one within influenced spanwise separations reduce with respect to increase of side ratio B/D 
and parameters relating bluff body flow modification such as the splitter plate at the flow wake, 
cutting-sharp corners at trailing edge and so on. 
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5.7 Temporo-spectral coherence of turbulence and pressure 
 
 Temporo-spectral coherent structures of pressure and turbulence have been studied in the 
time-frequency plane using the wavelet transform-based tools. The wavelet coefficients, wavelet 
auto spectra and wavelet cross spectra of pressure and turbulence have been calculated before the 
wavelet coherence has been estimated. Figure 6.12 shows the wavelet coherences of pressure and 
turbulences corresponding to three experimental models, separations y=25, 75 and 125mm, on 
1÷50Hz band and 5÷95 second interval.   
 As can be seen from Figure 5.12, some discussions can be given as follows. Firstly, similar to 
the previous results from the Fourier coherence, the wavelet coherence maps also indicate that 
coherence reduce with increase of the spanwise separations, furthermore, the pressure coherences 
are higher than the turbulent ones at the same separations. However, the coherences of pressure 
and turbulence are represented in the time-frequency plane in which the coherences are localized 
and temporo-spectral information determined. Secondly, the coherences of pressure and 
turbulence are also distributed intermittently and discretely in the time-frequency plane. This 
implies that intermittent distributions of turbulent and pressure coherences are observed as the 
nature of coherence in the time-frequency plane. Thirdly, high coherence events (even to be 
nearly fully-correlated at some local zones) still exist in both the turbulent and pressure 
coherences at distant spanwise separations but in localized time-frequency areas, this can not 
clarified from the conventional Fourier coherence where averaging technique in the time domain 
has been carried out. Finally, high coherence events of pressure and turbulence do not correspond 
in the time-frequency plane, although time series of pressure and turbulence have been measured 
simultaneously. 



  

Fig. 5.12  Wavelet coherence maps of pressure in turbulent flow case 1: a. B/D=1, B/D=1 with 
S.P, c. B/D=5, d. u-turbulence, e. w-turbulence 
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Fig. 5.13  Comparison between wavelet coherence and Fourier coherence 
 
 A comparison between the Fourier coherences and wavelet ones is presented in Figure 6.13, in 
which pressure coherences on model B/D=1 without S.P and at some spanwise separations is 
studied. As can be seen from Figure 6.13, there is correspondence in dominant spectral 
components between the wavelet coherence and the Fourier one. The Fourier coherence is 
appropriate to detect dominant frequencies of high coherence events, while the wavelet coherence 
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is to track frequency bands of these ones. However, there is no time information of high 
coherence events obtained at any observed frequencies in the Fourier coherence, but eventual 
time of those can be given in the wavelet coherence.  
 
5.8 Conclusion 
 
 The coherent structures of turbulence and surface pressure have been discussed in the 
frequency domain and the time-frequency plane using the Fourier coherence and wavelet one. As 
above-discussed, some conclusions can be given as follows:  

(1) Obviously, the pressure coherence exhibits higher than the turbulent one at influenced 
spanwise separations due to effect of the wind-structure interaction and the bluff body 
flow on model surface. Thus, existing formula of the force coherence based on turbulent 
field contain a lot of uncertainties.   

(2) Coherent structures of turbulence and induced pressure depend on some parameters such 
as the ongoing flow, the spatial separations, the bluff body flow. It is reasonable that 
empirical formula for the coherence function of turbulent-induced forces must account for 
these parameters, not only as the ongoing flow characteristics (including parameters 
relating turbulent flow dimension as turbulent intensities and turbulent scales) and the 
spanwise separation in existing formulae, but effect of the bluff body flow should be 
included in the coherence formula. The side ratio B/D is suggested as one parameter 
relating to effect of the bluff body flow in the force coherence for cases of rectangular 
cylinders.  

(3) The coherent structures of the turbulence and pressure depend on not only the frequency, 
but the time. Coherence is significant at the low spectral band and distribute intermittently 
and locally in the time domain. Thus, intermittency in time domain and low frequency 
bands can be considered as nature of the coherent structures.  

(4) High coherent events distribute on localized areas in the time-frequency plane can be 
observed on the temporo-spectral structures of turbulence and pressure coherences, even 
at large separations.  However, this finding can not obtain via the Fourier 
transform-based coherence. Thus, existence of localized high coherent events is the nature 
of coherence structure. 

(5) No correspondence and simultaneous occurrence between high coherence events of 
turbulence and induced pressure have been observed in the time-frequency plane. This can 
add to uncertainties in the turbulent-induced response prediction of structures relating to 
the quasi-steady theory of turbulent-induced forces built from the turbulent components.  
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Chapter 6 
 

Analysis and Identification of Random Pressure Fields  
on Rectangular Cylinders using Proper Transformations 
 
 
 
6.1 Introduction 
 
Aerodynamic phenomena and response of structures due to the atmospheric wind flows are 
generated by spatial distribution and correlation of the fluctuating pressure field around structural 
section. This pressure field is usually represented as spatially-correlated multi-variate random 
processes. More understanding and knowledge of the random pressure field as well as its spatial 
distribution, correlation are always required and it is possible to interpret mechanisms of 
excitations, identification and response of aerodynamic phenomena occurring on structures. Due 
to the nature of random field, however, the fluctuating pressure field is considered as 
superposition from some causes and excitation of dominant physical phenomena. It is logical 
thinking to decompose the total pressure field by sums of independently partial pressure fields, 
which can be related to a particular mechanism of excitation and certain physical phenomena. 
The random pressure field, moreover, can be represented under the matrix forms, and then the 
decomposition of this pressure field is carried out via that of its matrices. There are two 
decomposition methods widely used so far: Cholesky decomposition and modal decomposition. 
Accordingly, the matrix representation of the pressure field is decomposed by product of lower 
triangle matrix and upper triangle one in the former, or by sum of independently orthogonal 
functions in the later. The later is also named as the proper orthogonal decomposition. The main 
purpose of pressure field decomposition is to describe the complicated random pressure field as 
more simplified ways which is convenient to model aerodynamic forces and to estimate response 
from this pressure field.              
 Proper orthogonal decomposition, or known as Karhunen-Loeve decomposition (Lumley 
1970), has been applied popularly in many engineering fields including random processes/fields, 
stochastic methods, image processing, data compression, system identification and control and so 
on (Liang et al. 2002). In the wind engineering, the proper orthogonal decomposition has been 



  

used in the three following topics: i) stochastic decomposition and order-reduced modeling of 
random processes/fields and induced pressure/forces, ii) representation and simulation of random 
turbulent fields and iii) stochastic response of structures. The proper orthogonal decomposition 
has been applied to optimally approximate the multi-variate random processes through use of 
low-order basic orthogonal vectors from modal decomposition (eigenvector problem) of either 
zero-time-lag covariance matrix or cross spectral density one of this multi-variate random field. 
According to type of basic matrix in the modal decomposition, the proper orthogonal 
decomposition has been branched by either covariance proper transformation or spectral proper 
transformation (Solari and Carassale 2000). Main advantage of the proper orthogonal 
decomposition is that the multi-variate correlated random processes/ fields can be decomposed 
and described in such simplified way as a combination of a few low-order dominant eigenvectors 
(modes) and omitting higher-order ones that is convenient for order-reduced representation of the 
random field, including random-induced force modeling and random response prediction. 
Furthermore, because the random field is described via few dominantly low-order orthogonal 
modes, therefore it is usually expected that these dominant modes can represent to any typically 
physical cause occurring on structure.     
 This chapter will present the proper orthogonal decomposition and its proper transformations 
of the fluctuating pressure fields on some typical rectangular cylinders, which are based both 
recent branches: the covariance matrix and the cross spectral matrices of these pressure fields. 
Analysis, identification and order-reduced reconstruction of the pressure fields will be carried out 
basing on characteristic functions resulted from both covariance matrix-branched and cross 
spectral matrix-branched proper orthogonal decompositions: covariance eigenvalues, covariance 
eigenvectors (covariance modes), covariance principal coordinates and spectral eigenvalues, 
spectral eigenvectors (spectral modes). Moreover, the linkage between the lowest modes and the 
physical phenomena can be revealed with combination of past understanding and knowledge of 
the bluff body flows and physical causes. The fluctuating pressure field has been determined 
through physical measurements on some rectangular models with side ratios of B/D=1 and 
B/D=5 in the turbulent flows in the wind tunnel.    
 
6.2 Literature reviews 
 
The proper orthogonal decomposition also has been widely used for many fields such as analysis, 
simulation of random fields (including the random pressure field), numerical analysis, dynamic 
system identification, dynamic response and so on. Several literatures presented the proper 
orthogonal decomposition’s application to decompose the spatially-correlated and multi-variate 



  

random pressure fields into uncorrelated random processes and basic orthogonal vectors (also 
called as modes or shape functions). The proper orthogonal decomposition has been branched by 
either covariance matrix-based or spectral matrix-based proper orthogonal decompositions and 
associated proper transformations, which depend on how to build up a basic matrix from either 
zero-time-lag covariance or cross spectral matrices of the multi-variate random processes.  
 Up to now, analyses of the random pressure fields almost have based on the covariance 
matrix-branched proper orthogonal decomposition due to its straightforward in computation and 
interpretation. Some authors used the proper orthogonal decomposition to analyze random 
pressure field and to find out relation between the covariance modes and physical phenomena. 
Bienkiewicz et al. 1995 used the proper orthogonal decomposition analysis of mean and 
fluctuating pressure fields around low-rise building directly measured due to turbulent flows. A 
linkage between pattern of the pressure distribution and covariance modes, especially first two 
modes was discussed and interpreted, in which the 1st mode was compatible to the pattern of the 
fluctuating pressure distribution, whereas the 2nd mode similar to the mean pressure pattern. 
Holmes et al. 1997, however, reviewed that that no consistent linkages between physical 
phenomena and covariance mode due to series of physical measurements and proper orthogonal 
decomposition analyses of pressure fields in low-rise buildings. Effect of pressure tap positions 
on the same measured pressure area (uniform and non-uniform arrangements) on the covariance 
modes studied by Jeong et al. 2000, by which the covariance modes observed differently in two 
cases. Kikuchi et al. 1997 applied the proper orthogonal decomposition to pressure field of tall 
buildings, then fluctuating pressure field was reconstructed due to only few dominant covariance 
modes, used to estimate aerodynamic forces and corresponding responses. Tamura et al. 
1997&1999 indicated distortion and wrong interpretation of the covariance modes due to 
presence of mean pressure data in the analyzed pressure field. Matsumoto et al. 2006 carried out 
the proper orthogonal decomposition analysis of the fluctuating pressure fields around oscillatory 
rectangular section B/D=4, then linkage between the first covariance modes and some typical 
physical causes such as Karman vortex shedding and motion-induced vortex shedding on the 
model surface can be clarified in some cases. It is argued that the proper orthogonal 
decomposition is appropriate tool to reveal physical phenomena on from experimental data where 
correspondence between the covariance modes and physical causes from the fluctuating pressure 
field. However, some others discussed that interpretation from the covariance modes is aprioristic 
and arbitrary based from previous knowledge of system behavior and response.  
 Because the low-order eigenvectors contribute to most of energy of the fluctuating pressure 
field, it is expected that those eigenvectors are likely to be associated with dominant physical 
phenomena and physical causes occurred on physical model. Many literatures have tried to 



  

follow this direction to find out obvious linkage between low-order eigenvectors and physical 
phenomena, however, there is somewhat pessimistic that these relations are valid for few certain 
cases, most of others are fictitious based on past knowledge and experience of authors. 
Considering about the fictitious relationship between the eigenvectors (or modes) and the 
underlying physical phenomena, some authors have indicated in their literatures that: 
 

“… there is no reason to suppose that spatial variation of the pressure fluctuations due to one 
physical cause are necessarily orthogonal with respect to that due to another cause. The 
mathematical constraints caused by orthogonality condition could therefore mean that in some cases, 
a unique physical cause cannot be associated with each eigenvector.” 

         Armitt, J. 1968 

“… the shapes of the modes are constrained by the requirement of orthogonality, and hence any 
physical interpretation of these modes could be at least misleading, and probably fictitious in many 
cases. The most useful aspect of the proper orthogonal decomposition techniques is that it is an 
economical form for describing the spatial and temporal wind pressure variations on a buildings, or 
other bluff body, and is especially useful for relating the pressures to structural load effects.” 

   Holmes, J.D. 1997  
 
 This is explained that due to the mathematical constraints of orthogonality conditions from the 
random processes/ fields, unique physical cause cannot be associated with dominant eigenvector, 
moreover, fictitious interpretation about these relations between the covariance modes and 
physical causes may be based on past knowledge and previous experience about the flow 
behaviors. Many effects such as number of pressure positions, pressure position arrangement, 
presence of mean pressure values and so on can influence sensitively to resulting covariance 
modes (Tamura et al. 1999, Jeong et al. 2000). The covariance proper transformation, however, 
has effectively used few dominant covariance modes to approximate random-induced forces and 
response prediction of buildings and spaced structures (Kikuchi et al. 1997, Uematsu et al. 1997). 
Spectral matrix-based application to decompose the random field is rare due to its complexities in 
computation and interpretation, but it is promising due to its complete decoupling solution at 
every frequency, consequently decoupling in the time domain including zero-time-lag condition. 
De Grenet and Ricciardelli 2004 discussed in using the spectral proper transformation to study 
the fluctuating pressure fields around squared cylinder and boxed-girder deck. 
 
 
 



  

6.3 Representation of unsteady surface pressure field 
 
Similar to the turbulent fields, the wind-induced pressure field on structures is considered as 
multi-variate spatially-correlated random fields, in which the pressure at any point in the field is 
influenced by surrounding pressures at adjacent points. Thus, one calls the pressure field as 
coherent one. The unsteady surface pressure at any point in the field is expressed as summation 
between mean value and fluctuating pressure as:     
 ),()(),( tpptP υυυ +=  (6.1) 

where ),( tP υ : unsteady pressure; )(υp : mean pressure; ),( tp υ : fluctuating pressure; υ : 

dimensional variables (υ =x;y;z). Fluctuating pressure field ),( tp υ  is usually represented as 

N-variate random process with zero mean containing sub-processes at N points in the field: 

 { }T
N tptptptp ),(),...,,(),,(),( 21 υυυυ =  (6.2)  

 Zero-time-lag covariance matrix and cross power spectrum density matrix are commonly used 
to characterize for the N-variate spatially-correlated random pressure field p(t) in the time domain 
and in the frequency one, which are defined as follows:  
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where pp SR , : zero-time-lag covariance and cross spectral matrices, respectively; )(),0( nSR
lklk pppp : 

elements of the covariance matrix and the cross power spectral one between )(tpk and )(tpl  at 

nodes k and l,  are determined as follows:  

 )]()([)0( tptpER T
lkpp lk

=  (6.4-a)  

 ),()()()( klpppppppp nCOHnSnSnS
lkllkklk

Δ=  (6.4-b) 

where E[],T denote to the expectation and transpose operators; n: frequency variable; 
)(),( nSnS

llkk pppp : auto power spectral densities of )(tpk  and )(tpl ; ),( klpp nCOH
lk

Δ : coherence 

function between two separated nodes k, l accounting for spatial correlation of the random 
sub-processes in the frequency domain which can be determined by either empirical model or 



  

physical measurement.  
 It is noted that the zero-time-lag covariance matrix is symmetric, real and positive definite, 
whereas the cross spectral one is symmetric, real (because the quadrature spectrum has been 
neglected) and Hermitian semi-positive definite at each frequency. 
 
6.4 Proper orthogonal decomposition of pressure field 
 
Proper orthogonal decomposition usually implies for the Karhunen-Loeve decomposition to 
differ to some other sister decomposition methods such as the principal component analysis and 
the singular value decomposition. Equivalence among these methods, however, was discussed by 
Liang et al. 2002.  
 The proper orthogonal decomposition is considered as optimum approximation of 
multi-variate random processes in which a set of orthogonal basic vectors is found out in order to 
expand the random process into a sum of products of these time-independent basic orthogonal 
vectors and time-dependant uncorrelated single-variate random processes. Let consider the 
multi-variate random process )(tυ  containing correlated N-subprocesses 

{ }T
N tttt )(),...,(),()( 21 υυυυ = is approximated as follows:     

 ∑
=

=Θ=
N

i
ii

T txtxt
1

)()()( θυ  (6.5) 

where )(tυ : multi-variate random process with zero-mean; )(tx : principal coordinate vector 

{ })(),...,(),()( 21 txtxtxtx N=  in which )(txi : i-th principal coordinate as zero-mean single-variate 

random subprocess; Θ : modal matrix or shape function matrix [ ]Nθθθ ,...,, 21=Θ  in which iθ : 

i-th basic orthogonal vector.  
 In mathematical expression of optimality is to find out shape function matrix Θ  to maximize 
the projection of random process )(tυ onto this shape function, suitably normalized due to the 

mean square basis (Lumley 1970): 
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 (6.6) 

where ( )⊗ , . , . , .  denote to inner product, expectation, absolute and Euclidean squared norm 

operators, respectively.  
 Optimum approximation of the random process in Eq.(6.1) using the shape function matrix 
defined as Eq.(6.2) is known as the Karhunen-Loeve decomposition. It is proved that the shape 
function matrix in this optimality can be found out as eigenvector solution of eigen problem from 



  

basic matrix that are either covariance matrix or cross spectral matrix formed by the multi-variate 
random process.  
 Multi-variate spatially-correlated random pressure field can be expressed by following 
optimum approximation, in which this pressure field is expand into a sum of products of 
time-independent basic orthogonal vectors and time-dependant uncorrelated random processes as 
follows:      

 ∑
=

=Φ=
N

j
jj

T txtxtp
1

)()()()(),( υφυυ  (6.7) 

where )(ta j : j-th principal coordinate as uni-variate zero-time random processes [ ] 0)( =taE j ; 

)(υφ j : j-th basic orthogonal vector ijj
T

i δυφυφ =)()( ( ijδ : Kronecker delta); 

{ })(),...,(),()( 21 txtxtxtx N= , [ ])(),...,(),()( 21 υφυφυφυ N=Φ . It is also notable that eigenvalues gained 

from this eigen solution usually reduce fast, accordingly, only very few number of low-order 
eigenvectors associated with low-order high eigenvalues can obtain optimum approximation in 
Eq.(6.1) and describe the whole random process. 
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where N : number of truncated shape functions (eigenvectors or modes) NN << . 
 
6.5 Covariance and spectral proper transformations of pressure field  
 
The covariance matrix-based orthogonal vectors are found as the eigenvector solutions of the 
zero-time-lag covariance matrix )(nRp of the N-variate random pressure field )(tp :       

 ppppR ΘΓ=Θ  (6.9) 

where ],...,[ 21 pNppp θθθ=Θ , ),...,( 21 pNppp diag γγγ=Γ : covariance eigenvalue and eigenvector 

(covariance turbulent mode) matrices, which satisfy the orthonormal conditions:    

 p
T
ppp

T
pp CI Γ=ΘΘ=ΘΘ ;  (6.10) 

 Accordingly, the turbulence field and its covariance matrix can be expressed as optimum 
approximation as follows: 
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where T
Mpppp xtxtxtx }~,),...(~),(~{)(~
~21= : covariance-based turbulent principal coordinates as the 

N-variate uncorrelated random process; N~ : number of truncated turbulent modes ( NN <<~ ). This 
approximation is called the Covariance Proper Transformation (CPT). 
 Covariance principal coordinates can be determined from observed data:   

 ∑
=

− =Θ=Θ=
N

j
pjjppp tptptptx

1

1 )()()()(~ θ  (6.12) 

 
 Similarly, the spectral eigenvalues and eigenvectors are found based on to the eigen problem 
of the cross spectral matrix )(nS p of random pressure process )(tp :       

 )()()()( nnnnS pppp ΨΛ=Ψ  (6.13) 

where ))(),...(),(()( 21 nnndiagn pNppp λλλ=Λ , )](),...(),([)( 21 nnnn pNppp ψψψ=Ψ : spectral eigenvalue and 

eigenvector (spectral turbulent mode) matrices, which also satisfy the orthonormal conditions:  

 )()()()(;)()( ** nnnSnInn ppp
T

pp
T

p Λ=ΨΨ=ΨΨ  (6.14) 

 Thus, the Fourier transform and the cross spectral density matrix )(nS p can be represented 

approximately under the Spectral Proper Transformation (SPT) as follows: 
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where )(ˆ ny p : spectral-based turbulent principal coordinates as Fourier transforms of uncorrelated 

single-variate random processes; N̂ : number of truncated turbulent modes ( NN <<ˆ ); *,T denote 
to complex conjugate and transpose operation, respectively.  
 
6.6  Gust response based on order-reduced pressure field 
 
In many cases, the gust response prediction of spaced structure is required via measurement of 
fluctuating pressure field surrounding the structure in wind tunnel tests. The covariance proper 
transformation can be applied to represent the random fluctuating pressure field into simplified 
order-reduced model using truncated number of low-order covariance eigenvectors and 
associated covariance principal coordinates: 
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where p(t): multi-variate correlated random pressure field around structure 
{ }T

N tptptptp )(),...,(),()( 21= ; pΘ : covariance modes of the pressure field [ ]
Npppp θθθ ,...,,

21
=Θ ; 

)(txp : covariance principal coordianate containing uncorrelated subprocesses 

{ }Tpppp tatatatx
N

)(),...,(),()(
21

= .  

 Full-scale turbulent-induced loading can be estimated via order-reduced model of surrounding 
pressure field: 
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where jAC : representative area at node j. 

 Accordingly, generalized turbulent-induced loading can be expended as follows: 
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1
θφ : cross modal factors between the covariance modes and structural 

ones. 
 Thus, the single-degree-of-freedom motion equation can be obtained directly in the time 
domain:  
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ppiiiiii txAttt
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 Generalized responses can also be solved directly in the time domain using the direct 
integration methods such as the Newmark-beta or the fourth-order Runge-Kutta methods. Then, 
the globally structural responses are also obtained accordingly. 
 
6.7 Wind tunnel experiments 
 
Physical pressure measurements were carried out in the Kyoto University’s open-circuit wind 
tunnel. Three typical rectangular models with slender ratios B/D=1, B/D=1(with Splitter Plate), 
B/D=5 were used. Artificial turbulent flows were generated in the wind tunnel at mean wind 
velocities 3m/s (case1), 6m/s (case 2) and 9m/s (case 3), corresponding to intensities of 
turbulence were Iu=11.46%,Iw=11.23%; Iu=10.54%,Iw=9.28%;Iu=9.52%,Iw=6.65%, respectively. 
Pressure measurement holes were arranged inside, in chordwise direction and on one surface of 
models in which model B/D=1 labeled pressure positions from 1 to 10, whereas model B/D=5 
from 1 to 19. Unsteady surface pressures were simultaneously measured by the multi-channel 



  

pressure measurement system (ZOC23 system: Z (Zero), O (Operation), C (Calibration)). Electric 
signals were filtered by 100Hz low-pass filters (E3201, NF Design Block Co., Ltd.) before passed 
through A/D converter (Thinknet DF3422, Pavec Co., Ltd.) with sampling frequency at 1000Hz 
in 100 seconds.    
 
 

Fig. 6.1 Wind tunnel configuration, experimental set-ups and experimental models 
 
 

 
Fig. 6.2 Experimental models 
 
 Flow around models due to interaction between ongoing flow and model section is usually 
known as the bluff body flow, which characterized by formation of separated and reattached 
flows with separation bubble and formation of vortex shedding as well. It can be predicted from 
the past knowledge and previous understanding that model B/D=1 is favorable for formation of 
the Karman vortex shedding, where model B/D=5 is typical for formation of separated and 
reattached flows on model surface. The splitter plate was added to model B/D=1 in order to 
suppress effect of the Karman vortex shedding.    
 
  
6.8  Surface pressure distribution and bluff body flow pattern   
 
For convenient uses, mean and root-mean-square fluctuating pressure coefficients have been 
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normalized by dynamic pressure component from measured unsteady pressure data as follows: 

 ( )2
, 5.0 UpC meanp ρ=  (6.20-a) 

 ( )2
, 5.0 UC prmsp ρσ=  (6.20-b) 

where 25.0 Uρ : dynamic pressure; p : mean value; pσ : standard deviation of unsteady pressure.     

 Figure 6.3 shows the chordwise distributions of normalized fluctuating pressures on models at 
three turbulent flow conditions. As can be seen that the fluctuating pressure distributes steadily on 
whole surface of models B/D=1 but distributes dominantly on the leading region of the model 
B/D=5. The fluctuating pressures, furthermore, reduce with respect to decrease of intensities of 
turbulence.      
 

 
Fig. 6.3 Normalized fluctuating pressure distribution on chordwise positions 

[Matsumoto, Shirato et al. 2006] 
 
 Figure 6.4 indicates power spectra of the fluctuating pressures at some chordwise positions 
with three models and turbulent conditions. As can be seen with the model B/D=1 (without 
splitter plate) that peaked frequencies are observed at 4.15Hz, 8.79Hz and 12.94Hz respective to 
the three turbulent flows. It is explained that the Karman vortex formed and shed at the wake of 
model. Shedding frequency depends on the Strouhal number (St) of cross section, moreover, the 
Strouhal number can be determined St=0.1285. In case B/D=1 with splitter plate, no peaked 
frequency is observed, it also means that no Karman vortex occurred and the splitter plate has 
suppressed effect of the Karman vortex. In case of the model B/D=5, spectral peaks are also 
observed at frequencies 1.22Hz and 2.44Hz (U=3m/s); at 2.44Hz, 4.88Hz, 7.32Hz (case 2); at 
3.42Hz and 6.84Hz (case 3). It is predicted that the bluff body flow is separated and reattached 
one. Reattachment points are at roughly positions 6, 7, 8 with respect to an increase of mean 
velocities. It is supposed that the observed spectral peaks are induced by rolled-up vortices shed 
away at reattachment points toward trailing edge. This agrees well with findings presented in the 
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literatures of Hiller and Cherry 1981 and Cherry et al. 1984 which were proposed empirical 
formula to estimate frequency of rolled-up vortices shedding at reattachment point depending on 
mean velocity and length of separation bubble. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
Fig. 6.4 Power spectra of fluctuating pressures at some chordwise positions [Matsumoto 2006] 
 

Fig. 6.5 Bluff body flow patterns around experimental models [Matsumoto, Shirato et al. 2006] 
 The bluff body flow patterns around three experimental models can be predicted as shown in 
Figure 6.5 (here flows on one surface are drawn).   
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6.9  Covariance matrix-branched proper orthogonal decomposition   
 
Eigenvalues and eigenvectors (covariance modes) have been determined from covariance matrix 
of chordwise fluctuating pressures. Figure 6.6 shows first four covariance modes along chordwise 
positions at three turbulent flows case.  
 It is noted that all first modes look alike to the fluctuating pressure distributions (see with 
Figure 6.4).  

 
Fig. 6.6 First four covariance modes of experimental models at different turbulent flows 
 It is interesting in Figure 6.6 that all covariance eigenvectors (covariance modes) express 
almost the same shape and values, not to depend on the turbulent flow conditions, except the 
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second covariance mode in the model B/D=5 have changes its sign. Thus, it is appropriate to 
think that the low-order covariance modes can characterize and represent for any known physical 
cause, phenomenon as well as these dominant modes with the high energy contribution can be 
associated with any pattern of the bluff body flow on the model surface. However, it is impossible 
to identify the physical causes and the bluff body flow pattern from these dominant covariance 
modes without previous understanding and knowledge about physical causes or behavior of bluff 
body flows which have been studied from direct flow visualization techniques.          
 
Tab. 6.1 Energy contribution of covariance modes (unit: %) 

Mode  B/D=1  B/D=1 with S.P  B/D=5  
 3m/s 6m/s 9m/s 3m/s 6m/s 9m/s 3m/s 6m/s 9m/s 
1 76.92 77.46 75.36 65.29 62.79 63.30 43.77 44.86 65.9 
2 13.27 13.25 14.41 20.97 22.61 22.08 22.02 23.14 13.29 
3 4.69 4.23 4.62 6.14 6.29 6.10 15.18 15.14 9.48 
4 2.87 2.86 3.17 4.04 4.32 4.41 5.98 5.68 3.4 
5 1.27 1.32 1.45 1.99 2.28 2.45 4.76 4.11 2.79 

 
 Energy contributions of the lowest five covariance modes of the fluctuating pressure fields 
corresponding to the three models and three turbulent flows are given in Table 6.1. Obviously, the 
first covariance mode contributes dominantly to the random pressure fields. The first covariance 
modes contribute 76.92%, 65.29%, 43.77% to total energy at the turbulent flow case 1; 77.46%, 
62.79%, 44.86% at the flow case 2; 75.36%, 63.30%, 65.9% at the flow case 3 corresponding to 
three physical models: B/D=1, B/D=1 with the splitter plate and B/D=5, respectively. If the first 
two covariance modes are taken into account, the energy contribution of two covariance modes 
holds up to 90.19%, 86.26%, 65.79% of total energy at the flow case 1; 90.71%, 85.40%, 68.00% 
at the flow case 2; 89.77%, 85.38%, 79.19% at the flow case 3, corresponding to three 
above-mentioned models. In the other words, the first covariance modes contribute dominantly, 
and the first two modes contribute almost on the energy of the pressure fields. It is also seen that 
the energy contribution of the first covariance modes in the B/D=5 model is lower than those in 
the models B/D=1, thus it might be supposed that the contribution of the first modes reduce with 
more complicated expression of the pressure fields on surface.   
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Fig. 6.7 First four principal coordinates and their corresponding power spectral densities at 
different flow conditions: a. U=3m/s, b. U=6m/s, c. U=9m/s  

 
 Covariance principal coordinates associated with the covariance modes to build up the original 
pressure field has been determined from the measured pressure data following Eq.(6.11). It is 
noted that the covariance principal coordinates are time-dependant uncorrelated processes. The 
first four covariance principal coordinates corresponding to the three physical models and three 
turbulent flows, and their power spectral densities are shown in Figure 6.7.  
 It is noteworthy that only the first and the second covariance principal coordinates express 
considerable amplitudes, whereas the amplitudes of the other coordinates are small and 
inconsiderable. In the aspect of power spectrum, furthermore, all the first covariance coordinates 
not only dominate in their power spectral densities but they also contain all frequency 
characteristics of the physical causes of the random pressure field, whereas the other coordinates 
do not contain these frequencies.  
 Thus, it can be commented that the first covariance modes and associated principal 
coordinates play important role in the description and identification of the random pressure field 
due to their dominant energy contribution and frequency containing of hidden physical events of 
the random pressure field.  
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6.10 Spectral matrix-branched proper orthogonal decomposition 
 
Next, the proper orthogonal decomposition has been carried out in the spectral matrix branch. 
The three-dimensional frequency-dependant cross spectral matrix of the random pressure field 
has been formed, and the eigen problem of this cross spectral matrix has been solved to find out 
frequency-dependant spectral eigenvalues and spectral eigenvectors (or spectral modes). Figure 
6.8 shows the first five spectral eigenvalues on frequency band 0÷50Hz at three flow cases and 
corresponding to three experimental models.       

 
Fig. 6.8 First five spectral eigenvalues of experimental models at different turbulent flows: a. 

U=3m/s, b. U=6m/s, c. U=9m/s 
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 As can be seen from Figure 6.8, all the first spectral eigenvalues corresponding to three 
experimental models and three flow conditions exhibit much dominantly than the others. 
Especially theses first spectral eigenvalues also contain all frequency peaks of the physical causes 
of the random pressure fields, whereas the others do not hold these frequency peaks.  
 Figures 6.9, 6.10 and 6.11 show the first three spectral modes of the pressure fields of the three 
models, which are associated with the spectral eigenvalues, corresponding to three turbulent 
flows, respectively. As can be seen, the spectral modes look alike corresponding to the order of 
modes at different turbulent flows. However, a linkage between the spectral modes and the 
physical cause on models is not clear.  
 
 

 
Fig. 6.9 First three spectral modes of experimental models at turbulent flow U=3m/s 
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Fig. 6.10 First three spectral modes of experimental models at turbulent flow U=6m/s 
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Fig. 6.11 First three spectral modes of experimental models at turbulent flow U=9m/s 
 
 Energy contributions in the percentage of the first five spectral eigenvalues and associated 
spectral modes corresponding to three models and three turbulent flows are given in Table 6.2 as 
below: 
  
Tab. 6.2 Energy contribution of spectral modes (unit: %) 

Mode   B/D=1   B/D=1 with S.P   B/D=5   
 3m/s 6m/s 9m/s 3m/s 6m/s 9m/s 3m/s 6m/s 9m/s 
1 86.04 85.84 83.02 81.30 77.48 77.88 74.77 73.59 83.93 
2 8.08 8.08 9.92 10.15 12.36 11.98 12.68 14.03 7.69 
3 3.28 3.20 3.68 4.44 5.14 5.00 5.68 5.56 3.57 
4 1.40 1.62 1.94 2.05 2.63 2.70 2.75 2.86 1.86 
5 0.64 0.72 0.81 1.09 1.28 1.34 1.44 1.45 1.06 

 
 Similar to the covariance modes, the first spectral modes contribute dominantly on the energy 
of the pressure fields. Concretely, the first spectral modes contain 86.04%, 81.30%, 74.77%, 
respectively to the three experimental models at the turbulent flow U=3m/s; and 85.84%, 77.48%, 
73.59% at the turbulent flow U=6m/s; and 83.02%, 77.88%, 83.93% at the turbulent flow 
U=9m/s. Thus, the first spectral modes dominate in the energy contribution at all three turbulent 
flows, this differs slightly from results of the covariance matrix analysis branch where the first 

B/D=1 with S.P 

B/D=5 



  

covariance mode reduce with more complicated distribution of the pressure fields as the case of 
model B/D=5. This suggests that the first spectral mode may express the better solution than the 
first covariance mode, because of higher energy contribution of the first spectral mode than the 
first covariance one. If the first two spectral modes are accounted, they contribute almost 
94.12%,91.45%,87.45% on total energy of the pressure fields on three experimental models 
B/D=1, B/D=1 with splitter plate, B/D=5, respectively at the flow case 1; and 93.92%, 89.84%, 
87.62% at the flow case 2; and 92.94%, 89.86%, 91.62% at flow case 3. In the other words, the 
first spectral modes contribute dominantly on energy of the pressure fields on all experimental 
models and at all three turbulent flows, moreover, the first two spectral modes contribute almost 
on the energy of these pressure fields.  
 
6.11 Order-reduced modeling and reconstruction of pressure field 
 
As above-mentioned, the original pressure fields can be reconstructed by using limited number of 
the low-order covariance modes or the low-order spectral modes. This simplified description is 
known as the order-reduced modeling of the random pressure field which has been applied for 
effectively modeling turbulent-induced buffeting forces and for effectively estimating gust 
responses of structures due to these buffeting forces. Effects of basic and cumulative modes on 
the pressure field reconstruction, as well as role of the first mode on the field identification are 
going to be verified and investigated here.  
 Figure 6.12 expresses the reconstruction of original fluctuating pressure at position 5 (near 
leading edge of models) corresponding to three models at the turbulent flow U=3m/s due to usage 
and contribution of the basic covariance modes (form the first covariance mode to the fourth 
covariance one). Figure 7.13 shows the pressure reconstruction at position 5 due to cumulative 
covariance modes using the first mode and the first two modes. Noting that only position 5 and at 
the flow case 1 are presented here on account of brevity, the another pressure positions on models 
and at the another flow conditions (U=6m/s, U=9m/s) have the same results. Verification in term 
of the spectral contribution between these covariance modes and the original pressure (as target) 
has been carried out.  
 As can be seen from Figure 6.12 that reconstructed pressure time series using the first mode is 
similar to the original pressure, especially its contribution portion contains the frequency peaks 
can be used to identify hidden characteristics and physical phenomena of the original pressure. In 
a comparison, reconstructed pressure portions using the second mode, the third mode, the fourth 
mode are minor contributions to the original pressure, moreover, these contribution portions do 
not contain the hidden frequency peaks in the original pressure.  



  

Fig. 6.12 Effect of covariance modes on pressure reconstruction at turbulent flow U=3m/s 
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Fig. 6.13 Effect of cumulative covariance modes on pressure reconstruction at turbulent flow 
U=3m/s 
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  It is also seen in Figure 6.12 in the power spectral densities, reconstructed pressure at the 
position 5 using the first covariance mode seems to be good agreement to the original pressure at 
low frequency range between 0÷10Hz in the models B/D=1 both without and with the splitter 
plate, but there is spectral difference between reconstructed pressure and original one at high 
frequency range 10÷100Hz. It implies that the first covariance mode is accuracy enough for 
reconstructing the original pressure at the low frequency range 0÷10Hz as well as for identifying 
the physical causes on all models, however, more cumulative covariance modes are required to 
reconstruct the original pressure at the high frequency range. 
 Although the reconstructed pressure due to the first covariance mode in all experimental 
models contain the typical frequencies of the physical causes, but it observes the first mode is not 
enough to reconstruct the original pressure in a case of the model B/D=5 because there is much 
difference in the power spectral contribution between its reconstructed pressure and the original 
one. This can be explained due to the energy contribution of the first covariance mode in the case 
of B/D=5 exhibits small proportion as 43.77% to total energy of the pressure field. In the model 
B/D=5, in the other words, the first mode can be used to identify the pressure field, but it is not 
accuracy enough to reconstruct the original pressure, and more low-order modes should be 
needed for the pressure reconstruction due to more complicated distribution of this pressure field.  
 In the Figure 6.13, the reconstructed pressures using number of the low-order covariance 
modes (the first mode, the first two modes, the first three modes and the first fourth modes) as 
well as their corresponding power spectral contributions are observed. It can be seen that the first 
covariance mode is enough to reconstruct the original pressure in the models B/D=1 without and 
with the splitter plate, but the first two modes should be needed in the model B/D=5. In the 
favorable condition, although all the first four covariance modes are used to reconstruct the 
original pressure, but it is only good agreement at the low frequency range, and it is not accuracy 
at the higher frequency range. 
 
 Figure 6.14 shows effects of basic spectral modes (basic four modes) and cumulative spectral 
modes (first mode and first two modes) on reconstructing auto spectra densities of the original 
pressures on all three experimental models at the reference position 5 and at the turbulent flow 
U=3m/s.  



  

Fig. 6.14 Effects of basic and cumulative spectral modes on auto spectral reconstruction of 
pressure at turbulent flow U=3m/s 

10-1 100 101 10210-6

10-5

10-4

10-3

10-2

10-1

100

Frequency (Hz)
P

S
D

Position 5

target
1st mode
1st to 2nd modes

10-1 100 101 10210-6

10-5

10-4

10-3

10-2

10-1

100

Frequency (Hz)

P
S

D

Position 5

target
1st mode
1st to 2nd modes

10-1 100 101 10210-5

10-4

10-3

10-2

10-1

100

Frequency (Hz)

P
S

D

Position 5

target
1st mode
1st to 2nd modes

10-1 100 101 10210-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Frequency (Hz)

P
S

D

Position 5

target
1st mode
2nd mode
3rd mode
4th mode

10-1 100 101 10210-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Frequency (Hz)

P
S

D

Position 5

target
1st mode
2nd mode
3rd mode
4th mode

10-1 100 101 10210-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Frequency (Hz)

P
S

D

Position 5

target
1st mode
2nd mode
3rd mode
4th mode

a. B/D=1 

b. B/D=1 with S.P 

c. B/D=5 

Effect of spectral modes Effect of cumulative spectral modes 



  

 As can be seen from Figure 6.14, the first spectral modes also play very important role in the 
pressure reconstruction. Only the first spectral modes are enough for reconstruction and 
identification of the pressure fields. However, the first spectral modes exhibit the better than the 
first covariance ones in reconstructing the original pressure, because the good agreement at all 
frequency range can be observed with the first spectral modes whereas the good fit at the low 
frequency range with the first covariance one. This is very important to the first spectral mode 
rather than the first covariance one. 
 This agrees with the high energy contribution of the first spectral modes on the total energy of 
the pressure field at all experimental models and all turbulent flows.    
  
6.12  Conclusion 
 
Analysis and identification of the fluctuating pressure field around some typical rectangular 
sections using both the covariance matrix-based and spectral matrix-based proper orthogonal 
decompositions have been presented in this paper. Some points are concluded as follows: 

(1) Significant role of the first covariance mode and the first spectral mode has been verified. 
The first mode contains certain frequency peaks of hidden physical phenomena, 
moreover, it contributes dominantly on the field energy. Thus the first mode is significant 
and accuracy enough to reconstruct and identify the pressure field for many cases.     

(2) In cases of the high frequency range and of complicated pressure distributions and flows, 
it is suggested that more cumulative modes should be needed to reconstruct the pressure 
field. The more complicated the pressure field distributes and the bluff body flow 
behaviors, the less important the first mode contributes and the more cumulative modes 
are needed to reconstruct the pressure field. 

(3) In the comparison, the first spectral mode expresses the better than the first covariance 
mode in reconstructing the pressure field.   

(4) The linkage between the POD modes and physical events is valid only in the concrete 
cases when the pressure field behaviors simply and steadily as well as the physical events 
occur apparently. Because the POD modes, eigenvalues, principal coordinates modify 
sensitively with respect to pressure positions, pressure tap arrangements, measured region 
and area, so on, therefore it is supposed such linkage only can be obtained in some 
limited cases.    
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Chapter 7 
 

Representation and Simulation of Spatially-correlated 
Random Turbulent Field using Proper Transformations 
 
 
 
7.1 Introduction 
 
It is agreed that the analysis and experiment of the wind-induced vibration and response of 
structures always require a carefully modeling and representation of the wind turbulent field. The 
velocity field of the atmospheric wind is usually considered as unsteady one which comprise a 
time-independent mean velocity and three time-dependant fluctuating components, called as 
atmospheric turbulence, which are longitudinal, lateral and vertical turbulent components, 
respectively. It is the atmospheric turbulence to reason for generating aerodynamic phenomena, 
vibration and response of structures. So far, the atmospheric turbulence is defined as a zero-mean 
random Gaussian process. The spatial turbulent field is known as the typically coherent one in 
which turbulent time series at different spatial points are multi-variate and spatially-correlated in 
field space, moreover, the spatial correlation of the turbulent field can be characterized by either 
correlation coefficients in the time domain or coherence functions in the frequency one. Although 
each turbulent component is correlated itself, but the cross correlation between two turbulent 
components is usually omitted due to its small effect. In the other words, the longitudinal 
turbulence is uncorrelated with the lateral turbulence and the vertical one. Representation and 
modeling of the turbulent fields play very important role for both the analytical and experimental 
methods. 
 Because the turbulent wind fields are considered as the nature of randomness and spatial 
coherence, thus representation and modeling of these fields are usually expressed via the 
statistical functions. In the time domain, first-order statistical moments such as mean or 
expectation value; second-order statistical moments such as variance, mean square, correlation 
functions, correlation coefficients have been widely used. In the frequency domain, the 
second-order Fourier transform-based functions such as power spectral density functions and 
coherence function have been commonly applied. Furthermore, the multi-variate 



  

spatially-correlated turbulent fields can be described comprehensively under matrix forms of 
either the zero-time-lag covariance matrix in the time domain or the cross spectral density matrix 
in the frequency domain in which cross correlation between two spatial points is accounted via 
either correlation coefficient function or coherence function.     
 Simulation of the turbulent fields is usually required for the wind-excited response analysis of 
structures in the time domain. It is generally agreed that the turbulent wind fields are usually 
considered as the multi-variate spatial-correlated stationary Gaussian random processes/ fields 
with zero mean. The Monte Carlo technique for generating random variables is the most widely 
employed to simulate the random processes/ fields in the scientific and engineering topics. Digital 
simulation of the random processes/ fields can be categorized by either spectral representation 
methods or time parametric methods.             
 Proper orthogonal decomposition, or the Karhunen-Loeve decomposition (Lumley 1970), has 
been applied widely in many scientific and engineering fields including random processes/fields, 
stochastic methods, numerical methods, image processing, data compression, system 
identification and control and so on. In the wind engineering, the proper orthogonal 
decomposition can be used to decompose and reconstruct the turbulent wind fields with new 
concept of order-reduced modeling. The advantage of the proper orthogonal decomposition is that 
the multi-variate correlated random processes/ fields can be described and represented by such 
simplified way as a combination of limited number of low-order orthogonal eigenvectors (or 
modes), which are determined as the modal decomposition (the eigen problem) from 
comprehensive matrix forms of the random field such as the zero-time-lag covariance matrix and 
the cross spectral matrix.  
 In this chapter, the representation, modeling and simulation of the multi-variate 
spatially-correlated turbulent field are going to be presented with emphasis on spectral 
representation methods using the proper orthogonal decomposition and its spectral proper 
transformation. Simulation of the multi-variate turbulent field along a bridge girder will be 
carried out as a numerical example.   
  
7.2 Literature review on turbulent simulation 
 
Simulation of the multi-variate spatially-correlated random turbulent field surrounding structures 
is usually required for evaluating the turbulent-induced forces and estimating the gust response in 
the time-domain analysis. Digital simulation of the random processes/ fields can be commonly 
branched in either the spectral representation methods or the time series parametric methods. In 
the both branches, the cross spectral density matrix of the random field has been usually used, 



  

because it is the convenient way to build up this cross spectral matrix from available auto power 
spectral densities of single-variate turbulent processes and spatial coherence function which 
characterize for cross spatial correlation of the turbulent processes between two spatial points.  
 In the branch of the time series parametric representation methods, there are favorable 
techniques such as the auto-regressive technique (AR), moving-average technique (MA) and 
auto-regressive and moving average technique (ARMA). Auto-regressive and moving-average 
method has presented and developed recently by some authors as Samaras et al. 1985, Migolet et 
al. 1987, Li et al. 1990, Kareem et al. 1992, Meada et al. 1992.  
 The spectral representation methods have been widely applied so far due to direct approach of 
decomposition techniques of the cross spectral matrix of the random field. All spectral 
representation methods, moreover, depend on two decomposition techniques of the cross spectral 
density matrix through either the Cholesky decomposition (eg., Shinozuka and Jan 1972; Cao et 
al. 2000) or modal decomposition (eg., Shinozuka et al. 1990; Di Paola and Gullo 2001; Chen 
and Kareem 2005; Tubino and Solari 2005). In the former, the cross spectral matrix is 
decomposed by product of two lower triangle and upper triangular matrices, whereas the modal 
decomposition uses spectral eigenvectors (spectral modes) and spectral eigenvalues obtained 
from the spectral matrix-branched proper orthogonal decomposition in the later.  
 Shinozuka 1971 firstly introduced the simulation technique of the multi-variate Gaussian 
random processes which was developed from that of single-variate random process and based on 
the Cholesky decomposition of the cross spectral matrix of the random field. Simulation 
technique of the multi-variate Gaussian random processes was enhanced by using Fast Fourier 
Transform (FFT) discussed by Schuller and Shinozuka 1986, Shinozuka and Deodatis 1996. 
Simulation procedures of the multi-variate turbulent field around bridge girder were modified by 
Yang et al. 1997, Nguyen et al. 1999, Cao et al. 2000, however, they were based on the Cholesky 
decomposition of the cross spectral matrix. Shinozuka et al. 1990 proposed new approach of 
decomposition technique of the cross spectral matrix using some dominant eigenvectors 
determined from eigen problem of the cross spectral matrix. This technique was called as modal 
decomposition or modal factorization. This simulation method followed and developed by some 
authors such as Di Paola and Gullo 2001, Chen and Kareem 2005; Tubino and Solari 2005. Main 
advantage of using the spectral proper transformation in simulating the multi-variate random 
turbulent field is that only few number of the low-order dominant spectral modes and associated 
spectral eigenvalues is accuracy enough, moreover, the spectral modes and spectral eigenvalues 
contain their physical significance.        
 
 



  

7.3  Representation and modeling of spatially-correlated turbulent field 
7.3.1 Mechanism of turbulent generation  
 
Mechanism of the turbulent generation is convincing to study the unsteady turbulent-induced 
forces (or buffeting forces), that relates to the oncoming flow characteristics, the wind-structure 
interaction of stationary or motioned structures in the atmospheric wind flows. The turbulent 
generation mechanism can explain spatial distribution of buffeting forces, correction functions 
such as the aerodynamic admittance function and coherence one. It is generally said that the 
uncertainties in the turbulent generation can induce limitations of the strip theory and 
quasi-steady theory and inaccuracy in the buffeting response as well. The turbulent flows can be 
generated from such following sources: 

(1) Due to oncoming turbulent flow: Turbulence is as the nature of atmospheric wind. 
Atmospheric turbulence is generated by such main reasons as friction, terrain and 
topography, meteorological impacts such as atmospheric pressure, temperature and 
oceanic flows. Effect of the atmospheric wind on civil engineering structures usually 
behaviors under the law of the atmospheric boundary layer. 

(2) Due to wind-structure interaction: Interaction phenomena due to separated and reattached 
flow and vortex shedding formation usually occur on structural surface of bluff bodies to 
modify around-structure flow (or bluff body flow). These interaction phenomena can 
generate turbulence in even ongoing smooth flow and modify turbulent conditions in the 
ongoing turbulent flow. Due to the movement of flexible structures such as long-span 
cable-supported bridges in the wind flows, furthermore, the wind-structure interaction 
relating to self-excited forces and aerodynamic damping can be generated 
structure-surrounding turbulence.  

(3) Due to wake response: By effect of upstream structures, the oncoming flow creates and 
modifies wake turbulent flows to downstream structures. It is also known as the wake 
phenomena or signature, proximity.    

 
 Among above-mentioned sources of the turbulent generation, the turbulent flow generated by 
the wind-structure interaction is the most concern to the bluff sections. According to the 
Matsumoto (2000), moreover, in the bluff-body flow behaviors such as separation bubble, 
reattachment and vortex-shedding still occur whether or not oncoming flow is turbulence or 
smoothness due to the wind-structure interaction. This confirms that the wind-structure 
interaction and the bluff-body aerodynamics are convincing to explain the aerodynamic 
phenomena as well as to study the unsteady turbulent-induced forces.     



  

 
7.3.2 Turbulent wind field modeling 
 
The total wind velocity in the atmospheric wind fields at reference point M(x,y,z) due to 
approaching turbulent wind flow can be expressed by comprehensive manner as sum of mean 
velocity component and turbulent ones as follows (Tubino and Solari 2005):  

 ),,,(),,(),,,( ' tzyxUzyxUtzyxU +=  (7.1) 

where ),,,(),,,( ' tzyxUzyxU : mean wind velocity and turbulent vectors corresponding to three 

directions: longitudinal (x), lateral (y) and vertical (z), which are represented as 

{ }TzyxUxyxU 0,0),,,(),,( =  and { }TtzyxwtzyxvtzyxutzyxU ),,,(),,,,(),,,,(),,,(' =  

 
 
 
 
 
 
 
 
 
 
 
Fig. 7.1  Atmospheric wind field  
 
 Mean wind velocity is obtained due to the logarithmic law or power law in the atmospheric 
boundary layer theory as following formulae (Simiu and Scanlan 1976): 
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where k: scale factor (k=0.4); z0: roughness length depending on ground terrain condition (open 
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formula:  

 )ln()()(
0

0 z
zzUzU R=  (7.3) 

 The longitudinal and vertical turbulent components u(t), w(t) (lateral turbulent component v(t) 
is omitted due to very small effect to structure) are considered as two multi-variate 
spatially-correlated Gaussian random turbulent processes with zero mean. These turbulent fields 
at N discrete nodes are expressed as follows: 

 T
N tutututu )}(,),...(),({)( 21=  (7.4) 

 T
N twtwtwtw )}(,),...(),({)( 21=  (7.5) 

 Because the turbulent field has its nature of random and coherent field, thus this field can be 
represented and modeled under conventionally statistical functions: first-order statistical 
moments such as mean or expectation value; second-order statistical moments such as variance, 
mean square, correlation functions, correlation coefficients in the time domain; or power spectral 
density functions, coherence function in the frequency domain.    
 
7.3.3 Power spectral density function of turbulence 
 
Energy contribution of any time series corresponding to spectral components in the frequency 
range is characterized by the power spectral density function as second-order Fourier 
transformation. Many empirical formulae can be applied for the auto power spectral densities of 
the longitudinal turbulence u(t) and the vertical one w(t). Von Karman 1948 firstly introduced a 
practical empirical formula of the auto power spectral density based on ongoing turbulent flow 
conditions such as mean velocity, intensities of turbulence, length scale of turbulence and so on. 
So far, methodology of von Karman has been exploited by some authors to develop their 
empirical formulae. Some empirical formulae are widely used for the auto power spectral 
densities of u-, w-turbulence Su(n), Sw(n) in the practical application introduced hereafter (Simiu 
and Scanlan 1976, Matsumoto 2000): 
 Kaimal’s, Bush and Panofsky’ spectra:     
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where f: non-dimensional Monin coordinates, Unzf = ; n: frequency variable (Hz); U, z: mean 

velocity (m/s) and altitude z (m), respectively; u*: friction or shear velocity (m/s),  
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 Von Karman’s spectra: 

 
( )[ ] 6/52

2

/78.701

/4)(
UnL

ULnS
ux

uxu
u

+
=

σ ; ( ) ( )[ ]
( )[ ] 6/112

22

/78.701

/8.1881/2)(
UnL

UnLULnS
wx

wxwxw
w

+

+
=

σ  (7.7) 

where wu σσ , : standard derivatives; wxux LL , : chordwise length scales of u-,w-turbulences. 

 It is supposed that von Karman’s spectra express the better approach because of their 
dependence on basic configuration of the ongoing turbulent flow such as mean velocity (U), 

variances 22, wu σσ , length scales wxux LL , , but not on height z, whereas the Kaimal’s, 

Bush-Panofsky’s spectra only depend on mean velocity and height, but not on dimension of 
turbulence.  
 
7.3.4 Coherence function of turbulence 
 
The cross correlation in the space between two time series in the frequency domain is 
characterized by the spatial coherence function. The spatial coherence function between two 
processes )(1 tυ and )(2 tυ is defined as their cross spectral density normalized by their auto 

spectral ones as follows: 
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where ),(),,(
2121

ΔΔ nSnS QuCo
υυυυ : co-spectrum and quadrature spectrum as real and imaginary parts 

of complex cross spectral density. In the homogenous turbulent flow, however, the quadrature 
spectrum is usually eliminated due to its less effect, we have:  
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 Spatial coherence functions are usually expressed under empirical formula as follows: 
 )exp()( nfnCOH −=  (7.10) 

where f: decay factor depending on spatial parameters, obtained as:  
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yz cc , : Exponent decay coefficients are experimentally determined; x1, x2, y1, y2, z1, z2: spatial 

coordinates of two points in the turbulent field corresponding to lateral (chordwise), longitudinal 
(spanwise), vertical directions in the structural axes |||,||,| 212121 zzzyyyxxx −=Δ−=Δ−=Δ .    

 It is noted in almost practical cases, however, the length scale of turbulence in the chordwise 



  

direction ( wxux LL , ) is higher than structural width (B) and height (D), thus the buffeting forces are 

considered as fully-correlated coherence in the chordwise and vertical directions of structure, and 
only the cross correlation and the coherence of turbulence and buffeting forces in the spanwise 
direction is significant to be accounted for. It also assumed that the spanwise coherence of the 
longitudinal turbulence is similar to that of vertical one in many applications.   
 Some empirical coherence functions have been widely used for coherence of turbulence and 
introduced as follows (Davenport 1962, Irwin 1974, Simiu and Scanlan 1976, Matsumoto 2000, 
Larose 2001): 
 Davenport’s empirical coherence: 
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where cy: decay factor in the spanwise direction, in which 168 ≤≤ yc , for example 7== wyuy cc  
(Davenport 1962), 5.6,10 == wyuy cc  (Solari and Tubino 2005). 
 Von Karman’s empirical coherence: 
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where 6/56/1 , KK : modified Bessel function of the second kind; Γ : Gamma function; wyuy LL , : 

spanwise length scale of u-,w-turbulences; η : von Karman collapsing parameter defined as 

follows:   
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 In the isotropic turbulent field, the modification of von Karman’s coherence   
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 It is also supposed that the von Karman’s coherence model of turbulence seems the better 
expression than the Davenport’s one, because this empirical formula is related to basic parameters 
of the ongoing turbulent flows as the length scales of turbulence     
 
7.3.5  Cross spectral matrix of the random turbulent fields 
 
As above-mentioned, the auto power spectral density function and spatial coherence one have 
been used to characterize for at any single point and correlation between two single points in the 
spatial field of turbulence in the frequency domain. Thus, one has used so-called cross spectral 
matrix to characterize for the spatial fields of turbulence in the frequency domain. The cross 
spectral density matrix of the N-variate turbulent field at N separated points is defined as: 
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where )(nSυ : cross spectral density matrix, known as positive-definite symmetrical squared one, 

in which elements ( NinS
ii

,...1),( =υυ ) in the main diagonal are auto spectral density functions at 

each point and elements ( NjijinS
ji

,...1,,),( =≠υυ ) outside the main diagonal are cross spectral 

ones between two points i and j; υ denotes to either longitudinal turbulence u(t) or vertical one 
w(t). Elements of the cross spectral matrix are determined as follows: 
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where )(ˆ),(ˆ nn ji υυ : Fourier transform functions of time series of turbulence at points i and j; E: 

expectation operator; *, T : complex conjugate and transpose operators.    
 In practical applications, however, it is difficult to obtain direct measurement of time series of 
turbulence at every point in the spatial field. Available empirical functions of the auto spectral 
density function at different points and available coherence function between two separated 
points are usually used to build up the cross spectral matrices of the turbulent fields. By this way, 
the cross spectral elements )(nSij between two points i and j can be determined via the 

corresponding auto spectral ones and spatial coherence function as follows: 

 ),()()()( Δ= nCOHnSnSnS
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where )(),( nSnS
jjii υυυυ : auto spectral density functions at nodes i and j; )(nCOH

jiυυ : Coherence 



  

function.  
 In many computational applications and simulation in the frequency domain, the cross spectral 
matrix of any field is usually used. However, it is difficult to exploit in such comprehensive form, 
thus decomposition techniques must be used to decouple this cross spectral matrix under form of 
expansion. The most applicable techniques to decouple this matrix are the Cholesky 
decomposition and modal one.  
  
7.4 Proper orthogonal decomposition and spectral proper transformation 
 
The spectral matrix-based orthogonal vectors are found as eigenvector solutions of the eigen 
problem from the cross spectral density matrix )(nSυ of any multi-variate random field as follows:       

 )()()()( nnnnS υυυυ ΨΛ=Ψ  (7.19) 

where )(nSυ : cross spectral density matrix; )(),( nn υυ ΨΛ : spectral eigenvalue and eigenvector 

matrices ))(),...(),(()( 21 nnndiagn Nυυυυ λλλ=Λ , )](),...(),([)( 21 nnnn Nυυυυ ψψψ=Ψ . It is noted that 

spectral eigenvalues are real and positive, its spectral eigenvectors (also called as spectral modes) 
are generally complex, however, if cross spectral matrix is real then spectral modes are also real 
ones. The spectral eigenvalues and the spectral modes satisfy such orthogonal conditions as 
follows:  
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 Accordingly, the Fourier transform and the cross spectral density matrix of )(tυ  can be 

represented as optimum approximation due to terms of the spectral eigenvalues and eigenvectors 
as follows: 
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where )(ˆ nυ : Fourier transform of process )(tυ ; )(ˆ nyυ : spectral principal coordinates as Fourier 

transforms of uncorrelated random subprocesses; M̂ : number of truncated spectral modes 
( NM <<ˆ ); * denotes to complex conjugate operator. Frequency-domain approximation in 
Eq.(7.15) is also known as spectral proper transformation (SPT).  
 The spectral principal coordinates have some characteristics as follows:  
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T
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 Thus, when two effective random turbulent fields of the longitudinal and vertical turbulent 



  

components u(t), w(t) are taken into account, the Fourier transform vectors or spectral density 
matrix of the two turbulent fields can be approximated due to the spectral proper transformation 
as follows: 
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 These approximations of the spectral proper transformation will be used for simulating the 
turbulent fields hereafter.  
  
7.5 Turbulent simulation procedures 
7.5.1 Turbulent simulation using Cholesky decomposition  
 
Here comprehensive form of the cross spectral matrix of the multi-variate turbulent field is 
decomposed by the Chelesky’s factorization technique in which this cross spectral matrix is 
factorized by product between the lower triangle matrix and upper triangle one as follows: 

 TnHnHnS *)()()( υυυ =  (7.24-a) 
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where )(nHυ : complex lower triangle matrix. 

 The multi-variate random turbulent field can be expressed in the frequency domain using the 
factorized lower triangle matrix as follows:  
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where j: index of structural node; k: index of moving node; l: index of moving point in frequency 

range; N~ : number of frequency intervals; nΔ : frequency interval Nnn up
~=Δ ; upn : upper 

cutoff frequency; kln : frequency point on frequency range Nnknlnkl Δ+Δ−= )1( ; )( klnH
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element of complex lower-triangle matrix; )( kljl nθ : complex phase angle of )( klnH
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are generated by Monte Carlo technique. 
 Elements in the complex lower triangle matrix )(nHυ  can be calculated in the practical form 

of the turbulent field around bridges in cases of deck nodes spaced in similar distance and similar 
elevation as follows (Cao et al. 2000): 
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where )(nS
jjυυ : auto spectral density function of subprocess υ at node j; N: number of deck 

nodes; C: spanwise coherence function between two adjacent nodes. 
 In many cases, the cross spectral matrix is real (phase lags are negligible), thus the lower 
triangle matrix is real too, therefore phase 0)( =kljl nθ , thus spectral matrix-based simulation of 

single-variate turbulent subprocess in the multi-variate random turbulent field is determined as:  
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7.5.2 Turbulent simulation using spectral proper transformation 
 
Simulation of the multi-variate random turbulent process using spectral representation method is 
widely used so far and will be presented here, in which the cross spectral matrix is decomposed 
by the proper spectral transformation. Accordingly, the N-variate random turbulent process 

{ }T
N tttt )(),...,(),()( 21 υυυυ =  can be represented (Di Paola and Gullo 2001; Chen and Kareem 

2005; Tubino and Solari 2005):  
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cross spectral matrix.  
 Using the spectral proper transformation Eq.(13) to decompose and approximate the cross 
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processes independent orthogonal:  
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 Subprocesses of the N-variate random turbulent process )(tυ  can be simulated in the discrete 

frequency domain as:  
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where i: index of simulated subprocess; j: index of spectral modes; l: index of frequency 
points; ln : frequency value at moving point l; :N  number of frequency intervals; ln : frequency 

interval at moving point l.  
 If the frequency domain is discretized constantly at every frequency interval nΔ , then the 
Eq.(7.29) can be expanded as follows:  
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where lnΔ : frequency interval at point l; nΔ : constantly frequency interval Nnn up /=Δ  and 

nlnl Δ−= )1( , upn : upper cut-off frequency; lφ : phase angle considered as random variable 

uniformly distributed over [0,2π]; )( ln
jυ

θ  : phase angle of complex eigenvector 
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 In many cases, the spectral eigenvectors are real due to auto spectral densities are real and 
positive, Eq.(7.30) can be simplified as follows: 
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The phase angles can be randomly generated using the Monte Carlo technique. This technique 
also is considered as the random phase generation to defer from the random amplitude 
generation. 
 More details on recent applications of the proper orthogonal decomposition in simulating 
multi-variate turbulent process, including parametric time representation methods using 
autoregressive (AR) model can refer to Di Paola and Gullo 2002; Chen and Kareem 2005; Tubino 
and Solari 2005. 
 



  

7.6 Numerical example 
 
In this numerical example, the spectral proper transformation has been applied to simulate the 
two multi-variate turbulent fields at 30 discrete nodes along a bridge 

deck: { }Ttutututu )(),...,(),()( 3021= , { }Ttwtwtwtw )(),...,(),()( 3021= . Time series of the turbulent fields 

at 30 nodes have been simulated at different mean velocities U=5,10,20,30 and 40m/s. Sampling 
rate of simulated turbulent time series is 1000Hz for total time interval 100 seconds. Time 
interval is set at 0.001 second. The cross spectral density matrices of u-,w-turbulences have been 
formulated based on auto spectral densities and spanwise coherence function. Targeted auto 
power spectral density functions of u-, w-components are used the Kaimail’s and Panofsky’s 
spectral models in Eq(7.6). Coherence function between two separated nodes along bridge deck, 
moreover, is used by exponentially empirical model in Eq.(7.12) with decay factors 

5.6,10 == wyuy cc .   

 
 
 
 
 
 
 
 

Fig. 7.2  Effective turbulent fields at bridge deck nodes 

Fig. 7.3 Auto power spectral densities of u-,w-turbulences corresponding to mean velocity  
   U=20m/s 
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 Figure 7.3 shows targeted auto spectral density functions of u-,w-turbulences at mean velocity 
U=20m/s and in frequency range 0.01÷10Hz with some input parameters such as deck height 
z=20m, scale factor k=0.4, roughness length z0=0.025m. 
 Cross spectral matrices )(nSu , )(nSw of two turbulent fields u(t), w(t) at the 30 deck nodes have 

been formulated as 30x30 symmetrical squared matrices. It is noted that the cross spectral 
matrices comprise three dimensions, in which the third one represents for the frequency domain 
and all spectral elements at i-th row represent for auto spectral density at the node i and cross 
spectral ones between the node i and adjacent nodes. Figure 7.4 shows spatial distribution of the 
power spectral densities of w-turbulence at different nodes 3, 5, 10 and 15. As can be seen that 
the power spectral densities at i-th node distribute dominantly around this i-th node, and it decays 
fast with respect to an increases of frequencies and spatial distances. 

 
Fig. 7.4 Spatial power spectral densities of w-turbulence at some nodes 3, 5, 10 and 15 

a. Node 3 b. Node 5 

c. Node 10 d. Node 15 



  

 The cross spectral matrices have been decomposed using the proper orthogonal decomposition 
to find out pairs of the spectral eigenvectors and corresponding spectral eigenvalues. There are 
totally 30 pairs. Figure 7.5 shows the first five spectral eigenvalues )()( 51 nn λλ ÷ on frequency 

band 0.01÷10Hz at the mean velocity U=20m/s. It is observed that the first spectral eigenvalue 

)(1 nλ exhibits much higher than the others on the very low frequency band 0.01÷0.2Hz with the 

u-turbulence, 0.01÷0.5Hz with the w-turbulence, however, all spectral eigenvalues not to differ 
beyond these frequency thresholds. These are considered as the effective frequency ranges. 

Fig. 7.5 First five spectral eigenvalues at U=20m/s: a. u-turbulence, b. w-turbulence 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7.6 First three spectral turbulent modes at U=20m/s: a. u-turbulence, b. w-turbulence  
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Fig. 7.7 Effect of change of wind velocities on first five spectral eigenvalues of u-,w-turbulences  
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Fig. 7.8 Effect of change of wind velocities on each first five spectral eigenvalue of u-,w-turbulences  



 

Fig. 7.9 Effect of change of wind velocities on spectral turbulent modes of u-turbulence  
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Fig. 7.10 Effect of change of wind velocities on spectral eigenvectors of w-turbulence 
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 The first three spectral turbulent modes wunnn ,);(),(),( 321 =υψψψ υυυ  on the same spectral 

band 0÷10Hz at the mean wind velocity U=20m/s is expressed in Figure 7.6. It can be seen that 
the turbulent modes of u-,w-components look like as symmetrically and asymmetrically 
sinusoidal waves, in which number of wave halves increases incrementally with the order of 
eigenvectors. It is also commented that because the shape of the spectral turbulent modes does 
not change with the frequency, thus the frequency characteristics of auto spectral densities of 
u-,w-turbulence depend completely on the spectral eigenvectors. It seems that the spectral 
eigenvalues should be considered for interpretation of physical characteristics of the ongoing 
turbulences.   
 Effect of change of mean wind velocities in turbulent flows on the spectral eigenvalues and the 
spectral turbulent modes is investigated herein in order to find out linkage between the spectral 
quantities and characteristics of the ongoing turbulent flows. Spectral eigenvalues and spectral 
turbulent modes are analyzed at different mean velocities U=5, 10, 20, 30 and 40m/s, and shown 
in Figures 7.7÷7.10. Obviously, it is observed that the shape of spectral turbulent modes exhibit 
constantly, not to depend on the change of the mean wind velocities. Only spectral eigenvalues 
strongly depend on the frequency. Therefore, the spectral eigenvalue can characterize for energy 
contribution of associated spectral eigenvectors to the whole system. Accordingly, the spectral 
eigenvalues can interpret to characteristics of the ongoing turbulent flows. It is expected the 
relationship between the spectral eigenvalues (associated spectral eigenvectors as well) and 
physical events of the ongoing turbulent flow exists.   
 As can be seen from Figure 7.7, in some cases the spectral eigenvalues contain frequency 
peaks, which these peaks increase with an increase of order of the spectral eigenvalues. In 
comparison at different mean velocities, it is observed that effective frequency ranges widen with 
increase of mean velocities. Moreover, scale of the spectral eigenvalues and their corresponding 
spectral peaks increase with respect to increase of the mean velocities as indicated in Figure 7.8.  
 The hidden events of the turbulent flows can be revealed that multi-scale eddies always exist 
on the turbulent flows. Large-scale eddies contain high energy, but move at low frequency, and 
inversely, small-scale hold small energy, but high frequency. However, the large-scale eddies 
tendency unstable, they break up into smaller eddies. Unstable large-scale eddies contain no 
energy contribution and frequency information. The scale of eddies and their corresponding 
frequency increase with respect to increase of the mean velocities. These characteristics of eddies 
in the turbulent flows can be determined via those of the spectral eigenvalues as mentioned above, 
therefore it is supposed that the spectral eigenvalues can interpret the scale of eddies.       
 



 

 
 
 Time series of two turbulent fields u(t), w(t) are simulated due to the spectral proper 
transformation of the cross spectral matrices of these two fields. All 30 spectral turbulent modes 
have been used for this turbulent simulation, therefore the simulated time series are considered as 
targeted time series. Figures 7.11÷7.14 show simulated time series of these turbulent processes at 
first ten deck nodes (from node 1 to node 10) during 100-second interval, corresponding to 
various mean wind velocities U=10, 20, 30 and 40m/s.    
 

Fig. 7.11 Simulated time series at mean velocity U=10m/s: a. u-turbulence, b. w-turbulence 
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Fig. 7.12 Simulated time series at mean velocity U=20m/s: a. u-turbulence, b. w-turbulence 
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Fig. 7.13 Simulated time series at mean velocity U=30m/s: a. u-turbulence, b. w-turbulence 
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Fig. 7.14 Simulated time series at mean velocity U=40m/s: a. u-turbulence, b. w-turbulence 



 

 Simulated time series have been verified accuracy and consistence to satisfy statistical 
functions, power spectral densities and spatial correlation with respect to targeted conditions. It is 
noted that due to a sake of brevity, only verification of the simulated time series at mean velocity 
U=20m/s are taken into account (checking simulated time series at another turbulent conditions 
corresponding the mean velocities U=10, 30 and 40m/s can be carried out as the same manner, 
but not to present here). Characteristics of the simulated time series of u-,w-turbulences such as 
mean values, standard deviation and intensities of turbulence at the ten deck nodes are expressed 
in Table 7.1. There are good correspondence in the statistical characteristics among the simulated 
time series of u-,w-turbulences can be observed. 
 

Tab. 7.1 Characteristics of simulated time series of u-,w-turbulences 
 node 1 node 2 node 3 node 4 node 5 node 6 node 7 node 8 node 9 node10

 u-turbulence 

U (m/s) 3E-06 -4E-05 -9E-06 2E-05 5E-05 -9E-07 2E-06 -5E-05 -3E-05 -2E-05

uσ (m/s) 3.0981 2.9232 3.2833 2.8647 2.9405 3.3427 3.1242 2.5777 2.7094 2.6757

uI (%) 15.49 14.616 16.416 14.324 14.703 16.713 15.621 12.889 13.547 13.378

 w-turbulence 

U (m/s) -1E-05 4E-05 -2E-05 1E-05 -2E-05 3E-05 -1E-07 7E-06 -2E-05 1E-05

wσ (m/s) 1.6312 1.5704 1.5761 1.5793 1.6425 1.597 1.6078 1.617 1.5779 1.6785

wI (%) 8.1558 7.8522 7.8805 7.8963 8.2126 7.9852 8.0389 8.0851 7.8897 8.3925
 

 
Fig.7.15 Verification between power spectral densities of simulated time series and targeted 

spectral densities at mean velocity U=20m/s 
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 Figure 7.15 shows the auto power spectral densities (PSD) of simulated time series of 
subprocesses in the random turbulent fields u(t), w(t) at the turbulent flow U=20m/s in some 
representative deck nodes in verification with the targeted spectral densities. It is seen that there 
are good agreement between the auto spectral densities of the simulated time series and targeted 
ones.  
 Effect of number of truncated low-order spectral modes on simulation of the turbulent fields is 
investigated. Figure 7.16 shows the simulated time series of u-turbulence and w-turbulence at 
reference nodes 5 and 15 contributed by 5 modes, 10 modes, 20 modes and 30 modes as targeted 
time series. 

   
Fig. 7.16 Effect of spectral modes on simulated time series in nodes 5&15 at U=20m/s 
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Fig. 7.17 Effect of spectral modes on simulated time series in nodes 5&15 during 10 seconds 

 
Table 7.2 Characteristics of simulated time series of u-,w-turbulences at nodes 5&15 

 u-turbulence w-turbulence 

 5modes 10modes 20modes 30modes 5modes 10modes 20modes 30modes

 node 5 

U (m/s) 2E-05 -2E-05 -1E-06 -1E-05 -7E-06 4E-07 9E-06 -3E-06 

uσ (m/s) 2.5009 2.5704 2.8184 3.4195 0.9658 1.1766 1.3573 1.6698 

uI (%) 12.505 12.852 14.092 17.097 4.8292 5.8828 6.7867 8.3491 

 node 15 

U (m/s) 2E-06 -2E-05 3E-07 -4E-05 -2E-07 2E-05 9E-06 -9E-06 

uσ (m/s) 2.4328 2.6552 3.1036 3.1368 0.9353 1.0547 1.4118 1.6403 

uI (%) 12.164 13.276 15.518 15.684 4.6765 5.2733 7.0592 8.2017 

 
 
 Figure 7.17 shows the time histories of simulated turbulences due to contribution of first 5 
modes, 10 modes, 20 modes and 30 modes over the 10 second time interval. Furthermore, the 
characteristics of simulated time series at two nodes 5 and 15 corresponding to number of 
turbulent modes are indicated in Table 7.2. Comparison in the power spectral densities between 
simulated time series due to number of the turbulent modes is shown in Figure 7.18. As can be 
seen from Table 7.2 and Figure 7.18, there is difference in statistic characteristics and power 
spectral densities between simulated time series.   
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Fig. 7.18  Effect of number of spectral modes on power spectral densities of simulated time 

series at mean velocity U=20m/s 
 
 Simulating time series of the random turbulent fields acting on discrete deck nodes will be 
used as input data to predict the gust response of structure using the covariance proper 
transformation in the time domain. 
 
7.7 Conclusion 
 
Representation and simulation of the multi-variate spatially-correlated random turbulent field has 
been presented in this chapter with emphasis on application of the spectral proper transformation. 
The effect of number of spectral turbulent modes on the turbulent simulation also is discussed. 
Some conclusion can be given as follows: 
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(1) Digital simulation of multi-variate turbulent field using cross spectral matrix-based 
proper orthogonal decomposition and the spectral proper transformation is another 
approach including to conventional Cholesky decomposition in the spectral representation 
methods. Effect of number of the spectral turbulent modes on simulated time series has 
been investigated with verification for accuracy and consistence. It can be argued that it is 
not accurate enough for the turbulent simulation with using just few fundamental 
turbulent modes, many turbulent modes should be required.   

      
(2) Physical meaning of the spectral eigenvalues and turbulent modes relating to hidden 

events in the ongoing turbulent flow has been tried to establish. Because the spectral 
eigenvectors express constantly with respect to the different mean velocities and the 
frequencies, and the spectral eigenvalues contain frequency information. Therefore, it is 
expected that the spectral eigenvalues can characterize for scale of the turbulent eddies of 
the ongoing turbulent flow. However, further studies on the relationship between the 
spectral eigenvalues, associated spectral turbulent modes and physical phenomena inside 
the ongoing turbulent flows will be required for more clarification of this physical 
linkage.  
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Chapter 8 
 

Gust Response of Bridges using Spectral Proper 
Transformation 
 
 
 
8.1 Introduction 
 
Gust response prediction of structures subjected to the turbulent-induced forces in the 
atmospheric turbulent flow requires as a must among wind effects and wind-induced vibrations. 
General formulation of gust response prediction of line-like structures has proposed by Davenport, 
1962. Recent development in the buffeting response analysis of bridges in the frequency domain 
with emphasis on aeroelastic force coupling has been presented in some literatures (eg., 
Matsumoto et al. 1994, Jain et al. 1996, Katsuchi et al. 1999). As a principle, the 
multi-degree-of-freedom (MDOF) motion equations of structures were decomposed orthogonally 
in the generalized coordinates and vibrational mode shapes thanks to the structural modal 
transformation (SMT). However, there were inevitable difficulties to generalize external turbulent 
forces, which then are associated with generalized coordinates. So far, the joint acceptance 
function (JAF) has been applied to determine the generalized turbulent forces and gust response 
analysis of bridges in both the frequency and time domains (Davenport, 1992; Chen et al., 2000).  
 Proper orthogonal decomposition (POD), also known as Karhunen-Loeve decomposition has 
been applied. Basing upon a formulation of basic matrix in the proper transformation, the proper 
orthogonal decomposition has been divided into two branches: i. the covariance-matrix-based 
POD and covariance proper transformation (CPT) in the time domain and ii. the 
spectral-matrix-based POD and spectral proper transformation (SPT) in the frequency domain 
(Carassale et al. 1999; Solari et al. 2000, Chen and Kareem 2005). In the former, the basic matrix 
is based on the zero-time-lag covariance matrix of turbulent loading processes in the time domain, 
whereas cross spectral density matrix of these processes used in the frequency domain in the 
later.  It is generally agreed that almost literatures, however, have been discussed on the 
covariance-based POD and CPT in the time domain. The spectral-based POD and SPT is very 
promising to apply for stochastic response analysis, but it burdens much in complicated 
computation rather than the CPT. Recently, new approach of the gust response analysis of 



 

structures, so-called double modal transformations (DMT) has been proposed by Carassale et al., 
1999, by which the structural modes decomposed by the SMT are associated with the so-called 
orthogonally turbulent loading modes decomposed by the SPT to determine the gust response in 
both the generalized and structural coordinates. Advantage of the POD applications on the gust 
response analysis of structures has hinged on comprehensive approach for the generalized gust 
force formulation in which the fully-correlated turbulent field is directed accounted. Especially, 
the lowest turbulent loading modes that have been decomposed from the fully-correlated 
turbulent field thanks to the POD analysis can contribute dominantly on the structurally 
generalized responses of the lowest structural modes. The DMT using the the spectral-based POD 
and SPT has been applied for the gust response prediction of simple frames, buildings by some 
authors (Carassale et al. 1999; Solari et al. 2000; Chen and Kareem 2005), and for that of bridges 
(Solari and Tubino 2005, Le and Nguyen 2006). Time domain gust response analysis of bridges 
using the covariance-based POD and CPT has firstly presented by Matsumoto et al. 2007. In 
previous applications of spectral-based DMT, however, the simple quasi-steady theory has been 
accounted for the turbulent-induced forces.       
 In this chapter, the spectral-matrix-based POD and its SPT will be presented and application to 
decoupling the multi-variate turbulent loading processes. New comprehensive approach on the 
gust response prediction of structures then will be formulated using the SPT with emphasis on 
numerical example of cable-stayed bridge. The turbulent-induced forces based on corrected 
quasi-steady theory with aerodynamic admittance also are used for more refinement.   
 
8.2 Spectral Proper Transformation 
 
The main idea of the POD is to find out a set of orthogonal vector basis which can represent a 
multi-variate random process into a sum of products of these basic orthogonal vectors and 
single-variant uncorrelated random processes. The spectral-based orthogonal vectors are found as 
the eigenvector solutions of the eigen problem of the cross spectral density matrix as:       
 )()()()( nnnnS υυυυ ΨΛ=Ψ  (8.1) 

where )(nSυ : cross spectral density matrix formed from multi-variate random process )(tυ ; 

)(),( nn υυ ΨΛ : spectral eigenvalue and eigenvector matrices ))(),...(),(()(
21

nnndiagn
Nυυυυ λλλ=Λ , 

)](),...(),([)(
21

nnnn
Nυυυυ ψψψ=Ψ , in which spectral eigenvector )(n

jυψ  associated with spectral 

eigenvalue )(n
jυλ ; n: frequency variable. 

 Since the cross spectral density matrix )(nSυ is a Hermitian and positive definite one, thus its 

spectral eigenvalues are real and positive, its spectral eigenvectors are generally complex, satisfy 



 

the orthonormal conditions as follows: 
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 Thus, the Fourier transform and the cross spectral density matrix of )(tυ  can be represented in 

terms of the orthogonal eigenvectors )(nυΨ as follows: 
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where )(ˆ nyυ : turbulent principal coordinates as Fourier transforms of uncorrelated single-variate 

random processes; N: dimension of cross spectral matrix )(nSυ ; *,T: denote to both complex 

conjugate and transpose operators. 
 The spectral-based quantities can be approximately reconstructed by using limited number of 
the lowest spectral eigenvectors (assumed that the spectral eigenvectors rearranged in reduced 
order of their corresponding spectral eigenvalues) as follows:   
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where M̂ : number of truncated spectral eigenvectors ( NM <<ˆ ).  
 These approximations are known as the Spectral Proper Transformation (SPT) in the 
frequency domain.  
 Two multi-variate uncorrelated turbulent processes containing longitudinally and vertically 
velocity fluctuations u(t), w(t) (lateral turbulent component v(t) is omitted due to very small 
effect) are represented at N discrete nodes along the bridge deck as two N-variate Gaussian 
random processes: 

 T
N tutututu )}(,),...(),({)( 21= ; T

N twtwtwtw )}(,),...(),({)( 21=  (8.5) 

 The cross spectral matrix )(nSυ  of the turbulent fields which comprise auto and cross spectral 

densities components at each node and between two nodes are given in following form:  
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where )(),( nSnS
mmmm wwuu : auto spectral density elements of turbulent components u(t), w(t) at 

node m; )(),( nSnS
kmkm wwuu : cross spectral density elements between two nodes m, k; m or 

k=1,2..N. The cross spectral density elements can be determined from the auto spectral density 
ones due to such following relationship as: 
 ),()()( kmuuuuu nCOHnSnS

mmkm
Δ= ; ),()()( kmwwwww nCOHnSnS

mmkm
Δ=  (8.7) 

where ),(),,( mkwmku nCOHnCOH ΔΔ : coherence functions between two separated nodes m, k at 

spanwise separation || kmmk yy −=Δ ; ym,yk : spanwise coordinates of nodes m, k.  

 Two N-variate Gaussian random turbulent processes u(t), w(t) can be decomposed and 
transformed into the spectral principal coordinates using the spectral proper transformation:  
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where )(ˆ),(ˆ nwnu : Fourier transforms of u(t), v(t); )(ˆ),(ˆ nyny wu : the spectral principal coordinates 

as Fourier transform of independent random processes; NM <<ˆ . 
 Furthermore, the cross spectral matrices are reconstructed as follows: 
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where )(),(),(),( nnnn wuwu ΨΨΛΛ : spectral eigenvalues and corresponding spectral 

eigenvectors: ))(,),...(),(()(
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spectral matrix-based proper orthogonal decomposition of the random turbulent processes u(t), 
w(t) following Eq.(8.1). 
 
8.3 Frequency-domain buffeting forces 



 

 
Uniform buffeting forces per unit deck length (consisting of lift, drag, moment: )(tLb , )(tDb , )(tM b , 

see Figure 8.1) are determined from random turbulent field u(t), w(t) due to the corrected 
quasi-steady theory (Davenport 1962), in which frequency-dependant aerodynamic admittance 
functions are supplemented.   

 ])()())()(()(2)()([
2
1)( 00

'
0

2

U
twnCC

U
tunCBUtL LwDLLuLb χααχαρ ++=  (8.10-a) 

 ])()())()(()(2)()([
2
1)( 00

'
0

2

U
twnCC

U
tunCBUtD DwLDDuDb χααχαρ −+=  (8.10-b) 

 ])()()()(2)()([
2
1)( 0

'
0

22

U
twnC

U
tunCBUtM MwMMuMb χαχαρ +=  (8.10-c) 

where MDL CCC ,, : aerodynamic static coefficients at balanced angle of attack 0α (usually o00 =α ); 
''' ,, MDL CCC : first derivatives with respect to angle of attack at balanced angle 

MDLFd
dCC F

F ,,,)(
0

'
0

== =αα
α ; ),;,,()( wuMDLFnF == υχ υ : aerodynamic transfer functions 

between turbulent components and turbulent-induced forces (their absolute magnitudes refer as 
aerodynamic admittance functions); ρ , B, U: air density, width and  mean velocity, 

respectively.  
 
 
 
 
 
 
 
 
 
Fig. 8.1 Uniform buffeting forces on bridge deck 
 
 Then full-scale buffeting forces acting on whole structure can be formulated due to linearized 
lumping of the uniform buffeting forces at each deck node: 
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or in such following form as (Solari and Tubino 2005)  
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where wu CC , : full-scale force coefficient matrices; Li: influenced distance at node i; y: 

longitudinal structural coordinate   
 In the frequency domain, transforming the uniform buffeting forces into a form of power 
spectral density using second-order Fourier transform, omitting cross correlation components 
between u(t) and w(t), the power spectral densities of the uniform buffeting forces are obtained: 
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where )(),(),( nSnSnS MDL : power spectra of lift, drag and moment, respectively; )(),( nSnS wwuu : 

auto power spectra of uni-variate turbulent processes u(t), w(t). Accordingly, the power spectral 
densities of the full-scale buffeting forces can be determined as:  
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 The buffeting forces formulated here are used for predicting the gust response of bridges. 
 
8.4 Gust response formulation 
 
Multi-degree-of-freedom motion equations of structures subjected to the buffeting forces can be 
expressed by means of the Finite Element Method (FEM): 

 )(tFKUUCUM b=++ &&&  (8.15) 

where )(tFb : full-scale buffeting forces; KCM ,, : structural mass, damping and stiffness 

matrices, respectively; { }TTT tatpthU )(,)(,)(= : displacement vector containing three vertical, 

lateral and rotational displacements; UU &&& , : velocity and acceleration vectors.  



 

 Transforming into the mass matrix-nornalized structural generalized coordinates using the 
modal analysis and the Structural Modal Transformation (SMT): 
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where )(tξ : structural generalized coordinates; Φ : modal matrix T
M ],...,,[ 21 φφφ=Φ ; iφ : i-th 

structural mode; ΞΩ,,I : unit and diagonalized matrices; M : number of truncated structural 

modes MM << , M: number of dynamic degree-of-freedom of structure. 
 Single-degree-of-freedom motion equation in the i-th generalized coordinate is expressed 
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where ii ζω , ,mi: circular frequency, damping ratio, mass or inertia at the i-th generalized 

coordinate. 
 Power spectral density of generalized response at the i-th generalized coordinates can be 
obtained in the frequency domain thanks to the first-order Fourier transform:    
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where )(ˆ niξ : Fourier transform of generalized response at the i-th generalized coordinate; 

)(ˆ),(ˆ nwnu : Fourier transform of u-,w- random turbulent processes;  2|)(| nHi : Frequency 

Response Function (FRF) or mechanical admittance function at natural frequency ni.  
 Here the Fourier transform components of u(t), w(t) are decomposed and approximated due to 
the Spectral Proper Transformation (SPT) following Eqs.(8.8-a, 8.8-b), we have: 
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or  
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where )()(),()( nCnAnCnA wijw
T
iwijuju

T
iuij ψφψφ == : cross modal coefficients which represent the 

interaction between the i-th structural mode iφ  and the j-th turbulent one jψ .  

 Power spectral densities of the generalized responses can be obtained thanks to the 



 

second-order Fourier transform as follows: 
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where )(nS
iξ

: power spectra of the generalized response of the i-th generalized coordinate; 

)(),( nSnS wu : cross spectral matrices.  

 Optimum approximations of the cross spectral matrices are used following Eqs.(8.9-a, 8.9-b), 
we have: 
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and 
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 The power spectral densities of generalized response can be obtained in the comprehensive 

form such T
F nHnSnHnS

b

*)()()()( =ξ as follows: 
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where )(nH : Frequency Response Function matrix in the structurally generalized coordinates, 

|))(||,...)(||,)((|)( 21 nHnHnHdiagnH M= ; 2)(nK : squared aerodynamic admittance function.  

 As the result, the power spectral densities of global response are determined: 

 ΦΦ= )()( nSnS T
U ξ  (8.26) 

where )(nSU : power spectra of the global response. 

Then, the mean square of the structural response is obtained  
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where 2
Uσ : Mean square of the global response 

 Finally, global responses with respect to vertical, longitudinal and rotational directions can be 
combined from single-modal responses due to the principle of the squared root of the sum of the 
squares (SRSS): 
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where r denotes to displacement components: vertical (h), longitudinal (p), rotational (a); rM : 
number of component modes in response combination;    
 
8.5 Numerical example 
 
A concrete cable-stayed bridge was taken for numerical example using the above-mentioned 
computational procedures. Bridge was spanned by 40.5+97+40.5=178m. 3D frame model was 
built thanks to the finite element method (FEM). There were 30 discrete nodes in the bridge deck. 
Total 30 nodes were on the bridge deck, while nodes 8, 23 at pylons. First ten structural modes 
were analyzed. Natural frequencies of the first ten structural modes vary between 0.61Hz÷1.86Hz. 
Damping ratios of every structural mode were assumed to be 0.005. It is also assumed that the 
buffeting forces act on the bridge deck only, and the forces on towers and cables are negligible. 
Aerodynamic static coefficients of cross section at balanced angle ( 0

0 0=α ) and their first 

derivatives were experimentally determined as follows: 158.0=LC , 041.0=DC , 174.0=MC , 

73.3' =LC , 0' ≈DC , 06.2' =MC . Two 30-variate turbulent loading processes u(t), w(t) are obtained 

at the deck nodes: Ttutututu )}(,),...(),({)( 3021= and Ttwtwtwtw )}(,),...(),({)( 3021= .  

 One-sided auto spectral density functions of u-, w-turbulent components were obtained due to 
the Kaimail’s and the Panofsky’s spectral models, respectively (Simiu and Scanlan 1976). 
Spanwise coherence function was used the Davenport’s empirical exponential function with 
decay factors (Davenport 1962) with decay factors 5.6,10 == wu cc .  

 Aerodynamic admittance function was used the Liepmann’s empirical function as 
approximation of the Sears’ function as follows (Liepmann 1958):   
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 Mechanical admittance function was determined as follows: 
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 Global responses of bridge is required to be predicted at referred mean velocity U=20m/s. 
 
 
 
 



 

Tab.8.1 Modal characteristics of fundamental structural modes 
 

Mode Eigenvalue Frequency Period Modal  Feature 
shape 2ω  (Hz) (s)  

1 1.47E+01 0.609913 1.639579 S-V-1 
2 2.54E+01 0.801663 1.247406 A-V-2 
3 2.87E+01 0.852593 1.172893 S-T-1 
4 5.64E+01 1.194920 0.836876 A-T-2 
5 6.60E+01 1.293130 0.773318 S-V-3 
6 8.30E+01 1.449593 0.689849 A-V-4 
7 9.88E+01 1.581915 0.632145 S-T-P-3 
8 1.05E+02 1.630459 0.613324 S-V-5 
9 1.12E+02 1.683362 0.594049 A-V-6 

10 1.36E+02 1.857597 0.53830 S-V-7 
Note :   S: Symmetric mode        T: Torsional mode shape 
        A: Asymmetric mode       P: Horizontal mode shape 
        V: Heaving mode shape    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8.2 Fundamental structural mode shapes 
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Fig. 8.3 Normalized amplitudes of structural modes: a. vertical displacement, b. rotational,  
c. lateral 

 
 Cross spectral matrices of the random turbulent processes u(t), w(t) acting on 30 deck nodes 
are constructed from available auto spectral densities )(),( nSnS wwuu and coherence functions 

),(),,( ΔΔ nCOHnCOH wu . The cross spectral matrices are determined as three-dimensional 
symmetrical squared matrices, in which the third dimension contains frequency information.   
 
8.6 Results and discussions  
 
The cross spectral matrices of the random turbulent processes are decomposed thanks to the eigen 
problem to find out entire 30 pairs of spectral eigenvalues and associated spectral eigenvectors 
depending on the frequency. Because the spectral eigenvectors create the orthogonality basis at 
every frequency, thus called as the spectral turbulent modes.  
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 Figure 8.4 shows the first five spectral eigenvalues )()( 51 nn λλ ÷ on the frequency band 
0.01÷10Hz. It is observed that the first spectral eigenvalue )(1 nλ exhibits much higher than the 
others on the very low frequency band 0.01÷0.2Hz with the case of u-turbulence, 0.01÷0.5Hz 
with that of w-turbulence, however, all spectral eigenvalues seem not to differ beyond these 
frequency thresholds. This can imply that only first pair of spectral eigenvalue and spectral 
eigenvector seems to be accuracy enough for representing and simulating the random turbulent 
processes at the low frequency bands, however, more pairs should be required at the higher 
frequency bands. 
 

Fig. 8.4 First five spectral eigenvalues: a. u-turbulence, b. w-turbulence 
 
 The first four spectral eigenvectors wunnn ,);(),(),( 321 =υψψψ υυυ (the spectral turbulent modes) 
on the same spectral band 0÷10Hz is expressed in Figure 8.5. It can be seen that the turbulent 
modes of u-,w-turbulences look like as symmetrically and asymmetrically waves, in which 
number of wave halves increases incrementally with order of the spectral turbulent modes. Shape 
of the turbulent modes of u-,w-turbulent components, moreover, are unchanged during 
structurally natural frequency band (0.61÷1.85Hz). Moreover, the spectral turbulent modes do not 
changed with the frequency, because the spectral modes do not change their values but sign on 
the frequency domain.    
 Figure 8.6 expresses more details the first five spectral turbulent modes at the first five 
structural natural frequencies, in which thick solid line, dashed one, dotted one, dot dashed one 
and light solid exhibit the first five turbulent modes, respectively. As can be seen from Figure 8.6, 
the first turbulent modes of both u-turbulence and w-one keep constant their shape and sign at 
structural natural frequencies, whereas the others change their sign at the natural frequencies. 
Spectral modes of the u-turbulence are similar to corresponding spectral modes of the 
w-turbulence in both their shapes and values. 
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Fig. 8.5 Spectral turbulent modes: a. u-turbulence, b. w-turbulence  



 

Fig. 8.6 First five spectral turbulent modes at natural frequencies: thick solid: 1st turbulent mode, 
dashed: 2nd mode, dotted: 3rd mode; dot dashed: 4th mode, light solid: 5th mode 
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Fig. 8.7 Effect of number of spectral turbulent modes on reconstruction of auto spectral 
densities at nodes 5 and 15: a. u-turbulence, b. w-turbulence 



 

 Figure 8.7 shows the reconstruction of auto power spectra of u-,w-turbulences at referred 

mid-span node 15 using limited number of truncated spectral turbulent modes, 30;10;5;3;1ˆ =M , 

here totally 30 turbulent modes imply for targeted value. Auto spectral values using truncated 
turbulent modes differ with increase of frequency band. At very low frequencies, only first or few 
turbulent modes are sufficient to reconstruct the auto spectral densities of turbulent field, however, 
many turbulent modes should be used at high frequencies. This finding is similar to that comment 
from Figure 8.4. Effect of number of the spectral turbulent modes on reconstruction of the auto 
power spectra of the u-,w-turbulences at another deck nodes also have similar results, but do not 
present here for the sake of brevity.   
 Effect of number of truncated turbulent modes on power spectral densities of the generalized 
responses (consisting of the vertical and rotational displacements) at referred mid-span node 15 
corresponding to some structural modes is expressed in Figure 8.8. Numbers of truncated spectral 
modes used for computation are the first spectral turbulent mode, the first five modes, the first ten 
modes and total thirty modes (as targeted response).  
 

Fig.8.8 Effect of number of turbulent modes on power spectral densities of generalized vertical 
and rotational displacements at mid-span node 15  

 
Figure 8.9 shows the power spectral densities of the global responses at mid-span node 15 

(representative node 15 is illustrated here for a sake of brevity) and effect of number of truncated 
turbulent modes on the global responses. As can be seen from Figure 8.9, there is no much 
different among contribution of truncated turbulent modes on the global vertical and rotational 
displacements. It also indicates that the first turbulent mode significantly contributes on the 
power spectral densities of the global responses. Power spectra of resonant responses, moreover, 
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can be observed at the structural modal frequencies due to influence of frequency response 
functions at these modal frequencies.     
 

 
Fig.8.9 Effect of number of turbulent modes on power spectral densities of global vertical and 

rotational displacements at mid-span node 15 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.8.10 Effect of number of turbulent modes on RMS of global responses at whole deck nodes 
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 Figure 8.10 expresses the root mean squares (RMS) of the global responses at all deck nodes 
with emphasis on effect of truncated turbulent modes on the global responses. The important role 
of the first turbulent mode on the global response can be also observed, because there is no much 
difference of the global response contribution between the first spectral mode and the total 30 
spectral turbulent modes.  
Tab. 8.2 Effect of spectral modes on maximum global amplitude  

For example, the first turbulent mode, first 5 modes, first 10 modes contribute 13.1cm(88%), 
14.4cm(97%), 14.7cm(99%) on 14.7cm-maximum vertical displacement (totally 30 turbulent 
modes) and 0.0120(80%), 0.0140(95%), 0.0150(99%) on 0.0150-maximum rotational displacement  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.8.11 Cross modal coefficients between spectral turbulent modes and structural modes at every 
natural frequency 
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 Influence of the spectral turbulent modes on structural ones has been investigated by the cross 
modal coefficients. Figure 8.11 shows the cross modal coefficients between first 15 spectral 
turbulent modes of u-,w-turbulences and first 10 structural modes for lift or vertical displacement 
and moment or rotational displacement. It is found out that few turbulent modes (in this case, 
only first 9 turbulent modes) can excite structural modes, and higher turbulent modes are 
orthogonal to the structural modes. For more detail, first heaving mode corresponding to the first 
structural mode and first torsional mode corresponding to the third structural modes are excited 
by the first spectral turbulent mode and the third spectral turbulent mode, respectively. Thus, the 
gust response can be obtained by only accounting effective cross modal coefficients. This 
suggests that the prediction of dominant gust response of structures can be simplified by 
combination between few turbulent modes and few structural ones based on effective cross modal 
factors. These results are also good agreements with the findings in Solari and Tubino 2005.  
 
8.7 Conclusion 
 
This chapter has presented the application of the proper orthogonal decomposition and its spectral 
proper transformation to predict the gust response of full-scale bridges due to the randomly 
buffeting forces. Moreover, effect of the orthogonally turbulent loading modes on the generalized 
and global responses of bridges also is investigated.   
 Some conclusions are given as follows: 

(1) New and comprehensive approach on the gust response prediction of bridges in the 
frequency domain using the proper orthogonal decomposition-based spectral proper 
transformation has been presented here. The main points are that the multi-variate 
spatially-correlated random turbulent field acting on bridge deck has been formulated in 
the comprehensive form due to the cross spectral matrix of this random turbulent field, 
then the random turbulent field is decomposed and approximated by low-order spectral 
turbulent modes which are used to estimate the gust response. 

(2) Only limited number of low-order spectral turbulent modes dominantly contributes on 
structural gust response. In many cases, the first spectral turbulent mode play very 
significant role and seems to be accuracy enough in predicting the gust response of 
bridges in the frequency domain, especially in the low frequency range. 

 Further development in the application of the spectral proper transformation in predicting the 
gust response of structures is going to be accounted the coupling effect between the buffeting 
forces and the aeroelastic forces (or flutter self-excited forces).   
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Chapter 9 
 

Gust Response of Bridges using Covariance Proper 
Transformation 
 
 
 
9.1 Introduction 
 
Gust response prediction of long-span bridges subjected to the turbulent-induced forces (the 
buffeting forces) requires more concern among wind-induced vibrations and their aerodynamic 
responses. General formulation of gust response prediction of bridges was proposed by 
Davenport 1962 in the frequency domain. Recently, the state-of-the-art buffeting response 
analysis of bridges in coupling with the aeroelastic forces in the time domain has been carried out 
by some authors (eg., Matsumoto et al. 1994, Matsumoto and Chen 1996, Boonyapinyo et al. 
1999, Chen at al. 2000). Computational difficulties are to decompose spatially-correlated 
full-scale buffeting forces into the structurally generalized coordinates which are decomposed 
thanks to the structural modal transformation (SMT) in order to estimate the generalized 
responses in the generalized coordinates and then the global responses of structures. In 
conventional methods in both the frequency-domain and the time-domain, the so-called joint 
acceptance function (JAF) has been used to decompose the full-scale buffeting forces into the 
structurally generalized coordinates.             
 Karhunen-Loeve decomposition, also known as the proper orthogonal decomposition (POD) 
(Lumley 1970), has been applied in many engineering fields (Liang et al. 2002). In the wind 
engineering topics, the proper orthogonal decomposition has been applied for analysis and 
order-reduced modeling of the random fields (Tamura et al. 1999, Matsumoto et al. 2006), 
representation and simulation of the random fields (Tubino and Solari 2005), stochastic dynamic 
response (Carassale et al. 1999, Solari and Carassale 2000, Chen and Kareem 2005). Basing on 
the basic matrix of either the zero-time-lag covariance matrix or cross spectral density matrix of 
the random field, the proper orthogonal decomposition has been branched by either the 
covariance proper transformation (CPT) or the spectral proper transformation (SPT). New 
approach of the gust response analysis of structures has been proposed recently by Carassale et al. 
1999 in which the structural modes decomposed by the structural modal transformation are 



 

associated with either the covariance turbulent loading modes or the spectral turbulent loading 
modes decomposed from proper transformations in order to determine the generalized responses 
and the global responses of structures. Combination manner between the structural modes and the 
turbulent loading modes for predicting the stochastic response of structures is named by 
Carassale et al. 1999 and Solari and Carassale 2000 as the double modal transformations (DMT). 
So far, almost literatures on the proper orthogonal decomposition application to the stochastic 
response of structures are formulated based on the spectral proper transformation in the frequency 
domain (Carassale et al. 1999, Solari and Carassale 2000, Chen and Kareem 2005). The 
frequency-domain gust response of structures using the spectral proper transformation has been 
formulated in the previous chapter. The stochastic response of structures formulated in the time 
domain using the covariance proper transformation is very promising because of its direct and 
capable solutions for nonlinear problems and unsteady aerodynamics. However, digital 
simulation of the time series of the random turbulent field and the direct integration methods of 
generalized dynamic equations are usually required that are associated with time-consumed and 
difficult computation.   
 This chapter will present the application of the covariance matrix-branched proper orthogonal 
decomposition and its covariance proper transformation to decompose the random turbulent 
loading processes, then to formulate the time-domain gust response of structures. The 
Newton-beta integration method is also applied to obtain the time-domain solution of the gust 
responses in the generalized and global coordinates. Numerical example of cable-stayed bridge 
will be taken into account for illustration and demonstration. 
 
9.2 Covariance proper transformation 
 
The main idea of the covariance matrix-based proper orthogonal decomposition and its 
covariance proper transformation is to find out a set of orthonormal basic vectors which can 
expand a multi-variate spatially-correlated random turbulent field into a sum of products of these 
basic orthogonal vectors (turbulent loading modes) and single-variate uncorrelated random 
processes (principal coordinates) based on the covariance matrix of this random field. The 
covariance matrix-based orthogonal vectors are found as the eigenvector solutions of the eigen 
problem of the zero-time lag covariance matrix )0(υR of N-variate random turbulent process )(tυ :       

 υυυυ ΘΓ=ΘR  (9.1) 

where )0(υR : zero-time-lag covariance matrix of )(tυ ; ΘΓ ,υ : covariance eigenvalue and 

eigenvector matrices ],...,[
21 Nυυυυ θθθ=Θ , ),...,(

21 N
diag υυυυ γγγ=Γ . Because the zero-time lag 



 

covariance matrix is positive-definite symmetrical squared one, thus its covariance eigenvalues 
are real and positive, and covariance eigenvectors are also real, satisfy the orthonormal 
conditions:    

 υυυυυυ Γ=ΘΘ=ΘΘ TT CI ;  (9.2) 

 Then, the random turbulence field and its covariance matrix can be expressed such optimum 
approximation as follows: 
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where T
N

xtxtxtx }ˆ,),...(ˆ),(ˆ{)(ˆ
21 υυυυ = : covariance matrix-based principal coordinates (shortly, the 

covariance principal coordinates) as the N-variate uncorrelated Gaussian random subprocesses 
that represents as image of the random turbulent field in the covariance-based space; N~ : number 
of truncated covariance eigenvectors ( NN <<~ ). The covariance principal coordinates can be 
determined from observed data under following expression:   
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 These approximations are known as the Covariance Proper Transformation in the time domain.  
Two N-variate turbulent processes u(t), w(t) acting on the N structural nodes: 
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where )0(),0(
mmmm wwuu RR : mean square or variance elements of the single-variate turbulent 

subprocesses at structural node m; )0(),0(
kmkm wwuu RR : cross correlation elements between two 

structural nodes m, k; m or k=1,2..N:  

 [ ] [ ]T
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T
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)()()0(;)()()0( ==  (9.6-a) 
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)()()0(;)()()0( ==  (9.6-b) 

where E[] denotes to expectation operator.  



 

 Two N-variate Gaussian random turbulent processes u(t), w(t) can be transformed and 
approximated into the covariance principal coordinates due to the Covariance Proper 
Transformation:  

 )()()(
~

1
txtxtu

N

j
uuuu jj∑

=

≈Θ= θ  (9.7-a) 

 )()()(
~

1
txtxtw

N

j
wwww jj∑

=

≈Θ= θ  (9.7-b) 

where )(),( txtx wu : the covariance principal coordinates of u-,w-turbulences, respectively. 

 As the same way, the covariance matrices can be approximated as follows: 
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where wuwu ΘΘΓΓ ,,, : covariance eigenvalues and corresponding covariance eigenvectors (or 

covariance turbulent modes) : ),,...,(
21 Nuuuu diag γγγ=Γ , ),,...,(

21 Nwwww diag γγγ=Γ , 
T

uuuu N
},,...,{

21
θθθ=Θ ; T

wwww N
},,...,{

21
θθθ=Θ  determined from the covariance matrix-based 

proper orthogonal decomposition of the random turbulent processes u(t), w(t) following 
Eq.(10.1). 
 
9.3 Time-domain buffeting forces  
 
Uniform quasi-steady buffeting forces per unit deck length (Lift, Drag and Moment) are 
determined due to the quasi-steady theory that is corrected by frequency-dependant aerodynamic 
admittance functions as follows: 
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where MDL CCC ,, : aerodynamic static coefficients (at balanced angle of attack); ''' ,, MDL CCC : 

first-order derivatives; ),;,,()( wuMDLFnF == υχ υ : aerodynamic transfer functions between 



 

turbulent components and turbulent-induced forces (their absolute magnitudes refer as 
aerodynamic admittance functions).   
 
 
 
 
 
 
 
 
 
Fig. 9.1 Uniform buffeting forces on bridge deck (in time-domain formulation) 
 
 Quasi-steady buffeting forces, however, do not exactly reflect unsteady characteristics as 
nature of these random forces, which depend on not only geometric configuration of bridge decks, 
oncoming wind turbulence, but frequency-dependant parameters due to wind-structure interaction 
and bluff body flow. Additionally, it is indicated that unsteady fluid dynamics at low, medium 
flow velocity ranges must account for both past and present motion histories, thus the so-called 
“memory effect” of the unsteady fluid flow should be included in modeling of unsteady buffeting 
forces.. So far, the unsteady buffeting forces can be determined via either the indicial response 
functions (Scanlan 1993) or the impulse response functions (Lin 1984, Chen and Kareem 2000) 
thanks to convolution integration operation. Recently, the impulse response functions are usually 
used for modeling the unsteady buffeting forces in the time domain as follows:  
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where MwMuDwDuLwLu IIIIII ,,,,, : impulse response functions which are usually obtained thanks 

to available admittance functions such following formulae as (Scanlan et al , Chen and Kareem 
2002): 
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where υFI : Fourier transform of the impulse response functions ( wuMDLF ,,, == υ ) : 
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 However, the aerodynamic admittance functions determined by either empirical formula or 
experimental measurement are expressed at discrete values of reduced frequency. Therefore, it is 
essential to approximate discrete frequency-dependant function to continuous one. Rational 
function approximation, known as the Roger’s approximation is the mostly utilized for this 
purpose. Aerodynamic transfer functions can be expanded using rational function approximation:      
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where 1,1, , +jFF AA υυ , jFd ,υ  frequency-dependant coefficients ( υFmj ,,...2,1= ) determined by nonlinear 

curve-fitting technique.    
 Then the impulse response functions and the unsteady buffeting forces (here only 

)(sILw , )(tLLw  are expended as example) can be determined as follows: 
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where )(, tjFwφ : augmented aerodynamic state coefficient. 

 Then full-scale buffeting forces acting on whole structure can be formulated due to linearized 
lumping of the uniform buffeting forces at each deck node: 
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where wu CC , : full-scale force coefficient matrices; Li: influenced distance at node i; y: 



 

longitudinal structural coordinate   
 
9.4 Gust response formulation 
 
Multi-degree-of-freedom motion equations of structures subjected to the full-scale buffeting 
forces can be expressed thanks to Finite Element Method (FEM): 

 )(tFKUUCUM b=++ &&&  (9.15) 

where { }TTT tatpthU )(,)(,)(=  : displacement vector containing three vertical, lateral and 

rotational displacements; UU &&& , : velocity and acceleration vectors; )(tFb : full-scale buffeting 

forces. 
 Structurally global responses can be expressed into the mass matrix-normalized generalized 
coordinates thanks to the Structural Modal Transformation as follows: 
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where { })(,),...(),()( 21 tttt Mξξξξ = : structural generalized coordinates; T
M ],...,,[ 21 φφφ=Φ : 

modal matrix; M : number of truncated structural modes ( MM << ); 
 Therefore, single-degree-of-freedom motion equation of the i-th generalized coordinate is 
determined: 
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where ii ζω , : circular frequency, damping ratio of the i-th generalized coordinate. 

 Using the covariance proper transformation in Eqs(10.7-a),(10.7-b), the multi-variate random 
turbulent processes u(t), w(t) can be approximated by uncorrelated subprocesses and covariance 
eigenvectors (or covariance turbulent modes). Thus, the 1DOF motion equation is expressed such 
following forms as: 
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where wjwiwijujuiuij CACA θφθφ == ; : cross modal participation coefficients accounting for 

interaction between structural modes and covariance turbulent modes; 
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coordinates, which are determined from original turbulent fields as follows  
 

jj uuuu tutytuty θ)()(;)()( =Θ=  (9.19-a) 

 
jj wwww twtytwty θ)()(;)()( =Θ=  (9.19-b) 

 Therefore, the 1DOF motion equations associated with vertical, horizontal and rotation 
structural principal coordinates can be expressed as follows: 
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where M
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uij AAAAAA ,,,,, : cross modal participation coefficients between structural 

modes and covariance turbulent modes which are correspondent to u-,w-turbulences and 
turbulent-induced lift, drag, moment.  
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 The 1DOF motion equations system is formulated in the time domain. Finding out solution of 
this system can be obtained based on the direct integration methods such as the Newmark-beta 
method, the fourth-order Runge-Kutta method and so on. 
 As a result, the structural global responses (vertical, lateral and rotational displacements) of 
structure can be determined based on the superposition principle as follows: 
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i
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i
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Where aph UUU ,, : global vertical, lateral and rotational displacements, respectively; aph φφφ ,, : 

structural modes corresponding to three responses; � : numbers of component modes in 
combination of responses.    
 
 
 



 

9.5 Numerical example 
 
A concrete cable-stayed bridge was taken for numerical example using the above-mentioned 
computational procedures. Bridge was spanned by 40.5+97+40.5=178m. 3D frame model was 
built thanks to the finite element method (FEM). There were 30 discrete nodes in the bridge deck. 
Total 30 nodes were on the bridge deck, while nodes 8, 23 at pylons. First ten structural modes 
were analyzed. Natural frequencies of the first ten structural modes vary between 0.61Hz÷1.86Hz. 
Damping ratios of every structural mode were assumed to be 0.005. Aerodynamic static 
coefficients of cross section at balanced angle ( 0

0 0=α ) and their first derivatives were 

experimentally determined as follows: 158.0=LC , 041.0=DC , 174.0=MC , 73.3' =LC , 0' ≈DC , 

06.2' =MC . Some fundamental modal shapes of bridges and characteristics of free vibration modes 

have been presented in the Chapter 9. 
 One-sided auto spectral density functions of u-, w-turbulent components were obtained due to 
the Kaimail’s and the Panofsky’s spectral models, respectively (Simiu and Scanlan 1976). 
Coherence function was used the Davenport’s empirical exponential function with decay factors 
with decay factors 5.6,10 == wu cc (Davenport 1962). Aerodynamic admittance function was 

used the Liepmann’s empirical function as approximation of the Sears’ function (Liepmann 1958). 
Mechanical admittance function was determined corresponding to structural generalized 
coordinates.  
 In this example, the global responses of bridge are required to be predicted at some different 
mean velocity range between 0m/s and 40m/s. It is also assumed that the buffeting forces act on 
the bridge deck only, and the forces on towers and cables are negligible. Therefore, 30-variate 
turbulent loading processes u(t), w(t) are obtained at the deck 

nodes: Ttutututu )}(,),...(),({)( 3021= and Ttwtwtwtw )}(,),...(),({)( 3021= . In the branch of the 

covariance proper transformation, the covariance matrix is formulated in the time domain, thus 
time series of the turbulent fields u(t), w(t) must be required to be simulated at all deck nodes. 
The spectral representation methods using the Cholesky decomposition and the modal 
decomposition which were presented in the Chapter 8 are used here to simulate time series of 
u-,w-turbulences at 30 deck nodes based on the cross spectral matrices of the turbulent fields 
which are constructed thanks to available frequency-dependant auto spectral densities of 
single-variate turbulent processes and spatial coherence functions. Accuracy of simulated 
turbulent time series has been verified by comparing between power spectral densities of 
simulated turbulent time series and targeted ones, as well as between coherence of simulated time 
series and targeted coherence.  



 

 Simulated time series of u-,w-turbulences at referred ten deck nodes during 100-second 
interval at the mean velocity U=20m/s is expressed in Figure 9.2. Simulated time series of the 
turbulences at another mean velocities and deck nodes are omitted for a sake of brevity. 

Fig. 9.2  Simulated turbulent time series at 10 deck nodes corresponding to mean wind 
velocity U=20m/s: a. u-turbulence, b. w-turbulence  
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9.6 Results and discussion 
 
Simulated turbulent fields u(t), w(t) have been used to formulate the zero-time-lag covariance 
matrix. Then, the covariance eigenvectors (or covariance turbulent modes) and associated 
eigenvalues have been found out from the eigen solution of these covariance matrices. The 
covariance principal coordinates is determined based on simulated turbulent fields. 
 Figure 9.3 shows totally 30 covariance eigenvalues of u-,w-turbulences. Energy contribution 
of the covariance turbulent modes is expressed in Figure 9.4. It notes that the energy contribution 
of the covariance turbulent modes does not decay fast.  

Fig. 9.3  Covariance eigenvalues: a. u-turbulence, b. w-turbulence 

Fig. 9.4 Energy contribution of covariance eigenvectors: a. u-turbulence, b. w-turbulence 
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 First ten covariance turbulent modes corresponding to u-turbulence and w-turbulence are 
indicated in Figure 9.5. Figure 10.6 shows the first ten covariance principal coordinates of the 
u-,w-tubulences.  
 

Fig. 9.5 First ten covariance turbulent modes: a. u-turbulence, b. w-turbulence  
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Fig. 9.6 First ten covariance turbulent coordinates: a. u-turbulence, b. w-turbulence   
 
 Time series of the global responses (vertical, rotational and lateral displacements) at deck 
nodes 5&15 in different mean velocities U=10, 20, 30, 40m/s have been shown from Figure 9.7 
to Figure 9.10. Maximum and minimum displacements can be determined thanks to these time 
series of global responses. 
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Fig. 9.7 Time histories of global responses at nodes 5&15 at mean velocity U=10m/s: 

a.vertical, b. rotational, c. lateral displacement 
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Fig. 9.8 Time histories of global responses at nodes 5&15 at mean velocity U=20m/s: 

a.vertical, b.rotational, c. lateral displacement 
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Fig. 9.9 Time histories of global responses at nodes 5&15 at mean velocity U=30m/s: a. 

vertical, b. rotational, c. lateral displacement 
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Fig. 9.10 Time histories of global responses at nodes 5&15 at mean velocity U=40m/s: 

a.vertical, b.rotational, c. lateral displacemen 
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 Figure 9.11 shows the global response envelopes of the vertical and rotational displacements 
of bridge in referred nodes 5 and 15 in the mean velocity range between 0m/s and 40m/s. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9.11 Minimum and maximum global responses at nodes 5 & 15 corresponding to mean 

wind velocity range between 0÷40m/s    
 
 Tab. 9.1 Effect of covariance modes on maximum global amplitude  
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Fig. 9.12 Effect of number of truncated covariance turbulent modes on global responses at all 
deck nodes in case of mean velocity U=20m/s: a. vertical displacement, b. rotational 
displacement 

 

 Effect of truncated number of the covariance turbulent modes in the covariance proper 
transformation on the global responses has been investigated here. Figure 9.12 indicates the 
maximum structural responses on whole bridge deck at U=20m/s corresponding to number of 

turbulent modes ( 510;20;30~ andM = , in which 30 modes imply for targeted response).  

 It can be seen that maximum responses reduce with respect to decrease of truncated number of 
turbulent modes. Number of turbulent modes to some extent does not influence considerably on 
global responses. For example, the maximum vertical amplitudes at midspan node 15 are 9.3cm 
(100%), 8.0cm (86%), 6.9cm (74%) and 5.3cm (57%) and the maximum torsional amplitudes at 
node 15 are 0.00780 (100%), 0.00750 (96%), 0.00710 (71%) and 0.00490 (63%) corresponding to 
30, 20, 10 and 5 modes taken into account. Therefore, higher number of low-order covariance 
turbulent modes should be used for estimating the gust responses of bridge. 
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9.7 Conclusion 
 
This chapter has presented the application of the proper orthogonal decomposition and its 
covariance proper transformation for the gust response prediction of full-scale bridges in the time 
domain. Effect of number of orthogonally turbulent loading modes on the generalized and global 
responses of bridges also is investigated accordingly.   
 Some main points can be concluded as follows: 

(1) New framework on the gust response prediction of bridges has been formulated in the 
time domain using the covariance matrix-based proper orthogonal decomposition and its 
covariance proper transformation. Time series of the multi-variate random turbulent fields 
have been simulated via the spectral proper transformation to be used in this time-domain 
gust response prediction of bridges. It seems that the computational procedure presented 
here is very promising for the buffeting analysis and the gust response in the time domain 
with its advantages to treat with aerodynamic and geometrical nonlinearities.  

(2) It is argued that the high number of lower-order covariance turbulent modes should be 
required for accuracy estimation of the gust response of bridges. In comparison with 
effect of number of the spectral turbulent modes, in some extent and in this investigated 
case, it is commented that the low-order covariance turbulent modes play less important 
role than spectral ones in their contributions on the gust response of bridge.   

 
 Further development in the applications of the proper orthogonal decomposition and the 
covariance proper transformation for the gust response prediction of bridges in the time domain is 
going to focus on the comprehensive model of unsteady buffeting forces model using the impulse 
response functions which can capture the “unsteady fluid memory effect”. 
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Chapter 10 
 

Conclusions 
 
 
 
The main aims of this dissertation are to discuss on the unsteady buffeting forces and the gust 
response prediction of bridges as well as to investigate on recent limitations and uncertainties in 
the usage of the correction functions: the aerodynamic admittance function and the spatial 
coherence function. Furthermore, the proper orthogonal decomposition (POD) applications are 
also in scope and other aim of this dissertation. The all three main applications of the POD and its 
proper transformations in the wind engineering fields have been revised here. Firstly, the POD is 
used for analysis and identification of the pressure fields around some rectangular cylinders, 
moreover, the linkage between the POD modes and physical causes of the bluff body flow has 
been established. Secondly, the digital simulation of the random turbulent fields around the 
bridge deck has been studied using the spectral matrix-based POD and its spectral proper 
transformation. Finally, new approaches on the gust response prediction of bridges in both the 
time domain and the frequency domain also are considered as the main core of contribution and 
achievement in this dissertation. Especially, both branches of the proper orthogonal 
decomposition based on the covariance matrix and the cross spectral matrix as well as their 
covariance proper transformation and the spectral proper transformation have been applied. One 
of the additional contents presented inside is to investigate the spatial distribution and correlation 
on some physical models in some unsteady flows. 
 Two methodological approaches including the physical measurements in the wind tunnel and 
the analytical method using numerical examples have been exploited in this dissertation. The 
physical measurements of the surface pressure fields have been carried out on three physical 
models with slender ratio B/D=1, B/D=1 with the splitter plate at flow wake and B/D=5 under 
some unsteady flows including the smooth flows, turbulent flows and the fluctuating flows in 
order to investigate the spatial pressure distribution, the spanwise correlation and spanwise 
coherence. Moreover, the three components of the buffeting forces comprising lift, drag and 
moment have been directly measured on experimental models B/D=5 and B/D=20 under the 
turbulent flows in order to study the aerodynamic admittance functions. In the numerical example 



 

for analytical method, the full-scale three-dimensional finite-element model of the cable-stayed 
bridges has been exploited.       
 
 The main contributions and results of this thesis are concluded herein as follows:   
 
 Chapter 2 has reviewed on background of the buffeting forces and the gust response prediction 
of bridges formulated in both the time domain and the frequency domain as well as recent 
limitations and uncertainties produced from the quasi-steady theory and the strip theory. Although, 
the correction functions as the aerodynamic admittance function and the spatial coherence 
function have been supplemented to treat with limitations of these theories, but the correction 
functions themselves contain uncertainties in their measurements and the empirical models. 
Therefore, further studies and developments on correction functions should be required for more 
refinements of the buffeting forces and the response prediction, as well as new approach for the 
gust response prediction.          
 
 Chapter 3 has discussed on spatial distribution and correlation of the pressure fields on some 
rectangular models and in some unsteady flows. It is found that the normalized fluctuating 
pressure distributes strongly and locally in the chordwise direction on the leading edge region, 
moreover, distributes homogeneously in the spanwise direction in the turbulent flows. In the 
fluctuating flows, the spanwise convection and the spanwise distribution of the surface pressure 
have been strengthened with respect to decrease of the reduced frequencies (increase of reduced 
velocities). It is supposed that the low frequency components can play more important role on 
spanwise distribution of induced pressure than high frequency ones.  
 The spanwise correlation depends strongly on such parameters as flow conditions, investigated 
positions, experimental models and their slender ratios B/D in the investigated cases. High 
spanwise correlation has observed at some positions near the leading edge regions where the high 
pressure region localized. The spanwise correlation in the smooth flows is larger than that in the 
turbulent ones. Moreover, the effect of Karman vortex (in the case without S.P) on increases of 
the spanwise correlation is also found. It is discussed that the spanwise correlation reduces with 
increase of slender ration B/D. It is again verified that the spanwise correlation of the 
turbulent-induced pressure always exhibits larger than that of the turbulence. The wind-structure 
interaction and the bluff body flow reason for the higher mechanism of spanwise correlation of 
induced forces than that of the turbulence.  
 
 Chapter 4 has investigated on the aerodynamic admittance as the spectral-based transfer 



 

functions between the turbulence and the induced forces on some physical models B/D=5 and 
B/D=20 in the turbulent flows. New approaches of the nonlinear admittance function and the 
multi-variate admittance functions, as well as relationship between the aerodynamic admittance 
and the aerodynamic derivatives have been discussed and compared with the conventional 
quasi-steady admittance function. It is found that the contribution of squared fluctuating 
velocities on the output forces is not considerable in investigated cases, thus these nonlinear s 
components can be omitted without lost of accuracy. Moreover, comprehensive form of the 
multi-variate aerodynamic admittance has been determined by using the system identification 
technique.    
 
 Chapter 5 has studied on the spanwise coherence functions of the surface pressures and wind 
turbulences using both the Fourier transform-based and the wavelet transform-based tools, as 
well as some effects on coherent structure have been investigated. Firstly, it is found obviously 
that the pressure coherence expresses higher than the turbulent one, this can be convinced due to 
the effect of the wind-structure interaction and the bluff body flow on the model surface. 
Empirical formulae of the turbulent coherence, moreover, used in the gust response prediction so 
far contain obviously a lot of uncertainties. 
 Secondly, coherent structures of the turbulence and the pressure depend on some parameters 
not only the frequency, the ongoing flow, the spatial separations as usual, but the bluff body flow 
and the time. It is suggested, therefore, that the empirical formulae of coherence must account for 
the effect of bluff body flow. The side ratio B/D is recommended as the parameter of the bluff 
body flow in some cases of rectangular cylinders.  
 Thirdly, it is observed thanks to the Fourier coherence and the wavelet coherence that the 
coherences of the turbulence and the pressure are significant at the low spectral band and 
distribute intermittently in the time domain. High coherent events, moreover, distribute on 
localized areas in the time-frequency plane can be observed on the temporo-spectral structures of 
turbulence and pressure coherences, even at large separations. Thus, existence of localized high 
coherent events is the nature of coherence structure. 
 Finally, no correspondence and simultaneous occurrence between high coherence events of 
turbulence and induced pressure have been observed in the time-frequency plane. This can add to 
uncertainties in the turbulent-induced response prediction of structures relating to the 
quasi-steady theory of turbulent-induced forces built from the turbulent components.  
 
 Chapter 6 has applied the POD for analysis and identification of the chordwise pressure field 
around the rectangular cylinders, moreover, the linkage between the POD modes and the physical 



 

causes has been found out in these investigated cases. Two POD branches using the covariance 
matrix and the cross spectral matrix has been presented. It is discussed that the first covariance 
turbulent mode and the first spectral turbulent mode play very significant role which can 
characterize for whole pressure field. Concretely, the first covariance mode, the first spectral one 
contain certain spectral peaks of hidden physical evens, moreover, it contributes dominantly on 
the field energy. Therefore, only the first mode is accuracy enough to reconstruct and identify the 
whole pressure field.     
 Obviously, the POD is effective to describe the pressure field by using limited number of 
low-order modes and eigenvalues and associated principal coordinates. In cases of the high 
frequency range and of complicated pressure distributions, it is suggested that more cumulative 
modes should be needed to reconstruct the pressure field. In the other words, the more 
complicated the pressure field distributes and the bluff body flow behaviors, the less important 
the first mode contributes and the more cumulative modes are needed to reconstruct the pressure 
field. In the comparison, the first spectral mode expresses the better than the first covariance 
mode in reconstructing the pressure field.  
 It is discussed that, however, the linkage between the POD modes and physical events is valid 
only in the concrete cases when the pressure field behaviors simply and steadily as well as the 
physical events occur apparently . Because the POD modes, eigenvalues, principal coordinates 
modify sensitively with respect to pressure positions, pressure tap arrangements, measured region 
and area, so on, therefore it is supposed such linkage only can be obtained in some limited cases. 
The usage of the POD, moreover, for interpreting aerodynamic interference is not clear so far.        
 
 Chapter 7 has applied the spectral matrix-based POD and its spectral proper transformation for 
simulating the multi-variate turbulent field. Effect of number of the spectral turbulent modes on 
simulated time series has been investigated with verification for accuracy and consistence. 
Moreover, the physical meaning of the spectral eigenvalues and turbulent modes relating to 
hidden events in the ongoing turbulent flow has been tried to establish. It can be argued that it is 
not accurate enough for the turbulent simulation with using just few fundamental turbulent modes, 
many turbulent modes should be required.   
 Because the spectral eigenvectors express constantly with respect to the different mean 
velocities and the frequencies, and the spectral eigenvalues contain frequency information. 
Therefore, it is expected that the spectral eigenvalues can characterize for scale of the turbulent 
eddies of the ongoing turbulent flow. However, further studies on this relationship should be 
required for more clarification.  
 



 

 Chapter 8 has used the spectral matrix-based POD and the spectral proper transformation to 
formulate the gust response of bridges in the frequency domain. The new approach on the gust 
response prediction of bridges has been carried out with usage of the comprehensive form of the 
cross spectral matrices of the multi-variate random turbulent fields, in which the spatial 
correlation of the turbulent fields has been taken into account in these matrices using the spatial 
coherence function. Full-scale buffeting forces have been decomposed completely and projected 
into generalized coordinates and the structural modes without usage of the joint acceptance 
function as applied in the conventional methods. Moreover, the effect of the spectral turbulent 
modes on the generalized and global responses has been investigated. It is discussed that only 
limited number of low-order spectral turbulent modes dominantly contributes on structural gust 
response. In these cases, the first spectral turbulent mode play very significant role and seems to be 
accuracy enough in predicting the gust response of bridges in the frequency domain, especially in the low 
frequency range.  
 
 Chapter 9 has applied the covariance matrix-based POD and the covariance proper 
transformation to formulate the gust response prediction of bridges in the time domain. New 
framework on the gust response prediction of bridges in the time domain has been proposed with 
usage of the comprehensive form of the covariance matrices of the multi-variate random 
turbulent fields. The effect of the orthogonally covariance turbulent modes on the global 
responses of bridges also is investigated. It is concluded that the higher number of lower-order 
covariance turbulent modes should be required for estimating the gust response of brides. To 
compare with the spectral turbulent modes, it seems the covariance turbulent modes play less 
important role than the spectral turbulent modes on the gust response prediction. 
 
 Some further works and developments are intended in the coming time as follows: 
 
 Firstly, the applications of the POD and its proper transformations for the gust response 
prediction of bridges in both frequency domain and the time domain is going to focus on further 
works with coupling effects with the aeroelastic flutter forces, moreover, the complete unsteady 
buffeting forces which can capture the unsteady fluid memory effect are going to be exploited. 
 
 Secondly, the limitations and uncertainties on the usages of the correction functions on the 
buffeting theory are going to be studied for further clarification.  
 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


